Extra Credit Problem 3

Our textbook gives the example of the function $u(x)=\operatorname{prob}($ a "randomly moving" particle starting at $x \in D$ ends at $C_{1} \subset \partial D$), where $D \subset \mathbb{R}^{d}$, as a harmonic function satisfying the boundary conditions

$$
u(x)= \begin{cases}0 & \text { if } x \in C_{0} \\ 1 & \text { if } x \in C_{1}\end{cases}
$$

where $\partial D=C_{0} \sqcup C_{1}$. To see why $u(x)$ satisfies Laplace's equation, consider a setting in which we can easily make precise what "randomly moving" means:

Let Γ be the graph (network) consisting of vertices labelled $0,1, \ldots, N$, with an edge connecting each pair $\{x, x+1\}$ for $x \in\{0, \ldots, N-1\}$:

Now consider the motion of a particle on Γ, hopping repeatedly from vertex x to vertex $x-1$ with probability $1 / 2$ and to vertex $x+1$ with probability $1 / 2$, for $1 \leq x \leq N-1$. If the particle ever hops to vertex 0 or vertex N, it stops. Let $u(x)=$ prob(a particle that starts hopping at x will end at vertex N). (So $C_{0}=\{0\}$ and $C_{1}=\{N\}$).
(a) Write $N+1$ equations for the $N+1$ unknowns $u(x)$. The first and last of these equations are $u(0)=0$ and $u(N)=1$.
(b) Write this set of equations in matrix form: $A u=f$, where u and f are $N+1$ dimensional vectors and A is an $(N+1) \times(N+1)$ matrix.
(c) Show that A is essentially the discretization of the Laplacian in 1 dimension, $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$.
(d) Solve the equations in (a) or (b) for $u(x)$.
(e) Do a similar analysis for a particle hopping randomly when Γ is a square lattice $\{(x, y) \mid 0 \leq x, y \leq N\}$ and the particle hops from an interior point to each of its left, right, up, and down neighboring points with probability $1 / 4$. Partition the boundary, for example, as:

$$
\begin{aligned}
& C_{0}=\{(x, y) \mid y=0 \text { or }(x=0 \text { and } y<N)\} \\
& C_{1}=\{(x, y) \mid y=N \text { or }(x=N \text { and } 0<y)\} .
\end{aligned}
$$

