MATH 180A. INTRODUCTION TO PROBABILITY LECTURE 27

David A. Meyer
Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

\S 6.5 Solutions

Problems 1, 2 and 3 all require the same ideas, which are explained in the examples in this section. Since I didn't go over these examples in class, here are the solutions to the questions in problem 1. Problems 2 and 3 are similar.

1. Let X and Y be the normalized PSAT and SAT scores, respectively. Then $Y=\rho X+$ $\sqrt{1-\rho^{2}} Z$, where Z is an $N(0,1)$ random variable, independent of X, and $\rho=3 / 5$.
a. When the PSAT score is $1000, X=-2$, so $Y=-2 \rho+\sqrt{1-\rho^{2}} Z$. An above average SAT score is $Y>0$, so we need to compute $P(Y>0)=P\left(-2 \rho+\sqrt{1-\rho^{2}} Z>0\right)=$ $P(Z>3 / 2) \approx 0.0668$, using the table in Appendix 5.
b. $P(Y>0 \mid X<0)=P(Y>0$ and $X<0) / P(X<0)=2 P(Y>0$ and $X<0)=$ $2 P\left(\rho X+\sqrt{1-\rho^{2}} Z>0\right.$ and $\left.X<0\right)=2 P\left(X<0\right.$ and $\left.Z>-\left(\rho / \sqrt{1-\rho^{2}}\right) X\right)$. Since X and Z are independent standard normal random variables, their joint probability density function is circularly symmetric, so this probability is determined by the fraction of the whole circle spanned by the wedge $X<0$ and $Z>-\left(\rho / \sqrt{1-\rho^{2}}\right) X$. The angle between the lines $Z=-(3 / 4) X$ and $X=0$ is $\arctan (3 / 4)$, so the answer is $2 \arctan (3 / 4) / 2 \pi \approx 0.2048$.
c. Let U and V be the PSAT and SAT scores, respectively. Then

$$
\begin{aligned}
P(V>U+50) & =P(V-1300>(U-1200)-50) \\
& =P\left(Y>\frac{10}{9} X-\frac{5}{9}\right) \\
& =P\left(\rho X+\sqrt{1-\rho^{2}} Z>\frac{10}{9} X-\frac{5}{9}\right) \\
& =P\left(Z>\frac{10 / 9-\rho}{\sqrt{1-\rho^{2}}} X-\frac{5 / 9}{\sqrt{1-\rho^{2}}}\right) .
\end{aligned}
$$

Using the circular symmetry of the joint probability density function of X and Z again, we observe that this probability is just $\Phi(d)$, where d is the distance from the origin to the line

$$
Z=\frac{10 / 9-\rho}{\sqrt{1-\rho^{2}}} X-\frac{5 / 9}{\sqrt{1-\rho^{2}}}
$$

A little geometry or trigonometry shows us that the distance from a line $z=m x+b$ to the origin is just $b / \sqrt{m^{2}+1}$, so plugging in the numbers gives $\Phi(0.5852) \approx 0.7207$.

