MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 5

David A. Meyer
Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Conditional probability

In Lecture 4 [1] we used de Finetti's assumption of coherence of probabilities [2] to derive basic properties of probability distributions. An argument similar to the ones we used there allows us to derive the basic formula relating conditional probability to probabilities of events. First we define conditional probability according to de Finetti [2]:

DEfinition. Let $A, B \subseteq \Omega$. Suppose that for any stake $S \in \mathbb{R}$, an individual will pay $p S$ for a wager that:
s/he wins if B occurs and A occurs;
$\mathrm{s} /$ he loses if B occurs but A does not;
is cancelled if B does not occur.
That is, the change in the individual's wealth is $(1-p) S,-p S$, or 0 in these cases, respectively. Then the conditional probability of A given $B, P(A \mid B)=p$.

Proposition 3. If P is a coherent probability distribution, $A, B \subseteq \Omega$, and $P(B) \neq 0$, then $P(A \mid B)=P(A \cap B) / P(B)$.

Proof. Write $p_{A B}=P(A \cap B), p_{B}=$ $P(B)$, and $p=P(A \mid B)$. Suppose stakes $S_{A B}, S_{B}$, and S are wagered on the occurrence of $A \cap B, B$, and $A \mid B$, respectively.

As shown in the figure, $A B=A \cap B$, $\bar{A} B=B \backslash A$, and \bar{B} form a partition of Ω. Thus exactly one of these three events occurs, and we can calculate the individual's "winnings" in each case:

$$
\begin{array}{rlrl}
A B: & & w_{A B} & =\left(1-p_{A B}\right) S_{A B}+\left(1-p_{B}\right) S_{B}+(1-p) S \\
\bar{A} B: & w_{A \bar{B}} & =-p_{A B} S_{A B}+\left(1-p_{B}\right) S_{B}-p S \tag{3}\\
\bar{B}: & & w_{\bar{B}} & =-p_{A B} S_{A B}-p_{B} S_{B}+0
\end{array}
$$

For any $w_{A B}, w_{A \bar{B}}$, and $w_{\bar{B}}$, including negative values, we can solve the system of linear equations (3) for $S_{A B}, S_{B}$, and S, unless the system is singular, i.e., unless

$$
0=\left|\begin{array}{ccc}
1-p_{A B} & 1-p_{B} & 1-p \\
-p_{A B} & 1-p_{B} & -p \\
-p_{A B} & -p_{B} & 0
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1-p \\
0 & 1 & -p \\
-p_{A B} & -p_{B} & 0
\end{array}\right|=p_{A B}-p_{B} p
$$

That is, unless $p_{A B}=p_{B} p$, there are some stakes $S_{A B}, S_{B}$, and S such that the individual is sure to lose money. Under the assumption that the individual assigns probabilities coherently, this means that $P(A \cap B)=p_{A B}=p p_{B}=P(A \mid B) P(B)$. If $P(B) \neq 0$, dividing by $P(B)$ gives $P(A \mid B)=P(A \cap B) / P(B)$.

ExAmple. Suppose there are two biased coins: C_{1} with $P_{1}(H)=1 / 10$ and C_{2} with $P_{2}(H)=3 / 4$. Consider a game in which we draw a card at random from a standard deck; if it is red, flip C_{1}, while if it is black, flip C_{2}.

1. Compute $P(H \cap \mathrm{red})$:

$$
P(H \cap \mathrm{red})=P(H \mid \mathrm{red}) P(\mathrm{red})=\frac{1}{10} \cdot \frac{1}{2}=\frac{1}{20},
$$

where the first equality follows from Proposition 3.
2. Compute $P(H \cap$ black $)$:

$$
P(H \cap \text { black })=P(H \mid \text { black }) P(\text { black })=\frac{3}{4} \cdot \frac{1}{2}=\frac{3}{8},
$$

where the first equality follows from Proposition 3.
3. Compute $P(H)$:

$$
P(H)=P(H \cap \mathrm{red})+P(H \cap \text { black })=\frac{1}{20}+\frac{3}{8}=\frac{17}{40},
$$

where the first equality follows from Proposition 2 [1].
4. Can we make betting on H a fair bet, i.e., $P(H)=\frac{1}{2}$?

$$
\begin{align*}
P(H) & =P\left(H \cap C_{1}\right)+P\left(H \cap C_{2}\right) \\
& =P\left(H \mid C_{1}\right) P\left(C_{1}\right)+P\left(H \mid C_{2}\right) P\left(C_{2}\right) \tag{4}\\
& =\frac{1}{10} p+\frac{3}{4}(1-p) \tag{5}
\end{align*}
$$

where $p=P\left(C_{1}\right)$. Here the first equality follows from Proposition 2 [1], the second from Proposition 3 used twice, and the third from Propositions 1 and 2 [1]. Setting $P(H)=\frac{1}{2}$ and solving equation (5) gives $p=5 / 13$. So we can make betting on H a fair bet by changing the game so that, for example, C_{1} is flipped if the card drawn is in $\{A, K, Q, J, 10\}$, and C_{2} is flipped otherwise.

Equation (4) is a special case of general, and very useful, formula which we should derive. First we prove a simple lemma:

LEmmA 4. If $\left\{C_{1}, \ldots, C_{n}\right\}$ is a partition of $A \subseteq \Omega$, then

$$
P(A)=P\left(C_{1}\right)+\cdots+P\left(C_{n}\right)
$$

Proof. This is a corollary of Proposition 2 [1]. Since $\left\{C_{1}, \ldots, C_{n}\right\}$ is a partition of A,

$$
A=C_{1} \cup C_{2} \cup \cdots \cup C_{n}=C_{1} \cup\left(C_{2} \cup \cdots \cup C_{n}\right),
$$

where $C_{1} \cap\left(C_{2} \cup \cdots \cup C_{n}\right)=\emptyset$, so by Proposition 2,

$$
P(A)=P\left(C_{1}\right)+P\left(C_{2} \cup \cdots \cup C_{n}\right)
$$

Similarly,

$$
C_{2} \cup \cdots \cup C_{n}=C_{2} \cup\left(C_{3} \cup \cdots \cup C_{n}\right),
$$

so using Proposition 2 again,

$$
\begin{array}{ll}
& P\left(C_{2} \cup \cdots \cup C_{n}\right)=P\left(C_{2}\right)+P\left(C_{3} \cup \cdots \cup C_{n}\right) \\
\Longrightarrow \quad & P(A)=P\left(C_{1}\right)+P\left(C_{2}\right)+P\left(C_{3} \cup \cdots \cup C_{n}\right) .
\end{array}
$$

Repeating this procedure gives the desired result.
Proposition 5. If $\left\{B_{1}, \ldots, B_{n}\right\}$ is a partition of Ω, then for $A \subseteq \Omega$,

$$
P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+\cdots+P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

Proof. Since $\left\{B_{1}, \ldots, B_{n}\right\}$ is a partition of $\Omega,\left\{A \cap B_{1}, \ldots, A \cap B_{n}\right\}$ is a partition of A. Then by Lemma 4 ,

$$
P(A)=P\left(A \cap B_{1}\right)+\cdots+P\left(A \cap B_{n}\right) .
$$

Using Proposition 3 for each term on the right-hand side of this equation gives the desired result.

Equation (4) in the example is an $n=2$ version of this result.

References

[1] http://math.ucsd.edu/~dmeyer/teaching/180Awinter08/notes04.pdf.
[2] B. de Finetti, "La prévision: ses lois logiques, ses sources subjectives", Annales de l'Institute Henri Poincaré 7 no. 1 (1937).

