# MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 25 

David A. Meyer

Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

## Extra Credit problem

Let $V$ be the volume in $\mathbb{R}^{3}$ defined by the intersection of two solid cones,

$$
\begin{aligned}
& \left\{(x, y, z) \mid z \geq \sqrt{x^{2}+y^{2}}\right\} \\
& \quad \cap \quad\left\{(x, y, z) \mid z \leq 1-\sqrt{x^{2}+y^{2}}\right\}
\end{aligned}
$$

as shown in the figure. Let $V_{1}$ and $V_{2}$ be points picked independently and uniformly at random from $V$.

For $v_{1}, v_{2} \in \mathbb{R}^{3}$, write $v_{1} \prec v_{2}$ if $v_{1}$ is in the downward cone with apex at $v_{2}$, i.e., if $\left(z_{2}-z_{1}\right)^{2} \geq\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$ and $z_{1} \leq z_{2}$. In the figure, $a \nprec v_{2}$ but $b \prec v_{2}$.

Find $P\left(V_{1} \prec V_{2}\right)$.


Hint. Start by computing the volume of the intersection of the downward cone from $v_{2}=(x, y, z)$ with $V$. You should find that it is a function only of $z^{2}-\left(x^{2}+y^{2}\right)$. As a warm-up you can do the two dimensional problem we did in class the same way.

