1) a) Which of the following rings are integral domains? Give a brief explanation of your answer.
 b) Same as a) replacing “integral domains” with “fields.”
 i) \(\mathbb{Z}[i] = \{a+bi \mid a, b \in \mathbb{Z} \} \), where \(i^2 = -1 \).
 ii) \(\mathbb{Z}/12\mathbb{Z} \).
 iii) \(M_2(\mathbb{Z}/2\mathbb{Z}) = 2 \times 2 \) matrices with entries in \(\mathbb{Z}/2\mathbb{Z} \).
 iv) \(\mathbb{Z} \oplus \mathbb{Z} = \{(a,b) \mid a, b \in \mathbb{Z} \} \), with \((a,b)+(c,d)=(a+c,b+d) \) and \((a,b)(c,d)=(ac,bd) \).
 v) \(\mathbb{Z}/11\mathbb{Z} \).
 vi) \(\mathbb{Q} \) = the rational numbers
 vii) \(C(\mathbb{R}) \) = the continuous real valued functions on \(\mathbb{R} \).

2) a) List all the zero divisors in the 7 rings \(R \) from problem 1 except that you should replace
 vii) \(C(\mathbb{R}) \) with \(C^\text{pw}(\mathbb{R}) \) - the piecewise continuous functions on \(\mathbb{R} \) (i.e., we allow a finite number of removable or jump discontinuities).
 b) List all the units in the same 7 rings as part a); i.e., find the unit group \(U(R) \).
 c) What is the relation between the zero divisors and the units of \(R \), if any?

3) Suppose that \(F \) is a field and \(S \) is a subset of \(F \). Develop a subfield test for \(S \) to be a subfield which is analogous to our subring test from Gallian Chapter 12. Prove that that the test works. Again make use of the 1-step subgroup test from Gallian, Chapter 3.

4) Show that there does not exist an integral domain with exactly 6 elements.
 Hint: You can use Theorems 13.3 and 13.4 in Gallian.

5) Suppose that \(F \) is a finite field with \(n \) elements. Define \(F^* \) to be the set of all non-0 elements of \(F \).
 a) Show that \(F^* \) is a group under multiplication.
 b) Show that \(x \) in \(F^* \) implies \(x^{n-1} = 1 \).

6) a) Consider \(\mathbb{Z}_5[i] = \{a+bi \mid a, b \in \mathbb{Z}_5 \} \), where \(i^2 = -1 \). Show that this ring is not a field.
 b) Consider \(\mathbb{Z}_7[i] = \{a+bi \mid a, b \in \mathbb{Z}_7 \} \), where \(i^2 = -1 \). Show that this ring is a field.
 c) Can you develop a more general version of this problem for \(\mathbb{Z}_p[i] \) where \(p \) is an odd prime according to whether \(p \) is congruent to 1 or 3 (mod 4)?