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1. (9/26/03)

1.1. Introduction. For our purposes the definition of complex variables is the
calculus of analytic functions, where a function F (z,y) = (u(z,y),v(z,y)) from
R? to itself is analytic iff it satisfies the Cauchy Riemann equations:

Uy = —Vy and vz = uy.

Because this class of functions is so restrictive, the associated calculus has some very
beautiful and useful properties which will be explained in this class. The following
fact makes the subject useful in applications.

Fact 1.1. Many of the common elementary functions, like ", e*, sinx, tanz, Inz,
etc. have unique “extensions” to analytic functions. Moreover, the solutions to
many ordinary differential equations extend to analytic functions. So the study of
analytic functions aids in understanding these class of real valued functions.

1.2. Book Sections 1-5.

Definition 1.2 (Complex Numbers). Let C = R? equipped with multiplication
rule

(1.1) (a,b)(e,d) = (ac — bd, be + ad)

and the usual rule for vector addition. As is standard we will write 0 = (0,0),
1=(1,0) and ¢ = (0,1) so that every element z of C may be written as z = 21+ yi
which in the future will be written simply as z =x +iy. If z =z +1iy, let Rez =«
and Imz = y.

Writing z = a + ib and w = ¢ + id, the multiplication rule in Eq. (1.1) becomes
(1.2) (a+1b)(c+1id) = (ac — bd) + i(bc + ad)
and in particular 12 =1 and 2 = —1.

Proposition 1.3. The complex numbers C with the above multiplication rule sat-
isfies the usual definitions of a field. For example wz = zw and z (wy + we) =
zwy + zwe, etc. Moreover if z # 0, z has a multiplicative inverse given by

a . b

-1
(13) T err @y

Probably the most painful thing to check directly is the associative law, namely
(1.4) u(vw) = (uwv) w.
This can be checked later in polar form easier.

Proof. Suppose z = a + ib # 0, we wish to find w = ¢ + id such that zw =1
and this happens by Eq. (1.2) iff

(1.5) ac—bd =1 and
(1.6) bc+ ad = 0.

Now taking a(1.5) 4 b(1.6) implies (a® +b?) ¢ = a and so ¢ = - and taking
—b(1.5) + a (1.6) implies (a? + b?) d = —b and hence ¢ = —az—j’rbz as claimed. m
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Remark 1.4 (Not Done in Class). Here is a way to understand some of the basic
properties of C using our knowledge of linear algebra. Let M, denote multiplication
by z = a + b then if w = ¢+ id we have

ac — bd a —b c
A@w::<b6+ad>::<l) a ><<z>

a —b = al + bJ where J := 0 -1 . With this notation

sothatM2:<b “ (1 0
we have M,M,, = M,,, and since I and J commute it follows that zw = wz.

Moreover, since matrix multiplication is associative so is complex multiplication,
i.e. Eq. (1.4) holds. Also notice that M, is invertible iff det M, = a2+b2 = |2|* # 0
in which case

1 a b
Mol — — M.
z _|22(b a) z/|z|

as we have already seen above.

Notation 1.5. We will write 1/z for 27! and w/z to mean 2! - w.

Notation 1.6 (Conjugation and Modulous). If z = a+ib with a,b € Rlet z = a—ib
and

|2 =2z =a®+ 1.

|z
Notice that
1 _ 1 _
(1.7) Rez:i(z—&—z) and Imz:?(z—z).
i
Proposition 1.7. Complex conjugation and the modulus operators satisfy,
(1) z==,
(2) zw=zw and z+w =2+ w.
(3) Iz = Il
(4) |zw| = |z| |w| and in particular |2"| = |z|" for all n € N.
(5) |Rez| < z| and Im z| < |z
(6) |z +w| <|z|+ |w]|.
(7) z=0ff |2 =
z then z~1 := 25 (also written as 1) is the inverse of z.
8) If 0 th ! ‘ZZ‘ l L h f
9) |27 =2 ' and more generally |2"| = |2|" for all n € Z.

Proof. 1. and 3. are geometrically obvious.
2. Say z = a+ib and w = ¢ + id, then Zw is the same as zw with b replaced by
—b and d replaced by —d, and looking at Eq. (1.2) we see that

zw = (ac — bd) — i(bc + ad) = zZw.

2 o S 2 12
4. |zw]” = zwzw = zZww = |z|” |w|” as real numbers and hence |zw| = |z| |w].
5. Geometrically obvious or also follows from

|z| = \/|Re z|* + [Im 2.
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6. This is the triangle inequality which may be understood geometrically or by
the computation

lz4+w]> = (z+w) ZFw) = |2 + |[v]® + wz + vz

= |2)” + Jw|® + wz +wz
= |2* + [w|* + 2 Re (wz) < [2]* + [w]* + 22| |u]
2
= (2] + Jw])™.
7. Obvious.
8. Follows from Eq. (1.3).
9. |27 = |2 |

|22
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2. (9/30/03)
2.1. Left Overs. Go over Eq. (1.7) and properties 8. and 9. in Proposition 1.7.

Lemma 2.1. For complex number u,v,w,z € C with v # 0 # z, we have

11 1 . 1 -
——=— e u vl = (w)
UV uv

uw  uw

—— =— and

vz o vz

vz vz
Proof. For the first item, it suffices to check that

(w) (w o) =utwwr T =1-1=1.

The rest follow using

uw 1 1. -1 uw
—— =w twz T = w2 = ww (v2) T = —.
vz vz
uow  zZu VW 2U VW
— =i ——= g —
vz Zv vz 2V vz
1 uz + vw
= (vz)” (zu+ovw) = ——.
vz

2.2. Book Sections 36-37, p. 111-115. Here we suppose w (t) = ¢ (t) + id (t)
and define
w(t) = ¢ (t) +id ()

/jw(t)dt = /jc(t)dthi/jd(t)dt

/2 .
(¢' +isint) dt =e?™ —1+1.

and

Example 2.2.

0

Theorem 2.3. If z (t) = a(t) +ib(¢) and w(t) = c(t) +id(t) and A =u+iv e C
then

(1) L(wt)+z(t)=w(t)+2(t)
(2) 4 [w(t)z(t)] = ws + iz
@) [T Tw )+ Az @) dt = [Tw(t)dt+ N [Tz () dt
(4) ff w(t)dt = w(B) — w(a) In particular if w = 0 then w is constant.
)
(5) , ,
/ w(t)=(t)dt = —/ w(t)3(t)dt +w (8) = (1) 2.
(6)

B
< / |w (t)] dt.

/jw(t)dt
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Proof. 1. and 4. are easy.
2.

d d

p [wz] = o —(ac — bd) + zd—(bc + ad)
= (ac — bd) + i(be + ad)

+ (a¢ — bd) + i(bé + ad)
=Wz + wz.

3. The only interesting thing to check is that

/j)\z(t)dt:/\/jz(t)dt.

Again we simply write out the real and imaginary parts:

B B
/ Az(t)dt:/ (u +iv) (a (£) + b () dt
B
= / (ua(t) — vb(t) + i [ub(t) + va(t)]) dt
B B
_ / (ualt) — vb(t)) di + i / [ub(t) + va(t)] dt

while

/6)\z(t)dt:(u+iv £) + ib (1)) dt
(

>/j[a<>
— (u+iv) (/ja(t)dt—ki/jb(t)dt)

B

B
- / (ualt) — vb(t)) dt + i / [ub(t) + va(t)] dt.

«
Shorter Alternative: Just check it for A = ¢, this is the only new thing over
the real variable theory.
5.

B B B
w(t) 2 (t) |§:/ %[w(t)z(t)} dt:/ u'z(t)z(t)dt+/ w(t):(t)dt.

«

6. Let p > 0 and 6 € R be chosen so that

B
/ w(t)dt = pe'?

then
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]

2.3. Application. We would like to use the above ideas to find a “natural” exten-
sion of the function e* to a function e* with z € C. The idea is that since

d

Eem = ze!® with "% =1
we might try to define e* so that

d
(2.1) Eetz = zet? with €% = 1.

Proposition 2.4. If there is a function e* such that Eq. (2.1) holds, then it
satisfies:

(1) e ==L and

=
(2) eWt? = eWe?.

Proof. 1. By the product rule,

d
E [eftzetz} — _Zeftzetz + eftzzetz =0

and therefore, e *?¢t* = ¢702¢0% = 1. Taking t = 1 proves 1.
2. Again by the product rule,

i |:e—t(w+z)etwetz:| =0
dt
and so e t(wt2letwetz — e-t(wtz)etwetz|,  — 1. Taking ¢ = 1 then shows
e~ (wt2)ewe? — 1 and then using Item 1. proves Item 2. m

According to Proposition 2.4, to find the desired function e® it suffices to find
e’. So let us write

e =z (t) +iy(t)
then by assumption 4e® = ie’ with e = 1 implies
T+iy=1i(x+iy) = —y+izx with (0) =1 and y (0) =0
or equivalently that
& =—y, y =1 with (0) =1 and y (0) = 0.
This equation implies
Z(t) ==y (t) = —z(t) with 2 (0) =1 and 2 (0) =0

which has the unique solution z (t) = cost in which case y (t) = —<% cost = sint.

dt
This leads to the following definition.

Definition 2.5 (Euler’s Formula). For 6§ € R let ¢ := cosf + isind and for
z=x+ 1y let

(2.2) e* = e%e’ = e (cosy + isiny).
Quickly review e* and its properties, in particular Euler’s formula.

Theorem 2.6. The function e* defined by Eq. (2.2) satisfies Eq. (2.1) and hence
the results of Proposition 2.4. Also notice that e = €=,
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Proof. This is proved on p. 112 of the book and the proof goes as follows,
tx ity

d tz d tx it to, 1
—el* = — [eMe™] = ze!™e™ + eiye'V = ze
¢ "l Y

The last equality follows from

tx tz

e = ze

e? = e® (cosy +isiny) = e¥(cosy + isiny) = e (cosy — isiny)
=¢” (cos (—y) +isin (—y)) = €.
[
Corollary 2.7 (Addition formulas). For «, 8 € R we have
cos (a+ f3) = cosacos f — sin asin 8
sin (o + B) = cos asin 8 + cos (B sin a.
Proof. These follow by comparing the real and imaginary parts of the identity
e = 0P = cos (a+ B) + isin (a + )
while
e®e = (cosa +isina) - (cos B + isin f)

= cosacos 3 —sinasin 3 + i (cosasin § + cos Bsina) .
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3. (10/1/03)
Exercise 3.1. Suppose a,b € R, show

T 4 T , Ty 4 1 '
eatezbtdt — e(a+zb)tdt — _e(a—l—zb)tdt — [eaTesz _ 1] ]
0 0 o a-+ibdt a+ b

By comparing the real and imaginary parts of both sides of this integral find explicit
formulas for the two real integrals

T
/ e cos (bt) dt and
0

T
/ e sin (bt) dt.
0

3.1. Polar/Exponential Form of Complex Numbers: Sections 6 —9. Bruce:
Give the geometric interpretation of each of the following properties.
(1) z=re" = |z]e".
(2) z2=l|zle”® and 271 =2/ |2 = |2| T e ¥
(3) If w = |w|e™ then
2w = |z||w] e+ and
1 efia

1 ei(efa) )

2fw= 2wt = 2] -l = [z Jw[”

In particular
2" = [z" e™ for n € 7.

Notation 3.2. If 2 # 0 we let § = Arg (2) if —m < 0 < 7 and z = |z| €? while we
define

arg (2) = {0 eR: 2z =z2]€"}.
Notice that
arg (z) = Arg (2) + 2nZ.
Similarly we define Log () = In|z| + iArg (z) and
log (z) = In|z| + iarg (2) = In|z| + iArg (z) + 27miZ.
Example 3.3.
(1) Work out (1+14) (v/3+1) in polar form.

(1 + 7/) (\/g —+ Z) = \/ieiﬂ'/zl . Qe’iﬁ/ﬁ — 2\/561-571'/12.
Note here that
arg (1+14) = w/4+ 277 and arg (\/§+ z) =7/6 + 277

Arg(1+14) =7/4 and Arg (\/§+z> =7/6

(2) Let o =tan™!(1/2) then

5 5e'm/2 {(w/2—tan~1(1/2))
— — ™ —tan :1 2
2474 \/geitanfl(l/Q) \/56 T2

by drawing the triangles.
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(3) General theory of finding n'" — roots if a number z = pei®. Let w = re'

then z = pe'® = w™ = r"e™? happens iff
p=|z| =|w" = |w|” =r" or r = p'/™ and
¢ = ¢ je. M) =1 ie. nb—ac2rZ.
Therefore

Zl/n _ |Z|1/n ei%(aJrQﬂ'Z 1/n il arg(z)

) = |z ein
- {|z|1/" QR 0 19— 1} .
(4) Find all fourth roots of (1+74).
(1 + Z) —_ \/iei(ﬂ'/4+27rZ)

and so
1+ Z.)1/4 — 91/8,i(w/16+472) _ {21/8€i(7r/16+%7rk) k=0,1,2, 3} '
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4. (10/03/2003)
4.1. More on Roots and multi-valued arithmetic.
Notation 4.1. Suppose A C C and B C C, the we let
A-B:={ab:a€ Aand be B} and
At+tB:={atb:ac Aand be B}.

Proposition 4.2. arg (zw) = arg (z) + arg (w) while it is not in general true the
Arg (zw) = Arg (2) + Arg (w) .
Proof. Suppose z = |z|e? and w = |w| €', then
arg (zw) = (0 + o + 27Z)
while
arg (z) + arg (w) = (0 +27Z) + (a + 27Z) = (0 + a + 27Z) .
Example: Let z =4 and w = —1, then Arg(:) = 7/2 and Arg(—1) = 7 so that

Arg(i) + Arg (—1) = 3%
while
Arg(i-(-1)) = —m/2.
[

The following proposition summarizes item 3. of Example 3.3 above and gives
an application of Proposition 4.2.

Proposition 4.3. Suppose that w € C, then the set of n'™ — roots, w/™

1/n

of w is

il arg(w)

w'/" = Y/ wle .

Moreover if z € C then

(4.1) (wz)l/n = ql/m. ptn

th— root of w, then

Wi/ — {woei%%:k:o,1,...,n—1}.

In particular this implies if wy is an n

DRAW picture of the placement of the roots on the circle of radius ’{/W
Proof. It only remains to prove Eq. (4.1) and this is done using

R VE - Wei% arg(w) n
/T o]ei Hara(o) tara(a] — ¢ /TopoTei ars(w)

1/n

L
wl/n Z|€Z" arg(z)

— (w2)
| |

Theorem 4.4 (Quadratic Formula). Suppose a,b,c € C with a # 0 then the general
solution to the equation
az’ +bz+c=0
18
—b+ (b2 — 4ac)1/2
2a '

z =
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Proof. The proof goes as in the real case by observing

b\> b2
0O=az’+bz+c=alz+—) +c— —
2a 4a

n b\? b — 4ac
24+ —) =——.
2a 4a?

Taking square roots of this equation then shows

and so

b (b2 — 4ac)1/2
S 2 2a

which is the quadratic formula. m

4.2. Regions and Domains:

(1) Regions in the plain. Definition: a domain is a connected open subset
of C. Examples:
(a) {z:]z—1+2i| <4}.

z: |z — 1421 < 4}.

Hz =14 2i] =4}

: 2z =re'? with r > 0 and —7T<0<7r}

z:z=re? with r > 0 and —7T<9§7r}.

—_~

I\

b
c
d

AA
=Lz
)
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5. (10/06,/2003)

5.1. Functions from C to C..

(1) Complex functions, f : D — C. Point out that f (z) = u(z,y) + v (z,y)
where z = © + iy € D. Examples: (Mention domains)

(@) f(2) =z u=xz0v=y

(b) f(2) =22 u=a*—y? v=2zy also look at it as f (re’?) = r2e’?’.

(i) So rays through the origin go to rays through the origin.
(if) Also arcs of circles centered at 0 go over to arcs of circles centered
at 0.

(iii) Also notice that if we hold z constant, then y = v/2z and so
u=z%— % which is the graph of a parabola.

(iv) Bruce !l: Do the examples where Re f (z) =1 and Im f (2) =1
to get pre-images which are two hyperbolas. Explain the orien-
tation traversed. See Figure 1 below.

(¢) f(2) = az, if a = re?, then f(z) scales z by r and then rotates by 6
degrees. If a = o+ i, then u = ax — By, v = ay = Sz.

(d) f(z) = z, this is reflection about the z— axis.

(e) f(z) = 1/z is inversion, notice that f (re”’) = L7 = le draw
picture.

(f) f(2)=e€*=e""W u=e"cosy and v = e®siny.

(i) Show what happens to the line z = 2 and the line y = 7 /4.

(g) f(re?) = rze'2? for —m < 0 < 7. Somewhat painful to write u,v in

this case.
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2 .
- 2% gtk 2y = ua v
Ref(2) = xry? o o
P
|
\cqzéb\.t
A
1.!.,_,__3&‘
\U:\'
\ a? ot
/}\/
a?.
——t— -
2

FIGURE 1. Pre-images of lines for f(z) = 22
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Flay= gy

%L}}: {P{-&a)?; ’—.(91*-(‘@-5. ——‘u\&gu*'

[/91:M AT %‘? -

[TRe

B renplin Z =y Az wvo
e ® g
2 =7 > tte
? -0 %

15
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5.2. Continuity and Limits.

5.3. ¢ — Notation. In this section, U will be an open subset of C, f : U — C a
function and ¢(z) will denote a generic function defined for z near zero such that
lim, ,ge(z) =0.

Definition 5.1. (1) lim,—,, f(2) = Liff f (20 +Az) = L+¢e(Az)
(2) f is continuous at zo if lim,_,., f (2) = f(20) = f (lim,—,, 2) .
(3) f is differentiable at zg with derivative L iff

o L) = ()

zZ—2z0 z — ZO

=L

or equivalently iff

[0+ Az) = f(20)  f(20+Az2) = f(20)

(5-1) Az T o +hz-z L+e(a)
or equivalently,
(5.2) fz0+ Az) — f(20) = (L+¢e(Az)) Az.

Proposition 5.2. The functions f(z):=z, f(z2) = Rez, and f(z) =Imz are all
continuous functions which are not complex differentiable at any point z € C. The
following functions are complex differentiable at all points z € C:

(1) f(2) =z with ' (z) = 1.
(2) f(z) =1 with f'(z) = —272
(3) f(z) =e* with ' (z) = e*.
Proof. For the first assertion we have
’zo + Az — 20’ =1]Az| -0
|Re (20 + Az) — Re 29| = |Re Az| < |Az| — 0 and
[Im (29 + Az) — Im 29| = [Im Az| < |Az| — 0.

For differentiability,
fEtA)—f(2) B
Az Az
which has no limit as Az — 0. Indeed, consider what happens for Az = z and
Az =4y with z,y € R and z,y — 0. Similarly

Re(z0 +Az) —Rezg ReAz

Az Az

as no limit as Az — 0.

(1)

f(z+Az)—f(z):1_)1asAz—>0.

Az
(2) Let us first shows that 1/z is continuous, for this we have
_ _ — (2 + Az) 1 1
Azt - 1‘ _|zzt+ay) 1 A
(24 Az) : z(z+ Az) z||z+ Az A
1 1

A

2
—| |———||Az| < = |Az| — 0.
z|||z| = |Az] |2|?
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We now use this to compute the derivative,
[etB)—f() _ (a9 -2

Az Az
z+1Az_% 1 Z—(Z+AZ) 1 1
= = — = — _— ——,
Az Az z(z+ Az) z(z 4+ Az) 22
where the continuity of 1/z was used in taking the limit.
(3) Since
€z+Az _e? eAz -1
= eZ
Az Az
it suffices to show
et —1
o 1as Az — 0.

This follows from,
eAz -1 1 1 d A 1 1 1
- - Zdt = —A tAzdt:/ tAzdt
Az Az Jy € Az /0 ¢ 0 ¢
which implies

1
A 1= Az/ A dt = e (Az)
0
and therefore

Az _ 1 1 1 !
/ [etAz_l} dt‘ S/ ‘etAZ_1|dt:/ le (tAz)|dt — 0 as Az — 0.
0 0 0

Az

¢ 1

Alternative 1.,

1 1
/ et dt = / A2 d [t —1]
0 0

1
_ tAz 4 1 o i tAz g
= (e"* [t —1]), /O 7i° [t—1]dt

1
zl—Az/ A7t — 1) dt
0
from which it should be clear that

eBr 1
—1=€(A2).
~ €(Az)

Alternative 2. Write Az = z + iy, then and use the definition of the
real derivative to learn

e ="t = ¢” (cosy +isiny) = (1 +z + O (2?)) (L + iy + O (y?))
:1+:c+iy+0(|Az|2) =1+Az+0(|Az|2).
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6. (10/08/2003 AND 10/10/2003) LECTURES 6-7

Go over the function f (z) = e in a bit more detail than was done in class using
Alternative 2 above to show

eBr 1

(6.1) Alirgo Az

To do this write Az = x + iy, then and use Taylor’s formula with remainder for
real functions to learn
eA? = e"TW = ¢% (cosy + isiny) = (1+z+0 (332)) (1+iy+0 (y2))
:1+x+iy+0(|Az|2) = 1+Az+0(|Az|2)
which implies Eq. (6.1).

Exercise 6.1. Suppose that f'(0) = 5 and g(z) = f(Z). Show ¢’ (0) does not
exists.
Solution:

=1

9(2)=g0) _[fR)-f0) (G+e()2

z z z
and the latter does not have a limit by Proposition 5.2.

BRUCE: Do examples in this section before giving proofs.

Definition 6.2. Limits involving oo,

(1) lim, 00 f (2) = w iff lim, ¢ f (1/2

= w.

BRUCE: Explain the motivation via stereographic projection, see Figure 2.

2(?)

\,g

S Nolk S(0)2 BoukhRele

FI1GURE 2. The picture behind the limits at infinity.

Theorem 6.3. Iflim,_,, f(z) =L andlim,_,,, g (2) = K then
(1) lim.— [f (2) + g (2)] = L+ K.
(2) lim.—, [f(2) g (2)] = LK
(3) If z — h(2) = f(g(2)) is continuous at zy if g is continuous at zg and f
is continuous at wo = g (2o) .

(4) lim,_.., [; m — L provided K # 0.
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(5) We also have lim, .., f(z) = L iff lim,,,,Ref(z) = ReL and
lim, ., Im f (2) = Im L.
Proof.
(1)
flo+A2)+g(20+A2)=L+e(A2)+ K+e(Az)=(L+K)+e(Az).
2)
fz0+Az2)-g(z0+Az) =[L+e(Az)]- [K +e(Az2)]
=LK + Ke (Az) + Le (Az) + e (Az) e (Az) = LK + ¢ (Az).
(3) Well,
h(z0 4+ Az) = h(z0) = f(9(20 + Az2)) = [ (9(20))
=f(9(20) +€(A2)) = f(9(20)) =e((Az)) = 0 as Az — 0.
(4) This follows directly using

fo+Az) L Lyc(Az) L (L+e(A2)K - L(K +e(Az)
g(zo+Az) K K+e(Az) K K? + Ke (Az)
o e(Ar)

or more simply using item 3. and the fact 1/z is continuous so that
. 1] _ 1
hmzﬂZO I:m:| = -

(5) This follows from item 1. and the continuity of the functions z — Re z and
z — Imz.

Theorem 6.4. If f'(z0) = L and ¢’ (z9) = K then
) f is continuous at 2o,
@) 9@ ==L+ K

(1

(2) 4+

(3) 2= [ (2)9(2)]s=20 = [ (20) 9 (20) + [ (20) ¢’ (20)

(4) [f wod— f(20) and ¢’ (wo) exists then h(z) := g(f (2)) is differentiable as
20 an

h' (20) = g' (f (20)) I (20) -
()

|2=20-

daf)]_fg-dgf
dz |g(2)| ¢
(6) If 2 (t) is a differentiable curve, then L f (2 (t)) = f' (2 (t)) 2 (t).
Proof. To simplify notation, let Af = f (z + Az)— f (2) and Ag = g (2 + Az) —
g (z) and recall that recall that Af — 0 and Ag — 0 as Az — 0, i.e. Af =e(Az).
(1) This follows from Eq. (5.2).
(2)
(A2 g4 A~ [[(2)+g()] _ AS  Ag
Az T Az Az
— f'(2) +4' (2)
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Q
[+ 829482~ f(2)g() _ (FE)+ANGE) A0~ (o)
Az Az
_ () Ag+Afg(2) + AfAg
Az
—F @R s R+ RN 1R () () £ (2.

(4) Recall that Af = ¢ (Az) and so
Ah:=h(z+ Az) = h(z) = g(f (z + Az)) —g(f (2))
=g9(f(z)+Af)—g(f(2)
=g (f (2)) +e(ANIAf =[g' (f (2)) +e(A2)]Af.

Therefore

) @A = (PN )

(5) This follows from the product rule, the chain rule and the fact that d%z’l =
-2
—z %

(6) In order to verify this item, we first need to observe that Z(t) exists iff

limas—o W. Recall that we defined

Z(t) = %Rez(t) +i%1mz(t).

Since the limit of a sum is a sum of a limit if % Rez (t) and % Im z (t) exist

then lima;_.o %i_z(t) exists. Conversely if w = limas g W
exists, then
lim Rez(t+At) —Rez(t) Rewl — Tim |Re z(t+AY) —2() w
At—0 At At—0 At
< lm Z(t+At)7Z(t),w:0
At—0 At

which shows 4 Re z () exists. Similarly one shows 4 Im z (¢) exists as well.
Now for the proof of the chain rule: let Az := z (t + At) — z (¢)

flE+AY)) - f(z(1) _ [f'(z(t) +e(Az)] Az

At At

=[f'(z(1)) +£(A2)] i—j = ' (z(1) ().

Example 6.5.

(1) z is continuous, z, Re z, Im z are continuous and polynomials in these vari-
ables.

(2) lim,_,,, 2" = 2§, Proof by induction.

(3) lim, .y 2=l =lim, ., (z + 1) = 2.

(4) lim,_y 23—1_1 = 00, where by definition lim,_,, f (2) = oo iff lim,_,,, ﬁ =
0.

(5) lim,_, 00 % = 1 where by definition lim,_,o f (2) = L iff lim,_,¢ f (%) =
L.
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X 25 .. . .
(6) hmzﬂooW+7lzL5 = oo where by definition lim, . f(z) = oo iff
lim, .o —4~ = 0.

(7) €* is continuous, proof
1
e 0TRZ %0 = % (2% — 1) = Aze™ / e dt = £ (A2)
0

(8) hmzﬁ_lﬁ_gm, since 224+ (1 —d)z—i=1—(1—i)—i=0at z=—1
we have to factor the denominator. By the quadratic formula we have

()= A=) 4 —(1-i) (1 +0)

z = =

2 2

) () B

2
and thus

P24 (1—i)z—i=(2—1)(z+1)
and we thus have
z+1 . z4+1 1 1—1

I = 1 -
AN R )z i) (e+]) —1-1 2

Example 6.6. Describe lots of analytic functions and compute their derivatives:
2
for example 22, p(z), e, e’/#, sin(z) cos (z), etc.

Example 6.7 (Important Example).
/1 Qrind=— vt h=— 1+t 1] =2
i =— =— i) —1| =-i.
. g T 0Ty 4
If we did this the old fashion way it would be done as follows

/1(1+it)3dt—/1[1+3z’t—3t2—z‘t3]dt—1—1+z‘ GO Y
o —Jo - 2 4) 4

Example 6.8.

/2 o (144)7sint 1 1
/ e(+imsint ooy — = ©
0

- = — - |:€7r(1+i) _1:|
1+1 ml+1

1
—em 1],
i

1
T
1
™
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7. STUDY GUIDE FOR MATH 120A MIDTERM 1 (FRIDAY OCTOBER 17, 2003)

(1)

(2)

(12)

(13)

C:={z=x+iy: 2,y € R} with > = —1 and z = 2 — iy. The complex
numbers behave much like the real numbers. In particular the quadratic
formula holds.

2] = Va2 +y? = VzZ, 2wl = [2|Jwl, [z +w] < J2] + |w], Rez = 2,
Imz = 5%, |[Rez| < [z and [Imz| < [z]. We also have Zw = zw and
Ztw=z+wand z7! = ‘Z%

{z: |z — 20| = p} is a circle of radius p centered at zp.

{z : |z — 20| < p} is the open disk of radius p centered at zo.

{z : |z — 20| > p} is every thing outside of the open disk of radius p cen-
tered at zg.
e* = e® (cosy +isiny), every z = |z| %,
arg(z) = {#eR:z= |z\ei0} and Arg(z) = 0 if —7 < 0 < 7 and z =
|z| €. Notice that z = || e?2r8(2)
2/ = /2] i2gle
lim,_,,, f (2) = L. Usual limit rules hold from real variables.
Mapping properties of simple complex functions
The definition of complex differentiable f (z). Examples, p(2), e*, eP(*),
1/z,1/p(2) etc.
Key points of e are is -Le* = e* and e*e® = **.
All of the usual derivative formulas hold, in particular product, sum, and
chain rules:

n

LreE) =706 @)

and p
7/ ()= frz)2(@).

Re z, Im z, Z, are nice functions from the real - variables point of view but
are not complex differentiable.

Integration:
b b b
/z(t)dt::/ x(t)dt—i—i/ y (8) dt.

All of the usual integration rules hold, like the fundamental theorem of
calculus, linearity and integration by parts.
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8. (10/13/2003) LECTURE 8

Definition 8.1 (Analytic and entire functions). A function f : D — C is said to
be analytic (or holomorphic) on an open subset D C C if f/(z) exists for all
z € D. An analytic function f on C is said to be entire.

8.1. Cauchy Riemann Equations in Cartesian Coordinates. If f (z) is com-
plex differentiable, then by the chain rule

O f (x+iy) = f' (z + iy) while

Oy f (x+iy) =if (x +1iy).
So in order for f (z) to be complex differentiable at z = = + iy we must have
(8.1) fy (@ +iy) = 0y f (x +1y) = i0. f (z + iy) = ifo (z+iy).

Writing f = u + v, Eq. (8.1) is equivalent to u, + vy = i (uy + fv,) and thus
equivalent to

(8.2) Uy = —v, and Uy = vy.

Theorem 8.2 (Cauchy Riemann Equations). Suppose f (z) is a complex function.
If f' (=) exists then fy (2) and fy, (z) exists and satisfy Eq. (8.1), i.e.

Oyf (z) =i0.f (2)
Conversely if f, and f, exists and are continuous in a neighborhood of z, then f' (z)
exists iff Eq. (8.1) holds.

Proof. (I never got around to giving this proof.) We have already proved the
first part of the theorem. So now suppose that f, and f, exists and are continuous
in a neighborhood of z and Eq. (8.1) holds. To simplify notation let us suppose
that z = 0 and Az = z + iy, then

flatiy) = FO) = f @+iy)— f (@) +f (@)~ 1 0)
- /;%f(x—l—ity)dt—s—/;%f(tx)dt
-/ oty (o tity) + 2 (1)
-/ g (ot ity) + afe (1) de
-/ iy (o ot it9) — o O) 42 (o (1) — £ (O) 4 12 (0) (@ + ig)] di
=0+ [ i (o (o + ) — £ (0)) 2 (1) — o (O] do

= 2f+ (0) +/O [iye (2) + e (2)] dt = 2 fa (0) + [2] € (|2]) -
|

Fact 8.3 (Amazing Fact). We we will eventually show, that if f is analytic on an
open subset D C C, then f is infinitely complex differentiable on D, i.e. f analytic
implies f’ is analytic!!! Note well: it is important that D is open here. See
Remark 8.6 below.
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Example 8.4. Consider the following functions:

(1) f(2) =« +iby. In this case f, = 1 while f, =ibso f, =if, iff b=1.In
this case f(z) = z.

(2) f(2) =22 then u =22 —y? and v = 22y, uy, = —2y = —v, and v, = 2z =
Uz, which shows that f(z) = 22 is complex differentiable.

(3) f(z) =€ =¢€"(cosy +isiny), so f, = f while

fy=€" (—siny+icosy) =if =if,

which again shows that f is complex differentiable.

(4) Also work out the example f(2) =1/z = 5775,

2?2 +y? =2z (v —iy)  y? —a®+ 2ixy

fx = =
(@2 +12)? El

Note

<1)2 (z —iy)? 77:r27y272i33y

z (22 +y2)° (22 +12)°
y? — 22 + 2izy
||
Similarly
—i (2?2 +9?) -2y (@ —iy) —ix® +iy® — 2y
fy = = = 'Lfm’

(a2 +y?)* (2 +92)°
and all of this together shows that f’ (z) = —% for z # 0.

Corollary 8.5. Suppose that f = u+iv is complex differentiable in an open set D,
then u and v are harmonic functions, i.e. that real and imaginary parts of analytic
functions are harmonic.

Proof. The C.R. equations state that v, = u, and v, = —u,, therefore
Vyy = Ugy = Uyg = —Vzg.
A similar computation works for u. m

Remark 8.6. The only harmonic functions f : R — R are straight lines, i.e. f(z) =
ax + b. In particular, any harmonic function f : R — R is infinitely differentiable.
This should shed a little light on the Amazing Fact in Example 8.3.

Example 8.7 (The need for continuity in Theorem 8.2). Exercise 6, on p. 69.
Consider the function

_[Z i z#£0
f(z)_{ 0 if 2=0.
Then
while
. iy
) =ty KOO g I L o).

Thus the Cauchy Riemann equations hold at 0. However,

F0) = lim LD =FO _ 2

z—0 z z—0 22
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does not exist. For example taking z = z real and z = ze'™/*
52 52

lim — = 1 while lim
z=x—0 2 2=geiT/4_0

we get
g2
1z _ 1

= lim

22 r=gein/450 X2

25
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9. (10/15/2003) LECTURE 9
Example 9.1. Show Re f and Im f are harmonic when f (2) = 2% and f (z) = e*.

Definition 9.2. A function f : D — C is analytic on an open set D iff f/(z) is
complex differentiable at all points z € D.

Definition 9.3. For z # 0, let logz = {w e C:e¥ = z}.

Writing z = |z| e’ we and w = z + iy, we must have |z| e’ = ee® and this
implies that = In|z| and y = 6 + 27n for some n. Therefore

logz =1In|z| +iarg z.

Definition 9.4. Log(z) = In|z| + iArg(z), so Log(re?) = Inr + i if 7 > 0 and
—m < 6 < 7. Note this function is discontinuous at points z where Arg(z) = 7.

Definition 9.5. Given a multi-valued function f : D — C, we say a F : Dy C
D — Cis a branch of f if F'(z) € f(z) for all z € Dy and F is continuous on Dy.
Here Dy is taken to be an open subset of D.

Example 9.6 (A branch of log (z) : a new analytic function). A branch of log(z).
Here we take D ={z =z +iy: 2 > 0}.

f(z) =Log(z) = %ln (2® +y?) +itan™" (y/z).

Recall that 4 tan™" (t) = zi5 so we learn

1 2z . % x oy 1 1
f.’l’?:_ 2 2+Z 5 = B} 277/ 2 2:_22,':—
2a2°+y 1+ (y/z)” 2ty 2ty |2] z
12y . % . Y . T _
fy—2$2+y2+zl+(y/x)2_x2+y2+zx2+y2_,LZ wa

from which it follows that f is complex differentiable and f (z) = 1.

Note that for Imz > 0, we have Log(z) = f (7z) + im/2 which shows Log(z) is
complex differentiable for Im z > 0.

Similarly, if Imz < 0, we have Log(z) = f (iz) — iw/2 which shows Log(z) is
complex differentiable for Im z < 0.

Combining these remarks shows that Log(z) is complex differentiable on C \
(—00,0].

Example 9.7 (Homework Problem: Problem 7a on p.74). Suppose that f is a
complex differentiable function such that Im f = 0. Then f, and f, are real and
fy = ifs can happen iff f, = f, = 0. But this implies that f is constant.

Example 9.8 (Problem 7b on p.74 in class!). Now suppose that |f (z)] = ¢ # 0
for all z is a domain D. Then

P2
& =50 = 7@

which shows f is complex differentiable and from this it follows that Re f = %

and Im f = fQ;lf are real valued complex differentiable functions. So by the previous

example, both Re f and Im f are constant and hence f is constant.

Test #1 was on 10/17/03. This would have been lecture 10.
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10. (10/20/2003) LECTURE 10

Definition 10.1 (Analytic Functions). A function f : D — C is said to be analytic
(or holomorphic) on an open subset D C Cif f’(z) exists for all z € D.

Proposition 10.2. Let f = u+ iv be complex differentiable, and suppose the level
curves uw = a and v = b cross at a point zg where f’(29) # 0 then they cross at a
right angle.

Proof. The normals to the level curves are given by Vu and Vv, so it suffices
to observe from the Cauchy Riemann equations that

Vu - Vv = Uzt + tyvy = vyvg + (—vg) vy = 0.

Draw Picture.
Alternatively: Parametrize u = a and v = b by 2z (¢) and w (¢) so that z (0) =
zo =w (0). Then f (2 (t)) =a+iv(z(t)) and f(w(t)) =u(w(t)) +ib and

6= 1o (2(1) = ' (20) £ (0) while

o= Llof (w () = I () (0)
where a = 4 |ou (w (t)) and B = L|ov (2 (t)) . Therefore
0BT 2 Re |8 — O] _
Re [z (0) @ (o)} R [f, o (ZO)] 0
Alternatively,

Vu - Vv = U0, + tyvy = vytg + (—vg) vy = 0.

Example 10.3 (Trivial case).

y ST

4t

Some Level curves of Re f and Im f for f (z) = z.
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Example 10.4 (Homework).

Some Level curves of Re f and Im f for f (z) = 2°.

10.1. Harmonic Conjugates.

Definition 10.5. Given a harmonic function v on a domain D C C, we say v is a
harmonic conjugate to u if v is harmonic and u and v satisfy the C.R. equations.

Notice that v is uniquely determined up to a constant since if w is another
harmonic conjugate we must have

Wy = Uy = Uy and W, = —Uy = Uy
Therefore 4w (z (t)) = Lv (2 (t)) for all paths z in D and hence w = v + C on D.

Proposition 10.6. f = u + v is complex analytic on D iff uw and v are harmonic
conjugates.

Example 10.7. Suppose u (z,y) = 2% — y? we wish to find a harmonic conjugate.
For this we use

to conclude that v = 2zy + C (x) and then 2y = v, = 2y + C’ (z) which implies
C’' () =0 and so C =const. Thus we find

f=u+iv=a®—y>+i2zy +iC =22 +iC
is analytic.
Example 10.8. Now suppose that u = 2zy. In this case we have

vy = Uz = 2y and

Vp = —Uy = —2T
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and so v = }’2—2 + C(z) and so —2x = v, = C'(z) from which we learn that
C (z) = —2% + k. Thus we find

f:2xy—|—i(y2 —x2) +ik = —iz® + ik
is complex analytic.
Recall the following definitions:
Definition 10.9. For z # 0, let logz ={w e C:e" = z}.
Writing z = |z| e we and w = z + iy, we must have |z| e’ = e%e?¥ and this
implies that © = In|z| and y = 0 4 27n for some n. Therefore
logz =1In|z| +iarg z.

Definition 10.10. Log(z) = In|z| + iArg(2), so Log(re?) = Inr +if if r > 0 and
—m < 6 < 7. Note this function is discontinuous at points z where Arg(z) = 7.

Example 10.11. Find log1, log1, log (—1 — \/§z) .

Theorem 10.12 (Converse Chain Rule: Optional). Suppose f : D c, C —=U C, C
and g : U C, C— C are functions such that f is continuous, g is analytic and
h:=go f is analytic, then f is analytic on the set D\{z: ¢’(f(z)) = 0}. Moreover
f'(z) =W(2)/g'(f(2)) when z € D and g'(f(2)) # 0.

Proof. Suppose that z € D and ¢'(f(z)) # 0. Let Af = f (2 + Az) — f(2) and
notice that Af = e (Az) because f is continuous at z. On one hand

h(z+ Az) =h(z)+ (W (2) +e(Az))Az
while on the other
hz+A2) = g(f (2 +A2) = g(f (2 )+Af)
— g(f(2) + g (f() + = (A >]
= h(z) +1g'(f(2) +e(A2)] A

Comparing these two equations implies that

(10.1) (H(2) + £ (A2)Az = [¢ (f(2)) + ¢ (A)] Af
and since ¢'(f(z)) # 0 we may conclude that
Af h(z) +e(Az) B (2)
— = — as Az — 0,
Az g (f(2) +e(Az) ¢ (f(2)
ie. f'(z) exists and f'(z) = %. |
Definition 10.13 (Inverse Functions). Given a function f : C— C we let
Y (w) == {2 €C: f(2) =w}. In general this is a multivalued function and we

will have to choose a branch when we need an honest function.

Example 10.14. Since ¢"°¢(*) = » and Log(z) is continuous on D := C\ (—o0, 0],
Log(z) is complex analytic on D and
d d d d
1= 4, @ res() _ glos=) L1 o0 — .91,
2= 3¢ e - og(z) a og(z),
i.e. we have

d
2L —_——
- og(z) .
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11. (10/22/2003) LECTURE 11

Example 11.1. In fact the above example generalizes, suppose £ (z) is any branch
of log (z), that is £ is a continuous function on an open set D C C such that
e!(*) = 2, then ' (z) = 1/z. Indeed, this follows just as above using the converse to
the chain rule.

e Give the proof of Theorem 10.12.

Lemma 11.2. The following properties of log hold.
) elogz =z
loge* = z + 207

(
(2)
( ) e g— log(z) — elog z+log z+---+log 2z (?’L _ times.)
(4) zl/n _ e%logz
(5) log 2™ = +1log = but be careful:
log 2™ # nlog z
(6) log g
(7) log (wz) = logw + log z and in particular

n - times

logz" =logz+logz+---+logz.

Proof.
(1) This is by definition.
(2) loge®* =loge* T2 = x + i (y + 277Z) = 2z + i277Z.
(3) If z = re®, then 2" = r™e™? for any 6 € arg z, therefore
n _ ninarg(z) _ enlnreinarg(z) — enlogz.

Z =Tre

Better proof, if w € log z, then z = e" so that z" = ™ for any w € log z,

S0 2" = enlos(?),

(4) We know

Zl/n: |Z|1/nei%argz ES

—em ln\z\ei% arg z

— 6% logz'

(5) Now
log zFY/" = In (|z\l/"> + z% arg z +i27Z =1In (|z|l/"> + z% argz = :I:% log 2.
(6) On the other hand if z = |z| €, then
logz" =In|z|" +iarg (2") = nln|z| +i(nf + 27Z) = nln |z| + ind + 272
while
nlogz = n(In|z| +i0 +i27Z) = nln|z| + ind + i27nZ.
(7) This follows from the corresponding property arg (wz) and for In,
log (wz) = In |wz| +iarg (wz) = In|w| +1In|z| 4+ i [arg (w) + arg (z)] = logw + log 2.
]
Definition 11.3. For ¢ € C, let 2¢ := e°l082,

As an example let us work out ¢’ :

it = et logi _ en(fr/QJrnQﬂ') _ 67(71’/2+n27r).
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Example 11.4. Let ¢ be a branch of log(z), i.e. a continuous choice ¢: D — C
such that £ (z) € log (z) for all z € D then we define

d c __ d cl(z) _ cl(z) .p
= e = el (2)
1
— Cecl(z); — cecé(z)efl(z) — Ce(cfl)l(z) — CZ§_1.

The book writes P.V.2¢ = 2§ = z{,, := elo8(2) for the principal value choice.
Note with these definitions we have

1
ecZ(z) - Z_E

—c _ —cl(z) _
ZZ =€ =

and when n € N, then
( c)n — encLog(z) — ZELC
however
(ZC ) _ ecLog(z) d _ edLog(eCL"g(Z)) _ ed(cLog(z)-i—Zﬂ'in)) — ch ei27rnd
Log Log Log Log

for some integer n.

Definition 11.5 (Trig. and Hyperbolic Trig. functions:).

iz —iz

sin (z) := £ E:

cos (z) := Lz _|_2€—iz

- 1) o
sinh (z) := #
cosh (z) := #
tanh (2) = sinh (z) _ e

cosh(z) e*+e %
Example 11.6. Basic properties of Trig. functions.
(1) £ sinz = cosz and - sinh z = cosh z

(2) £ cosz= —sinz and £ coshz = sinh z
(3) sinz = —isinh (iz) or siniz = —isinh (iiz) = —isinh (—2), i.e.

sin¢z = ¢sinh z.
Alternatively
) ‘_eiiz_efiiz_ 62—672_‘,1’1
siniz = 5 = 5, — = tsinhz.
(4) cosz = cosh (iz) or cosh (z) = cos (iz).
(5) All the usual identities hold. For example

(11.1) cos (w + z) = cosw cos z — sinwsin z

(11.2) sin (w + z) = sinw cos z + cos w sin 2.
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Indeed,

] ) eiw + efiw eiz + efiz eiw _ efiw eiz _ efiz
COSwWCOS zZ —SInwsinz = - 3 -
2 2 24 24

11 . A
=1 [Zez(w“) + Qe’l(“’“)} = cos (w + 2)

and (this one is homework)

. . e’LU} _ e—zw eZZ + e—zz ezw + e—zw ezz _ e—zz
SIN W COS 2 + CcosSw SIn 2 = - + -
21 2 2 21

= 4l {26““’"‘” - Ze_i(m'z)} = sin (w + 2) .
i

(6) In particular we have

(11.

1.3 cos (z +iy) = cosxcoshy — isinz sinhy
(11.4

~ —

sin (z + 4y) = sinx coshy + i cos z sinh y.
Indeed,
cos (x + 4y) = cosx cos iy — sin x sin iy
= coszcoshy — isinxsinhy
and
sin (x 4 1y) = sinx cos iy + cos z sin iy

= sin x cosh ¢ + ¢ cos x sinh y.
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12. (10/24/2003) LECTURE 12

Remark 12.1 (Roots Remarks).
(1) Warning: 1° = e'logl = ¢i(272) = [] *2m eddr 1 L]
(2) it = etlogi — eii(ﬂ'/2+n27r) _ e—(ﬂ/2+n27r) — e—ﬂ'/2 {Lei27r,ei47r7 . } .

1/2

(3) On the positive side we do have (w22)1/2 = wz'/? or more generally that

(w"2)" " = wzt/m
for any integer n. To prove this, £ € (w”z)l/" iff &7 = w2 iff (Z%) = ziff

% € M/ iff € € w2/,
Alternatively,
(w22)1/2 — oblog(w?z) _ 3[log(z)+log(w?)] _ 3 1log(2) 3 log(w?) _ ,1/2,3 log(w®)
Now if w = re, then
logw? = 2Inr 4 i (20 + 27Z)
and therefore,
e%logMQ — elinr+i(0+7Z)] _ .00 _ 4
But +wz!/2 = z1/2,

(4) log 2'/? = Llog z. Indeed,

- 1
log z'/? = log (e%“n‘z‘“argz]) =3 [In|z| + darg z]+i27Z =
Example 12.2. Continuing Example 11.6 above.

(1)

1
[In|z| +iarg z] = 5 log z.

N —

1z _ ,—12 2 1z —iz12
sin2z+c0822—[e ¢ } +{e te ] =—-4=1.

1
2 2 4
(2) Taking w = = and z = 4y in the above equations shows
COS z = €OS T cOoS 1Yy — Sin x sin ¢y
= cosx coshy — isinzsinhy
and
sin z = sin x cos ¢y + cos x sin 1y
= sinx coshy + ¢ cos x sinh y
(3) From this it follows that sinz = 0 iff sinzcoshy = 0 and cosz sinhy = 0.
Since, coshy is never zero we must have sinx = 0 in which case cosx # 0
so that sinhy = 0 i.e. y = 0. So the only solutions to sinz = 0 happen

when z is real and hence z = 7Z. A similar argument works for cos z.
(4) Lets find all the roots of sinz = 2,

2 =sinz =sinz coshy + icosxsinhy
and so
cosxsinhy = 0 and sinx coshy = 2.

Hence either y = 0 and sinz = 2 which is impossible of cosz = 0, i.e.
@ = % +n for some integer n, and in this case sinz = (—1)" and we must
have (—1)" coshy = 2 which can happen only for even n. Now coshy = 2
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3757

25T

1257

Finding the roots of coshy = 2 graphically.
F (with € = e¥) 2 = &5 e,

E24+1-4£=0
or
g:—‘li\/gﬁ—_‘i:zi\/ﬁ:u\/&
Therefore y = In (2 + \/3) and we have
(12.1) sinz:21ffz:g+2n7r+iln(2:|:\/§) for some n € Z.
It should be noted that
(2+v3) (2-vB) =4-3=1
so that the previous equation may be written as
2= 2 +2nmdiln (24 V3).
Theorem 12.3. The inverse trig. functions
sin™! (z) = —ilog (zz +(1- 22)1/2)
cos ! (2) = —ilog (z +i(1- 22)1/2)

tan~! (2) = %log <Z ki Z) .

11—z
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Moreover we have

isuf1 (2) = 1
dz V122
icos Y(z) = _ -1
dz V122
d 1
Etan () = 112

with appropriate choices of branches being specified.

Example 12.4.

2 2772772
so the zeros of the complex cosine function are precisely the zeros of the real cosine
function. Similarly

sin! (2) = —ilog (12 + (1 - 4)"/%) = —ilog (i (24 V3))
— i [logi +log (2% V3)| = =i [Z + 2 +1n (24 V3)
= 4 [z (g +27m) + In (2:|:\/§>]

:g+2m_i1n(2i\/§) :g+27m:|:iln(2+\/§)

1 1
cos ! (0) = = log (£i) = —i (:I:E + QWZ) = {izaigﬁ i5_7r}
7 7

as before.

Proof.
e cos™! (w) : We have z € cos™! (w) iff

w =cos(z) =

where ¢ = e?*. Thus
£ —2wE+1=0
or
2w + (4w? — 4)1/2
2

1/2

&=

and therefore

:w+(w2—1)

iz =log& = log (w + (w? - 1)1/2>
and we have shown
cos ! (w) = —ilog (w + (w? — 1)1/2)

= —ilog (eri (1 7w2)1/2).
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13. (10/31/2003) LECTURE 13 (CONTOUR INTEGRALS)

Lost two Lectures because of the big fire!!

(Here I only computed - tan~! (2) in the proof below.)

Proof. Continuation of the proof.

Let us now compute the derivative of this cos™ (z). For this we will need to
take a branch of f (2) of cos™! z, say

(13.1) f(z)=—il(z+iQ (1 —2%))
where / is a branch of log and @ is a branch of the square-root. Then cos f (z) = z

and differentiating this equations gives, —sin f (z) - f/ (2) = 1 or equivalently that

, - 1 B 1
fiz) = —sin f (2) < (1— 22)1/2'

since sin f (z) € (1 — 22)1/2 . The question now becomes which branch do we take.
To determine this let us differentiate Eq. (13.1);

f/(Z)—m{lm(Qz)}
_ —q Q(l—z2)7iz
z4+1Q (1 — 22) Q(1-22)

B -1 z+1iQ (1—22) B -1
Sz 4iQ (1 — 22) Q(1-22) Q122

so we must use the same branch of the square-root used in Eq. (13.1). Hence we
have shown

4

‘i cos ! (2) = i
dz V1=

with the branch conditions determined as above.
o tan~! (w) : We have z € tan™! (w) iff

. ( ) .eiz_efiz .g_é:fl 152_1
w="tan(z) = —1t— — = —1 = —1
ez + iz 5 + gfl 52 +1

where ¢ = e?*. Thus

(E+D)w+i(¢-1)=0

or
Ew+i)=i—w
that is )
T— w2
£_<i+w)
and hence
1
i—w) 2 1 i+ w
orat—vn(52) (122
so that
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We have used here that log (n_%) = —%bgn which happens because

n is an integer, see Lemma 11.2. Let us now compute the derivative of
tan=! (w). In order to do this, let £ be a branch of log, and the f (w) =

Y (”—5) be a Branch of tan™! (w), then

71—

d i 1 di+w ii—w(@—w)+(i+w)

dw! T I G w2t w ()

1 1 1

(i +w) (i —w) (w+i)(w—i):1+w2'

Thus we have

1
— tan— ! - -
dw " (w) 14 w?
where the formula is valid for any branch of tan™! (w) that we have chosen.
sin~! (w) : (This is done in the book so do not do in class.) We have
z € sin ! (w) iff
eiz _ e—iz § _ é:—l

w=s¢in(z) = 5 ="

where ¢ = e?*. Thus
€ —1—-2iwE =0

or

. 2 1/2
522210—&—( 42w —|—4) :iw—l—(l—w2)

1/2

and therefore

iz =log£ = log (iw +(1- w2)1/2)
and we have shown

sin™! (w) = —ilog (zw + (1- w2)1/2) .

Example if w = 0, we have

.1 1 1.

sin™" (0) = = log (£1) = —inZ = 7Z.

i i
Suppose that

f(w)=—il (iw +Q (1 - w2))

where ¢ is a branch of log and @ is a branch of the square-root,
then sin f(w) = w and so differentiating this equation in w gives
cos f (w) f’ (w) =1 or equivalently that

1

I =
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Now cos f (w) € (1 — wQ) 1/2 , the question is which branch do we take. To
determine this let us differentiate Eq. (13.2). Here we have

. 1
T { T w) (‘2w)}
1 . w
m+@<1—w2>{1“@<1—w2>}
1 inrQ(lwa) B 1
(1 —w?) Q (1 —w?) T Q(1—w?)

so we must use the same branch of the square-root used in Eq. (13.2).
Hence we have shown

w7 Sin—l (Z) o 1 9
dz V1 =22

where one has to be careful about the branches which are used.

13.1. Complex and Contour integrals:

Definition 13.1. A path or contour C' in D C C is a piecewise C' — function
z : [a,b] — C. For a function f: D — C, we let

fre w—/f

Example 13.2 (Some Contours). 1) 2(t) = 20 +re® for 0 <t < 7 is a semi-

circle centered at zg.

(2) If 29,21 € C then 2 () = 20 (1 —t) + 21t for 0 < ¢ < 1 parametrizes the
straight line segment going from zy to 2.

(3) If 2 (t) = t+it? for —1 <t < 1, then z (t) parametrizes part of the parabola
y = 2. More generally z (t) =t +1if (t) parametrizes the graph, y = f (z).

(4) z(t) =t +1iv1—12 for —1 <t <1 parametrizes the semicircle of radius 1
centered at 0 as does z (t) = e~ for —1 <t <0.

Example 13.3. Integrate f (z) = z — 1 along the two contours

(1) C1:z=xzforz=0toxz=2and
(2) Co:z=1+¢" form <6< 2m.

For the first case we have

/Cl(z—l)dz:/OQ(x—l)dx:%(w—1)2|(2):0

and for the second

2m
/ (z—1)d / (1+€"“ —1)ie”do
Ca

/Qﬂ- 229d0 120|27r =0
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Example 13.4. Repeat the above example for f (z) =z — 1.
For the first case we have

/Cl(z—l)dz:/OQ(x—l)dx:%(w—1)2|(2):0

and for the second
27
/ (z—1)dz = / (1+e % —1)ie"dg
Co T

2w
:/ idf =im #0

Example 13.5 (I skipped this example.). Here we consider f (z) =y — x — i32?
along the contours

(1) Cy : consists of the straight line paths from 0 — ¢ and ¢ — 1 + 4 and
(2) Cs : consists of the straight line path from 0 — 1 + .

1. For the first case z = iy, dz = idy and z = z + ¢ and dz = dz, so

1 1
f(2)dz = / (y —  — i32?) [p—oidy + / (y — 2 — i32?) |y=1dz
Cy 0 0

1 1
:i/ ydy + (1—$—i3x2)dx
0

1 1 1
=i (1-z—i)=201-14).
2+< 5 z> 2( i)
2. For the second contour, z =t (1 +14) =t + it, then dz = (1 +4) dt,

1
f(z)dz= / (y — 2 — i327) |pmy—t (1 + 0)dt
Ca 0

1
= (1+i)/ (t —t—1d3t%) dt
0
=14+ (=i)=1—1.
Notice the answers are different.
Example 13.6. Now lets use the same contours but with the function, f (z) = 22
instead. In this case

1 1
/ 22dz = / (iy)* idy + / (z +i)° da
ol 0 0

1 1 1 1 1.
:—ig+§(:c+z')3|3):—i§+§(1+i)3—§z‘3
1
=30 +1i)°
while for the second contour,

1
/ z2dz:/ t2(1+z‘)2(1+¢)dt:l(1+z’)3.
o 0 3
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14. (11/3/2003) LECTURE 14 (CONTOUR INTEGRALS CONTINUED)

Proposition 14.1. Let us recall some properties of complex integrals
(1)
b ) ¢(b)
[ wewsmas [ wear
(2) If f () is continuous in a neighborhood of a contour C, then [ f(z)dz is
independent of how C' is parametrized as long as the orientation is kept the

same.
(3) If —C denotes C traversed in the opposite direction, then

/_Cf(z)dz:—/cf(z)dz.
Proof.

(1) The first fact follows from the change of variable theorem for real variables.
(2) Suppose that z : [a,b] — C is a parametrization of C, then other parame-
trizations of C' are of the form

w(s) =z (¢ (s))
where ¢ : [a, f] — [a,b] such that ¢ (o) = a and ¢ (8) = b. Hence
B B
[t @ds= [ 766 ()

and letting ¢t = ¢ (s), we find

B8 b
/ £ (w(s))w (s)ds = / £z (®) %@ dt

as desired.
(3) Suppose that z : [0,1] — C is a parametrization of C, then w (s) := z (1 — s)
parametrizes —C so that

1 0
| t@a==[rea-9za-9a= [ rew:ow
' ; = — 2)dz
- [ recozma=-[ re

wherein we made the change of variables, t =1 — s.
|

Theorem 14.2 (Fundamental Theorem of Calculus). Suppose C' is a contour in
D and f: D — C is an analytic function, then

/C fl (Z) dz = f(Cend) - f (Cbegin) .

Proof. Let z : [a,b] — C parametrize the contour, then

/ b / 3 _ ’ d _ t=
[ree=[reomzwa- [ Lreoa-rcoi
]
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Example 14.3. Using either of contours in Example 13.5, we again learn (more
easily)

1 1
2, _ 1.3 _1 N3 3
/Clz dz = 3% lac, 3 [(1—}—2) (0)}

Example 14.4. Suppose that C is a closed contour in C such which does not pass
through 0, then

/z”dz:Oifn;éfl.
c

The case n = 1 is different and leads to the winding number. This can be
computed explicitly, using a branch of a logarithm. For example if C : [0,27] —
C\ {0} crosses (—c0,0) only at z(0) = z(27), then

1 1
/C Zdz = 181?01 . ;dz = IEIH)l [Log(z (2m — ¢)) — Log(z (¢))]

z(2m —¢)

S|t =0 -0()

= lim [ln
el0

= 12m.
Also work out explicitly the special case where C (0) = re'? with 6 : 0 — 27.

Proposition 14.5. Let us recall some estimates of complex integrals

(1)
B
/ w(t) dt

/Cf(z) dz

where |dz| = |2 (t)|dt and M = sup,cq|f (2)].

B
g/ o (£)] dt.

(2) We also have

< /C 1 ()] |d2] < ML

Proof.
(1) To prove this let p > 0 and 6 € R be chosen so that

p ,
/ w(t) dt = pe®?,

then
8
/ w (1) dt

e B
:pzefw/ w(t)dt:/ e (t) dt

B B

= / Re [efww (t)] dt < / Re [efww (t)] | dt
B ‘ B

< /a |6719w (t)| dt = /a |w (t)] dt.
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Alternatively:

B
/ w(t)d lim gwcl (t; —ti—1)| = lim ‘gwcl t; —ti—1)
a mesh—0 mebh—>0

< lim Z |w (¢;)| (¢; — ti—1) (by the triangle inequality)

mesh—0

=Lﬁmet

(2) For the last item

t)dt

z)dz

/Wf D112 (8) dt

b
< M/ |2 ()| dt < ML
wherein we have used

2 ()] dt = /[ (6% + [3 (¢))dt = de.

~ A\

) .
2 \wm\ww\ﬁ EAERIICINE N
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15. (11/05/2003) LECTURE 15
Example 15.1. The goal here is to estimate the integral

1

where C' is the contour joining ¢ to 1 by a straight line path. In this case M =
—2—— and L = |1 — 4| = v/2 and this gives the estimate
|

|3 (1+0)]
1
c <
V2

Example 15.2. Let C' be the contour consisting of straight line paths —4 — 0,
0 — 37 and then 37 — —4 and we wish to estimate the integral

/C (e* — 3)dz.

To do this notice that on C' we have

le* —z| < |e*| +|2| <eRe? +|2| <’ +4=5

1
<vil v

while
0(C)=4+43+1[3i—(—4)|=4+3+ /32 +42=3+4+5=12

and hence
/ (e —2)dz
c

Note: The material after this point will not be on the second midterm.

Notation 15.3. Let D C, Cand « : [a,b] — D and 8 : [a,b] — D be two piecewise
C' — contours in D. Further assume that either o (a) = 8 (a) and a (b) = 3(b) or
«a and (B are loops. We say « is homotopic to (3 if there is a continuos map
o :la,b] x [0,1] — D, such that o (¢,0) = «(t), o (¢,1) = B (t) and either o (a, s) =
a(a) =B (a) and o (b,s) = a(b) = B(b) for all s or t — o (t,s) is a loop for all s.
Draw lots of pictures here.

<12-5=60.

Definition 15.4 (Simply Connected). A connected region D C, C is simply
connected if all closed contours, C' C D are homotopic to a constant path.

Theorem 15.5 (Cauchy Goursat Theorem). Suppose that f : D — C is an analytic
function and o and B are two contours in D which are homotopic relative end-points
or homotopic loops in D, then

/af(z)dz:/ﬁf(z)dz.

In particular if D is simply connected, then

/Cf(z)dz:O

for all closed contours in D and complex analytic functions, f, on D.

Example 15.6. Suppose C' is a closed contour in C, then

(1) [oe™*dz=0and [ e™?dz depends only on the endpoints of .
(2) [, 2"dz =0 for all n. € NU{0}.
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(3) However if C (0) = re? for 6 : 0 — 27, then
2
/ Zdz = / “Oiret®dh = 2mir? £ 0.

Example 15.7. Suppose C is a closed contour in C\ {0}, then

1) [oe*dz=0and [ e""*dz depends only on the endpoints of a.
(2) However [,z 'dz = 2mi # 0.
(3) On the other hand if C' is a loop in C\ (—o0, 0], then we know

/ 27 Yz =0
c

this can be checked by direct computation. However it is harder to check

directly that
esin z
/ dz=0
C z

for all closed contours in C\ (—o0, 0].
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16. (11/07/2003) LECTURE 16

Example 16.1 (Fourier Transform). So the example 390 %dz = 2mi again, where
C is a simple closed counter clockwise oriented contour surrounding 0. Do this by
deforming C' to the unit circle contour.

Example 16.2 (Fourier Transform). The goal here is to compute the integral

o° 1.2 R 1.2
Z = e 2% My = lim e” 2% N .
R—o0 _R

We do this by completing the squares,
1 1 1
from which we learn

R

_1)2 . L lip—in)? _132 . _1,2

Z=e¢ 72" lim e 2@ gy = 72N lim e 2% dz
R—o0 —R R—o0 FR

where 'y (z) := 2 —i) for 2 : —R — R. We would like to replace the contour I'g by
[—R, R]. This can be done using the Cauchy Goursat theorem and the estimates,

+R—i\ Lo
/ e 2% dz
+R

see Figure 3. Therefore we conclude that

< |)\|€7%R2 — 0 as R — oo,

-
WY

— v
N r
19 R

F1GURE 3. By the Cauchy Goursat theorem, the integral of any
entire function around the closed countour shown is 0.

0o R

_1.2 _1y2 . 1,2 _1y2
e 2T My = ¢ 3N lim e 2% dx = 2me 2N,
o R—oo R

where the last integral is done by a standard real variable trick and the answer is
given by /2.

Theorem 16.3 (Cauchy Integral Formula). Suppose that f : D — C is analytic
and C C D is a contour which is homotopic to 0D (zg,¢) in D\ {20}, then

(16.1) ﬁdz =2mif (z0) .
c R — 20
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Proof. Since z — —Zf,(zz)o is analytic in D \ {zg}, the Cauchy Goursat Theorem
implies
27 i0
C %40 8D(z0,e) # — *0 0o %otee —z
2 2
:i/ f(20+€ei0)d9—>i f(z0)df =2mif (z0) ase | 0.
0 0

| |

Example 16.4. Use complex methods to compute the integral

1
/ —Qd.’E:TF.
Lo Ltz

This is done by the usual method, namely let Cr () = R €' for 6 : 0 — , then

1
————dz| < lim
/CR L2

_R—»ool—RQkﬂ—R:O

lim
R—o0

and therefore if we let I'g be the contour [—R, R] followed by Cg, we have

lim ————dz= lim dz.

R
/ p 1 1
 de= -
_p l+a2k R—oo Ji_p g 1+ 22k R—oo Jp, 14 22k

The last integral is independent of R > 1 and can be computed by deforming the
contours. For the first case we have

1 1 o1
T 2= %dZZQﬂ'Z, - = 7.
r, l+2 ry (2—1) (2 +1) i+i
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17. (11/12/2003) LECTURE 17
Gave the second midterm on Monday, 11/10/03.

Definition 17.1 (Residue). Suppose that D is a disk centered at zyp € C and
f:D\{z} — C is analytic. The residue of f at z; is defined by

1
res,, [ 1= — f(z)dz
“ 2m |z—z0|=¢
where ¢ > 0 such that the contour |z — 29| = € is in D. As usual the contour is

given the counter clockwise orientation.

Lemma 17.2. Suppose that f is analytic inside a closed contour C' and only 0 at

one point zg inside C' and that f (z) = 98 where h and g are analytic functions

near zo and g’ (z9) # 0, then

h (ZQ)
g (z0)

Proof. Using results that we will prove shortly when considering power series,
g (z) = (# — 20) k (#) where k is analytic near zp and k (z0) = ¢’ (20) # 0. Alterna-
tively, use the fundamental theorem of calculus to write

res,, f 1=

1
92 =92 =) = [ FoCall—1)+ 1)

:/0 (2= 20) g (20(1— ) + t2) dt
— (e~ 20) k()

where k (z fo (20(1 —t) +tz) dt. Then k(20) = ¢’ (20) and k is analytic with

1
K (2) = / g" (20(1 —t) + tz) tdt
0
as we will show shortly below.
Therefore by the Cauchy integral formula

L F2)dz = = hjd

2mi (
1 h(z)/k(z) , _ h(z0)
= om }'%HM_E (z—20)  k(z0)

Since ¢’ (z0) = k (20) , the result is proved. m

|z—z0|=¢ |z—z0|=¢

Theorem 17.3 (Residue Theorem). Suppose that f : D\ {z1,...,2,} — C is an
analytic function and C is a simple counter clockwise closed contour in D such that
C “surrounds” {z1,...,2zn}, then

/ f(z)dz =2mi zn:reszif.
c i=1

Proof. The proof of this theorem is contained in Figure 4.
]
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F1GURE 4. Deforming a contour to circles around the singularities
of f. The integration over the parts of the countour indicated by

straight lines cancel and so may be ignored.

Example 17.4. Use complex methods to compute the integral:

o0 1 s
AT
o0

We will continue the method in Example 16.4 where it was already shown that

o 1 1
dz = d
/Ool—&—m‘lx /I‘R1+Z4Z

= 2m Z res, m .

z:2z4+1=0 with z inside '

/4 — 12 (1+14) and z; := e®7/* =

>

The roots of z* +1 = 0 inside of 'y are zg := e
% (=1 +1), see Figure 5. When z is a root we have,

1 1
1424 423

res,

Hence

Example 17.5. Compute the integral

oo ei/\m
/ ——dx for A > 0.

U
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i ”DQS’O‘(VV\ T‘K
Yo C ¥ CH

T

<

O antal Aton
occoas e’

FI1GURE 5. Deforming contours to evaluted real integrals.

Close the contour in the upper half plane (note that |ei>‘z| = eRelid2) — ¢=Mv < ]
for y > 0) doing the usual estimates to show this OK. Hence we have

e8] AT Az Az
/ e—zdx = / 6—2d2 = 2mires,—; 6—2
7001"'.’1; FR+[7R,R]1+’Z ].“"Z

iXi
e’ _
} = e .

= 27t { -
21

Conclude from this that

] AT o] [o S
A e B cos (A\x) , sin (A\x)
me —/;Oomdl'—/;oomd(lﬁ-’—l . 1+$2 dl’

and hence

/OO Md —A

r =me " and
oo 1422

*sin(A\x)
/_OO T2 dr = 0.
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18. (11/14/2003) LECTURE 18

Notation 18.1. We will write Q C, C if © is an open subset of C and f € H(2)
if f is analytic on €. Also let

D(z,p) ={z € C: |z — 20| <p}
D(z0,p) ={2€C:|z— 2| < p} and
9D(z0,p) ={z € C: |z — 20| = p}.
18.1. On the proof of the Cauchy Goursat Theorem.

Theorem 18.2 (Differentiating under the integral sign). Suppose that f (t,z) is a
continuous function in (t,z) for a <t < b and z near zg € F where F =R or C.
Further assume that ﬂ’:}i’—zl exists and is continuous in (t,z) with z near zo, then

d [? _[Poft,2)
E‘/a f(t,Z)dt—/a Tdt

. b : ) .
Moreover the function z — fa %dt 18 continuous in z near zg.

Proof. (Sketch Briefly!) Let
b
:/ f(t z)dt

then
(18.1)
F(z+4+h)—F(2) of (t,z) YTf(tz+h)—f(t,z) Of(t2)
h /a 0z —, U= /a[ h ) }dt
and
h) — 1 [td Lo
f(t’ZJ’]z f(t’z>=ﬁ/0 Ef(t,z—&-sh)ds:/o a—‘z(t,z—i—sh)ds.
Therefore,
ft,z+h)—f(t,z) Of(t2) Lrof of (t, z)
A -~ —/0 [a(t,z—i—sh)——az }ds‘
S/l %(t,z—i—sh)—% ds
0
< e (S (02w ) - 2L

and the latter term goes to 0 uniformly in ¢t as h — 0 by uniform continuity of
% (t,z) . Therefore we can let h — 0 in Eq. (18.1) to find

PIftz+h) = f(t2)  Of(t2)
[

. Ee ]dt—>0ash—>0

and hence

dt.

i FE+0) - F(2) :/b of (t,z)

h—0 h 0z
/b

The continuity in z is proved similarly,

YOf (t,z+h) af(t z)
/a SR dt—/a 9 2) gyl <

Of (t,z+h)  9f(t,2)

5 ER dt - 0ash—0
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by the same uniform continuity arguments used above. m

Notation 18.3. Given D C, C and a C? map o : [a,b] x [0,1] — D, let o, :=
o(-,s) € C([a,b] — D). In this way, the map o may be viewed as a map

s€[0,1] — o5 :=0(-,5) € C*([a,b] — D),
i.e. s — 0, is a path of contours in D.

Definition 18.4. Given a region D and «, 3 € C? ([a,b] — D), we will write a ~ 3
in D provided there exists a C?> — map o : [a,b] x [0,1] — D such that op = «,
o1 = 3, and o satisfies either of the following two conditions:

(1) Lo(a,s) = Lo(b,s) =0 for all s € [0,1], i.e. the end points of the paths
os for s € [0, 1] are fixed.

(2) o(a,s) =a(b,s) for all s € [0,1], i.e. o4 is a loop in D for all s € [0,1].
See Figure 6.

FIGURE 6. Smooth homotopy of open paths and loops.

Proposition 18.5 (Baby Cauchy — Goursat Theorem). Let D be a region and
a, 3 € C*([a,b], D) be two contours such that o~ 3 in D. Then

/f(z)dz = /f(z)dz for all f € H(D)NCY (D).
o B

Proof. Let o : [a,b] x [0, 1] — D be as in Definition 18.4, then it suffices to show
the function
8) = /f(z)dz

is constant for s € [0, 1]. For this we compute
-2 / F(o(t,5)5(t, 5)dt = / 1ot ) (t,)]
/ ({0 (¢, 5)6(t, ) + F(o(t, )0’ (¢,5)} dr
= [ & isot 00,0

a
t=b

= [f(o(t,s))o’(t,8)]| =0

t=a
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where the last equality is a consequence of either of the two endpoint assumptions
of Definition 18.4. m
Recall the Cauchy integral formula states,

(18.2) f(z):%m,/c%dw

where C'is simple closed contour in 2 traversed in the counter clockwise direction,
z isinside C and f € H () . Using the results in Proposition 18.5 we can rigorously
prove Eq. (18.2) for f € H (D) N C' (D) and for those contours C which are C? —
homotopic to 9D (z,0) for some ¢ > 0. Using Theorem 18.2, we may differentiate
Eq. (18.2) with respect to z repeatedly to learn the following theorem.

Theorem 18.6. Suppose f € H ()N C" ()" then ) exists and f™) € H (Q)
for all n € N. Moreover if D is a disk such that D C €, then

(18.3) f™(z) = i% (f&dw for all z € D.
oD

B 21 w — Z)n+1

Corollary 18.7 (Cauchy Estimates). Suppose that f € H(Q) where Q C, C and

suppose that D(zo, p) C 2, then
n!
(18.4) £ (z0)| < M,

where
M,:= sup |f(w)]

|lw—=z0|=p

Proof. From Eq. (18.3) evaluated at z = zy with C = 9D(zp, p), we have
! I M

= 7{ _Jw) Tdw| < T 2mp.

210 Jo (w — )" 27 pntl

’f(n)(zo)‘ =

LAs we will see later in Theorem 19.5, the assumption that f is C! in this condition is redun-
dant. Complex differentiability of f at all points z €  already implies that f is C°° (9, C)!!
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19. (11/17/2003) LECTURE 19
Theorem 19.1 (Morera’s Theorem). Suppose that Q C, C and f € C(Q) is a

complex function such that

(19.1) /f(z)dz =0 for all solid triangles T C €,
oT

then f € H(Q) and f™) exists for all n, so f™ € H(Q) for alln € NU{0}.
Proof. Let D = D(z, p) be a disk such that D C Q and for z € D let
e = [ s
[2072]

where [zo, 2] is by definition the contour, o(t) = (1 — t)zg + ¢z for 0 < ¢t < 1, see
Figure 7. For z € D and h small so that z + h € D we have, using Eq. (19.1),

)
‘
'
'
'
' %o
\
\

F1GURE 7. Constructing a locally defined anti-derivative fo f to
show that f is analytic.

F(z+h) — F(z) = / Fw)dw = /01 =+ thyhdt — h/ol F(z + thydt
]

[z,2+h
wherein we have parametrized [z, z + h] as w = z 4 th. From this equation and the

continuity of f,

F(z+h)—F !

w :/ f(z+th)dt — f(z) as h — 0.
0

Hence F' = f so that F' € H(D) N C* (D). Theorem 18.6 now implies that F(™)

exists for all n and hence f(™ = F("+1) ¢ [(D) exists for all n. Since D was

an arbitrary disk contained in € and the condition for being in H(2) is local we

conclude that f € H(Q) and f(™ € H (Q) for all n. m
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19.1. The material in this section was not covered in class.

Theorem 19.2 (A variant of Morera’s Theorem). (This may be skipped.) Suppose
that f is a continuous function on a domain D such that fa f(2)dz only depends
on the end points of «, for example if D is simply connected and f is analytic on
D. Then f has an anti-derivative, F. Namely, fit a zg € D and let C, denote a
contour in D such that C, (0) = zg and C, (1) = z, then we may define

=/ f (w) dw

Proof. Let [z,z 4 h] denote the contour C (¢) := z + th for ¢ : 0 — 1. Then

F(z+h)F(z)—/Cz+h w) dw — /f ) dw
-/ e /M () duw

wherein the last equality we have used the fact that C,y, — C, and [z,z + h] are
contours with the same endpoints. Using this formula

F(Z-i-h}z—F(Z) :%/Olf(z—i—th)hdt

—/lf(erth)dtHf(z) as h — 0.
0

]
The next theorem is the deepest theorem of this section.

Theorem 19.3 (Converse of Morera’s Theorem). Let 2 C, C and f : Q — C is
a function which is complex differentiable at each point z € Q. Then ¢ f(z)dz =0
orT

for all solid triangles T C €.
Proof. Write T'= 57 U S U S3 U Sy as in Figure 8 below.

@A
AV
NN

F1GURrE 8. Splitting 7" into four similar triangles of equal size.
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Let 1 € {S1,82,53,54} such that | [, f(2)dz| = max{| [ f(z)dz] : i =
83,
1,2,3,4}, then

\/f )dz| = |Z/f dZ\<Z|/f il <4 [ szl

i=lgg, =1 gg, T,

Repeating the above argument with T replaced by T; again and again, we find by
induction there are triangles {T;}:~, such that
(1) TO2T1 2T, D152
(2) £(0T,,) =27 ™L(0T) where £(0T) denotes the length of the boundary of T,
(3) diam(7,) = 27" diam(7") and

(19.2) |/f dz|<4"\/f 2],

By finite intersection property of compact sets there exists zy € ﬂ T,. Because
n=1

f(2) = f(20) + f'(20)(2 — 20) + o(z — 20)
we find

4"/f(z)dz e /f(zo)dz+/f'(zo)(z—zo)der/o(z—zo)dz
oTy,

T, Ty, Ty

=4" /o(z—zo)dz §Cen4"/|z—zo\d|z|

T, T,

where €, — 0 as n — oco. Since

/ 12 — 20| d|2| < diam(T,)0(9T,) = 2-"diam(T)2-"£(OT)
oT,
=47 "diam(T")¢(0T)

we see

4n / f(z)dz| < Ce,4"47"diam(T)4(0T) = Ce,, — 0 as n — 0.
Th
Hence by Eq. (19.2) f f(z ]

The method of the proof above also gives the following corollary.

Corollary 19.4. Suppose that Q2 C, C is convex open set. Then for every f € H(Q)
there exists F € H(Q) such that F' = f. In fact fizing a point zg € 2, we may define
F by

= / f(&)deg for all z € Q.
[z0,2]

By combining Theorem 19.1 and Theorem 19.3 we arrive at the important result.
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Theorem 19.5. Suppose that f € H (), then f' € H (Q) and hence by induction,
™ exists and ) € H () for all n € NU{0}.

Exercise 19.6. Let Q@ C, C and {f,} € H(Q) be a sequence of functions such
that f(z) = lim,_ fn(2) exists for all z € Q and the convergence is uniform on
compact subsets of Q. Show f € H(Q) and f/'(z) = lim,— f},(2).

Hint: Use Morera’s theorem to show f € H(2) and then use Eq. (26.3) with
n =1 to prove f/(z) = lim, 0 f},(2).
19.2. More Applications of the Cauchy Goursat and the Cauchy Integral
Formula. The next two results were covered in class.

Corollary 19.7 ( Liouville’s Theorem). If f € H(C) and f is bounded then f is
constant.

Proof. This follows from Eq. (18.4) with n = 1 and the letting n — oo to find
f'(zo)=0foral zpeC. m

Corollary 19.8 (Fundamental theorem of algebra). Every polynomial p(z) of de-
gree larger than O has a root in C.

Proof. Suppose that p(z) is polynomial with no roots in z. Then f(z) = 1/p(z)
is a bounded holomorphic function and hence constant. This shows that p(z) is a
constant, i.e. p has degree zero. ®m

19.2.1. The remainder of this subsection was not done in class.

Corollary 19.9 (Mean value property). Let Q2 C, C and f € H(R), then f satisfies
the mean value property
2m

f(z0 + pei®)do

which holds for all zo and p > 0 such that D(zg,p) C Q.

(19.3) f(z0) = =

27 Jo

Proof. By Cauchy’s integral formula and parametrizing 0D(zg, p) as z = zg +
pe'? we learn
f(z0) =

_ i ot
5 ———dz = — ’ ipe'’df

20 27 Jo pe’

1 /() L[> f(z0+ pe)
L o

20,pP) z =
1 27

-2 i0
“ 5 ) f(z0 + pe'”)db.

Proposition 19.10. Suppose that Q is a connected open subset of C. If f € H()
is a function such that |f| has a local maximum at zy € ), then f is constant.

Proof. Let p > 0 such that D = D(z9,p) C Q and |f(2)] < |f(20)| = M
for z € D. By replacing f by e f with an appropriate # € R we may assume
M = f(zp). Letting u(z) = Re f(z) and v(z) = Im f(2), we learn from Eq. (19.3)
that

1 2 )
M = f(z0) = Re fla) = 5 [ utzo + pe)it
™ Jo
2

< — min(u(zo + pe?),0)dd < M
2T 0
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since |u(zo + pe')| < |f(z0 + pe'®)| < M for all 6. From the previous equation it
follows that

0= {M — min(u(zo + pe?),0)} do
0
which in turn implies that M = min(u(zo + pe'®),0), since § — M — min(u(zg +
pe'?),0) is positive and continuous. So we have proved M = u(zy + pe'?) for all 6.
Since

12 . . .
M? > | f(20 + pele)| = u?(20 4 pe'?) + 0% (20 + pe'®) = M? + 0% (20 + pe'?),

we find v(zg + pe?®) = 0 for all . Thus we have shown f(zo + pe’?) = M for all §
and hence by Corollary 27.8, f(z) = M forall z € Q. m

The following lemma makes the same conclusion as Proposition 19.10 using the
Cauchy Riemann equations. This Lemma may be skipped.

Lemma 19.11. Suppose that f € H(D) where D = D(zo,p) for some p > 0. If
|f(2)| =k is constant on D then f is constant on D.

Proof. If £ =0 we are done, so assume that k > 0. By assumption
0=0k* =0|f[* = 0(ff) =0 - f + fof
=fof=1rr
wherein we have used
0f = 5 (0 —i,) f = 50 10,) J(:) = 3] =0
by the Cauchy Riemann equations. Hence f’ = 0 and f is constant. m

Corollary 19.12 (Maximum modulous principle). Let Q be a bounded region and
[ e CQ)NH(). Then for all z € Q, |f(2)| < sup |f(2)|. Furthermore if there
2€00Q

exists zg € Q such that | f(z0)| = sup |f(2)| then f is constant.
2€00)
Proof. If there exists zyp € Q such that |f(z0)| = max.caq |f(2)|, then Proposi-
tion 19.10 implies that f is constant and hence |f(z9)| = sup |f(2)|. If no such zg
z€0Q

exists then |f(2)| < sup |f(z)| forallz€ Q. =
2€0Q

19.3. Series.

Definition 19.13. Given a sequence {z,},.,, we say the sum, > >~ z, = S
exists or ZZOZO zp is convergent if the sequence

N
SN:=Zzn—>SasN—>oo.
n=0

oo

We say that Y7 z, is absolutely convergent if > > |z,| < co.

Remark 19.14. Sincelimy_.oo Sy = Siff imy_ o Re Sy = ReS and limy_oo Re Sy =
Re S, it follows that > 7 2, exists iff Y 2 Rez, and > - ,Imz, exists. In this

case
(oo} oo oo
E Zn = E Rez, + E Im z,.
n=0 n=0 n=0
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Proposition 19.15 (Completeness of C). If > |z,| < oo then Y . 2, ezists
and

(19.4)

[e%S) %S
PIEIED DI
n=0 n=0

Proof. (Skip the proof and just take this as a basic fact.) Because of Remark
19.14 and the estimates,

o0 oo oo oo
Z [Re z,,| < Z |zn| < oo and Z Im 2, | < Z |zn| < o0
n=0 n=0 n=0 n=0

it suffices to consider the real case. Now for M > N we have

N N oo
n=M+1 n=M+1 n=M+1
[es) M
:Z|zn|72|zn|ﬂ0asM,Nﬂoo.
n=0 n=0

Therefore by the basic “completeness” of the real numbers, limy_ . Sy exists. For
the estimate in Eq. (19.4), we have

) N N )

pu— 1 < 1 p— .
E Zp| = Jim 5 Zn _]\}gréog B 5 |20
n=0 n=0 n=0 n=0

Example 19.16. Let z € C and let us consider the geometric series ZZO:() z". In
this case we may find the partial sums, Sy := Zf:;o 2™ explicitly since

SN — ZSN =1- ZN+1.

Solving this equation for Sy then implies

N+1 if z=1.

From this expression we see that Y ;2™ exists iff |z| < 1 and in which case

oo " 1
nzzoz 1z

Let us note that

1 al 1 1-zN+!
B (2) = 173_2%271: 1—z 1iz
ZN+1 "
- 1—=z
so that
1 N
(19.5) = > 2"+ Ry (2)
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and N+1 N+1
|| ||
R = f 1.
R () = =gy < Ty for el <
Remark 19.17. More generally the same argument shows
m m+1 _ n
(19:6) D
k=n
Example 19.18. Also showed
1 oo
n _2n
— :Z(fl) 2" for |z] < 1
1+2 oy

and explained why the series only converges for |z| < 1 by looking at the location

of the poles of the function f (z) = ﬁ



60 BRUCE K. DRIVER

20. (11/19/2003) LECTURE 20
Theorem 20.1 (Differentiating and integrating a sum of analytic functions). Sup-
pose that f, : Q@ — C is a sequence of analytic functions such that
|fn (2)| < M, for alln € N and z € C
where Y2 | M,, < oco. Then
(1) If C is any contour in ), we have

/CF(z)dz_ni/cfn(z)dz.

(2) The function F (z) := " fn (2) is an analytic.
(3) F'(2)=>0", [} (2) and in fact
(20.1) F®) () = i f8) () for all k € Ny and z € €.
n=1

Part of the assertion here is that all sums appearing are absolutely convergent.
Proof. Later. m

Remark 20.2 (Theorem 20.1 does not hold for real variable functions). It should
be noted that Eq. (20.1) is not correct when z is replace by a real variable. For
example, the series

>, sinnz
(20.2) F(z):=)_ —
n=1

is perfectly convergent for all x € R, however if we differentiate it once or twice we
get

oo oo
CcosSNx .
E and — E sin nx
n
n=1 n=1

which are no longer convergent. To understand a little better what is going on,

notice that the series
>, sinnz >, einTeTny 4 ginTony
> -
n=1 nQ n=1 2”12
is not convergent if z = x + iy with y # 0. This is simply because,
eina:efny + eina:eny
2in?

Example 20.3. Differentiating the formula,

1 o0
—:Zz"for |z] < 1
-z

= 00 in this case.

lim
n—oo

gives
1 o0
-1
S Y
(1-2) n=0

and differentiating again gives

2! -
—— == nn-1)z"2
TR
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and repeating to get

#:Z[n(n—l)--~(n—m+1)]z”_m.

Example 20.4. Integrating the formula

d 1 s
——TLog(l—2)= = "
dz o8 ( ?) 1—=z TLZ:%Z

implies
z

d e
—Log (1 -2z :/ Log (1 —w dw:/ w™dw
-a= [ —gptesti-wdu= [ 13
:Z(—l)”/w"dw
n=0 0

=1
= Z —1z"+1 if 2] < 1.
= n +

which implies
(o]

1
Log(l—2)=— Z n——l—lznﬂ if 2] < 1.
n=0

Theorem 20.5 (Taylor’s Theorem). Let Q C, C be an open set, f € H(Q2) and
D = D(zo,p) is a disk such that D C Q) then

(20.3) flz)= Z an(z — 20)" for all z € D.
n=0
where
fM(z) 1 f(w)

Proof. Let g(z) := f (20 + 2z) and r < p and |z| < r, then for |w| =,

1 11 1 2\
w—z_El—z/w_Ez(a)'

n=0

Applying Theorem 20.1 with f, (w) = g (w) % (i)" and M,, = maxp | f| % (g)" we
find using the Cauchy integral formula that
1 1 >

fota) =g =55 oy = 5 wl_”;)ﬂwi (%)

o~ |1 ACOIPIN I o W
(20.5) = Z l% ]{w_r gy dw] 2" = Zoanz

n=0

where

1 g, O ()
fjw—T dw = B

" o wntl n! n!
1 w
_ L S AC) Y,
270 Jjw—zo|=r (W — 20)
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Replacing z by z — 2z in Eq. (20.5) completes the proof of Eq. (20.3). m

Example 20.6. (1) Suppose f(2) = 12, then (™ (2) = # and hence
f™ (0) = n! and we find again that

1 = nl >

= —2" = Z z".
_ |
1 z n=0 n n=0

(2) Suppose we wish to find the power series expansion of f (z) = 12~ centered

at 3 which will necessarily converge if |z — 3| < 2. To do this write z = 3+h

so that

1 1 1
f(z)_l—(3+h)_—2—h_ 21+h/2 QZ< )
—, 1
=3 e

Moral: try to avoid computing derivatives whenever possible.
(3) Since ddZ; e* = ¢? for all n,

which is convergent for all z € C since e is entire.
(4) By substituting —z for z,

e 7 = Z (_
n=0

3

and 23 for z we find

(5) Since

we have writing z = 29 + h, that

&7 = ni_o:oezo (Z _nTO)n'

(6) Similarly,
N~ 02)" (@) .-
=2 qu = E
_nz:% (2n Z:: 2n+1 S

From this we deduce that

[e’e] ~2n+1
Z (4) H2n+1
(2n+1)!

n=0

eiz —e —iz

. o - 1)” 2n+1
AT ; 2n +1)!
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and
_ e (=),
(7) Similarly,
. . > 1 2n+1
SthZ = Z mz and
n=0
coshz = i L22"
a — (2n)!”
n=0

(8) Do sin (z) centered at zg. To do this again let z = zg + h and then

sin (z) = sin (29 + h) = sin (29) sin (h) + cos (zq) cos (h)

= sin (o) nZ::O 2nil) (2 = 20)2"* + cos (z0) nzz:o @n)] (z—20)*".
1

= —— centered
w—2z

(9) Consider the power series expansion of the function f (z) :
at z = 29 with zg # w. To do this again write z = zg + h € C, then
1 1 1 1

w—z:w—zo—h_w—zol—h/(w—zo)

o E () () e

w — Z
0 n=0 n=0

provided that || = |z — 20| < |w — 20|, i.e.

1 [e'e] 1 n+1
Z( ) (z — 20)" for |z — zo| < |w — 2z0].
n=0

w—z w— 2
We may now also differentiate this series in z to learn

1 o] 1 n+1
722,1( ) (2 2y
w — 2o

(w — z)2 n=0

(20.6)

and again to learn
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21. (11/21/2003) LECTURE 21

e Reviewed the general method of using the residue theorem for computing
real integrals. So far we are restricted to computing residues only in simple
contexts. This will be remedied in the next lecture.

Example 21.1. Suppose that f(z) = (1 4 2) := e*l°8(1+2) Then
F()=a0+2)"", @) =al@=1)1+2)""2,...
fM)=al@—1)...(a—n+1) (142"

and therefore,

(1_1_2)@:Za(a—l)..ﬁ!(a—n—l—l)zn.

For example if « = —1, then
afa—1)...(a—n+1)=-1(-2)...(-n) = (-1)"n!

and we find again that

1 o0
= —1)" 2",
1+ 2 nZ::o( )"z

Suppose that f is an analytic function near z = zp and f (z9) = 0. Then if f is
not identically zero, there is a first n € N such that f(") (z9) # 0, and therefore f
has a power series expansion of the form

FE =S an (s —20) = (5= 20)" Sl (5= 20) = (5 — 20)" g (2)
k=n k=n

where g is analytic on the same set where f is analytic and g (2¢) # 0. In this case
we say the f has a zero of order n at z,. Notice that if f has a zero of order
oo at zg then f = 0 near zg and in fact f = 0 on the connected component of 2
containing zg.

Theorem 21.2 (Analytic Continuation). Suppose that f : Q@ — C is an analytic
function on a connected open subset C such that Z (f) := {z € Q: f(z) =0} has
an accumulation point in Q, then f = 0.

Proof. Suppose for simplicity 0 € Q and there exists z, € Q such that z, # 0
for all n and z, — 0 as n — oo. Writing

flz)= Z anz",
n=0

we have 0 = f (z,,) — f(0) = ag. Since

we have 0 = @ — a1 showing a; = 0. Hence now we have
n

f(z) _ ianzn—z
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and 0 = %{‘) — ag showing as = 0. Continuing this way, we learn a,, = 0 for all
n and hence f(z) = 0 near 0. Since ) is connected we may connected any point
z € Q by a path and then use the Picture in Figure 9 below to argue that f (z) =0,
ie. f=0. =

FIGURE 9. Stringing together a sequence of disks in order to show
that if f = 0 near one point in a connected region then f = 0.

Corollary 21.3. If f and g are two entire functions such that f = g on the real
axis then f (z) = g (z) for all z € C. In particular if f (x) is a real valued function
of x € R, there is at most one extension of f to an analytic function on C.

Proof. Apply the previous theorem to f —g.
Example 21.4. Suppose we wish to verify that

(21.1) sin (z + w) = sin z cos w + cos z sin w

using only the statement for real z and w. To do this, first assume that w is real,
then both sides of Eq. (21.1) are analytic in z and agree for z real and therefore
are equal for all z € C.Hence we now know that Eq. (21.1) holds for w € R and
z € C. Now fix z € C, then both sides of Eq. (21.1) are analytic in w and agree for
w real and therefore are equal for all w € C.
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22. (11/24/2003) LECTURE 22

22.1. Laurent Series and Residues. For zp € C and 0 <r < R < 00, let
A(zo,m,R):={2€C:r <|z—2]| <R}
so that A (20,7, R) is an annulus centered at zg.

Theorem 22.1 (Laurent Series). Suppose that f : A (zp,r, R) — C is analytic and
let

1
27T’L Cp (Z — ZO)
where C, (0) := 29 + pe'® for 6 :0 — 2w and r < p < R. Then
(22.2) f(z)= Z an (z —20)" for all z € A(z,m, R)

where the above Laurent series converges absolutely.

Proof. (Only Sketched in Class.) First suppose that zp = 0 and let z €
A (0,7, R). Choose 19 and Ry such that r < rg < |z| < Ry < R. In this case
the Cauchy integral formula may be written as

(22.3) fz)==—

féRo <£ (—wi) wf o % dw} ’

o

see Figure 10.

F1GURE 10. Setting up to use the Cauchy integral formula.
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For w € Cp, we have

oo

1 1 1 1 Z\"
w—z_al—z/w_zz(a)

n=0

and hence applying Theorem 20.1 we find

L flw) . 5|1 fw, | on
27 Cr (w —z)dw N nz: lQ_m 7|{U|_RD wntl dw] z

=0

By Cauchy Goursat theorem,

1 1
T J|w|=Ro W T S|w|=p W
and so
1 fw) s
(22.4) omi o (w0 Z)dw = Z anz".

Similarly for w € C,,

1 1 1 1 w\"™
_w—z_gl—w/z_;;(;)

and hence applying Theorem 20.1,

1 flw) | L n —(n+1)
21 Je (w—z)dw_;[%ﬂ ﬁmf(w)w dw]z i

o 2mi Jo, w

where we have used the Cauchy Goursat theorem in the last equality. Finally letting
k=—(n+1)or —n =k + 1 in the previous sum gives

1 fw) |1 (w) P k
(22.5) ~5— . Tw—2) dw = k;oo lQ—m o dw] 20 = Z apz”.

k=—o00
Combining Eqs. (22.3), (22.4) and (22.5) verifies Eq. (22.2) when zy = 0.

When zy # 0, apply what we have just proved to g (h) = f (20 +h) with h =
(z — zp) to learn

f(z)=g(h)= Z anh” = Z an (2 = z0)"
where
0, = gw) L flotw), -
210 Jyw|=p wntl 270wl =p wntl

Finally make the change of variables, z = zp + w in the previous integral to learn

1
Ay = _% %dz.
270 J|z—z0)=p (2 — 20)
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Definition 22.2. An analytic function f on Q\ {20} is said to have an isolated
singularity at zy. Let

o0

f(z)= Z an (2 —20)" for 0 < |z — 29| < R

n=—oo

be the Laurent series expansion of f centered at zy. The portion of this sum:

-1

Z an (z — 20)"

n=—oo
is called principle part of f near z.

(1) f has an essential singularity at z if #{n <0:a, # 0} = 0.

(2) f has a removable singularity at zy if #{n <0:a, # 0} =0, i.e. if the
principle part is 0.

(3) f has a pole of order N if the principle part of f at zq is of the form

—1

Z an (z — 20)" with a_n # 0.

n=—N
If N =1, f is said to have a simple pole at zj.
Remark 22.3. If f has an isolated singularity at zp, then by Eq. (22.1)
res,, [ =a_1.
Example 22.4.

(1) el/z = 37> /127" resy (/%) = 1 and 2z = 0 is an essential singularity
point. Mention consequences for integrals.

(2) Since
sinz 1 22 2P
T
1 22
— "2 _ - 42
ST ’
resg [SizrgZ] = 0 and there is a pole of order 2 at 0.

3)

cos z 1 22 2t
— == l— — 4+ ——...
z z 2! 4!

so that resg [C‘;E:‘;Z]

(4) Use partial fractions to find the Laurent series expansions of
1
F(z):= (z—1)(z—2)
in the three regions: |z| < 1, 1 < |2| < 2 and |z| > 2.To do this write
1 A B

(zfl)(sz):zfl—i_z—Q

_1
3

at zo =0
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and multiply by (z — 1) (z — 2) to find
1=A(z-2)+B(z—1).
Evaluating at z = 1 and z = 2 then implies that A = —1 and B = 1 so that
1 —1 1
(z—1)(2—2) T tI Ty
(a) For |z| < 1, we have
1 1 1
& =131

_ n _ - - — _ n
_Z{Z 2(2)} Z[l Qn]z‘
n=0 n=0
(b) For 1 < |z| < 2, we have

11 11
1@ == 13, "31=2p

I ., 1K /z\n
155 6)

(c) For |z| > 2, we have
1 1 1 1

L sy P sy
= —iz_"_l-ﬁ-%i (%)"
n=0 n=0

=y @ -1zh
n=0
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23. (11/26/2003) LECTURE 23

Proposition 23.1. Suppose f (z) is analytic on D’ (20,¢) and
N

(23.1) FE=Y anle—2)"+0((z-2)""),

n—=-—

then

1
an:_.% L)nﬂdzwith()<p<5
278 J)z—z0)=p (2 — 20)

are the Laurent coefficients of f forn = —K,...,N. In particular if f is analytic
on D' (zp,€) and

N

(23.2) F) =Y an(z=20)+ 0 ((z=2)"*"),

n=0
(n)
then a,, = fT(,ZO) forn < N.

Proof. For simplicity of notation let us assume that zy = 0. Using

1 1y _{Olf n#1

omi S, w1 i m=1,

N
1 [ (2) _ 1 1 E: n N+1
2mi zZkt1 dz = 2 fz—p zZk+1 (n__KanZ +0 (Z ) dz

1 1 a n N+1
_ = s an?z +O(z ) dz

270 j2)=p Mt

_ RS N—k
=ai + 5 ‘Z‘:pO(z )dz

which gives the result, since
L % (0] (zN _k) dz
278 Jjzl=p

provided N > k. The second assertion follows from the first using

f™(0) = n_'fh f(z)dz for n > 0.
zl=p

1

< ‘%O(pN_k) 2rp —0as p— 0

2w Zntl
Here is a second proof of the second assertion. We have
N ')
Yan +0 () = f(2) =Y e
n=0 n=0

and therefore,

f: |:7f(n) © — an] 2"=0 (zN'H) _ LN i f(”) ©) Nl =0 (zN‘H) .

n! n!
n=0 n=N+1

Taking z = 0 shows ! (OO)!(O) — ag = 0 and then working inductively we learn a,, =

f(nn—)!(o)forallngN. [ ]
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Remark 23.2. In working the following examples we will make use of the following
basic power series:

(1) (142)" =y eblantl) n g, that

n!

-1 -1 -2
e =300 mis"
sinz =302, (gn-llr)l)'z%+1

(2)
3)
(4) cosz=3 ", ((2711))7 z
(5)
(6)

: _ ee] 1 2n+1
sinhz =3, eyt

_ 0 1 2n
coshz=> ", K

Example 23.3. #1 on p. 238. Find the order m and residue B of the poles of the
following functions

) 22—&-27 2)< 2 )37 3) e " e

z—1 2241 22+ 72 (22 4+1)2
1 ) e* ¢

o —m yabz=mw

sin (22) sin? (2)

(1) Let z =1+ h, then
242 (1+h)*+2 3+2h+h°
z—1 h h
som =1 and B = 3. Alternatively, res; (’f_*f) =42 _3
(2) Let z = —1 + h, then

3 1 3 3
2\ _(zathy _ L (1 L (L3 3 s
(22+1) _< 2h ) _8h3( pth) =me g tah

sothat m=3 and B= —=2
(3) The poles is at +im and is of order 1 and we have
res 1
+im 9 (:l:?/]'r) = 27‘1'.

(4) The poles are at +i and m = 2. Let z = ¢ + h to find

e e* elth et 1,

= = = ——e"(1+h/2i)7?
FAIP  GripGoar @R amt
ei

z

(1+ R+ O (h?))(1 - 2h/2i + O (h?))

1
h?
hia +h+0 (h?)1+ih + O (h?))

—4
a
—4

- <...+__i4(i+1)h1+...>

and so
eZ

G- gl

res;
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(5) This function has poles at 22 = nr or z = (nﬂ)l/Q. Let zp € (nﬂ')l/2 and
z =29+ h. Then

sin (2%) = sin (2§ + 2z0h + h®) = sin (nm + 220h + R?)
= sin (n) cos (2z0h + h2) + cos (nm) sin (2zph + h?)
= (=1)" (220h + O (h?))

where we assume that n # 0 for the moment. Then

- 1 (= 1
sin (22)  (=1)"(220h + O (h?))  2z0h 1+ O (h)
_=nn
=S o)
and so .
L TSVE ! = (=1) if n#0.

sin(22) 2 (nx)'/?
This can be done by our old friend as well, namely,
1 1 (=™

Ty 1/2 sin (22) ~ 22cos (22) |Z:(7”T)1/2 - 9 7T)1/2'
For n = 0, we have again that
6
sin (22) =22 - % +0 (210)
so that
1 1 1 1 1

: = == == (1+0(*
sin (22) 227%+O(210) 2217%+O(Zs) 22 ( (%))
and so

res
Osin (22)
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24. (12/1/2003) LECTURE 24

Example 24.1. (Skipped.) The function ﬁz(z) at z = m has a pole of order 2

since sin® (z) has a zero of order two there. So again let z = 7 + h and use

sin (z) = sin (7 + h) = —sin (h)

so that
o orth ﬁ(l+h+§—?+...)
sin2(z)_sin2(7r+h)_e sin? (h)

B (rrng ) e (14n+ )

T (h—h33I .2 h2 (1—n2/31+...)2

:%(1+h+0(h2))(1+0(h2))
and so .

resw%:e”.
sin” (z)

Example 24.2. (Skipped ) Find the first few terms in the Taylor series expansion
of = cosz and . To do this we have

—zcosz’

cosz=(1+2+22+22+0 () (1——2+0( ))

1—=2 2!
52 53 52 L3
=l-5 +z—§+z +2°4+0(z )—1+z+7+?+0(z4)
and similarly,
L _ 2, .3 4 1
1_ZCOSZ—(1+Z—|-Z +2°4+0(z ))< —ﬁ+0(z4))
:(1+z+22+z3+0(z4))< +§+O( )>
—1+§—|—z+§+z +2°+0 (2%
3 3 .
:1+z+522+§z3+0(z4).
Example 24.3. (Skipped.) Now consider
111 1
1—zsinz -2 (z *Z—3+O(z5))

1+z+22+z3+0(z4))

o ¢

)) (I4+z+2242+0(2"))

wlN
—|— =

(1-

1+

w|N

2 2,3
(1+z+z + 2 +§+§+O( ))
+

Nl Q] Wl~ W~ =

1—1—6(24—2)—1—0( ?).
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Example 24.4. (Skipped.) Show
e* e

Tes,—g— =res;=0——— = 0.
zsin z sin” z

To do this we have
sin®z = (2 —2°/31+ O (25))2 =(z2=2°/314 0 (2°)) (= = 2* /31 + O ("))
=2240 (24) = 22 (1 + 0 (32))

and therefore

Sinl? 5 22 (1 —1—10 (22)) = Z_lz (1+0 (z2)) =2240(1).
Therefore
G = THOm) 140(2) ==+ O
Similarly

zsinz =z (2= 2°/314+ 0 (%)) =22 (1+ O (&%)
and so the residue is the same.

Example 24.5. Show

e* ) e” 55 .
% —5—dz = 27 - reS,—0———5— = 2Wi—~ = - 7i.
|z|]=1 Z8in” 2 zsin® z 6 3

To do this we have
zsin®z = (2 —2°/314+ O (z5))2 =2z (z=2°/3140 (%)) (= 2*/31 + O (2%))
=z (2 —22Y/31+ O (£ )

_3_15 6\ _ .3 _12 3
=2z 32 —|—O(z)—z (1 32 —I—O(z ))

and hence
1 7i 1
zsin®z 2% (1— 22240 (2%))
:i 1+122+O(zg)+ l,2*2—&-0(23) i
23 3 3
3, 1
=z —|—§z +0(1).
Hence
1 z 3 1 2 3
= + = +O0)| [1+2+ 240
e = [ o] s 220 ()
()
=--l313 z
and
res ¢ —§
z:Ozsin?’z_G
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Example 24.6. #4 p. 219,

1 T
— dr=
72_1 Zsinhz

3
To see this we need to compute the residue at 0. For this we have
1 B 1 1 1
Zsinhz 22 (244 + 4 +...)

Blyz o

1 22
—p0‘5+ )
from which it follows that

1 1

res,—g =
z2sinh z 6
and this gives the answer

Example 24.7. Compute the integral (a > O)
i _xsinax
/ =Im / dx
(1 + 22 1 + 2

. Zelaz
=Im [2mresz_¢7

ae
1+ 22)°

|

To compute this residue, let z =14+ h and

Zeiaz Zeiaz
z) = =
f(2) e
then

(z—4)" (z +19)°

: ia(i+h)
Fli+h) = (i + h) elalith

e~ @ (Z + h) eiah
h2(h+2i)°  h* —4(1—ih/2)*
e~  (i+h)eh
T 421 —ih+ O (R?)

e —a

=z i+h) (1 +iah+ O (h?)) (1 +ih+ O (h?))

:T}ﬂ(”-—’_(l_a_l)h—’_.”)

and so

ze’LCLZ —a
res,—;

(1+22)°% 4
Example 24.8 (Summing (—

)"t /n?). (Sketched only very briefly!l) S69, p
245-246: #5. Let C'y be the counter clockwise oriented boundary of the square

1 1
Qn = {zEC:Rez|§ <N+§>7Tand [Im z| < <N+§>Tf}

as in Figure 24.8. Then

75
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Ta
~
an -
00,
U S, S
1T
T 4
————a — — —— 1 '—7 'R@
In -7 - ° w g W
Tt
-27 7
§ — __[ > —
L |
Y
1
(24.1) lim 5 =0
N—oo QN zZesImz
and
N n
1 2 -1
(24.2) / ———dz = 2mi —+—22( 2)
aQy 22sinz L=
from which it follows that
NE R
24.3 - = —
( ) nz::l n? 12

To prove Eq. (24.1), on the part of the contours, © = + (N + %) 7 we have

sin (£ (W + 5 ) 7+ y>‘ —|sin (4 (w4 3 ) =) cos i) +-os (& (W 5 ) ) sin (iy)’

= |t coshy| > 1

and on the part of the contours,
1
y== (N + —) m
2
. . 1 . . 1
sin () cos <:|:z <N + §> 7T> + cos (x) sin <:|:z <N + §> 7r>
1
N+ =
+ 2

oo {3+ 1) ) eoswrsn ( (v+3) )|

& (N+3)m >

we have

an(asi (3 2)) -

Hence we have on the contour that
1

z2sin z

1
N+

<
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and therefore,

1 1
/ s——dz| < s—4(2N +1) - 0as N — oo.
oQN 278z (N-i-%) 2
We now must compute the residues,
1 1 1 1
2rsinz 22 (-4 45 +...) Pl-Z 454
1 1 22 2P 22 2P 2
—; + ?*ﬁwL... + ? y +
1 1 22
=3 +§—|—..
so that
1 1
0 5 - = %
z%sinz 6
while
1 1 n 1
reStnn = :(_1)

228inz  n?w?cos (+nm)

and therefore,

+N 1
B} Z:27T’L —+ E (_1)71 B 2‘|
/6QN zesinz et} nem
N n
1 2 Z(_n
= 271 _+Fn:1 TL2 ‘|

Example 24.9 (Bessel function relationship). (Skipped) #4 on p.230 (see also
#10 on p. 199)

1 > 2" > 2"
L L L
?{ e<z+z)dz:?{ Zez 'dz:Z?{ ez 'dz
|21=1 =izt e !
o)

N I S
= TZZEYGSO{EZZ}— WZZEW

n=0 n=0

Recall that Bessel functions may be defined by

eé(wfﬁ): i In () w"

n—=——oo
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and so

1
- n (m+1)
Jm(z)_Qi » 1( g Jn(z)w>w dw

n=—oo

-1 3 (=) = (m4) gy

2mi Jw|=1

1 2 1 sz\"
_ 5 ~ [z n,, —(m+1)
" S Zn!(Q) ww dw

w|=1

)

_ i(i)"i %5 W g
W \2) 27 J,_y

n=0

1 /z\n
= —(5) reSy—0 [eﬁwnfmfl]

1o\ 1 o\ = 1z
=) wm) = XamG)

Writing out the contour integral explicitly we also

T (2) 1/ L P

=5 B
_ % : (i#sing ,—imd jg
_ % : o—ilmo—zsind] gp
=5- _: cos (mf — zsin§) d.

25. (12/3/2003) LECTURE 25: MORE CONTOUR INTEGRALS

Example 25.1 (ex.abc). To evaluate sums of the form

- p(n) - _\n p(n)
7; and Z( 1) Q0

q (’fl) n=1

where p and g are two polynomials with deg g > degp + 2, one should consider the
integrals

cscmz dz

lim / p(z) cotmz dz and lim p(2)
N—oco QN q(Z) N—oo QN q(Z)

where 0Qn is as in Example 24.8. See Problem 18 on p. 163 of Berenstein and
Gay, “Complex Variables: An introduction.”

Example 25.2. We wish to show

27
cos 0 T
I= ——df = ——.
/0 5+ 4cosd 3
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(Maple gives T which seems to be the wrong answer here.) To this end, let z = e'?
so that

-1 _ 1
cosf = ‘itz and siné?:Z ; and
1
) d
dz = ie"df = izdf, so that df = —Z
1z

We may write the integral as

, }{ N 1 (2241)
= _— — 0 - 60— = — _—_— Z.
|z]=1 5 —‘,—4% 12 21 |z|=1 # 52+ 222+ 2

The integrand has a singular points at z = 0 and

L hE(E- 16)'? 5+ (25-16)"" -5+ (9)"?

4 4 4

—5+3 1
= =J-2 =},
]

Hence the answer is

_ ol L (2+1) 1L L+ (-3)°
1=y (o bress) |5 o3| =T 2 T A )
N 7

I PEEY B

Example 25.3. Let 0 < a < 1, we wish to compute

oo —a
I:/ Ty = ——.
o z+1 sinam

In order to do this we are going to consider the contour integral

/ i dz
CRZ+1

a

where C is as in Figure 11 below and 2% := e~ %) where
1(2) = In|z| + 40 where z = || e with 0 < 0 < 27.

Hence we are putting the branch cut along the real axis. By the residue calculus,

/ c = 2mires_1 [ z } =2mi(—1)"" = 2mi (ei”)fa = Yrie TG,
C z

Rz t1 +1
On the other hand we have, as usual,
’Zﬁa’ — efaRcl(z) — efaln\z\ — ‘Z|_a

and hence for |z| = R we have

27| R

z+1 1+ R
so that

R—a
<2mR — 0as R — oo.

1+R

/ i dz
Crnflzl=R} # T 1
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/]
y— (= >
X T
RMmH
coT

F1GURE 11. A key hole contour.

Therefore we have
—a —a

R —a R
2mie”ime :/ iz :/ v da:—/ Y i
CR\{‘Z'ZR}Z+1 0 .§C+1 0 .§C+1
ae—27ria and

Now for z = x — i just below [0,00) we have 27¢ = (z€2™) " = o~

hence
R —a R —a
R . x T x
2mie ™ = lim dx — e~ 2™ dx
R—oo 0o T + 1 0 T + 1
_ (1 o 6—27ria) .
That is ,
2mie e 21 T
I
- 1— e—27ria - ,/Tei‘n'a _ e—iﬂ'a - sin (J,ﬂ'.

Lemma 25.4 (Jordan’s Lemma).
" —Rsin6 m
do < —.
/e R

Proof. By symmetry and since sin§ < %0 for 6 € [0,7/2], see Figure 12, we

have

T ) /2 ) /2
/ 6—R31n9d9:2/ e—R51n0d9<2/ e—R%Odaz_ze—R%Qm/Q < E
0 0 0 R R

Exercise 25.5. Show

1 . M .
M
(25.1) / s xdz:/ 2% 4z — mas M — oo
T M X

—1
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F1GURE 12. Bounding sin @ by a straight line.

using the following method.?
(1) Show that

2z lsinz for 2#0
g(z)_{ 1 if 2=0

defines a holomorphic function on C.

81

(2) Let I'ps denote the straight line path from —M to —1 along the real axis
followed by the contour €% for 6 going from 7 to 27 and then followed by

the straight line path from 1 to M. Explain why

/M sinxdm:/ Sinzdz (:i/ e—izdz—l e—izdz>.
Mz Ly # 2i Jp,, % 2i Jr, =2

FIGURE 13. The contours used in Exercise 25.5.

’In previous notes we evaluated this limit by real variable techniques based on the identity

that % = fooo e 2d\ for z > 0.
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(3) Let Cy; denote the path Me? with 6 going from 0 to  and C}; denote the
path Me" with 6 going from 7 to 2w. By deforming paths and using the
Cauchy integral formula, show

eiz e—iz
/ —dz = 2mi and / dz = 0.
FM+C;(4 z Tm—Cyy z

(4) Show (by writing out the integrals explicitly) that

1z efiz

lim —dz=0= lim

M—o0 ct 2 M—o0 Cy, z
M M

dz.
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26. (12/5/2003) LECTURE 26: COURSE REVIEW

The following two theorems summarize the main theoretical content of Math
120A.

Theorem 26.1 (Analytic Functions). Let Q C, C be an open set and f € C(2,C),
then the following statements are equivalent:

(1) fe H(Q), i.e. f is analytic in Q.
(2) flx+iy) =u(x,y)+iv(z,y) with u and v being continuously differentiable
functions satisfying the Cauchy Riemann equations,

[y (x +iy) = ifs (v +1iy)
or equivalently
Uy = —Vp and Uy = Vy.
(3) [ f(2)dz =0 for all solid triangles T C Q.
T
(4) [ f(2)dz =0 for any closed contour in  which is homotopic to a constant
loop.
6) [, f(z)dz= fﬁ f(2)dz for any two contours in § which are homotopic in

Q keeping the endpoints fized. B
(6) For all disks D = D(zg,p) such that D C €,

(26.1) f(z) = QLTF’L - %dw for all z € D.

(7) For all disks D = D(z9, p) such that D C Q, f(z) may be represented as a
convergent power series

(26.2) flz)= i an(z — 20)" for all z € D.

n=0
In particular f € C*>(Q,C).

Moreover if D is as above, we have

|
= P _Sw)
(26.3) i (z) - 7£D (w— z)"dw forallze D
and the coefficients a,, in Eq. (26.2) are given by
f™M () 1 % f(w)
26.4 - SR R A C) N
(264) (i n! 210 Jop (w — z9)"t1 dw

We also have if A(zp,7, R) C 2 where
A(zo,m R):={2€C:r <|z—2]| <R},

then following Laurent series converges absolutely,

o0

f(z)= Z an (z — 20)" for all z € A(zo,7, R)

n=—oo

1 £(2)
an = i %Cp o Zo)nﬂ dz.

where
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Theorem 26.2 (Residue Theorem). Suppose that f : Q\ {z1,...,2,} — C is an
analytic function and C' is a simple counter clockwise closed contour in €2 such that
C “surrounds” {z1,...,2zn}, then

/ f(z)dz =2mi ireszif.
¢ i=1

1
211

where

f()dz=a_
|z2—z0|=¢

res,, f 1=

where a_y is the coefficient of (z — zo)_1 in the Laurent series expansion of f near
zo- The following formula for computing residues is often useful:

h h
e, 1C) _ B()
9(z) ¢ (20)
provided that h and g are analytic near zo, g (z0) = 0 while g’ (z0) # 0.

26.1. Study Guide for Math 120A Final (What you should know).

(1) C:={z=z+iy: 2,y € R} with i> = —1 and z = x — iy. The complex
numbers behave much like the real numbers. In particular the quadratic
formula holds.

) Izl = \/332+y = VzZ, [zw| = [z]|w], |2 +w| < |2| + |w]|, Rez = 2,
Imz = , |[Rez| < |z| and |[Imz| < |z|. We also have Zw = zw and

z—l—w—z—l—wandz = ‘72

(3) {z: ]z — 20| = p} is a circle of radius p centered at zp.
{z : |z — 20| < p} is the open disk of radius p centered at zp.
{z : |z — 20| > p} is every thing outside of the open disk of radius p cen-

tered at zg.
(4) e* —e (cosy +isiny), every z = |z| €’
(5) arg(z) = {# eR:z=|z| Ze}andArg():01f77r<9§7randz:

|z| e?. Notice that z = |z| e?2r8(2)
(6) =/m = ¢/,
(7) lim,_,, f () = L. Usual limit rules hold from real variables.
(8) Mapping properties of simple complex functions
(9) The definition of complex differentiable f(z). Examples, p(z), €, e?(*),
1/z, 1/p(2) etc.
(10) Key points of e* are is %ez =e” and e*e” = ¢
(11) All of the usual derivative formulas hold, in particular product, sum, and
chain rules:

z+w

and
d , .
LEEW) = 020,

(12) Rez, Im z, z, are nice functions from the real - variables point of view but
are not complex differentiable.

(13) Integration:
b b b
/z(t)dt::/ x(t)dt—i—i/ Y (8) dt.



(14)

(15)

(16)

(17)

(18)
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All of the usual integration rules hold, like the fundamental theorem of
calculus, linearity and integration by parts.
Be able to use the Cauchy Riemann equations to check that a function is
analytic and find harmonic conjugates
You should understand and be able to use the following analytic functions:
(a) €* =€ (cosy +isiny) =Y o0 L2

(b) logz =In|z| + i arg z and its branches:

— 1
Log(1—2)=— Z n—Jrlzn+1 if |z < 1.
=0

(c) z* and its branches: if (14 2)* = e®Lo8(1+2) then

(1+Z)a:Za(afl)..ﬁ!(afnJrl)zn

n=0

in particular if « = —1, then

e
1 _§ n
= z .
—Z
n=0

iz —iz

(d) sin(z) := ==+ ZOO %Z%-ﬂ
(e) cos(z):= % =y, (Q:L)TZ

(f) sinh (z) := £=— =" (2n+1)|22n+1
() conh (2) = 5557 = T

(1) tan () - 22— i

(i) tanh (2) = S5 = 5=

Be able to compute contour integrals by parametrizing the contour to get

/Cf(z)dz:/abf(z(t))z ) dt

Be able to estimate contour integrals using

/Cf(z) dz

Be able to compute contour integrals using the fundamental theorem of
calculus: if f is analytic on a neighborhood of a contour C, then

/Cf/ (Z) dz = f(Cend) - f (Cbegin) .

Be able to compute simple Taylor series and Laurent series expansions of
a function f centered at a point zg € C. Hint: If zg # 0, write z = 29 + h
and then do the expansion in h about A = 0. At the end replace h by z — 2.
Be able to compute residues and use the residue theorem for computing
contour integrals.

Be able to use complex techniques to compute real integrals as have ap-
peared on the homework problems.

< max|f ()] - length (C) .
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27. FOR THOSE INTERESTED: THEORY SKIPPED IN LECTURES

27.1. Differentiating and integrating a sum of analytic functions. We now
restate and prove the differentiating and integrating a sum of analytic functions
Theorem 20.1.

Theorem 27.1 (Differentiating and integrating a sum of analytic functions). Sup-
pose that f, : Q2 — C is a sequence of analytic functions such that

|fn (2)| < M, for alln € N and z € C
where Y | M,, < co. Then

(1) If C is any contour in Q, we have

/CF(z)dz:i/cfn(z)dz.

(2) The function F (z) := Y.~ fn (2) is an analytic.
(3) F'(2) =>0" [l (2) and in fact
(27.1) F® (z) = i F8) () for all k € Ny and z € .

n=1
Part of the assertion here is that all sums appearing are absolutely convergent.

Proof.
(1) Since

Ti /Cfn (2)dz

where £(C) is the length of C, the sum Y ", [ fn (2)dz is absolutely
convergent. Moreover

<Y ML(C) <0
n=1

/CF(z)dz—nZl/Cfn(z)dz - /C F(2) —;fn(z)] dz| < ent (O)
where
N oo
ey i=max F(z)— nzz:lfn (2)] < max n:zN:H fn (2)

o0
< Z M, — 0as N — oo.
n=N+1

(2) Suppose that T is a solid triangle inside of €2, then by item 1.,

/aTF(Z)dZ_; 8Tfn(z)d,z:O

where the last equality is a consequence of the Cauchy Goursat Theorem
or the converse to Morera’s theorem. It now follow by an application of
Morera’s theorem that F' is analytic on 2. (Item 2. will also be proved in
the course of the proof of item 3.)
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(3) Since complex differentiability is a local assertion, let us fix zg € Q and
p > 0 such that D (z,p) C 2 and let r = dist(zg, Q) > p. Then by the
Cauchy estimate in Corollary 18.7 with n = 1, we learn

1
‘f,lL (Z)| S EMn forall z € D (Zo,p) .

We now suppose z € D (zg, p) and h € C\ {0} with |h| < p — |z|. Using the
definition of the derivative and properties of the sum,

(Z-‘rh Zf Z|:fn(z+h})b_fn(z>_frll(z)]

n=1

By the fundamental theorem of calculus and the chain rule,

1
fn(z+h)—fn(z)=/0 ;ltf (+ th) dt = /f (2 + th)dt
which implies

fn(Z+h)_fn(Z) _
h

1

; [fh (z+th) — [, (2)] dt’

! ! ! 2
s/o i th) = 1, (2)] de < ==,

Therefore for any N € N we have

n=1
N oo
n=1 pn:]\”rl

So letting h — 0 in this expression shows

This procedure may be repeated to prove Eq. (27.1). Since zp € Q was
arbitrary, the proof is complete.

lim
h—0

Z M, — 0 and N — oo.
pn N+1

|
27.2. The Basic Theory of Power Series.
Lemma 27.2 (Root and Ratio Test). Suppose {z,},., C C and

p:= lim /|z,| or p:= lim Zntl
—00 n—oo

n n

exists

then
(1) If p <1 then Y ;" |zn] < 00 and hence Y . zn is convergent.
(2) If p> 1, limy oo 2| = 00 and Y., 2y is divergent.
(3) If p=1, the test fails and you have to work harder.
Proof.
(1) Suppose p <1 andlet p<r < 1.
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(a) Suppose first that p := lim, o ¥/|2zn|, then 3/|z,| < r for large n
and hence
|2n| < 7" for large n, say n > N.

Since Y% |zn] < N " < 1 < o0, the sum is absolutely conver-

gent.
(b) Suppose now that p := lim,_ 2;:1 . Then again for n > N for some
N we have
z
L < rie |zpgpa| <7zl foralln > N.
Zn

This then implies
2Nt <7 |angn—1] <77 [engn—a] <o < 2N

So again

o0 o0 1
Z|zn| < |zN\Zr" < |zn| = < o0
N N

and the original sum is absolutely convergent.
(2) Suppose p > 1 and let p > r > 1.
(a) Suppose first that p := lim, o ¥/|2], then /]z,] > r for large n
and hence
|2n| > 7" for large n

and hence lim,, . |2,| = 0o and the series must diverge.

(b) Suppose now that p := lim,_ ‘ zzf ’ . Then again for n > N for some
N we have
z
L > rie. |zpga| > 7 lza| foralln > N.
Zn

This then implies
l2Ntn| > 7 eNino1] > 72 |anan_a| > > 1" 2N
So again lim,,_,, |2,| = co and the series diverge.
n

Definition 27.3. Given z, € C and {a,} -, C C, the series of the form

o0
Z an (z — 20)"
n=0

is called a power series. If zyp = 0 we call it a Maclaurin series, i.e. a series of

the form
o0
Z a2,
n=0

To each power series, Y oo an (2 — 2)" , let

oo
7 = sup {|z — 2| : z € C and Zan (z —20)" exists} .

n=0

The number r > 0 is called the radius of convergence of the series.
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Proposition 27.4. If r is the radius of convergence of a power series

(27.2) D an(z—2)"

then:

(1) If |z — 20| < 7, the series converges.
(2) If |z — zo0| > r, the series diverges.

() If

exist

. n . Ap+1
pw= lim {/|ay| or p = lim +
n—oo n—oo

n

thenr = 1.
N

Proof. For simplicity of exposition we will assume that zg = 0.
(1) If w € C\ {0} is a point such that Y ja,w™ exists then, with A = |w],

lim |a,w"| = lim|a,| A" = 0.
n—oo

In particular for large n we have |a,| A" < 1 or |a,| < A" Hence if |z| < A,

then
n
z
‘anzn| < <|_)\|>

for large n and hence Y > |a,2"| < oo by comparison with a geometric
series. This proves item 1.
(2) If jw| > 7 and Y7 a,w™ were to exists, this would violate the definition
of r.
(3) If we apply the root test or the ratio test to the series in Eq. (27.2) we
would learn
p:= lim V/|a, (z —20)"| = |z — 20| or
n—oo

‘an+1 (Z — ZO)nJrl‘

p = lim

[0 :,UJ|2720‘
n—oo |an (2 — 20)" |

and in either case we would learn that the series in Eq. (27.2) converges if
p < 1 and diverges if p > 1 and these later conditions are equivalent to

1 1
|z — 20| < = and |z — 20| > —.
7 1

It follows from this that r = ﬁ in this case.

]
Using these results and our differentiation Theorem 20.1 we get the following
corollary.

Theorem 27.5 (Power Series Integration and Differentiation). Suppose that
S(z) = Zan (2 —20)" for z € D:= D (z,r)
n=0

where 1 is the radius of convergence of the series which is assumed to be positive.
Then:
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(1) S is analytic on D and
1
(27.3) ap = ES(H) (z0) for all n € Ny.

(2) The derivative S is given by

(27.4) S'(z) = i nan (z — 20)" "
n=1
and more generally,
Sk (2) = i nn—1)...(n—k+Dan(z — 20)" " for all z € D (20,7).
n=0

(3) If C is a contour in D then

(27.5) . .
/CS (2)dz = nZ::Oan /C (2 —20)"dz = nz:% na: . [(zf —20)" T — (21 — )"

where z; and zy are the initial and final points of C' respectively. In partic-
ular if z; = 2, then

o0

Qn, n+1
S dz = — .
/{W] () ds = 3 2 (w = 20)

n=0

Proof. This all follows from Theorem 20.1 and our discussions about power
series in Proposition 27.4 and its proof. m

Corollary 27.6 (Removable singularities). Let Q@ C, C, zg € Q and f € H(2\

{20}). If limsup, ., [f(2)] < oo, i.e. sup  |f(2)] < oo for some € > 0, then
0<|z—2z0|<e
lim f(z) exists. Moreover if we extend f to Q by setting f(z9) = lim f(z), then
z—20

z—20
feHQ).
Proof. Set
[ (2= 20)*f(2) for ze€Q\ {2}
9(z) = { 0 for z =z :
Then ¢'(zp) exists and is equal to zero. Therefore ¢'(z) exists for all z € Q and
hence g € H()). We may now expand g into a power series using g(zg) = ¢’'(20) =0

to learn g(z) = > an(z — 29)™ which implies

n=2

fz)= % = Zan(z —20)" 2 for 0 < |z — 2| <€

n=0
Therefore, lim,_, ., f(z) = ag exists. Defining f(zo) = az we have f(z) = Y an(z—
n=0

29)" 2 for z near zg. This shows that f is holomorphic in a neighborhood of zy and
since f was already holomorphic away from zp, f € H({2). =

Definition 27.7. We say that (2 is a region if 2 is a connected open subset of C.



MATH 120A COMPLEX VARIABLES NOTES: REVISED December 3, 2003 91

Corollary 27.8 (Analytic Continuation). Let Q be a region and f € H(Q)
and Z(f) = f~1({0}) denote the zero set of f. Then either f = 0 or Z(f)
has no accumulation points in Q. More generally if f,g € H(Q) and the set
{z€Q: f(2) =g(2)} has an accumulation point in S, then f = g.

Proof. The second statement follows from the first by considering the function
f —g. For the proof of the first assertion we will work strictly in §2 with the relative
topology.

Let A denote the set of accumulation points of Z(f) (in Q). By continuity of
f, AC Z(f) and A is a closed® subset of Q with the relative topology. The proof
is finished by showing that A is open and thus A = ) or A = Q because  is
connected.

Suppose that zg € A, and express f(z) as its power series expansion

F(2)=) an(z = 2)"

for z near zp. Since 0 = f(zp) it follows that ap = 0. Let 2, € Z(f) \ {20} such that
lim zp, = z9. Then

0= fw) _ Zan(zk —z)" ' — a1 ask — o0

so that f(z) =Y ." 5 an(z — 20)™. Similarly
A, .
(2 — 20)

and continuing by induction, it follows that a,, = 0, i.e. f is zero in a neighborhood
of zo. m

o0
E an(zk — 20)" "2 — ag as k — oo
n=2

Definition 27.9. For z € C, let
eZZ + eZZ . eZZ _ eZZ

5 and sin(z) = 5
Exercise 27.10. Show the these formula are consistent with the usual definition
of cos and sin when z is real. Also shows that the addition formula in Exercise
31.15 are valid for 6, € C. This can be done with no additional computations by
making use of Corollary 27.8.

cos(z) =

Exercise 27.11. Let
1 1,
z2) = — [ exp(—=z° + zz)dm(x) for z € C.
12) = <= [ expl—5a* + zw)im(a)

Show f(z) = exp(42?) using the following outline:

(1) Show f € H(Q).

(2) Show f(z) = exp(42?) for z € R by completing the squares and using the
translation invariance of m. Also recall that you have proved in the first
quarter that f(0) = 1.

(3) Conclude f(z) = exp(22?) for all 2z € C using Corollary 27.8.

3Recall that x € A iff V/ N Z # 0 for all © € Viz Cop C where V. := V, \ {z}. Hence = ¢ A iff
there exists ¢ € Vi Co C such that V. NZ = . Since V is open, it follows that V] C A¢ and thus
Vz C A€. So A€ is open, i.e. A is closed.
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27.3. Partial Fractions. Consider writing 28 in partial fraction form. Here we
assume degq < degp, for otherwise we would divide to make it so. Now fact

p(2) =TT, (z — z)" we wish to write

ZZ—-JH

H;ﬂ 1 (Z - Zl i=1j=1
Multiplying this equation through by p (z) shows we must solve

n

n ki )
z) = Z Zaij (z—2z) ! H (z—2)™.

i=1 j=1 I#i

Noting that k := degp = > k;, the question comes down to whether the functions

n
B =1 pij (z) = (z—zi)FlH(z—zl)kl ci=1,...,nand j=1,...,k;
I#i
form a basis for the polynomials of degree k — 1. This space has dimension k and
there are k elements in 5. So to finish the proof, we need only show that S is a
linearly independent set. Suppose that

n ki
(27.6) F(z):= ZZ a;jpij (

Evaluating this expression at z; shows

n k; n
0= Zzaijpij (21) = an H (21 — zl)kl

i=1 j=1 1#£1
which implies a;; = 0. Similarly by evaluating at z; we learn that a;; = 0 for all ¢
and we are done if k; = 1 for all i. So we are left to consider

n
=D aipi; (2)
i=1j>2

This expression will have a common factor of [[;,,. - (z — 2;) which when factored

out, leaves us to consider
n
0=2 > aibi(2)
i=1j>2
where ()
~ pij z
Dij (2) = =——2———.
Y Hi:ki>1 (2 — z)
In this way we have reduced the maximum k; appearing by 1. Hence we may
complete the proof by induction on max{k; :i=1,...,n}.
Example 27.12. Suppose p(z) = (z —21) (z — 22)° (z — 23)° where now K :=
max {k; : ¢ = 1,2,3} = 3. Then we are considering

0=A(z—2)(z—2)°+B(z—2)(z — 2) (z — 23)°
+C(z—2)(z—23)° +D(2—21) (z — 22) (2 — 23)°
+EGz—2)(z—2) (z—23)+F(z—2)(z—22)°.
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Evaluating at z = z; implies, A = 0 and z = z that C' = 0 and at z = 23 that
F = 0. So we are left to consider

0=DB(z—21)(z—2)(z—23)° + D (2 — 21) (z — 22)" (2 — 23)°
+E(z—2)(z—2)° (2 — 23)
from which we can factor out (2 — 21) (z — 22) (2 — 23) to find
0=DB(z—23)° +D(z—2)(z—23) + E (2 — 22)

and now K := max{k;:i=1,2,3} = 2. Evaluating this at z = z; and z = 29
implies that £ = D = 0, so that

0=B(z—23)°
and we may factor out (z — z3) to get
0=B(z—z3).

Evaluating this at any point other than z3 implies B = 0.



