Name:

Some potentially useful formulae:

- (i) $\cosh x = \frac{1}{2}(e^x + e^{-x}).$
- (*ii*) The Fourier coefficients of f(x) for the eigenfunctions $\cos(n\pi x/\ell)$ and $\sin(n\pi x/\ell)$ on the interval $(-\ell, \ell)$ are

$$A_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{n\pi x}{\ell} dx$$
$$B_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{n\pi x}{\ell} dx.$$

In this case the Fourier series for f(x) is $\frac{1}{2}A_0 + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi x}{\ell} + B_n \sin \frac{n\pi x}{\ell}\right)$.

(*iii*) The Fourier coefficients of f(x) for the eigenfunctions $e^{in\pi x/\ell}$ on the interval $(-\ell, \ell)$ are

$$c_n = \frac{1}{2\ell} \int_{-\ell}^{\ell} f(x) e^{-in\pi x/\ell} \mathrm{d}x.$$

In this case the Fourier series for f(x) is $\sum_{n=-\infty}^{\infty} c_n e^{in\pi x/\ell}$.

	score
1	
2	
3	
total	

- 1. Let $\phi(x) = \sin x$.
 - a. [10 points] Solve $u_t = u_{xx}$ for $0 < x < \pi$ and $0 < t < \infty$, with boundary conditions $u(0,t) = 0 = u(\pi,t)$ and initial condition $u(x,0) = \phi(x)$. Let u(x,t) = X(x)T(t). Then $-X''(x) = \lambda X(x)$, with $X(0) = 0 = X(\pi)$, which has nontrivial solutions $X_n(x) = \sin(nx)$ with $\lambda_n = n^2$, $0 < n \in \mathbb{Z}$. Notice that $\phi(x) = \sin x = X_1(x)$, so no other terms appear in the Fourier series expansion of $\phi(x)$. Also $-T'(t) = \lambda T(t)$, which has solution $T(t) = Ae^{-\lambda t}$. Thus $u(x,t) = e^{-t} \sin x$.
 - b. [15 points] Solve $u_t = iu_{xx}$ for $0 < x < \pi$ and $0 < t < \infty$, with the same boundary and initial conditions. Everything is the same as in part (a) up to the equation for T(t): $-T'(t) = i\lambda T(t)$, which has solution $T(t) = Ae^{-i\lambda t}$. Thus $u(x,t) = e^{-it} \sin x$.
 - c. [15 points] Let

$$E(t) = \int_0^{\pi} (|u_x|^2 + |u_t|^2) \mathrm{d}x.$$

Show that E'(t) < 0 for the solution in part (a), but E'(t) = 0 for the solution in part (b).

For the solution to the diffusion equation in part (a),

$$E(t) = \int_0^{\pi} \left(|e^{-t} \cos x|^2 + |-e^{-t} \sin x|^2 \right) \mathrm{d}x = e^{-2t} \int_0^{\pi} (\cos^2 x + \sin^2 x) \mathrm{d}x = \pi e^{-2t},$$

so $E'(t) = -2e^{-2t} < 0$. For the solution to the Schrödinger equation in part (b),

$$E(t) = \int_0^{\pi} \left(|e^{-it} \cos x|^2 + |-e^{-it} \sin x|^2 \right) \mathrm{d}x = |e^{-it}|^2 \int_0^{\pi} (\cos^2 x + \sin^2 x) \mathrm{d}x = \pi,$$

since $|e^{it}| = 1$ when $t \in \mathbb{R}$, so E'(t) = 0.

Name:

2. [30 points] Find the full Fourier series for $\cosh x$ on the interval $(-\ell, \ell)$.

Extra Credit. [10 points] Let $S_N(x)$ be the partial sum of the full Fourier series corresponding to eigenvalues $(n\pi/\ell)^2$ for $n \leq N$. Let $E_N(x) = \|\cosh x - S_N(x)\|^2$. How does the error $E_N(x)$ change as ℓ increases? If you double ℓ , how many terms in the new series should you use in order to keep the error the same? Why?

- 3. Give examples of functions whose Fourier cosine series on (0, 1)
 - a. [10 points] converges uniformly; a continuous function with continuous first derivative, satisfying Neumann boundary conditions (the ones which lead to the Fourier cosine series) on [0, 1], *e.g.*, f(x) = 1; or $f(x) = \cos(\pi x)$
 - b. [10 points] converges pointwise but not uniformly; a piecewise continuous, but not continuous function on [0, 1], or one that does not satisfy Neumann boundary conditions, e.g., f(x) = 0 for $x \le 1/2$ and f(x) = 1 for x > 1/2; or $f(x) = \sin(\pi x)$
 - c. [10 points] converges in mean-square but not pointwise. a square-integrable function with a singularity worse than a jump discontinuity, *e.g.*, $f(x) = |x - 1/2|^{-1/4}$