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11. Approximation Theorems and Convolutions

Let (X,M, µ) be a measure space, A ⊂M an algebra.

Notation 11.1. Let Sf (A, µ) denote those simple functions φ : X → C such that
φ−1({λ}) ∈ A for all λ ∈ C and µ(φ 6= 0) <∞.

For φ ∈ Sf (A, µ) and p ∈ [1,∞), |φ|p =Pz 6=0 |z|p1{φ=z} and henceZ
|φ|p dµ =

X
z 6=0

|z|pµ(φ = z) <∞

so that Sf (A, µ) ⊂ Lp(µ).

Lemma 11.2 (Simple Functions are Dense). The simple functions, Sf (M, µ), form
a dense subspace of Lp(µ) for all 1 ≤ p <∞.

Proof. Let {φn}∞n=1 be the simple functions in the approximation Theorem
7.12. Since |φn| ≤ |f | for all n, φn ∈ Sf (M, µ) (verify!) and

|f − φn|p ≤ (|f |+ |φn|)p ≤ 2p |f |p ∈ L1.

Therefore, by the dominated convergence theorem,

lim
n→∞

Z
|f − φn|pdµ =

Z
lim
n→∞ |f − φn|pdµ = 0.

Theorem 11.3 (Separable Algebras implies Separability of Lp — Spaces). Suppose
1 ≤ p < ∞ and A ⊂ M is an algebra such that σ(A) = M and µ is σ-finite on
A. Then Sf (A, µ) is dense in Lp(µ). Moreover, if A is countable, then Lp(µ) is
separable and

D = {
X

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}
is a countable dense subset.

Proof. First Proof. Let Xk ∈ A be sets such that µ(Xk) <∞ and Xk ↑ X as
k →∞. For k ∈ N let Hk denote those boundedM — measurable functions, f, on

X such that 1Xk
f ∈ Sf (A, µ)L

p(µ)
. It is easily seen that Hk is a vector space closed

under bounded convergence and this subspace contains 1A for all A ∈ A. Therefore
by Theorem 8.12, Hk is the set of all boundedM — measurable functions on X.
For f ∈ Lp(µ), the dominated convergence theorem implies 1Xk∩{|f|≤k}f → f

in Lp(µ) as k → ∞. We have just proved 1Xk∩{|f|≤k}f ∈ Sf (A, µ)
Lp(µ)

for all k

and hence it follows that f ∈ Sf (A, µ)L
p(µ)

. The last assertion of the theorem is
a consequence of the easily verified fact that D is dense in Sf (A, µ) relative to the
Lp(µ) — norm.
Second Proof. Given > 0, by Corollary 8.42, for all E ∈ M such that

µ(E) <∞, there exists A ∈ A such that µ(E4A) < . Therefore

(11.1)
Z
|1E − 1A|pdµ = µ(E4A) < .

This equation shows that any simple function in Sf (M, µ) may be approximated
arbitrary well by an element from D and hence D is also dense in Lp(µ).
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Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that f ∈ L1(R,m), then

lim
λ→±∞

Z
R
f(x)eiλxdm(x) = 0.

Proof. Let A denote the algebra on R generated by the half open intervals, i.e.
A consists of sets of the form

na
k=1

(ak, bk] ∩ R

where ak, bk ∈ R̄. By Theorem 11.3given > 0 there exists φ =
Pn

k=1 ck1(ak,bk]
with ak, bk ∈ R such that Z

R
|f − φ|dm < .

Notice thatZ
R
φ(x)eiλxdm(x) =

Z
R

nX
k=1

ck1(ak,bk](x)e
iλxdm(x)

=
nX

k=1

ck

Z bk

ak

eiλxdm(x) =
nX

k=1

ckλ
−1eiλx|bkak

= λ−1
nX

k=1

ck
¡
eiλbk − eiλak

¢→ 0 as |λ|→∞.

Combining these two equations with¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤
¯̄̄̄Z
R
(f(x)− φ(x)) eiλxdm(x)

¯̄̄̄
+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤
Z
R
|f − φ|dm+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤ +

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
we learn that

lim sup
|λ|→∞

¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤ + lim sup

|λ|→∞

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
= .

Since > 0 is arbitrary, we have proven the lemma.

Theorem 11.5 (Continuous Functions are Dense). Let (X, d) be a metric space,
τd be the topology on X generated by d and BX = σ(τd) be the Borel σ — algebra.
Suppose µ : BX → [0,∞] is a measure which is σ — finite on τd and let BCf (X)
denote the bounded continuous functions on X such that µ(f 6= 0) < ∞. Then
BCf (X) is a dense subspace of Lp(µ) for any p ∈ [1,∞).
Proof. First Proof. Let Xk ∈ τd be open sets such that Xk ↑ X and µ(Xk) <

∞. Let k and n be positive integers and set

ψn,k(x) = min(1, n · dXc
k
(x)) = φn(dXc

k
(x)),

and notice that ψn,k → 1dXc
k
>0 = 1Xk

as n→∞, see Figure 25 below.
Then ψn,k ∈ BCf (X) and {ψn,k 6= 0} ⊂ Xk. Let H denote those bounded

M — measurable functions, f : X → R, such that ψn,kf ∈ BCf (X)
Lp(µ)

. It is
easily seen that H is a vector space closed under bounded convergence and this
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Figure 25. The plot of φn for n = 1, 2, and 4. Notice that φn → 1(0,∞).

subspace contains BC(X,R). By Corollary 8.13, H is the set of all bounded real

valuedM — measurable functions on X, i.e. ψn,kf ∈ BCf (X)
Lp(µ)

for all bounded
measurable f and n, k ∈ N. Let f be a bounded measurable function, by the
dominated convergence theorem, ψn,kf → 1Xkf in Lp(µ) as n → ∞, therefore

1Xk
f ∈ BCf (X)

Lp(µ)
. It now follows as in the first proof of Theorem 11.3 that

BCf (X)
Lp(µ)

= Lp(µ).
Second Proof. Since Sf (M, µ) is dense in Lp(µ) it suffices to show any φ ∈

Sf (M, µ) may be well approximated by f ∈ BCf (X). Moreover, to prove this it
suffices to show for A ∈ M with µ(A) < ∞ that 1A may be well approximated
by an f ∈ BCf (X). By Exercises 8.4 and 8.5, for any > 0 there exists a closed
set F and an open set V such that F ⊂ A ⊂ V and µ(V \ F ) < . (Notice that
µ(V ) < µ(A) + < ∞.) Let f be as in Eq. (10.1), then f ∈ BCf (X) and since
|1A − f | ≤ 1V \F ,

(11.2)
Z
|1A − f |p dµ ≤

Z
1V \F dµ = µ(V \ F ) ≤

or equivalently
k1A − fk ≤ 1/p.

Since > 0 is arbitrary, we have shown that 1A can be approximated in Lp(µ)
arbitrarily well by functions from BCf (X)).

Proposition 11.6. Let (X, τ) be a second countable locally compact Hausdorff
space, BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure
such that µ(K) <∞ when K is a compact subset of X. Then Cc(X) (the space of
continuous functions with compact support) is dense in Lp(µ) for all p ∈ [1,∞).
Proof. First Proof. Let {Kk}∞k=1 be a sequence of compact sets as in Lemma

10.10 and set Xk = Ko
k . Using Item 3. of Lemma 10.17, there exists {ψn,k}∞n=1 ⊂

Cc(X) such that supp(ψn,k) ⊂ Xk and limn→∞ ψn,k = 1Xk . As in the first proof of
Theorem 11.5, let H denote those bounded BX — measurable functions, f : X → R,
such that ψn,kf ∈ Cc(X)

Lp(µ)
. It is easily seen that H is a vector space closed

under bounded convergence and this subspace contains BC(X,R). By Corollary
10.18, H is the set of all bounded real valued BX — measurable functions on X, i.e.
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ψn,kf ∈ Cc(X)
Lp(µ)

for all bounded measurable f and n, k ∈ N. Let f be a bounded
measurable function, by the dominated convergence theorem, ψn,kf → 1Xk

f in

Lp(µ) as k →∞, therefore 1Xk
f ∈ Cc(X)

Lp(µ)
. It now follows as in the first proof

of Theorem 11.3 that Cc(X)
Lp(µ)

= Lp(µ).
Second Proof. Following the second proof of Theorem 11.5, let A ∈M with

µ(A) < ∞. Since limk→∞ ||1A∩Ko
k
− 1A||p = 0, it suffices to assume A ⊂ Ko

k for
some k. Given > 0, by Item 2. of Lemma 10.17 and Exercises 8.4 there exists a
closed set F and an open set V such that F ⊂ A ⊂ V and µ(V \F ) < . Replacing
V by V ∩Ko

k we may assume that V ⊂ Ko
k ⊂ Kk. The function f defined in Eq.

(10.1) is now in Cc(X). The remainder of the proof now follows as in the second
proof of Theorem 11.5.

Lemma 11.7. Let (X, τ) be a second countable locally compact Hausdorff space,
BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure such that
µ(K) <∞ when K is a compact subset of X. If h ∈ L1loc(µ) is a function such that

(11.3)
Z
X

fhdµ = 0 for all f ∈ Cc(X)

then h(x) = 0 for µ — a.e. x.

Proof. First Proof. Let dν(x) = |h(x)| dx, then ν is a measure on X such
that ν(K) <∞ for all compact subsets K ⊂ X and hence Cc(X) is dense in L1(ν)
by Proposition 11.6. Notice that

(11.4)
Z
X

f · sgn(h)dν =
Z
X

fhdµ = 0 for all f ∈ Cc(X).

Let {Kk}∞k=1 be a sequence of compact sets such that Kk ↑ X as in Lemma 10.10.
Then 1Kk

sgn(h) ∈ L1(ν) and therefore there exists fm ∈ Cc(X) such that fm →
1Kksgn(h) in L1(ν). So by Eq. (11.4),

ν(Kk) =

Z
X

1Kk
dν = lim

m→∞

Z
X

fmsgn(h)dν = 0.

Since Kk ↑ X as k →∞, 0 = ν(X) =
R
X
|h| dµ, i.e. h(x) = 0 for µ — a.e. x.

Second Proof. Let Kk be as above and use Lemma 10.15 to find χ ∈
Cc(X, [0, 1]) such that χ = 1 on Kk. Let H denote the set of bounded measur-
able real valued functions on X such that

R
X
χfhdµ = 0. Then it is easily checked

that H is linear subspace closed under bounded convergence which contains Cc(X).
Therefore by Corollary 10.18, 0 =

R
X
χfhdµ for all bounded measurable functions

f : X → R and then by linearity for all bounded measurable functions f : X → C.
Taking f = sgn(h) then implies

0 =

Z
X

χ |h| dµ ≥
Z
Kk

|h| dµ

and hence by the monotone convergence theorem,

0 = lim
k→∞

Z
Kk

|h| dµ =
Z
X

|h| dµ.
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Corollary 11.8. Suppose X ⊂ Rn is an open set, BX is the Borel σ — algebra on
X and µ is a measure on (X,BX) which is finite on compact sets. Then Cc(X) is
dense in Lp(µ) for all p ∈ [1,∞).
11.1. Convolution and Young’s Inequalities.

Definition 11.9. Let f, g : Rn → C be measurable functions. We define

f ∗ g(x) =
Z
Rn

f(x− y)g(y)dy

whenever the integral is defined, i.e. either f(x−·)g(·) ∈ L1(Rn,m) or f(x−·)g(·) ≥
0. Notice that the condition that f(x− ·)g(·) ∈ L1(Rn,m) is equivalent to writing
|f | ∗ |g| (x) <∞.

Notation 11.10. Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

Remark 11.11 (The Significance of Convolution). Suppose that L =
P
|α|≤k aα∂

α is
a constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = g in the form

u(x) = Kg(x) :=

Z
Rn

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since τzL = Lτz for all z ∈ Rn, (this is another way to characterize
constant coefficient differential operators) and L−1 = K we should have τzK = Kτz.
Writing out this equation then saysZ

Rn
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

Z
Rn

k(x, y)g(y − z)dy =

Z
Rn

k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y + z). Taking y = 0 then
gives

k(x, z) = k(x− z, 0) =: ρ(x− z).

We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals, Theorem 9.27.

Proposition 11.12. Suppose q ∈ [1,∞], f ∈ L1 and g ∈ Lq, then f ∗ g(x) exists
for almost every x, f ∗ g ∈ Lq and

kf ∗ gkp ≤ kfk1 kgkp .
For z ∈ Rn and f : Rn → C, let τzf : Rn → C be defined by τzf(x) = f(x− z).

Proposition 11.13. Suppose that p ∈ [1,∞), then τz : L
p → Lp is an isometric

isomorphism and for f ∈ Lp, z ∈ Rn → τzf ∈ Lp is continuous.
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Proof. The assertion that τz : Lp → Lp is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that τ−z ◦ τz = id.
For the continuity assertion, observe that

kτzf − τyfkp = kτ−y (τzf − τyf)kp = kτz−yf − fkp
from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rn.
When f ∈ Cc(Rn), τzf → f uniformly and since the K := ∪|z|≤1supp(τzf) is

compact, it follows by the dominated convergence theorem that τzf → f in Lp as
z → 0 ∈ Rn. For general g ∈ Lp and f ∈ Cc(Rn),
kτzg − gkp ≤ kτzg − τzfkp + kτzf − fkp + kf − gkp = kτzf − fkp + 2 kf − gkp

and thus

lim sup
z→0

kτzg − gkp ≤ lim sup
z→0

kτzf − fkp + 2 kf − gkp = 2 kf − gkp .

Because Cc(Rn) is dense in Lp, the term kf − gkp may be made as small as we
please.

Definition 11.14. Suppose that (X, τ) is a topological space and µ is a measure
on BX = σ(τ). For a measurable function f : X → C we define the essential support
of f by
(11.5)
suppµ(f) = {x ∈ U : µ({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}.
It is not hard to show that if supp(µ) = X (see Definition 9.41) and f ∈ C(X)

then suppµ(f) = supp(f) := {f 6= 0} , see Exercise 11.5.
Lemma 11.15. Suppose (X, τ) is second countable and f : X → C is a measurable
function and µ is a measure on BX . Then X := U \ suppµ(f) may be described
as the largest open set W such that f1W (x) = 0 for µ — a.e. x. Equivalently put,
C := suppµ(f) is the smallest closed subset of X such that f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent, suppose
suppµ(f) is defined as in Eq. (11.5) and W := X \ suppµ(f). Then

W = {x ∈ X : µ({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪ {V ⊂o X : µ (f1V 6= 0) = 0}
= ∪ {V ⊂o X : f1V = 0 for µ — a.e.} .

So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let U be
a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.
Then it is easily seen that W = ∪Uf and since Uf is countable µ (f1W 6= 0) ≤P

V ∈Uf µ (f1V 6= 0) = 0.
Lemma 11.16. Suppose f, g, h : Rn → C are measurable functions and assume
that x is a point in Rn such that |f | ∗ |g| (x) <∞ and |f | ∗ (|g| ∗ |h|) (x) <∞, then

(1) f ∗ g(x) = g ∗ f(x)
(2) f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
(3) If z ∈ Rn and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
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(4) If x /∈ suppm(f)+suppm(g) then f ∗g(x) = 0 and in particular, suppm(f ∗
g) ⊂ suppm(f) + suppm(g) where in defining suppm(f ∗ g) we will use the
convention that “f ∗ g(x) 6= 0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
Z
Rn
|f | (x− y) |g| (y)dy =

Z
Rn
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y → x− y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.
Item 4. Since f ∗ g(x) = f̃ ∗ g̃(x) if f = f̃ and g = g̃ a.e. we may,

by replacing f by f1suppm(f) and g by g1suppm(g) if necessary, assume that{f 6= 0} ⊂ suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g))
then x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rn, either x − y /∈ {f 6= 0} or
y /∈ {g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x− y)g(y) = 0 for all y and therefore f ∗ g(x) = 0. This shows that f ∗ g = 0 on
Rn \

³
suppm(f) + suppm(g)

´
and therefore

Rn \
³
suppm(f) + suppm(g)

´
⊂ Rn \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).
Remark 11.17. Let A,B be closed sets of Rn, it is not necessarily true that A+B
is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/|x|} ,
then every point of A+B has a positive y - component and hence is not zero. On
the other hand, for x > 0 we have (x, 1/x) + (−x, 1/x) = (0, 2/x) ∈ A+ B for all
x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A + B is closed again. Indeed, if A is compact and
xn = an + bn ∈ A + B and xn → x ∈ Rn, then by passing to a subsequence if
necessary we may assume limn→∞ an = a ∈ A exists. In this case

lim
n→∞ bn = lim

n→∞ (xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 11.18. Suppose that p, q ∈ [1,∞] and p and q are conjugate expo-
nents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rn), kf ∗ gku ≤ kfkp kgkq and if
p, q ∈ (1,∞) then f ∗ g ∈ C0(Rn).

Proof. The existence of f ∗ g(x) and the estimate |f ∗ g| (x) ≤ kfkp kgkq for all
x ∈ Rn is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows kf ∗ gku ≤ kfkp kgkq . By relabeling
p and q if necessary we may assume that p ∈ [1,∞). Since

kτz (f ∗ g)− f ∗ gku = kτzf ∗ g − f ∗ gku ≤ kτzf − fkp kgkq → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 11.16 and what we have just proved that fm ∗ gm ∈ Cc(Rn) where
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fm = f1|f|≤m and gm = g1|g|≤m. Moreover,

kf ∗ g − fm ∗ gmku ≤ kf ∗ g − fm ∗ gku + kfm ∗ g − fm ∗ gmku
≤ kf − fmkp kgkq + kfmkp kg − gmkq
≤ kf − fmkp kgkq + kfkp kg − gmkq → 0 as m→∞

showing, with the aid of Proposition 10.30, f ∗ g ∈ C0(Rn).

Theorem 11.19 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy
(11.6)

1

p
+
1

q
= 1 +

1

r
.

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m — a.e. x and

(11.7) kf ∗ gkr ≤ kfkp kgkq .
In particular L1 is closed under convolution. (The space (L1, ∗) is an example of a
“Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq. (11.6)
by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then after a few
simple change of variables we find

kfλkp = λ−1/p kfk and (f ∗ g)λ = λfλ ∗ gλ.
Therefore if Eq. (11.7) holds for some p, q, r ∈ [1,∞], we would also have
kf ∗ gkr = λ1/r k(f ∗ g)λkr ≤ λ1/rλ kfλkp kgλkq = λ(1+1/r−1/p−1/q) kfkp kgkq

for all λ > 0. This is only possible if Eq. (11.6) holds.

Proof. Let α, β ∈ [0, 1] and p1, p2 ∈ [0,∞] satisfy p−11 + p−12 + r−1 = 1. Then
by Hölder’s inequality, Corollary 9.3,

|f ∗ g(x)| =
¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄
≤
Z
|f(x− y)|(1−α) |g(y)|(1−β) |f(x− y)|α |g(y)|β dy

≤
µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶1/r µZ

|f(x− y)|αp1 dy
¶1/p1 µZ

|g(y)|βp2 dy
¶1/p2

=

µZ
|f(x− y)|(1−α)r |g(y)|(1−β)r dy

¶1/r
kfkααp1 kgk

β
βp2

.

Taking the rth power of this equation and integrating on x gives

kf ∗ gkrr ≤
Z µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶
dx · kfkααp1 kgk

β
βp2

= kfk(1−α)r(1−α)r kgk(1−β)r(1−β)r kfkαrαp1 kgk
βr
βp2

.(11.8)

Let us now suppose, (1− α)r = αp1 and (1− β)r = βp2, in which case Eq. (11.8)
becomes,

kf ∗ gkrr ≤ kfkrαp1 kgk
r
βp2

which is Eq. (11.7) with

(11.9) p := (1− α)r = αp1 and q := (1− β)r = βp2.

So to finish the proof, it suffices to show p and q are arbitrary indices in [1,∞]
satisfying p−1 + q−1 = 1 + r−1.
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If α, β, p1, p2 satisfy the relations above, then

α =
r

r + p1
and β =

r

r + p2

and
1

p
+
1

q
=
1

p1

r + p1
r

+
1

p2

r + p2
r

=
1

p1
+
1

p2
+
2

r
= 1 +

1

r
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Conversely, if p, q, r satisfy Eq. (11.6), then let α and β satisfy p = (1 − α)r and
q = (1− β)r, i.e.

α :=
r − p

r
= 1− p

r
≤ 1 and β =

r − q

r
= 1− q

r
≤ 1.

From Eq. (11.6), α = p(1− 1
q ) ≥ 0 and β = q(1− 1

p) ≥ 0, so that α, β ∈ [0, 1]. We
then define p1 := p/α and p2 := q/β, then

1

p1
+
1

p2
+
1

r
= β

1

q
+ α

1

p
+
1

r
=
1

q
− 1

r
+
1

p
− 1

r
+
1

r
= 1

as desired.

Theorem 11.21 (Approximate δ — functions). Let p ∈ [1,∞], φ ∈ L1(Rn), a :=R
Rn f(x)dx, and for t > 0 let φt(x) = t−nφ(x/t). Then

(1) If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
(2) If f ∈ BC(Rn) and f is uniformly continuous then kφt ∗ f − fk∞ → 0 as

t ↓ 0.
(3) If f ∈ L∞ and f is continuous on U ⊂o Rn then φt ∗ f → af uniformly on

compact subsets of U as t ↓ 0.
Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
Z
Rn

f(x− y)φt(y)dy =

Z
Rn

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =

Z
Rn
[f(x− tz)− f(x)]φ(z)dz

=

Z
Rn
[τtzf(x)− f(x)]φ(z)dz.(11.10)

Hence by Minkowski’s inequality for integrals (Theorem 9.27), Proposition 11.13
and the dominated convergence theorem,

kφt ∗ f − afkp ≤
Z
Rn
kτtzf − fkp |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (11.10)

kφt ∗ f − afk∞ ≤
Z
Rn
kτtzf − fk∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 kτtzf − fk∞ = 0 uniformly in z by the uniform continuity of f.
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Item 3. Let BR = B(0, R) be a large ball in Rn and K @@ U, then

sup
x∈K

|φt ∗ f(x)− af(x)| ≤
¯̄̄̄Z
BR

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
+

¯̄̄̄
¯
Z
Bc
R

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
¯

≤
Z
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
Bc
R

|φ(z)| dz

≤ kφk1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K

|φt ∗ f(x)− af(x)| ≤ 2 kfk∞
Z
|z|>R

|φ(z)| dz → 0 as R→∞.

See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Exercise 11.1. Let

f(t) =

½
e−1/t if t > 0
0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 11.22. There exists φ ∈ C∞c (Rn, [0,∞)) such that φ(0) > 0, supp(φ) ⊂
B̄(0, 1) and

R
Rn φ(x)dx = 1.

Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 11.1. Then
h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =

R
Rn h(|x|2)dx.

Then φ(x) = c−1h(|x|2) is the desired function.
Definition 11.23. Let X ⊂ Rn be an open set. A Radon measure on BX is a
measure µ which is finite on compact subsets of X. For a Radon measure µ, we let
L1loc(µ) consists of those measurable functions f : X → C such that

R
K
|f | dµ <∞

for all compact subsets K ⊂ X.

The reader asked to prove the following proposition in Exercise 11.6 below.

Proposition 11.24. Suppose that f ∈ L1loc(Rn,m) and φ ∈ C1c (Rn), then f ∗ φ ∈
C1(Rn) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rn) then f ∗ φ ∈ C∞(Rn).

Corollary 11.25 (C∞ — Uryhson’s Lemma). Given K @@ U ⊂o Rn, there exists
f ∈ C∞c (Rn, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let φ be as in Lemma 11.22, φt(x) = t−nφ(x/t) be as in Theorem 11.21,
d be the standard metric on Rn and = d(K,Uc). Since K is compact and Uc is
closed, > 0. Let Vδ = {x ∈ Rn : d(x,K) < δ} and f = φ /3 ∗ 1V /3

, then

supp(f) ⊂ supp(φ /3) + V /3 ⊂ V̄2 /3 ⊂ U.

Since V̄2 /3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

Z
Rn
1d(y,K)< /3 · φ /3(x− y)dy =

Z
Rn

φ /3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader, Exercise

11.7.
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Lemma 11.26 (Integration by Parts). Suppose f and g are measurable functions
on Rn such that t→ f(x1, . . . , xi−1, t, xi+1, . . . , xn) and t→ g(x1, . . . , xi−1, t, xi+1, . . . , xn)
are continuously differentiable functions on R for each fixed x = (x1, . . . , xn) ∈ Rn.
Moreover assume f · g, ∂f

∂xi
· g and f · ∂g

∂xi
are in L1(Rn,m). ThenZ

Rn

∂f

∂xi
· gdm = −

Z
Rn

f · ∂g
∂xi

dm.

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 11.27. For f ∈ L1(Rn,m) let

f̂(ξ) := (2π)−n/2
Z
Rn

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ (2π)−n/2 kfk1 . (The

choice of the normalization factor, (2π)−n/2, in f̂ is for later convenience.)

Proof. The fact that f̂ is continuous is a simple application of the dominated
convergence theorem. Moreover,¯̄̄

f̂(ξ)
¯̄̄
≤
Z
|f(x)| dm(x) ≤ (2π)−n/2 kfk1

so it only remains to see that f̂(ξ)→ 0 as |ξ|→∞.

First suppose that f ∈ C∞c (Rn) and let ∆ =
Pn

j=1
∂2

∂x2j
be the Laplacian on Rn.

Notice that ∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using Lemma 11.26
repeatedly,Z

∆kf(x)e−iξ·xdm(x) =
Z

f(x)∆k
xe
−iξ·xdm(x) = − |ξ|2k

Z
f(x)e−iξ·xdm(x)

= −(2π)n/2 |ξ|2k f̂(ξ)
for any k ∈ N. Hence (2π)n/2

¯̄̄
f̂(ξ)

¯̄̄
≤ |ξ|−2k °°∆kf

°°
1
→ 0 as |ξ| → ∞ and

f̂ ∈ C0(Rn). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rn) is a sequence such that
limk→∞ kf − fkk1 = 0, then limk→∞

°°°f̂ − f̂k

°°°
u
= 0. Hence f̂ ∈ C0(Rn) by an

application of Proposition 10.30.

Corollary 11.28. Let X ⊂ Rn be an open set and µ be a Radon measure on BX .
(1) Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
(2) If h ∈ L1loc(µ) satisfies

(11.11)
Z
X

fhdµ = 0 for all f ∈ C∞c (X)

then h(x) = 0 for µ — a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 11.22, φt be as in Theorem 11.21 and
set ψt := φt ∗ (f1X) . Then by Proposition 11.24 ψt ∈ C∞(X) and by Lemma 11.16
there exists a compact set K ⊂ X such that supp(ψt) ⊂ K for all t sufficiently
small. By Theorem 11.21, ψt → f uniformly on X as t ↓ 0

(1) The dominated convergence theorem (with dominating function being
kfk∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1., since
Proposition 11.6 guarantees that Cc(X) is dense in Lp(µ).
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(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being kfk∞ |h| 1K) implies

0 = lim
t↓0

Z
X

ψthdµ =

Z
X

lim
t↓0

ψthdµ =

Z
X

fhdµ.

The proof is now finished by an application of Lemma 11.7.

11.1.1. Smooth Partitions of Unity. We have the following smooth variants of
Proposition 10.24, Theorem 10.26 and Corollary 10.27. The proofs of these re-
sults are the same as their continuous counterparts. One simply uses the smooth
version of Urysohn’s Lemma of Corollary 11.25 in place of Lemma 10.15.

Proposition 11.29 (Smooth Partitions of Unity for Compacts). Suppose that X
is an open subset of Rn, K ⊂ X is a compact set and U = {Uj}nj=1 is an open
cover of K. Then there exists a smooth (i.e. hj ∈ C∞(X, [0, 1])) partition of unity
{hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Theorem 11.30 (Locally Compact Partitions of Unity). Suppose that X is an open
subset of Rn and U is an open cover of X. Then there exists a smooth partition of
unity of {hi}Ni=1 (N = ∞ is allowed here) subordinate to the cover U such that
supp(hi) is compact for all i.

Corollary 11.31. Suppose that X is an open subset of Rn and U = {Uα}α∈A ⊂ τ
is an open cover of X. Then there exists a smooth partition of unity of {hα}α∈A
subordinate to the cover U such that supp(hα) ⊂ Uα for all α ∈ A. Moreover if Ūα
is compact for each α ∈ A we may choose hα so that hα ≺ Uα.

11.2. Classical Weierstrass Approximation Theorem. Let Z+ := N ∪ {0}.
Notation 11.32. For x ∈ Rd and α ∈ Zd+ let xα =

Qd
i=1 x

αi
i and |α| = Pd

i=1 αi.

A polynomial on Rd is a function p : Rd → C of the form

p(x) =
X

α:|α|≤N
pαx

α with pα ∈ C and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be the
degree of p. The function p has a natural extension to z ∈ Cd, namely p(z) =P

α:|α|≤N pαz
α where zα =

Qd
i=1 z

αi
i .

Remark 11.33. The mapping (x, y) ∈ Rd×Rd → z = x+iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd×Rd may be written
as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in (x, y),
namely p(x, y) = q(x+ iy, x− iy).

Theorem 11.34 (Weierstrass Approximation Theorem). Let a, b ∈ Rd with a ≤ b
(i.e. ai ≤ bi for i = 1, 2, . . . , d ) and set [a, b] := [a1, b1] × · · · × [ad, bd]. Then for
f ∈ C([a, b],C) there exists polynomials pn on Rd such that pn → f uniformly on
[a, b].
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We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate δ — functions.

Corollary 11.35. Suppose that K ⊂ Rd is a compact set and f ∈ C(K,C). Then
there exists polynomials pn on Rd such that pn → f uniformly on K.

Proof. Choose a, b ∈ Rd such that a ≤ b andK ⊂ (a, b) := (a1, b1)×· · ·×(ad, bd).
Let f̃ : K ∪ (a, b)c → C be the continuous function defined by f̃ |K = f and
f̃ |(a,b)c ≡ 0. Then by the Tietze extension Theorem (either of Theorems 10.2 or
10.16 will do) there exists F ∈ C(Rd,C) such that f̃ = F |K∪(a,b)c . Apply the
Weierstrass Approximation Theorem 11.34 to F |[a,b] to find polynomials pn on Rd
such that pn → F uniformly on [a, b]. Clearly we also have pn → f uniformly on
K.

Corollary 11.36 (Complex Weierstrass Approximation Theorem). Suppose that
K ⊂ Cd is a compact set and f ∈ C(K,C). Then there exists polynomials pn(z, z̄)
for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)|→ 0 as n→∞.

Proof. This is an immediate consequence of Remark 11.33 and Corollary 11.35.

Example 11.37. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1).23 Since z̄ = z−1 on S1, we have
shown polynomials in z and z−1 are dense in C(S1). This example generalizes in
an obvious way to K =

¡
S1
¢d ⊂ Cd.

11.2.1. First proof of the Weierstrass Approximation Theorem 11.34. Proof. Let
0 : = (0, 0, . . . , 0) and 1 : = (1, 1, . . . , 1). By considering the real and imaginary
parts of f separately, it suffices to assume f is real valued. By replacing f by
g(x) = f(a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) for x ∈ [0,1], it suffices to prove
the theorem for f ∈ C([0,1]).
For x ∈ [0, 1], let νx be the measure on {0, 1} such that νx ({0}) = 1 − x and

νx ({1}) = x. Then Z
{0,1}

ydνx(y) = 0 · (1− x) + 1 · x = x and(11.12) Z
{0,1}

(y − x)2dνx(y) = x2(1− x) + (1− x)2 · x = x(1− x).(11.13)

For x ∈ [0,1] let µx = νx1⊗ · · ·⊗νxd be the product of νx1 , . . . , νxd on Ω := {0, 1}d .
Alternatively the measure µx may be described by

(11.14) µx ({ }) =
dY
i=1

(1− xi)
1− i x i

i

for ∈ Ω. Notice that µx ({ }) is a degree d polynomial in x for each ∈ Ω. For
n ∈ N and x ∈ [0,1], let µnx denote the n — fold product of µx with itself on Ωn,
Xi(ω) = ωi ∈ Ω ⊂ Rd for ω ∈ Ωn and let

Sn = (S
1
n, . . . , S

d
n) := (X1 +X2 + · · ·+Xn)/n,

23Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting F (z) = zf( z
|z| )

for z 6= 0 and F (0) = 0. So this special case does not require the Tietze extension theorem.
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so Sn : Ωn → Rd. The reader is asked to verify (Exercise 11.2) that

(11.15)
Z
Ωn

Sndµ
n
x =

µZ
Ωn

S1ndµ
n
x , . . . ,

Z
Ωn

Sdndµ
n
x

¶
= (x1, . . . , xd) = x

and

(11.16)
Z
Ωn
|Sn − x|2 dµnx =

1

n

dX
i=1

xi(1− xi) ≤ d

n
.

From these equations it follows that Sn is concentrating near x as n → ∞, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(11.17) pn(x) :=

Z
Ωn

f(Sn)dµ
n
x

should approach f(x) as n→∞.
Let > 0 be given, M = sup {|f(x)| : x ∈ [0, 1]} and

δ = sup {|f(y)− f(x)| : x, y ∈ [0,1] and |y − x| ≤ } .
By uniform continuity of f on [0,1], lim ↓0 δ = 0. Using these definitions and the
fact that µnx(Ω

n) = 1,

|f(x)− pn(x)| =
¯̄̄̄Z
Ωn
(f(x)− f(Sn)) dµ

n
x

¯̄̄̄
≤
Z
Ωn
|f(x)− f(Sn)| dµnx

≤
Z
{|Sn−x|> }

|f(x)− f(Sn)| dµnx +
Z
{|Sn−x|≤ }

|f(x)− f(Sn)| dµnx
≤ 2Mµnx (|Sn − x| > ) + δ .(11.18)

By Chebyshev’s inequality,

µnx (|Sn − x| > ) ≤ 1
2

Z
Ωn
(Sn − x)2dµnx =

d

n 2
,

and therefore, Eq. (11.18) yields the estimate

kf − pnku ≤
2dM

n 2
+ δ

and hence

lim sup
n→∞

kf − pnku ≤ δ → 0 as ↓ 0.

This completes the proof since, using Eq. (11.14),

pn(x) =
X
ω∈Ωn

f(Sn(ω))µ
n
x({ω}) =

X
ω∈Ωn

f(Sn(ω))
nY
i=1

µx({ωi}),

is an nd — degree polynomial in x ∈ Rd).
Exercise 11.2. Verify Eqs. (11.15) and (11.16). This is most easily done using
Eqs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless it
is convenient to use this formulation.)
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11.2.2. Second proof of the Weierstrass Approximation Theorem 11.34. For the
second proof we will first need two lemmas.

Lemma 11.38 (Approximate δ — sequences). Suppose that {Qn}∞n=1 is a sequence
of positive functions on Rd such thatZ

Rd
Qn(x) dx = 1 and(11.19)

lim
n→∞

Z
|x|≥

Qn(x)dx = 0 for all > 0.(11.20)

For f ∈ BC(Rd), Qn ∗ f converges to f uniformly on compact subsets of Rd.

Proof. Let x ∈ Rd, then because of Eq. (11.19),

|Qn ∗ f(x)− f(x)| =
¯̄̄̄Z
Rd

Qn(y) (f(x− y)− f(x)) dy

¯̄̄̄
≤
Z
Rd

Qn(y) |f(x− y)− f(x)| dy.

Let M = sup
©|f(x)| : x ∈ Rdª and > 0, then by and Eq. (11.19)

|Qn ∗ f(x)− f(x)| ≤
Z
|y|≤

Qn(y) |f(x− y)− f(x)| dy

+

Z
|y|>

Qn(y) |f(x− y)− f(x)| dy

≤ sup
|z|≤

|f(x+ z)− f(x)|+ 2M
Z
|y|>

Qn(y)dy.

Let K be a compact subset of Rd, then

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤ ,x∈K

|f(x+ z)− f(x)|+ 2M
Z
|y|>

Qn(y)dy

and hence by Eq. (11.20),

lim sup
n→∞

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤ ,x∈K

|f(x+ z)− f(x)| .

This finishes the proof since the right member of this equation tends to 0 as ↓ 0
by uniform continuity of f on compact subsets of Rn.
Let qn : R→[0,∞) be defined by

(11.21) qn(x) ≡ 1

cn
(1− x2)n1|x|≤1where cn :=

Z 1

−1
(1− x2)ndx.

Figure 26 displays the key features of the functions qn.
Define

(11.22) Qn : Rn → [0,∞) by Qn(x) = qn(x1) . . . qn(xd).

Lemma 11.39. The sequence {Qn}∞n=1 is an approximate δ — sequence, i.e. they
satisfy Eqs. (11.19) and (11.20).

Proof. The fact that Qn integrates to one is an easy consequence of Tonelli’s
theorem and the definition of cn. Since all norms on Rd are equivalent, we may
assume that |x| = max {|xi| : i = 1, 2, . . . , d} when proving Eq. (11.20). With this
norm ©

x ∈ Rd : |x| ≥ ª
= ∪di=1

©
x ∈ Rd : |xi| ≥

ª
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Figure 26. A plot of q1, q50, and q100. The most peaked curve is
q100 and the least is q1. The total area under each of these curves
is one.

and therefore by Tonelli’s theorem and the definition of cn,

Z
{|x|≥ }

Qn(x)dx ≤
dX
i=1

Z
{|xi|≥ }

Qn(x)dx = d

Z
{x∈R|x|≥ }

qn(x)dx.

Since

Z
|x|≥

qn(x)dx =
2
R 1
(1− x2)ndx

2
R
0
(1− x2)ndx+ 2

R 1
(1− x2)ndx

≤
R 1 x(1− x2)ndxR
0
x(1− x2)ndx

=
(1− x2)n+1|1
(1− x2)n+1|0

=
(1− 2)n+1

1− (1− 2)n+1
→ 0 as n→∞,

the proof is complete.
We will now prove Corollary 11.35 which clearly implies Theorem 11.34.
Proof. Proof of Corollary 11.35. As in the beginning of the proof already given

for Corollary 11.35, we may assume that K = [a, b] for some a ≤ b and f = F |K
where F ∈ C(Rd,C) is a function such that F |Kc ≡ 0. Moreover, by replacing F (x)
by G(x) = F (a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) for x ∈ Rn we may further
assume K = [0,1].
Let Qn(x) be defined as in Eq. (11.22). Then by Lemma 11.39 and 11.38,

pn(x) := (Qn ∗ F )(x) → F (x) uniformly for x ∈ [0,1] as n → ∞. So to finish the
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proof it only remains to show pn(x) is a polynomial when x ∈ [0,1]. For x ∈ [0,1],

pn(x) =

Z
Rd

Qn(x− y)f(y)dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n1|xi−yi|≤1
¤
dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n
¤
dy.

Since the product in the above integrand is a polynomial if (x, y) ∈ Rn × Rn, it
follows easily that pn(x) is polynomial in x.

11.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 11.34
to more general topological spaces. We will first need some definitions.

Definition 11.40. Let X be a topological space and A ⊂ C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

(1) A is said to separate points if for all distinct points x, y ∈ X there exists
f ∈ A such that f(x) 6= f(y).

(2) A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

(3) A is called a lattice if f ∨ g := max(f, g) and f ∧ g = min(f, g) ∈ A for all
f, g ∈ A.

(4) A ⊂ C(X) is closed under conjugation if f̄ ∈ A whenever f ∈ A.24

Remark 11.41. If X is a topological space such that C(X,R) separates points then
X is Hausdorff. Indeed if x, y ∈ X and f ∈ C(X,R) such that f(x) 6= f(y), then
f−1(J) and f−1(I) are disjoint open sets containing x and y respectively when I
and J are disjoint intervals containing f(x) and f(y) respectively.

Lemma 11.42. If A ⊂ C(X,R) is a closed algebra then |f | ∈ A for all f ∈ A and
A is a lattice.

Proof. Let f ∈ A and let M = sup
x∈X

|f(x)|. Using Theorem 11.34 or Exercise

11.8, there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0.

By replacing pn by pn − pn(0) if necessary we may assume that pn(0) = 0. Since
A is an algebra, it follows that fn = pn(f) ∈ A and |f | ∈ A, because |f | is the
uniform limit of the fn’s. Since

f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|),

we have shown A is a lattice.

24This is of course no restriction when C(X) = C(X,R).
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Lemma 11.43. Let A ⊂ C(X,R) be an algebra which separates points and x, y ∈ X
be distinct points such that

(11.23) ∃ f, g ∈ A 3 f(x) 6= 0 and g(y) 6= 0.
Then

(11.24) V := {(f(x), f(y)) : f ∈ A}= R2.
Proof. It is clear that V is a non-zero subspace of R2. If dim(V ) = 1, then V =

span(a, b) with a 6= 0 and b 6= 0 by the assumption in Eq. (11.23). Since (a, b) =
(f(x), f(y)) for some f ∈ A and f2 ∈ A, it follows that (a2, b2) = (f2(x), f2(y)) ∈ V
as well. Since dimV = 1, (a, b) and (a2, b2) are linearly dependent and therefore

0 = det

µ
a a2

b b2

¶
= ab2 − ba2 = ab(b− a)

which implies that a = b. But this the implies that f(x) = f(y) for all f ∈ A,
violating the assumption that A separates points. Therefore we conclude that
dim(V ) = 2, i.e. V = R2.

Theorem 11.44 (Stone-Weierstrass Theorem). ppose X is a compact Hausdorff
space and A ⊂ C(X,R) is a closed subalgebra which separates points. For x ∈ X
let

Ax ≡ {f(x) : f ∈ A} and
Ix = {f ∈ C(X,R) : f(x) = 0}.

Then either one of the following two cases hold.
(1) Ax = R for all x ∈ X, i.e. for all x ∈ X there exists f ∈ A such that

f(x) 6= 0.25
(2) There exists a unique point x0 ∈ X such that Ax0 = {0} .
Moreover in case (1) A = C(X,R) and in case (2) A = Ix0 = {f ∈ C(X,R) :

f(x0) = 0}.
Proof. If there exists x0 such that Ax0 = {0} (x0 is unique since A separates

points) then A ⊂ Ix0 . If such an x0 exists let C = Ix0 and if Ax = R for all x, set
C = C(X,R). Let f ∈ C, then by Lemma 11.43, for all x, y ∈ X such that x 6= y
there exists gxy ∈ A such that f = gxy on {x, y}.26 The basic idea of the proof is
contained in the following identity,

(11.25) f(z) = inf
x∈X

sup
y∈X

gxy(z) for all z ∈ X.

To prove this identity, let gx := supy∈X gxy and notice that gx ≥ f since gxy(y) =
f(y) for all y ∈ X. Moreover, gx(x) = f(x) for all x ∈ X since gxy(x) = f(x) for all
x. Therefore,

inf
x∈X

sup
y∈X

gxy = inf
x∈X

gx = f.

The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (11.25) becoming only an approximate
identity.

25If A contains the constant function 1, then this hypothesis holds.
26If Ax0 = {0} and x = x0 or y = x0, then gxy exists merely by the fact that A separates

points.
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Claim 2. Given > 0 and x ∈ X there exists gx ∈ A such that gx(x) = f(x) and
f < gx + on X.

To prove the claim, let Vy be an open neighborhood of y such that |f − gxy| <
on Vy so in particular f < + gxy on Vy. By compactness, there exists Λ ⊂⊂ X
such that X =

S
y∈Λ

Vy. Set

gx(z) = max{gxy(z) : y ∈ Λ},
then for any y ∈ Λ, f < + gxy < + gx on Vy and therefore f < + gx on X.
Moreover, by construction f(x) = gx(x), see Figure 27 below.

Figure 27. Constructing the funtions gx.

We now will finish the proof of the theorem. For each x ∈ X, let Ux be a
neighborhood of x such that |f − gx| < on Ux. Choose Γ ⊂⊂ X such that
X =

S
x∈Γ

Ux and define

g = min{gx : x ∈ Γ} ∈ A.
Then f < g + on X and for x ∈ Γ, gx < f + on Ux and hence g < f + on Ux.
Since X =

S
x∈Γ

Ux, we conclude

f < g + and g < f + on X,

i.e. |f − g| < on X. Since > 0 is arbitrary it follows that f ∈ Ā = A.
Theorem 11.45 (Complex Stone-Weierstrass Theorem). Let X be a compact
Hausdorff space. Suppose A ⊂ C(X,C) is closed in the uniform topology, sep-
arates points, and is closed under conjugation. Then either A = C(X,C) or
A = ICx0 := {f ∈ C(X,C) : f(x0) = 0} for some x0 ∈ X.

Proof. Since

Re f =
f + f̄

2
and Im f =

f − f̄

2i
,
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Re f and Im f are both in A. Therefore
AR = {Re f, Im f : f ∈ A}

is a real sub-algebra of C(X,R) which separates points. Therefore either AR =
C(X,R) or AR = Ix0 ∩ C(X,R) for some x0 and hence A = C(X,C) or ICx0
respectively.
As an easy application, Theorems 11.44 and 11.45 imply Corollaries 11.35 and

11.36 respectively.

Corollary 11.46. Suppose that X is a compact subset of Rn and µ is a finite
measure on (X,BX), then polynomials are dense in Lp(X,µ) for all 1 ≤ p <∞.

Proof. Consider X to be a metric space with usual metric induced from Rn.
Then X is a locally compact separable metric space and therefore Cc(X,C) =
C(X,C) is dense in Lp(µ) for all p ∈ [1,∞). Since, by the dominated convergence
theorem, uniform convergence implies Lp(µ) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in Lp(µ).
Here are a couple of more applications.

Example 11.47. Let f ∈ C([a, b]) be a positive function which is injective. Then
functions of the form

PN
k=1 akf

k with ak ∈ C and N ∈ N are dense in C([a, b]).
For example if a = 1 and b = 2, then one may take f(x) = xα for any α 6= 0, or
f(x) = ex, etc.

Exercise 11.3. Let (X, d) be a separable compact metric space. Show that C(X)
is also separable. Hint: Let E ⊂ X be a countable dense set and then consider the
algebra, A ⊂ C(X), generated by {d(x, ·)}x∈E .

11.4. Locally Compact Version of Stone-Weierstrass Theorem.

Theorem 11.48. Let X be non-compact locally compact Hausdorff space. If A is
a closed subalgebra of C0(X,R) which separates points. Then either A = C0(X,R)
or there exists x0 ∈ X such that A = {f ∈ C0(X,R) : f(x0) = 0}.
Proof. There are two cases to consider.
Case 1. There is no point x0 ∈ X such that A ⊂ {f ∈ C0(X,R) : f(x0) = 0}.

In this case let X∗ = X ∪ {∞} be the one point compactification of X. Because of
Proposition 10.31 to each f ∈ A there exists a unique extension f̃ ∈ C(X∗,R)
such that f = f̃ |X and moreover this extension is given by f̃(∞) = 0. LeteA := {f̃ ∈ C(X∗,R) : f ∈ A}. Then eA is a closed (you check) sub-algebra
of C(X∗,R) which separates points. An application of Theorem 11.44 implieseA = {F ∈ C(X∗,R) 3F (∞) = 0} and therefore by Proposition 10.31 A = {F |X :

F ∈ eA} = C0(X,R).
Case 2. There exists x0 ∈ X such A ⊂ {f ∈ C0(X,R) : f(x0) = 0}. In this

case let Y := X \ {x0} and AY := {f |Y : f ∈ A} . Since X is locally compact,
one easily checks AY ⊂ C0(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that AY = C0(Y,R). So if f ∈ C0(X,R) and f(x0) = 0,
f |Y ∈ C0(Y,R) =AY , i.e. there exists g ∈ A such that g|Y = f |Y . Since g(x0) =
f(x0) = 0, it follows that f = g ∈ A and therefore A = {f ∈ C0(X,R) : f(x0) = 0}.

Example 11.49. Let X = [0,∞), λ > 0 be fixed, A be the algebra generated by
t→ e−λt. So the general element f ∈ A is of the form f(t) = p(e−λt), where p(x)
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is a polynomial. Since A ⊂ C0(X,R) separates points and e−λt ∈ A is pointwise
positive, Ā = C0(X,R).

As an application of this example, we will show that the Laplace transform is
injective.

Theorem 11.50. For f ∈ L1([0,∞), dx), the Laplace transform of f is defined by

Lf(λ) ≡
Z ∞
0

e−λxf(x)dx for all λ > 0.

If Lf(λ) ≡ 0 then f(x) = 0 for m -a.e. x.

Proof. Suppose that f ∈ L1([0,∞), dx) such that Lf(λ) ≡ 0. Let g ∈
C0([0,∞),R) and > 0 be given. Choose {aλ}λ>0 such that#({λ > 0 : aλ 6= 0}) <
∞ and

|g(x)−
X
λ>0

aλe
−λx| < for all x ≥ 0.

Then ¯̄̄̄Z ∞
0

g(x)f(x)dx

¯̄̄̄
=

¯̄̄̄
¯
Z ∞
0

Ã
g(x)−

X
λ>0

aλe
−λx

!
f(x)dx

¯̄̄̄
¯

≤
Z ∞
0

¯̄̄̄
¯g(x)−X

λ>0

aλe
−λx

¯̄̄̄
¯ |f(x)| dx ≤ kfk1.

Since > 0 is arbitrary, it follows that
R∞
0

g(x)f(x)dx = 0 for all g ∈ C0([0,∞),R).
The proof is finished by an application of Lemma 11.7.

11.5. Dynkin’s Multiplicative System Theorem. This section is devoted to
an extension of Theorem 8.12 based on the Weierstrass approximation theorem. In
this section X is a set.

Definition 11.51 (Multiplicative System). A collection of real valued functions Q
on a set X is a multiplicative system provided f · g ∈ Q whenever f, g ∈ Q.

Theorem 11.52 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of B(X,R) which contains the constant functions and is closed under bounded
convergence. If Q ⊂ H is multiplicative system, then H contains all bounded real
valued σ(Q)-measurable functions.

Theorem 11.53 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of B(X,C) such that: 1 ∈ H, H is closed under complex conjugation,
and H is closed under bounded convergence. If Q ⊂ H is multiplicative system
which is closed under conjugation, then H contains all bounded complex valued
σ(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
(11.26) B := {x ∈ X : f1(x) ∈ R1, . . . , fm(x) ∈ Rm}
where m = 1, 2, . . . , and for k = 1, 2, . . . ,m, fk ∈ Q and Rk is an open interval if
F = R or Rk is an open rectangle in C if F = C. The family C is easily seen to be
a π — system such that σ(Q) = σ(C). So By Theorem 8.12, to finish the proof it
suffices to show 1B ∈ H for all B ∈ C.
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It is easy to construct, for each k, a uniformly bounded sequence of continuous
functions

©
φkn
ª∞
n=1

on F converging to the characteristic function 1Rk . By Weier-
strass’ theorem, there exists polynomials pkm(x) such that

¯̄
pkn(x)− φkn(x)

¯̄ ≤ 1/n
for |x| ≤ kφkk∞ in the real case and polynomials pkm(z, z̄) in z and z̄ such that¯̄
pkn(z, z̄)− φkn(z)

¯̄ ≤ 1/n for |z| ≤ kφkk∞ in the complex case. The functions

Fn :=p
1
n(f1)p

2
n(f2) . . . p

m
n (fm) (real case)

Fn :=p
1
n(f1f̄1)p

2
n(f2, f̄2) . . . p

m
n (fm, f̄m) (complex case)

on X are uniformly bounded, belong to H and converge pointwise to 1B as n→∞,
where B is the set in Eq. (11.26). Thus 1B ∈ H and the proof is complete.

Remark 11.54. Given any collection of bounded real valued functions F on X,
let H(F) be the subspace of B(X,R) generated by F , i.e. H(F) is the smallest
subspace of B(X,R) which is closed under bounded convergence and contains F .
With this notation, Theorem 11.52 may be stated as follows. If F is a multiplicative
system then H(F) = Bσ(F)(X,R) — the space of bounded σ (F) — measurable real
valued functions on X.

11.6. Exercises.

Exercise 11.4. Let (X, τ) be a topological space, µ a measure on BX = σ(τ) and
f : X → C be a measurable function. Letting ν be the measure, dν = |f | dµ, show
supp(ν) = suppµ(f), where supp(ν) is defined in Definition 9.41).

Exercise 11.5. Let (X, τ) be a topological space, µ a measure on BX = σ(τ) such
that supp(µ) = X (see Definition 9.41). Show suppµ(f) = supp(f) = {f 6= 0} for
all f ∈ C(X).

Exercise 11.6. Prove Proposition 11.24 by appealing to Corollary 7.43.

Exercise 11.7 (Integration by Parts). Suppose that (x, y) ∈ R×Rn−1 → f(x, y) ∈
C and (x, y) ∈ R×Rn−1 → g(x, y) ∈ C are measurable functions such that for each
fixed y ∈ Rn−1, x → f(x, y) and x → g(x, y) are continuously differentiable. Also
assume f · g, ∂xf · g and f · ∂xg are integrable relative to Lebesgue measure on
R×Rn−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show

(11.27)
Z
R×Rn−1

∂xf(x, y) · g(x, y)dxdy = −
Z
R×Rn−1

f(x, y) · ∂xg(x, y)dxdy.

(Note: this result and Fubini’s theorem proves Lemma 11.26.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of 0 ∈ R and

set ψ (x) = ψ( x). First verify Eq. (11.27) with f(x, y) replaced by ψ (x)f(x, y) by
doing the x — integral first. Then use the dominated convergence theorem to prove
Eq. (11.27) by passing to the limit, ↓ 0.
Exercise 11.8. Let M <∞, show there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0

as follows. Let f(t) =
√
1− t for |t| ≤ 1. By Taylor’s theorem with integral re-

mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
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constants27 αn > 0 for n ∈ N such that √1− x = 1 −P∞n=1 αnxn for all |x| < 1.
Use this to prove

P∞
n=1 αn = 1 and therefore qm(x) := 1−

Pm
n=1 αnx

n

lim
m→∞ sup

|x|≤1
|√1− x− qm(x)| = 0.

Let 1− x = t2/M2, i.e. x = 1− t2/M2, then

lim
m→∞ sup

|t|≤M

¯̄̄̄ |t|
M
− qm(1− t2/M2)

¯̄̄̄
= 0

so that pm(t) :=Mqm(1− t2/M2) are the desired polynomials.

Exercise 11.9. Given a continuous function f : R→ C which is 2π -periodic and
> 0. Show there exists a trigonometric polynomial, p(θ) =

nP
n=−N

αne
inθ, such that

|f(θ)− P (θ)| < for all θ ∈ R. Hint: show that there exists a unique function
F ∈ C(S1) such that f(θ) = F (eiθ) for all θ ∈ R.
Remark 11.55. Exercise 11.9 generalizes to 2π — periodic functions on Rd, i.e. func-
tions such that f(θ+2πei) = f(θ) for all i = 1, 2, . . . , d where {ei}di=1 is the standard
basis for Rd. A trigonometric polynomial p(θ) is a function of θ ∈ Rd of the form

p(θ) =
X
n∈Γ

αne
in·θ

where Γ is a finite subset of Zd. The assertion is again that these trigonometric
polynomials are dense in the 2π — periodic functions relative to the supremum
norm.

Exercise 11.10. Let µ be a finite measure on BRd , then D := span{eiλ·x : λ ∈ Rd}
is a dense subspace of Lp(µ) for all 1 ≤ p <∞.Hints: By Proposition 11.6, Cc(Rd)
is a dense subspace of Lp(µ). For f ∈ Cc(Rd) and N ∈ N, let

fN (x) :=
X
n∈Zd

f(x+ 2πNn).

Show fN ∈ BC(Rd) and x → fN (Nx) is 2π — periodic, so by Exercise 11.9, x →
fN(Nx) can be approximated uniformly by trigonometric polynomials. Use this
fact to conclude that fN ∈ D̄Lp(µ). After this show fN → f in Lp(µ).

Exercise 11.11. Suppose that µ and ν are two finite measures on Rd such that

(11.28)
Z
Rd

eiλ·xdµ(x) =
Z
Rd

eiλ·xdν(x)

for all λ ∈ Rd. Show µ = ν.
Hint: Perhaps the easiest way to do this is to use Exercise 11.10 with the

measure µ being replaced by µ+ν. Alternatively, use the method of proof of Exercise
11.9 to show Eq. (11.28) implies

R
Rd fdµ(x) =

R
Rd fdν(x) for all f ∈ Cc(Rd).

Exercise 11.12. Again let µ be a finite measure on BRd . Further assume that
CM :=

R
Rd e

M|x|dµ(x) < ∞ for all M ∈ (0,∞). Let P(Rd) be the space of
polynomials, ρ(x) =

P
|α|≤N ραx

α with ρα ∈ C, on Rd. (Notice that |ρ(x)|p ≤
C(ρ, p,M)eM|x|, so that P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞.) Show P(Rd) is dense
in Lp(µ) for all 1 ≤ p <∞. Here is a possible outline.

27In fact αn :=
(2n−3)!!
2nn!

, but this is not needed.
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Outline: For λ ∈ Rd and n ∈ N let fnλ (x) = (λ · x)n /n!
(1) Use calculus to verify supt≥0 tαe−Mt = (α/M)α e−α for all α ≥ 0 where

(0/M)
0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e−M|x|

´
|λ|pn eM|x|

to find an estimate on kfnλ kp .
(2) Use your estimate on kfnλ kp to show

P∞
n=0 kfnλ kp <∞ and conclude

lim
N→∞

°°°°°eiλ·(·) −
NX
n=0

fnλ

°°°°°
p

= 0.

(3) Now finish by appealing to Exercise 11.10.

Exercise 11.13. Again let µ be a finite measure on BRd but now assume there
exists an > 0 such that C :=

R
Rd e

|x|dµ(x) < ∞. Also let q > 1 and h ∈ Lq(µ)

be a function such that
R
Rd h(x)x

αdµ(x) = 0 for all α ∈ Nd0. (As mentioned in
Exercise 11.13, P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞, so x → h(x)xα is in L1(µ).)
Show h(x) = 0 for µ— a.e. x using the following outline.
Outline: For λ ∈ Rd and n ∈ N let fλn (x) = (λ · x)n /n! and let p = q/(q − 1)

be the conjugate exponent to q.
(1) Use calculus to verify supt≥0 tαe− t = (α/ )

α
e−α for all α ≥ 0 where

(0/ )
0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e− |x|

´
|λ|pn e |x|

to find an estimate on
°°fλn°°p .

(2) Use your estimate on
°°fλn°°p to show there exists δ > 0 such thatP∞

n=0

°°fλn°°p <∞when |λ| ≤ δ and conclude for |λ| ≤ δ that eiλ·x = Lp(µ)—P∞
n=0 f

λ
n (x). Conclude from this thatZ

Rd
h(x)eiλ·xdµ(x) = 0 when |λ| ≤ δ.

(3) Let λ ∈ Rd (|λ| not necessarily small) and set g(t) := R
Rd e

itλ·xh(x)dµ(x)
for t ∈ R. Show g ∈ C∞(R) and

g(n)(t) =

Z
Rd
(iλ · x)neitλ·xh(x)dµ(x) for all n ∈ N.

(4) Let T = sup{τ ≥ 0 : g|[0,τ ] ≡ 0}. By Step 2., T ≥ δ. If T <∞, then

0 = g(n)(T ) =

Z
Rd
(iλ · x)neiTλ·xh(x)dµ(x) for all n ∈ N.

Use Step 3. with h replaced by eiTλ·xh(x) to conclude

g(T + t) =

Z
Rd

ei(T+t)λ·xh(x)dµ(x) = 0 for all t ≤ δ/ |λ| .
This violates the definition of T and therefore T =∞ and in particular we
may take T = 1 to learnZ

Rd
h(x)eiλ·xdµ(x) = 0 for all λ ∈ Rd.
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(5) Use Exercise 11.10 to conclude thatZ
Rd

h(x)g(x)dµ(x) = 0

for all g ∈ Lp(µ). Now choose g judiciously to finish the proof.


