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Introduction

Computers which exploit quantum principles in their logic may be able
to solve certain problems more efficiently than is possible classically.
	 R. P. Feynman, International Journal of Theoretical Physics 21 (1982) 467.
	 D. Deutsch, Proceedings of the Royal Society of London A 400 (1985) 97. 
	 P. W. Shor, SIAM Journal of Computing 26 (1997) 1484.
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"20 questions"

Player 1 tries to determine what Player 2 is thinking by asking questions.

"Animal, vegetable or mineral?":
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"20 questions"

Player 1 tries to determine what Player 2 is thinking by asking questions.

"Animal, vegetable, or mineral?":

Player 2 responds:

Then YES/NO questions like,
"Bigger than a breadbox?":

Player 2 responds:

...

Player 1 wins if s/he uses 20 or fewer questions to determine what
Player 2 is thinking.
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Search problems

So problem is to identify one out of  N = 2    things w/ fewest questions.

Optimal strategy:	each question should maximize amount of
	 	 	 	 	 information received, independently of response.

Formalize this by defining:

	 entropy  S	 =  lack of information
	 	 	 	 =  -     prob(x) log prob(x)

Initially,

	 	 	   S	 =  - N (1/N) log(1/N)
	 	 	 	 =  - log(1/N)  =  log N ,

assuming uniform distribution of Player 2's choices.

n

Σ
possibilities x
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Optimal YES/NO questions

Reduce entropy as much as possible w/ each question.

Suppose fraction  α  of possibilities get response YES; then after question:

	  S	 =  − α      [1/αN]log[1/αN] − (1−α)     [1/(1−α)N]log[1/(1−α)N]

	 	 =  α log αN + (1−α) log (1−α)N.

	 	 =  log αN + α[1/αN]N − log (1−α)N + (1−α)[1/(1−α)N](−N)  =  0,

which implies extremum at  α = 1/2, actually a minimum since at this
value of  α,

	  S	 =  (1/2) log(N/2) + (1/2) log(N/2)  =  log(N/2)  <  log N.

So optimal question partitions the possibilities evenly.

Σ                           Σ1
αN possibilities                                                       (1−α)N possibilities

dS
dα

1
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Optimal classical strategy

Similarly, questions with multiple responses (e.g., "Animal, vegetable, or
mineral?") ideally should partition possibilities evenly (assuming uniform
prior distribution).

So optimal reduction of entropy is: 

	 log N          log(N/4)          log(N/8)          ...          log(N/2   )  =  0.

If all questions were allowed to have 4 responses, optimal questions
would reduce entropy like:

	 log N          log(N/4)          log(N/4  )          ...          log(N/4      )  =  0.

That is, in worst case Player 1 will require at least  log  N = n/2  questions.
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Classical computer

Standardize by using numerical labels, written as n-bit strings, for
possibilities.

Allow every question to have 4 possible responses:
	 Player 1 names an n-bit string  x.
	 Player 2 responds w/ the Hamming distance from the answer a (the
	 number of wrong bits), dist(x,a) mod 4. 

	 	 x  =
	 	 a  =

	 	 	 	 	 	 	 	 	 	 	 	 dist(x,a) = 5
	 	 	 	 	 	 	 	 	 	 	 	 response is 5 mod 4 = 1
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	 	 a  =
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Classical computer

Standardize by using numerical labels, written as n-bit strings, for
possibilities.

Allow every question to have 4 possible responses:
	 Player 1 names an n-bit string  x.
	 Player 2 responds w/ the Hamming distance from the answer a (the
	 number of wrong bits), dist(x,a) mod 4. 

	 	 x  =
	 	 a  =

	 	 	 	 	 	 	 	 	 	 	 	 dist(x,a) = 5
	 	 	 	 	 	 	 	 	 	 	 	 response is 5 mod 4 = 1
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Invertible classical computing

Initialize query and response registers to:

Player 1 prepares query:

Player 2 responds:

Each of these is an invertible operation, unlike  x AND y, for example.

All classical computations can be done w/ (local) invertible operations.
	 C. H. Bennett, IBM Journal of Research and Development 17 (1973) 525.
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Invertible computation via matrix multiplication

Possible states of computer are, say, (n+2)-bit strings; have  2       of them.

Operations convert one bit string into another; can think of as matrix
multiplication:

	 	 0    0    0    1     0                  0
	 	 1    0    0    0     1                  0
	 	 0    1    0    0     0                  1
	 	 0    0    1    0     0                  0

	 	          T

Invertible operations are represented by permutation matrices, i.e.,
those w/ exactly one 1 in each row and column.

00 010 1

n+2

11

00

0 1

01

11

11

00

0 1

01
=

=



Quantum evolution

Evolution in quantum mechanics is represented by multiplication by
unitary matrices.

	 U  is unitary if and only if  U(U*)   =  I  =  (U*)  U.

Notice that permutation matrices are unitary:

	 	 0    0    0    1     0    1    0    0           1    0    0    0
	 	 1    0    0    0     0    0    1    0           0    1    0    0
	 	 0    1    0    0     0    0    0    1           0    0    1    0
	 	 0    0    1    0     1    0    0    0           0    0    0    1

So evolution in quantum mechanics generalizes invertible classical
evolution.

=

T T



Quantum states in quantum computers

States of quantum systems are linear combinations of classical states.

So a single quantum bit (qubit) can be in any state:

	 a          +  a	 	 ,  where  |a  |    +  |a  |    =   1.

The reason for the condition on the coefficients it that when the qubit is
measured (relative to this basis), it is always either          or         , with
probabilities  |a   |    and  |a  |  , respectively.

Two qubits, like the response register, can be in any state of the form:

	 a                    +  a                    +  a                    +  a                   ,

where again the sum of the squared norms of  the coefficients is 1.    
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X  =                 ;  X          =                       =           =         .

H  =  2                       ;  H          =  (       +       )/2      .

T                =                .

F   =	 	 	 	       / 2 ;

F               =  (             +  i              −             −  i            )/2.  

Unitary operations in quantum computers

	 	 	 0    1	 	 	    0    1     1           0
	 	 	 1    0	 	 	    1    0     0           1

	 	 	 	    1    1
	 	 	 	    1   -1

	 	 	 1	 1	 1	 1
	 	 	 1	  i	 -1	 -i
	 	 	 1	 -1	 1	 -1
	 	 	 1	 -i	 -1	  i

0
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1101

1

0 1-1/2 0 1/2
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Tensor products of matrices

	 H        I  =                                     / 2        =                                / 2

	 H        H  =                                      / 2        =                                 / 2         

	

I I

I −I

1/2

1	 0
0	 1

1	 0
0	 1

1	 0
0	 1

-1	 0
0	 -1

1/2

H H

H −H

1/2     

1	 1
1	 -1

1	 1
1	 -1

1	 1
1	 -1

-1	 -1
-1	  1



A quantum algorithm  (M. Hunziker and D. A. Meyer, UCSD preprint (2001).)

Initialize query and response registers to:

Player 1 prepares query:

Player 2 responds to the quantum query:

(       +       )/20 1

000000000000

H              FTn
(       +       )

=  (all n-bit strings        )/2

     (−i)                      / 2             FT

0 1 . . . n/2

110100 10(             + i              −            −i              )/2
n/2

110100 10(             + i              −            −i              )/2

+dist(x,a) Σ

x

dist(x,a)
x

n/2
00



G               I4

Only 1 quantum question!

Define a new unitary matrix

	 G  =                    / 2      ,

which Player 1 uses to "interpret" the response:

	 	 	 	   (−i)               (i)                     /2        FT                 =              FT               .

Here the sum is over  x  and  y.  The  2    terms which have  y = a each 
contribute 1/2   ; the rest exactly cancel.

Thus "20 questions" becomes "1 question" with a quantum computer.        

n

00

00n    Σ ydist(x,a) a00

1	  i
 i	 1

1/2

dist(y,x)
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