MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 26

David A. Meyer
Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

§5.3 Solutions

3. W, X, Y, Z are i.i.d. $N(0,1)$ random variables.
a. $P(W+X>Y+Z+1)=P(W+X-Y-Z>1)=P(W>1 / 2)$, since $W+X-Y-Z$ is an $N(0,4)$ random variable by the theorem on page 363 , so if we rescale it by a factor of 2 , it is an $N(0,1)$ random variable. $P(W>1 / 2) \approx 0.3085$, using the table of Φ values in Appendix 5.
b. $P(4 X+3 Y<Z+W)=P(4 X+3 Y-Z-W<0)=1 / 2$ since $4 X+3 Y-Z-W$ is a mean 0 random variable, again by the theorem on page 363 .
c. $\mathrm{E}\left[4 X+3 Y-2 Z^{2}-W^{2}+8\right]=4 \mathrm{E}[X]+3 \mathrm{E}[Y]-2 \mathrm{E}\left[Z^{2}\right]-\mathrm{E}\left[W^{2}\right]+8=0+0-2-1+8=5$.
d. $\mathrm{SD}[3 Z-2 X+Y+15]=\mathrm{SD}[3 Z-2 X+Y]=\sqrt{3^{2}+2^{2}+1^{2}}=\sqrt{14}$.
4. Measure time in minutes after 8 am. The bus arrival time, B, is an $N\left(10,(2 / 3)^{2}\right)$ random variable. The author's arrival time, A, is an independent $N\left(9,(1 / 2)^{2}\right)$ random variable.
a. $P(A<10)=\Phi(2) \approx 0.9772$, since 1 minute is 2 standard deviations.
b. $P(A<B)=P(A-B<0)=P((A-9)-(B-10)<1)$. The two terms in parentheses are normal random variables with mean 0 and standard deviations $1 / 2$ and $2 / 3$, respectively, so their difference is a normal random variable with mean 0
and standard deviation $\sqrt{(1 / 2)^{2}+(2 / 3)^{2}}=5 / 6$. So $P((A-9)-(B-10)<1)=$ $\Phi(6 / 5) \approx 0.8849$.
c. $P(B<9 \mid B<9$ or $B>12)=P(B<9) /(P(B<9)+P(B>12))=$ $\Phi(-3 / 2) /(\Phi(-3 / 2)+1-\Phi(3)) \approx 0.0668 /(0.0668+0.0013) \approx 0.9809$.

11. Brownian motion.

a. Start by considering $t=1 / n$, for $n \in \mathbb{N}$. Then X_{1}, the displacement after time 1 , is the sum of n independent displacements $X_{1 / n}$, so $n \sigma_{1 / n}^{2}=\sigma^{2}$, which means $\sigma_{1 / n}=\sqrt{1 / n} \sigma$.

Now consider $t=k / n$ for $k \in \mathbb{N}$. Now $X_{k / n}$, the displacement after time k / n, is the sum of k independent displacements $X_{1 / n}$, so $\sigma_{k / n}^{2}=k \sigma_{1 / n}^{2}=(k / n) \sigma^{2}$, and thus $\sigma_{k / n}=\sqrt{k / n} \sigma$.

We conclude that for any positive rational $t, 0 \leq t \in \mathbb{Q}$, the standard deviation of X_{t} is $\sigma_{t}=\sqrt{t} \sigma$. If we define X_{t} for real numbers as the limit of a sequence of random variables X_{s} for $s \in \mathbb{Q}$ and $s \rightarrow t$, then this formula for the standard deviation holds for irrational t as well.
b. $R_{t} /(\sqrt{t} \sigma)=\sqrt{\left(X_{t} / \sqrt{t} \sigma\right)^{2}+\left(Y_{t} / \sqrt{t} \sigma\right)^{2}}$ is the square root of the sum of the squares of two i.i.d. $N(0,1)$ random variables, the distribution of which is calculated on pages 358-359. From this we can calculate the mean and the standard deviation by doing the appropriate integrals.
c. Now $\sigma=1$ (millimeter) with t measured in seconds. Integrate the pdf from (b) from 2 to ∞.

