Solving second order linear ODEs with constant coefficients
—using differential operators and their inverses
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A general second order linear ODE with constant coefficients has the form

y'(t) +py'(t) + qu(t) = g(2). (1)

We first consider homogeneous equations, which means ¢(t) = 0. In this case, writing (1)
in terms of the differential operator D introduced in our discussion of first order linear
ODEs gives

(D* +pD + q)ly(t)] = 0, (2)

where D? is interpreted as

If we knew the inverse operator (D? + pD + ¢)~!

and get

, we could apply it to both sides of (2)

y(t) = (D> +pD + q)~'[0],

which would be a solution to (2). So we need to figure out the inverse operator for
D? +pD +q.

This second order differential operator should remind us of the quadratic polynomials
we studied in high school algebra, like

z? + px +q.
Remember that such polynomials can be factored:
o’ +pr+q=(z—r)x—r2), (3)
where 1 and 7o are the roots (solutions) of the quadratic equation
2 +pr+q=0. (4)

This suggests that we might be able to factor the second order differential operator D? +
pD + q as the product of first order differential operators: (D —ry)(D — r2), where r; and
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ro are the roots of (4), which is called the characteristic equation for (2). To check if this
is true, we can compute:

(D = r1)(D = r2)[y(t)] = (D —r1)[(D = 72) [y(1)]]
= (D —r)[y'(t) — r2y(t)]
= D[y'(t) —roy(t)] — rily
=y"(t) —ray'(t) — r1y/(t) + r1ray(t)
=y"(t) = (r1 +r2)y'(t) + riray(?).
(3

"(t) — r2y(t)]

Since multiplying out the right side of (3) tells us that —(r1 + r2) = p and r1ry = ¢, we
can conclude that this factorization of the second order differential operator is right:

D?+pD +q= (D —r)(D —ra). (5)

Now we can use (5) to rewrite (2) as
(D —r)(D —r2)[y(t)] = 0. (6)

Since
(D = r1)(D = ra)[y(t)] = (D — 1) [(D = r2) [y ()],

we can solve (6) be using what we already know about the inverses of first order differential
operators:

y(t) = (D —r2) " [(D — 1) '[0]]. (7)
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That is, since

(7) becomes

y(t) = (D —ra) " Hee™']
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Now there are two cases, depending on whether r; = r5 or not.

If r1 # rq, we evaluate the integral in (8) to get:

y(t) = e <7e

(ri1—mro)t —I—Cg)
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where we have renamed the constant ¢/(r; —ra) = ¢1.

If r1 = ro = r, the integral in (8) is even simpler:

t
y(t) = e”/ cds

= e"(ct + ¢3)

= cite" + cpe™, (10)

where we have renamed the constant ¢ = ¢;.

Thus, to solve (2) we find the roots 1 and ry of the characteristic equation (4). If
they are equal the general solution is (10); if they are different, the general solution is (9).

Sometimes the roots of the characteristic equation (4) are complex numbers a +bi. In
this case (9) becomes

y(t) _ cle(a—l—bi)t + C2e(a—bi)t

— eat(cleibt +626_ibt). (11)

We can eliminate the imaginary exponents in (11) by using Euler’s formula:

e = cos® +isinb.

Then

y(t) = e <C1 (cos(bt) + isin(bt)) + co(cos(—bt) + i Sin(—bt)))

= e™((c1 + c2) cos(bt) + i(c1 — c2) sin(bt))
= ™ (dy cos(bt) + da sin(bt)), (12)

where we have renamed the constant ¢; + ¢ = d; and the constant i(c; — c2) = da. (12)
is the solution to (2) when the roots of the characteristic equation (4) are complex.



