MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 4

David A. Meyer
Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Probability distributions

Given an outcome space Ω, a probability distribution is a function $P: \mathcal{P}(\Omega) \rightarrow \mathbb{R}$, where $P(E)$ is the probability assigned to an event $E \subseteq \Omega$. In Lecture 1 [1] we learned de Finetti's definition of probability [2]:

Definition. Suppose that for any stake $S \in \mathbb{R}$, an individual will pay $p S$ to win S if E occurs. Then $P(E)=p$.

There are relations among events that we should expect to constrain the possible probability distributions. For example, if $A \subseteq B \subseteq \Omega$, we might expect $P(A) \leq P(B)$. These constraints follow from an assumption that individuals are rational [2]:

ASSUMPTION. An individual assigns probabilities to events coherently, i.e., in such a way that the individual is never sure to lose.

This seemingly obvious assumption has surprisingly specific consequences.
Proposition 1. If P is a coherent probability distribution, $P(\Omega)=1$.
Proof. Suppose a stake S is paid if Ω occurs, and an individual will pay $p S$ to play. Since Ω must occur-by definition it is the set of all possible outcomes - the individual "wins"

$$
\begin{equation*}
w=S-p S=(1-p) S \tag{1}
\end{equation*}
$$

For any $w \in \mathbb{R}$, including $w<0$, we can solve equation (1) for S, unless $1-p=0$. That is, unless $p=1$, there is some S such that the individual is sure to lose money. Under the assumption that the individual assigns probabilities coherently, this means that $P(\Omega)=p=1$.

Notice that if $p<1$ and $w<0$, then the solution to equation (1) is some $S<0$. We should think about the meaning of the wager in de Finetti's definition of probability when $S<0$. In this case the individual is "paying" $-p|S|$ to "win" $-|S|$. "Paying" a negative amount means receiving a positive amount from the other party in the wager, while "winning" a negative amount means paying out the absolute value of that amount. Thus when $S<0$ the parties to the wager change places: the first individual accepts a bet of $p|S|$ from the other party, and pays out $|S|$ if the event occurs. So the condition that the stake S in de Finetti's definition can be positive or negative means that the individual is willing to take either side of the wager with odds $p: 1-p$ for E occurring.

Proposition 2. If P is a coherent probability distribution, $A, B \subseteq \Omega$, and $A \cap B=\emptyset$, then $P(A \cup B)=P(A)+P(B)$.

Proof. Let $p_{A}=P(A), p_{B}=P(B)$, and $p=P(A \cup B)$. Suppose stakes S_{A}, S_{B} and S are wagered on the occurrence of A, B, and $A \cup B$, respectively.

As shown in the figure, $A \bar{B}=A \backslash B$, $\bar{A} B=B \backslash A$, and $\bar{A} \bar{B}=\overline{A \cup B}$ form a partition of Ω : these events have pairwise empty intersections and their union is Ω. Thus exactly one of these three events oc-
 curs, and we can calculate the individual's "winnings" in each case:

$$
\begin{array}{ll}
A \bar{B}: & w_{A \bar{B}}=\left(1-p_{A}\right) S_{A}-p_{B} S_{B}+(1-p) S \\
\bar{A} B: & w_{A \bar{B}}=\left(1-p_{A}\right) S_{A}-p_{B} S_{B}+(1-p) S \tag{2}\\
\bar{A} \bar{B}: & w_{\bar{A} \bar{B}}=-p_{A} S_{A}-p_{B} S_{B}-p S
\end{array}
$$

For any $w_{A \bar{B}}, w_{A \bar{B}}$, and $w_{\bar{A} \bar{B}}$, including negative values, we can solve the system of linear equations (2) for S_{A}, S_{B}, and S, unless the system is singular, i.e., unless

$$
0=\left|\begin{array}{ccc}
1-p_{A} & -p_{B} & 1-p \\
-p_{A} & 1-p_{B} & 1-p \\
-p_{A} & -p_{B} & -p
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-p_{A} & -p_{B} & -p
\end{array}\right|=-p+p_{B}+p_{A}
$$

That is, unless $p=p_{A}+p_{B}$, there are some stakes S_{A}, S_{B}, and S such that the individual is sure to lose money. Under the assumption that the individual assigns probabilities coherently, this means that $P(A \cup B)=p=p_{A}+p_{B}=P(A)+P(B)$.

The conclusions of Propositions 1 and $2, P(\Omega)=1$ and $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$, are the conditions required for P to be a probability distribution in Kolmogorov's formulation of probability [3]. We have derived them from de Finetti's assumption of coherence.

References

[1] http://math.ucsd.edu/~dmeyer/teaching/180Awinter08/notes01.pdf.
[2] B. de Finetti, "La prévision: ses lois logiques, ses sources subjectives", Annales de l'Institute Henri Poincaré 7 no. 1 (1937).
[3] A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitrechnung (1933); translation edited by N. Morrison, Foundations of the Theory of Probability (New York: Chelsea 1956).

