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A general second order linear ODE with constant coefficients has the form

y′′(t) + py′(t) + qy(t) = g(t). (1)

We first consider homogeneous equations, which means g(t) ≡ 0. In this case, writing (1)
in terms of the differential operator D introduced in our discussion of first order linear
ODEs gives

(D2 + pD + q)[y(t)] = 0, (2)

where D2 is interpreted as

D2[y(t)] = D
[

D[y(t)]
]

= D[y′(t)] = y′′(t).

If we knew the inverse operator (D2 + pD + q)−1, we could apply it to both sides of (2)
and get

y(t) = (D2 + pD + q)−1[0],

which would be a solution to (2). So we need to figure out the inverse operator for
D2 + pD + q.

This second order differential operator should remind us of the quadratic polynomials
we studied in high school algebra, like

x2 + px + q.

Remember that such polynomials can be factored:

x2 + px + q = (x − r1)(x − r2), (3)

where r1 and r2 are the roots (solutions) of the quadratic equation

x2 + px + q = 0. (4)

This suggests that we might be able to factor the second order differential operator D2 +
pD + q as the product of first order differential operators: (D− r1)(D− r2), where r1 and
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r2 are the roots of (4), which is called the characteristic equation for (2). To check if this
is true, we can compute:

(D − r1)(D − r2)[y(t)] = (D − r1)
[

(D − r2)[y(t)]
]

= (D − r1)[y
′(t) − r2y(t)]

= D[y′(t) − r2y(t)]− r1[y
′(t) − r2y(t)]

= y′′(t) − r2y
′(t) − r1y

′(t) + r1r2y(t)

= y′′(t) − (r1 + r2)y
′(t) + r1r2y(t).

Since multiplying out the right side of (3) tells us that −(r1 + r2) = p and r1r2 = q, we
can conclude that this factorization of the second order differential operator is right:

D2 + pD + q = (D − r1)(D − r2). (5)

Now we can use (5) to rewrite (2) as

(D − r1)(D − r2)[y(t)] = 0. (6)

Since
(D − r1)(D − r2)[y(t)] = (D − r1)

[

(D − r2)[y(t)]
]

,

we can solve (6) be using what we already know about the inverses of first order differential
operators:

(D − r2)[y(t)] = (D − r1)
−1[0]

y(t) = (D − r2)
−1

[

(D − r1)
−1[0]

]

. (7)

That is, since

(D − r1)
−1[0] = er1t

∫

t

e−r1s[0]ds

= er1tc,

(7) becomes

y(t) = (D − r2)
−1[cer1t]

= er2t

∫ t

e−r2scer1sds

= er2t

∫

t

ce(r1−r2)sds. (8)

Now there are two cases, depending on whether r1 = r2 or not.

If r1 6= r2, we evaluate the integral in (8) to get:

y(t) = er2t

( c

r1 − r2
e(r1−r2)t + c2

)

= c1e
r1t + c2e

r2t, (9)
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where we have renamed the constant c/(r1 − r2) = c1.

If r1 = r2 = r, the integral in (8) is even simpler:

y(t) = ert

∫

t

cds

= ert(ct + c2)

= c1te
rt + c2e

rt, (10)

where we have renamed the constant c = c1.

Thus, to solve (2) we find the roots r1 and r2 of the characteristic equation (4). If
they are equal the general solution is (10); if they are different, the general solution is (9).

Sometimes the roots of the characteristic equation (4) are complex numbers a± bi. In
this case (9) becomes

y(t) = c1e
(a+bi)t + c2e

(a−bi)t

= eat
(

c1e
ibt + c2e

−ibt
)

. (11)

We can eliminate the imaginary exponents in (11) by using Euler’s formula:

eiθ = cos θ + i sin θ.

Then

y(t) = eat

(

c1

(

cos(bt) + i sin(bt)
)

+ c2

(

cos(−bt) + i sin(−bt)
)

)

= eat
(

(c1 + c2) cos(bt) + i(c1 − c2) sin(bt)
)

= eat
(

d1 cos(bt) + d2 sin(bt)
)

, (12)

where we have renamed the constant c1 + c2 = d1 and the constant i(c1 − c2) = d2. (12)
is the solution to (2) when the roots of the characteristic equation (4) are complex.
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