24. Hölder Spaces

Notation 24.1. Let Ω be an open subset of $\mathbb{R}^{d}, B C(\Omega)$ and $B C(\bar{\Omega})$ be the bounded continuous functions on Ω and $\bar{\Omega}$ respectively. By identifying $f \in B C(\bar{\Omega})$ with $\left.f\right|_{\Omega} \in B C(\Omega)$, we will consider $B C(\bar{\Omega})$ as a subset of $B C(\Omega)$. For $u \in B C(\Omega)$ and $0<\beta \leq 1$ let

$$
\|u\|_{u}:=\sup _{x \in \Omega}|u(x)| \text { and }[u]_{\beta}:=\sup _{\substack{x, y \in \Omega \\ x \neq y}}\left\{\frac{|u(x)-u(y)|}{|x-y|^{\beta}}\right\} .
$$

If $[u]_{\beta}<\infty$, then u is Hölder continuous with holder exponent ${ }^{43} \beta$. The collection of β - Hölder continuous function on Ω will be denoted by

$$
C^{0, \beta}(\Omega):=\left\{u \in B C(\Omega):[u]_{\beta}<\infty\right\}
$$

and for $u \in C^{0, \beta}(\Omega)$ let

$$
\begin{equation*}
\|u\|_{C^{0, \beta}(\Omega)}:=\|u\|_{u}+[u]_{\beta} . \tag{24.1}
\end{equation*}
$$

Remark 24.2. If $u: \Omega \rightarrow \mathbb{C}$ and $[u]_{\beta}<\infty$ for some $\beta>1$, then u is constant on each connected component of Ω. Indeed, if $x \in \Omega$ and $h \in \mathbb{R}^{d}$ then

$$
\left|\frac{u(x+t h)-u(x)}{t}\right| \leq[u]_{\beta} t^{\beta} / t \rightarrow 0 \text { as } t \rightarrow 0
$$

which shows $\partial_{h} u(x)=0$ for all $x \in \Omega$. If $y \in \Omega$ is in the same connected component as x, then by Exercise 17.5 there exists a smooth curve $\sigma:[0,1] \rightarrow \Omega$ such that $\sigma(0)=x$ and $\sigma(1)=y$. So by the fundamental theorem of calculus and the chain rule,

$$
u(y)-u(x)=\int_{0}^{1} \frac{d}{d t} u(\sigma(t)) d t=\int_{0}^{1} 0 d t=0 .
$$

This is why we do not talk about Hölder spaces with Hölder exponents larger than 1.

Lemma 24.3. Suppose $u \in C^{1}(\Omega) \cap B C(\Omega)$ and $\partial_{i} u \in B C(\Omega)$ for $i=1,2, \ldots, d$, then $u \in C^{0,1}(\Omega)$, i.e. $[u]_{1}<\infty$.

The proof of this lemma is left to the reader as Exercise 24.1.
Theorem 24.4. Let Ω be an open subset of \mathbb{R}^{d}. Then
(1) Under the identification of $u \in B C(\bar{\Omega})$ with $\left.u\right|_{\Omega} \in B C(\Omega), B C(\bar{\Omega})$ is a closed subspace of $B C(\Omega)$.
(2) Every element $u \in C^{0, \beta}(\Omega)$ has a unique extension to a continuous function (still denoted by u) on $\bar{\Omega}$. Therefore we may identify $C^{0, \beta}(\Omega)$ with $C^{0, \beta}(\bar{\Omega}) \subset B C(\bar{\Omega})$. (In particular we may consider $C^{0, \beta}(\Omega)$ and $C^{0, \beta}(\bar{\Omega})$ to be the same when $\beta>0$.)
(3) The function $u \in C^{0, \beta}(\Omega) \rightarrow\|u\|_{C^{0, \beta}(\Omega)} \in[0, \infty)$ is a norm on $C^{0, \beta}(\Omega)$ which make $C^{0, \beta}(\Omega)$ into a Banach space.

Proof. 1. The first item is trivial since for $u \in B C(\bar{\Omega})$, the sup-norm of u on $\bar{\Omega}$ agrees with the sup-norm on Ω and $B C(\bar{\Omega})$ is complete in this norm.

[^0]2. Suppose that $[u]_{\beta}<\infty$ and $x_{0} \in \partial \Omega$. Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \Omega$ be a sequence such that $x_{0}=\lim _{n \rightarrow \infty} x_{n}$. Then
$$
\left|u\left(x_{n}\right)-u\left(x_{m}\right)\right| \leq[u]_{\beta}\left|x_{n}-x_{m}\right|^{\beta} \rightarrow 0 \text { as } m, n \rightarrow \infty
$$
showing $\left\{u\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is Cauchy so that $\bar{u}\left(x_{0}\right):=\lim _{n \rightarrow \infty} u\left(x_{n}\right)$ exists. If $\left\{y_{n}\right\}_{n=1}^{\infty} \subset$ Ω is another sequence converging to x_{0}, then
$$
\left|u\left(x_{n}\right)-u\left(y_{n}\right)\right| \leq[u]_{\beta}\left|x_{n}-y_{n}\right|^{\beta} \rightarrow 0 \text { as } n \rightarrow \infty
$$
showing $\bar{u}\left(x_{0}\right)$ is well defined. In this way we define $\bar{u}(x)$ for all $x \in \partial \Omega$ and let $\bar{u}(x)=u(x)$ for $x \in \Omega$. Since a similar limiting argument shows
$$
|\bar{u}(x)-\bar{u}(y)| \leq[u]_{\beta}|x-y|^{\beta} \text { for all } x, y \in \bar{\Omega}
$$
it follows that \bar{u} is still continuous and $[\bar{u}]_{\beta}=[u]_{\beta}$. In the sequel we will abuse notation and simply denote \bar{u} by u.
3. For $u, v \in C^{0, \beta}(\Omega)$,
\[

$$
\begin{aligned}
{[v+u]_{\beta} } & =\sup _{\substack{x, y \in \Omega \\
x \neq y}}\left\{\frac{|v(y)+u(y)-v(x)-u(x)|}{|x-y|^{\beta}}\right\} \\
& \leq \sup _{\substack{x, y \in \Omega \\
x \neq y}}\left\{\frac{|v(y)-v(x)|+|u(y)-u(x)|}{|x-y|^{\beta}}\right\} \leq[v]_{\beta}+[u]_{\beta}
\end{aligned}
$$
\]

and for $\lambda \in \mathbb{C}$ it is easily seen that $[\lambda u]_{\beta}=|\lambda|[u]_{\beta}$. This shows $[\cdot]_{\beta}$ is a semi-norm on $C^{0, \beta}(\Omega)$ and therefore $\|\cdot\|_{C^{0, \beta}(\Omega)}$ defined in Eq. (24.1) is a norm.

To see that $C^{0, \beta}(\Omega)$ is complete, let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a $C^{0, \beta}(\Omega)$-Cauchy sequence. Since $B C(\bar{\Omega})$ is complete, there exists $u \in B C(\bar{\Omega})$ such that $\left\|u-u_{n}\right\|_{u} \rightarrow 0$ as $n \rightarrow \infty$. For $x, y \in \Omega$ with $x \neq y$,

$$
\frac{|u(x)-u(y)|}{|x-y|^{\beta}}=\lim _{n \rightarrow \infty} \frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|^{\beta}} \leq \limsup _{n \rightarrow \infty}\left[u_{n}\right]_{\beta} \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{C^{0, \beta}(\Omega)}<\infty
$$

and so we see that $u \in C^{0, \beta}(\Omega)$. Similarly,

$$
\begin{aligned}
\frac{\left|u(x)-u_{n}(x)-\left(u(y)-u_{n}(y)\right)\right|}{|x-y|^{\beta}} & =\lim _{m \rightarrow \infty} \frac{\left|\left(u_{m}-u_{n}\right)(x)-\left(u_{m}-u_{n}\right)(y)\right|}{|x-y|^{\beta}} \\
& \leq \limsup _{m \rightarrow \infty}\left[u_{m}-u_{n}\right]_{\beta} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

showing $\left[u-u_{n}\right]_{\beta} \rightarrow 0$ as $n \rightarrow \infty$ and therefore $\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{C^{0, \beta}(\Omega)}=0$.
Notation 24.5. Since Ω and $\bar{\Omega}$ are locally compact Hausdorff spaces, we may define $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$ as in Definition 10.29. We will also let

$$
C_{0}^{0, \beta}(\Omega):=C^{0, \beta}(\Omega) \cap C_{0}(\Omega) \text { and } C_{0}^{0, \beta}(\bar{\Omega}):=C^{0, \beta}(\Omega) \cap C_{0}(\bar{\Omega})
$$

It has already been shown in Proposition 10.30 that $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$ are closed subspaces of $B C(\Omega)$ and $B C(\bar{\Omega})$ respectively. The next proposition describes the relation between $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$.
Proposition 24.6. Each $u \in C_{0}(\Omega)$ has a unique extension to a continuous function on $\bar{\Omega}$ given by $\bar{u}=u$ on Ω and $\bar{u}=0$ on $\partial \Omega$ and the extension \bar{u} is in $C_{0}(\bar{\Omega})$. Conversely if $u \in C_{0}(\bar{\Omega})$ and $\left.u\right|_{\partial \Omega}=0$, then $\left.u\right|_{\Omega} \in C_{0}(\Omega)$. In this way we may identify $C_{0}(\Omega)$ with those $u \in C_{0}(\bar{\Omega})$ such that $\left.u\right|_{\partial \Omega}=0$.

Proof. Any extension $u \in C_{0}(\Omega)$ to an element $\bar{u} \in C(\bar{\Omega})$ is necessarily unique, since Ω is dense inside $\bar{\Omega}$. So define $\bar{u}=u$ on Ω and $\bar{u}=0$ on $\partial \Omega$. We must show \bar{u} is continuous on $\bar{\Omega}$ and $\bar{u} \in C_{0}(\bar{\Omega})$.

For the continuity assertion it is enough to show \bar{u} is continuous at all points in $\partial \Omega$. For any $\epsilon>0$, by assumption, the set $K_{\epsilon}:=\{x \in \Omega:|u(x)| \geq \epsilon\}$ is a compact subset of Ω. Since $\partial \Omega=\bar{\Omega} \backslash \Omega, \partial \Omega \cap K_{\epsilon}=\emptyset$ and therefore the distance, $\delta:=d\left(K_{\epsilon}, \partial \Omega\right)$, between K_{ϵ} and $\partial \Omega$ is positive. So if $x \in \partial \Omega$ and $y \in \bar{\Omega}$ and $|y-x|<\delta$, then $|\bar{u}(x)-\bar{u}(y)|=|u(y)|<\epsilon$ which shows $\bar{u}: \bar{\Omega} \rightarrow \mathbb{C}$ is continuous. This also shows $\{|\bar{u}| \geq \epsilon\}=\{|u| \geq \epsilon\}=K_{\epsilon}$ is compact in Ω and hence also in $\bar{\Omega}$. Since $\epsilon>0$ was arbitrary, this shows $\bar{u} \in C_{0}(\bar{\Omega})$.

Conversely if $u \in C_{0}(\bar{\Omega})$ such that $\left.u\right|_{\partial \Omega}=0$ and $\epsilon>0$, then $K_{\epsilon}:=$ $\{x \in \bar{\Omega}:|u(x)| \geq \epsilon\}$ is a compact subset of $\bar{\Omega}$ which is contained in Ω since $\partial \Omega \cap K_{\epsilon}=\emptyset$. Therefore K_{ϵ} is a compact subset of Ω showing $\left.u\right|_{\Omega} \in C_{0}(\bar{\Omega})$.
Definition 24.7. Let Ω be an open subset of $\mathbb{R}^{d}, k \in \mathbb{N} \cup\{0\}$ and $\beta \in(0,1]$. Let $B C^{k}(\Omega)\left(B C^{k}(\bar{\Omega})\right)$ denote the set of k - times continuously differentiable functions u on Ω such that $\partial^{\alpha} u \in B C(\Omega)\left(\partial^{\alpha} u \in B C(\bar{\Omega})\right)^{44}$ for all $|\alpha| \leq k$. Similarly, let $B C^{k, \beta}(\Omega)$ denote those $u \in B C^{k}(\Omega)$ such that $\left[\partial^{\alpha} u\right]_{\beta}<\infty$ for all $|\alpha|=k$. For $u \in B C^{k}(\Omega)$ let

$$
\begin{aligned}
\|u\|_{C^{k}(\Omega)} & =\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{u} \text { and } \\
\|u\|_{C^{k, \beta}(\bar{\Omega})} & =\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{u}+\sum_{|\alpha|=k}\left[\partial^{\alpha} u\right]_{\beta}
\end{aligned}
$$

Theorem 24.8. The spaces $B C^{k}(\Omega)$ and $B C^{k, \beta}(\Omega)$ equipped with $\|\cdot\|_{C^{k}(\Omega)}$ and $\|\cdot\|_{C^{k, \beta}(\bar{\Omega})}$ respectively are Banach spaces and $B C^{k}(\bar{\Omega})$ is a closed subspace of $B C^{k}(\Omega)$ and $B C^{k, \beta}(\Omega) \subset B C^{k}(\bar{\Omega})$. Also

$$
C_{0}^{k, \beta}(\Omega)=C_{0}^{k, \beta}(\bar{\Omega})=\left\{u \in B C^{k, \beta}(\Omega): \partial^{\alpha} u \in C_{0}(\Omega) \forall|\alpha| \leq k\right\}
$$

is a closed subspace of $B C^{k, \beta}(\Omega)$.
Proof. Suppose that $\left\{u_{n}\right\}_{n=1}^{\infty} \subset B C^{k}(\Omega)$ is a Cauchy sequence, then $\left\{\partial^{\alpha} u_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $B C(\Omega)$ for $|\alpha| \leq k$. Since $B C(\Omega)$ is complete, there exists $g_{\alpha} \in B C(\Omega)$ such that $\lim _{n \rightarrow \infty}\left\|\partial^{\alpha} u_{n}-g_{\alpha}\right\|_{u}=0$ for all $|\alpha| \leq k$. Letting $u:=g_{0}$, we must show $u \in C^{k}(\Omega)$ and $\partial^{\alpha} u=g_{\alpha}$ for all $|\alpha| \leq k$. This will be done by induction on $|\alpha|$. If $|\alpha|=0$ there is nothing to prove. Suppose that we have verified $u \in C^{l}(\Omega)$ and $\partial^{\alpha} u=g_{\alpha}$ for all $|\alpha| \leq l$ for some $l<k$. Then for $x \in \Omega$, $i \in\{1,2, \ldots, d\}$ and $t \in \mathbb{R}$ sufficiently small,

$$
\partial^{a} u_{n}\left(x+t e_{i}\right)=\partial^{a} u_{n}(x)+\int_{0}^{t} \partial_{i} \partial^{a} u_{n}\left(x+\tau e_{i}\right) d \tau
$$

Letting $n \rightarrow \infty$ in this equation gives

$$
\partial^{a} u\left(x+t e_{i}\right)=\partial^{a} u(x)+\int_{0}^{t} g_{\alpha+e_{i}}\left(x+\tau e_{i}\right) d \tau
$$

from which it follows that $\partial_{i} \partial^{\alpha} u(x)$ exists for all $x \in \Omega$ and $\partial_{i} \partial^{\alpha} u=g_{\alpha+e_{i}}$. This completes the induction argument and also the proof that $B C^{k}(\Omega)$ is complete.

[^1]It is easy to check that $B C^{k}(\bar{\Omega})$ is a closed subspace of $B C^{k}(\Omega)$ and by using Exercise 24.1 and Theorem 24.4 that that $B C^{k, \beta}(\Omega)$ is a subspace of $B C^{k}(\bar{\Omega})$. The fact that $C_{0}^{k, \beta}(\Omega)$ is a closed subspace of $B C^{k, \beta}(\Omega)$ is a consequence of Proposition 10.30 .

To prove $B C^{k, \beta}(\Omega)$ is complete, let $\left\{u_{n}\right\}_{n=1}^{\infty} \subset B C^{k, \beta}(\Omega)$ be a $\|\cdot\|_{C^{k, \beta}(\bar{\Omega})}-$ Cauchy sequence. By the completeness of $B C^{k}(\Omega)$ just proved, there exists $u \in$ $B C^{k}(\Omega)$ such that $\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{C^{k}(\Omega)}=0$. An application of Theorem 24.4 then shows $\lim _{n \rightarrow \infty}\left\|\partial^{\alpha} u_{n}-\partial^{\alpha} u\right\|_{C^{0, \beta}(\Omega)}=0$ for $|\alpha|=k$ and therefore $\lim _{n \rightarrow \infty} \| u-$ $u_{n} \|_{C^{k, \beta}(\bar{\Omega})}=0$.

The reader is asked to supply the proof of the following lemma.
Lemma 24.9. The following inclusions hold. For any $\beta \in[0,1]$

$$
\begin{aligned}
& B C^{k+1,0}(\Omega) \subset B C^{k, 1}(\Omega) \subset B C^{k, \beta}(\Omega) \\
& B C^{k+1,0}(\bar{\Omega}) \subset B C^{k, 1}(\bar{\Omega}) \subset B C^{k, \beta}(\Omega)
\end{aligned}
$$

Definition 24.10. Let $A: X \rightarrow Y$ be a bounded operator between two (separable) Banach spaces. Then A is compact if $A\left[B_{X}(0,1)\right]$ is precompact in Y or equivalently for any $\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ such that $\left\|x_{n}\right\| \leq 1$ for all n the sequence $y_{n}:=A x_{n} \in Y$ has a convergent subsequence.
Example 24.11. Let $X=\ell^{2}=Y$ and $\lambda_{n} \in \mathbb{C}$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$, then $A: X \rightarrow Y$ defined by $(A x)(n)=\lambda_{n} x(n)$ is compact.

Proof. Suppose $\left\{x_{j}\right\}_{j=1}^{\infty} \subset \ell^{2}$ such that $\left\|x_{j}\right\|^{2}=\sum\left|x_{j}(n)\right|^{2} \leq 1$ for all j. By Cantor's Diagonalization argument, there exists $\left\{j_{k}\right\} \subset\{j\}$ such that, for each n, $\tilde{x}_{k}(n)=x_{j_{k}}(n)$ converges to some $\tilde{x}(n) \in \mathbb{C}$ as $k \rightarrow \infty$. Since for any $M<\infty$,

$$
\sum_{n=1}^{M}|\tilde{x}(n)|^{2}=\lim _{k \rightarrow \infty} \sum_{n=1}^{M}\left|\tilde{x}_{k}(n)\right|^{2} \leq 1
$$

we may conclude that $\sum_{n=1}^{\infty}|\tilde{x}(n)|^{2} \leq 1$, i.e. $\tilde{x} \in \ell^{2}$.
Let $y_{k}:=A \tilde{x}_{k}$ and $y:=A \tilde{x}$. We will finish the verification of this example by showing $y_{k} \rightarrow y$ in ℓ^{2} as $k \rightarrow \infty$. Indeed if $\lambda_{M}^{*}=\max _{n \geq M}\left|\lambda_{n}\right|$, then

$$
\begin{aligned}
\left\|A \tilde{x}_{k}-A \tilde{x}\right\|^{2} & =\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}\left|\tilde{x}_{k}(n)-\tilde{x}(n)\right|^{2} \\
& =\sum_{n=1}^{M}\left|\lambda_{n}\right|^{2}\left|\tilde{x}_{k}(n)-\tilde{x}(n)\right|^{2}+\left|\lambda_{M}^{*}\right|^{2} \sum_{M+1}^{\infty}\left|\tilde{x}_{k}(n)-\tilde{x}(n)\right|^{2} \\
& \leq \sum_{n=1}^{M}\left|\lambda_{n}\right|^{2}\left|\tilde{x}_{k}(n)-\tilde{x}(n)\right|^{2}+\left|\lambda_{M}^{*}\right|^{2}\left\|\tilde{x}_{k}-\tilde{x}\right\|^{2} \\
& \leq \sum_{n=1}^{M}\left|\lambda_{n}\right|^{2}\left|\tilde{x}_{k}(n)-\tilde{x}(n)\right|^{2}+4\left|\lambda_{M}^{*}\right|^{2} .
\end{aligned}
$$

Passing to the limit in this inequality then implies

$$
\lim \sup _{k \rightarrow \infty}\left\|A \tilde{x}_{k}-A \tilde{x}\right\|^{2} \leq 4\left|\lambda_{M}^{*}\right|^{2} \rightarrow 0 \text { as } M \rightarrow \infty
$$

Lemma 24.12. If $X \xrightarrow{A} Y \xrightarrow{B} Z$ are continuous operators such the either A or B is compact then the composition $B A: X \rightarrow Z$ is also compact.

Proof. If A is compact and B is bounded, then $B A\left(B_{X}(0,1)\right) \subset B\left(\overline{A B_{X}(0,1)}\right)$ which is compact since the image of compact sets under continuous maps are compact. Hence we conclude that $\overline{B A\left(B_{X}(0,1)\right)}$ is compact, being the closed subset of the compact set $B\left(\overline{A B_{X}(0,1)}\right)$.

If A is continuos and B is compact, then $A\left(B_{X}(0,1)\right)$ is a bounded set and so by the compactness of $B, B A\left(B_{X}(0,1)\right)$ is a precompact subset of Z, i.e. $B A$ is compact.

Proposition 24.13. Let $\Omega \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega}$ is compact and $0 \leq \alpha<\beta \leq 1$. Then the inclusion map $i: C^{\beta}(\bar{\Omega}) \hookrightarrow C^{\alpha}(\bar{\Omega})$ is compact.

Let $\left\{u_{n}\right\}_{n=1}^{\infty} \subset C^{\beta}(\bar{\Omega})$ such that $\left\|u_{n}\right\|_{C^{\beta}} \leq 1$, i.e. $\left\|u_{n}\right\|_{\infty} \leq 1$ and

$$
\left|u_{n}(x)-u_{n}(y)\right| \leq|x-y|^{\beta} \text { for all } x, y \in \bar{\Omega} .
$$

By Arzela-Ascoli, there exists a subsequence of $\left\{\tilde{u}_{n}\right\}_{n=1}^{\infty}$ of $\left\{u_{n}\right\}_{n=1}^{\infty}$ and $u \in C^{o}(\bar{\Omega})$ such that $\tilde{u}_{n} \rightarrow u$ in C^{0}. Since

$$
|u(x)-u(y)|=\lim _{n \rightarrow \infty}\left|\tilde{u}_{n}(x)-\tilde{u}_{n}(y)\right| \leq|x-y|^{\beta}
$$

$u \in C^{\beta}$ as well. Define $g_{n}:=u-\tilde{u}_{n} \in C^{\beta}$, then

$$
\left[g_{n}\right]_{\beta}+\left\|g_{n}\right\|_{C^{0}}=\left\|g_{n}\right\|_{C^{\beta}} \leq 2
$$

and $g_{n} \rightarrow 0$ in C^{0}. To finish the proof we must show that $g_{n} \rightarrow 0$ in C^{α}. Given $\delta>0$,

$$
\left[g_{n}\right]_{\alpha}=\sup _{x \neq y} \frac{\left|g_{n}(x)-g_{n}(y)\right|}{|x-y|^{\alpha}} \leq A_{n}+B_{n}
$$

where

$$
\begin{aligned}
A_{n} & =\sup \left\{\frac{\left|g_{n}(x)-g_{n}(y)\right|}{|x-y|^{\alpha}}: x \neq y \text { and }|x-y| \leq \delta\right\} \\
& =\sup \left\{\frac{\left|g_{n}(x)-g_{n}(y)\right|}{|x-y|^{\beta}} \cdot|x-y|^{\beta-\alpha}: x \neq y \text { and }|x-y| \leq \delta\right\} \\
& \leq \delta^{\beta-\alpha} \cdot\left[g_{n}\right]_{\beta} \leq 2 \delta^{\beta-\alpha}
\end{aligned}
$$

and

$$
B_{n}=\sup \left\{\frac{\left|g_{n}(x)-g_{n}(y)\right|}{|x-y|^{\alpha}}:|x-y|>\delta\right\} \leq 2 \delta^{-\alpha}\left\|g_{n}\right\|_{C^{0}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore,

$$
\lim \sup _{n \rightarrow \infty}\left[g_{n}\right]_{\alpha} \leq \lim \sup _{n \rightarrow \infty} A_{n}+\lim \sup _{n \rightarrow \infty} B_{n} \leq 2 \delta^{\beta-\alpha}+0 \rightarrow 0 \text { as } \delta \downarrow 0
$$

This proposition generalizes to the following theorem which the reader is asked to prove in Exercise 24.2 below.

Theorem 24.14. Let Ω be a precompact open subset of $\mathbb{R}^{d}, \alpha, \beta \in[0,1]$ and $k, j \in$ \mathbb{N}_{0}. If $j+\beta>k+\alpha$, then $C^{j, \beta}(\bar{\Omega})$ is compactly contained in $C^{k, \alpha}(\bar{\Omega})$.

24.1. Exercises.

Exercise 24.1. Prove Lemma 24.3.
Exercise 24.2. Prove Theorem 24.14. Hint: First prove $C^{j, \beta}(\bar{\Omega}) \sqsubset \sqsubset C^{j, \alpha}(\bar{\Omega})$ is compact if $0 \leq \alpha<\beta \leq 1$. Then use Lemma 24.12 repeatedly to handle all of the other cases.

[^0]: ${ }^{43}$ If $\beta=1, u$ is is said to be Lipschitz continuous.

[^1]: ${ }^{44}$ To say $\partial^{\alpha} u \in B C(\bar{\Omega})$ means that $\partial^{\alpha} u \in B C(\Omega)$ and $\partial^{\alpha} u$ extends to a continuous function on $\bar{\Omega}$.

