MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 25

David A. Meyer

Project in Geometry and Physics, Department of Mathematics University of California/San Diego, La Jolla, CA 92093-0112 http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Extra Credit problem

Let V be the volume in \mathbb{R}^3 defined by the intersection of two solid cones,

$$\{ (x, y, z) \mid z \ge \sqrt{x^2 + y^2} \}$$

$$\cap \quad \{ (x, y, z) \mid z \le 1 - \sqrt{x^2 + y^2} \},$$

as shown in the figure. Let V_1 and V_2 be points picked independently and uniformly at random from V.

For $v_1, v_2 \in \mathbb{R}^3$, write $v_1 \prec v_2$ if v_1 is in the downward cone with apex at v_2 , *i.e.*, if $(z_2 - z_1)^2 \ge (x_1 - x_2)^2 + (y_1 - y_2)^2$ and $z_1 \le z_2$. In the figure, $a \not\prec v_2$ but $b \prec v_2$.

