Review

The following topics were covered in this course.

1. Linear ODE associated to a symmetric matrix, A, with $\left\{v_{i}\right\}_{i=1}^{N}$ being an orthogonal basis of eigenvectors of A with $A v_{i}=\lambda_{i} v_{i}$.
a) If $f \in \mathbb{R}^{N}$ we have

$$
f=\sum_{i=1}^{N}\left(f,\left|v_{i}\right|^{-1} v_{i}\right)\left|v_{i}\right|^{-1} v_{i}=\sum_{i=1}^{N} \frac{\left(f, v_{i}\right)}{\left|v_{i}\right|^{2}} v_{i}
$$

b) The first order linear equation

$$
\dot{u}(t)=A u(t)+h(t) \text { with } u(0)=f
$$

has solution

$$
u(t)=e^{t A} f+\int_{0}^{t} e^{(t-\tau) A} h(\tau) d \tau
$$

where

$$
e^{t A} f=\sum_{i=1}^{N} \frac{\left(f, v_{i}\right)}{\left\|v_{i}\right\|^{2}} e^{t A} v_{i}=\sum_{i=1}^{N} \frac{\left(f, v_{i}\right)}{\left\|v_{i}\right\|^{2}} e^{t \lambda_{i}} v_{i}
$$

c) The second order ordinary differential equation,

$$
\begin{aligned}
\ddot{u}(t) & =A u(t)+h(t) \text { with } \\
u(0) & =f \text { and } \dot{u}(0)=g
\end{aligned}
$$

has a unique solution given by

$$
u(t)=(\cos \sqrt{-A} t) f+\frac{\sin \sqrt{-A} t}{\sqrt{-A}} g+\int_{0}^{t} \frac{\sin \sqrt{-A}(t-\tau)}{\sqrt{-A}} h(\tau) d \tau
$$

where

$$
\cos \sqrt{-A} t f=\sum_{i=1}^{N} \frac{\left(f, v_{i}\right)}{\left\|v_{i}\right\|^{2}} \cos \sqrt{-A} t v_{i}=\sum_{i=1}^{N} \frac{\left(f, v_{i}\right)}{\left\|v_{i}\right\|^{2}}\left(\cos \sqrt{-\lambda_{i}} t\right) v_{i}
$$

and

$$
\frac{\sin \sqrt{-A} t}{\sqrt{-A}} g=\sum_{i=1}^{N} \frac{\left(g, v_{i}\right) \sin \sqrt{-A} t}{\left\|v_{i}\right\|^{2}} \frac{\sqrt{-A}}{\sqrt{-A}} v_{i}=\sum_{i=1}^{N} \frac{\left(g, v_{i}\right)}{\left\|v_{i}\right\|^{2}}\left(\frac{\sin \sqrt{-\lambda_{i}} t}{\sqrt{-\lambda_{i}}}\right) v_{i}
$$

See Notation 3.14.
. Generalities about inner products on function spaces, see Chapter 5.1.

PDE Examples

a) The Wave Equation

$$
\begin{aligned}
& u_{t t}(t, x)=\frac{H}{\delta(x)} u_{x x}(t, x)-g-\frac{k(x)}{\delta(x)} u_{t}(t, x) \text { and } \\
& u_{t t}(t, x)=a^{2} \Delta u(t, x)+h(t, x)
\end{aligned}
$$

b) d'Alembert's solution to

$$
\begin{aligned}
u_{t t} & =a^{2} u_{x x} \text { with } \\
u(0, x) & =f(x) \text { and } u_{t}(0, x)=g(x)
\end{aligned}
$$

is given by

$$
u(t, x)=\frac{1}{2}[f(x+a t)+f(x-a t)]+\frac{1}{2 a} \int_{x-a t}^{x+a t} g(s) d s
$$

c) Heat Equation

$$
u_{t}(t, x)=L u(t, x)+h(t, x)
$$

where

$$
L f(x):=\frac{1}{p(x)} \frac{d}{d x}\left(\kappa(x) \frac{d}{d x} f(x)\right)+\frac{1}{p(x)} q(x) f(x)
$$

Such equation come from looking at the heat equation

$$
u_{t}=\Delta u+h \text { on some domain in } \mathbb{R}^{N}
$$

in spherical and cylindrical coordinates.
d) Equilibrium solutions.
4. (Strurm-Liouville Spectral Theorem.) Let L be as above, assume $\kappa>0$ on $[a, b]$ and let $D=D_{B}$ or $D=D_{p e r}$ (in which case we assume additionally that $\kappa(b)=\kappa(a))$, then there exists $u_{n} \in D$ and $\lambda_{n} \in \mathbb{R}$ such that:
a) $-L u_{n}=\lambda_{n} u_{n}$ for all n,
b) the eigenvalues are increasing, i.e.

$$
\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots,
$$

c) $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$ (in fact $\#\left\{n: \lambda_{n} \leq a\right\} \sim a^{1 / 2}$ or equivalently $\lambda_{n} \sim$ n^{2}).
d) Every "nice" function f on $[a, b]$ may be expanded as

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty}\left(f, u_{n}\right) u_{n}(x) \\
& =\sum_{n=1}^{\infty}\left[\int_{a}^{b} f(x) u_{n}(x) p(x) d x\right] u_{n}(x)
\end{aligned}
$$

5. Fourier Series

a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic function which is piecewise continuous on $(-\pi, \pi)$. Then at points $x \in \mathbb{R}$ where $f^{\prime}(x \pm)$ exist we have

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x+b_{n} \sin n x\right]=\frac{f(x+)+f(x-)}{2}
$$

where

$$
a_{n}:=(f, \cos n(\cdot))=\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \cos n y d y \text { for } n=0,1,2, \ldots
$$

and

$$
b_{n}:=(f, \sin n(\cdot))=\frac{1}{\pi} \int_{-\pi}^{\pi} f(y) \sin n y d y \text { for } n=1,2, \ldots
$$

Moreover we have

$$
\begin{aligned}
(f, f) & =\int_{-\pi}^{\pi}|f(x)|^{2} d x \\
& =\left(\frac{1}{2} a_{0}\right)^{2} 2 \pi+\sum_{n=1}^{\infty}\left[a_{n}^{2} \int_{-\pi}^{\pi} \cos ^{2} n x d x+b_{n}^{2} \int_{-\pi}^{\pi} \sin ^{2} n x d x\right] \\
& =\frac{\pi}{2} a_{0}^{2}+\pi \sum_{n=1}^{\infty}\left[a_{n}^{2}+b_{n}^{2}\right]
\end{aligned}
$$

This comes from the Strurm-Liouville problems with $L=\frac{d^{2}}{d x^{2}}$ with periodic boundary conditions.
b) (Cosine Expansion) Let $f:[0, \pi] \rightarrow \mathbb{R}$ be a piecewise continuous function, then at points $x \in[0, \pi]$ where $f^{\prime}(x \pm)$ exist we have

$$
\frac{f(x+)+f(x-)}{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

$$
a_{n}:=\frac{2}{\pi} \int_{0}^{\pi} f(y) \cos n y d y
$$

and

$$
\begin{aligned}
(f, f) & =\int_{0}^{\pi}|f(x)|^{2} d x=\left(\frac{1}{2} a_{0}\right)^{2} \pi+\sum_{n=1}^{\infty}\left[a_{n}^{2} \int_{0}^{\pi} \cos ^{2} n x d x\right] \\
& =\frac{\pi}{4} a_{0}^{2}+\frac{\pi}{2} \sum_{n=1}^{\infty} a_{n}^{2} .
\end{aligned}
$$

This comes from the Strurm-Liouville problems with $L=\frac{d^{2}}{d x^{2}}$ with Neumann boundary conditions.
c) (Sine Expansion) Let $f:[0, \pi] \rightarrow \mathbb{R}$ be a piecewise continuous function, then at points $x \in[0, \pi]$ where $f^{\prime}(x \pm)$ exist we have

$$
\frac{f(x+)+f(x-)}{2}=\sum_{n=1}^{\infty} b_{n} \sin n x
$$

(except at $x=0$ and $x=\pi$ where the right side is always zero), where

$$
b_{n}:=\frac{2}{\pi} \int_{0}^{\pi} f(y) \sin n y d y
$$

Moreover,

$$
(f, f)=\int_{0}^{\pi}|f(x)|^{2} d x=\sum_{n=1}^{\infty}\left[b_{n}^{2} \int_{0}^{\pi} \sin ^{2} n x d x\right]=\frac{\pi}{2} \sum_{n=1}^{\infty} a_{n}^{2}
$$

This comes from the Strurm-Liouville problems with $L=\frac{d^{2}}{d x^{2}}$ with Dirichlet boundary conditions.
6. Separation of variables techniques for solving PDE. For example if we want to find the eigenfunctions and eigenvalues to $\Delta u=\lambda u$ with $u=u(x, y)$ for $(x, y) \in[0, \pi]^{2}$ with Dirichlet Boundary conditions. Then separation of variables would give

$$
\begin{equation*}
u_{m, n}(x, y)=\sin m x \cdot \sin n y \tag{C.1}
\end{equation*}
$$

is an orthogonal basis with $\Delta u_{m, n}=-\left(m^{2}+n^{2}\right) u_{m, n}$ and

$$
\int_{0}^{\pi} d x \int_{0}^{\pi} d y u_{m, n}(x, y) u_{m^{\prime}, n^{\prime}}(x, y)=\delta_{m, m^{\prime}} \delta_{n, n^{\prime}}\left(\frac{\pi}{2}\right)^{2}
$$

Therefore we have the expansion

$$
f(x, y)=\sum_{m, n=1}^{\infty} B_{m, n} \sin m x \cdot \sin n y
$$

where
$B_{m, n}=\frac{\int_{0}^{\pi} d x \int_{0}^{\pi} d y u_{m, n}(x, y) f(x, y)}{\left(\frac{\pi}{2}\right)^{2}}=\left(\frac{2}{\pi}\right)^{2} \int_{0}^{\pi} d x \int_{0}^{\pi} d y u_{m, n}(x, y) f(x, y)$.
7. Solving Heat and Wave Equations. All of the formula for linear ODE hold for heat and wave partial differential equations. For example if $u_{m, n}(x, y)$ are as in Eq. (C.1) then

$$
\begin{aligned}
u(t, x, y) & =e^{t \Delta} f(x, y)=\sum_{m, n=1}^{\infty} B_{m, n} e^{t \Delta}(\sin m x \cdot \sin n y) \\
& =\sum_{m, n=1}^{\infty} B_{m, n} e^{-t\left(m^{2}+n^{2}\right)}(\sin m x \cdot \sin n y),
\end{aligned}
$$

solves the heat equation

$$
u_{t}=\Delta u \text { with } u(0, x, y)=f(x, y)
$$

and $u=0$ on the boundary.
More generally if

$$
h(t, x, y)=\sum_{m, n=1}^{\infty} H_{m, n}(t)(\sin m x \cdot \sin n y)
$$

then

$$
\begin{aligned}
u(t, x, y) & =e^{t \Delta} f(x, y)+\int_{0}^{t} e^{(t-\tau) \Delta} h(\tau, x, y) d \tau \\
& =\sum_{m, n=1}^{\infty} B_{m, n} e^{-t\left(m^{2}+n^{2}\right)}(\sin m x \cdot \sin n y) \\
& +\sum_{m, n=1}^{\infty} \int_{0}^{t} H_{m, n}(\tau) e^{(t-\tau) \Delta}(\sin m x \cdot \sin n y) d \tau \\
& =\sum_{m, n=1}^{\infty}\left[B_{m, n} e^{-t\left(m^{2}+n^{2}\right)}+\int_{0}^{t} e^{-(t-\tau)\left(m^{2}+n^{2}\right)} H_{m, n}(\tau) d \tau\right](\sin m x \cdot \sin n y)
\end{aligned}
$$

solves the heat equation
$u_{t}(t, x, y)=\Delta u(t, x, y)+h(t, x, y)$ with $u(0, x, y)=f(x, y)$ and $u=0$ on the boundary.
Similar statements hold for the wave equation,
$u_{t}(t, x, y)=\Delta u(t, x, y)+h(t, x, y)$ with $u=0$ on the boundary and $u(0, x, y)=f(x, y)$ and $u_{t}(0, x, y)=g(x, y)$.
Namely

$$
\begin{aligned}
u(t, x, y) & =\cos (t \sqrt{-\Delta}) f(x, y)+\frac{\sin (t \sqrt{-\Delta})}{\sqrt{-\Delta}} g(x, y) \\
& +\int_{0}^{t} \frac{\sin ((t-\tau) \sqrt{-\Delta})}{\sqrt{-\Delta}} h(\tau, x, y) d \tau
\end{aligned}
$$

where

$$
\begin{aligned}
\cos (t \sqrt{-\Delta}) f(x, y) & =\sum_{m, n=1}^{\infty} B_{m, n} \cos \left(t \sqrt{-\left(-\left(m^{2}+n^{2}\right)\right)}\right)(\sin m x \cdot \sin n y) \\
& =\sum_{m, n=1}^{\infty} B_{m, n} \cos \left(t \sqrt{m^{2}+n^{2}}\right)(\sin m x \cdot \sin n y)
\end{aligned}
$$

and

$$
\frac{\sin (t \sqrt{-\Delta})}{\sqrt{-\Delta}} f(x, y)=\sum_{m, n=1}^{\infty} B_{m, n} \frac{\sin \left(t \sqrt{m^{2}+n^{2}}\right)}{\sqrt{m^{2}+n^{2}}}(\sin m x \cdot \sin n y)
$$

8. Laplacian in other coordinate systems.

a) Laplacian in Cylindrical Coordinates is

$$
\Delta f=\frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} f\right)+\frac{1}{\rho^{2}} \partial_{\theta}^{2} f+\partial_{z}^{2} f
$$

This form of the Laplacian gives rise to Bessel's equation and Bessel functions.
b) Laplacian in Spherical coordinates

$$
\begin{aligned}
\Delta f & =\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} f\right)+\frac{1}{r^{2} \sin \varphi} \partial_{\varphi}\left(\sin \varphi \partial_{\varphi} f\right)+\frac{1}{r^{2} \sin ^{2} \varphi} \partial_{\theta}^{2} f \\
& =\frac{1}{r} \partial_{r}^{2}(r f)+\frac{1}{r^{2} \sin \varphi} \partial_{\varphi}\left(\sin \varphi \partial_{\varphi} f\right)+\frac{1}{r^{2} \sin ^{2} \varphi} \partial_{\theta}^{2} f .
\end{aligned}
$$

This form of the Laplacian gives rise to "Legendre polynomials" and more generally "spherical harmonics."
c) You are responsible for problems in these coordinates which do not involve the above mentioned special functions (i.e. Bessel functions and Legendre polynomials.)

