29. Unbounded operators and quadratic forms

29.1. Unbounded operator basics.

Definition 29.1. If X and Y are Banach spaces and D is a subspace of X, then a linear transformation T from D into Y is called a linear transformation (or operator) from X to Y with domain D. We will sometimes wr If D is dense in X, T is said to be densely defined.

Notation 29.2. If S and T are operators from X to Y with domains $D(S)$ and $D(T)$ and if $D(S) \subset D(T)$ and $S x=T x$ for $x \in D(S)$, then we say T is an extension of S and write $S \subset T$.

We note that $X \times Y$ is a Banach space in the norm

$$
\|\langle x, y\rangle\|=\sqrt{\|x\|^{2}+\|y\|^{2}} .
$$

If H and K are Hilbert spaces, then $H \times K$ and $K \times H$ become Hilbert spaces by defining

$$
\left(\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle\right)_{H \times K}:=\left(x, x^{\prime}\right)_{H}+\left(y, y^{\prime}\right)_{K}
$$

and

$$
\left(\langle y, x\rangle,\left\langle y^{\prime}, x^{\prime}\right\rangle\right)_{K \times H}:=\left(x, x^{\prime}\right)_{H}+\left(y, y^{\prime}\right)_{K}
$$

Definition 29.3. If T is an operator from X to Y with domain D, the graphof T is

$$
\Gamma(T):=\{\langle x, D x\rangle: x \in D(T)\} \subset H \times K
$$

Note that $\Gamma(T)$ is a subspace of $X \times Y$.
Definition 29.4. An operator $T: X \rightarrow Y$ is closedif $\Gamma(T)$ is closed in $X \times Y$.
Remark 29.5. It is easy to see that T is closed iff for all sequences $x_{n} \in D$ such that there exists $x \in X$ and $y \in Y$ such that $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$ implies that $x \in \mathcal{D}$ and $T x=y$.

Let H be a Hilbert space with inner product (\cdot, \cdot) and norm $\|v\|:=\sqrt{(v, v)}$. As usual we will write H^{*} for the continuous dual of H and $\overline{H^{*}}$ for the continuous conjugate linear functionals on H. Our convention will be that $(\cdot, v) \in H^{*}$ is linear while $(v, \cdot) \in \overline{H^{*}}$ is conjugate linear for all $v \in H$.

Lemma 29.6. Suppose that $T: H \rightarrow K$ is a densely defined operator between two Hilbert spaces H and K. Then
(1) T^{*} is always a closed but not necessarily densely defined operator.
(2) If T is closable, then $\bar{T}^{*}=T^{*}$.
(3) T is closable iff $T^{*}: K \rightarrow H$ is densely defined.
(4) If T is closable then $\bar{T}=T^{* *}$.

Proof. Suppose $\left\{v_{n}\right\} \subset D(T)$ is a sequence such that $v_{n} \rightarrow 0$ in H and $T v_{n} \rightarrow k$ in K as $n \rightarrow \infty$. Then for $l \in D\left(T^{*}\right)$, by passing to the limit in the equality, $\left(T v_{n}, l\right)=\left(v_{n}, T^{*} l\right)$ we learn $(k, l)=\left(0, T^{*} l\right)=0$. Hence if T^{*} is densely defined, this implies $k=0$ and hence T is closable. This proves one direction in item 3. To prove the other direction and the remaining items of the Lemma it will be useful to express the graph of T^{*} in terms of the graph of T. We do this now.

Recall that $k \in D\left(T^{*}\right)$ and $T^{*} k=h$ iff $(k, T x)_{K}=(h, x)_{H}$ for all $x \in D(T)$. This last condition may be written as $(k, y)_{K}-(h, x)_{H}=0$ for all $\langle x, y\rangle \in \Gamma(T)$.

Let $V: H \times K \rightarrow K \times H$ be the unitary map defined by $V\langle x, y\rangle=\langle-y, x\rangle$. With this notation, we have $\langle k, h\rangle \in \Gamma\left(T^{*}\right)$ iff $\langle k, h\rangle \perp V \Gamma(T)$, i.e.

$$
\begin{equation*}
\Gamma\left(T^{*}\right)=(V \Gamma(T))^{\perp}=V\left(\Gamma(T)^{\perp}\right) \tag{29.1}
\end{equation*}
$$

where the last equality is a consequence of V being unitary. As a consequence of Eq. (29.1), $\Gamma\left(T^{*}\right)$ is always closed and hence T^{*} is always a closed operator, and this proves item 1. Moreover if T is closable, then

$$
\Gamma\left(T^{*}\right)=V \Gamma(T)^{\perp}=V \overline{\Gamma(T)}^{\perp}=V \Gamma(\bar{T})^{\perp}=\Gamma\left(\bar{T}^{*}\right)
$$

which proves item 2 .
Now suppose T is closable and $k \perp \mathcal{D}\left(T^{*}\right)$. Then

$$
\langle k, 0\rangle \in \Gamma\left(T^{*}\right)^{\perp}=V \Gamma(T)^{\perp \perp}=V \overline{\Gamma(T)}=V \Gamma(\bar{T})
$$

where \bar{T} denotes the closure of T. This implies that $\langle 0, k\rangle \in \Gamma(\bar{T})$. But \bar{T} is a well defined operator (by the assumption that T is closable) and hence $k=\bar{T} 0=0$. Hence we have shown $\mathcal{D}\left(T^{*}\right)^{\perp}=\{0\}$ which implies $\mathcal{D}\left(T^{*}\right)$ is dense in K. This completes the proof of item 3 .
4. Now assume T is closable so that T^{*} is densely defined. Using the obvious analogue of Eq. (29.1) for T^{*} we learn $\Gamma\left(T^{* *}\right)=U \Gamma\left(T^{*}\right)^{\perp}$ where $U\langle y, x\rangle=$ $\langle-x, y\rangle=-V^{-1}\langle y, x\rangle$. Therefore,

$$
\Gamma\left(T^{* *}\right)=U V\left(\Gamma(T)^{\perp}\right)^{\perp}=-\overline{\Gamma(T)}=\overline{\Gamma(T)}=\Gamma(\bar{T})
$$

and hence $\bar{T}=T^{* *}$.
Lemma 29.7. Suppose that H and K are Hilbert spaces, $T: H \rightarrow K$ is a densely defined operator which has a densely defined adjoint T^{*}. Then $\operatorname{Nul}\left(T^{*}\right)=\operatorname{Ran}(T)^{\perp}$ and $\operatorname{Nul}(\bar{T})=\operatorname{Ran}\left(T^{*}\right)^{\perp}$ where \bar{T} denotes the closure of T.

Proof. Suppose that $k \in \operatorname{Nul}\left(T^{*}\right)$ and $h \in \mathcal{D}(T)$, then $(k, T h)=\left(T^{*} k, h\right)=0$. Since $h \in \mathcal{D}(T)$ is arbitrary, this proves that $\operatorname{Nul}\left(T^{*}\right) \subset \operatorname{Ran}(T)^{\perp}$. Now suppose that $k \in \operatorname{Ran}(T)^{\perp}$. Then $0=(k, T h)$ for all $h \in D(T)$. This shows that $k \in \mathcal{D}\left(T^{*}\right)$ and that $T^{*} k=0$. The assertion $\operatorname{Nul}(\bar{T})=\operatorname{Ran}\left(T^{*}\right)^{\perp}$ follows by replacing T by T^{*} in the equality, $\operatorname{Nul}\left(T^{*}\right)=\operatorname{Ran}(T)^{\perp}$.

Definition 29.8. A quadratic form q on H is a dense subspace $\mathcal{D}(q) \subset H$ called the domain of q and a sesquilinear form $q: \mathcal{D}(q) \times \mathcal{D}(q) \rightarrow \mathbb{C}$. (Sesquilinear means that $q(\cdot, v)$ is linear while $q(v, \cdot)$ is conjugate linear on $\mathcal{D}(q)$ for all $v \in \mathcal{D}(q)$.) The form q is symmetric if $q(v, w)=\overline{q(w, v)}$ for all $v, w \in \mathcal{D}(q), q$ is positive if $q(v) \geq 0$ (here $q(v)=q(v, v))$ for all $v \in \mathcal{D}(q)$, and q is semi-bounded if there exists $M_{0} \in(0, \infty)$ such that $q(v, v) \geq-M_{0}\|v\|^{2}$ for all $v \in \mathcal{D}(q)$.
29.2. Lax-Milgram Methods. For the rest of this section q will be a sesquilinear form on H and to simplify notation we will write X for $\mathcal{D}(q)$.
Theorem 29.9 (Lax-Milgram). Let $q: X \times X \rightarrow \mathbb{C}$ be a sesquilinear form and suppose the following added assumptions hold.
(1) X is equipped with a Hilbertian inner product $(\cdot, \cdot)_{X}$.
(2) The form q is bounded on X, i.e. there exists a constant $C<\infty$ such that $|q(v, w)| \leq C\|v\|_{X} \cdot\|w\|_{X}$ for all $v, w \in X$.
(3) The form q is coercive, i.e. there exists $\epsilon>0$ such that $|q(v, v)| \geq \epsilon\|v\|_{X}^{2}$ for all $v \in X$.

Then the maps $\mathcal{L}: X \rightarrow \overline{X^{*}}$ and $\mathcal{L}^{\dagger}: X \rightarrow X^{*}$ defined by $\mathcal{L} v:=q(v, \cdot)$ and $\mathcal{L}^{\dagger} v:=q(\cdot, v)$ are linear and (respectively) conjugate linear isomorphisms of Hilbert spaces. Moreover

$$
\left\|\mathcal{L}^{-1}\right\| \leq \epsilon^{-1} \text { and }\left\|\left(\mathcal{L}^{\dagger}\right)^{-1}\right\| \leq \epsilon^{-1}
$$

Proof. The operator \mathcal{L} is bounded because

$$
\begin{equation*}
\|\mathcal{L} v\|_{X^{*}}=\sup _{w \neq 0} \frac{|q(v, w)|}{\|w\|_{X}} \leq C\|v\|_{X} \tag{29.2}
\end{equation*}
$$

Similarly \mathcal{L}^{\dagger} is bounded with $\left\|\mathcal{L}^{\dagger}\right\| \leq C$.
Let $\beta: X \rightarrow \overline{X^{*}}$ denote the linear Riesz isomorphism defined by $\beta(x)=(x, \cdot)_{X}$ for $x \in X$. Define $R:=\beta^{-1} \mathcal{L}: X \rightarrow X$ so that $\mathcal{L}=\beta R$, i.e.

$$
\mathcal{L} v=q(v, \cdot)=(R v, \cdot)_{X} \text { for all } v \in X
$$

Notice that R is a bounded linear map with operator bound less than C by Eq. (29.2). Since

$$
\left(\mathcal{L}^{\dagger} v\right)(w)=q(w, v)=(R w, v)_{X}=\left(w, R^{*} v\right)_{X} \text { for all } v, w \in X
$$

we see that $\mathcal{L}^{\dagger} v=\left(\cdot, R^{*} v\right)_{X}$, i.e. $R^{*}=\bar{\beta}^{-1} \mathcal{L}^{\dagger}$, where $\bar{\beta}(x):=\overline{(x, \cdot)_{X}}=(\cdot, x)_{X}$. Since β and $\bar{\beta}$ are linear and conjugate linear isometric isomorphisms, to finish the proof it suffices to show R is invertible and that $\left\|R^{-1}\right\|_{X} \leq \epsilon^{-1}$.

Since

$$
\begin{equation*}
\left|\left(v, R^{*} v\right)_{X}\right|=\left|(R v, v)_{X}\right|=|q(v, v)| \geq \epsilon\|v\|_{X}^{2} \tag{29.3}
\end{equation*}
$$

one easily concludes that $\operatorname{Nul}(R)=\{0\}=\operatorname{Nul}\left(R^{*}\right)$. By Lemma 29.7, $\overline{\operatorname{Ran}(R)}=$ $\operatorname{Nul}\left(R^{*}\right)^{\perp}=\{0\}^{\perp}=X$ and so we have shown $R: X \rightarrow X$ is injective and has a dense range. From Eq. (29.3) and the Schwarz inequality, $\epsilon\|v\|_{X}^{2} \leq\|R v\|_{X}\|v\|_{X}$, i.e.

$$
\begin{equation*}
\|R v\|_{X} \geq \epsilon\|v\|_{X} \text { for all } v \in X \tag{29.4}
\end{equation*}
$$

This inequality proves the range of R is closed. Indeed if $\left\{v_{n}\right\}$ is a sequence in X such that $R v_{n} \rightarrow w \in X$ as $n \rightarrow \infty$ then Eq. (29.4) implies

$$
\epsilon\left\|v_{n}-v_{m}\right\|_{X} \leq\left\|R v_{n}-R v_{m}\right\|_{X} \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

Thus $v:=\lim _{n \rightarrow \infty} v_{n}$ exists in X and hence $w=R v \in \operatorname{Ran}(R)$ and so $\operatorname{Ran}(R)=$ $\overline{\operatorname{Ran}(R)}^{X}=X$. So $R: X \rightarrow X$ is a bijective map and hence invertible. By replacing v by $R^{-1} v$ in Eq. (29.4) we learn R^{-1} is bounded with operator norm no larger than ϵ^{-1}.

Theorem 29.10. Let q be a bounded coercive sesquilinear form on X as in Theorem 29.9. Further assume that the inclusion map $i: X \rightarrow H$ is bounded and let L and L^{\dagger} be the unbounded linear operators on H defined by:

$$
\begin{aligned}
\mathcal{D}(L) & :=\{v \in X: w \in X \rightarrow q(v, w) \text { is } H \text { - continuous }\} \\
\mathcal{D}\left(L^{\dagger}\right) & :=\{w \in X: v \in X \rightarrow q(v, w) \text { is } H \text { - continuous }\}
\end{aligned}
$$

and for $v \in \mathcal{D}(L)$ and $w \in \mathcal{D}\left(L^{\dagger}\right)$ define $L v \in H$ and $L^{\dagger} w \in H$ by requiring

$$
q(v, \cdot)=(L v, \cdot) \text { and } q(\cdot, w)=\left(\cdot, L^{\dagger} w\right)
$$

Then $\mathcal{D}(L)$ and $\mathcal{D}\left(L^{\dagger}\right)$ are dense subspaces of X and hence of H. The operators $L^{-1}: H \rightarrow \mathcal{D}(L) \subset H$ and $\left(L^{\dagger}\right)^{-1}: H \rightarrow \mathcal{D}\left(L^{\dagger}\right) \subset H$ are bounded when viewed as
operators from H to H with norms less than or equal to $\epsilon^{-1}\|i\|_{L(X, H)}^{2}$. Furthermore, $L^{*}=L^{\dagger}$ and $\left(L^{\dagger}\right)^{*}=L$ and in particular both L and $L^{\dagger}=L^{*}$ are closed operators.

Proof. Let $\alpha: H \rightarrow \overline{X^{*}}$ be defined by $\alpha(v)=\left.(v, \cdot)\right|_{X}$. If $(v, \cdot)_{X}$ is perpendicular to $\alpha(H)=\overline{i^{*}\left(H^{*}\right)} \subset \overline{X^{*}}$, then

$$
0=\left((v, \cdot)_{X}, \alpha(w)\right)_{\overline{X^{*}}}=\left((v, \cdot)_{X},(w, \cdot)\right)_{\overline{X^{*}}}=(v, w) \text { for all } w \in H
$$

Taking $w=v$ in this equation shows $v=0$ and hence the orthogonal complement of $\alpha(H)$ in $\overline{X^{*}}$ is $\{0\}$ which implies $\alpha(H)=\overline{i^{*}\left(H^{*}\right)}$ is dense in $\overline{X^{*}}$.

Using the notation in Theorem 29.9, we have $v \in \mathcal{D}(L)$ iff $\mathcal{L} v \in \overline{i^{*}\left(H^{*}\right)}=\alpha(H)$ iff $v \in \mathcal{L}^{-1}(\alpha(H))$ and for $v \in \mathcal{D}(L), \mathcal{L} v=\left.(L v, \cdot)\right|_{X}=\alpha(L v)$. This and a similar computation shows
$\mathcal{D}(L)=\mathcal{L}^{-1}\left(\overline{i^{*}\left(H^{*}\right)}\right)=\mathcal{L}^{-1}(\alpha(H))$ and $\mathcal{D}\left(L^{\dagger}\right):=\left(\mathcal{L}^{\dagger}\right)^{-1}\left(i^{*}\left(H^{*}\right)\right)=\left(\mathcal{L}^{\dagger}\right)^{-1}(\bar{\alpha}(H))$ and for $v \in \mathcal{D}(L)$ and $w \in \mathcal{D}\left(L^{\dagger}\right)$ we have $\mathcal{L} v=\left.(L v, \cdot)\right|_{X}=\alpha(L v)$ and $\mathcal{L}^{\dagger} w=\left.\left(\cdot, L^{\dagger} w\right)\right|_{X}=\bar{\alpha}\left(L^{\dagger} w\right)$. The following commutative diagrams summarizes the relationships of L and \mathcal{L} and L^{\dagger} and \mathcal{L}^{\dagger},

$$
\begin{array}{ccccccccccc}
& X & \xrightarrow{\mathcal{L}} & \overline{X^{*}} & & & X & \xrightarrow{\mathcal{L}^{\dagger}} & X^{*} & \\
i & \uparrow & & \uparrow & \alpha & \text { and } & i & \uparrow & & \uparrow & \bar{\alpha} \\
D(L) & \xrightarrow{L} & H & & & & D\left(L^{\dagger}\right) & \xrightarrow{L^{\dagger}} & H &
\end{array}
$$

where in each diagram i denotes an inclusion map. Because \mathcal{L} and \mathcal{L}^{\dagger} are invertible, $L: D(L) \rightarrow H$ and $L^{\dagger}: D\left(L^{\dagger}\right) \rightarrow H$ are invertible as well. Because both \mathcal{L} and \mathcal{L}^{\dagger} are isomorphisms of X onto $\overline{X^{*}}$ and X^{*} respectively and $\alpha(H)$ is dense in $\overline{X^{*}}$ and $\bar{\alpha}(H)$ is dense in X^{*}, the spaces $\mathcal{D}(L)$ and $\mathcal{D}\left(L^{\dagger}\right)$ are dense subspaces of X, and hence also of H.

For the norm bound assertions let $v \in \mathcal{D}(L) \subset X$ and use the coercivity estimate on q to find

$$
\begin{aligned}
\epsilon\|v\|_{H}^{2} & \leq \epsilon\|i\|_{L(X, H)}^{2}\|v\|_{X}^{2} \leq\|i\|_{L(X, H)}^{2}|q(v, v)|=\|i\|_{L(X, H)}^{2}\left|(L v, v)_{H}\right| \\
& \leq\|i\|_{L(X, H)}^{2}\|L v\|_{H}\|v\|_{H} .
\end{aligned}
$$

Hence $\epsilon\|v\|_{H} \leq\|i\|_{L(X, H)}^{2}\|L v\|_{H}$ for all $v \in \mathcal{D}(L)$. By replacing v by $L^{-1} v$ (for $v \in H)$ in this last inequality, we find

$$
\left\|L^{-1} v\right\|_{H} \leq \frac{\|i\|_{L(X, H)}^{2}}{\epsilon}\|v\|_{H}, \text { i..e }\left\|L^{-1}\right\|_{B(H)} \leq \epsilon^{-1}\|i\|_{L(X, H)}^{2}
$$

Similarly one shows that $\left\|\left(L^{\dagger}\right)^{-1}\right\|_{B(H)} \leq \epsilon^{-1}\|i\|_{L(X, H)}^{2}$ as well.
For $v \in \mathcal{D}(L)$ and $w \in \mathcal{D}\left(L^{\dagger}\right)$,

$$
\begin{equation*}
(L v, w)=q(v, w)=\left(v, L^{\dagger} w\right) \tag{29.5}
\end{equation*}
$$

which shows $L^{\dagger} \subset L^{*}$. Now suppose that $w \in \mathcal{D}\left(L^{*}\right)$, then

$$
q(v, w)=(L v, w)=\left(v, L^{*} w\right) \text { for all } v \in \mathcal{D}(L)
$$

By continuity if follows that

$$
q(v, w)=\left(v, L^{*} w\right) \text { for all } v \in X
$$

and therefore by the definition of $L^{\dagger}, w \in \mathcal{D}\left(L^{\dagger}\right)$ and $L^{\dagger} w=L^{*} w$, i.e. $L^{*} \subset L^{\dagger}$. Since we have shown $L^{\dagger} \subset L^{*}$ and $L^{*} \subset L^{\dagger}, L^{\dagger}=L^{*}$. A similar argument shows that
$\left(L^{\dagger}\right)^{*}=L$. Because the adjoints of operators are always closed, both $L=\left(L^{\dagger}\right)^{*}$ and $L^{\dagger}=L^{*}$ are closed operators.

Corollary 29.11. If q in Theorem 29.10 is further assumed to be symmetric then L is self-adjoint, i.e. $L^{*}=L$.

Proof. This simply follows from Theorem 29.10 upon observing that $L=L^{\dagger}$ when q is symmetric.
29.3. Close, symmetric, semi-bounded quadratic forms and self-adjoint operators.
Definition 29.12. A symmetric, sesquilinear quadratic form $q: X \times X \rightarrow \mathbb{C}$ is closed if whenever $\left\{v_{n}\right\}_{n=1}^{\infty} \subset X$ is a sequence such that $v_{n} \rightarrow v$ in H and

$$
q\left(v_{n}-v_{m}\right):=q\left(v_{n}-v_{m}, v_{n}-v_{m}\right) \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

implies that $v \in X$ and $\lim _{n \rightarrow \infty} q\left(v-v_{n}\right)=0$. The form q is said to be closable iff for all $\left\{v_{n}\right\} \subset X$ such that $v_{n} \rightarrow 0 \in H$ and $q\left(v_{n}-v_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$ implies that $q\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Example 29.13. Let H and K be Hilbert spaces and $T: H \rightarrow K$ be a densely defined operator. Set $q(v, w):=(T v, T w)_{K}$ for $v, w \in X:=\mathcal{D}(q):=\mathcal{D}(T)$. Then q is a positive symmetric quadratic form on H which is closed iff T is closed and is closable iff T is closable.

For the remainder of this section let $q: X \times X \rightarrow \mathbb{C}$ be a symmetric, sesquilinear quadratic form which is semi-bounded and satisfies $q(v) \geq-M_{0}\|v\|^{2}$ for all $v \in X$ and some $M_{0}<\infty$.

Notation 29.14. For $v, w \in X$ and $M>M_{0}$ let $(v, w)_{M}:=q(v, w)+M(v, w)$. Notice that

$$
\begin{align*}
\|v\|_{M}^{2} & =q(v)+M\|v\|^{2}=q(v)+M_{0}\|v\|^{2}+\left(M-M_{0}\right)\|v\|^{2} \\
& \geq\left(M-M_{0}\right)\|v\|^{2} \tag{29.6}
\end{align*}
$$

from which it follows that $(\cdot, \cdot)_{M}$ is an inner product on X and $i: X \rightarrow H$ is bounded by $\left(M-M_{0}\right)^{-1 / 2}$. Let H_{M} denote the Hilbert space completion of $\left(X,(\cdot, \cdot)_{M}\right)$.

Formally, $H_{M}=\mathcal{C} / \sim$, where \mathcal{C} denotes the collection of $\|\cdot\|_{M}$-Cauchy sequences in X and \sim is the equivalence relation, $\left\{v_{n}\right\} \sim\left\{u_{n}\right\}$ iff $\lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}\right\|_{M}=0$. For $v \in X$, let $i(v)$ be the equivalence class of the constant sequence with elements v. Notice that if $\left\{v_{n}\right\}$ and $\left\{u_{n}\right\}$ are in \mathcal{C}, then $\lim _{m, n \rightarrow \infty}\left(v_{n}, u_{m}\right)_{M}$ exists. Indeed, let C be a finite upper bound for $\left\|u_{n}\right\|_{M}$ and $\left\|v_{n}\right\|_{M}$. (Why does this bound exist?) Then

$$
\begin{align*}
\left|\left(v_{n}, u_{m}\right)_{M}-\left(v_{k}, u_{l}\right)_{M}\right| & =\left|\left(v_{n}-v_{k}, u_{m}\right)_{M}+\left(v_{k}, u_{m}-u_{l}\right)_{M}\right| \\
& \leq C\left\{\left\|v_{n}-v_{k}\right\|_{M}+\left\|u_{m}-u_{l}\right\|_{M}\right\} \tag{29.7}
\end{align*}
$$

and this last expression tends to zero as $m, n, k, l \rightarrow \infty$. Therefore, if \bar{v} and \bar{u} denote the equivalence class of $\left\{v_{n}\right\}$ and $\left\{u_{n}\right\}$ in \mathcal{C} respectively, we may define $(\bar{v}, \bar{u})_{M}:=$ $\lim _{m, n \rightarrow \infty}\left(v_{n}, u_{m}\right)_{M}$. It is easily checked that H_{M} with this inner product is a Hilbert space and that $i: X \rightarrow H_{M}$ is an isometry.
Remark 29.15. The reader should verify that all of the norms, $\left\{\|\cdot\|_{M}: M>M_{0}\right\}$, on X are equivalent so that H_{M} is independent of $M>M_{0}$.

Lemma 29.16. The inclusion map $i: X \rightarrow H$ extends by continuity to a continuous linear map $\hat{\imath}$ from H_{M} into H. Similarly, the quadratic form $q: X \times X \rightarrow \mathbb{C}$ extends by continuity to a continuous quadratic form $\hat{q}: H_{M} \times H_{M} \rightarrow \mathbb{C}$. Explicitly, if \bar{v} and \bar{u} denote the equivalence class of $\left\{v_{n}\right\}$ and $\left\{u_{n}\right\}$ in \mathcal{C} respectively, then $\hat{\imath}(\bar{v})=H-\lim _{n \rightarrow \infty} v_{n}$ and $\hat{q}(\bar{v}, \bar{u})=\lim _{m, n \rightarrow \infty} q\left(v_{n}, u_{n}\right)$.

Proof. This routine verification is left to the reader.
Lemma 29.17. Let q be as above and $M>M_{0}$ be given.
(1) The quadratic form q is closed iff $\left(X,(\cdot, \cdot)_{M}\right)$ is a Hilbert space.
(2) The quadratic form q is closable iff the map $\hat{\imath}: H_{M} \rightarrow H$ is injective. In this case we identify H_{M} with $\hat{\imath}\left(H_{M}\right) \subset H$ and therefore we may view \hat{q} as a quadratic form on H. The form \hat{q} is called the closure of q and as the notation suggests is a closed quadratic form on H.
A more explicit description of \hat{q} is as follows. The domain $\mathcal{D}(\hat{q})$ consists of those $v \in H$ such that there exists $\left\{v_{n}\right\} \subset X$ such that $v_{n} \rightarrow v$ in H and $q\left(v_{n}-v_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. If $v, w \in \mathcal{D}(\hat{q})$ and $v_{n} \rightarrow v$ and $w_{n} \rightarrow w$ as just described, then $\hat{q}(v, w):=\lim _{n \rightarrow \infty} q\left(v_{n}, w_{n}\right)$.

Proof. 1. Suppose q is closed and $\left\{v_{n}\right\}_{n=1}^{\infty} \subset X$ is a $\|\cdot\|_{M}$ - Cauchy sequence. By the inequality in Eq. (29.6), $\left\{v_{n}\right\}_{n=1}^{\infty}$ is $\|\cdot\|_{H}$ - Cauchy and hence $v:=\lim _{n \rightarrow \infty} v_{n}$ exists in H. Moreover,

$$
q\left(v_{n}-v_{m}\right)=\left\|v_{n}-v_{m}\right\|_{M}^{2}-M\left\|v_{n}-v_{m}\right\|_{H}^{2} \rightarrow 0
$$

and therefore, because q is closed, $v \in \mathcal{D}(q)=X$ and $\lim _{n \rightarrow \infty} q\left(v-v_{n}\right)=0$ and hence $\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{M}^{2}=0$. The converse direction is simpler and will be left to the reader.
2. The proof that q is closable iff the $\operatorname{map} \hat{\imath}: H_{M} \rightarrow H$ is injective will be complete once the reader verifies that the following assertions are equivalent. 1) $\hat{\imath}: H_{1} \rightarrow H$ is injective, 2) $\hat{\imath}(\bar{v})=0$ implies $\left.\bar{v}=0,3\right)$ if $v_{n} \xrightarrow{H} 0$ and $q\left(v_{n}-v_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$ implies that $q\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

By construction H_{M} equipped with the inner product $(\cdot, \cdot)_{M}:=\hat{q}(\cdot, \cdot)+M(\cdot, \cdot)$ is complete. So by item 1. it follows that \hat{q} is a closed quadratic form on H if q is closable.

Example 29.18. Suppose $H=L^{2}([-1,1]), \mathcal{D}(q)=C([-1,1])$ and $q(f, g):=$ $f(0) \bar{g}(0)$ for all $f, g \in \mathcal{D}(q)$. The form q is not closable. Indeed, let $f_{n}(x)=$ $\left(1+x^{2}\right)^{-n}$, then $f_{n} \rightarrow 0 \in L^{2}$ as $n \rightarrow \infty$ and $q\left(f_{n}-f_{m}\right)=0$ for all m, n while $q\left(f_{n}-0\right)=q\left(f_{n}\right)=1 \nrightarrow 0$ as $n \rightarrow \infty$. This example also shows the operator $T: H \rightarrow \mathbb{C}$ defined by $\mathcal{D}(T)=C([-1,1])$ with $T f=f(0)$ is not closable.

Let us also compute T^{*} for this example. By definition $\lambda \in D\left(T^{*}\right)$ and $T^{*} \lambda=f$ iff $(f, g)=\lambda \overline{T g}=\lambda \overline{g(0)}$ for all $g \in C([-1,1])$. In particular this implies $(f, g)=0$ for all $g \in C([-1,1])$ such that $g(0)=0$. However these functions are dense in H and therefore we conclude that $f=0$ and hence $\mathcal{D}\left(T^{*}\right)=\{0\}!$!

Exercise 29.1. Keeping the notation in Example 29.18, show $\overline{\Gamma(T)}=H \times \mathbb{C}$ which is clearly not the graph of a linear operator $S: H \rightarrow \mathbb{C}$.

Proposition 29.19. Suppose that $A: H \rightarrow H$ is a densely defined positive symmetric operator, i.e. $(A v, w)=(v, A w)$ for all $v, w \in \mathcal{D}(A)$ and $(v, A v) \geq 0$ for all $v \in \mathcal{D}(A)$. Define $q_{A}(v, w):=(v, A w)$ for $v, w \in \mathcal{D}(A)$. Then q_{A} is closable and the closure \hat{q}_{A} is a non-negative, symmetric closed quadratic form on H.

Proof. Let $(\cdot, \cdot)_{1}=(\cdot, \cdot)+q_{A}(\cdot, \cdot)$ on $\mathcal{D}(A) \times \mathcal{D}(A), v_{n} \in \mathcal{D}(A)$ such that $H-\lim _{n \rightarrow \infty} v_{n}=0$ and

$$
q_{A}\left(v_{n}-v_{m}\right)=\left(A\left(v_{n}-v_{m}\right),\left(v_{n}-v_{m}\right)\right) \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

Then
$\limsup _{n \rightarrow \infty} q_{A}\left(v_{n}\right) \leq \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{1}^{2}=\lim _{m, n \rightarrow \infty}\left(v_{m}, v_{n}\right)_{1}=\lim _{m, n \rightarrow \infty}\left\{\left(v_{m}, v_{n}\right)+\left(v_{m}, A v_{n}\right)\right\}=0$,
where the last equality follows by first letting $m \rightarrow \infty$ and then $n \rightarrow \infty$. Notice that the above limits exist because of Eq. (29.7).

Lemma 29.20. Let A be a positive self-adjoint operator on H and define $q_{A}(v, w):=(v, A w)$ for $v, w \in \mathcal{D}(A)=\mathcal{D}\left(q_{A}\right)$. Then q_{A} is closable and the closure of q_{A} is

$$
\hat{q}_{A}(v, w)=(\sqrt{A} v, \sqrt{A} w) \text { for } v, w \in X:=\mathcal{D}\left(\hat{q}_{A}\right)=\mathcal{D}(\sqrt{A}) .
$$

Proof. Let $\hat{q}(v, w)=(\sqrt{A} v, \sqrt{A} w)$ for $v, w \in X=\mathcal{D}(\sqrt{A})$. Since \sqrt{A} is selfadjoint and hence closed, it follows from Example 29.13 that \hat{q} is closed. Moreover, \hat{q} extends q_{A} because if $v, w \in \mathcal{D}(A)$, then $v, w \in \mathcal{D}(A)=\mathcal{D}\left((\sqrt{A})^{2}\right)$ and $\hat{q}(v, w)=$ $(\sqrt{A} v, \sqrt{A} w)=(v, A w)=q_{A}(v, w)$. Thus to show \hat{q} is the closure of q_{A} it suffices to show $\mathcal{D}(A)$ is dense in $X=\mathcal{D}(\sqrt{A})$ when equipped with the Hilbertian norm, $\|w\|_{1}^{2}=\|w\|^{2}+\hat{q}(w)$.

Let $v \in \mathcal{D}(\sqrt{A})$ and define $v_{m}:=1_{[0, m]}(A) v$. Then using the spectral theorem along with the dominated convergence theorem one easily shows that $v_{m} \in X=$ $\mathcal{D}(A), \lim _{m \rightarrow \infty} v_{m}=v$ and $\lim _{m \rightarrow \infty} \sqrt{A} v_{m}=\sqrt{A} v$. But this is equivalent to showing that $\lim _{m \rightarrow \infty}\left\|v-v_{m}\right\|_{1}=0$.

Theorem 29.21. Suppose $q: X \times X \rightarrow \mathbb{C}$ is a symmetric, closed, semi-bounded (say $q(v, v) \geq-M_{0}\|v\|^{2}$) sesquilinear form. Let $L: H \rightarrow H$ be the possibly unbounded operator defined by

$$
D(L):=\{v \in X: q(v, \cdot) \text { is } H-\text { continuous }\}
$$

and for $v \in D(L)$ let $L v \in H$ be the unique element such that $q(v, \cdot)=\left.(L v, \cdot)\right|_{X}$. Then
(1) L is a densely defined self-adjoint operator on H and $L \geq-M_{0} I$.
(2) $D(L)$ is a form core for q, i.e. the closure of $D(L)$ is a dense subspace in $\left(X,\|\cdot\|_{M}\right)$. More explicitly, for all $v \in X$ there exists $v_{n} \in D(L)$ such that $v_{n} \rightarrow v$ in H and $q\left(v-v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(3) For and $M \geq M_{0}, D(q)=D(\sqrt{L+M I})$.
(4) Letting $q_{L}(v, w):=(L v, w)$ for all $v, w \in D(L)$, we have q_{L} is closable and $\hat{q}_{L}=q$.

Proof. 1. From Lemma 29.17, $\left(X,(\cdot, \cdot)_{X}:=(\cdot, \cdot)_{M}\right)$ is a Hilbert space for any $M>M_{0}$. Applying Theorem 29.10 and Corollary 29.11 with q being $(\cdot, \cdot)_{X}$ gives a self-adjoint operator $L_{M}: H \rightarrow H$ such that

$$
D\left(L_{M}\right):=\left\{v \in X:(v, \cdot)_{X} \text { is } H-\text { continuous }\right\}
$$

and for $v \in D\left(L_{M}\right)$,

$$
\begin{equation*}
\left(L_{M} v, w\right)_{H}=(v, w)_{X}=q(v, w)+M(v, w) \text { for all } w \in X \tag{29.8}
\end{equation*}
$$

Since $(v, \cdot)_{X}$ is H - continuous iff $q(v, \cdot)$ is $H-$ continuous it follows that $D\left(L_{M}\right)=$ $D(L)$ and moreover Eq. (29.8) is equivalent to

$$
\left(\left(L_{M}-M I\right) v, w\right)_{H}=q(v, w) \text { for all } w \in X .
$$

Hence it follows that $L:=L_{M}-M I$ and so L is self-adjoint. Since $(L v, v)=$ $q(v, v) \geq-M_{0}\|v\|^{2}$, we see that $L \geq-M_{0} I$.
2. The density of $\mathcal{D}(L)=\mathcal{D}\left(L_{M}\right)$ in $\left(X,(\cdot, \cdot)_{M}\right)$ is a direct consequence of Theorem 29.10.
3. For

$$
v, w \in \mathcal{D}(Q):=\mathcal{D}\left(\sqrt{L_{M}}\right)=\mathcal{D}(\sqrt{L+M I})=\mathcal{D}\left(\sqrt{L+M_{0} I}\right)
$$

let $Q(v, w):=\left(\sqrt{L_{M}} v, \sqrt{L_{M}} w\right)$. For $v, w \in D(L)$ we have

$$
Q(v, w)=\left(L_{M} v, w\right)=(L v, w)+M(v, w)=q(v, w)+M(v, w)=(v, w)_{M} .
$$

By Lemma $29.20, Q$ is a closed, non-negative symmetric form on H and $\mathcal{D}(L)=$ $\mathcal{D}\left(L_{M}\right)$ is dense in $(\mathcal{D}(Q), Q)$. Hence if $v \in \mathcal{D}(Q)$ there exists $v_{n} \in \mathcal{D}(L)$ such that $Q\left(v-v_{n}\right) \rightarrow 0$ and this implies $q\left(v_{m}-v_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Since q is closed, this implies $v \in \mathcal{D}(q)$ and furthermore that $Q(v, w)=(v, w)_{M}$ for all $v, w \in \mathcal{D}(Q)$.

Conversely, by item 2., if $v \in X=\mathcal{D}(q)$, there exists $v_{n} \in \mathcal{D}(L)$ such that $\left\|v-v_{m}\right\|_{M} \rightarrow 0$. From this it follows that $Q\left(v_{m}-v_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$ and therefore since Q is closed, $v \in \mathcal{D}(Q)$ and again $Q(v, w)=(v, w)_{M}$ for all $v, w \in$ $\mathcal{D}(q)$. This proves item 3. and also shows that

$$
q(v, w)=(\sqrt{L+M I} v, \sqrt{L+M I} w)-M(v, w) \text { for all } v, w \in X=\mathcal{D}\left(\sqrt{L_{M}}\right) .
$$

4. Since $q_{L} \subset q, q_{L}$ is closable and the closure of q_{L} is still contained in q. Since $q_{L}=Q-L(\cdot, \cdot)$ on $D(L)$ and the closure of $\left.Q\right|_{D(L)}=(\cdot, \cdot)_{M}$, it is easy to conclude that the closure of q_{L} is q as well.

Notation 29.22. Let \mathcal{P} denote the collection of positive self-adjoint operators on H and \mathcal{Q} denote the collection of positive and closed symmetric forms on H.

Theorem 29.23. The map $A \in \mathcal{P} \rightarrow \hat{q}_{A} \in \mathcal{Q}$ is bijective, where $\hat{q}_{A}(v, w):=$ $(\sqrt{A} v, \sqrt{A} w)$ with $\mathcal{D}\left(\hat{q}_{A}\right)=\mathcal{D}(\sqrt{A})$ is the closure of the quadratic form $q_{A}(v, w):=$ $(A v, w)$ for $v, w \in \mathcal{D}(q):=\mathcal{D}(A)$. The inverse map is given by $q \in \mathcal{Q} \rightarrow A_{q} \in \mathcal{P}$ where A_{q} is uniquely determined by

$$
\begin{aligned}
\mathcal{D}\left(A_{q}\right) & =\{v \in \mathcal{D}(q): q(v, \cdot) \text { is } H \text { - continuous }\} \text { and } \\
\left(A_{q} v, w\right) & =q(v, w) \text { for } v \in \mathcal{D}\left(A_{q}\right) \text { and } w \in \mathcal{D}(q) .
\end{aligned}
$$

Proof. From Lemma 29.20, $\hat{q}_{A} \in \mathcal{Q}$ and \hat{q}_{A} is the closure of q_{A}. From Theorem $29.21 A_{q} \in \mathcal{P}$ and

$$
q(\cdot, \cdot)=\left(\sqrt{A_{q}} \cdot \sqrt{A_{q}} \cdot\right)=\hat{q}_{A_{q}} .
$$

So to finish the proof it suffices to show $A \in \mathcal{P} \rightarrow \hat{q}_{A} \in \mathcal{Q}$ is injective. However, again by Theorem 29.21, if $q \in \mathcal{Q}$ and $A \in \mathcal{P}$ such that $q=\hat{q}_{A}$, then $v \in \mathcal{D}\left(A_{q}\right)$ and $A_{q} v=w$ iff

$$
(\sqrt{A} v, \sqrt{A} \cdot)=q(v, \cdot)=\left.\left(A_{q} v, \cdot\right)\right|_{X} .
$$

But this implies $\sqrt{A} v \in \mathcal{D}(\sqrt{A})$ and $A_{q} v=\sqrt{A} \sqrt{A} v=A v$. But by the spectral theorem, $D(\sqrt{A} \sqrt{A})=D(A)$ and so we have proved $A_{q}=A$.
29.4. Construction of positive self-adjoint operators. The main theorem concerning closed symmetric semi-bounded quadratic forms q is Friederich's extension theorem.

Corollary 29.24 (The Friederich's extension). Suppose that $A: H \rightarrow H$ is a densely defined positive symmetric operator. Then A has a positive self-adjoint extension \hat{A}. Moreover, \hat{A} is the only self-adjoint extension of A such that $\mathcal{D}(\hat{A}) \subset$ $\mathcal{D}\left(\hat{q}_{A}\right)$.

Proof. By Proposition 29.19, $q:=\hat{q}_{A}$ exists in \mathcal{Q}. By Theorem 29.23, there exists a unique positive self-adjoint operator B on H such that $\hat{q}_{B}=q$. Since for $v \in \mathcal{D}(A), q(v, w)=(A v, w)$ for all $w \in X$, it follows from Eq. (G.66) and (G.67) that $v \in \mathcal{D}(B)$ and $B v=A v$. Therefore $\hat{A}:=B$ is a self-adjoint extension of A.

Suppose that C is another self-adjoint extension of A such that $\mathcal{D}(C) \subset X$. Then \hat{q}_{C} is a closed extension of q_{A}. Thus $q=\hat{q}_{A} \subset \hat{q}_{C}$, i.e. $\mathcal{D}\left(\hat{q}_{A}\right) \subset \mathcal{D}\left(\hat{q}_{C}\right)$ and $\hat{q}_{A}=\hat{q}_{C}$ on $\mathcal{D}\left(\hat{q}_{A}\right) \times \mathcal{D}\left(\hat{q}_{A}\right)$. For $v \in \mathcal{D}(C)$ and $w \in \mathcal{D}(A)$, we have that

$$
\hat{q}_{C}(v, w)=(C v, w)=(v, C w)=(v, A w)=(v, B w)=q(v, w)
$$

By continuity it follows that

$$
\hat{q}_{C}(v, w)=(C v, w)=(v, B w)=q(v, w)
$$

for all $w \in \mathcal{D}(B)$. Therefore, $v \in \mathcal{D}\left(B^{*}\right)=\mathcal{D}(B)$ and $B v=B^{*} v=C v$. That is $C \subset B$. Taking adjoints of this equation shows that $B=B^{*} \subset C^{*}=C$. Thus $C=B$.

Corollary 29.25 (von Neumann). Suppose that $D: H \rightarrow K$ is a closed operator, then $A=D^{*} D$ is a positive self-adjoint operator on H.

Proof. The operator D^{*} is densely defined by Lemma 29.6. The quadratic form $q(v, w):=(D v, D w)$ for $v, w \in X:=\mathcal{D}(D)$ is closed (Example 29.13) and positive. Hence by Theorem 29.23 there exists an $A \in \mathcal{P}$ such that $q=\hat{q}_{A}$, i.e.

$$
\begin{equation*}
(D v, D w)=(\sqrt{A} v, \sqrt{A} w) \text { for all } v, w \in X=\mathcal{D}(D)=\mathcal{D}(\sqrt{A}) \tag{29.9}
\end{equation*}
$$

Recalling that $v \in D(A) \subset X$ and $A v=g$ happens iff

$$
(D v, D w)=q(v, w)=(g, w) \text { for all } w \in X
$$

and this happens iff $D v \in D\left(D^{*}\right)$ and $D^{*} D v=g$. Thus we have shown $D^{*} D=A$ which is self-adjoint and positive.
29.5. Applications to partial differential equations. Let $U \subset \mathbb{R}^{n}$ be an open set, $\rho \in C^{1}(U \rightarrow(0, \infty))$ and for $i, j=1,2, \ldots, n$ let $a_{i j} \in C^{1}(U, \mathbb{R})$. Take $H=$ $L^{2}(U, \rho d x)$ and define

$$
q(f, g):=\int_{U_{i, j=1}} \sum_{i j}^{n} a_{i j}(x) \partial_{i} f(x) \partial_{j} g(x) \rho(x) d x
$$

for $f, g \in X=C_{c}^{2}(U)$.
Proposition 29.26. Suppose that $a_{i j}=a_{j i}$ and that $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq 0$ for all $\xi \in \mathbb{R}^{n}$. Then q is a symmetric closable quadratic form on H. Hence there exists a
unique self-adjoint operator \hat{A} on H such that $\hat{q}=\hat{q}_{\hat{A}}$. Moreover \hat{A} is an extension of the operator

$$
A f(x)=-\frac{1}{\rho(x)} \sum_{i, j=1}^{n} \partial_{j}\left(\rho(x) a_{i j}(x) \partial_{i} f(x)\right)
$$

for $f \in \mathcal{D}(A)=C_{c}^{2}(U)$.
Proof. A simple integration by parts argument shows that $q(f, g)=(A f, g)_{H}=$ $(f, A g)_{H}$ for all $f, g \in \mathcal{D}(A)=C_{c}^{2}(U)$. Thus by Proposition 29.19, q is closable. The existence of \hat{A} is a result of Theorem 29.23. In fact \hat{A} is the Friederich's extension of A as in Corollary 29.24.

Given the above proposition and the spectral theorem, we now know that (at least in some weak sense) we may solve the general heat and wave equations: $u_{t}=$ $-A u$ for $t \geq 0$ and $u_{t t}=-A u$ for $t \in \mathbb{R}$. Namely, we will take

$$
u(t, \cdot):=e^{-t \hat{A}} u(0, \cdot)
$$

and

$$
u(t, \cdot)=\cos (t \sqrt{\hat{A}}) u(0, \cdot)+\frac{\sin (t \sqrt{\hat{A}})}{\sqrt{\hat{A}}} u_{t}(0, \cdot)
$$

respectively. In order to get classical solutions to the equations we would have to better understand the operator \hat{A} and in particular its domain and the domains of the powers of \hat{A}. This will be one of the topics of the next part of the course dealing with Sobolev spaces.

Remark 29.27. By choosing $\mathcal{D}(A)=C_{c}^{2}(U)$ we are essentially using Dirichlet boundary conditions for A and \hat{A}. If U is a bounded region with C^{2}-boundary, we could have chosen (for example VERIFY THIS EXAMPLE)

$$
\mathcal{D}(A)=\left\{f \in C^{2}(U) \cap C^{1}(\bar{U}): \text { with } \partial u / \partial n=0 \text { on } \partial U\right\}
$$

This would correspond to Neumann boundary conditions. Proposition 29.26 would be valid with this domain as well provided we assume that $a_{i, j}$ and ρ are in $C^{1}(\bar{U})$.

For a second application let $H=L^{2}\left(U, \rho d x ; \mathbb{R}^{N}\right)$ and for $j=1,2, \ldots, n$, let A_{j} : $U \rightarrow \mathcal{M}_{N \times N}$ (the $N \times N$ matrices) be a C^{1} function. Set $\mathcal{D}(D):=C_{c}^{1}\left(U \rightarrow \mathbb{R}^{N}\right)$ and for $S \in \mathcal{D}(D)$ let $D S(x)=\sum_{i=1}^{n} A_{i}(x) \partial_{i} S(x)$.

Proposition 29.28 ("Dirac Like Operators"). The operator D on H defined above is closable. Hence $A:=D^{*} \bar{D}$ is a self-adjoint operator on H, where \bar{D} is the closure of D.

Proof. Again a simple integration by parts argument shows that $\mathcal{D}(D) \subset \mathcal{D}\left(D^{*}\right)$ and that for $S \in \mathcal{D}(D)$,

$$
D^{*} S(x)=\frac{1}{\rho(x)} \sum_{i=1}^{n}-\partial_{i}\left(\rho(x) A_{i}(x) S(x)\right)
$$

In particular D^{*} is a densely defined operator and hence D is closable. The result now follows from Corollary 29.25.

