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Coloring



Nelson’s problem (1950)

Can the points of the plane be colored with three colors so that every
equilateral triangle with sides of length one has one vertex of each
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Nelson’s problem (1950)

Can the points of the plane be colored with three colors so that every
equilateral triangle with sides of length one has one vertex of each

color?

QDV <%
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So far, so good ... but we need to color all the points in the plane.



Seurat’s attempt (1884-1886)

Un dimanche aprés-midi a I'lle de la Grande Jatte
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Un dimanche aprés-midi a I'lle de la Grande Jatte

OK: OK: not OK



Van Gogh’s attempt (1889)

Starry night
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Pollock’s attempt (1950)

Lavender mist
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Pollock’s attempt, three-colorized

[_avender mist

OK: not OK



Proof of impossibility

Suppose the points of the plane can be three-colored so that every
equilateral triangle with sides of length one has one vertex of each

color:

Then every point a distance 1 from a red point must be green or blue.




Proof of impossibility (cont.)

Suppose the points of the plane can be three-colored so that every
equilateral triangle with sides of length one has one vertex of each

color:

And every point a distance v/3 from a red point must be red ... which
implies that there are two red points a distance 1 apart, which is a

contradiction.




Combinatorial graphs

A (7 consists of a set V of and set F of ~each of
which is a pair {u,v}, u,v € V.




Digression: graph colorings

A [-coloring of a graph G isamap f: V — C, where C' is a set with
k € N elements (the colors), such that if {u,v} € E then f(u) # f(v).

A T-coloring.



Digression: graph colorings

A [-coloring of a graph G isamap f: V — C, where C' is a set with
k € N elements (the colors), such that if {u,v} € E then f(u) # f(v).

A 4-coloring.



Digression: chromatic number

The chromatic number, x(G), of a graph G is the smallest £ € N such
that GG has a k-coloring.

This graph has chromatic number 4, because it has no 3-coloring.
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Let G be the infinite graph with all the points of the plane as vertices
and edges {u, v} for all pairs of points distance 1 apart. What is x(G)?
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Let G be the infinite graph with all the points of the plane as vertices
and edges {u, v} for all pairs of points distance 1 apart. What is x(G)?

: x(G) > 4.

This is a corollary of our observation that there is no 3-coloring of
the plane such that the vertices of every equilateral triangle with
sides of length one have three different colors.



Digression: the Hadwiger-Nelson problem (1961)

Let G be the infinite graph with all the points of the plane as vertices
and edges {u, v} for all pairs of points distance 1 apart. What is x(G)?

Nelson (1950): x(G) > 4.

This is a corollary of our observation that there is no 3-coloring of
the plane such that the vertices of every equilateral triangle with
sides of length one have three different colors.

Isbell (1950): x(G) < 7.

Proof by construction:
(diameter 1 hexagons)

No progress since 1950!




Compactness

Rado (1949), Gottschalk (1951): Let C be a finite set and let M be
an infinite set. Let V be the class of all finite subsets of M, and for
each Ve V, let fiy : V — (C. Then there exists f : M — C' such
that for all V € V thereisa V C W € V such that f(v) = fw(v) for
all v e V.

For V €V, let Fy, be theset of all f € X = X,ecapC such that
there exists V- C W € V satisfying f(v) = fw (v), for all v € V.
For the discrete topology on C', Tychonoff’'s theorem implies X
is compact. Since {Fy | V € V} is a class of nonempty closed
subsets of X, with the property that any finite number of them
have nonempty intersection, there exists some f € NycpFy. N

Erdos (1950), de Bruijn & Erdos (1951): In particular, if every finite
subgraph of G is k-colorable, GG is also k-colorable.



Application to Nelson’s problem

This also means that if the points of the plane cannot be colored with
three colors so that every equilateral triangle with sides of length one
has one vertex of each color, there must be a finite subset of the plane
that also has this property.



Application to Nelson’s problem

This also means that if the points of the plane cannot be colored with
three colors so that every equilateral triangle with sides of length one
has one vertex of each color, there must be a finite subset of the plane
that also has this property.

Moser & Moser (1961)



Quantum mechanics
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Mathematical foundations of quantum mechanics
[Hilbert, von Neumann, Nordheim (1928), von Neumann (1932)]

Each quantum system corresponds to a vector space with an inner
product denoted (-|-) (really, a Hilbert space).

The state of a quantum system is a norm 1 element of this vector
space.

Each (complete) measurement of a quantum system corresponds to
an orthonormal basis of the vector space in which its state lies.

For a quantum system in state 1), the outcome of a measurement
corresponding to an orthonormal basis {e;} is probabilistic; it is the
unit vector e; with probability |(1)|e;)|?. (Since 1) is a unit vector, the
probabilities sum to 1.)



Comparison with classical physics
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scribed as a random variable with some probability density.
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Comparison with classical physics

Classically, if the outcome of a measurement is probabilistic, it is de-
scribed as a random variable with some probability density.

This can be (and is, in classical physics) understood as the outcome of
the measurement on a specific system being deterministic, but the sys-
tem being one in some ensemble of systems with outcome frequencies
corresponding to the probability density.

That is, the outcome of a measurement is determined by some hidden
variables that specify which system is being measured, and hence the
outcome of any measurement.



Hidden variable models for quantum mechanics

So, if one is uncomfortable with the indeterminism in the mathematical
foundations of quantum mechanics, one might hope to remove it by
constructing a hidden variable model that reproduces the quantum
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Hidden variable models for quantum mechanics

So, if one is uncomfortable with the indeterminism in the mathematical
foundations of quantum mechanics, one might hope to remove it by
constructing a hidden variable model that reproduces the quantum
mechanical probabilities.

Such a would have two components:

1. The hidden variable values describing the state of a system would
specify the result of any measurement, i.e., determine which ele-
ment of any orthonormal basis is the outcome of the corresponding
measurement.

2. The hidden variable values describing the state of a system would
have a probability density that reproduces the quantum mechan-
ical probabilities for the outcomes of each measurement.



Noncontextual hidden variable models

, and showed
that hidden variable models with certain properties cannot exist.

The values of the hidden variables are required to determine whether
each unit vector will or will not be the outcome of a measurement, if
that unit vector is an element of the corresponding orthonormal basis.
If this determination for a given unit vector is independent of the

measurement of which it is a possible outcome, the hidden variables
are called



Noncontextual hidden variable models

Gleason (1957), Bell (1966) and Kochen & Specker (1967) showed
that hidden variable models with certain properties cannot exist.

The values of the hidden variables are required to determine whether
each unit vector will or will not be the outcome of a measurement, if
that unit vector is an element of the corresponding orthonormal basis.
If this determination for a given unit vector is independent of the
measurement of which it is a possible outcome, the hidden variables
are called noncontextual.

Thus a specific set of values for noncontextual hidden variables must
determine whether each unit vector is or is not the outcome of every
measurement containing it. That is, the unit vectors can be colored
blue or red in such a way that exactly one element of each orthonormal
basis is blue.



Coloring in two dimensions

In two dimensions, it is easy to color the unit vectors so that exactly
one element of each orthonormal basis is blue and the other is red:





Coloring in two dimensions

In two dimensions, it is easy to color the unit vectors so that exactly
one element of each orthonormal basis is blue and the other is red:

This is only one of many possible colorings; a noncontextual hidden
variable model would also require an appropriate probability density on
such colorings, but this can be constructed [Bell (1966)].



Coloring in three dimensions

But in three dimensions, it is impossible [Gleason (1957), Bell (1966),
Kochen & Specker (1967)]:

If the green angle between
the blue Z and the red unit
vector in the y-z plane is less

1

than arctan(3), the two or-

thogonal vectors (& —2)/v/2
and —(2+ 2)/v/2 (shown in
magenta) must be red, and
hence 1y must be blue, a con-
tradiction.





Coloring in three dimensions (cont.)

But any such coloring of the unit vectors in three dimensions must have
a red vector within an arbitrarily small angle of a blue vector. So there
can be no such coloring, and hence no noncontextual hidden variable
model for quantum systems described by vector spaces of dimension
at least three.
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But any such coloring of the unit vectors in three dimensions must have
a red vector within an arbitrarily small angle of a blue vector. So there
can be no such coloring, and hence no noncontextual hidden variable
model for quantum systems described by vector spaces of dimension
at least three.

By the same compactness argument as for colorings of the plane, there
must be a finite set of unit vectors in three (or more) dimensions that
cannot be colored so that exactly one out of any three orthogonal
vectors is blue and the other two are red.



Coloring in three dimensions (cont.)

But any such coloring of the unit vectors in three dimensions must have
a red vector within an arbitrarily small angle of a blue vector. So there
can be no such coloring, and hence no noncontextual hidden variable
model for quantum systems described by vector spaces of dimension
at least three.

By the same compactness argument as for colorings of the plane, there
must be a finite set of unit vectors in three (or more) dimensions that
cannot be colored so that exactly one out of any three orthogonal
vectors is blue and the other two are red.

found a set of 117 unit vectors in three
dimensions that cannot be colored this way. (This set is related to the
not 3-colorable graph we found for the plane.)



Coloring in three dimensions (cont.)

found a set of 31 unit vectors in three
dimensions that cannot be colored this way.



Coloring in three dimensions (cont.)

found a set of 31 unit vectors in three
dimensions that cannot be colored this way.

found a ‘nicer’ set of 33 unit vectors in three dimensions
that cannot be colored this way.



Coloring in three dimensions (cont.)

found a set of 31 unit vectors in three
dimensions that cannot be colored this way.

found a ‘nicer’ set of 33 unit vectors in three dimensions
that cannot be colored this way.

noticed that this set of vectors was discovered much
earlier.



Escher’s discovery (1961)

Consider the 3 interpenetrating
cubes on the top of the left pil-
lar. Each cube has 4 lines from
the mutual center to its vertices,
0 lines to the centers of its edges,
and 3 lines to the centers of its
faces. Three of the lines are
shared by all three cubes, giv-
ing 3 x(4+6+3)—6 =33
lines. These are Peres’ vectors.

Waterfall



Irrationality

Notice that some of Peres’ unit vectors have irrational coordinates: For
example, if we choose as coordinate axes the three lines that are shared
by all three cubes, the unit vectors in the direction of the vertices of

the cube resting on a face are (+1,+1,+1)//3.
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Kochen & Specker’s set of 117 unit vectors; in each set, some have
irrational coordinates.



Irrationality

Notice that some of Peres’ unit vectors have irrational coordinates: For
example, if we choose as coordinate axes the three lines that are shared
by all three cubes, the unit vectors in the direction of the vertices of
the cube resting on a face are (+1,+1,+1)//3.

This is also true for Conway & Kochen's set of 31 unit vectors, and for
Kochen & Specker’s set of 117 unit vectors; in each set, some have
irrational coordinates.

The non-repeating decimal expansion of irrational numbers raises the
Issue of finite precision versus infinite precision; results from computa-
tional complexity suggest one should be wary of models that incorpo-
rate the latter.



Finite precision measurement

Furthermore, making a measurement corresponding to a spe-
cific orthonormal basis would require aligning an experimental appara-
tus with infinite precision.



Finite precision measurement

Furthermore, making a measurement corresponding to a spe-
cific orthonormal basis would require aligning an experimental appara-
tus with infinite precision.

Since this seems likely to be difficult, perhaps a putative noncontextual
hidden variable model need not assign outcomes to every possible unit
vector, but only to unit vectors in a dense subset.



Rationality

Which dense subset should we try to color?



Rationality
Which dense subset should we try to color?

The irrationality of components of some unit vectors in the non-
colorable sets suggests trying the unit vectors with rational compo-

nents.



Rationality
Which dense subset should we try to color?

The irrationality of components of some unit vectors in the non-
colorable sets suggests trying the unit vectors with rational compo-
nents.

Completing the rationals to include the irrationals requires that

we transcend the proximably observable facts and ... intro-
duce ideal elements into the description of physical systems

[ ]

So let's not!



Density

The rational unit vectors are dense in S2 since Q2 is dense in R? and ra-
tional vectors in S? map bijectively to rational points in affine R? (i.e.,
(x/z,y/z) for x,y,z € Z and gcd(x,y,z) = 1)—via stereographic
projection:

o




Coloring the rational unit vectors

[ , ]

Rational directions in three dimensions are defined by vectors (x,y, 2),
where x,y,2 € Z and gcd(x,y,2) = 1. A rational unit vector points
in this direction if and only if 22 4+ y? + 2?2 = r2 for some r € Z.
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[ , ]

Rational directions in three dimensions are defined by vectors (x,y, 2),
where x,y,2 € Z and gcd(x,y,2) = 1. A rational unit vector points
in this direction if and only if 22 4+ y? + 2?2 = r2 for some r € Z.

Since odd (even) numbers square to 1 (0) modulo 4, if r is even, then
all of z, y and z must be even, which contradicts gcd(x, ¥y, 2) = 1.



Coloring the rational unit vectors

[ , ]

Rational directions in three dimensions are defined by vectors (x,y, 2),
where x,y,2 € Z and gcd(x,y,2) = 1. A rational unit vector points
in this direction if and only if 22 4+ y? + 2?2 = r2 for some r € Z.

Since odd (even) numbers square to 1 (0) modulo 4, if r is even, then
all of z, y and z must be even, which contradicts gcd(x, ¥y, 2) = 1.

Thus 7 is odd, so r* = 1 (mod 4). Then exactly one of =, y and 2
must also be odd.



Coloring the rational unit vectors
[Hales & Straus (1982), Godsil & Zaks (1988)]

Rational directions in three dimensions are defined by vectors (x,y, 2),
where x,y,2 € Z and gcd(x,y,2) = 1. A rational unit vector points
in this direction if and only if 22 4+ y? + 2?2 = r2 for some r € Z.

Since odd (even) numbers square to 1 (0) modulo 4, if r is even, then
all of z, y and z must be even, which contradicts gcd(x, ¥y, 2) = 1.

Thus r is odd, so 7 = 1 (mod 4). Then exactly one of z, y and 2
must also be odd.

If z is odd, color the unit vector blue, otherwise color it red. (Notice
that we could 3-color the unit vectors if we wanted to.)



Coloring the rational unit vectors (cont.)

[ , ]

To check that exactly one element of each orthonormal basis is colored
blue, consider two elements, and notice that the angle between their
directions (x,¥,2) and (z',y’,2") is /2, ie.,

v +vyy+2z2=0.



Coloring the rational unit vectors (cont.)

[ , ]

To check that exactly one element of each orthonormal basis is colored
blue, consider two elements, and notice that the angle between their
directions (x,¥,2) and (z',y’,2") is /2, ie.,

v +vyy+2z2=0.

The left hand side can only be congruent to 0 modulo 2 if the two
directions differ in which component is odd.



Coloring the rational unit vectors (cont.)

[ , ]

To check that exactly one element of each orthonormal basis is colored
blue, consider two elements, and notice that the angle between their
directions (x,¥,2) and (z',y’,2") is /2, ie.,

v +vyy+2z2=0.

The left hand side can only be congruent to 0 modulo 2 if the two
directions differ in which component is odd.

Thus only one of the three elements in each orthonormal basis has an
odd z-component and is therefore colored blue.



Coloring the rational unit vectors (cont.)




and Euclid
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Remarks

This does not constitute a contextual hidden variable model yet; it
requires a probability density over different colorings.

But and were Inspired by this ar-
gument to construct a complete noncontextual hidden variable model.

We don't really believe that either of these is how the world really
works.

What these models show is that there is a previously unstated addi-
tional condition on the noncontextual hidden variable models ruled out
by Bell and Kochen-Specker, namely that probabilities are continuous
as a function of measurement basis | ].



Peres’ comment

Meyer's claim that ‘finite precision measurement nullifies
the Kochen-Specker theorem” (that is, makes it irrelevant
to physics) and some of its generalizations have caused con-
siderable controversy that lasts until today. Meyer’'s proposal
was to replace the set of all directions in space by the dense
subset of rational directions, arguing that a finite precision
measurement cannot decide whether or not a number is ra-
tional.

Let us apply the same argument to ordinary geometry and
consider only points with rational coordinates. Then the line
r = y and the unit circle * + y?> = 1 are both dense but
they do not intersect, in contradiction to Euclid’s postulates.

[ ]



What about Euclid?

Euclid actually omits the postulate that is necessary to ensure that
the line and and the circle intersect. In fact, the proof of Proposition
1 in Book | is (relatively) well-known to assume the existence of the

intersection of two circles without ever having stated explicitly the
necessary postulate!
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What about Euclid?

Euclid actually omits the postulate that is necessary to ensure that
the line and and the circle intersect. In fact, the proof of Proposition
1 in Book | is (relatively) well-known to assume the existence of the
intersection of two circles without ever having stated explicitly the
necessary postulate!

The necessary was not formulated until the end
of the nineteenth century!

Actually, Euclid wasn't even so comfortable with the idea that irra-
tionals might be numbers.

The most Euclid seems likely to want to allow is numbers.
Amusingly, the components of the unit vectors in the non-colorable sets
of Kochen-Specker and Peres seem to be constructible.



And finally ...

It is rather odd to resort to Euclid as an arbiter of modern physics:

discarding his Parallel Postulate led to differential geometry and general
relativity—the theory of gravity!



And finally ...

It is rather odd to resort to Euclid as an arbiter of modern physics:
discarding his Parallel Postulate led to differential geometry and general
relativity—the theory of gravity!

Recent attempts to construct quantum theories of gravity hint that
spacetime may be discrete, and that the set of possible directions may
not be continuous [Major (1999)].
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