
C

Review

The following topics were covered in this course.

1. Linear ODE associated to a symmetric matrix, A, with {vi}N
i=1 being an

orthogonal basis of eigenvectors of A with Avi = λivi.

a) If f ∈ R
N we have

f =
N∑

i=1

(
f, |vi|−1

vi

)
|vi|−1

vi =
N∑

i=1

(f, vi)
|vi|2

vi.

b) The first order linear equation

u̇ (t) = Au (t) + h (t) with u (0) = f

has solution

u (t) = etAf +
∫ t

0

e(t−τ)Ah (τ) dτ.

where

etAf =
N∑

i=1

(f, vi)
‖vi‖2 etAvi =

N∑
i=1

(f, vi)
‖vi‖2 etλivi.

c) The second order ordinary differential equation,

ü (t) = Au (t) + h (t) with
u (0) = f and u̇ (0) = g

has a unique solution given by

u (t) =
(
cos

√−At
)

f +
sin

√−At√−A
g +

∫ t

0

sin
√−A (t − τ)√−A

h (τ) dτ

where

cos
√−Atf =

N∑
i=1

(f, vi)
‖vi‖2 cos

√−Atvi =
N∑

i=1

(f, vi)
‖vi‖2

(
cos

√
−λit

)
vi

and

sin
√−At√−A

g =
N∑

i=1

(g, vi)
‖vi‖2

sin
√−At√−A

vi =
N∑

i=1

(g, vi)
‖vi‖2

(
sin

√−λit√−λi

)
vi

See Notation 3.14.

2. Generalities about inner products on function spaces, see Chapter 5.1.
3. PDE Examples

a) The Wave Equation

utt(t, x) =
H

δ(x)
uxx(t, x) − g − k(x)

δ(x)
ut(t, x) and

utt(t, x) = a2∆u (t, x) + h (t, x)

b) d’Alembert’s solution to

utt = a2uxx with
u (0, x) = f (x) and ut (0, x) = g (x)

is given by

u(t, x) =
1
2

[f(x + at) + f(x − at)] +
1
2a

∫ x+at

x−at

g(s)ds.

c) Heat Equation
ut (t, x) = Lu (t, x) + h (t, x)

where

Lf (x) :=
1

p (x)
d

dx

(
κ (x)

d

dx
f (x)

)
+

1
p (x)

q (x) f (x) .

Such equation come from looking at the heat equation

ut = ∆u + h on some domain in R
N

in spherical and cylindrical coordinates.
d) Equilibrium solutions.

4. (Strurm-Liouville Spectral Theorem.) Let L be as above, assume κ > 0
on [a, b] and let D = DB or D = Dper (in which case we assume additionally
that κ (b) = κ (a)), then there exists un ∈ D and λn ∈ R such that:
a) −Lun = λnun for all n,
b) the eigenvalues are increasing, i.e.

λ1 ≤ λ2 ≤ λ3 ≤ . . . ,
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c) limn→∞ λn = ∞ (in fact # {n : λn ≤ a} ∼ a1/2 or equivalently λn ∼
n2).

d) Every “nice” function f on [a, b] may be expanded as

f (x) =
∞∑

n=1

(f, un) un (x)

=
∞∑

n=1

[∫ b

a

f (x) un (x) p (x) dx

]
un (x) .

5. Fourier Series
a) Let f : R → R be a 2π - periodic function which is piecewise continuous

on (−π, π). Then at points x ∈ R where f ′ (x±) exist we have

1
2
a0 +

∞∑
n=1

[an cos nx + bn sin nx] =
f (x+) + f (x−)

2

where

an := (f, cos n (·)) =
1
π

∫ π

−π

f (y) cos ny dy for n = 0, 1, 2, . . .

and

bn := (f, sin n (·)) =
1
π

∫ π

−π

f (y) sinny dy for n = 1, 2, . . . .

Moreover we have

(f, f) =
∫ π

−π

|f (x)|2 dx

=
(

1
2
a0

)2

2π +
∞∑

n=1

[
a2

n

∫ π

−π

cos2 nxdx + b2
n

∫ π

−π

sin2 nxdx

]

=
π

2
a2
0 + π

∞∑
n=1

[
a2

n + b2
n

]
.

This comes from the Strurm-Liouville problems with L = d2

dx2 with
periodic boundary conditions.

b) (Cosine Expansion) Let f : [0, π]→ R be a piecewise continuous func-
tion, then at points x ∈ [0, π] where f ′ (x±) exist we have

f (x+) + f (x−)
2

=
a0

2
+

∞∑
n=1

an cos nx

an :=
2
π

∫ π

0

f (y) cos ny dy

and

(f, f) =
∫ π

0

|f (x)|2 dx =
(

1
2
a0

)2

π +
∞∑

n=1

[
a2

n

∫ π

0

cos2 nxdx

]

=
π

4
a2
0 +

π

2

∞∑
n=1

a2
n.

This comes from the Strurm-Liouville problems with L = d2

dx2 with
Neumann boundary conditions.

c) (Sine Expansion) Let f : [0, π]→ R be a piecewise continuous func-
tion, then at points x ∈ [0, π] where f ′ (x±) exist we have

f (x+) + f (x−)
2

=
∞∑

n=1

bn sin nx

(except at x = 0 and x = π where the right side is always zero), where

bn :=
2
π

∫ π

0

f (y) sinny dy.

Moreover,

(f, f) =
∫ π

0

|f (x)|2 dx =
∞∑

n=1

[
b2
n

∫ π

0

sin2 nxdx

]
=

π

2

∞∑
n=1

a2
n.

This comes from the Strurm-Liouville problems with L = d2

dx2 with
Dirichlet boundary conditions.

6. Separation of variables techniques for solving PDE. For example if we
want to find the eigenfunctions and eigenvalues to ∆u = λu with u = u (x, y)
for (x, y) ∈ [0, π]2 with Dirichlet Boundary conditions. Then separation of
variables would give

um,n (x, y) = sin mx · sin ny (C.1)

is an orthogonal basis with ∆um,n = − (
m2 + n2

)
um,n and

∫ π

0

dx

∫ π

0

dyum,n (x, y) um′,n′ (x, y) = δm,m′δn,n′
(π

2

)2

.

Therefore we have the expansion
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f (x, y) =
∞∑

m,n=1

Bm,n sin mx · sin ny

where

Bm,n =

∫ π

0
dx

∫ π

0
dy um,n (x, y) f (x, y)(

π
2

)2 =
(

2
π

)2 ∫ π

0

dx

∫ π

0

dy um,n (x, y) f (x, y) .

7. Solving Heat and Wave Equations. All of the formula for linear
ODE hold for heat and wave partial differential equations. For example
if um,n (x, y) are as in Eq. (C.1) then

u (t, x, y) = et∆f (x, y) =
∞∑

m,n=1

Bm,net∆ (sin mx · sin ny)

=
∞∑

m,n=1

Bm,ne−t(m2+n2) (sin mx · sin ny) ,

solves the heat equation

ut = ∆u with u (0, x, y) = f (x, y)
and u = 0 on the boundary.

More generally if

h (t, x, y) =
∞∑

m,n=1

Hm,n (t) (sinmx · sin ny)

then

u (t, x, y) = et∆f (x, y) +
∫ t

0

e(t−τ)∆h (τ, x, y) dτ

=
∞∑

m,n=1

Bm,ne−t(m2+n2) (sinmx · sin ny)

+
∞∑

m,n=1

∫ t

0

Hm,n (τ) e(t−τ)∆ (sin mx · sin ny) dτ

=
∞∑

m,n=1

[
Bm,ne−t(m2+n2) +

∫ t

0

e−(t−τ)(m2+n2)Hm,n (τ) dτ

]
(sin mx · sin ny)

solves the heat equation

ut (t, x, y) = ∆u (t, x, y) + h (t, x, y) with u (0, x, y) = f (x, y)
and u = 0 on the boundary.

Similar statements hold for the wave equation,

ut (t, x, y) = ∆u (t, x, y) + h (t, x, y) with u = 0 on the boundary
and u (0, x, y) = f (x, y) and ut (0, x, y) = g (x, y) .

Namely

u (t, x, y) = cos
(
t
√−∆

)
f (x, y) +

sin
(
t
√−∆

)
√−∆

g (x, y)

+
∫ t

0

sin
(
(t − τ)

√−∆
)

√−∆
h (τ, x, y) dτ

where

cos
(
t
√−∆

)
f (x, y) =

∞∑
m,n=1

Bm,n cos
(
t
√

− (− (m2 + n2))
)

(sin mx · sin ny)

=
∞∑

m,n=1

Bm,n cos
(
t
√

m2 + n2
)

(sin mx · sin ny)

and

sin
(
t
√−∆

)
√−∆

f (x, y) =
∞∑

m,n=1

Bm,n

sin
(
t
√

m2 + n2
)

√
m2 + n2

(sin mx · sin ny) .

8. Laplacian in other coordinate systems.
a) Laplacian in Cylindrical Coordinates is

∆f =
1
ρ
∂ρ (ρ∂ρf) +

1
ρ2

∂2
θf + ∂2

zf.

This form of the Laplacian gives rise to Bessel’s equation and Bessel
functions.

b) Laplacian in Spherical coordinates

∆f =
1
r2

∂r(r2∂rf) +
1

r2 sin ϕ
∂ϕ(sin ϕ∂ϕf) +

1
r2 sin2 ϕ

∂2
θf

=
1
r
∂2

r (rf) +
1

r2 sin ϕ
∂ϕ(sin ϕ∂ϕf) +

1
r2 sin2 ϕ

∂2
θf.

This form of the Laplacian gives rise to “Legendre polynomials” and
more generally “spherical harmonics.”

c) You are responsible for problems in these coordinates which do not
involve the above mentioned special functions (i.e. Bessel functions and
Legendre polynomials.)
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