Solving second order linear ODEs with constant coefficients -using differential operators and their inverses

David A. Meyer
Mathematics Department, University of California/San Diego
La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer

A general second order linear ODE with constant coefficients has the form

$$
\begin{equation*}
y^{\prime \prime}(t)+p y^{\prime}(t)+q y(t)=g(t) . \tag{1}
\end{equation*}
$$

We first consider homogeneous equations, which means $g(t) \equiv 0$. In this case, writing (1) in terms of the differential operator D introduced in our discussion of first order linear ODEs gives

$$
\begin{equation*}
\left(D^{2}+p D+q\right)[y(t)]=0, \tag{2}
\end{equation*}
$$

where D^{2} is interpreted as

$$
D^{2}[y(t)]=D[D[y(t)]]=D\left[y^{\prime}(t)\right]=y^{\prime \prime}(t)
$$

If we knew the inverse operator $\left(D^{2}+p D+q\right)^{-1}$, we could apply it to both sides of (2) and get

$$
y(t)=\left(D^{2}+p D+q\right)^{-1}[0],
$$

which would be a solution to (2). So we need to figure out the inverse operator for $D^{2}+p D+q$.

This second order differential operator should remind us of the quadratic polynomials we studied in high school algebra, like

$$
x^{2}+p x+q .
$$

Remember that such polynomials can be factored:

$$
\begin{equation*}
x^{2}+p x+q=\left(x-r_{1}\right)\left(x-r_{2}\right) \tag{3}
\end{equation*}
$$

where r_{1} and r_{2} are the roots (solutions) of the quadratic equation

$$
\begin{equation*}
x^{2}+p x+q=0 . \tag{4}
\end{equation*}
$$

This suggests that we might be able to factor the second order differential operator $D^{2}+$ $p D+q$ as the product of first order differential operators: $\left(D-r_{1}\right)\left(D-r_{2}\right)$, where r_{1} and
r_{2} are the roots of (4), which is called the characteristic equation for (2). To check if this is true, we can compute:

$$
\begin{aligned}
\left(D-r_{1}\right)\left(D-r_{2}\right)[y(t)] & =\left(D-r_{1}\right)\left[\left(D-r_{2}\right)[y(t)]\right] \\
& =\left(D-r_{1}\right)\left[y^{\prime}(t)-r_{2} y(t)\right] \\
& =D\left[y^{\prime}(t)-r_{2} y(t)\right]-r_{1}\left[y^{\prime}(t)-r_{2} y(t)\right] \\
& =y^{\prime \prime}(t)-r_{2} y^{\prime}(t)-r_{1} y^{\prime}(t)+r_{1} r_{2} y(t) \\
& =y^{\prime \prime}(t)-\left(r_{1}+r_{2}\right) y^{\prime}(t)+r_{1} r_{2} y(t) .
\end{aligned}
$$

Since multiplying out the right side of (3) tells us that $-\left(r_{1}+r_{2}\right)=p$ and $r_{1} r_{2}=q$, we can conclude that this factorization of the second order differential operator is right:

$$
\begin{equation*}
D^{2}+p D+q=\left(D-r_{1}\right)\left(D-r_{2}\right) \tag{5}
\end{equation*}
$$

Now we can use (5) to rewrite (2) as

$$
\begin{equation*}
\left(D-r_{1}\right)\left(D-r_{2}\right)[y(t)]=0 . \tag{6}
\end{equation*}
$$

Since

$$
\left(D-r_{1}\right)\left(D-r_{2}\right)[y(t)]=\left(D-r_{1}\right)\left[\left(D-r_{2}\right)[y(t)]\right],
$$

we can solve (6) be using what we already know about the inverses of first order differential operators:

$$
\begin{align*}
\left(D-r_{2}\right)[y(t)] & =\left(D-r_{1}\right)^{-1}[0] \\
y(t) & =\left(D-r_{2}\right)^{-1}\left[\left(D-r_{1}\right)^{-1}[0]\right] \tag{7}
\end{align*}
$$

That is, since

$$
\begin{aligned}
\left(D-r_{1}\right)^{-1}[0] & =e^{r_{1} t} \int^{t} e^{-r_{1} s}[0] \mathrm{d} s \\
& =e^{r_{1} t} c
\end{aligned}
$$

(7) becomes

$$
\begin{align*}
y(t) & =\left(D-r_{2}\right)^{-1}\left[c e^{r_{1} t}\right] \\
& =e^{r_{2} t} \int^{t} e^{-r_{2} s} c e^{r_{1} s} \mathrm{~d} s \\
& =e^{r_{2} t} \int^{t} c e^{\left(r_{1}-r_{2}\right) s} \mathrm{~d} s . \tag{8}
\end{align*}
$$

Now there are two cases, depending on whether $r_{1}=r_{2}$ or not.
If $r_{1} \neq r_{2}$, we evaluate the integral in (8) to get:

$$
\begin{align*}
y(t) & =e^{r_{2} t}\left(\frac{c}{r_{1}-r_{2}} e^{\left(r_{1}-r_{2}\right) t}+c_{2}\right) \\
& =c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}, \tag{9}
\end{align*}
$$

where we have renamed the constant $c /\left(r_{1}-r_{2}\right)=c_{1}$.
If $r_{1}=r_{2}=r$, the integral in (8) is even simpler:

$$
\begin{align*}
y(t) & =e^{r t} \int^{t} c \mathrm{~d} s \\
& =e^{r t}\left(c t+c_{2}\right) \\
& =c_{1} t e^{r t}+c_{2} e^{r t} \tag{10}
\end{align*}
$$

where we have renamed the constant $c=c_{1}$.
Thus, to solve (2) we find the roots r_{1} and r_{2} of the characteristic equation (4). If they are equal the general solution is (10); if they are different, the general solution is (9).

Sometimes the roots of the characteristic equation (4) are complex numbers $a \pm b i$. In this case (9) becomes

$$
\begin{align*}
y(t) & =c_{1} e^{(a+b i) t}+c_{2} e^{(a-b i) t} \\
& =e^{a t}\left(c_{1} e^{i b t}+c_{2} e^{-i b t}\right) . \tag{11}
\end{align*}
$$

We can eliminate the imaginary exponents in (11) by using Euler's formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Then

$$
\begin{align*}
y(t) & =e^{a t}\left(c_{1}(\cos (b t)+i \sin (b t))+c_{2}(\cos (-b t)+i \sin (-b t))\right) \\
& =e^{a t}\left(\left(c_{1}+c_{2}\right) \cos (b t)+i\left(c_{1}-c_{2}\right) \sin (b t)\right) \\
& =e^{a t}\left(d_{1} \cos (b t)+d_{2} \sin (b t)\right) \tag{12}
\end{align*}
$$

where we have renamed the constant $c_{1}+c_{2}=d_{1}$ and the constant $i\left(c_{1}-c_{2}\right)=d_{2}$. (12) is the solution to (2) when the roots of the characteristic equation (4) are complex.

