Integral Domains "nicer rings"

Definition: If R is a commutative ring, we say $a \neq 0$ in R is a zero-divisor iff $ab = 0$ for some $b \neq 0$ in R.

Example \mathbb{Z}_6:

- 2 and 3 are zero divisors since $2 \cdot 3 \equiv 0 \pmod{6}$.

Definition: A commutative ring with unity 1.

\mathbb{Z} is an integral domain iff \mathbb{Z} has no zero divisors.

I'm thinking: Zero divisors are "bad". \mathbb{Z} is "good" if it has none.

Example:

1. \mathbb{Z} is an integral domain.
2. \mathbb{Z}_6 is not an integral domain since $2 \cdot 3 \equiv 0 \pmod{6}$.
3. \mathbb{Z}_5 is an integral domain.

$a \cdot b \equiv 0 \pmod{5} \iff 5 | a \cdot b \Rightarrow 5 | a \text{ or } 5 | b$ by Euclid's Lemma, (Gallian p. 7).

Fact: If R = integral domain, then if $a \neq 0$ in R, a, b, $c \in R$ and $ab = ac$ then $b = c$.

That is, cancellation is legal (even though a^{-1} may not be in R).
Proof
\[ab = ac \implies ab - ac = 0 \]
\[\implies a(b - c) = 0 \]
\[\implies b - c = 0 \quad \text{as } a \neq 0 \implies R \text{ has no zero divisors.} \]

Defn. Field = \{\text{commutative ring } F \text{ with unity } 1 \}
\text{such that } \forall a, b \in F, \quad a \cdot b = 0 \implies a = 0 \text{ or } b = 0.

That is, \(\forall x \in F, \ x \neq 0, \implies x^{-1} \in F. \)

Examples
1. \(\mathbb{Z} \) = ring of integers is not a field as \(\mathbb{Z} \) has \(\mathbb{Z}^{-1} \neq \{ \pm 1 \} \).
2. \(\mathbb{Z}_5 \) is a field
 \[1^{-1} \equiv 1 \pmod{5} \quad 3^{-1} \equiv 2 \pmod{5} \]
 \[2^{-1} \equiv 3 \pmod{5} \quad 4^{-1} \equiv 4 \equiv -1 \pmod{5} \]
 \text{More generally } \mathbb{Z}_p \text{ is a field } \iff p \text{ is prime.}
3. \(\mathbb{Q} \) = rational \# s = \{ \frac{n}{m} | n, m \in \mathbb{Z}, m \neq 0 \}
 \text{is a field.}
4. \(\mathbb{R}, \mathbb{C} \) also are fields.

Thm.
1. A field is an integral domain.
2. Any finite integral domain (e.g., \(\mathbb{Z}_p \), \(p \) = prime) is a field.
Proof

1. For $a, b \in F$ with $a \neq 0$ and $ab = 0$
 \[
 \Rightarrow b = a^{-1}(ab) = a^{-1} \cdot 0 = 0
 \]
 \[
 \Rightarrow b = 0
 \]
 So F has no 0-divisors and is an integral domain.

2. D is a finite integral domain. Let $a \neq 0, a \in D$.
 We must show there exists $a_i \in D, i \in \mathbb{N}$
 \[
 S = \{a, a^2, a^3, \ldots \} \subset D. \quad D \text{ finite } \Rightarrow S \text{ finite}
 \]
 \[
 \Rightarrow a_i = a_j \quad \text{for some } i \geq j
 \]
 \[
 \Rightarrow a^{i-j}(a^j) = 1 \cdot a^j
 \]
 \[
 \Rightarrow a^{i-j} = 1 \quad \text{by cancellation (see p. 7)}
 \]
 \[
 \Rightarrow a \cdot \left(\frac{a^j}{a^{i-j}}\right) = 1
 \]
 \[
 \Rightarrow \frac{a^i}{a^j} = a^{-1}
 \]
 So $\mathbb{Z}_p, p = \text{prime}$ is a field. In many ways you can view it as a finite analogue of the real line. But it is a finite circle, really.

Note: If $n \neq \text{prime}$

\[
\Rightarrow \mathbb{Z}_n \text{ is not an integral domain and thus not a field as}
\]

\[
\begin{align*}
& a \equiv 0 \pmod{n}, \quad a \cdot b \equiv 0 \pmod{n} \\
& b \equiv 0 \pmod{n}
\end{align*}
\]
Are there other finite fields?

Yes! You can imitate the construction that gives the complex numbers \(\mathbb{C} \).

Example: Field with 9 elements

\[F_9 = \mathbb{Z}_3[i] = \{ a + bi \mid a, b \in \mathbb{Z}_3 \} \]

Here \(i^2 = -1 \). \(|F_9| = 9 \) (as there are 3 choices of \(a + b \))

add a multiply as in \(\mathbb{C} \) but mod 3

See Gallian, p. 251.

Why is it a field?

\(a + ib \neq 0 \) in \(\mathbb{Z}_3[i] \)

\[\Rightarrow \frac{1}{a + ib} = \frac{a - ib}{(a + ib)(a - ib)} = \frac{a - ib}{a^2 + b^2} \]

\[= (a - ib) \cdot \frac{1}{a^2 + b^2} \in \mathbb{Z}_3[i] \]

Here to show \(\frac{1}{a^2 + b^2} \) exists in \(\mathbb{Z}_3 \) we need to show \(3 \nmid (a^2 + b^2) \). This is true as

say \(a \neq 0 \mod 3 \) and so \(a^2 \equiv 1 \mod 3 \)

while \(b^2 \equiv 0 \) or \(1 \mod 3 \).

So \(a^2 + b^2 \equiv 1 \) or \(2 \mod 3 \) not \(0 \).
A $z \in \mathbb{Z}_3[i]$ has the property $3z = 0$.

Why?

$z = x + iy$, with $x, y \in \mathbb{Z}_3$

$3z = (x + iy) + (x + iy) + (x + iy)$

$= (3x) + i(3y) = 0 + i0 \quad (\text{mod } 3)$.

So we say $\mathbb{Z}_3[i]$ "has characteristic 3".

Defn. The characteristic of a ring R is the smallest $n \in \mathbb{Z}^+$ such that

$n \cdot x = x + x + \cdots + x = 0 \quad \forall x \in R.$

If no such n exists, we say R has characteristic 0.

Lemma. R is a ring with identity 1 for multiplication. Then $R = 0$ if R has infinite additive order, characteristic $R = n$.

Examples. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ all have characteristic 0.

For $n \in \mathbb{Z}^+$, $x \in \mathbb{C}$, $n \cdot x = 0 \implies x = 0$

So nx is not 0 for all $x \in \mathbb{C}$ ever.

2. \mathbb{Z}_p has characteristic p as

$p \cdot x = x + \cdots + x = 0 \quad (\text{mod } p)$

Fact. The characteristic of an integral domain R is a prime or 0.

Proof. If the additive order of 1 is not finite, then char $R = 0$ by the Lemma above.
Suppose additive order of 1 is \(n \). We must show \(n = \text{prime} \). For \(n \) is characteristic of \(R \),

\[
0 = n \cdot 1 = (a \cdot 1)(b \cdot 1) \Rightarrow (a \cdot 1)(b \cdot 1) = 0 \Rightarrow a \cdot 1 = 0 \text{ or } b \cdot 1 = 0 \text{ as } R \text{ is an integral domain.}
\]

But this contradicts minimality of \(n \).

Problems

2. Which of Examples below are Fields?

1. \(\mathbb{Z} \) is not a field as \(\frac{1}{2} \notin \mathbb{Z} \)
2. \(\mathbb{Z}[i] \) is not a field as \(\frac{1}{2} \notin \mathbb{Z}[i] \)
3. \(\mathbb{Z}[x] \) is not a field as \(\frac{1}{x} \notin \mathbb{Z}[x] \)
4. \(\mathbb{Z}[\sqrt{2}] \) is not a field as \(\frac{1}{2} \notin \mathbb{Z}[\sqrt{2}] \)
5. Finally, \(\mathbb{Z}_p \) is a field \(\Leftrightarrow \) \(p = \text{prime} \) by the Corollary to Theorem 13.2 in Gallian, p. 251 (or these notes pp 8-9).

Subfield Test: \(F \) = field, \(K \subseteq F \)

with \(|K| = 2 \). Prove \(K \) is a subfield of \(F \) (meaning it's a field under the operations of \(F \)) if \(\forall a, b \in K \) \(b \neq 0 \), we have \(a - b \) and \(ab^{-1} \in K \).
Here you just need to note that our hypotheses \(\Rightarrow \) by the 1-step subgroup test (Gallian, Thm 3.1, p. 58) that \(K \) is a subgroup of \(F \) under addition and \(K - \{0\} \) is a subgroup of \(F - \{0\} \) under multiplication. The distributive laws are automatic. The unit is in \(K \) as \(a.a^{-1} = 1 \in K \).

\[(x + y)^p = x^p + y^p \]

By the binomial theorem,

\[(x + y)^p = \sum_{k=0}^{p} \binom{p}{k} x^k y^{p-k} \]

So we need to show

\[p \text{ divides } \binom{p}{k} \text{ for } k = 1, 2, \ldots, p-1 \]

\[\binom{p}{k} = \frac{p(p-1) \cdots (p-k+1)}{k(k-1) \cdots 1} \in \mathbb{Z} \]

If \(0 < k < p \), \(p \) prime.

Since \(p \) obviously divides the numerator, \(p \) divides \(\binom{p}{k} \), \(k = 1, \ldots, p-1 \).

Thus only the \(k = 0 \) and \(k = p \) terms

\[x^p + y^p \]

are non-vanishing.

Proof.