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Abstract

We show that, for every r, k, there is an n = n(r, k) so that any
r-coloring of the edges of the complete graph on [n] will yield a
monochromatic complete subgraph on vertices

{
a+

∑
i∈I di | I ⊆ [k]

}
for some choice of a, d1, . . . , dk. In particular, there is always a solution
to x1 + . . .+ x` = y1 + . . .+ y` whose induced subgraph is monochro-
matic.

1 Introduction

Given a set X and a number r, an r-coloring of X is any map χ : X → [r],
where [r] = {1, . . . , r} is the set of colors.

Ramsey’s celebrated theorem [7] states that, given r, k, there is an R =
R(r, k) so that any r-coloring of the edges of the complete graph on R vertices
contains a monochromatic complete graph on k vertcies. In addition to being
an important result in itself, Ramsey is the namesake of a large field of
research into Ramsey Theory, which more generally tells when a coloring of
a large structure is guaranteed to have large monochromatic substructures.
There are many great resources on Ramsey Theory, but the main source is
due to Graham, Rothschild, and Spencer [2].

The first result in Ramsey theory was actually proved by Hilbert in 1892,
predating Ramsey’s theorem (1930) by several decades. Given natural num-
bers a, d1, . . . , dk, define

H(a; d1, . . . , dk) =

{
a+

∑
i∈I

di | I ⊆ [k]

}
.
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We call such a set H(a; d1, . . . , dk) a Hilbert cube of dimension k. Hilbert
proved [4] that, given r, k natural numbers, there is a number H = H(r, k)
so that any r-coloring of [H] contains a monochromatic Hilbert cube of di-
mension k.

It was further shown that finite-colorings of natural numbers would always
contain monochromatic solutions to x + y = z (Schur [8]), as well as long
monochromatic arithmetic progressions (van der Waerden [10]). The holy
grail of results of this type is Rado’s theorem [6], which characterizes which
systems of linear equations have monochromatic solutions under every finite-
coloring of the naturals. Those which do are called partition-regular.

These results are philosophically related to Ramsey’s theorem, but the
graph theoretic and additive sides of Ramsey theory are largely distinct fields.
In recent years, however, Deuber, Gunderson, Hindman, and Strauss proved
a connecting result [1] — for any m, any sufficiently large graph either con-
tains a Km,m, or else it has an independent set with a prescribed additive
structure. Later, Gunderson, Leader, Prömel, and Rödl showed [3] that for
any m, k, large graphs must either contain a Km or there must be an arith-
metic progression of length k which is an independent set. There have been
further results in this area, but none give a purely additive result.

Our goal is to find some additive property P for which we can guarantee
that every finite edge-coloring of the complete graph on [n] will contain a set
of vertices with property P whose induced subgraph is monochromatic. In
this paper, we consider properties where X has property P if X satisfies a
particular system of linear equations.

We always demand solutions by distinct values, so that the monochro-
matic subgraphs are non-trivial. For example, if we solve x + y = z by
x = y = 3, z = 6, the corresponding graph has only a single edge, {3, 6}.
The induced graph has no choice but to be monochromatic.

Formally, given a matrix B and a number of colors r, we would like to
know whether there is an n = n(r, B) so that any r-edge-coloring of the
complete graph on [n] gives a vector ~x = (x1, . . . , xk) of distinct entries so
that the values {x1, . . . , xk} are monochromatic, and B~x = ~0.

We consider this problem for many systems of equations known to be
partition-regular. In Section 2, we give several negative results. In Section 3
we give an initial positive result: there is an n so that, any 2-coloring of
the edges of the complete graph on [n] gives a monochromatic 2-dimensional
Hilbert cube. In Section 4, we prove a lemma about coloring k-ary trees
which may be interesting in its own right. In Section 5 we extend our initial
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result to any number of colors and to Hilbert cubes of any size. We believe
these are the first positive results in this direction.

2 Negative results

There are many families of equations for which monochromatic solutions can
be easily avoided in this graph setting.

2.1 Arithmetic progressions

Van der Waerden’s theorem [10] tells us that any finite-coloring of the natu-
rals have arbitrarily long monochromatic arithmetic progressions. What can
we say when coloring pairs of naturals? An arithmetic progression of length 3
is given by a, a+d, a+2d. We notice that the triple contains two differences:
d and 2d. This observation allows us to 2-color the complete graph on the
naturals without a monochromatic 3-AP.

The coloring is simple. For a pair {x, y}, write |x − y| = 2pq where p, q
are integers and q is odd. If p is even, color {x, y} red. Otherwise, color it
blue.

Now let a, a+d, a+2d be a 3-AP. Write d = 2pq. Then we see 2d = 2p+1q,
so the edges {a, a+ d} and {a, a+ 2d} have different colors.

This coloring avoids 3-APs, so we certainly cannot hope for anything
longer.

2.2 Schur’s equation and generalizations

Schur’s theorem [8] states that any finite-coloring of the naturals has a mono-
chromatic solution to x + y = z. Additionally, it follows from Folkman’s
theorem that there is a monochromatic solution to x1 + . . . + xk = z for
arbitrary k.

More generally, we consider equations of the form

a1x1 + . . .+ akxk = bz (1)

with a1, . . . , ak ≥ b > 0.
We note that any solution to Equation 1 has xi ≤ z for i = 1, . . . , k.

Using two colors, we can ensure that every graph induced by a solution to
an equation of this form in the natural numbers contains both colors. We
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first show how to avoid x + y = z as motivation for the approach, and then
handle the general case.

If x+ y = z then either x or y is smaller than their average, 1
2
z, and the

other must be larger than their average. Thus, given a pair {u, v} with u < v,
we color it red if u ≤ 1

2
v, and blue if u > 1

2
v. Now we see that whenever

x+y = z, the largest of the three numbers must be z. Either x or y is smaller
than 1

2
z, and the other is larger, so the pairs {x, z} and {y, z} have different

colors. (Recall that we are only interested in solutions by distinct numbers).
In Equation 1, a similar logic applies. We see that aixi ≤ bz. Since

ai ≥ b > 0, we get xi ≤ z as before. Let M = a1 + . . . + ak. Divide both
sides of the equation by M to get

a1

M
x1 + . . .+

ak
M
xk =

b

M
z.

This says that the weighted average of the xi’s is b
M
z. Again, one of the

xi’s must be smaller than their average, and another must be larger. Thus,
when u < v, we should color {u, v} red if u ≤ b

M
v, and blue otherwise. We

immediately see that one of the pairs {xi, z} must be red and another must
be blue.

Remark:
The argument given above is really a greedy coloring. At step t, color the

pairs {1, t}, . . . , {t−1, t} in a way that handles those solutions to Equation 1
with largest element t. Since we can manage all these solutions at once, we
avoid all monochromatic solutions. The incredible thing to notice here is that
this coloring is much stronger than needed. If x1, . . . , xk, z satisfy Equation 1,
then the star connecting z to all of the xi’s is not even monochromatic. Forget
about the clique! The strength of this technique suggests that we may be
able to handle a larger family of equations.

On the other hand, this technique relies heavily on the numbers being
positive. If we change the underlying set to Z or Zp, the approach falls
apart.

2.3 Three variables, six colors

As with many problems in Ramsey theory, we may consider our conjecture
as a hypergraph coloring problem. The vertex set is all pairs we are consid-
ering (be they pairs in [n],N,Z,Zn, etc). For each solution (x1, . . . , xk) to
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b1x1 + . . .+ bkxk = 0, there is a hyperedge containing all pairs of the xi’s. If
we properly color this

(
k
2

)
-uniform hypergraph (avoiding monochromatic hy-

peredges), then there are no monochromatic solutions to the equation. Thus
we may apply theorems about hypergraph coloring.

For an equation in three variables, this hypergraph is simple — any two
pairs are either disjoint (and have no hyperedges in common), or have the
form {x, y}, {x, z}, leaving only {y, z} to form a hyperedge.

Fix a, b, c, and consider the hypergraph formed as above by the equation

ax+ by + cz = 0. (2)

Consider a pair {u, v}. How many hyperedges can it be contained in?
Well, there are 6 different ways of assigning the values u and v to the variables
in Equation 2:

au+ bv + cz = 0 =⇒ z = −au+bv
c

av + bu+ cz = 0 =⇒ z = −av+bu
c

au+ by + cv = 0 =⇒ y = −au+cv
b

av + by + cu = 0 =⇒ y = −av+cu
b

ax+ bu+ cv = 0 =⇒ x = − bu+cv
a

ax+ bv + cu = 0 =⇒ x = − bv+cu
a

Thus we see that, so long as the numbers a, b, c are all invertible, each pair
{u, v} is contained in at most 6 hyperedges. In particular, if we are in Z,Q,
or Zp for a prime p, then the degree is at most 6. The hypergraph version of
Brooks’ theorem [5] applies.

Theorem 2.1 If H is a hypergraph with maximum degree ∆, then χ(H) ≤ ∆
except in these cases:

1. ∆ = 1,

2. ∆ = 2 and H contains an odd cycle (an ordinary graph),

3. H contains a K∆ (an ordinary graph).

Since all of these cases are irrelevant — ours is a 3-uniform hypergraph,
and we don’t have any illusions that we can 1-color it — this tells us we can
properly 6-color our hypergraph. By construction, this avoids monochro-
matic solutions to Equation 2.

Moreover, if for example a = b, then the six solutions reduce to three
distinguishable ones, meaning 3 colors is enough.
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Note 2.2 The case we avoided was solutions over Zn with n composite and
a, b, c not necessarily invertible. Taken to extremes, this case is quite degener-
ate. Consider, for example, n = 2r, and a = b = 2r−1. Any collection of even
numbers then solves Equation 2. The problem of finding a solution which
induces a monochromatic subgraph now reduces to the multicolor Ramsey’s
theorem for triangles.

3 Two colors, two dimensions

We will eventually prove the following result:

Theorem 3.1 For all r, k, there is a number n = n(r, k) so that any r-
coloring of the edges of the complete graph on [n] gives a Hilbert cube H =
H(a; d1, . . . , dk) so that all edges in H are the same color, and the 2k elements
of H are distinct.

We first prove the theorem for r = k = 2. Note that a 2-dimensional
Hilbert cube is four numbers of the form a, a + b, a + c, a + b + c. We will
then extend those ideas to any number of colors, and then to Hilbert cubes
of any dimension.

The proof will rely on the Gallai-Witt theorem [11], and a consequence
of Rado’s theorem [6], both of which we state here.

Theorem 3.2 (Gallai-Witt) For all r, k, there exists GW = GW (r, k) so
that any r-coloring of [GW ] × [GW ] gives numbers x, y, d with the property
that

{(x+ id, y + jd) | i, j = 0, . . . , k − 1}

are all the same color.

Theorem 3.3 (Corollary to Rado) There is a number T so that any 2-
coloring of [T ] gives distinct numbers i, j, i+ j, j − i, all the same color.

Note: Rado’s theorem gives conditions for a system of linear equations
to have monochromatic solutions by distinct numbers. It is a simple exercise
to check that the above satisfies them.
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Proof of Theorem 3.1 when r = k = 2:
Define S = GW (T + 1, 2), where T comes from Theorem 3.3. We will

show that n = 2S suffices.
Fix an 2-coloring χ :

(
[n]
2

)
→ [2]. We would like to find a solution to

w+x = y+ z which forms a monochromatic clique. We view χ as a coloring
of the upper half of the lattice [n] × [n] — for x < y, the color of (x, y) is
χ({x, y}).

Consider the top left quadrant of our grid: {1, . . . , S} × {S + 1, . . . , 2S}.
Define χ′ : [S]× [S]→ [2] by

χ′(a, b) = χ(a, S + b).

Since S = GW (T + 1, 2), and χ′ is a 2-coloring of [S] × [S], we may apply
Gallai-Witt to find x, y, d so that all points of the form

{(x+ id, y + jd) | i, j = 0, . . . , T}

are the same color, say red, under χ. We will consider each subsquare of this
large grid.

For now, consider a red square given by the points

(a, b) (a+ h, b) (a, b+ h) (a+ h, b+ h).

We may rewrite the underlying numbers as a, a+h, a+(b−a), a+h+(b−a)
to see they form a Hilbert cube of dimension 2.

There are six edges in the graph on these four numbers, and we know that
four of them are red. Thus, we only need to consider the edges {a, a + h}
and {b, b+ h}. If these are both red (and the four values are distinct), then
we have the desired monochromatic 4-clique. Thus, either we have our goal,
or every red square gives us two points which cannot both be red.

Well, we have a great many red squares. Each has corner (x + id, y +
jd) and side-length `d, for every choice of i, j, ` with i, j, i + `, j + ` all in
{0, . . . , S}. The four underlying numbers are all distinct by the choice of our
initial grid {1, . . . , S}×{S+ 1, . . . , 2S}. The “final” edges of this square are
{x+ id, x+ (i+ `)d} and {y+ jd, y+ (j + `)d}, so these two cannot both be
red without reaching our goal.

All of our red squares will give us many interacting conditions, which we
record in a graph. Let G = (A,B,E) be a bipartite graph, where A = B =({0,...,T}

2

)
. We say {a, a′} ∼ {b, b′} if {x+ad, x+a′d} and {y+ bd, y+ b′d} are
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A

B

(x,y)

(x,x)

(y,y)

Figure 1: A large red grid, and the corresponding sets A and B

the final edges of some red square. There is an induced 2-coloring of both A
and B — namely

χA({i, j}) = χ(x+ id, x+ jd),

χB({i, j}) = χ(y + id, y + jd)

We see immediately that {i, i+ `} ∼ {j, j + `} so long as those numbers
are all in {0, . . . , T}. This means that each pair in A with difference ` is
connected to every pair in B with that difference. This means that if one
pair in A is red, all pairs in B with that difference must be blue (and vice
versa). In fact, this is the entire structure of G.

Write A = A1 ∪ A2 ∪ . . . ∪ AT , where A` contains all pairs in A of the
form {i, i+ `}. We now 2-color [T ], the index set of the A`’s. Say φ(`) = red
if any pair in A` is red. Otherwise, φ(`) = blue, meaning that A` is entirely
blue. Since φ is a 2-coloring of [T ], Theorem 3.3 tells us there are distinct
numbers i, j, i+ j, j − i which are monochromatic.

Case 1: The numbers are red. This means each set Ai, Aj, Ai+j, Aj−i
contains a red pair. Therefore the corresponding sets in B, what we should
call Bi, Bj, Bi+j, Bj−i, are all entirely blue. The proof continues as in case 2
below, but with all A’s changed to B’s, and all x’s changed to y’s.
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Case 2: The numbers are blue, so all pairs in Ai, Aj, Ai+j, Aj−i are blue.
We list the relevent blue pairs:

In Ai : {0, i}, {j, i+ j}
In Aj : {0, j}, {i, i+ j}

In Ai+j : {0, i+ j}
In Aj−i : {i, i+ (j − i)} = {i, j}.

Taken together, we see that 0, i, j, i+ j form a blue K4 under χA. Recalling
the relationship between χ and χA, this gives us a blue K4 under χ with
vertices x, x + id, x + jd, x + (i + j)d. This is the desired 2-dimensional
Hilbert cube. �

4 Coloring binary trees

In order to acheive Theorem 3.1 for any number of colors, we will first require
a Ramsey-type theorem for k-ary trees.

Notation 4.1 We use [k]∗ denote all finite sequences (strings) of elements
of [k] = {1, . . . , k}. If s, t ∈ {1, . . . , k}∗, we use s · t to denote concatenation
— all characters of s followed by all characters of t.

Def 4.2 A perfect k-ary tree T
(k)
n of height n is the collection of nodes

T (k)
n = {s ∈ {1, . . . , k}j | 0 ≤ j ≤ n}.

We say λ, the empty string, is the root of the tree. A node s has k children,
s · 1, . . . s · k. The child s · i together with all of its descendents forms the

ith subtree of s, rooted at s · i. We see that s has k subtrees in all. The jth

level of T
(k)
n consists of all those strings of length exactly j. The substrings

of s are called the ancestors of s. The nodes at level n are called leaves. If
s is a substring of t, we say that the path from s to t is the set of nodes r
which are both superstrings of s and substrings of t (including s and t). The
length of the path is the difference in lengths of s and t.

Since we are only interested in perfect k-ary trees in this paper, we may
occasionally refer to them simply as “k-ary trees”, or “trees” if k is implied.

Next, we define what it means to embed one k-ary tree into another.
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11       12       13   21       22       23   31       32       33

λ

1 2 3

Figure 2: This 3-ary tree is 1-balanced. The nodes λ, 13, 21, and 31 are all
red

Def 4.3 Let T,R be two k-ary trees. An embedding of T into R is a map ϕ
from the nodes of T into the nodes of R with the following properties:

1. There is an increasing function x from levels of T to levels of R so that,

if t is on the ith level of T , then ϕ(t) is on the x(i)th level of R.

2. If s, t are nodes in T , and s is contained in the ith subtree of t, then

ϕ(s) is contained in the ith subtree of ϕ(t).

We now state the goal of this section:

Lemma 4.4 For every k, c, n, there is a number E = E(k, c, n) so that every
c-coloring of the k-ary tree of height E yields a monochromatic embedding of
the k-ary tree of height n.

We say that a coloring is n-balanced if the conclusion holds.

Example 4.5 A coloring χ of the a tree T is 1-balanced if there is some
node r, and strings s1, . . . , sk ∈ {1, . . . , k}j for some j, so that

r, r · 1 · s1, . . . , r · k · sk

are all the same color. This corresponds to the embedding ϕ of T
(k)
1 into T

given by ϕ(λ) = r, ϕ(i) = r · i · si.

We prove Theorem 4.4 by first finding f(k, c) = E(k, c, 1), and repeating
applying that result.
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Lemma 4.6 There is a function f(k, c) so that, if n ≥ f(k, c), then every
c-coloring of the perfect k-ary tree of depth n is 1-balanced.

We take the proof slowly to delicately handle each part.
Proof:

When c = 1 the nodes λ, 1, 2, . . . , k must all be the same color, so they
1-balance the tree. Thus f(k, 1) = 1.

Consider the case k = 1, so that each level has a unique node. By the
pigeonhole principle, the c + 1 nodes within levels 0, 1, . . . , c must contain
two with the same color. Thus f(1, c) ≤ c. Of course, it is easy to see that
this is the best possible bound.

We begin the same way for k = 2. Since we know f(2, 1) = 1, we work
by induction on c. We will show f(2, c+ 1) ≤ (c+ 1)(1 + f(2, c)) = n.

Let χ : T
(2)
n → [c+1] be a (c+1)-coloring of the tree of height n. Consider

the path from the root to the node 1n. The path contains n + 1 nodes, so
some color is represented at least⌈

n+ 1

c+ 1

⌉
= 2 + f(2, c)

times. Call the repeated color “red.” Call the levels of these red nodes
j(−1), j(0), j(1), . . . , j(f(2, c)). Since we looked down the path of all 1s, the
corresponding nodes are

r = 1j(−1)

s0 = 1j(0)

...

sf(2,c) = 1j(f(2,c)).

Consider r along with with any of the other red nodes, si. These may be
part of a balancing triple — if any descendent t of r · 2 on level j(i) is also
red, then r, si, t balance the tree. Thus, if the tree is to be unbalanced, all of
the levels j(0), . . . , j(f(2, c)) within the second subtree of r must be entirely
non-red. We will now use the definition of f(2, c) to show that this tree is in
fact 1-balanced by these non-red nodes.

Consider the map from the nodes of T = T
(2)
f(2,c) into our tree given by

ϕ(λ) = r · 2j(0)−j(−1) = 1j(−1) · 2j(0)−j(−1),

11



ϕ(a1 . . . a`−1a`) = ϕ(a1 . . . a`−1) · (a`)j(`)−j(`−1).

We make the following observations:

1. Nothing in the image of ϕ is red (unless the coloring is 1-balanced).

2. All nodes on level i of T are mapped to level j(i) of our tree.

3. If t is contained in the ith subtree of s, then ϕ(t) is contained in the

ith subtree of ϕ(s).

We color T by χ∗(s) = χ(ϕ(s)), the coloring induced by ϕ. Observation
1 tells us that χ∗ is actually a c-coloring. By the definition of f(2, c), we
know that there are some nodes w,w · 1 · s1, w · 2 · s2 (with the latter two
on the same level) which are all the same color under χ∗. Thus we see that
ϕ(w), ϕ(w · 1 · s1), and ϕ(w · 2 · s2) must be the same color under χ. By
observations 2 and 3, these nodes 1-balance the original tree.

Finally, for k ≥ 3, we follow a very similar idea. We will show

f(k, c+ 1) ≤ (c+ 1)(1 + (k − 1)f(k, c)) = n.

Let χ : T
(k)
n → [c + 1] be a (c + 1)-coloring of the k-ary tree of height n.

Consider the path from the root to the node 1n. The path contains n + 1
nodes, so some color is represented at least⌈

n+ 1

c+ 1

⌉
= 2 + (k − 1)f(k, c)

times. Call the repeated color “red.” Call the levels of these red nodes
j(−1), j(0), j(1), . . . , j((k − 1)f(k, c)). Since we looked down the path of all
1s, the corresponding nodes are

r = 1j(−1)

s0 = 1j(0)

...

s(k−1)f(k,c) = 1j((k−1)f(k,c)).

Consider j(−1) along with with any of the other red nodes, si. These may
be part of a balancing set — if, for every a = 2, . . . k some descendent ta of
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r ·a on level j(i) is also red, then r, si, t2, . . . , tk will 1-balance the tree. Thus,
if the tree is to be unbalanced, each of the levels j(0), . . . , j((k − 1)f(k, c))
must be entirely non-red in at least one of the k− 1 subtrees of r — if every
subtree has a red node on the same level, the coloring is 1-balanced. By

the pigeonhole principle, some subtree of r, say the pth subtree, must be
colored such that at least 1 + f(k, c) of the levels j(0), . . . , j((k − 1)f(k, c))
are entirely non-red. Label these levels x(0), x(1), . . . , x(f(k, c)). We will
now use the definition of f(k, c) to show that this tree is in fact balanced by
these non-red nodes.

Consider the map from T = T
(k)
f(k,c) into our tree given by

ϕ(λ) = r · px(0)−x(−1) = 1x(−1) · px(0)−x(−1),

ϕ(a1 . . . a`−1a`) = ϕ(a1 . . . a`−1) · (a`)x(`)−x(`−1)

We now make the same observations as before:

1. Nothing in the image of ϕ is red (unless the coloring is 1-balanced).

2. All nodes on level i of T are mapped to level x(i) of our tree.

3. If t is contained in the ith subtree of s, then ϕ(t) is contained in the

ith subtree of ϕ(s).

We color T by χ∗(s) = χ(ϕ(s)), the coloring induced by ϕ. Observation
1 tells us that χ∗ is actually a c-coloring. By the definition of f(k, c), we
know that there are some nodes w,w · 1 · s1, . . . w · k · sk (with the last k
on the same level) which are all the same color under χ∗. Thus we see that
ϕ(w), ϕ(w · 1 · s1), . . . , ϕ(w · k · sk) must be the same color under χ. By
observations 2 and 3, these nodes 1-balance the original tree. �

Curiously, the bound given for f(k, c) for c, k ≥ 2 (as defined by the
recurrence given, not necessarily the best bound) is exactly

f(k, c) = be1/(k−1)(k − 1)c−1c!c.

We may now prove the existence of E(k, c, n).
Remark: The following proof feels a bit artificial. Perhaps the “correct”

proof should be based on a weaker lemma, where we do not care about the
color of the root.
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Proof of Lemma 4.4:
We only show the result for n = 2` − 1, since this implies all smaller

values. The case ` = 1 is Lemma 4.6.
Suppose E(k, c′, 2` − 1) is known for all values c′. We will find a bound

for E(k, c, 2`+1 − 1).
Let χ0 = χ be a c-coloring of a large k-ary tree. We ignore the specific

height for now, but will determine a bound at the end.
By induction, χ0 gives a monochromatic embedding ϕ of a k-ary tree of

height 2` − 1 into levels 0, 1, . . . , E(k, c, 2` − 1) of our large tree. Call the
image Tλ, with color ψ(λ). Tλ has k2`−1 leaves, and each has k subtrees, so
we have a total of Y := k2` subtrees coming off of Tλ. The roots of these
subtrees are given by

vs = ϕ(t) · i, where s ∈ {1, . . . , k}2` is written as s = t · i.

To each t ∈ {1, . . . , k}∗ we associate a map χ1(t) from {1, . . . , k}2` to [c],
given by

χ1(t)(s) = χ(vs · t).

Note that there are “only” cY such maps χ1(t). Since each t is mapped to one
of cY elements, we treat χ1 as a cY -coloring of a k-ary tree. The color of a
node t is given by a list of colors, each one the color of the node corresponding
to t in one of the Y subtrees of Tλ.

Because χ1 is a cY -coloring of a k-ary tree, we know that there is an
embedded k-ary tree contained within levels 0, 1, . . . , E(k, cY , 2` − 1) which
is monochromatic under χ1. Looking back to χ, this means we really have Y
monochromatic trees, which we label Ts for s ∈ {1, . . . , k}2` . Moreover, each
Ts is in the same position relative to vs. In particular, all the nodes at level
i of any tree Ts are on the same level in the original tree. This means that,
if all these trees were red, taking them all together with Tλ would give us
our monochromatic embedded tree of height 2`+1 − 1. Would that we were
so lucky!

Instead, all we know is that, for each s, the entire tree Ts has some color
ψ(s).

We now have k2` trees, each with k2`−1 leaves, which in turn each have k
subtrees. Altogether, that gives us Y 2 = k2·2` subtrees. We repeat the above
argument to get a coloring χ2 of the k-ary tree, corresponding colors in each
subtree. We again find a large embedded tree which is monochromatic under
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χ2, and it again corresponds to many trees Ts, each with color ψ(s) under χ.
But this time

s ∈ {1, . . . , k}2·2` =
(
{1, . . . , k}2`

)2

.

We repeat this process, reaching χf(Y,c). The monochromatic trees here
are Ts with color ψ(s), where

s ∈ {1, . . . , k}f(Y,c)·2` =
(
{1, . . . , k}2`

)f(Y,c)

.

This is quite nice! We may consider the trees {Ts} to be the nodes of a
large Y -ary tree, colored by ψ. Since ψ is a c-coloring, and this tree has
height f(Y, c), we get some monochromatic embedded subtree of height 1.
Expanding the nodes as the full trees they are, and observing the relative
structure, we find that these trees are in fact a monochromatic embedding
of a k-ary tree of height 2`+1 − 1, as desired.

In all, we needed to go a depth of

E(k, c, 2` − 1) + E(k, cY , 2` − 1) + . . .+ E(k, cY
f(Y,c)

, 2` − 1),

where again Y = k2` . This gives our bound for E(k, c, 2`+1 − 1). �

5 The full result

In this section, we give the full proof of Theorem 3.1, first for any number
of colors, but k = 2, and then for any k as well. As before, we view pairs
of integers as ordered pairs (x, y) with x < y. When we have a grid {(x +
id, y + jd)} for a range of values i and j, we will say the grid is in position
(x, y) with scale d.

5.1 Any colors, two dimensions

Proof of Theorem 3.1 when k = 2:
As in the proof of Lemma 4.4, we first give the arguments ignoring the

numbers involved, and in the next section we determine a bound on n(r, 2).
Begin with an r-coloring χ0 = χ of a large initial grid, Gλ. By Gallai-

Witt, find a large monochromatic subgrid of color cλ in position (x0, y0) with
scale d0.
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As in the proof with two colors, this yields two grids, G1 and G2 of equal
size, in positions (x0, x0) and (y0, y0) respectively, both with scale d0. Note
that these grids contain points on, above, and below the diagonal (x, x) — we
only consider those points above the diagonal. As in the proof in Section 3, if
two points in these grids of the form (x0 +id, x0 +jd) and (y0 +id, y0 +jd) are
both the same color as the grid Gλ, then we get our monochromatic Hilbert
cube of dimension 2. The colorings of G1 and G2 correspond to χA and χB
from the initial proof. We consider the coloring of a new grid, where the
point (i, j) is colored by

χ1(i, j) = (χ0(x0 + id, x0 + jd), χ0(y0 + id, y0 + jd)).

We now use Gallai-Witt with r2 colors, to find a large subgrid under χ1

with color (c1, c2) in position (x1, y1) with scale d1. This grid really corre-
sponds to two grids: one of color c1 in position (x0 + x1d0, x0 + y1d0), and
the other of color c2 in position (y0 + x1d0, y0 + y1d0). Both grids have scale
d0d1, and they are entirely contained in grids G1 and G2 respectively.

Again we pass to subgrids. The grid in G1 yields two subgrids G11 and
G12, in positions (x0 +x1d0, x0 +x1d0) and (x0 +y1d0, x0 +y1d0) respectively,
both with scale d0d1. Likewise G2 give us two subgrids, G21, and G22. Now
we have more ways to win: the colorings of G11 and G12 restrict each other,
as do G21 and G22, and both of G11, G12 restrict both of G21, G22. Note that,
whether the position of the grid involves x0 or y0 is determined by the first
part of the subscript, and whether it involves x1 or y1 is dependent on the
next part.

The next step, which we briefly state, is to define a grid-coloring χ2 with
r4 colors corresponding to each of the four grids G11, G12, G21, G22. We find
a subgrid of color (c11, c12, c21, c22) under this coloring, which corresponds to
four grids, which further restrict one another.

Continue this for f(2, r) + 1 steps, so that the final grids are indexed
by strings of length f(2, r). The “large” monochromatic grid we find under
χf(2,r)−1 need only be a 2 × 2 grid, giving Gs a single off-diagonal point for
all s of length f(2, r). The color of this point is cs.

We now recognize the map s 7→ cs as an r-coloring of the perfect binary
tree of height f(2, r). By the definition of f , this coloring must be 1-balanced,
meaning there is a node σ and two children s = σ · 1 · u and t = σ · 2 · v, all
the same color, where u, v ∈ {1, 2}` for some `. Call this color red.

Write σ = σ0σ1 . . . σk−1. Since σ is red, the monochromatic grid found in
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Grid λ

Grid 1

Grid 2

Figure 3: The sequence of subgrids

grid Gσk is red. Let

zi(σ) =

{
xi if σi = 1
yi if σi = 2.

Then the grid Gσ is in position (X(σ), Y (σ)), where

X(σ) = z0(σ) + d0(z1(σ) + d1(. . . (zk−1 + dk−1xk) . . .)),
Y (σ) = z0(σ) + d0(z1(σ) + d1(. . . (zk−1 + dk−1yk) . . .)).

and has scale D = d0d1 · · · dk. Note that the only difference between X and
Y is the xk and yk respectively in the inner-most term.

Now we look at the grids Gs and Gt. We will only use a single point
from these grids. Define zi, X, and Y in the same way as above for s and t.
Noting that

s0 = σ0, s1 = σ1, . . . , sk−1 = σk−1, sk = 1 and

t0 = σ0, t1 = σ1, . . . , tk−1 = σk−1, tk = 2,

we see that Gs is in position (X(s), Y (s)) with

X(s) = X(σ) +D(xk + dk(. . . (zk+`−1(s) + dk+`−1xk+`) . . .),
Y (s) = X(σ) +D(xk + dk(. . . (zk+`−1(s) + dk+`−1yk+`) . . .),
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and similarly Gt is in position (X(t), Y (t)) with

X(t) = Y (σ) +D(yk + dk(. . . (zk+`−1(t) + dk+`−1xk+`) . . .),
Y (t) = Y (σ) +D(yk + dk(. . . (zk+`−1(t) + dk+`−1yk+`) . . .).

We claim that X(s), X(t), Y (s), Y (t) form our Hilbert cube. Indeed, writ-
ing a = X(s), b = X(t)−X(s) = Y (t)− Y (s), and

c = Ddk · · · dk+`(yk+`+1 − xk+`+1),

we see that they have the form a, a+ b, a+ c, a+ b+ c respectively.
Now consider the colors of the six points among these values (still only

considering points above the line (x, x)). Since the points (X(s), Y (s)) and
(X(t), Y (t)) are in Gs and Gt respectively, we know that both points are red.

Now we recognize that these values are given by

X(s) = X(σ) + iD,
Y (s) = X(σ) + jD,
X(t) = Y (σ) + iD,
Y (t) = Y (σ) + jD,

so the four points we need look like

(X(s), X(t)) = (X(σ) + iD, Y (σ) + iD)
(X(s), Y (t)) = (X(σ) + iD, Y (σ) + jD)
(Y (s), X(t)) = (X(σ) + jD, Y (σ) + iD)
(Y (s), Y (t)) = (X(σ) + jD, Y (σ) + jD).

By design, these fall nicely into the grid Gσ, so these points are red as well.
�

5.2 Upper bounds

The process repeats to a depth of f(2, r), at which point we have 2f(2,r) grids,

meaning r2f(2,r) colors. At this level, we are looking for a square, so these
grids must have size

Sf(2,r) = 2.

At the prior level, our 2f(2,r)−1 grids must have monochromatic subgrids of
size Sf(2,r), and the joint coloring has r2f(2,r)−1

colors. Thus

Sf(2,r)−1 = 2GW (Sf(2,r), r
2f(2,r)−1

),
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where the factor of 2 allows us to take the top-left quadrant of the grid. As
before, this ensures distinct values in the x and y components. Repeating
this reasoning, we find that

Sk = 2GW (Sk+1, r
2k),

which leaves us with this bound for the size of the initial grid:

n(r, 2) ≤ S0 = 2GW (S1, r).

5.3 Any colors, any dimensions

We have now done all of the hard work. In order to prove the full result at
this point, we only need to reconsider the proof for k = 2.

Theorem 3.1 For all r, k, there is a number n = n(r, k) so that for any
r-coloring of the edges of the complete graph on [n], there is a Hilbert cube
H = H(a; b1, . . . , bk) so that all edges within H are monochromatic.
Proof:

Let χ be an r-coloring of a large grid. Repeat the process from the proof
in Section 5.1, only now continuing until we have a tree of height E(2, r, k−1).

By Lemma 4.4, there is an embedded tree of height k−1 which is entirely,
say, red. Call the embedding ϕ, so the nodes are labeled ϕ(s) for s ∈ {1, 2}j
for 0 ≤ j < k.

Let Gs denote the red grid corresponding to the node ϕ(s).1 Say this
grid is in position (X(s), Y (s)). If i is the length of s, then the scale of Gs is
d0d1 · · · di.

For each s ∈ {1, 2}k−1, consider the red point (X(s), Y (s)) ∈ Gs. We
claim that the 2k values

{X(s) | s ∈ {1, 2}k−1} ∪ {Y (s) | s ∈ {1, 2}k−1}

have the form a+
∑

i∈I bi and comprise an entirely red clique.
As we saw in the previous proof, for s on level ` − 1, and s · 1, s · 2 on

level `,

X(s · 2)−X(s · 1) = Y (s)−X(s) = d0d1 · · · d`−1(y` − x`).
1In the previous proof, we would have called this Gϕ(s), but here we have no need to

refer to the nodes outside of our monochromatic tree.
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Inspired by this, we define

b` = Y (s)−X(s)

for s on level `− 1.
Now set a = X(1k−1). Let s = s1 · · · sk−1 ∈ {1, 2}k−1. Let I = {i | si =

2} ⊆ [k − 1]. This gives us X(s) = a+
∑

i∈I bi and Y (s) = a+ bk +
∑

i∈I bi.
This tells us the numbers we are looking at really do have the desired

form. We only need to check that all the edges among these values are red.
Let s be any string on level k − 1. By virture of (X(s), Y (s)) being a

point in the grid Gs, we know that edge is red. Now let t be another string
on level k−1, and assume s < t lexicographically. Let σ be the longest initial
string that s and t agree on — their closest common ancestor. Since s < t,
we must have that s = σ · 1 · u and t = σ · 2 · v for some u and v of the same
length.

As we saw in the previous proof, since Gσ is red, we immediately get that
(X(s), X(t)), (X(s), Y (t)), (Y (s), X(t)), (Y (s), Y (t)) are all red.

By considering all possible s, t on level k− 1, this argument says that all
edges among these values are red, so we have reached our goal. �

Along the same lines as Section 5.2, we may define the recurrence

TE(2,r,k) = 2, and

Tk = 2GW (Tk+1, r
2k),

to get an upper bound of

n(r, k) ≤ T0 = 2GW (T1, r).

5.4 Additional results

Theorem 3.1 immediately gives several nice consequences.
By considering subsets of Hilbert cubes, it is easy to see that, for large n,

any edge-coloring of the complete graph on [n] will always have solutions to
equations of the form x1+. . .+x` = y1+. . .+y` which induce monochromatic
subgraphs.

Combining Theorem 3.1 with Szemerédi’s celebrated theorem on arith-
metic progressions [9], we get the following nice corollary.
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Corollary 5.1 For any δ > 0, and naturals r, k, there is a number n =
n(r, δ) so that for any set A ⊆ N of upper density δ, and any r-coloring of the
edges of the complete graph on A, there is a Hilbert cube H = H(a; d1, . . . , dk)
contained in A so that all edges within H are monochromatic.

On the other hand, our theorem also inspires another negative result. A
Hilbert cube of dimension 2 is simply a set satisfying w − x = y − z. We
consider a similar equation, a(w − x) = b(y − z), for a 6= b fixed. To avoid

this equation, color pairs based on their difference. Write |w − x| =
(
b
a

)k
p

for k as large as possible, and color {w, x} by the parity of k. Since (w − x)
and (y−z) will always be different by a factor of b

a
, this will assure the edges

{w, x} and {y, z} have different colors.

6 Acknowledgment

The author would like to thank Ron Graham for his guidance, which helped
to strengthen the main theorem.

References

[1] W. Deuber, D. S. Gunderson, N. Hindman, D. Strauss, Independent
finite sums for Km-free graphs, J. Combin. Theory Ser. A 78 (1997), no.
2, 171-198.

[2] R.L. Graham, B.L. Rothschild, J. Spencer, Ramsey Theory, John Wiley
& Sons Inc., New York, second edition 1990.

[3] D. S. Gunderson, I. Leader, H. J. Prömel, and V. Rödl, Independent
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[9] Szemerédi, Endre, On sets of integers containing no k elements in arith-
metic progression, Acta Arithmetica 27 (1975), 199245.

[10] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw
Arch. Wiskunde 15 (1927), 212-216.

[11] E. Witt, Ein kombinatorischer Satz der Elementargeometrie, Math.
Nachrichten 6 (1952), 261-262.

22


