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20E Vetor Calulus



Gradient

The gradient of a function f : Rn → R is ∇f =
( ∂

∂x1
, . . . ,

∂

∂xn

)

f .

It has an important physical meaning when f is a concentration (or
density), i.e., amount of stuff/unit volume.

In this case −∇f is proportional to the diffusion flux, J , i.e., the stuff
flows in the direction opposite the gradient, e.g., from higher to lower
concentration.
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Diffusion flux

In 1 dimension, let N(x, t) = f(x, t)∆x be the number of particles
(amount of stuff) in an interval of length ∆x at position x.

N(x, t) N(x+∆x, t)

x x+∆x

J =
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∆t
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2∆t

f(x+∆x, t)− f(x, t)

∆x
→ −κ∂f

∂x
.



Applying the Divergence Theorem

The change in the amount of stuff in a region V surrounded by a
surface S is

∂

∂t

∫

V

f(x, t)dv = −
∫

S

J · dS

which, by the Divergence Theorem,

= −
∫

V

∇ · Jdv.

Since this must be true for every V , we have

∂f

∂t
= −∇ · J = κ∇ · ∇f = κ∇2f,

the diffusion equation.
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the diffusion equation. ∇2 is the Laplacian.



Beyond 20E Vetor Calulus



Partial differential equations

diffusion:
∂f

∂t
= κ∇2f

Laplace: ∇2φ = 0

wave:
∂2u

∂t2
= c2∇2u

Schrödinger: i~
∂ψ

∂t
=

−~
2

2m
∇2ψ + V (x, t)ψ

incompressible Navier-Stokes:
∂u

∂t
+ (u · ∇)u− ν∇2u = −∇w + g



Numerical solution of PDEs

In 1 dimension the diffusion equation is

∂f

∂t
= κ

∂2f

∂x2
.

From the definition of derivative, this means

f(x, t+∆t)− f(x, t)

∆t
≈ +κ

f(x+∆x, t)− 2f(x, t) + f(x−∆x, t)

(∆x)2
,

so

f(x, t+∆t) ≈ f(x, t)+κ
∆t

(∆x)2
(

f(x+∆x, t)−2f(x, t)+f(x−∆x, t)
)

.



Numerical solution of PDEs

In 1 dimension the diffusion equation is

∂f

∂t
= κ

∂2f

∂x2
.

From the definition of derivative, this means

f(x, t+∆t)− f(x, t)

∆t
≈ κ

f(x+∆x, t)− 2f(x, t) + f(x−∆x, t)

(∆x)2
,

so

f(x, t+∆t) ≈ f(x, t)+κ
∆t

(∆x)2
(

f(x+∆x, t)−2f(x, t)+f(x−∆x, t)
)

.



Numerical solution of PDEs

In 1 dimension the diffusion equation is

∂f

∂t
= κ

∂2f

∂x2
.

From the definition of derivative, this means

f(x, t+∆t)− f(x, t)

∆t
≈ κ

f(x+∆x, t)− 2f(x, t) + f(x−∆x, t)

(∆x)2
,

so

f(x, t+∆t) ≈ f(x, t)+κ
∆t

(∆x)2
(

f(x+∆x, t)−2f(x, t)+f(x−∆x, t)
)

.



Numerical linear algebra

Writing discretized f(t) as a vector:
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Better numerical methods involve more complicated linear algebra,
e.g., matrix inversion.



Graph theory

A graph is a set of vertices, V , with a set of edges, E ⊂ V × V .

The degree of a vertex i is |{j ∈ V | (i, j) ∈ E}|.

The adjacency matrix of a graph is a |V | × |V | matrix A with

Aij =
{

1 if (i, j) ∈ E;
0 otherwise.

A =







0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0









Applications of graph theory

By analogy with the discrete Laplacian, the graph Laplacian is A minus
the diagonal matrix D with Dii the degree of vertex i.

L =







−3 1 1 1
1 −2 1 0
1 1 −2 0
1 0 0 −1







−LD−1 = I −AD−1 is a Markov matrix, i.e., all nonnegative entries,
summing to 1 in each column.

M =







0 1/2 1/2 1
1/3 0 1/2 0
1/3 1/2 0 0
1/3 0 0 0









Applications of graph theory

Mij is the transition probability for a random walker to hop from j to
i (which is why the entries are non-negative and sum to 1 for fixed j).

The equilibrium distribution is the eigenvector with eigenvalue 1, so
that it is unchanged by a step of the random walk.

This eigenvector is very close to being Google’s PageRank of a webpage
in the web graph.
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Malfatti’s problem



Malfatti, “On a stereotomy problem” (1803)

“Given a triangular right prism of whatsoever material, say marble,
take out from it three cylinders with the same heights of the prism but
of maximum total volume, that is to say with the minimum scrap of
material with respect to the volume.”

“. . . the problem reduces to the inscription of three circles in a triangle
in such a way that each circle touches the other two and at the same
time two sides of the triangle . . .”
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Let a, b, c be the side lengths of the triangle; s = (a + b + c)/2; r
be the radius of the largest circle inscribable in the triangle; d, e, f
be the distances from the center of this circle to the vertices opposite
sides a, b, c, respectively.

Then the radii of Malfatti’s circles are

r1 =
r

2(s− a)
(s+ d− r − e− f)

r2 =
r

2(s− b)
(s+ e− r − d− f)

r3 =
r

2(s− c)
(s+ f − r − d− e)



Malfatti, “On a stereotomy problem” (1803)

But this is wrong. In 1930 (!) Lob and Richmond observed that in an
equilateral triangle a different arrangement has larger area:

3π

4(1 +
√
3)2

≈ 0.316
11π

108
≈ 0.320



Malfatti, “On a stereotomy problem” (1803)

In 1967 (!) Goldberg showed that Malfatti’s solution is wrong for every
triangle.

Not until 1994 (!) did Zalgaller and Los show that the greedy algorithm
(draw the biggest possible circle at each step) gives the correct solution
for every triangle.

CONJECTURE (Melissen 1997). The greedy algorithm solves the prob-
lem of finding the n circles in a triangle with maximum total area.
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Applicable math

analysis: PDEs in physics, chemistry, biology, . . .

algebra: physics, codes, . . .

probability: gambling, finance, physics, chemistry, biology, . . .

combinatorics: networks, physics, chemistry, . . .

geometry: stone cutting, physics, chemistry, biology, . . .

algebraic geometry: codes, physics, chemistry, economics, . . .

number theory: codes, biology, . . .

topology: physics, economics, biology, . . .
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