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Preface

These are lecture notes from Real analysis and PDE, Math 240 and Math 231.
Some sections are in better shape than others. I am sorry for those sections
which are still a bit of a mess. These notes are still not polished. Nevertheless,
I hope they may be of some use even in this form.

Part I

Basic Topological, Metric and Banach Space
Notions



1

Limits, sums, and other basics

1.1 Set Operations

Suppose that is a set. Let P( ) or 2 denote the power set of that is
elements of P( ) = 2 are subsets of For 2 let

= \ = { : }
and more generally if let

\ = { : }
We also define the symmetric di erence of and by

4 = ( \ ) ( \ )

As usual if { } is an indexed collection of subsets of we define the
union and the intersection of this collection by

:= { : 3 } and
:= { : }

Notation 1.1 We will also write
`

for in the case that
{ } are pairwise disjoint, i.e. = if 6=
Notice that is closely related to and is closely related to For

example let { } =1 be a sequence of subsets from and define

{ i.o.} := { : # { : } = } and
{ a.a.} := { : for all su ciently large}.

(One should read { i.o.} as infinitely often and { a.a.} as almost
always.) Then { i.o.} i N 3 which may be
written as

4 1 Limits, sums, and other basics

{ i.o.} = =1

Similarly, { a.a.} i N 3 which may be
written as

{ a.a.} = =1

1.2 Limits, Limsups, and Liminfs

Notation 1.2 The Extended real numbers is the set R̄ := R {± } i.e. it is
R with two new points called and We use the following conventions,
± · 0 = 0 ± + = ± for any R + = and =
while is not defined.

If R̄ we will let sup and inf denote the least upper bound and
greatest lower bound of respectively. We will also use the following conven-
tion, if = then sup = and inf = +

Notation 1.3 Suppose that { } =1 R̄ is a sequence of numbers. Then

lim inf = lim inf{ : } and (1.1)

lim sup = lim sup{ : } (1.2)

We will also write lim for lim inf and lim for lim sup

Remark 1.4. Notice that if := inf{ : } and := sup{ :
} then { } is an increasing sequence while { } is a decreasing sequence.
Therefore the limits in Eq. (1.1) and Eq. (1.2) always exist and

lim inf = sup inf{ : } and
lim sup = inf sup{ : }

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 1.5. Let { } =1 and { } =1 be two sequences of real numbers.
Then

1. lim inf lim sup and lim exists in R̄ i lim inf
lim sup R̄

2. There is a subsequence { } =1 of { } =1 such that lim =
lim sup

3.
lim sup ( + ) lim sup + lim sup (1.3)

whenever the right side of this equation is not of the form
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4. If 0 and 0 for all N then

lim sup ( ) lim sup · lim sup (1.4)

provided the right hand side of (1.4) is not of the form 0 · or · 0
Proof. We will only prove part 1. and leave the rest as an exercise to the

reader. We begin by noticing that

inf{ : } sup{ : }
so that

lim inf lim sup

Now suppose that lim inf = lim sup = R Then for all
0 there is an integer such that

inf{ : } sup{ : } +

i.e.
+ for all

Hence by the definition of the limit, lim =
If lim inf = then we know for all (0 ) there is an integer
such that

inf{ : }
and hence lim = The case where lim sup = is handled
similarly.
Conversely, suppose that lim = R̄ exists. If R then for

every 0 there exists ( ) N such that | | for all ( ) i.e.

+ for all ( )

From this we learn that

lim inf lim sup +

Since 0 is arbitrary, it follows that

lim inf lim sup

i.e. that = lim inf = lim sup
If = then for all 0 there exists ( ) such that for all
( ) This show that

lim inf

and since is arbitrary it follows that

lim inf lim sup

The proof is similar if = as well.

6 1 Limits, sums, and other basics

1.3 Sums of positive functions

In this and the next few sections, let and be two sets. We will write
to denote that is a finite subset of

Definition 1.6. Suppose that : [0 ] is a function and is a
subset, then

X

=
X

( ) = sup

(

X

( ) :

)

Remark 1.7. Suppose that = N = {1 2 3 } then
X

N

=
X

=1

( ) := lim
X

=1

( )

Indeed for all
P

=1 ( )
P

N and thus passing to the limit we learn
that

X

=1

( )
X

N

Conversely, if N then for all large enough so that {1 2 }
we have

P P

=1 ( ) which upon passing to the limit implies that

X X

=1

( )

and hence by taking the supremum over we learn that

X

N

X

=1

( )

Remark 1.8. Suppose that
P

then { : ( ) 0} is at most
countable. To see this first notice that for any 0 the set { : ( ) }
must be finite for otherwise

P

= . Thus

{ : ( ) 0} =
[

=1{ : ( ) 1 }
which shows that { : ( ) 0} is a countable union of finite sets and
thus countable.

Lemma 1.9. Suppose that : [0 ] are two functions, then
X

( + ) =
X

+
X

and

X

=
X

for all 0
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I will only prove the first assertion, the second being easy. Let be
a finite set, then

X

( + ) =
X

+
X X

+
X

which after taking sups over shows that
X

( + )
X

+
X

Similarly, if then
X

+
X X

+
X

=
X

( + )
X

( + )

Taking sups over and then shows that
X

+
X X

( + )

Lemma 1.10. Let and be sets, × and suppose that : R̄
is a function. Let := { : ( ) } and := { : ( ) }
Then

sup
( )

( ) = sup sup ( ) = sup sup ( ) and

inf
( )

( ) = inf inf ( ) = inf inf ( )

(Recall the conventions: sup = and inf = + )

Proof. Let = sup( ) ( ) := sup ( ) Then ( )
for all ( ) implies = sup ( ) and therefore that

sup sup ( ) = sup (1.5)

Similarly for any ( )

( ) sup = sup sup ( )

and therefore
sup

( )

( ) sup sup ( ) = (1.6)

Equations (1.5) and (1.6) show that

sup
( )

( ) = sup sup ( )

The assertions involving infinums are proved analogously or follow from what
we have just proved applied to the function

8 1 Limits, sums, and other basics

Fig. 1.1. The and — slices of a set ×

Theorem 1.11 (Monotone Convergence Theorem for Sums). Suppose
that : [0 ] is an increasing sequence of functions and

( ) := lim ( ) = sup ( )

Then
lim

X

=
X

Proof.We will give two proves. For the first proof, let P ( ) = { :
} Then

lim
X

= sup
X

= sup sup
P ( )

X

= sup
P ( )

sup
X

= sup
P ( )

lim
X

= sup
P ( )

X

lim

= sup
P ( )

X

=
X

(Second Proof.) Let =
P

and =
P

Since for
all it follows that

which shows that lim exists and is less that i.e.

:= lim
X X

(1.7)

Noting that
P P

= for all and in particular,
X

for all and
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Letting tend to infinity in this equation shows that
X

for all

and then taking the sup over all gives
X

= lim
X

(1.8)

which combined with Eq. (1.7) proves the theorem.

Lemma 1.12 (Fatou’s Lemma for Sums). Suppose that : [0 ]
is a sequence of functions, then

X

lim inf lim inf
X

Proof. Define inf so that lim inf as Since

for all
X X

for all

and therefore
X

lim inf
X

for all

We may now use the monotone convergence theorem to let to find

X

lim inf =
X

lim
MCT
= lim

X

lim inf
X

Remark 1.13. If =
P

then for all 0 there exists such
that

X

for all containing or equivalently,
¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯

(1.9)

for all containing . Indeed, choose so that
P

10 1 Limits, sums, and other basics

1.4 Sums of complex functions

Definition 1.14. Suppose that : C is a function, we say that
X

=
X

( )

exists and is equal to C if for all 0 there is a finite subset
such that for all containing we have

¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯

The following lemma is left as an exercise to the reader.

Lemma 1.15. Suppose that : C are two functions such that
P

and
P

exist, then
P

( + ) exists for all C and
X

( + ) =
X

+
X

Definition 1.16 (Summable). We call a function : C summable
if

X

| |

Proposition 1.17. Let : C be a function, then
P

exists i
P | | i.e. i is summable.

Proof. If
P | | then

P

(Re )± and
P

(Im )±

and hence by Remark 1.13 these sums exists in the sense of Definition 1.14.
Therefore by Lemma 1.15,

P

exists and

X

=
X

(Re )
+

X

(Re ) +

Ã

X

(Im )
+

X

(Im )

!

Conversely, if
P | | = then, because | | |Re | + |Im | we must

have
X

|Re | = or
X

|Im | =

Thus it su ces to consider the case where : R is a real function. Write
= + where

+( ) = max( ( ) 0) and ( ) = max( ( ) 0) (1.10)

Then | | = + + and
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=
X

| | =
X

+ +
X

which shows that either
P

+ = or
P

= Suppose, with out loss
of generality, that

P

+ = Let 0 := { : ( ) 0} then we know
that

P

0 = which means there are finite subsets 0 such
that

P

for all Thus if is any finite set, it follows that
lim

P

= and therefore
P

can not exist as a number in R

Remark 1.18. Suppose that = N and : N C is a sequence, then it is
not necessarily true that

X

=1

( ) =
X

N

( ) (1.11)

This is because
X

=1

( ) = lim
X

=1

( )

depends on the ordering of the sequence where as
P

N ( ) does not. For
example, take ( ) = ( 1) then

P

N | ( )| = i.e.
P

N ( ) does
not exist while

P

=1 ( ) does exist. On the other hand, if

X

N

| ( )| =
X

=1

| ( )|

then Eq. (1.11) is valid.

Theorem 1.19 (Dominated Convergence Theorem for Sums). Sup-
pose that : C is a sequence of functions on such that ( ) =
lim ( ) C exists for all Further assume there is a dominat-
ing function : [0 ) such that

| ( )| ( ) for all and N (1.12)

and that is summable. Then

lim
X

( ) =
X

( ) (1.13)

Proof. Notice that | | = lim | | so that is summable. By con-
sidering the real and imaginary parts of separately, it su ces to prove the
theorem in the case where is real. By Fatou’s Lemma,

X

( ± ) =
X

lim inf ( ± ) lim inf
X

( ± )

=
X

+ lim inf

Ã

±
X

!
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Since lim inf ( ) = lim sup we have shown,
X

±
X X

+

½

lim inf
P

lim sup
P

and therefore

lim sup
X X

lim inf
X

This shows that lim
P

exists and is equal to
P

Proof. (Second Proof.) Passing to the limit in Eq. (1.12) shows that | |
and in particular that is summable. Given 0 let such that

X

\

Then for such that
¯

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

¯

X

( )

¯

¯

¯

¯

¯

¯

X

| | =
X

| |+
X

\
| |

X

| |+ 2
X

\
X

| |+ 2

and hence that
¯

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

¯

X

| |+ 2

Since this last equation is true for all such we learn that
¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

X

| |+ 2

which then implies that

lim sup

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

lim sup
X

| |+ 2

= 2

Because 0 is arbitrary we conclude that

lim sup

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

= 0

which is the same as Eq. (1.13).
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1.5 Iterated sums

Let and be two sets. The proof of the following lemma is left to the
reader.

Lemma 1.20. Suppose that : C is function and is a subset
such that ( ) = 0 for all Show that

P

exists i
P

exists, and
if the sums exist then

X

=
X

Theorem 1.21 (Tonelli’s Theorem for Sums). Suppose that : ×
[0 ] then

X

×
=
XX

=
XX

Proof. It su ces to show, by symmetry, that
X

×
=
XX

Let × The for any and such that × we
have

X X

×
=
XX XX XX

i.e.
P P P

Taking the sup over in this last equation shows
X

×

XX

We must now show the opposite inequality. If
P

× = we are done
so we now assume that is summable. By Remark 1.8, there is a countable
set {( 0 0 )} =1 × o of which is identically 0
Let { } =1 be an enumeration of { 0 } =1 then since ( ) = 0 if
{ } =1

P

( ) =
P

=1 ( ) for all Hence

XX

( ) =
XX

=1

( ) =
X

lim
X

=1

( )

= lim
XX

=1

( ) (1.14)

wherein the last inequality we have used the monotone convergence theorem
with ( ) :=

P

=1 ( ) If then

XX

=1

( ) =
X

×{ } =1

X

×

14 1 Limits, sums, and other basics

and therefore,

lim
XX

=1

( )
X

×
(1.15)

Hence it follows from Eqs. (1.14) and (1.15) that
XX

( )
X

×
(1.16)

as desired.
Alternative proof of Eq. (1.16). Let = { 0 : N} and let { } =1

be an enumeration of Then for ( ) = 0 for all
Given 0 let : [0 ) be the function such that

P

= and
( ) 0 for (For example we may define by ( ) = 2 for all
and ( ) = 0 if ) For each let be a finite set such that

X

( )
X

( ) + ( )

Then
XX X X

( ) +
X

( )

=
X X

( ) + = sup
X X

( ) +

X

×
+ (1.17)

wherein the last inequality we have used
X X

( ) =
X X

×

with
:= {( ) × : and } ×

Since 0 is arbitrary in Eq. (1.17), the proof is complete.

Theorem 1.22 (Fubini’s Theorem for Sums). Now suppose that : ×
C is a summable function, i.e. by Theorem 1.21 any one of the following

equivalent conditions hold:

1.
P

× | |
2.
P P | | or

3.
P P | |
Then

X

×
=
XX

=
XX
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Proof. If : R is real valued the theorem follows by applying
Theorem 1.21 to ± — the positive and negative parts of The general result
holds for complex valued functions by applying the real version just proved
to the real and imaginary parts of

1.6 `p — spaces, Minkowski and Holder Inequalities

In this subsection, let : (0 ] be a given function. Let F denote either
C or R For (0 ) and : F let

k k (
X

| ( )| ( ))1

and for = let
k k = sup {| ( )| : }

Also, for 0 let

( ) = { : F : k k }
In the case where ( ) = 1 for all we will simply write ( ) for ( )

Definition 1.23. A norm on a vector space is a function k·k : [0 )
such that

1. (Homogeneity) k k = | | k k for all F and
2. (Triangle inequality) k + k k k+ k k for all
3. (Positive definite) k k = 0 implies = 0

A pair ( k·k) where is a vector space and k·k is a norm on is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 1.24. For [1 ] ( ( ) k · k ) is a normed vector space.
Proof. The only di culty is the proof of the triangle inequality which is

the content of Minkowski’s Inequality proved in Theorem 1.30 below.

1.6.1 Some inequalities

Proposition 1.25. Let : [0 ) [0 ) be a continuous strictly increasing
function such that (0) = 0 (for simplicity) and lim ( ) = Let = 1

and for 0 let

( ) =

Z

0

( 0) 0 and ( ) =

Z

0

( 0) 0

Then for all 0
( ) + ( )

and equality holds i = ( )

16 1 Limits, sums, and other basics

Proof. Let

:= {( ) : 0 ( ) for 0 } and
:= {( ) : 0 ( ) for 0 }

then as one sees from Figure 1.2, [0 ]× [0 ] (In the figure: = 3
= 1 3 is the region under = ( ) for 0 3 and 1 is the region to
the left of the curve = ( ) for 0 1 ) Hence if denotes the area of a
region in the plane, then

= ([0 ]× [0 ]) ( ) + ( ) = ( ) + ( )

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes to be Lebesgue measure on the plane which
will be introduced later.
We can also give a calculus proof of this theorem under the additional

assumption that is 1 (This restricted version of the theorem is all we need
in this section.) To do this fix 0 and let

( ) = ( ) =

Z

0

( ( ))

If ( ) = 1( ) then ( ) 0 and hence if ( ) we have

( ) =

Z

0

( ( )) =

Z ( )

0

( ( )) +

Z

( )

( ( ))

Z ( )

0

( ( )) = ( ( ))

Combining this with (0) = 0 we see that ( ) takes its maximum at some
point (0 ] and hence at a point where 0 = 0( ) = ( ) The only
solution to this equation is = ( ) and we have thus shown

( ) = ( )

Z ( )

0

( ( )) = ( ( ))

with equality when = ( ) To finish the proof we must show
R ( )

0
(

( )) = ( ) This is verified by making the change of variables = ( )
and then integrating by parts as follows:

Z ( )

0

( ( )) =

Z

0

( ( ( ))) 0( ) =

Z

0

( ) 0( )

=

Z

0

( ) = ( )
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Fig. 1.2. A picture proof of Proposition 1.25.

Definition 1.26. The conjugate exponent [1 ] to [1 ] is := 1
with the convention that = if = 1 Notice that is characterized by any
of the following identities:

1
+
1
= 1 1 + = = 1 and ( 1) = (1.18)

Lemma 1.27. Let (1 ) and := 1 (1 ) be the conjugate expo-
nent. Then

+ for all 0

with equality if and only if = .

Proof. Let ( ) = for 1 Then ( ) = 1 = and ( ) =
1
1 =

1 wherein we have used 1 = ( 1) 1 = 1 ( 1) Therefore
( ) = and hence by Proposition 1.25,

+

with equality i = 1

Theorem 1.28 (Hölder’s inequality). Let [1 ] be conjugate expo-
nents. For all : F

k k1 k k · k k (1.19)

If (1 ) then equality holds in Eq. (1.19) i

(
| |
k k ) = (

| |
k k )

18 1 Limits, sums, and other basics

Proof. The proof of Eq. (1.19) for {1 } is easy and will be left to
the reader. The cases where k k = 0 or or k k = 0 or are easily dealt
with and are also left to the reader. So we will assume that (1 ) and
0 k k k k Letting = | | k k and = | | k k in Lemma 1.27
implies

| |
k k k k

1 | |
k k +

1 | |
k k

Multiplying this equation by and then summing gives

k k1
k k k k

1
+
1
= 1

with equality i

| |
k k =

| | 1

k k( 1)

| |
k k =

| |
k k

| | k k = k k | |

Definition 1.29. For a complex number C let

sgn( ) =

½

| | if 6= 0
0 if = 0

Theorem 1.30 (Minkowski’s Inequality). If 1 and ( )
then

k + k k k + k k
with equality i

sgn( ) = sgn( ) when = 1 and

= for some 0 when (1 )

Proof. For = 1

k + k1 =
X

| + |
X

(| | + | | ) =
X

| | +
X

| |

with equality i

| |+ | | = | + | sgn( ) = sgn( )

For =

k + k = sup | + | sup (| |+ | |)
sup | |+ sup | | = k k + k k
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Now assume that (1 ) Since

| + | (2max (| | | |)) = 2 max (| | | | ) 2 (| | + | | )
it follows that

k + k 2
¡k k + k k ¢

The theorem is easily verified if k + k = 0 so we may assume k + k
0 Now

| + | = | + || + | 1 (| |+ | |)| + | 1 (1.20)

with equality i sgn( ) = sgn( ) Multiplying Eq. (1.20) by and then sum-
ming and applying Holder’s inequality gives

X

| + |
X

| | | + | 1 +
X

| | | + | 1

(k k + k k ) k | + | 1 k (1.21)

with equality i
µ | |
k k

¶

=

µ | + | 1

k| + | 1k
¶

=

µ | |
k k

¶

and sgn( ) = sgn( )

By Eq. (1.18), ( 1) = and hence

k| + | 1k =
X

(| + | 1) =
X

| + | (1.22)

Combining Eqs. (1.21) and (1.22) implies

k + k k k k + k + k k k + k (1.23)

with equality i

sgn( ) = sgn( ) and
µ | |
k k

¶

=
| + |
k + k =

µ | |
k k

¶

(1.24)

Solving for k + k in Eq. (1.23) with the aid of Eq. (1.18) shows that
k + k k k + k k with equality i Eq. (1.24) holds which happens i
= with 0.

1.7 Exercises

1.7.1 Set Theory

Let : be a function and { } be an indexed family of subsets of
verify the following assertions.
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Exercise 1.31. ( ) =

Exercise 1.32. Suppose that show that \ ( ) = ( \ )

Exercise 1.33. 1( ) = 1( )

Exercise 1.34. 1( ) = 1( )

Exercise 1.35. Find a counter example which shows that ( ) = ( )
( ) need not hold.

Exercise 1.36. Now suppose for each N {1 2 } that : R is
a function. Let

{ : lim ( ) = + }
show that

= =1 =1 { : ( ) } (1.25)

Exercise 1.37. Let : R be as in the last problem. Let

{ : lim ( ) exists in R}

Find an expression for similar to the expression for in (1.25). (Hint: use
the Cauchy criteria for convergence.)

1.7.2 Limit Problems

Exercise 1.38. Prove Lemma 1.15.

Exercise 1.39. Prove Lemma 1.20.

Let { } =1 and { } =1 be two sequences of real numbers.

Exercise 1.40. Show lim inf ( ) = lim sup

Exercise 1.41. Suppose that lim sup = R̄ show that there is a
subsequence { } =1 of { } =1 such that lim =

Exercise 1.42. Show that

lim sup( + ) lim sup + lim sup (1.26)

provided that the right side of Eq. (1.26) is well defined, i.e. no or
+ type expressions. (It is OK to have + = or =

etc.)

Exercise 1.43. Suppose that 0 and 0 for all N Show

lim sup( ) lim sup · lim sup (1.27)

provided the right hand side of (1.27) is not of the form 0 · or · 0
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1.7.3 Dominated Convergence Theorem Problems

Notation 1.44 For 0 R and 0 let 0( ) := { R : | 0| }
be the ball in R centered at 0 with radius

Exercise 1.45. Suppose R is a set and 0 is a point such that
(

0
( ) \ { 0}) 6= for all 0 Let : \ { 0} C be a function

on \ { 0} Show that lim 0
( ) exists and is equal to C 1 i for all

sequences { } =1 \ { 0} which converge to 0 (i.e. lim = 0)
we have lim ( ) =

Exercise 1.46. Suppose that is a set, R is a set, and : × C
is a function satisfying:

1. For each the function ( ) is continuous on 2

2. There is a summable function : [0 ) such that

| ( )| ( ) for all and

Show that
( ) :=

X

( ) (1.28)

is a continuous function for

Exercise 1.47. Suppose that is a set, = ( ) R is an interval, and
: × C is a function satisfying:

1. For each the function ( ) is di erentiable on
2. There is a summable function : [0 ) such that

¯

¯

¯

¯

( )

¯

¯

¯

¯

( ) for all

3. There is a 0 such that
P | ( 0 )|

Show:

a) for all that
P | ( )|

1 More explicitly, lim 0 ( ) = means for every every 0 there exists a
0 such that

| ( ) | whenerver ( 0( ) \ { 0})

2 To say := (· ) is continuous on means that : C is continuous relative
to the metric on R restricted to
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b) Let ( ) :=
P

( ) show is di erentiable on and that

˙ ( ) =
X

( )

(Hint: Use the mean value theorem.)

Exercise 1.48 (Di erentiation of Power Series). Suppose 0 and
{ } =0 is a sequence of complex numbers such that

P

=0 | | for
all (0 ) Show, using Exercise 1.47, ( ) :=

P

=0 is continuously
di erentiable for ( ) and

0( ) =
X

=0

1 =
X

=1

1

Exercise 1.49. Let { } = be a summable sequence of complex numbers,
i.e.

P

= | | For 0 and R define

( ) =
X

=

2

where as usual = cos( ) + sin( ) Prove the following facts about :

1. ( ) is continuous for ( ) [0 )×R Hint: Let = Z and = ( )
and use Exercise 1.46.

2. ( ) ( ) and 2 ( ) 2 exist for 0 and R
Hint: Let = Z and = for computing ( ) and = for
computing ( ) and 2 ( ) 2 See Exercise 1.47.

3. satisfies the heat equation, namely

( ) = 2 ( ) 2 for 0 and R

1.7.4 Inequalities

Exercise 1.50. Generalize Proposition 1.25 as follows. Let [ 0] and
: R [ ) [0 ) be a continuous strictly increasing function such that
lim ( ) = ( ) = 0 if or lim ( ) = 0 if = Also let

= 1 = (0) 0

( ) =

Z

0

( 0) 0 and ( ) =

Z

0

( 0) 0

Then for all 0

( ) + ( ) ( ) + ( )
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Fig. 1.3. Comparing areas when goes the same way as in the text.
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Fig. 1.4. When notice that ( ) 0 but ( ) 0 Also notice that ( ) is
no longer needed to estimate

and equality holds i = ( ) In particular, taking ( ) = prove Young’s
inequality stating

+ ( 1) ln ( 1) ( 1) + ln

Hint: Refer to the following pictures.
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Metric, Banach and Topological Spaces

2.1 Basic metric space notions

Definition 2.1. A function : × [0 ) is called a metric if

1. (Symmetry) ( ) = ( ) for all
2. (Non-degenerate) ( ) = 0 if and only if =
3. (Triangle inequality) ( ) ( ) + ( ) for all

As primary examples, any normed space ( k·k) is a metric space with
( ) := k k Thus the space ( ) is a metric space for all [1 ]
Also any subset of a metric space is a metric space. For example a surface
in R3 is a metric space with the distance between two points on being the
usual distance in R3

Definition 2.2. Let ( ) be a metric space. The open ball ( )
centered at with radius 0 is the set

( ) := { : ( ) }
We will often also write ( ) as ( ) We also define the closed ball
centered at with radius 0 as the set ( ) := { : ( ) }
Definition 2.3. A sequence { } =1 in a metric space ( ) is said to be
convergent if there exists a point such that lim ( ) = 0 In
this case we write lim = of as

Exercise 2.4. Show that in Definition 2.3 is necessarily unique.

Definition 2.5. A set is closed i every convergent sequence { } =1

which is contained in has its limit back in A set is open i
is closed. We will write @ to indicate the is a closed subset of and

to indicate the is an open subset of We also let denote the
collection of open subsets of relative to the metric
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Exercise 2.6. Let F be a collection of closed subsets of show F :=

F is closed. Also show that finite unions of closed sets are closed, i.e. if
{ } =1 are closed sets then =1 is closed. (By taking complements, this
shows that the collection of open sets, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric will be used frequently in
the remainder of this book.

Lemma 2.7. For any non empty subset let ( ) inf{ ( )|
} then

| ( ) ( )| ( ) (2.1)

Moreover the set { | ( ) } is closed in
Proof. Let and , then

( ) ( ) + ( )

Take the inf over in the above equation shows that

( ) ( ) + ( )

Therefore, ( ) ( ) ( ) and by interchanging and we also
have that ( ) ( ) ( ) which implies Eq. (2.1). Now suppose that
{ } =1 is a convergent sequence and = lim By Eq.
(2.1),

( ) ( ) ( ) ( ) 0 as

so that ( ) This shows that and hence is closed.

Corollary 2.8. The function satisfies,

| ( ) ( 0 0)| ( 0) + ( 0)

and in particular : × [0 ) is continuous.

Proof. By Lemma 2.7 for single point sets and the triangle inequality for
the absolute value of real numbers,

| ( ) ( 0 0)| | ( ) ( 0)|+ | ( 0) ( 0 0)|
( 0) + ( 0)

Exercise 2.9. Show that is open i for every there is a 0
such that ( ) In particular show ( ) is open for all and

0
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Lemma 2.10. Let be a closed subset of and @ be as defined as in
Lemma 2.7. Then as 0.

Proof. It is clear that ( ) = 0 for so that for each 0
and hence 0 Now suppose that By Exercise 2.9
there exists an 0 such that ( ) i.e. ( ) for all
Hence and we have shown that 0 . Finally it is clear that

0 whenever 0 .

Definition 2.11. Given a set contained a metric space let ¯ be
the closure of defined by

¯ := { : { } 3 = lim }

That is to say ¯ contains all limit points of

Exercise 2.12. Given show ¯ is a closed set and in fact

¯ = { : with closed} (2.2)

That is to say ¯ is the smallest closed set containing

2.2 Continuity

Suppose that ( ) and ( ) are two metric spaces and : is a
function.

Definition 2.13. A function : is continuous at if for all
0 there is a 0 such that

( ( ) ( 0)) provided that ( 0)

The function is said to be continuous if is continuous at all points

The following lemma gives three other ways to characterize continuous
functions.

Lemma 2.14 (Continuity Lemma). Suppose that ( ) and ( ) are two
metric spaces and : is a function. Then the following are equivalent:

1. is continuous.
2. 1( ) for all i.e. 1( ) is open in if is open in
3. 1( ) is closed in if is closed in
4. For all convergent sequences { } { ( )} is convergent in and

lim ( ) =
³

lim
´
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Proof. 1. 2. For all and 0 there exists 0 such that
( ( ) ( 0)) if ( 0) . i.e.

( ) 1( ( )( ))

So if and 1( ) we may choose 0 such that ( )( )
then

( ) 1( ( )( ))
1( )

showing that 1( ) is open.
2. 1 Let 0 and then, since 1( ( )( )) there exists
0 such that ( ) 1( ( )( )) i.e. if ( 0) then ( ( 0) ( ))

.
2. 3. If is closed in then and hence 1( )

Since 1( ) =
¡

1( )
¢

this shows that 1( ) is the complement of an
open set and hence closed. Similarly one shows that 3. 2
1. 4. If is continuous and in let 0 and choose 0 such

that ( ( ) ( 0)) when ( 0) . There exists an 0 such that
( ) for all and therefore ( ( ) ( )) for all
That is to say lim ( ) = ( ) as .
4. 1. We will show that not 1. not 4. Not 1 implies there exists 0,

a point and a sequence { } =1 such that ( ( ) ( ))
while ( ) 1 Clearly this sequence { } violates 4.
There is of course a local version of this lemma. To state this lemma, we

will use the following terminology.

Definition 2.15. Let be metric space and A subset is a
neighborhood of if there exists an open set such that
We will say that is an open neighborhood of if is open and

Lemma 2.16 (Local Continuity Lemma). Suppose that ( ) and ( )
are two metric spaces and : is a function. Then following are
equivalent:

1. is continuous as
2. For all neighborhoods of ( ) 1( ) is a neighborhood of
3. For all sequences { } such that = lim { ( )} is con-
vergent in and

lim ( ) =
³

lim
´

The proof of this lemma is similar to Lemma 2.14 and so will be omitted.

Example 2.17. The function defined in Lemma 2.7 is continuous for each
In particular, if = { } it follows that ( ) is continuous

for each

Exercise 2.18. Show the closed ball ( ) := { : ( ) } is a
closed subset of
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2.3 Basic Topological Notions

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 2.19. A collection of subsets of is a topology if

1.
2. is closed under arbitrary unions, i.e. if for then

S

.

3. is closed under finite intersections, i.e. if 1 then 1 · · ·

A pair ( ) where is a topology on will be called a topological
space.

Notation 2.20 The subsets which are in are called open sets and
we will abbreviate this by writing and the those sets such that

are called closed sets. We will write @ if is a closed subset of

Example 2.21. 1. Let ( ) be a metric space, we write for the collection
of — open sets in We have already seen that is a topology, see
Exercise 2.6.

2. Let be any set, then = P( ) is a topology. In this topology all subsets
of are both open and closed. At the opposite extreme we have the
trivial topology, = { } In this topology only the empty set and
are open (closed).

3. Let = {1 2 3} then = { {2 3}} is a topology on which does
not come from a metric.

4. Again let = {1 2 3} Then = {{1} {2 3} } is a topology, and
the sets {1} {2 3} are open and closed. The sets {1 2} and {1 3}
are neither open nor closed.

Definition 2.22. Let ( ) be a topological space, and :
be the inclusion map, i.e. ( ) = for all Define

= 1( ) = { : }
the so called relative topology on

Notice that the closed sets in relative to are precisely those sets of
the form where is close in Indeed, is closed i \ =
for some which is equivalent to = \ ( ) = for some

Exercise 2.23. Show the relative topology is a topology on . Also show if
( ) is a metric space and = is the topology coming from then ( )
is the topology induced by making into a metric space using the metric
| ×
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Fig. 2.1. A topology.

Notation 2.24 (Neighborhoods of ) An open neighborhood of a point
is an open set such that Let = { : }

denote the collection of open neighborhoods of A collection is called
a neighborhood base at if for all there exists such that

.

The notation should not be confused with

{ } := 1
{ }( ) = {{ } : } = { { }}

When ( ) is a metric space, a typical example of a neighborhood base for
is = { ( ) : D} where D is any dense subset of (0 1]

Definition 2.25. Let ( ) be a topological space and be a subset of

1. The closure of is the smallest closed set ¯ containing i.e.

¯ := { : @ }
(Because of Exercise 2.12 this is consistent with Definition 2.11 for the
closure of a set in a metric space.)

2. The interior of is the largest open set contained in i.e.

= { : }
3. The accumulation points of is the set

acc( ) = { : \ { } 6= for all }
4. The boundary of is the set := ¯ \
5. is a neighborhood of a point if This is equivalent
to requiring there to be an open neighborhood of of such that
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Remark 2.26. The relationships between the interior and the closure of a set
are:

( ) =
\

{ : and } =
\

{ : is closed } =

and similarly, ( ¯) = ( ) Hence the boundary of may be written as

¯ \ = ¯ ( ) = ¯ (2.3)

which is to say consists of the points in both the closure of and

Proposition 2.27. Let and

1. If and = then ¯ =
2. ¯ i 6= for all
3. i 6= and 6= for all
4. ¯ = acc( )

Proof. 1. Since = and since is closed, ¯ That
is to say ¯ =
2. By Remark 2.261, ¯ = (( ) ) so ¯ i ( ) which happens

i * for all i.e. i 6= for all
3. This assertion easily follows from the Item 2. and Eq. (2.3).
4. Item 4. is an easy consequence of the definition of acc( ) and item 2.

Lemma 2.28. Let ¯ denote the closure of in with its
relative topology and ¯ = ¯ be the closure of in then ¯ = ¯

Proof. Using the comments after Definition 2.22,

¯ = { @ : } = { : @ }
= ( { : @ }) = ¯

Alternative proof. Let then ¯ i for all 6=
This happens i for all = 6= which happens i

¯ That is to say ¯ = ¯

Definition 2.29. Let ( ) be a topological space and We say a
subset U is an open cover of if U The set is said to be
compact if every open cover of has finite a sub-cover, i.e. if U is an open
cover of there exists U0 U such that U0 is a cover of (We will write
@@ to denote that and is compact.) A subset is

precompact if ¯ is compact.
1 Here is another direct proof of item 2. which goes by showing ¯ i there exists

such that = . If ¯ then = and ¯ = .
Conversely if there exists such that = then by Item 1. ¯ =
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Proposition 2.30. Suppose that is a compact set and is a
closed subset. Then is compact. If { } =1 is a finite collections of compact
subsets of then = =1 is also a compact subset of

Proof. Let U is an open cover of then U { } is an open cover
of The cover U { } of has a finite subcover which we denote by
U0 { } where U0 U Since = it follows that U0 is the desired
subcover of
For the second assertion suppose U is an open cover of Then U

covers each compact set and therefore there exists a finite subset U U
for each such that U Then U0 := =1U is a finite cover of

Definition 2.31.We say a collection F of closed subsets of a topological space
( ) has the finite intersection property if F0 6= for all F0 F
The notion of compactness may be expressed in terms of closed sets as

follows.

Proposition 2.32. A topological space is compact i every family of closed
sets F P( ) with the finite intersection property satisfies

TF 6=
Proof. ( ) Suppose that is compact and F P( ) is a collection of

closed sets such that
TF = Let

U = F := { : F}
then U is a cover of and hence has a finite subcover, U0 Let F0 = U0 F
then F0 = so that F does not have the finite intersection property.
( ) If is not compact, there exists an open cover U of with no finite

subcover. Let F = U then F is a collection of closed sets with the finite
intersection property while

TF =
Exercise 2.33. Let ( ) be a topological space. Show that is com-
pact i ( ) is a compact topological space.

Definition 2.34. Let ( ) be a topological space. A sequence { } =1

converges to a point if for all almost always
(abbreviated a.a.), i.e. #({ : }) We will write as
or lim = when converges to

Example 2.35. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2
for all Then for every So limits need not be unique!

Definition 2.36. Let ( ) and ( ) be topological spaces. A function
: is continuous if 1( ) . We will also say that is

—continuous or ( ) — continuous. We also say that is continuous at
a point if for every open neighborhood of ( ) there is an open
neighborhood of such that 1( ) See Figure 2.2.
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Fig. 2.2. Checking that a function is continuous at

Definition 2.37. A map : between topological spaces is called a
homeomorphism provided that is bijective, is continuous and 1 :

is continuous. If there exists : which is a homeomorphism,
we say that and are homeomorphic. (As topological spaces and are
essentially the same.)

Exercise 2.38. Show : is continuous i is continuous at all points

Exercise 2.39. Show : is continuous i 1( ) is closed in for
all closed subsets of

Exercise 2.40. Suppose : is continuous and is compact,
then ( ) is a compact subset of

Exercise 2.41 (Dini’s Theorem). Let be a compact topological space
and : [0 ) be a sequence of continuous functions such that ( ) 0
as for each Show that in fact 0 uniformly in i.e.
sup ( ) 0 as Hint: Given 0 consider the open sets
:= { : ( ) }

Definition 2.42 (First Countable). A topological space, ( ) is first
countable i every point has a countable neighborhood base. (All
metric space are first countable.)

When is first countable, we may formulate many topological notions in
terms of sequences.

Proposition 2.43. If : is continuous at and lim =
then lim ( ) = ( ) Moreover, if there exists a countable

neighborhood base of then is continuous at i lim ( ) = ( )

for all sequences { } =1 such that as

34 2 Metric, Banach and Topological Spaces

Proof. If : is continuous and is a neighborhood of
( ) then there exists a neighborhood of such that ( )
Since a.a. and therefore ( ) ( ) a.a., i.e.
( ) ( ) as
Conversely suppose that { } =1 is a countable neighborhood base

at and lim ( ) = ( ) for all sequences { } =1 such that

By replacing by 1 · · · if necessary, we may assume that { } =1

is a decreasing sequence of sets. If were not continuous at then there exists
( ) such that 1( )0 Therefore, is not a subset of 1( )

for all Hence for each we may choose \ 1( ) This sequence
then has the property that as while ( ) for all and
hence lim ( ) 6= ( )

Lemma 2.44. Suppose there exists { } =1 such that then
¯ Conversely if ( ) is a first countable space (like a metric space)

then if ¯ there exists { } =1 such that

Proof. Suppose { } =1 and Since ¯ is an open
set, if ¯ then ¯ a.a. contradicting the assumption that
{ } =1 Hence ¯

For the converse we now assume that ( ) is first countable and that
{ } =1 is a countable neighborhood base at such that 1 2 3

By Proposition 2.27, ¯ i 6= for all Hence ¯ implies
there exists for all It is now easily seen that as

Definition 2.45 (Support). Let : be a function from a topological
space ( ) to a vector space Then we define the support of by

supp( ) := { : ( ) 6= 0}
a closed subset of

Example 2.46. For example, let ( ) = sin( )1[0 4 ]( ) R then

{ 6= 0} = (0 4 ) \ { 2 3 }
and therefore supp( ) = [0 4 ]

Notation 2.47 If and are two topological spaces, let ( ) denote
the continuous functions from to If is a Banach space, let

( ) := { ( ) : sup k ( )k }

and
( ) := { ( ) : supp( ) is compact}

If = R or C we will simply write ( ) ( ) and ( ) for ( )
( ) and ( ) respectively.
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The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 2.48. Suppose that : is a map between topological spaces.
Then the following are equivalent:

1. is continuous.
2. ( ¯) ( ) for all
3. 1( ) 1( ¯) for all @

Proof. If is continuous, then 1
³

( )
´

is closed and since

1 ( ( )) 1
³

( )
´

it follows that ¯ 1
³

( )
´

From this equa-

tion we learn that ( ¯) ( ) so that (1) implies (2) Now assume (2), then
for (taking = 1( ¯)) we have

( 1( )) ( 1( ¯)) ( 1( ¯)) ¯

and therefore
1( ) 1( ¯) (2.4)

This shows that (2) implies (3) Finally if Eq. (2.4) holds for all then when
is closed this shows that

1( ) 1( ¯) = 1( ) 1( )

which shows that
1( ) = 1( )

Therefore 1( ) is closed whenever is closed which implies that is con-
tinuous.

2.4 Completeness

Definition 2.49 (Cauchy sequences). A sequence { } =1 in a metric
space ( ) is Cauchy provided that

lim ( ) = 0

Exercise 2.50. Show that convergent sequences are always Cauchy se-
quences. The converse is not always true. For example, let = Q be the
set of rational numbers and ( ) = | | Choose a sequence { } =1 Q
which converges to 2 R then { } =1 is (Q ) — Cauchy but not (Q )
— convergent. The sequence does converge in R however.

Definition 2.51. A metric space ( ) is complete if all Cauchy sequences
are convergent sequences.
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Exercise 2.52. Let ( ) be a complete metric space. Let be a subset
of viewed as a metric space using | × Show that ( | × ) is complete
i is a closed subset of

Definition 2.53. If ( k·k) is a normed vector space, then we say { } =1

is a Cauchy sequence if lim k k = 0 The normed vector
space is a Banach space if it is complete, i.e. if every { } =1 which
is Cauchy is convergent where { } =1 is convergent i there exists

such that lim k k = 0 As usual we will abbreviate this last
statement by writing lim =

Lemma 2.54. Suppose that is a set then the bounded functions ( ) on
is a Banach space with the norm

k k = k k = sup | ( )|

Moreover if is a topological space the set ( ) ( ) = ( ) is
closed subspace of ( ) and hence is also a Banach space.

Proof. Let { } =1 ( ) be a Cauchy sequence. Since for any
we have

| ( ) ( )| k k (2.5)

which shows that { ( )} =1 F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, ( ) := lim ( ) exists for all Passing
to the limit in Eq. (2.5) implies

| ( ) ( )| lim sup k k

and taking the supremum over of this inequality implies

k k lim sup k k 0 as

showing in ( )
For the second assertion, suppose that { } =1 ( ) ( ) and

( ) We must show that ( ) i.e. that is continuous.
To this end let then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2 k k + | ( ) ( )|

Thus if 0 we may choose large so that 2 k k 2 and
then for this there exists an open neighborhood of such that
| ( ) ( )| 2 for Thus | ( ) ( )| for showing
the limiting function is continuous.
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Remark 2.55. Let be a set, be a Banach space and ( ) denote
the bounded functions : equipped with the norm k k = k k =
sup k ( )k If is a topological space, let ( ) denote those
( ) which are continuous. The same proof used in Lemma 2.54 shows

that ( ) is a Banach space and that ( ) is a closed subspace of
( )

Theorem 2.56 (Completeness of ( )). Let be a set and :
(0 ] be a given function. Then for any [1 ] ( ( ) k·k ) is a Banach
space.

Proof. We have already proved this for = in Lemma 2.54 so we now
assume that [1 ) Let { } =1 ( ) be a Cauchy sequence. Since for
any

| ( ) ( )| 1

( )
k k 0 as

it follows that { ( )} =1 is a Cauchy sequence of numbers and ( ) :=
lim ( ) exists for all By Fatou’s Lemma,

k k =
X

· lim inf | | lim inf
X

· | |

= lim inf k k 0 as

This then shows that = ( ) + ( ) (being the sum of two —

functions) and that

Example 2.57. Here are a couple of examples of complete metric spaces.

1. = R and ( ) = | |
2. = R and ( ) = k k2 =

P

=1( )2

3. = ( ) for [1 ] and any weight function
4. = ([0 1] R) — the space of continuous functions from [0 1] to R and

( ) := max [0 1] | ( ) ( )| This is a special case of Lemma 2.54.
5. Here is a typical example of a non-complete metric space. Let =

([0 1] R) and

( ) :=

Z 1

0

| ( ) ( )|

2.5 Bounded Linear Operators Basics

Definition 2.58. Let and be normed spaces and : be a linear
map. Then is said to be bounded provided there exists such that
k ( )k k k for all We denote the best constant by k k, i.e.
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k k = sup
6=0
k ( )k
k k = sup

6=0
{k ( )k : k k = 1}

The number k k is called the operator norm of

Proposition 2.59. Suppose that and are normed spaces and :
is a linear map. The the following are equivalent:

(a) is continuous.
(b) is continuous at 0.
(c) is bounded.

Proof. (a) (b) trivial. (b) (c) If continuous at 0 then there exist
0 such that k ( )k 1 if k k . Therefore for any k ( k k) k 1
which implies that k ( )k 1k k and hence k k 1 (c) (a) Let

and 0 be given. Then

k ( ) ( )k = k ( )k k k k k

provided k k k k
For the next three exercises, let = R and = R and :

be a linear transformation so that is given by matrix multiplication by an
× matrix. Let us identify the linear transformation with this matrix.

Exercise 2.60. Assume the norms on and are the 1 — norms, i.e. for
R k k =P =1 | | Then the operator norm of is given by

k k = max
1

X

=1

| |

Exercise 2.61. Suppose that norms on and are the — norms, i.e. for
R k k = max1 | | Then the operator norm of is given by

k k = max
1

X

=1

| |

Exercise 2.62. Assume the norms on and are the 2 — norms, i.e. for
R k k2 = P =1

2 Show k k2 is the largest eigenvalue of the matrix
: R R

Exercise 2.63. If is finite dimensional normed space then all linear maps
are bounded.

Notation 2.64 Let ( ) denote the bounded linear operators from to
If = F we write for ( F) and call the (continuous) dual space

to
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Lemma 2.65. Let be normed spaces, then the operator norm k·k on
( ) is a norm. Moreover if is another normed space and :
and : are linear maps, then k k k kk k where :=

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If

( ) then the triangle inequality is verified as follows:

k + k = sup
6=0
k + k

k k sup
6=0
k k+ k k

k k

sup
6=0
k k
k k + sup

6=0
k k
k k = k k+ k k

For the second assertion, we have for that

k k k kk k k kk kk k

From this inequality and the definition of k k it follows that k k
k kk k
Proposition 2.66. Suppose that is a normed vector space and is a Ba-
nach space. Then ( ( ) k · k ) is a Banach space. In particular the dual
space is always a Banach space.

We will use the following characterization of a Banach space in the proof
of this proposition.

Theorem 2.67. A normed space ( k · k) is a Banach space i for every

sequence { } =1 such that
P

=1
k k then lim

P

=1
= exists in

(that is to say every absolutely convergent series is a convergent series in

). As usual we will denote by
P

=1

Proof. ( )If is complete and
P

=1
k k then sequence

P

=1

for N is Cauchy because (for )

k k
X

= +1

k k 0 as

Therefore =
P

=1
:= lim

P

=1
exists in

( =) Suppose that { } =1 is a Cauchy sequence and let { = } =1

be a subsequence of { } =1 such that
P

=1
k +1 k By assumption
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+1 1 =
X

=1

( +1 ) =
X

=1

( +1 ) as

This shows that lim exists and is equal to := 1+ Since { } =1

is Cauchy,

k k k k+ k k 0 as

showing that lim exists and is equal to
Proof. (Proof of Proposition 2.66.) We must show ( ( ) k · k ) is

complete. Suppose that ( ) is a sequence of operators such that
P

=1
k k Then

X

=1

k k
X

=1

k k k k

and therefore by the completeness of :=
P

=1
= lim exists

in where :=
P

=1
The reader should check that : so defined

in linear. Since,

k k = lim k k lim
X

=1

k k
X

=1

k k k k

is bounded and

k k
X

=1

k k (2.6)

Similarly,

k k = lim k k

lim
X

= +1

k k k k =
X

= +1

k k k k

and therefore,

k k
X

=

k k 0 as

Of course we did not actually need to use Theorem 2.67 in the proof. Here
is another proof. Let { } =1 be a Cauchy sequence in ( ) Then for
each
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k k k k k k 0 as

showing { } =1 is Cauchy in Using the completeness of there exists
an element such that

lim k k = 0

It is a simple matter to show : is a linear map. Moreover,

k k k k+ k k k k+ k k k k

and therefore

k k lim sup (k k+ k k k k)
= k k · lim sup k k

Hence
k k lim sup k k 0 as

Thus we have shown that in ( ) as desired.
The following simple “Bounded Linear Transformation” theorem will often

be used in the sequel to define linear transformations.

Theorem 2.68 (B. L. T. Theorem). Suppose that is a normed space,
is a Banach space, and S is a dense linear subspace of If :

S is a bounded linear transformation (i.e. there exists such that
k k k k for all S) then has a unique extension to an element
¯ ( ) and this extension still satisfies

°

° ¯
°

° k k for all S̄

For an application of this theorem see Proposition 4.2 where the Riemann
integral is constructed.

Exercise 2.69. Prove Theorem 2.68.

2.6 Compactness in Metric Spaces

Let ( ) be a metric space and let 0 ( ) = ( ) \ { }
Definition 2.70. A point is an accumulation point of a subset
if 6= \ { } for all containing

Let us start with the following elementary lemma which is left as an exer-
cise to the reader.
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Lemma 2.71. Let be a subset of a metric space ( ) Then the
following are equivalent:

1. is an accumulation point of
2. 0 ( ) 6= for all 0
3. ( ) is an infinite set for all 0
4. There exists { } =1 \ { } with lim =

Definition 2.72. A metric space ( ) is said to be — bounded ( 0)
provided there exists a finite cover of by balls of radius The metric space
is totally bounded if it is — bounded for all 0

Theorem 2.73. Let be a metric space. The following are equivalent.

(a) is compact.
(b) Every infinite subset of has an accumulation point.
(c) is totally bounded and complete.

Proof. The proof will consist of showing that
( ) We will show that not not . Suppose there exists

such that #( ) = and has no accumulation points. Then for all
there exists 0 such that := ( ) satisfies ( \{ }) = Clearly
V = { } is a cover of yet V has no finite sub cover. Indeed, for each

consists of at most one point, therefore if
can only contain a finite number of points from in particular 6=
(See Figure 2.3.)

Fig. 2.3. The construction of an open cover with no finite sub-cover.

( ) To show is complete, let { } =1 be a sequence and
:= { : N} If #( ) then { } =1 has a subsequence { }

which is constant and hence convergent. If is an infinite set it has an accu-
mulation point by assumption and hence Lemma 2.71 implies that { } has
a convergence subsequence.
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We now show that is totally bounded. Let 0 be given and choose
1 If possible choose 2 such that ( 2 1) then if possible
choose 3 such that ( 3 { 1 2}) and continue inductively choosing
points { } =1 such that ( { 1 1}) This process must
terminate, for otherwise we could choose = { } =1 and infinite number of
distinct points such that ( { 1 1}) for all = 2 3 4 Since
for all the ( 3) can contain at most one point, no point
is an accumulation point of (See Figure 2.4.)

Fig. 2.4. Constructing a set with out an accumulation point.

( ) For sake of contradiction, assume there exists a cover an open
cover V = { } of with no finite subcover. Since is totally bounded
for each N there exists such that

=
[

(1 )
[

(1 )

Choose 1 1 such that no finite subset of V covers 1 := 1(1) Since
1 = 2 1 (1 2) there exists 2 2 such that 2 := 1 2(1 2)

can not be covered by a finite subset of V Continuing this way inductively,
we construct sets = 1 (1 ) with such no can
be covered by a finite subset of V Now choose for each Since
{ } =1 is a decreasing sequence of closed sets such that diam( ) 2
it follows that { } is a Cauchy and hence convergent with

= lim =1

Since V is a cover of there exists V such that Since { }
and diam( ) 0 it now follows that for some large. But this
violates the assertion that can not be covered by a finite subset of V (See
Figure 2.5.)
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Fig. 2.5. Nested Sequence of cubes.

Remark 2.74. Let be a topological space and be a Banach space. By com-
bining Exercise 2.40 and Theorem 2.73 it follows that ( ) ( )

Corollary 2.75. Let be a metric space then is compact i all sequences
{ } have convergent subsequences.

Proof. Suppose is compact and { }
1. If #({ : = 1 2 }) then choose such that = i.o.
and let { } { } such that = for all . Then

2. If #({ : = 1 2 }) = We know = { } has an accumulation
point { }, hence there exists
Conversely if is an infinite set let { } =1 be a sequence of distinct

elements of . We may, by passing to a subsequence, assume
as . Now is an accumulation point of by Theorem 2.73 and
hence is compact.

Corollary 2.76. Compact subsets of R are the closed and bounded sets.

Proof. If is closed and bounded then is complete (being the closed
subset of a complete space) and is contained in [ ] for some positive
integer For 0 let

= Z [ ] := { : Z and | | for = 1 2 }
We will show, by choosing 0 su ciently small, that

[ ] ( ) (2.7)
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which shows that is totally bounded. Hence by Theorem 2.73, is compact.
Suppose that [ ] then there exists such that | |

for = 1 2 Hence

2( ) =
X

=1

( )2 2

which shows that ( ) Hence if choose we have shows
that ( ) i.e. Eq. (2.7) holds.

Example 2.77. Let = (N) with [1 ) and such that ( ) 0
for all N The set

:= { : | ( )| ( ) for all N}
is compact. To prove this, let { } =1 be a sequence. By com-
pactness of closed bounded sets in C for each N there is a subse-
quence of { ( )} =1 C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence { } =1 of { } =1 such that
( ) := lim ( ) exists for all N 2 Since | ( )| ( ) for all
it follows that | ( )| ( ) i.e. Finally

lim k k = lim
X

=1

| ( ) ( )| =
X

=1

lim | ( ) ( )| = 0

where we have used the Dominated convergence theorem. (Note | ( ) ( )|
2 ( ) and is summable.) Therefore and we are done.
Alternatively, we can prove is compact by showing that is closed and

totally bounded. It is simple to show is closed, for if { } =1 is a
convergent sequence in := lim then | ( )| lim | ( )|
( ) for all N This shows that and hence is closed. To see that

is totally bounded, let 0 and choose such that
¡
P

= +1 | ( )|
¢1

Since
Q

=1 ( )(0) C is closed and bounded, it is compact. Therefore
there exists a finite subset

Q

=1 ( )(0) such that

Y

=1

( )(0) ( )

2 The argument is as follows. Let { 1} =1 be a subsequence of N = { } =1 such that
lim 1(1) exists. Now choose a subsequence { 2} =1 of { 1} =1 such that

lim 2(2) exists and similarly { 3} =1 of { 2} =1 such that lim 3(3)

exists. Continue on this way inductively to get

{ } =1 { 1} =1 { 2} =1 { 3} =1

such that lim ( ) exists for all N Let := so that eventually

{ } =1 is a subsequence of { } =1 for all Therefore, we may take :=
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where ( ) is the open ball centered at C relative to the
({1 2 3 }) — norm. For each let ˜ be defined by

˜( ) = ( ) if and ˜( ) = 0 for + 1 I now claim that

˜(2 ) (2.8)

which, when verified, shows is totally bounced. To verify Eq. (2.8), let
and write = + where ( ) = ( ) for and ( ) = 0 for
Then by construction ˜( ) for some ˜ and

k k
Ã

X

= +1

| ( )|
!1

So we have

k ˜k = k + ˜k k ˜k + k k 2

Exercise 2.78 (Extreme value theorem). Let ( ) be a compact topo-
logical space and : R be a continuous function. Show inf
sup and there exists such that ( ) = inf and ( ) = sup
3 Hint: use Exercise 2.40 and Corollary 2.76.

Exercise 2.79 (Uniform Continuity). Let ( ) be a compact metric
space, ( ) be a metric space and : be a continuous function.
Show that is uniformly continuous, i.e. if 0 there exists 0 such that
( ( ) ( )) if with ( ) Hint: I think the easiest proof
is by using a sequence argument.

Definition 2.80. Let be a vector space. We say that two norms, |·| and
k·k on are equivalent if there exists constants (0 ) such that

k k | | and | | k k for all
Lemma 2.81. Let be a finite dimensional vector space. Then any two norms
|·| and k·k on are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let { } =1 be a basis for and define a new norm on by
°

°

°

°

°

X

=1

°

°

°

°

°

1

X

=1

| | for F

By the triangle inequality of the norm |·| we find
3 Here is a proof if is a metric space. Let { } =1 be a sequence such that
( ) sup By compactness of we may assume, by passing to a subsequence
if necessary that as By continuity of ( ) = sup
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¯

¯

¯

¯

¯

X

=1

¯

¯

¯

¯

¯

X

=1

| | | |
X

=1

| | =
°

°

°

°

°

X

=1

°

°

°

°

°

1

where = max | | Thus we have
| | k k1

for all This inequality shows that |·| is continuous relative to k·k1 Now
let := { : k k1 = 1} a compact subset of relative to k·k1 Therefore
by Exercise 2.78 there exists 0 such that

= inf {| | : } = | 0| 0

Hence given 0 6= then k k1 so that
¯

¯

¯

¯k k1

¯

¯

¯

¯

= | | 1

k k1
or equivalently

k k1
1 | |

This shows that |·| and k·k1 are equivalent norms. Similarly one shows that
k·k and k·k1 are equivalent and hence so are |·| and k·k
Definition 2.82. A subset of a topological space is dense if ¯ =
A topological space is said to be separable if it contains a countable dense
subset,

Example 2.83. The following are examples of countable dense sets.

1. The rational number Q are dense in R equipped with the usual topology.
2. More generally, Q is a countable dense subset of R for any N
3. Even more generally, for any function : N (0 ) ( ) is separable
for all 1 For example, let F be a countable dense set, then

:= { ( ) : ¡ for all and #{ : 6= 0} }
The set can be taken to be Q if F = R or Q+ Q if F = C

4. If ( ) is a metric space which is separable then every subset is
also separable in the induced topology.

To prove 4. above, let = { } =1 be a countable dense subset of
Let ( ) = inf{ ( ) : } be the distance from to . Recall that

(· ) : [0 ) is continuous. Let = ( ) 0 and for each let
( 1 ) if = 0 otherwise choose (2 ) Then if

and 0 we may choose N such that ( ) 3 and 1 3
If 0 ( ) 2 2 3 and if = 0 ( ) 3 and therefore

( ) ( ) + ( )

This shows that { } =1 is a countable dense subset of
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Lemma 2.84. Any compact metric space ( ) is separable.

Proof. To each integer there exists such that =
( 1 ) Let := =1 — a countable subset of Moreover,

it is clear by construction that ¯ =

2.7 Compactness in Function Spaces

In this section, let ( ) be a topological space.

Definition 2.85. Let F ( )

1. F is equicontinuous at i for all 0 there exists such
that | ( ) ( )| for all and F

2. F is equicontinuous if F is equicontinuous at all points
3. F is pointwise bounded if sup{| ( )| : | F} for all .

Theorem 2.86 (Ascoli-Arzela Theorem). Let ( ) be a compact topo-
logical space and F ( ) Then F is precompact in ( ) i F is equicon-
tinuous and point-wise bounded.

Proof. ( ) Since ( ) ( ) is a complete metric space, we must
show F is totally bounded. Let 0 be given. By equicontinuity there exists

for all such that | ( ) ( )| 2 if and F . Since
is compact we may choose such that = We have now

decomposed into “blocks” { } such that each F is constant to
within on Since sup {| ( )| : and F} it is now evident
that

= sup {| ( )| : and F}
sup {| ( )| : and F}+

Let D { 2 : Z} [ ] If F and D (i.e. : D
is a function) is chosen so that | ( ) ( )| 2 for all then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )| and

From this it follows that F = S©F : D
ª

where, for D

F { F : | ( ) ( )| for and }
Let :=

©

D : F 6= ª

and for each choose F F For
F and we have

| ( ) ( )| | ( ) ( ))|+ | ( ) ( )| 2

So k k 2 for all F showing that F (2 ) Therefore,
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F = F (2 )

and because 0 was arbitrary we have shown that F is totally bounded.
( ) Since k·k : ( ) [0 ) is a continuous function on ( )

it is bounded on any compact subset F ( ) This shows that
sup {k k : F} which clearly implies that F is pointwise bounded.4

Suppose F were not equicontinuous at some point that is to say there
exists 0 such that for all sup sup

F
| ( ) ( )| 5 Equivalently

said, to each we may choose

F and such that | ( ) ( )| (2.9)

Set C = { : and }k·k F and notice for any V
that

VC C V 6=
so that {C } F has the finite intersection property.6 Since F is
compact, it follows that there exists some

\

C 6=

Since is continuous, there exists such that | ( ) ( )| 3 for
all Because C there exists such that k k 3
We now arrive at a contradiction;

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) (

3 + 3 + 3 =

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps : ( ) R given by ( ) = ( ) for all

5 If is first countable we could finish the proof with the following argument.
Let { } =1 be a neighborhood base at such that 1 2 3 By
the assumption that F is not equicontinuous at there exist F and

such that | ( ) ( )| Since F is a compact metric space by
passing to a subsequence if necessary we may assume that converges uniformly
to some F Because as we learn that

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2k k+ | ( ) ( )| 0 as

which is a contradiction.
6 If we are willing to use Net’s described in Appendix ?? below we could finish
the proof as follows. Since F is compact, the net { } F has a cluster
point F ( ) Choose a subnet { } of { } such that
uniformly. Then, since implies we may conclude from Eq. (2.9)
that

| ( ) ( )| | ( ) ( )| = 0
which is a contradiction.

50 2 Metric, Banach and Topological Spaces

2.8 Connectedness

The reader may wish to review the topological notions and results introduced
in Section 2.3 above before proceeding.

Definition 2.87. ( ) is disconnected if there exists non-empty open sets
and of such that = and = . We say { } is a

disconnection of . The topological space ( ) is called connected if it
is not disconnected, i.e. if there are no disconnection of If we say
is connected i ( ) is connected where is the relative topology on
Explicitly, is disconnected in ( ) i there exists such that
6= 6= = and

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space ( ) is connected i the only
sets which are both open and closed are the sets and

Remark 2.88. Let Then is connected in i is connected
in .

Proof. Since

{ : } = { : } = { : }
the relative topology on inherited from is the same as the relative topol-
ogy on inherited from . Since connectivity is a statement about the relative
topologies on is connected in i is connected in
The following elementary but important lemma is left as an exercise to

the reader.

Lemma 2.89. Suppose that : is a continuous map between topolog-
ical spaces. Then ( ) is connected if is connected.

Here is a typical way these connectedness ideas are used.

Example 2.90. Suppose that : is a continuous map between topo-
logical spaces, is connected, is Hausdor , and is locally constant, i.e.
for all there exists an open neighborhood of in such that | is
constant. Then is constant, i.e. ( ) = { 0} for some 0 To prove this,
let 0 ( ) and let := 1({ 0}) Since is Hausdor , { 0} is a
closed set and since is continuous is also closed. Since is locally
constant, is open as well and since is connected it follows that =
i.e. ( ) = { 0}
Proposition 2.91. Let ( ) be a topological space.
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1. If is a connected set and is the disjoint union of two open sets
and then either or

2. a. If is connected, then ¯ is connected.
b. More generally, if is connected and acc( ) then is
connected as well. (Recall that acc( ) — the set of accumulation points of
was defined in Definition 2.25 above.)

3. If { } is a collection of connected sets such that
T 6= then

:=
S

is connected as well.
4. Suppose are non-empty connected subsets of such that ¯

6= then is connected in
5. Every point is contained in a unique maximal connected subset

of and this subset is closed. The set is called the connected
component of

Proof.

1. Since is the disjoint union of the relatively open sets and
we must have = or = for otherwise { }
would be a disconnection of

2. a. Let = ¯ equipped with the relative topology from Suppose that
form a disconnection of = ¯ Then by 1. either or

Say that Since is both open an closed in it follows
that = ¯ Therefore = and we have a contradiction to the
assumption that { } is a disconnection of = ¯ Hence we must
conclude that = ¯ is connected as well.
b. Now let = with acc( ) then

¯ = ¯ = ( acc( )) =

Because is connected in by (2a) = = ¯ is also connected.
3. Let :=

S

By Remark 2.88, we know that is connected in
for each If { } were a disconnection of by item (1),

either or for all Let = { : } then
= and = \ (Notice that neither or \ can be

empty since and are not empty.) Since

= =
[

( )
\

6=

we have reached a contradiction and hence no such disconnection exists.
4. (A good example to keep in mind here is = R = (0 1) and =
[1 2) ) For sake of contradiction suppose that { } were a disconnection
of = By item (1) either or say in which
case Since = we must have = and = and so
we may conclude: and are disjoint subsets of which are both open
and closed. This implies
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= ¯ = ¯ = ¯ ( ) =
¡

¯
¢

and therefore
6= ¯ =

which gives us the desired contradiction.
5. Let C denote the collection of connected subsets such that
Then by item 3., the set := C is also a connected subset of which
contains and clearly this is the unique maximal connected set containing
Since ¯ is also connected by item (2) and is maximal, = ¯

i.e. is closed.

Theorem 2.92. The connected subsets of R are intervals.

Proof. Suppose that R is a connected subset and that with
If there exists ( ) such that then := ( )

and := ( ) would form a disconnection of Hence ( ) Let
:= inf( ) and := sup( ) and choose such that and

and as By what we have just shown, ( )
for all and hence ( ) = =1( ) From this it follows that
= ( ) [ ) ( ] or [ ] i.e. is an interval.
Conversely suppose that is an interval, and for sake of contradiction,

suppose that { } is a disconnection of with After relabelling
and if necessary we may assume that Since is an interval

[ ] Let = sup ([ ] ) then because and are open,
Now can not be in for otherwise sup ([ ] ) and can not be in
for otherwise sup ([ ] ) From this it follows that and

hence 6= contradicting the assumption that { } is a disconnection.

Definition 2.93. A topological space is path connected if to every pair of
points { 0 1} there exists a continuous path ([0 1] ) such that
(0) = 0 and (1) = 1 The space is said to be locally path connected
if for each there is an open neighborhood of which is path
connected.

Proposition 2.94. Let be a topological space.

1. If is path connected then is connected.
2. If is connected and locally path connected, then is path connected.
3. If is any connected open subset of R then is path connected.

Proof. The reader is asked to prove this proposition in Exercises 2.125 —
2.127 below.
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2.9 Supplement: Sums in Banach Spaces

Definition 2.95. Suppose that is a normed space and { : } is
a given collection of vectors in We say that =

P

if for all
0 there exists a finite set such that

°

°

P

°

° for all
such that (Unlike the case of real valued sums, this does

not imply that
P k k See Proposition 14.22 below, from which one

may manufacture counter-examples to this false premise.)

Lemma 2.96. (1) When is a Banach space,
P

exists in i for
all 0 there exists such that

°

°

P

°

° for all \
Also if

P

exists in then { : 6= 0} is at most countable. (2)
If =

P

exists and : is a bounded linear map between
normed spaces, then

P

exists in and

=
X

=
X

Proof. (1) Suppose that =
P

exists and 0 Let be
as in Definition 2.95. Then for \

°

°

°

°

°

X

°

°

°

°

°

°

°

°

°

°

X

+
X

°

°

°

°

°

+

°

°

°

°

°

X

°

°

°

°

°

=

°

°

°

°

°

X

°

°

°

°

°

+ 2

Conversely, suppose for all 0 there exists such that
°

°

P

°

°

for all \ Let := =1 1 and set :=
P

Then
for

k k =
°

°

°

°

°

°

X

\

°

°

°

°

°

°

1 0 as

Therefore { } =1 is Cauchy and hence convergent in Let := lim
then for such that we have

°

°

°

°

°

X

°

°

°

°

°

k k+
°

°

°

°

°

°

X

\

°

°

°

°

°

°

k k+ 1

Since the right member of this equation goes to zero as it follows
that

P

exists and is equal to
Let := =1 — a countable subset of Then for { } \

for all and hence
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k k =
°

°

°

°

°

°

X

{ }

°

°

°

°

°

°

1 0 as

Therefore = 0 for all \
(2) Let be as in Definition 2.95 and such that Then

°

°

°

°

°

X

°

°

°

°

°

k k
°

°

°

°

°

X

°

°

°

°

°

k k

which shows that
P

exists and is equal to

2.10 Word of Caution

Example 2.97. Let ( ) be a metric space. It is always true that ( )
( ) since ( ) is a closed set containing ( ) However, it is not always

true that ( ) = ( ) For example let = {1 2} and (1 2) = 1 then
1(1) = {1} 1(1) = {1} while 1(1) = For another counter example,

take
=
©

( ) R2 : = 0 or = 1
ª

with the usually Euclidean metric coming from the plane. Then

(0 0)(1) =
©

(0 ) R2 : | | 1
ª

(0 0)(1) =
©

(0 ) R2 : | | 1
ª

while

(0 0)(1) = (0 0)(1) {(0 1)}

In spite of the above examples, Lemmas 2.98 and 2.99 below shows that
for certain metric spaces of interest it is true that ( ) = ( )

Lemma 2.98. Suppose that ( |·|) is a normed vector space and is the
metric on defined by ( ) = | | Then

( ) = ( ) and

( ) = { : ( ) = }

Proof. We must show that := ( ) ( ) =: ¯ For let
= then

| | = | | = ( )

Let = 1 1 so that 1 as Let = + then
( ) = ( ) so that ( ) and ( ) = 1 0 as

This shows that as and hence that ¯
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x

y

z

Fig. 2.6. An almost length minimizing curve joining to

2.10.1 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 2.99. Suppose that is a Riemannian (or sub-Riemannian) mani-
fold and is the metric on defined by

( ) = inf { ( ) : (0) = and (1) = }
where ( ) is the length of the curve We define ( ) = if is not
piecewise smooth.
Then

( ) = ( ) and

( ) = { : ( ) = }

Proof. Let := ( ) ( ) =: ¯ We will show that ¯ by
showing ¯ Suppose that ¯ and choose 0 such that ( )
¯ = In particular this implies that

( ) ( ) =

We will finish the proof by showing that ( ) + and hence
that This will be accomplished by showing: if ( ) + then
( ) ( ) 6=
If ( ) max( ) then either ( ) or ( ) In either case
( ) ( ) 6= Hence we may assume that max( ) ( ) +

Let 0 be a number such that

max( ) ( ) +

and choose a curve from to such that ( ) Also choose 0 0

such that 0 0 which can be done since Let ( ) = ( ( ))
a continuous function on [0 1] and therefore ([0 1]) R is a connected
set which contains 0 and ( ) Therefore there exists 0 [0 1] such that
( ( 0)) = ( 0) =

0 Let = ( 0) ( ) then
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( ) ( |[0 0]) = ( ) ( |[ 0 1]) ( ) = 0

and therefore ( ) ( ) 6=
Remark 2.100. Suppose again that is a Riemannian (or sub-Riemannian)
manifold and

( ) = inf { ( ) : (0) = and (1) = }
Let be a curve from to and let = ( ) ( ) Then for all 0

1
( ( ) ( )) ( |[ ]) +

So if is within of a length minimizing curve from to that |[ ] is
within of a length minimizing curve from ( ) to ( ) In particular if
( ) = ( ) then ( ( ) ( )) = ( |[ ]) for all 0 1 i.e. if
is a length minimizing curve from to that |[ ] is a length minimizing
curve from ( ) to ( )
To prove these assertions notice that

( ) + = ( ) = ( |[0 ]) + ( |[ ]) + ( |[ 1])

( ( )) + ( |[ ]) + ( ( ) )

and therefore

( |[ ]) ( ) + ( ( )) ( ( ) )

( ( ) ( )) +

2.11 Exercises

Exercise 2.101. Prove Lemma 2.71.

Exercise 2.102. Let = ([0 1] R) and for let

k k1 :=
Z 1

0

| ( )|

Show that ( k·k1) is normed space and show by example that this space is
not complete.

Exercise 2.103. Let ( ) be a metric space. Suppose that { } =1 is
a sequence and set := ( +1) Show that for that

( )
1

X

=

X

=

Conclude from this that if
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X

=1

=
X

=1

( +1)

then { } =1 is Cauchy. Moreover, show that if { } =1 is a convergent
sequence and = lim then

( )
X

=

Exercise 2.104. Show that ( ) is a complete metric space i every se-
quence { } =1 such that

P

=1 ( +1) is a convergent se-
quence in You may find it useful to prove the following statements in the
course of the proof.

1. If { } is Cauchy sequence, then there is a subsequence such
that

P

=1 ( +1 )
2. If { } =1 is Cauchy and there exists a subsequence of { }
such that = lim exists, then lim also exists and is equal
to

Exercise 2.105. Suppose that : [0 ) [0 ) is a 2 — function such
that (0) = 0 0 0 and 00 0 and ( ) is a metric space. Show that
( ) = ( ( )) is a metric on In particular show that

( )
( )

1 + ( )

is a metric on (Hint: use calculus to verify that ( + ) ( ) + ( ) for
all [0 ) )

Exercise 2.106. Let : (R)× (R) [0 ) be defined by

( ) =
X

=1

2
k k

1 + k k

where k k sup{| ( )| : | | } = max{| ( )| : | | }
1. Show that is a metric on (R)
2. Show that a sequence { } =1 (R) converges to (R) as
i converges to uniformly on compact subsets of R

3. Show that ( (R) ) is a complete metric space.

Exercise 2.107. Let {( )} =1 be a sequence of metric spaces, :=
Q

=1 and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X

=1

2
( ( ) ( ))

1 + ( ( ) ( ))
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Show: 1) ( ) is a metric space, 2) a sequence { } =1 converges to
i ( ) ( ) as for every = 1 2 and 3) is

complete if is complete for all

Exercise 2.108 (Tychono ’s Theorem). Let us continue the notation of
the previous problem. Further assume that the spaces are compact for all
Show ( ) is compact. Hint: Either use Cantor’s method to show every

sequence { } =1 has a convergent subsequence or alternatively show
( ) is complete and totally bounded.

Exercise 2.109. Let ( ) for = 1 be a finite collection of metric
spaces and for 1 and = ( 1 2 ) and = ( 1 ) in
:=
Q

=1 let

( ) =

½

(
P

=1 [ ( )] )
1 if 6=

max ( ) if =

1. Show ( ) is a metric space for [1 ] Hint: Minkowski’s inequal-
ity.

2. Show that all of the metric { : 1 } are equivalent, i.e. for any
[1 ] there exists constants such that

( ) ( ) and ( ) ( ) for all

Hint: This can be done with explicit estimates or more simply using
Lemma 2.81.

3. Show that the topologies associated to the metrics are the same for all
[1 ]

Exercise 2.110. Let be a closed proper subset of R and R \ Show
there exists a such that ( ) = ( )

Exercise 2.111. Let F = R in this problem and 2(N) be defined by

= { 2(N) : ( ) 1 + 1 for some N}
= =1{ 2(N) : ( ) 1 + 1 }

Show is a closed subset of 2(N) with the property that (0) = 1 while
there is no such that ( ) = 1 (Remember that in general an infinite
union of closed sets need not be closed.)

2.11.1 Banach Space Problems

Exercise 2.112. Show that all finite dimensional normed vector spaces
( k·k) are necessarily complete. Also show that closed and bounded sets
(relative to the given norm) are compact.
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Exercise 2.113. Let ( k·k) be a normed space over F (R or C) Show the
map

( ) F× × +

is continuous relative to the topology on F× × defined by the norm

k( )kF× × := | |+ k k+ k k
(See Exercise 2.109 for more on the metric associated to this norm.) Also show
that k·k : [0 ) is continuous.

Exercise 2.114. Let [1 ] and be an infinite set. Show the closed
unit ball in ( ) is not compact.

Exercise 2.115. Let = N and for [1 ) let k·k denote the (N) —
norm. Show k·k and k·k are inequivalent norms for 6= by showing

sup
6=0

k k
k k = if

Exercise 2.116. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 2.117. Folland Problem 5.9. Showing ([0 1]) is a Banach space.

Exercise 2.118. Folland Problem 5.11. Showing Holder spaces are Banach
spaces.

Exercise 2.119. Let and be normed spaces. Prove the maps

( ) ( )×
and

( ) ( )× ( ) ( )

are continuous relative to the norms

k( )k ( )× := k k ( ) + k k and

k( )k ( )× ( ) := k k ( ) + k k ( )

on ( )× and ( )× ( ) respectively.

2.11.2 Ascoli-Arzela Theorem Problems

Exercise 2.120. Let (0 ) and F ([0 ]) be a family of functions
such that:

1. ˙( ) exists for all (0 ) and F
2. sup F | (0)| and

3. := sup F sup (0 )

¯

¯

¯

˙( )
¯

¯

¯

Show F is precompact in the Banach space ([0 ]) equipped with the
norm k k = sup [0 ] | ( )|
Exercise 2.121. Folland Problem 4.63.

Exercise 2.122. Folland Problem 4.64.
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2.11.3 General Topological Space Problems

Exercise 2.123. Give an example of continuous map, : and a
compact subset of such that 1( ) is not compact.

Exercise 2.124. Let be an open subset of R Show may be written as
a disjoint union of open intervals = ( ) where R {± } for
= 1 2 · · · with = possible.

2.11.4 Connectedness Problems

Exercise 2.125. Prove item 1. of Proposition 2.94. Hint: show is not
connected implies is not path connected.

Exercise 2.126. Prove item 2. of Proposition 2.94. Hint: fix 0 and let
denote the set of such that there exists ([0 1] ) satisfying

(0) = 0 and (1) = Then show is both open and closed.

Exercise 2.127. Prove item 3. of Proposition 2.94.

Exercise 2.128. Let

:=
©

( ) R2 : = sin( 1)
ª {(0 0)}

equipped with the relative topology induced from the standard topology on
R2 Show is connected but not path connected.

Exercise 2.129. Prove the following strong version of item 3. of Proposition
2.94, namely to every pair of points 0 1 in a connected open subset of
R there exists (R ) such that (0) = 0 and (1) = 1 Hint: Use
a convolution argument.
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Locally Compact Hausdor Spaces

In this section will always be a topological space with topology We
are now interested in restrictions on in order to insure there are “plenty” of
continuous functions. One such restriction is to assume = — is the topology
induced from a metric on The following two results shows that ( ) has
lots of continuous functions. Recall for ( ) = inf{ ( ) : }
Lemma 3.1 (Urysohn’s Lemma for Metric Spaces). Let ( ) be a
metric space, and @ such that Then

( ) =
( )

( ) + ( )
for (3.1)

defines a continuous function, : [0 1] such that ( ) = 1 for and
( ) = 0 if (This may also be stated as follows. Let ( = ) and
( = ) be two disjoint closed subsets of then there exists ( [0 1])
such that = 1 on and = 0 on )

Proof. By Lemma 2.7, and are continuous functions on Since
and are closed, ( ) 0 if and ( ) 0 if Since

= ( ) + ( ) 0 for all and ( + )
1 is continuous as

well. The remaining assertions about are all easy to verify.

Theorem 3.2 (Metric Space Tietze Extension Theorem). Let ( )
be a metric space, be a closed subset of and
( [ ]) (Here we are viewing as a topological space with the relative

topology, see Definition 2.22.) Then there exists ( [ ]) such that
| =

Proof.

1. By scaling and translation (i.e. by replacing by ), it su ces to prove
Theorem 3.2 with = 0 and = 1

62 3 Locally Compact Hausdor Spaces

2. Suppose (0 1] and : [0 ] is continuous function. Let :=
1([0 1

3 ]) and := 1([23 1]) By Lemma 3.1 there exists a function
˜ ( [0 3]) such that ˜ = 0 on and ˜ = 1 on Letting := 3 ˜
we have ( [0 3]) such that = 0 on and = 3 on
Further notice that

0 ( ) ( )
2

3
for all

3. Now suppose : [0 1] is a continuous function as in step 1. Let
1 ( [0 1 3]) be as in step 2. with = 1 and let 1 := 1|
( [0 2 3]) Apply step 2. with = 2 3 and = 1 to find 2

( [0 1
3
2
3 ]) such that 2 := ( 1 + 2) | ( [0

¡

2
3

¢2
]) Continue

this way inductively to find ( [0 1
3

¡

2
3

¢ 1
]) such that

X

=1

| =: ( [0

µ

2

3

¶

]) (3.2)

4. Define :=
P

=1 Since

X

=1

k k
X

=1

1

3

µ

2

3

¶ 1

=
1

3

1

1 2
3

= 1

the series defining is uniformly convergent so ( [0 1]) Passing
to the limit in Eq. (3.2) shows = |

The main thrust of this section is to study locally compact (and — com-
pact) Hausdor spaces as defined below. We will see again that this class of
topological spaces have an ample supply of continuous functions. We will start
out with the notion of a Hausdor topology. The following example shows a
pathology which occurs when there are not enough open sets in a topology.

Example 3.3. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2
for all Then for every !

Definition 3.4 (Hausdor Topology). A topological space, ( ) is
Hausdor if for each pair of distinct points, there exists dis-
joint open neighborhoods, and of and respectively. (Metric spaces are
typical examples of Hausdor spaces.)

Remark 3.5.When is Hausdor the “pathologies” appearing in Example 3.3
do not occur. Indeed if and \ { } we may choose
and such that = Then a.a. implies for all
but a finite number of and hence 9 so limits are unique.
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Proposition 3.6. Suppose that ( ) is a Hausdor space, @@ and
Then there exists such that = and

In particular is closed. (So compact subsets of Hausdor topological spaces
are closed.) More generally if and are two disjoint compact subsets of
there exist disjoint open sets such that and

Proof. Because is Hausdor , for all there exists and
such that = The cover { } of has a finite subcover,

{ } for some Let = and = then
satisfy and = This shows that is open and hence
that is closed.
Suppose that and are two disjoint compact subsets of For each
there exists disjoint open sets and such that and

Since { } is an open cover of there exists a finite subset of such
that := The proof is completed by defining :=

Exercise 3.7. Show any finite set admits exactly one Hausdor topology

Exercise 3.8. Let ( ) and ( ) be topological spaces.

1. Show is Hausdor i := {( ) : } is a closed in × equipped
with the product topology

2. Suppose is Hausdor and : are continuous maps. If

{ = } = then = Hint: make use of the map × : ×
defined by ( × ) ( ) = ( ( ) ( ))

Exercise 3.9. Given an example of a topological space which has a non-closed
compact subset.

Proposition 3.10. Suppose that is a compact topological space, is a
Hausdor topological space, and : is a continuous bijection then
is a homeomorphism, i.e. 1 : is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdor spaces
are closed, it follows that

¡

1
¢ 1

( ) = ( ) is closed in for all closed
subsets of Thus 1 is continuous.

Definition 3.11 (Local and — compactness). Let ( ) be a topological
space.

1. ( ) is locally compact if for all there exists an open neigh-
borhood of such that ¯ is compact. (Alternatively, in light of
Definition 2.25, this is equivalent to requiring that to each there
exists a compact neighborhood of )
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2. ( ) is — compact if there exists compact sets such that
= =1 (Notice that we may assume, by replacing by 1 2

· · · if necessary, that )

Example 3.12. Any open subset of R is a locally compact and —
compact metric space (and hence Hausdor ). The proof of local compactness
is easy and is left to the reader. To see that is — compact, for N let

:= { : | | and ( ) 1 }
Then is a closed and bounded subset of R and hence compact. Moreover

as since1

{ : | | and ( ) 1 } as

Exercise 3.13. Every separable locally compact metric space is — compact.
Hint: Let { } =1 be a countable dense subset of and define

=
1

2
sup { 0 : ( ) is compact} 1

Exercise 3.14. Every — compact metric space is separable. Therefore a
locally compact metric space is separable i it is — compact.

Exercise 3.15. Suppose that ( ) is a metric space and is an open
subset.

1. If is locally compact then ( ) is locally compact.
2. If is — compact then ( ) is — compact. Hint: Mimick Example
3.12, replacing 0( ) by compact set @@ such that

Lemma 3.16. Let ( ) be a locally compact and — compact topological
space. Then there exists compact sets such that +1 +1

for all

Proof. Suppose that is a compact set. For each let
be an open neighborhood of such that ¯ is compact. Then so
there exists such that

¯ =:

Then is a compact set, being a finite union of compact subsets of and

Now let be compact sets such that as Let
1 = 1 and then choose a compact set 2 such that 2 2 Similarly,

choose a compact set 3 such that 2 3 3 and continue inductively to
find compact sets such that +1 +1 for all Then { } =1

is the desired sequence.
1 In fact this is an equality, but we will not need this here.
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Remark 3.17. Lemma 3.16 may also be stated as saying there exists precom-
pact open sets { } =1 such that ¯

+1 for all and as
Indeed if { } =1 are as above, let := ¯ and if { } =1 are as

in Lemma 3.16, let :=

The following result is a Corollary of Lemma 3.16 and Theorem 2.86.

Corollary 3.18 (Locally compact form of Ascoli-Arzela Theorem
). Let ( ) be a locally compact and — compact topological space and
{ } ( ) be a pointwise bounded sequence of functions such that { | }
is equicontinuous for any compact subset Then there exists a subse-
quence { } { } such that { := } =1 ( ) is a sequence which
is uniformly convergent on compact subsets of

Proof. Let { } =1 be the compact subsets of constructed in Lemma
3.16. We may now apply Theorem 2.86 repeatedly to find a nested family of
subsequences

{ } { 1 } { 2 } { 3 }
such that the sequence { } =1 ( ) is uniformly convergent on
Using Cantor’s trick, define the subsequence { } of { } by Then
{ } is uniformly convergent on for each N Now if is an
arbitrary compact set, there exists such that and
therefore { } is uniformly convergent on as well.
The next two results shows that locally compact Hausdor spaces have

plenty of open sets and plenty of continuous functions.

Proposition 3.19. Suppose is a locally compact Hausdor space and
and @@ Then there exists such that

and ¯ is compact.

Proof. By local compactness, for all there exists such
that ¯ is compact. Since is compact, there exists such that
{ } is a cover of The set = ( ) is an open set such that

and is precompact since ¯ is a closed subset of the compact
set ¯ ( ¯ is compact because it is a finite union of compact sets.)
So by replacing by if necessary, we may assume that ¯ is compact.
Since ¯ is compact and = ¯ is a closed subset of ¯ is

compact. Because it follows that = so by Proposition
3.6, there exists disjoint open sets and such that and
By replacing by if necessary we may further assume that
see Figure 3.1.
Because ¯ is a closed set containing and ¯ = =

¯ ¯ = ¯

Since ¯ is compact it follows that ¯ is compact and the proof is complete.
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Fig. 3.1. The construction of

Exercise 3.20. Give a “simpler” proof of Proposition 3.19 under the addi-
tional assumption that is a metric space. Hint: show for each there
exists := ( ) with 0 such that ( ) ( ) with ( )
being compact. Recall that ( ) is the closed ball of radius about

Definition 3.21. Let be an open subset of a topological space ( ) We
will write to mean a function ( [0 1]) such that supp( ) :=
{ 6= 0}
Lemma 3.22 (Locally Compact Version of Urysohn’s Lemma). Let
be a locally compact Hausdor space and @@ Then there exists

such that = 1 on In particular, if is compact and is closed
in such that = there exists ( [0 1]) such that = 1 on
and = 0 on

Proof. For notational ease later it is more convenient to construct :=
1 rather than To motivate the proof, suppose ( [0 1]) such
that = 0 on and = 1 on For 0 let = { } Then for
0 1 { } and since { } is closed this implies

¯ { }
Therefore associated to the function is the collection open sets { } 0

with the property that ¯ for all 0 1 and
= if 1 Finally let us notice that we may recover the function from

the sequence { } 0 by the formula

( ) = inf{ 0 : } (3.3)

The idea of the proof to follow is to turn these remarks around and define
by Eq. (3.3).
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Step 1. (Construction of the ) Let

D
©

2 : = 1 2 2 1 = 1 2
ª

be the dyadic rationales in (0 1] Use Proposition 3.19 to find a precompact
open set 1 such that 1

¯
1 Apply Proposition 3.19 again to

construct an open set 1 2 such that

1 2
¯
1 2 1

and similarly use Proposition 3.19 to find open sets 1 2 3 4 such that

1 4
¯
1 4 1 2

¯
1 2 3 4

¯
3 4 1

Likewise there exists open set 1 8 3 8 5 8 7 8 such that

1 8
¯
1 8 1 4

¯
1 4 3 8

¯
3 8 1 2

¯
1 2 5 8

¯
5 8 3 4

¯
3 4 7 8

¯
7 8 1

Continuing this way inductively, one shows there exists precompact open sets
{ } D such that

1
¯
1

for all D with 0 1
Step 2. Let if 1 and define

( ) = inf{ D (1 ) : }
see Figure 3.2. Then ( ) [0 1] for all ( ) = 0 for since

for all D If 1 then for all D and hence
( ) = 1 Therefore := 1 is a function such that = 1 on and
{ 6= 0} = { 6= 1} 1

¯
1 so that supp( ) = { 6= 0} ¯

1 is
a compact subset of Thus it only remains to show or equivalently is
continuous.
Since E = {( ) ( ) : R} generates the standard topology on

R to prove is continuous it su ces to show { } and { } are open
sets for all R But ( ) i there exists D (1 ) with
such that Therefore

{ } =
[

{ : D (1 ) 3 }

which is open in If 1 { } = and if 0 { } = If
(0 1) then ( ) i there exists D such that and

Now if and then for D ( ) ¯ Thus we have
shown that

{ } =
[

n

¡ ¢

: D 3
o

which is again an open subset of
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Fig. 3.2. Determining from { }

Exercise 3.23. mGive a simpler proof of Lemma 3.22 under the additional
assumption that is a metric space.

Theorem 3.24 (Locally Compact Tietz Extension Theorem). Let
( ) be a locally compact Hausdor space, @@ ( R)
= min ( ) and = max ( ) Then there exists ( [ ])

such that | = Moreover given [ ] can be chosen so that
supp( ) = { 6= }
The proof of this theorem is similar to Theorem 3.2 and will be left to the

reader, see Exercise 3.51.

Lemma 3.25. Suppose that ( ) is a locally compact second countable
Hausdor space. (For example any separable locally compact metric space and
in particular any open subsets of R ) Then:

1. every open subset is — compact.
2. If is a closed set, there exist open sets such that
as

3. To each open set there exists such that lim = 1
4. The — algebra generated by ( ) is the Borel — algebra, B
Proof.

1. Let be an open subset of V be a countable base for and

V := { V : ¯ and ¯ is compact}
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For each by Proposition 3.19, there exists an open neighborhood
of such that ¯ and ¯ is compact. Since V is a base for the

topology there exists V such that Because ¯ ¯ it
follows that ¯ is compact and hence V As was arbitrary,
= V

Let { } =1 be an enumeration of V and set := =1
¯ Then

as and is compact for each
2. Let { } =1 be compact subsets of such that as and
set := = \ Then and by Proposition 3.6, is open
for each

3. Let be an open set and { } =1 be compact subsets of such
that By Lemma 3.22, there exist such that = 1 on

These functions satisfy, 1 = lim
4. By Item 3., 1 is ( ( R)) — measurable for all Hence

( ( R)) and therefore B = ( ) ( ( R)) The con-
verse inclusion always holds since continuous functions are always Borel
measurable.

Corollary 3.26. Suppose that ( ) is a second countable locally compact
Hausdor space, B = ( ) is the Borel — algebra on and H is a subspace
of ( R) which is closed under bounded convergence and contains ( R)
Then H contains all bounded B — measurable real valued functions on

Proof. Since H is closed under bounded convergence and ( R) H
it follows by Item 3. of Lemma 3.25 that 1 H for all Since is a
— class the corollary follows by an application of Theorem 9.12.

3.1 Locally compact form of Urysohn Metrization
Theorem

Notation 3.27 Let := [0 1]N denote the (infinite dimensional) unit cube
in RN For let

( ) :=
X

=1

1

2
| | (3.4)

The metric introduced in Exercise 2.108 would be defined, in this context,
as (̃ ) :=

P

=1
1
2

| |
1+| | Since 1 1 + | | 2 it follows that

˜ 2 So the metrics and ˜ are equivalent and in particular the
topologies induced by and ˜are the same. By Exercises 7.80, the — topology
on is the same as the product topology and by Exercise 2.108, ( ) is a
compact metric space.
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Theorem 3.28 (Urysohn Metrization Theorem). Every second count-
able locally compact Hausdor space, ( ) is metrizable, i.e. there is a met-
ric on such that = Moreover, may be chosen so that is isometric
to a subset 0 equipped with the metric in Eq. (3.4). In this metric
is totally bounded and hence the completion of (which is isometric to

¯
0 ) is compact.

Proof. Let B be a countable base for and set

{( ) B × B | ¯ and ¯ is compact}
To each and there exist ( ) such that
Indeed, since B is a basis for there exists B such that
Now apply Proposition 3.19 to find 0 such that 0 ¯ 0

with ¯ 0 being compact. Since B is a basis for there exists B such that
0 and since ¯ ¯ 0 ¯ is compact so ( ) In particular this

shows that B0 := { B : ( ) for some B} is still a base for
If is a finite, then B0 is finite and only has a finite number of elements

as well. Since ( ) is Hausdor , it follows that is a finite set. Letting
{ } =1 be an enumeration of define : by ( ) = for
= 1 2 where = (0 0 0 1 0 ) with the 1 ocurring in the
th spot. Then ( ) := ( ( ) ( )) for is the desired metric.
So we may now assume that is an infinite set and let {( )} =1 be an
enumeration of
By Urysohn’s Lemma 3.22 there exists ( [0 1]) such that =

0 on ¯ and = 1 on . Let F { | ( ) } and set :=
— an enumeration of F We will now show that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on The proof will involve a number of steps.

1. ( is a metric on ) It is routine to show satisfies the triangle inequal-
ity and is symmetric. If are distinct points then there exists
( 0 0) such that 0 and 0 := { } Since 0( ) = 0
and

0
( ) = 1 it follows that ( ) 2 0 0

2. (Let 0 = ( : N) then = 0 = ) As usual we have 0

Since, for each ( ) is 0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that ( ) :=
{ : ( ) } 0 for all and 0 Thus 0

Suppose that and Let (
0 0) be such that 0

and 0 Then 0( ) = 0 and 0 = 1 on Therefore if and

0( ) 1 then so { 0 1} This shows that may be
written as a union of elements from 0 and therefore 0 So 0 and
hence = 0 Moreover, if (2 0) then 2 0 ( ) 2 0

0( )
and therefore (2 0) { 0 1} This shows is — open
and hence 0
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3. ( is isometric to some 0 ) Let : be defined by ( ) =
( 1( ) 2( ) ( ) ) Then is an isometry by the very definitions
of and and therefore is isometric to 0 := ( ) Since 0 is a subset
of the compact metric space ( ) 0 is totally bounded and therefore
is totally bounded.

3.2 Partitions of Unity

Definition 3.29. Let ( ) be a topological space and 0 be a set. A
collection of sets { } 2 is locally finite on 0 if for all 0

there is an open neighborhood of such that #{ : 6=
}
Lemma 3.30. Let ( ) be a locally compact Hausdor space.

1. A subset is closed i is closed for all @@
2. Let { } be a locally finite collection of closed subsets of then

= is closed in (Recall that in general closed sets are only
closed under finite unions.)

Proof. Item 1. Since compact subsets of Hausdor spaces are closed,
is closed if is closed and is compact. Now suppose that is closed
for all compact subsets and let Since is locally compact,
there exists a precompact open neighborhood, of 2 By assumption ¯

is closed so
¡

¯
¢

— an open subset of By Proposition 3.19 there
exists an open set such that ¯

¡

¯
¢

see Figure 3.3. Let
:= Since

= ¯ =

and is an open neighborhood of and was arbitrary, we have shown
is open hence is closed.
Item 2. Let be a compact subset of and for each let be an

open neighborhood of such that #{ : 6= } Since is
compact, there exists a finite subset such that Letting
0 := { : 6= } then

#( 0)
X

#{ : 6= }

2 If were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of which is disjoint from then there would exists

such that Since ¯ is closed and ¯ for all large
it follows (see Exercise 2.12) that ¯ and in particular that But
we chose
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Fig. 3.3. Showing is open.

and hence ( ) = ( 0 ) The set ( 0 ) is a finite
union of closed sets and hence closed. Therefore, ( ) is closed and
by Item (1) it follows that is closed as well.

Definition 3.31. Suppose that U is an open cover of 0 A collection
{ } =1 ( [0 1]) ( = is allowed here) is a partition of unity on
0 subordinate to the cover U if:
1. for all there is a U such that supp( )
2. the collection of sets, {supp( )} =1 is locally finite on 0 and
3.
P

=1 = 1 on 0 (Notice by (2), that for each 0 there is a
neighborhood such that | is not identically zero for only a finite
number of terms. So the sum is well defined and we say the sum is locally
finite.)

Proposition 3.32 (Partitions of Unity: The Compact Case). Suppose
that is a locally compact Hausdor space, is a compact set and
U = { } =1 is an open cover of Then there exists a partition of unity
{ } =1 of such that for all = 1 2

Proof. For all choose a precompact open neighborhood, of
such that Since is compact, there exists a finite subset, of
such that

S

Let

=
©

¯ : and
ª

Then is compact, for all and =1 By Urysohn’s
Lemma 3.22 there exists such that = 1 on We will now give
two methods to finish the proof.
Method 1. Let 1 = 1 2 = 2(1 1) = 2(1 1)

3 = 3(1 1 2) = 3(1 1 (1 1) 2) = 3(1 1)(1 2)
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and continue on inductively to define

= (1 1 · · · 1) = ·
1

Y

=1

(1 ) = 2 3 (3.5)

and to show

(1 1 · · · ) =
Y

=1

(1 ) (3.6)

From these equations it clearly follows that ( [0 1]) and that
supp( ) supp( ) i.e. Since

Q

=1(1 ) = 0 on
P

=1 = 1 on and { } =1 is the desired partition of unity.

Method 2. Let :=
P

=1
( ) Then 1 on and hence

{ 1
2} Choose ( [0 1]) such that = 1 on and supp( )

{ 1
2} and define 0 1 Then 0 = 0 on 0 = 1 if 1

2 and
therefore,

0 + 1 + · · ·+ = 0 + 0

on The desired partition of unity may be constructed as

( ) =
( )

0( ) + · · ·+ ( )

Indeed supp ( ) = supp ( ) ( [0 1]) and on

1 + · · ·+ =
1 + · · ·+

0 + 1 + · · ·+ =
1 + · · ·+
1 + · · ·+ = 1

Proposition 3.33. Let ( ) be a locally compact and — compact Hausdor
space. Suppose that U is an open cover of Then we may construct two
locally finite open covers V = { } =1 and W = { } =1 of ( = is
allowed here) such that:

1. ¯ ¯ and ¯ is compact for all
2. For each there exist U such that ¯

Proof. By Remark 3.17, there exists an open cover of G = { } =1

of such that ¯
+1 Then = =1(

¯ \ ¯ 1) where
by convention 1 = 0 = For the moment fix 1 For each
¯ \ 1 let U be chosen so that and by Proposition 3.19
choose an open neighborhood of such that ¯ ( +1 \ ¯ 2) see
Figure 3.4 below. Since { } ¯ \ 1

is an open cover of the compact set
¯ \ 1 there exist a finite subset { } ¯ \ 1

which also covers
¯ \ 1 By construction, for each there is a U such that
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Fig. 3.4. Constructing the { } =1

¯ ( +1 \ ¯ 2) Apply Proposition 3.19 one more time to find, for
each an open set such that ¯ ¯ ( +1 \ ¯ 2)
We now choose and enumeration { } =1 of the countable open cover
=1 of and define = Then the collection { } =1 and { } =1

are easily checked to satisfy all the conclusions of the proposition. In particular
notice that for each that the set of ’s such that 6= is finite.

Theorem 3.34 (Partitions of Unity in locally and — compact
spaces). Let ( ) be a locally compact and — compact Hausdor space
and U be an open cover of Then there exists a partition of unity of
{ } =1 ( = is allowed here) subordinate to the cover U such that supp( )
is compact for all

Proof. Let V = { } =1 and W = { } =1 be open covers of with the
properties described in Proposition 3.33. By Urysohn’s Lemma 3.22, there
exists such that = 1 on ¯ for each
As in the proof of Proposition 3.32 there are two methods to finish the

proof.
Method 1. Define 1 = 1 by Eq. (3.5) for all other Then as in Eq.

(3.6)

1
X

=1

=
Y

=1

(1 ) = 0

since for ( ) = 1 for some As in the proof of Proposition 3.32, it
is easily checked that { } =1 is the desired partition of unity.
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Method 2. Let
P

=1 a locally finite sum, so that ( )
Since { } =1 is a cover of 1 on so that 1 ( )) as well. The
functions for = 1 2 give the desired partition of unity.

Corollary 3.35. Let ( ) be a locally compact and — compact Hausdor
space and U = { } be an open cover of Then there exists a
partition of unity of { } subordinate to the cover U such that supp( )

for all (Notice that we do not assert that has compact support.
However if ¯ is compact then supp( ) will be compact.)

Proof. By the — compactness of we may choose a countable subset,
{ } ( = allowed here), of such that { } is still an
open cover of Let { } be a partition of unity subordinate to the
cover { } as in Theorem 3.34. Define ˜ { : supp( ) } and
:= ˜ \

³

1
=1
˜
´

, where by convention 0̃ = Then

{ N : }=
[

=1

˜ =
a

=1

If = let 0 otherwise let :=
P

a locally finite sum. Then
P

=1 =
P

=1 = 1 and the sum
P

=1 is still locally finite. (Why?)
Now for = { } =1 let := and for { } =1 let 0 Since

{ 6= 0} = { 6= 0} supp( )

and, by Item 2. of Lemma 3.30, supp( ) is closed, we see that

supp( ) = { 6= 0} supp( )

Therefore { } is the desired partition of unity.

Corollary 3.36. Let ( ) be a locally compact and — compact Haus-
dor space and be disjoint closed subsets of Then there exists

( [0 1]) such that = 1 on and = 0 on In fact can be
chosen so that supp( )

Proof. Let 1 = and 2 = then { 1 2} is an open cover of
By Corollary 3.35 there exists 1 2 ( [0 1]) such that supp( )
for = 1 2 and 1 + 2 = 1 on The function = 2 satisfies the desired
properties.

3.3 C0(X) and the Alexanderov Compactification

Definition 3.37. Let ( ) be a topological space. A continuous function :
C is said to vanish at infinity if {| | } is compact in for all
0 The functions, ( ) vanishing at infinity will be denoted by

0( )
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Proposition 3.38. Let be a topological space, ( ) be the space of
bounded continuous functions on with the supremum norm topology. Then

1. 0( ) is a closed subspace of ( )
2. If we further assume that is a locally compact Hausdor space, then

0( ) = ( )

Proof.

1. If 0( ) 1 := {| | 1} is a compact subset of and there-
fore ( 1) is a compact and hence bounded subset of C and so :=
sup

1
| ( )| Therefore k k 1 showing ( )

Now suppose 0( ) and in ( ) Let 0 be given and
choose su ciently large so that k k 2 Since

| | | |+ | | | |+ k k | |+ 2

{| | } {| |+ 2 } = {| | 2}
Because {| | } is a closed subset of the compact set {| | 2}
{| | } is compact and we have shown 0( )

2. Since 0( ) is a closed subspace of ( ) and ( ) 0( ) we
always have ( ) 0( ) Now suppose that 0( ) and let
{| | 1 } @@ By Lemma 3.22 we may choose ( [0 1]) such
that 1 on Define ( ) Then

k k = k(1 ) k 1
0 as

This shows that ( )

Proposition 3.39 (Alexanderov Compactification). Suppose that ( )
is a non-compact locally compact Hausdor space. Let = { } where
{ } is a new symbol not in The collection of sets,

= { \ : @@ } P( )

is a topology on and ( ) is a compact Hausdor space. Moreover
( ) extends continuously to i = + with 0( ) and C

in which case the extension is given by ( ) =

Proof. 1. ( is a topology.) Let F := { : \ } i.e.
F i is a compact subset of or = 0 { } with 0 being a closed

subset of Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of are closed and closed subsets of compact
subsets of are compact, it is also easily checked that F is closed under
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arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence is a topology.
2. (( ) is a Hausdor space.) It su ces to show any point

can be separated from To do this use Proposition 3.19 to find an open
precompact neighborhood, of Then and := \ ¯ are disjoint open
subsets of such that and
3. (( ) is compact.) Suppose that U is an open cover of

Since U covers there exists a compact set such that \ U
Clearly is covered by U0 := { \ { } : U} and by the definition of
(or using ( ) is Hausdor ), U0 is an open cover of In particular U0 is
an open cover of and since is compact there exists U such that

{ \ { } : } It is now easily checked that { \ } U
is a finite subcover of
4. (Continuous functions on ( ) statements.) Let : be the

inclusion map. Then is continuous and open, i.e. ( ) is open in for all
open in If ( ) then = | ( ) = ( ) is continuous

on Moreover, for all 0 there exists an open neighborhood of
such that

| ( )| = | ( ) ( )| for all

Since is an open neighborhood of there exists a compact subset,
such that = \ By the previous equation we see that

{ : | ( )| } so {| | } is compact and we have shown van-
ishes at
Conversely if 0( ) extend to by setting ( ) = 0 Given
0 the set = {| | } is compact, hence \ is open in Since

( \ ) ( ) we have shown that is continuous at Since is also
continuous at all points in it follows that is continuous on Now it
= + with C and 0( ) it follows by what we just proved that

defining ( ) = extends to a continuous function on

3.4 More on Separation Axioms: Normal Spaces

(The reader may skip to Definition 3.42 if he/she wishes. The following ma-
terial will not be used in the rest of the book.)

Definition 3.40 ( 0 — 2 Separation Axioms). Let ( ) be a topological
space. The topology is said to be:

1. 0 if for 6= in there exists such that and or
such that but

2. 1 if for every with 6= there exists such that
and Equivalently, is 1 i all one point subsets of are closed.3

3 If one point subsets are closed and 6= in then := { } is an open set
containing but not Conversely if is 1 and there exists such
that and for all 6= Therefore, { } = 6=
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3. 2 if it is Hausdor .

Note 2 implies 1 which implies 0 The topology in Example 3.3 is 0

but not 1 If is a finite set and is a 1 — topology on then = 2 To
prove this let be fixed. Then for every 6= in there exists
such that while Thus { } = 6= showing contains
all one point subsets of and therefore all subsets of So we have to look
to infinite sets for an example of 1 topology which is not 2

Example 3.41. Let be any infinite set and let = { : #( ) }
{ } — the so called cofinite topology. This topology is 1 because if 6= in
then = { } with while This topology however is not

2 Indeed if are open sets such that and =
then But this implies #( ) which is impossible unless =
which is impossible since

The uniqueness of limits of sequences which occurs for Hausdor topologies
(see Remark 3.5) need not occur for 1 — spaces. For example, let = N and
be the cofinite topology on as in Example 3.41. Then = is a sequence

in such that as for all N For the most part we will
avoid these pathologies in the future by only considering Hausdor topologies.

Definition 3.42 (Normal Spaces: 4 — Separation Axiom). A topologi-
cal space ( ) is said to be normal or 4 if:

1. is Hausdor and
2. if for any two closed disjoint subsets there exists disjoint open
sets such that and

Example 3.43. By Lemma 3.1 and Corollary 3.36 it follows that metric space
and locally compact and — compact Hausdor space (in particular compact
Hausdor spaces) are normal. Indeed, in each case if are disjoint closed
subsets of there exists ( [0 1]) such that = 1 on and = 0 on
Now let =

©

1
2

ª

and = { 1
2}

Remark 3.44. A topological space, ( ) is normal i for any
with being closed and being open there exists an open set such
that

¯

To prove this first suppose is normal. Since is closed and =
there exists disjoint open sets and such that and
Therefore and since is closed, ¯

For the converse direction suppose and are disjoint closed subsets of
Then and is open, and so by assumption there exists

such that ¯ and by the same token there exists such
that ¯ ¯ Taking complements of the last expression implies
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¯ ¯

Let = ¯ Then and =

Theorem 3.45 (Urysohn’s Lemma for Normal Spaces). Let be a
normal space. Assume are disjoint closed subsets of . Then there
exists ( [0 1]) such that = 0 on and = 1 on

Proof. To make the notation match Lemma 3.22, let = and =
Then and it su ces to produce a function ( [0 1]) such that
= 1 on and supp( ) The proof is now identical to that for Lemma

3.22 except we now use Remark 3.44 in place of Proposition 3.19.

Theorem 3.46 (Tietze Extension Theorem). Let ( ) be a normal
space, be a closed subset of and ( [ ])
Then there exists ( [ ]) such that | =

Proof. The proof is identical to that of Theorem 3.2 except we now use
Theorem 3.45 in place of Lemma 3.1.

Corollary 3.47. Suppose that is a normal topological space, is
closed, ( R) Then there exists ( ) such that | =

Proof. Let = arctan( ) ( ( 2 2 )) Then by the Tietze ex-
tension theorem, there exists ( [ 2 2 ]) such that | = Let

1({ 2 2 }) @ then = By Urysohn’s lemma (Theo-
rem 3.45) there exists ( [0 1]) such that 1 on and = 0
on and in particular ( ( 2 2 )) and ( ) | = The function

tan( ) ( ) is an extension of

Theorem 3.48 (Urysohn Metrization Theorem). Every second count-
able normal space, ( ) is metrizable, i.e. there is a metric on such
that = Moreover, may be chosen so that is isometric to a subset
0 equipped with the metric in Eq. (3.4). In this metric is totally

bounded and hence the completion of (which is isometric to ¯
0 ) is

compact.

Proof. Let B be a countable base for and set

{( ) B × B | ¯ }
To each and there exist ( ) such that
Indeed, since B is a basis for there exists B such that
Because { } = there exists disjoint open sets e and such that e

and e = Choose B such that e Since
e and hence ( ) See Figure 3.5 below. In

particular this shows that { B : ( ) for some B} is still a base
for
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Fig. 3.5. Constructing ( )

If is a finite set, the previous comment shows that only has a finite
number of elements as well. Since ( ) is Hausdor , it follows that is a
finite set. Letting { } =1 be an enumeration of define : by
( ) = for = 1 2 where = (0 0 0 1 0 ) with the
1 ocurring in the th spot. Then ( ) := ( ( ) ( )) for is
the desired metric. So we may now assume that is an infinite set and let
{( )} =1 be an enumeration of
By Urysohn’s Lemma (Theorem 3.45) there exists ( [0 1]) such

that = 0 on ¯ and = 1 on . Let F { | ( ) } and
set := — an enumeration of F We will now show that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on The proof will involve a number of steps.

1. ( is a metric on ) It is routine to show satisfies the triangle inequal-
ity and is symmetric. If are distinct points then there exists
( 0 0) such that 0 and 0 := { } Since 0( ) = 0
and

0
( ) = 1 it follows that ( ) 2 0 0

2. (Let 0 = ( : N) then = 0 = ) As usual we have 0

Since, for each ( ) is 0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that ( ) :=
{ : ( ) } 0 for all and 0 Thus 0

Suppose that and Let (
0 0) be such that 0

and 0 Then 0( ) = 0 and 0 = 1 on Therefore if and

0( ) 1 then so { 0 1} This shows that may be
written as a union of elements from 0 and therefore 0 So 0 and
hence = 0 Moreover, if (2 0) then 2 0 ( ) 2 0

0( )
and therefore (2 0) { 0 1} This shows is — open
and hence 0
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3. ( is isometric to some 0 ) Let : be defined by ( ) =
( 1( ) 2( ) ( ) ) Then is an isometry by the very definitions
of and and therefore is isometric to 0 := ( ) Since 0 is a subset
of the compact metric space ( ) 0 is totally bounded and therefore
is totally bounded.

3.5 Exercises

Exercise 3.49. Let ( ) be a topological space, : be
the inclusion map and := 1( ) be the relative topology on Verify
= { : } and show is closed in ( ) i there exists

a closed set such that = (If you get stuck, see the remarks
after Definition 2.22 where this has already been proved.)

Exercise 3.50. Let ( ) and ( 0) be a topological spaces, : be
a function, U be an open cover of and { } =1 be a finite cover of by
closed sets.

1. If is any set and : is ( 0) — continuous then | :
is ( 0) — continuous.

2. Show : is ( 0) — continuous i | : is ( 0) —
continuous for all U

3. Show : is ( 0) — continuous i | : is ( 0) —
continuous for all = 1 2

4. (A baby form of the Tietze extension Theorem.) Suppose and
: C is a continuous function such supp( ) then : C

defined by

( ) =

½

( ) if
0 otherwise

is continuous.

Exercise 3.51. Prove Theorem 3.24. Hints:

1. By Proposition 3.19, there exists a precompact open set such that
¯ Now suppose that : [0 ] is continuous with

(0 1] and let := 1([0 1
3 ]) and := 1([23 1]) Appeal to

Lemma 3.22 to find a function ( [0 3]) such that = 3 on
and supp( ) \

2. Now follow the argument in the proof of Theorem 3.2 to construct
( [ ]) such that | =

3. For [ ] choose such that = 1 on and replace by
:= + (1 )
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Exercise 3.52 (Sterographic Projection). Let = R := { }
be the one point compactification of := { R +1 : | | = 1} be the
unit sphere in R +1 and = (0 0 1) R +1 Define : by
( ) = and for \ { } let ( ) = R be the unique point such
that ( 0) is on the line containing and see Figure 3.6 below. Find a
formula for and show : is a homeomorphism. (So the one point
compactification of R is homeomorphic to the sphere.)

N

-N

(b,0)

z

1

y

Fig. 3.6. Sterographic projection and the one point compactification of R

Exercise 3.53. Let ( ) be a locally compact Hausdor space. Show ( )
is separable i ( ) is separable.

Exercise 3.54. Show by example that there exists a locally compact metric
space ( ) such that the one point compactification, ( := { } )
is not metrizable. Hint: use exercise 3.53.

Exercise 3.55. Suppose ( ) is a locally compact and — compact metric
space. Show the one point compactification, ( := { } ) is metriz-
able.
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The Riemann Integral and Ordinary
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.
For the remainder of the chapter, let [ ] be a fixed compact interval and
be a Banach space. The collection S = S([ ] ) of step functions,
: [ ] consists of those functions which may be written in the form

( ) = 01[ 1]( ) +
1

X

=1

1( +1]( ) (4.1)

where { = 0 1 · · · = } is a partition of [ ] and
For as in Eq. (4.1), let

( )
1

X

=0

( +1 ) (4.2)

Exercise 4.1. Show that ( ) is well defined, independent of how is repre-
sented as a step function. (Hint: show that adding a point to a partition of
[ ] does not change the right side of Eq. (4.2).) Also verify that : S
is a linear operator.

Proposition 4.2 (Riemann Integral). The linear function : S
extends uniquely to a continuous linear operator ¯ from S̄ (the closure of the
step functions inside of ([ ] )) to and this operator satisfies,

k (̄ )k ( ) k k for all S̄ (4.3)

Furthermore, ([ ] ) S̄ ([ ] ) and for (̄ ) may be com-
puted as

(̄ ) = lim
| | 0

1
X

=0

( )( +1 ) (4.4)
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where { = 0 1 · · · = } denotes a partition of [ ]
| | = max {| +1 | : = 0 1} is the mesh size of and may be
chosen arbitrarily inside [ +1]

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality
shows,

k ( )k
1

X

=0

( +1 )k k
1

X

=0

( +1 )k k ( )k k (4.5)

The existence of ¯ satisfying Eq. (4.3) is a consequence of Theorem 2.68.
For ([ ] ) { = 0 1 · · · = } a partition of [ ]

and [ +1] for = 0 1 2 1 let

( ) ( 0)01[ 0 1]( ) +
1

X

=1

( )1( +1]( )

Then ( ) =
P 1

=0 ( )( +1 ) so to finish the proof of Eq. (4.4) and that
([ ] ) S̄ it su ces to observe that lim| | 0 k k = 0 because

is uniformly continuous on [ ]
If S and S̄ such that lim k k = 0 then for

then 1[ ] S and lim °

°1[ ] 1[ ]

°

° = 0 This shows
1[ ] S̄ whenever S̄
Notation 4.3 For S̄ and we will write denote (̄1[ ] )

by
R

( ) or
R

[ ]
( ) Also following the usual convention, if

we will let

Z

( ) = (̄1[ ] ) =

Z

( )

The next Lemma, whose proof is left to the reader (Exercise 4.13) contains
some of the many familiar properties of the Riemann integral.

Lemma 4.4. For S̄([ ] ) and [ ], the Riemann integral
satisfies:

1.
°

°

°

R

( )
°

°

°
( ) sup {k ( )k : }

2.
R

( ) =
R

( ) +
R

( )

3. The function ( ) :=
R

( ) is continuous on [ ]
4. If is another Banach space and ( ) then S̄([ ] )
and

Ã

Z

( )

!

=

Z

( )
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5. The function k ( )k is in S̄([ ] R) and
°

°

°

°

°

Z

( )

°

°

°

°

°

Z

k ( )k

6. If S̄([ ] R) and then

Z

( )

Z

( )

Theorem 4.5 (Baby Fubini Theorem). Let R and ( )
be a continuous function of ( ) for between and and between and
Then the maps

R

( ) and
R

( ) are continuous and

Z

"

Z

( )

#

=

Z

"

Z

( )

#

(4.6)

Proof. With out loss of generality we may assume and By
uniform continuity of Exercise 2.79,

sup k ( ) ( 0 )k 0 as 0

and so by Lemma 4.4

Z

( )

Z

( 0 ) as 0

showing the continuity of
R

( ) The other continuity assertion is
proved similarly.
Now let

= { 0 1 · · · = } and 0 = { 0 1 · · · = }
be partitions of [ ] and [ ] respectively. For [ ] let = if
( +1] and 1 and = 0 = if [ 0 1] Define 0 for [ ]
analogously. Then

Z

"

Z

( )

#

=

Z

"

Z

( 0)

#

+

Z

0( )

=

Z

"

Z

( 0)

#

+ 0 +

Z

0( )

where

0( ) =

Z

( )

Z

( 0)
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and

0 =

Z

"

Z

{ ( 0) ( 0)}
#

The uniform continuity of and the estimates

sup
[ ]

k 0( )k sup
[ ]

Z

k ( ) ( 0)k

( ) sup {k ( ) ( 0)k : ( ) }
and

k 0k
Z

"

Z

k ( 0) ( 0)k
#

( )( ) sup {k ( ) ( 0)k : ( ) }
allow us to conclude that
Z

"

Z

( )

#

Z

"

Z

( 0)

#

0 as | |+ | 0| 0

By symmetry (or an analogous argument),

Z

"

Z

( )

#

Z

"

Z

( 0)

#

0 as | |+ | 0| 0

This completes the proof since

Z

"

Z

( 0)

#

=
X

0 0

( )( +1 )( +1 )

=

Z

"

Z

( 0)

#

4.0.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results.

Definition 4.6. Let ( ) R A function : ( ) is di erentiable
at ( ) i := lim 0

( + ) ( ) exists in The limit if it exists,
will be denoted by ˙( ) or ( ) We also say that 1(( ) ) if is
di erentiable at all points ( ) and ˙ (( ) )
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Proposition 4.7. Suppose that : [ ] is a continuous function such
that ˙( ) exists and is equal to zero for ( ) Then is constant.

Proof. Let 0 and ( ) be given. (We will later let 0 and
) By the definition of the derivative, for all ( ) there exists 0

such that

k ( ) ( )k =
°

°

°
( ) ( ) ˙( )( )

°

°

°
| | if | |

(4.7)
Let

= { [ ] : k ( ) ( )k ( )} (4.8)

and 0 be the least upper bound for We will now use a standard argument
called continuous induction to show 0 =
Eq. (4.7) with = shows 0 and a simple continuity argument shows

0 i.e.
k ( 0) ( )k ( 0 ) (4.9)

For the sake of contradiction, suppose that 0 By Eqs. (4.7) and (4.9),

k ( ) ( )k k ( ) ( 0)k+ k ( 0) ( )k
( 0 ) + ( 0) = ( )

for 0 0 0
which violates the definition of 0 being an upper bound.

Thus we have shown Eq. (4.8) holds for all [ ] Since 0 and
were arbitrary we may conclude, using the continuity of that k ( ) ( )k =
0 for all [ ]

Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem
is not available to vector valued functions. However with the aid of the Hahn
Banach Theorem 28.16 and Lemma 4.4, it is possible to reduce the proof of
Proposition 4.7 and the proof of the Fundamental Theorem of Calculus 4.9 to
the real valued case, see Exercise 28.50.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that
([ ] ) Then

1.
R

( ) = ( ) for all ( )
2. Now assume that ([ ] ) is continuously di erentiable on
( ) and ˙ extends to a continuous function on [ ] which is still de-
noted by ˙ Then

Z

˙ ( ) = ( ) ( )
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Proof. Let 0 be a small number and consider

k
Z +

( )

Z

( ) ( ) k = k
Z +

( ( ) ( )) k
Z +

k( ( ) ( ))k
( )

where ( ) max [ + ] k( ( ) ( ))k Combining this with a similar com-
putation when 0 shows, for all R su ciently small, that

k
Z +

( )

Z

( ) ( ) k | | ( )

where now ( ) max [ | | +| |] k( ( ) ( ))k By continuity of at

( ) 0 and hence
R

( ) exists and is equal to ( )

For the second item, set ( )
R

˙ ( ) ( ) Then is continuous
by Lemma 4.4 and ˙ ( ) = 0 for all ( ) by item 1. An application of
Proposition 4.7 shows is a constant and in particular ( ) = ( ) i.e.
R

˙ ( ) ( ) = ( )

Corollary 4.10 (Mean Value Inequality). Suppose that : [ ] is
a continuous function such that ˙( ) exists for ( ) and ˙ extends to a
continuous function on [ ] Then

k ( ) ( )k
Z

k ˙( )k ( ) ·
°

°

°

˙
°

°

°
(4.10)

Proof. By the fundamental theorem of calculus, ( ) ( ) =
R

˙( )
and then by Lemma 4.4,

k ( ) ( )k =
°

°

°

°

°

Z

˙( )

°

°

°

°

°

Z

k ˙( )k
Z

°

°

°

˙
°

°

°
= ( ) ·

°

°

°

˙
°

°

°

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let =
( ) × ( ) be an open rectangle in R2 and ( ) Assume that

( ) ( ) and ( ) exists and are continuous for ( )

then ( ) exists for ( ) and

( ) = ( ) for ( ) (4.11)
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Proof. Fix ( 0 0) By two applications of Theorem 4.9,

( ) = ( 0 ) +

Z

0

( )

= ( 0 ) +

Z

0

( 0) +

Z

0

Z

0

( ) (4.12)

and then by Fubini’s Theorem 4.5 we learn

( ) = ( 0 ) +

Z

0

( 0) +

Z

0

Z

0

( )

Di erentiating this equation in and then in (again using two more appli-
cations of Theorem 4.9) shows Eq. (4.11) holds.

4.0.2 Exercises

Exercise 4.12. Let ([ ] ) { : [ ] : k k sup [ ] k ( )k
} Show that ( ([ ] ) k · k ) is a complete Banach space.

Exercise 4.13. Prove Lemma 4.4.

Exercise 4.14. Using Lemma 4.4, show = ( 1 ) S̄([ ] R ) i
S̄([ ] R) for = 1 2 and

Z

( ) =

Ã

Z

1( )

Z

( )

!

Exercise 4.15. Give another proof of Proposition 4.11 which does not use
Fubini’s Theorem 4.5 as follows.

1. By a simple translation argument we may assume (0 0) and we are
trying to prove Eq. (4.11) holds at ( ) = (0 0)

2. Let ( ) := ( ) and

( ) :=

Z

0

Z

0

( )

so that Eq. (4.12) states

( ) = (0 ) +

Z

0

( 0) + ( )

and di erentiating this equation at = 0 shows

( 0) = (0 0) + ( 0) (4.13)
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Now show using the definition of the derivative that

( 0) =

Z

0

( 0) (4.14)

Hint: Consider

( )

Z

0

( 0) =

Z

0

Z

0

[ ( ) ( 0)]

3. Now di erentiate Eq. (4.13) in using Theorem 4.9 to finish the proof.

Exercise 4.16. Give another proof of Eq. (4.6) in Theorem 4.5 based on
Proposition 4.11. To do this let 0 ( ) and 0 ( ) and define

( ) :=

Z

0

Z

0

( )

Show satisfies the hypothesis of Proposition 4.11 which combined with two
applications of the fundamental theorem of calculus implies

( ) = ( ) = ( )

Use two more applications of the fundamental theorem of calculus along with
the observation that = 0 if = 0 or = 0 to conclude

( ) =

Z

0

Z

0

( ) =

Z

0

Z

0

( ) (4.15)

Finally let = and = in Eq. (4.15) and then let 0 and 0 to
prove Eq. (4.6).

4.1 More Examples of Bounded Operators

In the examples to follow all integrals are the standard Riemann integrals,
see Section 4 below for the definition and the basic properties of the Riemann
integral.

Example 4.17. Suppose that : [0 1] × [0 1] C is a continuous function.
For ([0 1]) let

( ) =

Z 1

0

( ) ( )

Since
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| ( ) ( )|
Z 1

0

| ( ) ( )| | ( )|
k k max | ( ) ( )| (4.16)

and the latter expression tends to 0 as by uniform continuity of
Therefore ([0 1]) and by the linearity of the Riemann integral, :
([0 1]) ([0 1]) is a linear map. Moreover,

| ( )|
Z 1

0

| ( )| | ( )|
Z 1

0

| ( )| · k k k k

where

:= sup
[0 1]

Z 1

0

| ( )| (4.17)

This shows k k and therefore is bounded. We may in fact
show k k = To do this let 0 [0 1] be such that

sup
[0 1]

Z 1

0

| ( )| =

Z 1

0

| ( 0 )|

Such an 0 can be found since, using a similar argument to that in Eq. (4.16),
R 1

0
| ( )| is continuous. Given 0 let

( ) :=
( 0 )

q

+ | ( 0 )|2

and notice that lim 0 k k = 1 and

k k | ( 0)| = ( 0) =

Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2

Therefore,

k k lim
0

1

k k
Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2

= lim
0

Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2
=

since
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0 | ( 0 )| | ( 0 )|2
q

+ | ( 0 )|2

=
| ( 0 )|

q

+ | ( 0 )|2
·

q

+ | ( 0 )|2 | ( 0 )|
¸

q

+ | ( 0 )|2 | ( 0 )|
and the latter expression tends to zero uniformly in as 0
We may also consider other norms on ([0 1]) Let (for now) 1 ([0 1])

denote ([0 1]) with the norm

k k1 =
Z 1

0

| ( )|

then : 1 ([0 1] ) ([0 1]) is bounded as well. Indeed, let =
sup {| ( )| : [0 1]} then

|( )( )|
Z 1

0

| ( ) ( )| k k1

which shows k k k k1 and hence,
k k 1 max {| ( )| : [0 1]}

We can in fact show that k k = as follows. Let ( 0 0) [0 1]2 satisfying
| ( 0 0)| = Then given 0 there exists a neighborhood = ×
of ( 0 0) such that | ( ) ( 0 0)| for all ( ) Let
( [0 )) such that

R 1

0
( ) = 1 Choose C such that | | = 1 and

( 0 0) = then

|( )( 0)| =
¯

¯

¯

¯

Z 1

0

( 0 ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

( 0 ) ( )

¯

¯

¯

¯

Re

Z

( 0 ) ( )

Z

( ) ( ) = ( ) k k 1

and hence
k k ( ) k k 1

showing that k k Since 0 is arbitrary, we learn that k k
and hence k k =
One may also view as a map from : ([0 1]) 1([0 1]) in which

case one may show

k k 1

Z 1

0

max | ( )|
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4.2 Inverting Elements in L(X) and Linear ODE

Definition 4.18. A linear map : is an isometry if k k = k k
for all is said to be invertible if is a bijection and 1 is bounded.

Notation 4.19 We will write ( ) for those ( ) which are
invertible. If = we simply write ( ) and ( ) for ( ) and
( ) respectively.

Proposition 4.20. Suppose is a Banach space and ( ) ( )

satisfies
P

=0
k k Then is invertible and

( ) 1 = “
1

” =
X

=0

and
°

°( ) 1
°

°

X

=0

k k

In particular if k k 1 then the above formula holds and

°

°( ) 1
°

°

1

1 k k

Proof. Since ( ) is a Banach space and
P

=0
k k it follows from

Theorem 2.67 that

:= lim := lim
X

=0

exists in ( ) Moreover, by Exercise 2.119 below,

( ) = ( ) lim = lim ( )

= lim ( )
X

=0

= lim ( +1) =

and similarly ( ) = This shows that ( ) 1 exists and is equal to
Moreover, ( ) 1 is bounded because

°

°( ) 1
°

° = k k
X

=0

k k

If we further assume k k 1 then k k k k and

X

=0

k k
X

=0

k k 1

1 k k
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Corollary 4.21. Let and be Banach spaces. Then ( ) is an open
(possibly empty) subset of ( ) More specifically, if ( ) and

( ) satisfies
k k k 1k 1 (4.18)

then ( )

1 =
X

=0

£

1
¤

1 ( ) (4.19)

and
°

°

1
°

° k 1k 1

1 k 1k k k
Proof. Let and be as above, then

= ( ) =
£

1( ))
¤

= ( )

where : is given by

:= 1( ) = 1

Now

k k = °° 1( ))
°

° k 1k k k k 1kk 1k 1 = 1

Therefore is invertible and hence so is (being the product of invertible
elements) with

1 = ( ) 1 1 =
£

1( ))
¤ 1 1

For the last assertion we have,

°

°

1
°

°

°

°( ) 1
°

° k 1k k 1k 1

1 k k
k 1k 1

1 k 1k k k

For an application of these results to linear ordinary di erential equations,
see Section 6.2.
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Hölder Spaces

Notation 5.1 Let be an open subset of R ( ) and ( ¯) be the
bounded continuous functions on and ¯ respectively. By identifying

( ¯) with | ( ) we will consider ( ¯) as a subset of ( )
For ( ) and 0 1 let

k k := sup | ( )| and [ ] := sup

6=

½ | ( ) ( )|
| |

¾

If [ ] then is Hölder continuous with holder exponent1 The
collection of — Hölder continuous function on will be denoted by

0 ( ) := { ( ) : [ ] }
and for 0 ( ) let

k k 0 ( ) := k k + [ ] (5.1)

Remark 5.2. If : C and [ ] for some 1 then is constant
on each connected component of Indeed, if and R then

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

[ ] 0 as 0

which shows ( ) = 0 for all If is in the same connected
component as then by Exercise 2.129 there exists a smooth curve : [0 1]
such that (0) = and (1) = So by the fundamental theorem of calculus

and the chain rule,

( ) ( ) =

Z 1

0

( ( )) =

Z 1

0

0 = 0

This is why we do not talk about Hölder spaces with Hölder exponents larger
than 1
1 If = 1 is is said to be Lipschitz continuous.
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Lemma 5.3. Suppose 1( ) ( ) and ( ) for =
1 2 then 0 1( ) i.e. [ ]1

The proof of this lemma is left to the reader as Exercise 5.15.

Theorem 5.4. Let be an open subset of R Then

1. Under the identification of
¡

¯
¢

with | ( ) ( ¯) is a
closed subspace of ( )

2. Every element 0 ( ) has a unique extension to a continuous func-
tion (still denoted by ) on ¯ Therefore we may identify 0 ( ) with
0 ( ¯) ( ¯) (In particular we may consider 0 ( ) and 0 ( ¯)

to be the same when 0 )
3. The function 0 ( ) k k 0 ( ) [0 ) is a norm on 0 ( )

which make 0 ( ) into a Banach space.

Proof. 1. The first item is trivial since for ( ¯) the sup-norm of
on ¯ agrees with the sup-norm on and ( ¯) is complete in this norm.
2. Suppose that [ ] and 0 Let { } =1 be a sequence

such that 0 = lim Then

| ( ) ( )| [ ] | | 0 as

showing { ( )} =1 is Cauchy so that ¯( 0) := lim ( ) exists. If
{ } =1 is another sequence converging to 0 then

| ( ) ( )| [ ] | | 0 as

showing ¯( 0) is well defined. In this way we define ¯( ) for all and
let ¯( ) = ( ) for Since a similar limiting argument shows

|¯( ) ¯( )| [ ] | | for all ¯

it follows that ¯ is still continuous and [¯] = [ ] In the sequel we will abuse
notation and simply denote ¯ by
3. For 0 ( )

[ + ] = sup

6=

½ | ( ) + ( ) ( ) ( )|
| |

¾

sup

6=

½ | ( ) ( )|+ | ( ) ( )|
| |

¾

[ ] + [ ]

and for C it is easily seen that [ ] = | | [ ] This shows [·] is a semi-
norm on 0 ( ) and therefore k · k 0 ( ) defined in Eq. (5.1) is a norm.
To see that 0 ( ) is complete, let { } =1 be a

0 ( )—Cauchy
sequence. Since ( ¯) is complete, there exists ( ¯) such that
k k 0 as For with 6=
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| ( ) ( )|
| |

= lim
| ( ) ( )|

| |
lim sup[ ] lim k k 0 ( )

and so we see that 0 ( ) Similarly,

| ( ) ( ) ( ( ) ( ))|
| |

= lim
|( )( ) ( )( )|

| |
lim sup[ ] 0 as

showing [ ] 0 as and therefore lim k k 0 ( ) = 0

Notation 5.5 Since and ¯ are locally compact Hausdor spaces, we may
define 0( ) and 0( ¯) as in Definition 3.37. We will also let

0
0 ( ) := 0 ( ) 0( ) and 0

0 ( ¯) := 0 ( ) 0( ¯)

It has already been shown in Proposition 3.38 that 0( ) and 0( ¯) are
closed subspaces of ( ) and ( ¯) respectively. The next proposition
describes the relation between 0( ) and 0( ¯)

Proposition 5.6. Each 0( ) has a unique extension to a continuous
function on ¯ given by ¯ = on and ¯ = 0 on and the extension ¯ is
in 0( ¯) Conversely if 0( ¯) and | = 0 then | 0( ) In this
way we may identify 0( ) with those 0( ¯) such that | = 0

Proof. Any extension 0( ) to an element ¯ ( ¯) is necessarily
unique, since is dense inside ¯ So define ¯ = on and ¯ = 0 on
We must show ¯ is continuous on ¯ and ¯ 0( ¯)
For the continuity assertion it is enough to show ¯ is continuous at all

points in For any 0 by assumption, the set := { : | ( )| }
is a compact subset of Since = ¯ \ = and therefore the
distance, := ( ) between and is positive. So if and

¯ and | | then |¯( ) ¯( )| = | ( )| which shows ¯ : ¯ C
is continuous. This also shows {|¯| } = {| | } = is compact in
and hence also in ¯ Since 0 was arbitrary, this shows ¯ 0( ¯)
Conversely if 0( ¯) such that | = 0 and 0 then :=

©

¯ : | ( )| ª

is a compact subset of ¯ which is contained in since
= Therefore is a compact subset of showing | 0( ¯)

Definition 5.7. Let be an open subset of R N {0} and (0 1]
Let ( ) ( ( ¯)) denote the set of — times continuously di erentiable
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functions on such that ( ) ( ( ¯))2 for all | |
Similarly, let ( ) denote those ( ) such that [ ] for
all | | = For ( ) let

k k ( ) =
X

| |
k k and

k k ( ) =
X

| |
k k +

X

| |=
[ ]

Theorem 5.8. The spaces ( ) and ( ) equipped with k · k ( )

and k·k ( ) respectively are Banach spaces and ( ¯) is a closed subspace
of ( ) and ( ) ( ¯) Also

0 ( ) = 0 ( ¯) = { ( ) : 0( ) | | }
is a closed subspace of ( )

Proof. Suppose that { } =1 ( ) is a Cauchy sequence, then
{ } =1 is a Cauchy sequence in ( ) for | | Since ( ) is
complete, there exists ( ) such that lim k k = 0 for
all | | Letting := 0 we must show ( ) and = for all
| | This will be done by induction on | | If | | = 0 there is nothing to
prove. Suppose that we have verified ( ) and = for all | |
for some Then for {1 2 } and R su ciently small,

( + ) = ( ) +

Z

0

( + )

Letting in this equation gives

( + ) = ( ) +

Z

0
+ ( + )

from which it follows that ( ) exists for all and = +

This completes the induction argument and also the proof that ( ) is
complete.
It is easy to check that ( ¯) is a closed subspace of ( ) and

by using Exercise 5.15 and Theorem 5.4 that that ( ) is a subspace
of ( ¯) The fact that 0 ( ) is a closed subspace of ( ) is a
consequence of Proposition 3.38.
To prove ( ) is complete, let { } =1 ( ) be a k · k ( )

— Cauchy sequence. By the completeness of ( ) just proved, there exists
( ) such that lim k k ( ) = 0 An application of Theorem

2 To say ( ¯) means that ( ) and extends to a continuous
function on ¯
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5.4 then shows lim k k 0 ( ) = 0 for | | = and therefore
lim k k ( ) = 0
The reader is asked to supply the proof of the following lemma.

Lemma 5.9. The following inclusions hold. For any [0 1]

+1 0( ) 1( ) ( )
+1 0( ¯) 1( ¯) ( )

Definition 5.10. Let : be a bounded operator between two (separa-
ble) Banach spaces. Then is compact if [ (0 1)] is precompact in or
equivalently for any { } =1 such that k k 1 for all the sequence
:= has a convergent subsequence.

Example 5.11. Let = 2 = and C such that lim = 0 then
: defined by ( )( ) = ( ) is compact.

Proof. Suppose { } =1
2 such that k k2 =P | ( )|2 1 for all

By Cantor’s Diagonalization argument, there exists { } { } such that, for
each ˜ ( ) = ( ) converges to some ˜( ) C as Since for any

X

=1

|˜( )|2 = lim
X

=1

|˜ ( )|2 1

we may conclude that
P

=1
|˜( )|2 1 i.e. ˜ 2

Let := ˜ and := ˜ We will finish the verification of this example
by showing in 2 as Indeed if = max | | then

k ˜ ˜k2 =
X

=1

| |2 |˜ ( ) ˜( )|2

=
X

=1

| |2|˜ ( ) ˜( )|2 + | |2
X

+1

|˜ ( ) ˜( )|2

X

=1

| |2|˜ ( ) ˜( )|2 + | |2 k˜ ˜k2

X

=1

| |2|˜ ( ) ˜( )|2 + 4| |2

Passing to the limit in this inequality then implies

lim sup k ˜ ˜k2 4| |2 0 as
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Lemma 5.12. If are continuous operators such the either
or is compact then the composition : is also compact.

Proof. If is compact and is bounded, then ( (0 1))
( (0 1)) which is compact since the image of compact sets under con-

tinuous maps are compact. Hence we conclude that ( (0 1)) is compact,
being the closed subset of the compact set ( (0 1))
If is continuous and is compact, then ( (0 1)) is a bounded set

and so by the compactness of ( (0 1)) is a precompact subset of
i.e. is compact.

Proposition 5.13. Let R such that ¯ is compact and 0 1
Then the inclusion map : ( ) ( ) is compact.

Let { } =1 ( ) such that k k 1 i.e. k k 1 and

| ( ) ( )| | | for all

By the Arzela-Ascoli Theorem 2.86, there exists a subsequence of {˜ } =1 of
{ } =1 and ( ¯) such that ˜ in 0 Since

| ( ) ( )| = lim |˜ ( ) ˜ ( )| | |
as well. Define := ˜ then

[ ] + k k 0 = k k 2

and 0 in 0 To finish the proof we must show that 0 in Given
0

[ ] = sup
6=
| ( ) ( )|

| | +

where

= sup

½ | ( ) ( )|
| | : 6= and | |

¾

= sup

½ | ( ) ( )|
| | · | | : 6= and | |

¾

· [ ] 2

and

= sup

½ | ( ) ( )|
| | : | |

¾

2 k k 0 0 as

Therefore,

lim sup [ ] lim sup + lim sup 2 + 0 0 as 0

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 5.16 below.

Theorem 5.14. Let be a precompact open subset of R [0 1] and
N0 If + + then

¡

¯
¢

is compactly contained in
¡

¯
¢
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5.1 Exercises

Exercise 5.15. Prove Lemma 5.3.

Exercise 5.16. Prove Theorem 5.14. Hint: First prove
¡

¯
¢

@@
¡

¯
¢

is compact if 0 1 Then use Lemma 5.12 repeatedly
to handle all of the other cases.
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Ordinary Di erential Equations in a Banach
Space

Let be a Banach space, = ( ) 3 0 and ( × ) —
is to be interpreted as a time dependent vector-field on In this section
we will consider the ordinary di erential equation (ODE for short)

˙( ) = ( ( )) with (0) = (6.1)

The reader should check that any solution 1( ) to Eq. (6.1) gives a
solution ( ) to the integral equation:

( ) = +

Z

0

( ( )) (6.2)

and conversely if ( ) solves Eq. (6.2) then 1( ) and solves
Eq. (6.1).

Remark 6.1. For notational simplicity we have assumed that the initial condi-
tion for the ODE in Eq. (6.1) is taken at = 0 There is no loss in generality
in doing this since if ˜ solves

˜
( ) = ˜( ˜( )) with ˜( 0) =

i ( ) := ˜( + 0) solves Eq. (6.1) with ( ) = ˜( + 0 )

6.1 Examples

Let = R ( ) = with N and consider the ordinary di erential
equation

˙( ) = ( ( )) = ( ) with (0) = R (6.3)

If solves Eq. (6.3) with 6= 0 then ( ) is not zero for near 0 Therefore
up to the first time possibly hits 0 we must have
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=

Z

0

˙( )

( )
=

Z ( )

0

=

[ ( )]1 1

1 if 1

ln
¯

¯

¯

( )
¯

¯

¯
if = 1

and solving these equations for ( ) implies

( ) = ( ) =

(

1 1 ( 1) 1
if 1

if = 1
(6.4)

The reader should verify by direct calculation that ( ) defined above does
indeed solve Eq. (6.3). The above argument shows that these are the only
possible solutions to the Equations in (6.3).
Notice that when = 1 the solution exists for all time while for 1

we must require
1 ( 1) 1 0

or equivalently that

1

(1 ) 1
if 1 0 and

1

(1 ) | | 1 if
1 0

Moreover for 1 ( ) blows up as approaches the value for which
1 ( 1) 1 = 0 The reader should also observe that, at least for and
close to 0

( ( )) = ( + ) (6.5)

for each of the solutions above. Indeed, if = 1 Eq. (6.5) is equivalent to the
well know identity, = + and for 1

( ( )) =
( )

1
p

1 ( 1) ( ) 1

=
1 1 ( 1) 1

1

s

1 ( 1)

·

1 1 ( 1) 1

¸ 1

=
1 1 ( 1) 1

1

q

1 ( 1)
1

1 ( 1) 1

=
1
p

1 ( 1) 1 ( 1) 1

=
1
p

1 ( 1)( + ) 1
= ( + )

Now suppose ( ) = | | with 0 1 and we now consider the
ordinary di erential equation
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˙( ) = ( ( )) = | ( )| with (0) = R (6.6)

Working as above we find, if 6= 0 that

=

Z

0

˙( )

| ( )| =

Z ( )

0

| | =
[ ( )]

1 1

1

where 1 := | |1 sgn( ) Since sgn( ( )) = sgn( ) the previous equation
implies

sgn( )(1 ) = sgn( )
h

sgn( ( )) | ( )|1 sgn( ) | |1
i

= | ( )|1 | |1

and therefore,

( ) = sgn( )
³

| |1 + sgn( )(1 )
´

1
1

(6.7)

is uniquely determined by this formula until the first time where | |1 +
sgn( )(1 ) = 0 As before ( ) = 0 is a solution to Eq. (6.6), however it
is far from being the unique solution. For example letting 0 in Eq. (6.7)
gives a function

( 0+) = ((1 ) )
1

1

which solves Eq. (6.6) for 0 Moreover if we define

( ) :=

½

((1 ) )
1

1 if 0
0 if 0

(for example if = 1 2 then ( ) = 1
4
21 0) then the reader may easily check

also solve Eq. (6.6). Furthermore, ( ) := ( ) also solves Eq. (6.6) for
all 0 see Figure 6.1 below.
With these examples in mind, let us now go to the general theory starting

with linear ODEs.

6.2 Linear Ordinary Di erential Equations

Consider the linear di erential equation

˙( ) = ( ) ( ) where (0) = (6.8)

Here ( ( )) and 1( ) This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for ( ) such that
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86420

10

7.5

5

2.5

0

tt

Fig. 6.1. Three di erent solutions to the ODE ˙( ) = | ( )|1 2 with (0) = 0

( ) = +

Z

0

( ) ( ) (6.9)

In what follows, we will abuse notation and use k·k to denote the operator
norm on ( ) associated to k·k on we will also fix = ( ) 3 0 and let
k k := max k ( )k for ( ) or ( ( ))

Notation 6.2 For R and N let

( ) =

½{( 1 ) R : 0 1 · · · } if 0
{( 1 ) R : · · · 1 0} if 0

and also write = 1 and
Z

( )

( 1 ) : = ( 1) ·1 0

Z

0

Z

0
1

Z

2

0
1 ( 1 )

Lemma 6.3. Suppose that (R R) then

( 1) ·1 0

Z

( )

( 1) ( ) =
1

!

µ
Z

0

( )

¶

(6.10)

Proof. Let ( ) :=
R

0
( ) The proof will go by induction on The

case = 1 is easily verified since

( 1)1·1 0

Z

1( )

( 1) 1 =

Z

0

( ) = ( )

Now assume the truth of Eq. (6.10) for 1 for some 2 then
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( 1)
·1 0

Z

( )

( 1) ( )

=

Z

0

Z

0
1

Z

2

0
1 ( 1) ( )

=

Z

0

1( )

( 1)!
( ) =

Z

0

1( )

( 1)!
˙ ( )

=

Z ( )

0

1

( 1)!
=

( )

!

wherein we made the change of variables, = ( ) in the second to last
equality.

Remark 6.4. Eq. (6.10) is equivalent to

Z

( )

( 1) ( ) =
1

!

Ã

Z

1( )

( )

!

and another way to understand this equality is to view
R

( )
( 1) ( )

as a multiple integral (see Section 9 below) rather than an iterated integral.
Indeed, taking 0 for simplicity and letting be the permutation group
on {1 2 } we have

[0 ] = {( 1 ) R : 0 1 · · · }
with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ( 1) ( ) is invariant under permutations,
we find
µ
Z

0

( )

¶

=

Z

[0 ]

( 1) ( )

=
X

Z

{( 1 ) R :0 1 ··· }
( 1) ( )

=
X

Z

{( 1 ) R :0 1 ··· }
( 11) ( 1 ) s

=
X

Z

{( 1 ) R :0 1 ··· }
( 1) ( ) s

= !

Z

( )

( 1) ( )

Theorem 6.5. Let ( ) then the integral equation

( ) = ( ) +

Z

0

( ) ( ) (6.11)
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has a unique solution given by

( ) = ( ) +
X

=1

( 1) ·1 0

Z

( )

( ) ( 1) ( 1) (6.12)

and this solution satisfies the bound

k k k k
R k ( )k

Proof. Define : ( ) ( ) by

( )( ) =

Z

0

( ) ( )

Then solves Eq. (6.9) i = + or equivalently i ( ) =
An induction argument shows

( )( ) =

Z

0

( )( 1 )( )

=

Z

0

Z

0
1 ( ) ( 1)(

2 )( 1)

...

=

Z

0

Z

0
1

Z

2

0
1 ( ) ( 1) ( 1)

= ( 1) ·1 0

Z

( )

( ) ( 1) ( 1)

Taking norms of this equation and using the triangle inequality along with
Lemma 6.3 gives,

k( )( )k k k ·
Z

( )

k ( )k k ( 1)k

k k · 1
!

Ã

Z

1( )

k ( )k
!

k k · 1
!

µ
Z

k ( )k
¶

Therefore,

k k 1

!

µ
Z

k ( )k
¶

(6.13)

and
X

=0

k k
R k ( )k
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where k·k denotes the operator norm on ( ( )) An application of

Proposition 4.20 now shows ( ) 1 =
P

=0
exists and

°

°( ) 1
°

°

R k ( )k

It is now only a matter of working through the notation to see that these
assertions prove the theorem.

Corollary 6.6. Suppose that ( ) is independent of time, then the so-
lution to

˙( ) = ( ) with (0) =

is given by ( ) = where

=
X

=0
!

(6.14)

Proof. This is a simple consequence of Eq. 6.12 and Lemma 6.3 with
= 1
We also have the following converse to this corollary whose proof is outlined

in Exercise 6.36 below.

Theorem 6.7. Suppose that ( ) for 0 satisfies

1. (Semi-group property.) 0 = and = + for all 0
2. (Norm Continuity) is continuous at 0 i.e. k k ( ) 0 as

0

Then there exists ( ) such that = where is defined in Eq.
(6.14).

6.3 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 6.8. Gronwall’s Lemma. Suppose that and are non-negative
functions of a real variable such that

( ) ( ) +

¯

¯

¯

¯

Z

0

( ) ( )

¯

¯

¯

¯

(6.15)

Then

( ) ( ) +

¯

¯

¯

¯

Z

0

( ) ( ) |
R

( ) |
¯

¯

¯

¯

(6.16)

and in particular if and are constants we find that

( ) | | (6.17)
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Proof. I will only prove the case 0 The case 0 can be derived by
applying the 0 to (̃ ) = ( ) ˜( ) = ( ) and (̃ ) = ( )

Set ( ) =
R

0
( ) ( ) . Then by (6.15),

˙ = +

Hence,

(
R

0
( ) ) =

R

0
( ) ( ˙ )

R

0
( )

Integrating this last inequality from 0 to and then solving for yields:

( )
R

0
( ) ·

Z

0

( ) ( )
R

0
( ) =

Z

0

( ) ( )
R

( )

But by the definition of we have that

+

and hence the last two displayed equations imply (6.16). Equation (6.17) fol-
lows from (6.16) by a simple integration.

Corollary 6.9 (Continuous Dependence on Initial Data). Let
0 ( ) and : ( ) × be a continuous function which is —
Lipschitz function on i.e. k ( ) ( 0)k k 0k for all and 0

in Suppose 1 2 : ( ) solve

( )
= ( ( )) with (0) = for = 1 2 (6.18)

Then
k 2( ) 1( )k k 2 1k | | for ( ) (6.19)

and in particular, there is at most one solution to Eq. (6.1) under the above
Lipschitz assumption on

Proof. Let ( ) k 2( ) 1( )k Then by the fundamental theorem of
calculus,

( ) = k 2(0) 1(0) +

Z

0

( ˙2( ) ˙1( )) k

(0) +

¯

¯

¯

¯

Z

0

k ( 2( )) ( 1( ))k
¯

¯

¯

¯

= k 2 1k+
¯

¯

¯

¯

Z

0

( )

¯

¯

¯

¯

Therefore by Gronwall’s inequality we have,

k 2( ) 1( )k = ( ) k 2 1k | |
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6.4 Local Existence (Non-Linear ODE)

We now show that Eq. (6.1) under a Lipschitz condition on Another exis-
tence theorem is given in Exercise 8.70.

Theorem 6.10 (Local Existence). Let 0 = ( ) 0 0
and

( 0 ) := { : k 0k }
be the closed — ball centered at 0 Assume

= sup {k ( )k : ( ) × ( 0 )} (6.20)

and there exists such that

k ( ) ( )k k k for all ( 0 ) and (6.21)

Let 0 min { } and 0 := ( 0 0) then for each ( 0 0)
there exists a unique solution ( ) = ( ) to Eq. (6.2) in ( 0 ( 0 ))
Moreover ( ) is jointly continuous in ( ) ( ) is di erentiable in
˙( ) is jointly continuous for all ( ) 0 × ( 0 0) and satisfies
Eq. (6.1).

Proof. The uniqueness assertion has already been proved in Corollary 6.9.
To prove existence, let := ( 0 ) := ( 0 ( 0 )) and

( )( ) := +

Z

0

( ( )) (6.22)

With this notation, Eq. (6.2) becomes = ( ) i.e. we are looking for a
fixed point of If then

k ( )( ) 0k k 0k+
¯

¯

¯

¯

Z

0

k ( ( ))k
¯

¯

¯

¯

k 0k+ | |

k 0k+ 0 0 + 0 =

showing ( ) for all ( 0 0) Moreover if

k ( )( ) ( )( )k =
°

°

°

°

Z

0

[ ( ( )) ( ( ))]

°

°

°

°

¯

¯

¯

¯

Z

0

k ( ( )) ( ( ))k
¯

¯

¯

¯

¯

¯

¯

¯

Z

0

k ( ) ( )k
¯

¯

¯

¯

(6.23)

Let 0( ) = and (· ) defined inductively by
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(· ) := ( 1(· )) = +

Z

0

( 1( )) (6.24)

Using the estimate in Eq. (6.23) repeatedly we find

|| +1( ) ( ) ||
¯

¯

¯

¯

Z

0

k ( ) 1( )k
¯

¯

¯

¯

2

¯

¯

¯

¯

Z

0
1

¯

¯

¯

¯

Z

1

0
2 k 1( 2) 2( 2)k

¯

¯

¯

¯

¯

¯

¯

¯

...
¯

¯

¯

¯

Z

0
1

¯

¯

¯

¯

Z

1

0
2

¯

¯

¯

¯

Z

1

0

k 1( ) 0( )k
¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

k 1(· ) 0(· )k
Z

( )

=
| |
!

k 1(· ) 0(· )k 2
| |
!

(6.25)

wherein we have also made use of Lemma 6.3. Combining this estimate with

k 1( ) 0( )k =
°

°

°

°

Z

0

( )

°

°

°

°

¯

¯

¯

¯

Z

0

k ( )k
¯

¯

¯

¯

0

where

0 = 0max

(

Z

0

0

k ( )k
Z 0

0

k ( )k
)

0

shows

k +1( ) ( )k 0
| |
!

0
0

!

and this implies

X

=0

sup{ k +1(· ) (· )k
0
: 0}

X

=0

0
0

!
= 0

0

where

k +1(· ) (· )k
0
:= sup {k +1( ) ( )k : 0}

So ( ) := lim ( ) exists uniformly for and using Eq. (6.21)
we also have
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sup{ k ( ( )) ( 1( ))k : 0}
k (· ) 1(· )k

0
0 as

Now passing to the limit in Eq. (6.24) shows solves Eq. (6.2). From this
equation it follows that ( ) is di erentiable in and satisfies Eq. (6.1).
The continuity of ( ) follows from Corollary 6.9 and mean value in-

equality (Corollary 4.10):

k ( ) ( 0 0)k k ( ) ( 0)k+ k ( 0) ( 0 0)k

= k ( ) ( 0)k+
°

°

°

°

Z

0
( ( 0))

°

°

°

°

k ( ) ( 0)k+
¯

¯

¯

¯

Z

0
k ( ( 0))k

¯

¯

¯

¯

k 0k +

¯

¯

¯

¯

Z

0
k ( ( 0))k

¯

¯

¯

¯

(6.26)

k 0k + | 0|
The continuity of ˙( ) is now a consequence Eq. (6.1) and the continuity

of and

Corollary 6.11. Let = ( ) 3 0 and suppose ( × ) satisfies

k ( ) ( )k k k for all and (6.27)

Then for all there is a unique solution ( ) (for ) to Eq. (6.1).
Moreover ( ) and ˙( ) are jointly continuous in ( )

Proof. Let 0 = ( 0 0) 3 0 be a precompact subinterval of and :=
( 0 ) By compactness, := sup

0̄
k ( 0)k which combined

with Eq. (6.27) implies

sup
0̄

k ( )k + k k for all

Using this estimate and Lemma 4.4 one easily shows ( ) for all
The proof of Theorem 6.10 now goes through without any further change.

6.5 Global Properties

Definition 6.12 (Local Lipschitz Functions). Let be an open
interval and ( × ) The function is said to be locally Lipschitz in
if for all and all compact intervals there exists = ( )
and = ( ) 0 such that ( ( )) and

k ( 1) ( 0)k ( )k 1 0k 0 1 ( ( )) &
(6.28)
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For the rest of this section, we will assume is an open interval containing
0 is an open subset of and ( × ) is a locally Lipschitz function.

Lemma 6.13. Let ( × ) be a locally Lipschitz function in and
be a compact subset of and be a compact subset of Then there exists
0 such that ( ) is bounded for ( ) × and and ( ) is —

Lipschitz on for all where

:= { : dist( ) }
Proof. Let ( ) and ( ) be as in Definition 6.12 above. Since
is compact, there exists a finite subset such that :=

( ( ) 2) If there exists such that k k ( ) 2
and therefore

k ( )k k ( )k+ ( ) k k k ( )k+ ( ) ( ) 2

sup {k ( )k+ ( ) ( ) 2} =:

This shows is bounded on ×
Let

:= ( )
1

2
min ( )

and notice that 0 since is compact, is closed and =
If and k k then as before there exists such that
k k ( ) 2 Therefore

k k k k+ k k + ( ) 2 ( )

and since ( ( )) it follows that

k ( ) ( )k ( )k k 0k k
where 0 := max ( ) On the other hand if and
k k then

k ( ) ( )k 2
2 k k

Thus if we let := max {2 0} we have shown

k ( ) ( )k k k for all and

Proposition 6.14 (Maximal Solutions). Let ( × ) be a locally
Lipschitz function in and let be fixed. Then there is an interval =
( ( ) ( )) with [ 0) and (0 ] and a 1—function :
with the following properties:
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1. solves ODE in Eq. (6.1).
2. If ˜ : ˜ = (˜ ˜) is another solution of Eq. (6.1) (we assume that
0 )̃ then ˜ and ˜ = | ˜
The function : is called the maximal solution to Eq. (6.1).

Proof. Suppose that : = ( ) = 1 2, are two solutions to
Eq. (6.1). We will start by showing the 1 = 2 on 1 2 To do this1 let
0 = ( 0 0) be chosen so that 0 0 1 2 and let := 1( 0) 2( 0) —
a compact subset of Choose 0 as in Lemma 6.13 so that is Lipschitz
on Then 1| 0 2| 0

: 0 both solve Eq. (6.1) and therefore are
equal by Corollary 6.9. Since 0 = ( 0 0) was chosen arbitrarily so that
[ ] 1 2 we may conclude that 1 = 2 on 1 2

Let ( = ( )) denote the possible solutions to (6.1) such that
0 . Define = and set = on . We have just checked that
is well defined and the reader may easily check that this function :
satisfies all the conclusions of the theorem.

Notation 6.15 For each let = ( ( ) ( )) be the maximal interval
on which Eq. (6.1) may be solved, see Proposition 6.14. Set D( ) ( ×
{ }) × and let : D( ) be defined by ( ) = ( ) where is
the maximal solution to Eq. (6.1). (So for each (· ) is the maximal
solution to Eq. (6.1).)

Proposition 6.16. Let ( × ) be a locally Lipschitz function in
and : = ( ( ) ( )) be the maximal solution to Eq. (6.1). If ( )
then either lim sup ( ) k ( ( ))k = or ( ( ) ) lim ( ) ( ) exists

and ( ( ) ) Similarly, if ( ) then either lim sup ( ) k ( )k =
or ( ( )+) lim ( ) exists and ( ( )+)

Proof. Suppose that ( ) and lim sup ( ) k ( ( ))k
Then there is a 0 (0 ( )) such that k ( ( ))k 2 for all ( 0 ( ))
Thus, by the usual fundamental theorem of calculus argument,

k ( ) ( 0)k
¯

¯

¯

¯

¯

Z
0

k ( ( ))k
¯

¯

¯

¯

¯

2 | 0|

1 Here is an alternate proof of the uniqueness. Let

sup{ [0 min{ 1 2}) : 1 = 2 on [0 ]}
( is the first positive time after which 1 and 2 disagree.
Suppose, for sake of contradiction, that min{ 1 2} Notice that 1( ) =

2( ) =: 0 Applying the local uniqueness theorem to 1(· ) and 2(· )
thought as function from ( ) ( 0 ( 0)) for some su ciently small, we
learn that 1(· ) = 2(· ) on ( ) But this shows that 1 = 2 on [0 + )
which contradicts the definition of Hence we must have the = min{ 1 2}
i.e. 1 = 2 on 1 2 [0 ) A similar argument shows that 1 = 2 on
1 2 ( 0] as well.
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for all 0 ( 0 ( )) From this it is easy to conclude that ( ( ) ) =
lim ( ) ( ) exists. If ( ( ) ) by the local existence Theorem 6.10,
there exists 0 and 1 (( ( ) ( ) + ) ) such that

˙ ( ) = ( ( )) and ( ( )) = ( ( ) )

Now define ˜ : ( ( ) + ) by

˜( ) =

½

( ) if
( ) if [ ( ) ( ) + )

The reader may now easily show ˜ solves the integral Eq. (6.2) and hence also
solves Eq. 6.1 for ( ( ) ( ) + ) 2 But this violates the maximality of
and hence we must have that ( ( ) ) The assertions for near ( ) are
proved similarly.

Example 6.17. Let = R2 = R =
©

( ) R2 : 0 1
ª

where
2 = 2 + 2 and

( ) =
1
( ) +

1

1 2
( )

The the unique solution ( ( ) ( )) to

( ( ) ( )) = ( ( ) ( )) with ( (0) (0)) = (
1

2
0)

is given by

( ( ) ( )) =

µ

+
1

2

¶µ

cos

µ

1

1 2

¶

sin

µ

1

1 2

¶¶

for (1 2 0) = ( 1 2) Notice that k ( ( ) ( ))k as 1 2 and
dist(( ( ) ( )) ) 0 as 1 2

Example 6.18. (Not worked out completely.) Let = = 2 (R2)
be a smooth function such that = 1 in a neighborhood of the line segment
joining (1 0) to (0 1) and being supported within the 1 10 — neighborhood of
this segment. Choose and and define

( ) =
X

=1

( ( +1))( +1 ) (6.29)

For any 2 only a finite number of terms are non-zero in the above some
in a neighborhood of Therefor : 2 2 is a smooth and hence locally
Lipshcitz vector field. Let ( ( ) = ( )) denote the maximal solution to

2 See the argument in Proposition 6.19 for a slightly di erent method of extending
which avoids the use of the integral equation (6.2).
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˙( ) = ( ( )) with (0) = 1

Then if the and are chosen appropriately, then and there will
exist such that ( ) is approximately for all So again ( ) does
not have a limit yet sup [0 ) k ( )k The idea is that is constructed
to blow the particle form 1 to 2 to 3 to 4 etc. etc. with the time it takes to
travel from to +1 being on order 1 2 The vector field in Eq. (6.29) is a
first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because ( ) is “going o in dimensions.”

Here is another version of Proposition 6.16 which is more useful when
dim( )

Proposition 6.19. Let ( × ) be a locally Lipschitz function in
and : = ( ( ) ( )) be the maximal solution to Eq. (6.1).

1. If ( ) then for every compact subset there exists ( )
such that ( ) for all [ ( ))

2. When dim( ) we may write this condition as: if ( ) then
either

lim sup
( )

k ( )k = or lim inf
( )

dist( ( ) ) = 0

Proof. 1) Suppose that ( ) and, for sake of contradiction, there
exists a compact set and ( ) such that ( ) for all
Since is compact, by passing to a subsequence if necessary, we may assume

:= lim ( ) exists in By the local existence Theorem 6.10,
there exists 0 0 and 0 such that for each 0 ( ) there exists a
unique solution (· 0) 1(( 0 0) ) solving

( 0) = ( ( 0)) and (0 0) = 0

Now choose su ciently large so that ( ( ) 0 2 ( )) and ( )
( ) Define ˜ : ( ( ) ( ) + 0 2) by

˜( ) =

½

( ) if
( ( )) if ( 0 ( ) + 0 2)

wherein we have used ( 0 ( )+ 0 2) ( 0 + 0) By uniqueness
of solutions to ODE’s ˜ is well defined, ˜ 1(( ( ) ( ) + 0 2) ) and ˜
solves the ODE in Eq. 6.1. But this violates the maximality of
2) For each N let

:= { : k k and dist( ) 1 }
Then and each is a closed bounded set and hence compact if
dim( ) Therefore if ( ) by item 1., there exists [0 ( ))
such that ( ) for all [ ( )) or equivalently k ( )k or
dist( ( ) ) 1 for all [ ( ))
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Remark 6.20. In general it is not true that the functions and are continu-
ous. For example, let be the region in R2 described in polar coordinates by

0 and 0 3 4 and ( ) = (0 1) as in Figure 6.2 below. Then
( ) = for all 0 while ( ) = for all 0 and R which
shows is discontinuous. On the other hand notice that

{ } = { 0} {( ) : 0 }
is an open set for all 0 An example of a vector field for which ( ) is
discontinuous is given in the top left hand corner of Figure 6.2. The map
would allow the reader to find an example on R2 if so desired. Some calcu-
lations shows that transferred to R2 by the map is given by the new
vector

˜( ) =

µ

sin

µ

3

8
+
3

4
tan 1 ( )

¶

cos

µ

3

8
+
3

4
tan 1 ( )

¶¶

Fig. 6.2. Manufacturing vector fields where ( ) is discontinuous.

Theorem 6.21 (Global Continuity). Let ( × ) be a locally
Lipschitz function in Then D( ) is an open subset of × and the func-
tions : D( ) and ˙ : D( ) are continuous. More precisely, for
all 0 and all open intervals 0 such that 0 0 @@ 0 there exists
= ( 0 0 ) 0 and = ( 0 0 ) such that for all ( 0 )

0 and
k (· ) (· 0)k ( 0 ) k 0k (6.30)
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Proof. Let | 0| = 0 0 = 0̄ and := ( 0̄) — a compact subset of
and let 0 and be given as in Lemma 6.13, i.e. is the Lipschitz
constant for on Also recall the notation: 1( ) = [0 ] if 0 and
1( ) = [ 0] if 0
Suppose that then by Corollary 6.9,

k ( ) ( 0)k k 0k | | k 0k | 0| (6.31)

for all 0 such that such that ( 1( ) ) Letting :=
| 0| 2 and assuming ( 0 ) the previous equation implies

k ( ) ( 0)k 2 0 3 ( 1( ) )

This estimate further shows that ( ) remains bounded and strictly away
from the boundary of for all such Therefore, it follows from Proposition
6.14 and “continuous induction3” that 0 and Eq. (6.31) is valid for all

0 This proves Eq. (6.30) with := | 0|

Suppose that ( 0 0) D( ) and let 0 0 @@ 0
such that 0 0 and

be as above. Then we have just shown 0 × ( 0 ) D( ) which proves
D( ) is open. Furthermore, since the evaluation map

( 0 ) 0 × ( 0 ) ( 0)

is continuous (as the reader should check) it follows that = ( (· )) :

0 × ( 0 ) is also continuous; being the composition of continuous
maps. The continuity of ˙( 0 ) is a consequences of the continuity of and
the di erential equation 6.1
Alternatively using Eq. (6.2),

k ( 0 ) ( 0)k k ( 0 ) ( 0 0)k+ k ( 0 0) ( 0)k

k 0k+
¯

¯

¯

¯

Z

0

k ( ( 0))k
¯

¯

¯

¯

k 0k+ | 0 |

where is the constant in Eq. (6.30) and = sup
0
k ( ( 0))k

This clearly shows is continuous.

6.6 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field . It will be convenient to introduce the following
suggestive notation. For ( ) D( ) set ( ) = ( ) So the path

( ) is the maximal solution to

3 See the argument in the proof of Proposition 4.7.
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( ) = ( ( )) with 0 ( ) =

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 6.22 We write : to mean a function defined on some
open subset ( ) The open set ( ) will be called the domain of
Given two functions : and : with domains ( ) and
( ) respectively, we define the composite function : to be the

function with domain

( ) = { : ( ) and ( ) ( )} = 1( ( ))

given by the rule ( ) = ( ( )) for all ( ) We now write =
i ( ) = ( ) and ( ) = ( ) for all ( ) = ( ) We will also write

i ( ) ( ) and | ( ) =

Theorem 6.23. For fixed R we consider as a function from to
with domain ( ) = { : ( ) D( )} where ( ) = D( ) R×
D( ) and are defined in Notation 6.15. Conclusions:

1. If R and · 0 then = ( + )

2. If R, then = ( )

3. For arbitrary R ( + )

Proof. Item 1. For simplicity assume that 0 The case 0 is left
to the reader. Suppose that ( ) Then by assumption ( )
and ( ) ( ) Define the path ( ) via:

( ) =

½

( ) if 0
( ) ( ) if +

It is easy to check that solves ˙( ) = ( ( )) with (0) = But since,
( ) is the maximal solution we must have that ( ( + ) ) and ( +

) = ( + ) ( ) That is ( + ) ( ) = ( ) Hence we have shown that
( + )

To finish the proof of item 1. it su ces to show that ( ( + ) ) (
) Take ( ( + ) ), then clearly ( ). Set ( ) = ( + ) ( )

defined for 0 Then solves

˙( ) = ( ( )) with (0) = ( )

But since ( ( )) is the maximal solution to the above initial valued
problem we must have that ( ) = ( ( )) and in particular at =

( + ) ( ) = ( ( )) This shows that ( ) and in fact
( + )

Item 2. Let ( ) — again assume for simplicity that 0 Set
( ) = ( ) ( ) defined for 0 Notice that (0) = ( ) and
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˙( ) = ( ( )) This shows that ( ) = ( ( )) and in particular that
( ) and ( ) = This proves item 2.

Item 3. I will only consider the case that 0 and + 0 the other
cases are handled similarly. Write for + so that = + We know
that = by item 1. Therefore

= ( )

Notice in general, one has ( ) = ( ) (you prove). Hence, the
above displayed equation and item 2. imply that

= ( ) = ( + )
( )

( + )

The following result is trivial but conceptually illuminating partial con-
verse to Theorem 6.23.

Proposition 6.24 (Flows and Complete Vector Fields). Suppose
(R× ) and ( ) = ( ) Suppose satisfies:

1. 0 =
2. = + for all R and
3. ( ) := ˙(0 ) exists for all and ( ) is locally Lipschitz.

Then =

Proof. Let and ( ) ( ) Then using Item 2.,

˙( ) = |0 ( + ) = |0 ( + )( ) = |0 ( ) = ( ( ))

Since (0) = by Item 1. and is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 6.9) that ( ) = ( ) = ( )

6.7 Exercises

Exercise 6.25. Find a vector field such that ( + ) is not contained in

Definition 6.26. A locally Lipschitz function : is said to be
a complete vector field if D( ) = R× That is for any ( ) is
defined for all R

Exercise 6.27. Suppose that : is a locally Lipschitz function.
Assume there is a constant 0 such that

k ( )k (1 + k k) for all
Then is complete. Hint: use Gronwall’s Lemma 6.8 and Proposition 6.16.
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Exercise 6.28. Suppose is a solution to ˙( ) = | ( )|1 2 with (0) = 0
Show there exists [0 ] such that

( ) =

1
4( )2 if

0 if
1
4( + )2 if

Exercise 6.29. Using the fact that the solutions to Eq. (6.3) are never 0 if
6= 0 show that ( ) = 0 is the only solution to Eq. (6.3) with (0) = 0

Exercise 6.30. Suppose that ( ) Show directly that:

1. define in Eq. (6.14) is convergent in ( ) when equipped with the
operator norm.

2. is di erentiable in and that =

Exercise 6.31. Suppose that ( ) and is an eigenvector of
with eigenvalue i.e. that = Show = Also show that
= R and is a diagonalizable × matrix with

= 1 with = ( 1 )

then = 1 where = ( 1 )

Exercise 6.32. Suppose that ( ) and [ ] = 0 Show
that ( + ) =

Exercise 6.33. Suppose (R ( )) satisfies [ ( ) ( )] = 0 for all
R Show

( ) := (
R

0
( ) )

is the unique solution to ˙( ) = ( ) ( ) with (0) =

Exercise 6.34. Compute when

=

µ

0 1
1 0

¶

and use the result to prove the formula

cos( + ) = cos cos sin sin

Hint: Sum the series and use = ( + )

Exercise 6.35. Compute when

=
0
0 0
0 0 0

with R Use your result to compute ( + ) where R and is
the 3× 3 identity matrix. Hint: Sum the series.



6.7 Exercises 125

Exercise 6.36. Prove Theorem 6.7 using the following outline.

1. First show [0 ) ( ) is continuos.
2. For 0 let := 1

R

0
( ) Show as 0 and conclude

from this that is invertible when 0 is su ciently small. For the
remainder of the proof fix such a small 0

3. Show

=
1
Z +

and conclude from this that

lim
0

1 ( ) =
1
( )

4. Using the fact that is invertible, conclude = lim 0
1 ( ) exists

in ( ) and that

=
1
( ) 1

5. Now show using the semigroup property and step 4. that = for
all 0

6. Using step 5, show = 0 for all 0 and therefore =
0

0 =

Exercise 6.37 (Higher Order ODE). Let be a Banach space, , U
and ( × U ) be a Locally Lipschitz function in x = ( 1 )
Show the th ordinary di erential equation,

( )( ) = ( ( ) ˙( ) ( 1)( )) with ( )(0) = 0 for (6.32)

where ( 0
0

1
0 ) is given in U has a unique solution for small Hint:

let y( ) =
¡

( ) ˙( ) ( 1)( )
¢

and rewrite Eq. (6.32) as a first order ODE
of the form

ẏ( ) = ( y( )) with y(0) = ( 0
0

1
0 )

Exercise 6.38. Use the results of Exercises 6.35 and 6.37 to solve

¨( ) 2 ˙( ) + ( ) = 0 with (0) = and ˙(0) =

Hint: The 2× 2 matrix associated to this system, , has only one eigenvalue
1 and may be written as = + where 2 = 0

Exercise 6.39. Suppose that : R ( ) is a continuous function and
: R ( ) are the unique solution to the linear di erential equations

˙ ( ) = ( ) ( ) with (0) =

and
˙ ( ) = ( ) ( ) with (0) = (6.33)
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Prove that ( ) is invertible and that 1( ) = ( ) Hint: 1) show
[ ( ) ( )] = 0 (which is su cient if dim( ) ) and 2) show com-

pute ( ) := ( ) ( ) solves a linear di erential ordinary di erential equation
that has 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that ( ) must be defined as in Eq. (6.33) is the content
of Exercise 19.32 below.)

Exercise 6.40 (Duhamel’ s Principle I). Suppose that : R ( ) is
a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (19.36). Let and (R ) be given.
Show that the unique solution to the di erential equation:

˙( ) = ( ) ( ) + ( ) with (0) = (6.34)

is given by

( ) = ( ) + ( )

Z

0

( ) 1 ( ) (6.35)

Hint: compute [ 1( ) ( )] when solves Eq. (6.34).

Exercise 6.41 (Duhamel’ s Principle II). Suppose that : R ( ) is
a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (19.36). Let 0 ( ) and (R ( )) be
given. Show that the unique solution to the di erential equation:

˙ ( ) = ( ) ( ) + ( ) with (0) = 0 (6.36)

is given by

( ) = ( ) 0 + ( )

Z

0

( ) 1 ( ) (6.37)

Exercise 6.42 (Non-Homogeneous ODE). Suppose that is open
and : R× is a continuous function. Let = ( ) be an interval and
0 Suppose that 1( ) is a solution to the “non-homogeneous”
di erential equation:

˙( ) = ( ( )) with ( ) = (6.38)

Define 1( 0 R× ) by ( ) ( + 0 ( + 0)) Show that solves
the “homogeneous” di erential equation

˙ ( ) = ˜( ( )) with (0) = ( 0 0) (6.39)

where ˜( ) (1 ( )) Conversely, suppose that 1( 0 R× ) is a
solution to Eq. (6.39). Show that ( ) = ( + 0 ( + 0)) for some 1( )
satisfying Eq. (6.38). (In this way the theory of non-homogeneous ode’s may
be reduced to the theory of homogeneous ode’s.)
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Exercise 6.43 (Di erential Equations with Parameters). Let be an-
other Banach space, × × and ( × ) be a locally
Lipschitz function on × For each ( ) × let ( )
denote the maximal solution to the ODE

˙( ) = ( ( ) ) with (0) = (6.40)

Prove
D := {( ) R× × : } (6.41)

is open in R× × and and ˙ are continuous functions on D
Hint: If ( ) solves the di erential equation in (6.40), then ( ) ( ( ) )

solves the di erential equation,

˙( ) = ˜( ( )) with (0) = ( ) (6.42)

where ˜( ) ( ( ) 0) × and let ( ( )) := ( ) Now apply
the Theorem 6.21 to the di erential equation (6.42).

Exercise 6.44 (Abstract Wave Equation). For ( ) and R let

cos( ) :=
X

=0

( 1)

(2 )!
2 2 and

sin( )
:=
X

=0

( 1)

(2 + 1)!
2 +1 2

Show that the unique solution 2 (R ) to

¨( ) + 2 ( ) = 0 with (0) = 0 and ˙(0) = ˙0 (6.43)

is given by

( ) = cos( ) 0 +
sin( )

˙0

Remark 6.45. Exercise 6.44 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (6.43) as a first order ODE using Exercise
6.37. In doing so you will be lead to compute where ( × ) is
given by

=

µ

0
2 0

¶

where we are writing elements of × as column vectors,
µ

1

2

¶

You should

then show

=

µ

cos( ) sin( )

sin( ) cos( )

¶

where

sin( ) :=
X

=0

( 1)

(2 + 1)!
2 +1 2( +1)
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Exercise 6.46 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 6.44, but now consider the ODE,

¨( ) + 2 ( ) = ( ) with (0) = 0 and ˙(0) = ˙0 (6.44)

where (R ) Show the unique solution to Eq. (6.44) is given by

( ) = cos( ) 0 +
sin( )

˙0 +

Z

0

sin(( ) )
( ) (6.45)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (6.45) from Exercise 6.40 and the comments in
Remark 6.45.
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Algebras, — Algebras and Measurability

7.1 Introduction: What are measures and why
“measurable” sets

Definition 7.1 (Preliminary). Suppose that is a set and P( ) denotes
the collection of all subsets of A measure on is a function : P( )
[0 ] such that

1. ( ) = 0

2. If { } =1 is a finite ( ) or countable ( = ) collection of subsets
of which are pair-wise disjoint (i.e. = if 6= ) then

( =1 ) =
X

=1

( )

Example 7.2. Suppose that is any set and is a point. For let

( ) =

½

1 if
0 otherwise.

Then = is a measure on called the Dirac delta function at

Example 7.3. Suppose that is a measure on and 0 then · is
also a measure on Moreover, if { } are all measures on then
=
P

i.e.

( ) =
X

( ) for all

is a measure on (See Section 1 for the meaning of this sum.) To prove
this we must show that is countably additive. Suppose that { } =1 is a
collection of pair-wise disjoint subsets of then
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( =1 ) =
X

=1

( ) =
X

=1

X

( )

=
XX

=1

( ) =
X

( =1 )

= ( =1 )

wherein the third equality we used Theorem 1.21 and in the fourth we used
that fact that is a measure.

Example 7.4. Suppose that is a set : [0 ] is a function. Then

:=
X

( )

is a measure, explicitly
( ) =

X

( )

for all

7.2 The problem with Lebesgue “measure”

Question 7.5. Does there exist a measure : P(R) [0 ] such that

1. ([ )) = ( ) for all and
2. (Translation invariant) ( + ) = ( ) for all R? (Here + :=
{ + : } R )

The answer is no which we now demonstrate. In fact the answer is no even if
we replace (1) by the condition that 0 ((0 1])

Let us identify [0 1) with the unit circle 1 := { C : | | = 1} by the
map ( ) = 2 1 for [0 1) Using this identification we may use to
define a function on P( 1) by ( ( )) = ( ) for all [0 1) This new
function is a measure on 1 with the property that 0 ((0 1]) For

1 and 1 let

:= { 1 : } (7.1)

that is to say is rotated counter clockwise by angle We now claim
that is invariant under these rotations, i.e.

( ) = ( ) (7.2)

for all 1 and 1 To verify this, write = ( ) and = ( ) for
some [0 1) and [0 1) Then
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( ) ( ) = ( + mod1)

where for [0 1) and [0 1) let

+ mod1 = { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })

Thus

( ( ) ( )) = ( + mod1)

= (( + { 1 }) (( 1) + { 1 }))
= (( + { 1 })) + ((( 1) + { 1 }))
= ( { 1 }) + ( { 1 })
= (( { 1 }) ( { 1 }))
= ( ) = ( ( ))

Therefore it su ces to prove that no finite measure on 1 such that Eq.
(7.2) holds. To do this we will “construct” a non-measurable set = ( )
for some [0 1)
To do this let

:= { = 2 : Q} = { = 2 : [0 1) Q}
a countable subgroup of 1 As above acts on 1 by rotations and divides
1 up into equivalence classes, where 1 are equivalent if = for
some Choose (using the axiom of choice) one representative point
from each of these equivalence classes and let 1 be the set of these
representative points. Then every point 1 may be uniquely written as
= with and That is to say

1 =
a

( ) (7.3)

where
`

is used to denote the union of pair-wise disjoint sets { } By
Eqs. (7.2) and (7.3),

( 1) =
X

( ) =
X

( )

The right member from this equation is either 0 or , 0 if ( ) = 0 and if
( ) 0 In either case it is not equal ( 1) (0 1) Thus we have reached
the desired contradiction.
Proof. (Second proof of Answer to Question 7.5) For [0 1) and
[0 1) let

= + mod1

= { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })
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If is a measure satisfying the properties of the Question we would have

( ) = ( + { 1 }) + (( 1) + { 1 })
= ( { 1 }) + ( { 1 })
= ( { 1 } ( { 1 }))
= ( ) (7.4)

We will now construct a bad set which coupled with Eq. (7.4) will lead to
a contradiction.
Set

{ + R : Q} = +Q

Notice that 6= implies that = Let O = { : R} — the
orbit space of the Q action. For all O choose ( ) [0 1 3) 1 Define
= (O) Then observe:

1. ( ) = ( ) implies that 6= which implies that = so that
is injective.

2. O = { : }
Let be the countable set,

Q [0 1)

We now claim that

= if 6= and (7.5)

[0 1) = (7.6)

Indeed, if 6= then = + mod1 and = + 0mod1
then 0 Q i.e. = 0 . That is to say, = ( ) = ( 0) = 0 and
hence that = mod1 but [0 1) implies that = Furthermore, if

[0 1) and := ( ) then = Q and mod 1

Now that we have constructed we are ready for the contradiction. By
Equations (7.4—7.6) we find

1 = ([0 1)) =
X

( ) =
X

( )

=

½

if ( ) 0
0 if ( ) = 0

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set.
Because of this example and our desire to have a measure on R satisfying

the properties in Question 7.5, we need to modify our definition of a measure.

1 We have used the Axiom of choice here, i.e.
Q

F ( [0 1 3]) 6=
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We will give up on trying to measure all subsets R i.e. we will only try
to define on a smaller collection of “measurable” sets. Such collections will
be called — algebras which we now introduce. The formal definition of a
measure appears in Definition 8.1 of Section 8 below.

7.3 Algebras and — algebras

Definition 7.6. A collection of subsets A of is an Algebra if

1. A
2. A implies that A
3. A is closed under finite unions, i.e. if 1 A then 1 · · ·
A
In view of conditions 1. and 2., 3. is equivalent to

30. A is closed under finite intersections.

Definition 7.7. A collection of subsetsM of is a — algebra ( — field) if
M is an algebra which also closed under countable unions, i.e. if { } =1
M then =1 M (Notice that since M is also closed under taking
complements, M is also closed under taking countable intersections.) A pair
( M) where is a set andM is a — algebra on is called ameasurable
space.

The reader should compare these definitions with that of a topology, see
Definition 2.19. Recall that the elements of a topology are called open sets.
Analogously, we will often refer to elements of and algebra A or a — algebra
M as measurable sets.

Example 7.8. Here are some examples.

1. = M = P( ) in which case all subsets of are open, closed, and
measurable.

2. Let = {1 2 3} then = { {2 3}} is a topology on which is not
an algebra.

3. = A = {{1} {2 3} } is a topology, an algebra, and a — algebra
on The sets {1} {2 3} are open and closed. The sets {1 2} and
{1 3} are neither open nor closed and are not measurable.

Proposition 7.9. Let E be any collection of subsets of . Then there exists a
unique smallest topology (E), algebra A(E) and -algebra (E) which contains
E
Proof. Note P( ) is a topology and an algebra and a -algebra and

E P( ), so E is always a subset of a topology, algebra, and — algebra.
One may now easily check that
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(E)
\

{ : is a topology and E }

is a topology which is clearly the smallest topology containing E The analo-
gous construction works for the other cases as well.
We may give explicit descriptions of (E) andA(E) However (E) typically

does not admit a simple concrete description.

Proposition 7.10. Let be a set and E P( ) For simplicity of notation,
assume that E (otherwise adjoin them to E if necessary) and let E
{ : E} and E = E { } E Then (E) = and A(E) = A where

:= {arbitrary unions of finite intersections of elements from E} (7.7)

and

A := {finite unions of finite intersections of elements from E } (7.8)

Proof. From the definition of a topology and an algebra, it is clear that
E (E) and E A A(E) Hence to finish that proof it su ces to show
is a topology and A is an algebra. The proof of these assertions are routine

except for possibly showing that is closed under taking finite intersections
and A is closed under complementation.
To check A is closed under complementation, let A be expressed as

=
[

=1

\

=1

where E Therefore, writing = E we find that

=
\

=1

[

=1

=
[

1 =1

( 1 1 2 2 · · · ) A

wherein we have used the fact that 1 1 2 2 · · · is a finite inter-
section of sets from E
To show is closed under finite intersections it su ces to show for

that Write

= and =

where and are sets which are finite intersection of elements from E
Then

= ( ) ( ) =
[

( ) ×

since for each ( ) × is still a finite intersection of elements
from E
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Remark 7.11. One might think that in general (E) may be described as the
countable unions of countable intersections of sets in E However this is false,
since if

=
[

=1

\

=1

with E then

=
[

1=1 2=1 =1

Ã

\

=1

!

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe (E) see Proposition
1.23 on page 39 of Folland for details.

Exercise 7.12. Let be a topology on a set and A = A( ) be the algebra
generated by Show A is the collection of subsets of which may be written
as finite union of sets of the form where is closed and is open.

The following notion will be useful in the sequel.

Definition 7.13. A set E P( ) is said to be an elementary family or
elementary class provided that

• E
• E is closed under finite intersections
• if E then is a finite disjoint union of sets from E (In particular

= is a disjoint union of elements from E )
Proposition 7.14. Suppose E P( ) is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E
Proof. This could be proved making use of Proposition 7.14. However it

is easier to give a direct proof.
Let A denote the collection of sets which may be written as finite disjoint

unions of sets from E Clearly E A A(E) so it su ces to show A is an
algebra since A(E) is the smallest algebra containing E
By the properties of E we know that A Now suppose that =

` A where, for = 1 2 is a finite collection of disjoint
sets from E Then

\

=1

=
\

=1

Ã

a

!

=
[

( 1 ) 1×···×
( 1 2 · · · )

and this is a disjoint (you check) union of elements from E Therefore A is
closed under finite intersections. Similarly, if =

`

with being a
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finite collection of disjoint sets from E then =
T

Since by assump-
tion A for E and A is closed under finite intersections, it
follows that A
Exercise 7.15. Let A P( ) and B P( ) be elementary families. Show
the collection

E = A× B = { × : A and B}
is also an elementary family.

The analogous notion of elementary class E for topologies is a basis V
defined below.

Definition 7.16. Let ( ) be a topological space. We say that S is a
sub-basis for the topology i = (S) and = S := S We say
V is a basis for the topology i V is a sub-basis with the property that
every element may be written as

= { V : }
Exercise 7.17. Suppose that S is a sub-basis for a topology on a set
Show V := S consisting of finite intersections of elements from S is a basis
for Moreover, S is itself a basis for i

1 2 = { S : 1 2}
for every pair of sets 1 2 S
Remark 7.18. Let ( ) be a metric space, then E = { ( ) : and

0} is a basis for — the topology associated to the metric This is the
content of Exercise 2.9.
Let us check directly that E is a basis for a topology. Suppose that

and 0 If ( ) ( ) then

( ) ( ) ( ) (7.9)

where = min{ ( ) ( )} see Figure 7.1. This is a for-
mal consequence of the triangle inequality. For example let us show that
( ) ( ) By the definition of we have that ( ) or

that ( ) Hence if ( ) then

( ) ( ) + ( ) + ( ) + =

which shows that ( ) Similarly we show that ( ) as well.
Owing to Exercise 7.17, this shows E is a basis for a topology. We do not

need to use Exercise 7.17 here since in fact Equation (7.9) may be generalized
to finite intersection of balls. Namely if 0 and =1 ( )
then
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x

y

z

d(x,z)

d(x,z)

Fig. 7.1. Fitting balls in the intersection.

( ) =1 ( ) (7.10)

where now := min { ( ) : = 1 2 } By Eq. (7.10) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Example 7.19. Suppose = {1 2 3} and E = { {1 2} {1 3}} see Figure
7.2 below.

Fig. 7.2. A collection of subsets.

Then

(E) = { {1} {1 2} {1 3}}
A(E) = (E) = P( )

Definition 7.20. Let be a set. We say that a family of sets F P( ) is
a partition of if is the disjoint union of the sets in F
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Example 7.21. Let be a set and E = { 1 } where 1 is a
partition of In this case

A(E) = (E) = (E) = { : {1 2 }}
where := when = Notice that

#A(E) = #(P({1 2 })) = 2
Proposition 7.22. Suppose that M P( ) is a — algebra and M is at
most a countable set. Then there exists a unique finite partition F of such
that F M and every element M is of the form

= { F : } (7.11)

In particularM is actually a finite set.

Proof. For each let

= ( M ) M
That is, is the smallest set in M which contains Suppose that =

is non-empty. If then \ M and hence \
which shows that = which is a contradiction. Hence and
similarly therefore = and =
which shows that = Therefore, F = { : } is a partition of
(which is necessarily countable) and Eq. (7.11) holds for all M Let

F = { } =1 where for the moment we allow = If = then M
is one to one correspondence with {0 1}N Indeed to each {0 1}N let

M be defined by
= { : = 1}

This shows thatM is uncountable since {0 1}N is uncountable; think of the
base two expansion of numbers in [0 1] for example. Thus any countable
— algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 7.23. Let = R and

E = {( ) : R} {R } = {( ) R : R̄} P(R)
Notice that E = E and that E is closed under unions, which shows that
(E) = E , i.e. E is already a topology. Since ( ) = ( ] we find that
E = {( ) ( ] } {R }. Noting that

( ) ( ] = ( ]

it is easy to verify that the algebra A(E) generated by E may be described as
being those sets which are finite disjoint unions of sets from the following list
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Ẽ := ©( ] R : R̄
ª

(This follows from Proposition 7.14 and the fact that Ẽ is an elementary family
of subsets of R ) The — algebra, (E) generated by E is very complicated.
Here are some sets in (E) — most of which are not in A(E)

(a) ( ) =
S

=1
( 1 ] (E)

(b) All of the standard open subsets of R are in (E)
(c) { } = T¡ 1

¤

(E)
(d) [ ] = { } ( ] (E)
(e) Any countable subset of R is in (E).
Remark 7.24. In the above example, one may replace E by E = {( ) :
Q} {R } in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{( ) ( ] ( ] : Q} { R}

This shows that A(E) is a countable set — a fact we will use later on.
Definition 7.25. A topological space, ( ) is second countable if there
exists a countable base V for i.e. V is a countable set such that for
every

= { : V 3 }
Exercise 7.26. Suppose E P( ) is a countable collection of subsets of
then = (E) is a second countable topology on
Proposition 7.27. Every separable metric space, ( ) is second countable.

Proof. Let { } =1 be a countable dense subset of . Let V
{ } S

=1
{ ( )} , where { } =1 is dense in (0 ). Then V is

a countable base for To see this let be open and . Choose
0 such that ( ) and then choose ( 3) Choose near

3 such that ( ) 3 so that ( ) . This shows
=
S { ( ) : ( ) }

Notation 7.28 For a general topological space ( ), the Borel — algebra
is the — algebra, B = ( ) We will use BR to denote the Borel - algebra
on R

Proposition 7.29. If is a second countable topology on and E P( )
is a countable set such that = (E) then B := ( ) = (E) i.e. ( (E)) =
(E)
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Proof. Let E denote the collection of subsets of which are finite in-
tersection of elements from E along with and Notice that E is still
countable (you prove). A set is in (E) i is an arbitrary union of sets
from E Therefore =

S

F
for some subset F E which is necessarily

countable. Since E (E) and (E) is closed under countable unions it fol-
lows that (E) and hence that (E) (E) For the last assertion, since
E (E) (E) it follows that (E) ( (E)) (E)
Exercise 7.30. Verify the following identities

BR = ({( ) : R} = ({( ) : Q}
= ({[ ) : Q})

7.4 Continuous and Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose ( M ) is a measure
space and : R+. Roughly speaking, in the next section we are going
to define

R

by

Z

= lim
mesh 0

X

0 1 2 3

( 1( +1])

For this to make sense we will need to require 1(( ]) M for all
Because of Lemma 7.37 below, this last condition is equivalent to the condition

1(BR) M
where we are using the following notation.

Notation 7.31 If : is a function and E P( ) let

1E 1 (E) { 1( )| E}
If G P( ) let

G { P( )| 1( ) G}
Exercise 7.32. Show 1E and G are — algebras (topologies) provided E
and G are — algebras (topologies).

Definition 7.33. Let ( M) and ( F) be measurable (topological) spaces. A
function : is measurable (continuous) if 1(F) M. We will
also say that is M F — measurable (continuous) or (M F) — measurable
(continuous).
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Example 7.34 (Characteristic Functions). Let ( M) be a measurable space
and We define the characteristic function 1 : R by

1 ( ) =

½

1 if
0 if

If M then 1 is (M P(R)) — measurable because 1 1( ) is either
or for any R Conversely, if F is any — algebra on R containing

a set R such that 1 and 0 then M if 1 is (M F) —
measurable. This is because = 1 1( ) M
Remark 7.35. Let : be a function. Given a — algebra (topology)
F P( ) the — algebra (topology) M := 1(F) is the smallest —
algebra (topology) on such that is (M F) - measurable (continuous).
Similarly, ifM is a - algebra (topology) on then F = M is the largest
— algebra (topology) on such that is (M F) - measurable (continuous).

Lemma 7.36. Suppose that ( M) ( F) and ( G) are measurable (topo-
logical) spaces. If : ( M) ( F) and : ( F) ( G) are measurable
(continuous) functions then : ( M) ( G) is measurable (continu-
ous) as well.

Proof. This is easy since by assumption 1(G) F and 1 (F) M
so that

( ) 1 (G) = 1
¡

1 (G)¢ 1 (F) M

Lemma 7.37. Suppose that : is a function and E P( ) then
¡

1(E)¢ = 1( (E)) and (7.12)
¡

1(E)¢ = 1( (E)) (7.13)

Moreover, if F = (E) (or F = (E)) and M is a — algebra (topology) on
then is (M F) — measurable (continuous) i 1(E) M
Proof. We will prove Eq. (7.12), the proof of Eq. (7.13) being analogous.

If E F then 1(E) 1( (E)) and therefore, (because 1( (E)) is a
— algebra)

G := ( 1(E)) 1( (E))
which proves half of Eq. (7.12). For the reverse inclusion notice that

G = © : 1( ) Gª

is a — algebra which contains E and thus (E) G Hence if (E) we
know that 1( ) G i.e. 1( (E)) G The last assertion of the Lemma
is an easy consequence of Eqs. (7.12) and (7.13). For example, if 1E M
then 1 (E) = ¡

1E¢ M which shows is (M F) — measurable.
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Definition 7.38. A function : between to topological spaces is
Borel measurable if 1(B ) B .

Proposition 7.39. Let and be two topological spaces and : be
a continuous function. Then is Borel measurable.

Proof. Using Lemma 7.37 and B = ( )

1(B ) = 1( ( )) = ( 1( )) ( ) = B

Corollary 7.40. Suppose that ( M) is a measurable space. Then :
R is (M BR) — measurable i 1(( )) M for all R i 1(( ))
M for all Q i 1(( ]) M for all R etc. Similarly, if ( M)
is a topological space, then : R is (M R) - continuous i 1(( ))
M for all i 1(( )) M and 1(( )) M for
all Q (We are using R to denote the standard topology on R induced
by the metric ( ) = | | )
Proof. This is an exercise (Exercise 7.71) in using Lemma 7.37.
We will often deal with functions : R̄ = R {± } Let

BR̄ := ({[ ] : R}) (7.14)

The following Corollary of Lemma 7.37 is a direct analogue of Corollary 7.40.

Corollary 7.41. : R̄ is (M BR̄) - measurable i 1(( ]) M
for all R i 1(( ]) M for all R etc.

Proposition 7.42. Let BR and BR̄ be as above, then
BR̄ = { R̄ : R BR} (7.15)

In particular { } { } BR̄ and BR BR̄
Proof. Let us first observe that

{ } = =1[ ) = =1[ ] BR̄
{ } = =1[ ] BR̄ and R = R̄\ {± } BR̄

Letting : R R̄ be the inclusion map,
1 (BR̄) =

¡

1
¡©

[ ] : R̄
ª¢¢

=
¡©

1 ([ ]) : R̄
ª¢

=
¡©

[ ] R : R̄
ª¢

= ({[ ) : R}) = BR
Thus we have shown

BR = 1 (BR̄) = { R : BR̄}
This implies:
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1. BR̄ = R BR and
2. if R̄ is such that R BR there exists BR̄ such that R =

R Because {± } and { } { } BR̄ we may conclude
that BR̄ as well.
This proves Eq. (7.15).

Proposition 7.43 (Closure under sups, infs and limits). Suppose that
( M) is a measurable space and : ( M) R is a sequence ofM BR —
measurable functions. Then

sup inf lim sup and lim inf

are all M BR — measurable functions. (Note that this result is in generally
false when ( M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define +( ) := sup ( ) then

{ : +( ) } = { : ( ) }
= { : ( ) } M

so that + is measurable. Similarly if ( ) = inf ( ) then

{ : ( ) } = { : ( ) } M
Since

lim sup = inf sup { : } and

lim inf = sup inf { : }

we are done by what we have already proved.

7.4.1 More general pointwise limits

Lemma 7.44. Suppose that ( M) is a measurable space, ( ) is a metric
space and : is (M B ) — measurable for all Also assume that for
each ( ) = lim ( ) exists. Then : is also (M B ) —
measurable.

Proof. Let and := { : ( ) 1 } for = 1 2
Then

¯ { : ( ) 1 }
for all and as The proof will be completed by verifying
the identity,
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1( ) = =1 =1
1( ) M

If 1( ) then ( ) and hence ( ) for some Since ( )
( ) ( ) for almost all That is =1 =1

1( )
Conversely when =1 =1

1( ) there exists an such that
( ) ¯ for almost all Since ( ) ( ) ¯ it follows

that 1( )

Remark 7.45. In the previous Lemma 7.44 it is possible to let ( ) be any
topological space which has the “regularity” property that if there exists

such that ¯ and = =1 Moreover, some extra
condition is necessary on the topology in order for Lemma 7.44 to be correct.
For example if = {1 2 3} and = { {1 2} {2 3} {2}} as in Example
2.35 and = { } with the trivial — algebra. Let ( ) = ( ) = 2 for all
then is constant and hence measurable. Let ( ) = 1 and ( ) = 2 then

as with being non-measurable. Notice that the Borel —
algebra on is P( )

7.5 Topologies and — Algebras Generated by Functions

Definition 7.46. Let E P( ) be a collection of sets, :
be the inclusion map ( ( ) = ) for all and

E = 1(E) = { : E}
When E = is a topology or E =M is a — algebra we call the relative
topology andM the relative — algebra on

Proposition 7.47. Suppose that M P( ) is a — algebra and
P( ) is a topology, then M P( ) is a — algebra and P( )

is a topology. Moreover if E P( ) is such that M = (E) ( = (E)) then
M = (E ) ( = (E ))

Proof. The first assertion is Exercise 7.32 and the second assertion is a
consequence of Lemma 7.37. Indeed,

M = 1(M) = 1( (E)) = ( 1(E)) = (E )

and similarly

= 1( ) = 1( (E)) = ( 1(E)) = (E )

Example 7.48. Suppose that ( ) is a metric space and is a set. Let
= and := | × be the metric restricted to Then = i.e.

the relative topology, , of on is the same as the topology induced by
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the restriction of the metric to Indeed, if there exists
such that = Therefore for all there exists 0 such that
( ) and hence ( ) Since ( ) = ( ) is a —

ball in this shows is — open, i.e. Conversely, if
then for each there exists 0 such that ( ) = ( )
Therefore = with := ( ) This shows

Definition 7.49. Let : C be a function, M P( ) be a
— algebra and P( ) be a topology, then we say that | is measurable
(continuous) if | isM — measurable ( continuous).

Proposition 7.50. Let : C be a function,M P( ) be a
— algebra and P( ) be a topology. If isM — measurable ( continuous)
then | is M measurable ( continuous). Moreover if M ( )
such that = =1 and | is M measurable ( continuous) for
all then isM — measurable ( continuous).

Proof. Notice that is (M M) — measurable ( ) — continuous)
hence | = is M measurable ( — continuous). Let C be a
Borel set and consider

1( ) = =1

¡

1( )
¢

= =1 | 1( )

If M ( ) then it is easy to check that

M = { M : } M and

= { : }
The second assertion is now an easy consequence of the previous three equa-
tions.

Definition 7.51. Let and be sets, and suppose for we are give a
measurable (topological) space ( F ) and a function : We will
write ( : ) ( ( : )) for the smallest -algebra (topology) on
such that each is measurable (continuous), i.e.

( : ) = ( 1(F )) and

( : ) = ( 1(F )).

Proposition 7.52. Assuming the notation in Definition 7.51 and addition-
ally let ( M) be a measurable (topological) space and : be a
function. Then is (M ( : )) — measurable ((M ( : )) —
continuous) i is (M F )—measurable (continuous) for all

Proof. ( ) If is (M ( : )) — measurable, then the composition
is (M F ) — measurable by Lemma 7.36.

( ) Let
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G = ( : ) =
¡

1(F )
¢

If is (M F ) — measurable for all then

1 1(F ) M

and therefore

1
¡

1(F )
¢

= 1 1(F ) M

Hence

1 (G) = 1
¡ ¡

1(F )
¢¢

= ( 1
¡

1(F )
¢ M

which shows that is (M G) — measurable.
The topological case is proved in the same way.

7.6 Product Spaces

In this section we consider product topologies and — algebras. We will start
with a finite number of factors first and then later mention what happens for
an infinite number of factors.

7.6.1 Products with a Finite Number of Factors

Let { } =1 be a collection of sets, := 1× 2×· · ·× and :
be the projection map ( 1 2 ) = for each 1 Let us also
suppose that is a topology on andM is a — algebra on for each

Notation 7.53 Let E P( ) be a collection of subsets of for =
1 2 we will write, by abuse of notation, E1×E2×· · ·×E for the collec-
tion of subsets of 1 × · · · × of the form 1 × 2 × · · · × with E
for all That is we are identifying ( 1 2 ) with 1× 2× · · · ×
Definition 7.54. The product topology on , denoted by 1 2 · · ·
is the smallest topology on so that each map : is continuous.
Similarly, the product — algebra on , denoted byM1 M2 · · · M
is the smallest — algebra on so that each map : is measurable.

Remark 7.55. The product topology may also be described as the smallest
topology containing sets from 1 × · · · × i.e.

1 2 · · · = ( 1 × · · · × )

Indeed,
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1 2 · · · = ( 1 2 )

= (
©

=1
1( ) : for = 1 2

ª

)

= ({ 1 × 2 × · · · × : for = 1 2 })
Similarly,

M1 M2 · · · M = (M1 ×M2 × · · · ×M )

Furthermore if B is a basis for the topology for each then B1×· · ·×B
is a basis for 1 2 · · · Indeed, 1 × · · · × is closed under finite
intersections and generates 1 2 · · · therefore 1×· · ·× is a basis for
the product topology. Hence for 1 2 · · · and = ( 1 )

there exists 1 × 2 × · · · × 1 × · · · × such that

1 × 2 × · · · ×
Since B is a basis for we may now choose B such that
for each Thus

1 × 2 × · · · ×
and we have shown may be written as a union of sets from B1 × · · · × B
Since

B1 × · · · × B 1 × · · · × 1 2 · · ·
this shows B1 × · · · × B is a basis for 1 2 · · ·
Lemma 7.56. Let ( ) for = 1 be metric spaces, := 1× · · · ×

and for = ( 1 2 ) and = ( 1 2 ) in let

( ) =
X

=1

( ) (7.16)

Then the topology, associated to the metric is the product topology on
i.e.

= 1 2 · · ·
Proof. Let ( ) = max{ ( ) : = 1 2 } Then is equivalent

to and hence = Moreover if 0 and = ( 1 2 ) then

( ) = 1

1
( )× · · · × ( )

By Remark 7.18,
E := { ( ) : and 0}

is a basis for and by Remark 7.55 E is also a basis for
1 2

· · ·
Therefore,

1 2 · · · = (E) = =
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Remark 7.57. Let ( M) be a measurable (topological) space, then by Propo-
sition 7.52, a function : is measurable (continuous) i :
is (M M ) — measurable (( ) — continuous) for = 1 2 So if we write

( ) = ( 1( ) 2( ) ( )) 1 × 2 × · · · ×
then : is measurable (continuous) i : is measurable
(continuous) for all

Theorem 7.58. For = 1 2 let E P( ) be a collection of subsets
of such that E and M = (E ) (or = (E )) for = 1 2
then

M1 M2 · · · M = (E1 × E2 × · · · × E ) and
1 2 · · · = (E1 × E2 × · · · × E )

Written out more explicitly, these equations state

( (E1)× (E2)× · · · × (E )) = (E1 × E2 × · · · × E ) and (7.17)

( (E1)× (E2)× · · · × (E )) = (E1 × E2 × · · · × E ) (7.18)

Moreover if {( )} =1 is a sequence of second countable topological spaces,
= 1 2 · · · is the product topology on = 1 × · · · × then

B := ( 1 2 · · · ) = (B 1 × · · · × B )

=: B
1

· · · B
That is to say the Borel — algebra and the product — algebra on are the
same.

Proof. We will prove Eq. (7.17). The proof of Eq. (7.18) is completely
analogous. Let us first do the case of two factors. Since

E1 × E2 (E1)× (E2)
it follows that

(E1 × E2) ( (E1)× (E2)) = ( 1 2)

To prove the reverse inequality it su ces to show : 1 × 2 is
(E1 × E2) —M = (E ) measurable for = 1 2 To prove this suppose that
E1 then

1
1 ( ) = × 2 E1 × E2 (E1 × E2)

wherein we have used the fact that 2 E2 Similarly, for E2 we have
1

2 ( ) = 1 × E1 × E2 (E1 × E2)
This proves the desired measurability, and hence



7.6 Product Spaces 151

( 1 2) (E1 × E2) ( 1 2)

To prove the last assertion we may assume each E is countable for = 1 2
Since E1 × E2 is countable, a couple of applications of Proposition 7.29 along
with the first two assertions of the theorems gives

( 1 2) = ( ( 1 × 2)) = ( ( (E1)× (E2)))
= ( (E1 × E2)) = (E1 × E2) = ( (E1)× (E2))
= (M1 ×M2) =M1 M2

The proof for factors works the same way. Indeed,

E1 × E2 × · · · × E (E1)× (E2)× · · · × (E )
implies

(E1 × E2 × · · · × E ) ( (E1)× (E2)× · · · × (E ))
= ( 1 )

and for E
1( ) = 1 × 2 × · · · × 1 × × +1 · · · ×

which shows

1( ) E1 × E2 × · · · × E (E1 × E2 × · · · × E )
This show is (E1 × E2 × · · · × E ) —M = (E )measurable and therefore,

( 1 ) (E1 × E2 × · · · × E ) ( 1 )

If the E are countable, then

( 1 2 · · · ) = ( ( 1 × 2 × · · · × ))

= ( ( (E1)× (E2)× · · · × (E )))
= ( (E1 × E2 × · · · × E ))
= (E1 × E2 × · · · × E )
= ( (E1)× (E2)× · · · × (E ))
= (M1 ×M2 × · · · ×M )

=M1 M2 · · · M

Remark 7.59. One can not relax the assumption that E in Theorem 7.58.
For example, if 1 = 2 = {1 2} and E1 = E2 = {{1}} then (E1 × E2) =
{ 1 × 2 {(1 1)}} while ( (E1)× (E2)) = P( 1 × 2)
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Proposition 7.60. If ( ) are separable metric spaces for = 1
then

B
1

· · · B = B( 1×···× )

where B is the Borel — algebra on and B( 1×···× ) is the Borel —
algebra on 1 × · · · × equipped with the product topology.

Proof. This follows directly from Proposition 7.27 and Theorem 7.58.
Because all norms on finite dimensional spaces are equivalent, the usual

Euclidean norm on R ×R is equivalent to the “product” norm defined by

k( )kR ×R = k kR + k kR
Hence by Lemma 7.56, the Euclidean topology on R + is the same as the
product topology on R + = R ×R Here we are identifying R ×R with
R + by the map

( ) R ×R ( 1 1 ) R +

Proposition 7.60 and these comments leads to the following corollaries.

Corollary 7.61. After identifying R × R with R + as above and letting
BR denote the Borel —algebra on R we have

BR + = BR BR and BR =

—times
z }| {

BR · · · BR
Corollary 7.62. If ( M) is a measurable space, then

= ( 1 2 ) : R

is (M BR ) — measurable i : R is (M BR) — measurable for each
In particular, a function : C is (M BC) — measurable i Re and

Im are (M BR) — measurable.
Corollary 7.63. Let ( M) be a measurable space and : C be
(M BC) — measurable functions. Then ± and · are also (M BC) —
measurable.

Proof. Define : C×C ± : C×C C and : C×C C by
( ) = ( ( ) ( )) ±( ) = ± and ( ) = Then ± and

are continuous and hence (BC2 BC) — measurable. Also is (M BC BC) =
(M BC2) — measurable since 1 = and 2 = are (M BC) —
measurable. Therefore ± = ± and = · being the composition
of measurable functions, are also measurable.

Lemma 7.64. Let C ( M) be a measurable space and : C be a
(M BC) — measurable function. Then

( ) :=

½ 1
( ) if ( ) 6= 0
if ( ) = 0

is measurable.
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Proof. Define : C C by

( ) =

½

1 if 6= 0
if = 0

For any open set C we have

1( ) = 1( \ {0}) 1( {0})

Because is continuous except at = 0 1( \{0}) is an open set and hence
in BC Moreover, 1( {0}) BC since 1( {0}) is either the empty
set or the one point set { } Therefore 1( C) BC and hence 1(BC) =
1( ( C)) = ( 1( C)) BC which shows that is Borel measurable. Since
= is the composition of measurable functions, is also measurable.

7.6.2 General Product spaces

Definition 7.65. Suppose( M ) is a collection of measurable spaces
and let be the product space

=
Y

and : be the canonical projection maps. Then the product —
algebra,

NM is defined by

O

M ( : ) =

Ã

[

1(M )

!

Similarly if ( M ) is a collection of topological spaces, the product
topology

NM is defined by

O

M ( : ) =

Ã

[

1(M )

!

Remark 7.66. Let ( M) be a measurable (topological) space and
Ã

=
Y O

M
!

be as in Definition 7.65. By Proposition 7.52, a function : is mea-
surable (continuous) i is (M M ) — measurable (continuous) for all
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Proposition 7.67. Suppose that ( M ) is a collection of measurable
(topological) spaces and E M generatesM for each then

M =
¡

1(E )¢ ¡ ¡

1(E )¢¢ (7.19)

Moreover, suppose that is either finite or countably infinite, E for
each and M = (E ) for each Then the product — algebra
satisfies

O

M =

Ã(

Y

: E for all

)!

(7.20)

Similarly if is finite andM = (E ) then the product topology satisfies
O

M =

Ã(

Y

: E for all

)!

(7.21)

Proof.We will prove Eq. (7.19) in the measure theoretic case since a sim-
ilar proof works in the topological category. Since

S

1(E ) 1(M )

it follows that

F :=
Ã

[

1(E )
! Ã

[

1(M )

!

=
O

M

Conversely,
F ( 1(E )) = 1( (E )) = 1(M )

holds for all implies that
[

1(M ) F

and hence that
NM F .

We now prove Eq. (7.20). Since we are assuming that E for each
we see that

[

1(E )
(

Y

: E for all

)

and therefore by Eq. (7.19)

O

M =

Ã

[

1(E )
! Ã(

Y

: E for all

)!

This last statement is true independent as to whether is countable or not.
For the reverse inclusion it su ces to notice that since is countable,
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Y

= 1( )
O

M

and hence
Ã(

Y

: E for all

)!

O

M

Here is a generalization of Theorem 7.58 to the case of countable number of
factors.

Proposition 7.68. Let { } be a sequence of sets where is at most
countable. Suppose for each we are given a countable set E P( ).
Let = (E ) be the topology on generated by E and be the product
space

Q

with equipped with the product topology := (E ) Then
the Borel — algebra B = ( ) is the same as the product — algebra:

B = B
where B = ( (E )) = (E ) for all
Proof. By Proposition 7.67, the topology may be described as the small-

est topology containing E = 1(E ) Now E is the countable union of
countable sets so is still countable. Therefore by Proposition 7.29 and Propo-
sition 7.67 we have

B = ( ) = ( (E)) = (E) = (E )
= ( ) = B

Lemma 7.69. Suppose that ( F) is a measurable space and : is a
map. Then to every ( ( ) BR̄) — measurable function, from R̄ there
is a (F BR̄) — measurable function : R̄ such that =

Proof. First suppose that = 1 where ( ) = 1(BR̄) Let
BR̄ such that = 1( ) then 1 = 1 1( ) = 1 and hence the

Lemma is valid in this case with = 1 More generally if =
P

1 is a
simple function, then there exists BR̄ such that 1 = 1 and hence
= with :=

P

1 — a simple function on R̄
For general ( ( ) BR̄) — measurable function, from R̄ choose

simple functions converging to Let be simple functions on R̄ such
that = Then it follows that

= lim = lim sup = lim sup =

where := lim sup — a measurable function from to R̄
The following is an immediate corollary of Proposition 7.52 and Lemma

7.69.
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Corollary 7.70. Let and be sets, and suppose for we are give a
measurable space ( F ) and a function : Let :=

Q

F := F be the product — algebra on and M := ( : )
be the smallest -algebra on such that each is measurable. Then the
function : defined by [ ( )] := ( ) for each is (M F)
— measurable and a function : R̄ is (M BR̄) — measurable i there
exists a (F BR̄) — measurable function from to R̄ such that =

7.7 Exercises

Exercise 7.71. Prove Corollary 7.40. Hint: See Exercise 7.30.

Exercise 7.72. Folland, Problem 1.5 on p.24. If M is the — algebra gen-
erated by E P( ) then M is the union of the — algebras generated by
countable subsets F E
Exercise 7.73. Let ( M) be a measure space and : F be a sequence
of measurable functions on Show that { : lim ( ) exists} M
Exercise 7.74. Show that every monotone function : R R is (BR BR) —
measurable.

Exercise 7.75. Folland problem 2.6 on p. 48.

Exercise 7.76. Suppose that is a set, {( ) : } is a family of
topological spaces and : is a given function for all Assuming
that S is a sub-basis for the topology for each show S :=

1(S ) is a sub-basis for the topology := ( : )

Notation 7.77 Let be a set and p := { } =0 be a family of semi-metrics
on i.e. : × [0 ) are functions satisfying the assumptions
of metric except for the assertion that ( ) = 0 implies = Further
assume that ( ) +1( ) for all and if ( ) = 0 for all N
then = Given N and let

( ) := { : ( ) }
We will write (p) form the smallest topology on such that ( ·) :
[0 ) is continuous for all N and i.e. (p) := ( ( ·) : N
and )

Exercise 7.78. Using Notation 7.77, show that collection of balls,

B := { ( ) : N and 0}
forms a basis for the topology (p) Hint: Use Exercise 7.76 to show B is a
sub-basis for the topology (p) and then use Exercise 7.17 to show B is in
fact a basis for the topology (p)
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Exercise 7.79. Using the notation in 7.77, let

( ) =
X

=0

2
( )

1 + ( )

Show is a metric on and = (p) Conclude that a sequence { } =1

converges to i

lim ( ) = 0 for all N

Exercise 7.80. Let {( )} =1 be a sequence of metric spaces, :=
Q

=1 and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X

=1

2
( ( ) ( ))

1 + ( ( ) ( ))

(See Exercise 2.107.) Moreover, let : be the projection maps, show

= =1 := ({ : N})

That is show the — metric topology is the same as the product topology on
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Measures and Integration

Definition 8.1. A measure on a measurable space ( M) is a function
:M [0 ] such that

1. ( ) = 0 and
2. (Finite Additivity) If { } =1 M are pairwise disjoint, i.e. =
when 6= then

(
[

=1

) =
X

=1

( )

3. (Continuity) If M and then ( ) ( )

We call a triple ( M ) where ( M) is a measurable space and :
M [0 ] is a measure, a measure space.

Remark 8.2. Properties 2) and 3) in Definition 8.1 are equivalent to the fol-
lowing condition. If { } =1 M are pairwise disjoint then

(
[

=1

) =
X

=1

( ) (8.1)

To prove this suppose that Properties 2) and 3) in Definition 8.1 and

{ } =1 M are pairwise disjoint. Let :=
S

=1
:=

S

=1
so that

( )
(3)
= lim ( )

(2)
= lim

X

=1

( ) =
X

=1

( )

Conversely, if Eq. (8.1) holds we may take = for all to see that
Property 2) of Definition 8.1 holds. Also if let := \ 1 Then
{ } =1 are pairwise disjoint, = =1 and = =1 So if Eq. (8.1)
holds we have
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( ) =
¡

=1

¢

=
X

=1

( )

= lim
X

=1

( ) = lim ( =1 ) = lim ( )

Proposition 8.3 (Basic properties of measures). Suppose that ( M )
is a measure space and M and { } =1 M then :

1. ( ) ( ) if
2. ( )

P

( )
3. If ( 1) and , i.e. 1 2 3 and = then

( ) ( ) as

Proof.

1. Since = ( \ )

( ) = ( ) + ( \ ) ( )

2. Let e = \ ( 1 · · · 1) so that the ˜ ’s are pair-wise disjoint and
= e Since ˜ it follows from Remark 8.2 and part (1) that

( ) =
X

( e )
X

( )

3. Define 1 \ then 1 \ which implies that

( 1) ( ) = lim ( ) = ( 1) lim ( )

which shows that lim ( ) = ( ).

Definition 8.4. A set is a null set if M and ( ) = 0. If is
some “property” which is either true or false for each we will use the
terminology a.e. (to be read almost everywhere) to mean

:= { : is false for }

is a null set. For example if and are two measurable functions on
( M ) = a.e. means that ( 6= ) = 0

Definition 8.5. A measure space ( M ) is complete if every subset of a
null set is in M, i.e. for all such that M with ( ) = 0
implies that M.
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N
F

A

Fig. 8.1. Completing a — algebra.

Proposition 8.6. Let ( M ) be a measure space. Set

N { : M 3 and ( ) = 0}
and

M̄ = { : M M}
see Fig. 8.1. Then M̄ is a -algebra. Define ¯( ) = ( ), then ¯ is the
unique measure on M̄ which extends .

Proof. Clearly M̄.
Let M and N and choose M such that and

( ) = 0. Since = ( \ )

( ) = = ( \ )

= [ ( \ )] [ ]

where [ ( \ )] N and [ ] M Thus M̄ is closed under
complements.
If M and M such that ( ) = 0 then ( ) =

( ) ( ) M̄ since M and and ( )
P

( ) =
0 Therefore, M̄ is a -algebra.
Suppose 1 = 2 with M and 1 2 N . Then

1 1 2 = 2 which shows that

( ) ( ) + ( 2) = ( )

Similarly, we show that ( ) ( ) so that ( ) = ( ) and hence ¯(
) := ( ) is well defined. It is left as an exercise to show ¯ is a measure,

i.e. that it is countable additive.
Many theorems in the sequel will require some control on the size of a

measure The relevant notion for our purposes (and most purposes) is that
of a — finite measure defined next.
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Definition 8.7. Suppose is a set, E M P( ) and : M [0 ]
is a function. The function is — finite on E if there exists E such
that ( ) and = =1 IfM is a — algebra and is a measure
on M which is — finite on M we will say ( M ) is a -finite measure
space.

The reader should check that if is a finitely additive measure on an
algebra, M then is — finite on M i there exists M such that

and ( )

8.1 Example of Measures

Most — algebras and -additive measures are somewhat di cult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F P( ) is a countable or finite partition of andM P( )
is the — algebra which consists of the collection of sets such that

= { F : } (8.2)

It is easily seen thatM is a — algebra.
Any measure :M [0 ] is determined uniquely by its values on F

Conversely, if we are given any function : F [0 ] we may define, for
M

( ) =
X

F3
( ) =

X

F
( )1

where 1 is one if and zero otherwise. We may check that is a
measure onM Indeed, if =

`

=1 and F then i for
one and hence exactly one Therefore 1 =

P

=1 1 and hence

( ) =
X

F
( )1 =

X

F
( )

X

=1

1

=
X

=1

X

F
( )1 =

X

=1

( )

as desired. Thus we have shown that there is a one to one correspondence
between measures onM and functions : F [0 ]
We will leave the issue of constructing measures until Sections 12 and 13.

However, let us point out that interesting measures do exist. The following
theorem may be found in Theorem 12.37 or see Section 12.8.1.

Theorem 8.8. To every right continuous non-decreasing function : R R
there exists a unique measure on BR such that

(( ]) = ( ) ( ) (8.3)
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Moreover, if BR then

( ) = inf

(

X

=1

( ( ) ( )) : =1( ]

)

(8.4)

= inf

(

X

=1

( ( ) ( )) :
a

=1

( ]

)

(8.5)

In fact the map is a one to one correspondence between right con-
tinuous functions with (0) = 0 on one hand and measures on BR such
that ( ) on any bounded set BR on the other.
Example 8.9. The most important special case of Theorem 8.8 is when ( ) =
in which case we write for The measure is called Lebesgue measure.

Theorem 8.10. Lebesgue measure is invariant under translations, i.e. for
BR and R

( + ) = ( ) (8.6)

Moreover, is the unique measure on BR such that ((0 1]) = 1 and Eq.
(8.6) holds for BR and R Moreover, has the scaling property

( ) = | | ( ) (8.7)

where R, BR and := { : }
Proof. Let ( ) := ( + ) then one easily shows that is a

measure on BR such that (( ]) = for all Therefore, =
by the uniqueness assertion in Theorem 8.8.
For the converse, suppose that is translation invariant and ((0 1]) = 1

Given N we have

(0 1] = =1(
1

] = =1

µ

1
+ (0

1
]

¶

Therefore,

1 = ((0 1]) =
X

=1

µ

1
+ (0

1
]

¶

=
X

=1

((0
1
]) = · ((0

1
])

That is to say

((0
1
]) = 1

Similarly, ((0 ]) = for all N and therefore by the translation
invariance of
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(( ]) = for all Q with

Finally for R such that choose Q such that and
then ( ] ( ] and thus

(( ]) = lim (( ]) = lim ( ) =

i.e. is Lebesgue measure.
To prove Eq. (8.7) we may assume that 6= 0 since this case is trivial to

prove. Now let ( ) := | | 1 ( ) It is easily checked that is again a
measure on BR which satisfies

(( ]) = 1 (( ]) = 1( ) =

if 0 and

(( ]) = | | 1 ([ )) = | | 1 ( ) =

if 0 Hence =
We are now going to develope integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, will be an extension of
the standard Riemann integral on R

8.2 Integrals of Simple functions

Let ( M ) be a fixed measure space in this section.

Definition 8.11. A function : F is a simple function if is M
— BR measurable and ( ) is a finite set. Any such simple functions can be
written as

=
X

=1

1 with M and F (8.8)

Indeed, let 1 2 be an enumeration of the range of and =
1({ }) Also note that Eq. (8.8) may be written more intrinsically as

=
X

F

1 1({ })

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 8.12 (Approximation Theorem). Let : [0 ] be mea-
surable and define
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( )
22 1
X

=0
2
1 1(( 2

+1
2 ])( ) + 2 1 1((2 ])( )

=
22 1
X

=0
2
1{ 2 +1

2 }( ) + 2 1{ 2 }( )

then for all ( ) ( ) for all and uniformly on
the sets := { : ( ) } with Moreover, if :
C is a measurable function, then there exists simple functions such that
lim ( ) = ( ) for all and | | | | as
Proof. It is clear by construction that ( ) ( ) for all and that

0 ( ) ( ) 2 if 2 From this it follows that ( ) ( ) for
all and uniformly on bounded sets.
Also notice that

(
2

+ 1

2
] = (

2

2 +1

2 + 2

2 +1
]

= (
2

2 +1

2 + 1

2 +1
] (

2 + 1

2 +1

2 + 2

2 +1
]

and for 1
¡

( 2
2 +1

2 +1
2 +1 ]

¢

( ) = +1( ) =
2
2 +1 and for

1
¡

( 2 +1
2 +1

2 +2
2 +1 ]

¢

( ) = 2
2 +1

2 +1
2 +1 = +1( ) Similarly

(2 ] = (2 2 +1] (2 +1 ]

so for 1((2 +1 ]) ( ) = 2 2 +1 = +1( ) and for
1((2 2 +1]) +1( ) 2 = ( ) Therefore +1 for all and

we have completed the proof of the first assertion.
For the second assertion, first assume that : R is a measurable

function and choose ± to be simple functions such that ± ± as
and define = + Then

| | = + + +
+1 + +1 = | +1|

and clearly | | = ++ ++ = | | and = +
+ =

as
Now suppose that : C is measurable. We may now choose simple

function and such that | | |Re | | | |Im | Re and
Im as Let = + then

| |2 = 2 + 2 |Re |2 + |Im |2 = | |2

and = + Re + Im = as
We are now ready to define the Lebesgue integral. We will start by inte-

grating simple functions and then proceed to general measurable functions.
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Definition 8.13. Let F = C or [0 ) and suppose that : F is a simple
function. If F = C assume further that ( 1({ })) for all 6= 0 in C
For such functions define ( ) by

( ) =
X

F

( 1({ }))

Proposition 8.14. Let F and and be two simple functions, then
satisfies:

1.
( ) = ( ) (8.9)

2.
( + ) = ( ) + ( )

3. If and are non-negative simple functions such that then

( ) ( )

Proof. Let us write { = } for the set 1({ }) and ( = ) for
({ = }) = ( 1 ({ })) so that

( ) =
X

C

( = )

We will also write { = = } for 1({ }) 1({ }) This notation is
more intuitive for the purposes of this proof. Suppose that F then

( ) =
X

F

( = ) =
X

F

( = )

=
X

F

( = ) = ( )

provided that 6= 0 The case = 0 is clear, so we have proved 1.
Suppose that and are two simple functions, then

( + ) =
X

F

( + = )

=
X

F

( F { = = })

=
X

F

X

F

( = = )

=
X

F

( + ) ( = = )

=
X

F

( = ) +
X

F

( = )

= ( ) + ( )
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which proves 2.
For 3. if and are non-negative simple functions such that

( ) =
X

0

( = ) =
X

0

( = = )

X

0

( = = ) =
X

0

( = ) = ( )

wherein the third inequality we have used { = = } = if

8.3 Integrals of positive functions

Definition 8.15. Let + = { : [0 ] : is measurable}. Define
Z

= sup { ( ) : is simple and }

Because of item 3. of Proposition 8.14, if is a non-negative simple function,
R

= ( ) so that
R

is an extension of We say the + is
integrable if

R

Remark 8.16. Notice that we still have the monotonicity property: 0
then

Z

= sup { ( ) : is simple and }

sup { ( ) : is simple and }
Z

Similarly if 0
Z

=

Z

Also notice that if is integrable, then ({ = }) = 0
Lemma 8.17. Let be a set and : [0 ] be a function, let =
P

( ) onM = P( ) i.e.

( ) =
X

( )

If : [0 ] is a function (which is necessarily measurable), then
Z

=
X
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Proof. Suppose that : [0 ] is a simple function, then =
P

[0 ] 1 1({ }) and

X

=
X

( )
X

[0 ]

1 1({ })( ) =
X

[0 ]

X

( )1 1({ })( )

=
X

[0 ]

( 1({ })) =
Z

So if : [0 ) is a simple function such that then
Z

=
X X

Taking the sup over in this last equation then shows that
Z

X

For the reverse inequality, let be a finite set and (0 )
Set ( ) = min { ( )} and let be the simple function given by

( ) := 1 ( ) ( ) Because ( ) ( )

X

=
X

=

Z Z

Since as we may let in this last equation to concluded
that

X

Z

and since is arbitrary we learn that

X

Z

Theorem 8.18 (Monotone Convergence Theorem). Suppose +

is a sequence of functions such that ( is necessarily in +) then
Z Z

as

Proof. Since for all
Z Z Z
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from which if follows
R

is increasing in and

lim

Z Z

(8.10)

For the opposite inequality, let be a simple function such that 0
and let (0 1) By Proposition 8.14,

Z Z

1

Z

=

Z

(8.11)

Write =
P

1 with 0 and M then

lim

Z

= lim
X

Z

1 =
X

( )

=
X

lim ( )

=
X

( ) =

Z

Using this we may let in Eq. (8.11) to conclude

lim

Z

lim

Z

=

Z

Because this equation holds for all simple functions 0 form the
definition of

R

we have lim
R R

Since (0 1) is arbitrary,

lim
R R

which combined with Eq. (8.10) proves the theorem.

The following simple lemma will be use often in the sequel.

Lemma 8.19 (Chebyshev’s Inequality). Suppose that 0 is a measur-
able function, then for any 0

( )
1
Z

(8.12)

In particular if
R

then ( = ) = 0 (i.e. a.e.) and the
set { 0} is — finite.

Proof. Since 1{ } 1{ } 1 1

( ) =

Z

1{ }

Z

1{ }
1 1

Z

If :=
R

then

( = ) ( ) 0 as

and { 1 } { 0} with ( 1 ) for all
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Corollary 8.20. If + is a sequence of functions then
Z

X

=
X

Z

In particular, if
P

R

then
P

a.e.

Proof. First o we show that
Z

( 1 + 2) =

Z

1 +

Z

2

by choosing non-negative simple function and such that 1 and
2 Then ( + ) is simple as well and ( + ) ( 1+ 2) so by the

monotone convergence theorem,
Z

( 1 + 2) = lim

Z

( + ) = lim

µ
Z

+

Z
¶

= lim

Z

+ lim

Z

=

Z

1 +

Z

2

Now to the general case. Let
P

=1
and =

P

1
then and so

again by monotone convergence theorem and the additivity just proved,

X

=1

Z

:= lim
X

=1

Z

= lim

Z

X

=1

= lim

Z

=

Z

=
X

=1

Z

Remark 8.21. It is in the proof of this corollary (i.e. the linearity of the in-
tegral) that we really make use of the assumption that all of our functions
are measurable. In fact the definition

R

makes sense for all functions
: [0 ] not just measurable functions. Moreover the monotone conver-

gence theorem holds in this generality with no change in the proof. However,
in the proof of Corollary 8.20, we use the approximation Theorem 8.12 which
relies heavily on the measurability of the functions to be approximated.

The following Lemma and the next Corollary are simple applications of
Corollary 8.20.

Lemma 8.22 (First Borell-Carnteli- Lemma.). Let ( M ) be a mea-
sure space, M and set

{ i.o.} = { : for infinitely many ’s} =
\

=1

[

If
P

=1 ( ) then ({ i.o.}) = 0.
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Proof. (First Proof.) Let us first observe that

{ i.o.} =
(

:
X

=1

1 ( ) =

)

Hence if
P

=1 ( ) then

X

=1

( ) =
X

=1

Z

1 =

Z

X

=1

1

implies that
P

=1
1 ( ) for - a.e. That is to say ({ i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof
of this fact:

( i.o.) = lim
[

lim
X

( )

and the last limit is zero since
P

=1 ( )

Corollary 8.23. Suppose that ( M ) is a measure space and { } =1

M is a collection of sets such that ( ) = 0 for all 6= then

( =1 ) =
X

=1

( )

Proof. Since

( =1 ) =

Z

1
=1

and

X

=1

( ) =

Z

X

=1

1

it su ces to show
X

=1

1 = 1
=1

— a.e. (8.13)

Now
P

=1 1 1
=1

and
P

=1 1 ( ) 6= 1
=1

( ) i for
some 6= that is

(

:
X

=1

1 ( ) 6= 1
=1

( )

)

=

and the later set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (8.13) and hence the corollary.
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Example 8.24. Suppose ([ ] [0 )) and be
Lebesgue measure on R Also let = { = 0 1 · · · = } be a
sequence of refining partitions (i.e. +1 for all ) such that

mesh( ) := max{¯¯ +1
1

¯

¯ : = 1 } 0 as

For each let

( ) = ( )1{ } +
1

X

=0

min
©

( ) : +1

ª

1( +1]
( )

then as and so by the monotone convergence theorem,
Z

:=

Z

[ ]

= lim

Z

= lim
X

=0

min
©

( ) : +1

ª ¡

( +1]
¢

=

Z

( )

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Example 8.25. For all 0
R

0
( ) = 1 and

R

R
1

1+ 2 ( ) =
The proof of these equations are similar. By the monotone convergence

theorem, Example 8.24 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.40 below),

Z

0

( ) = lim

Z

0

( ) = lim

Z

0

= lim
1 |0 = 1

and
Z

R

1

1 + 2
( ) = lim

Z

1

1 + 2
( ) = lim

Z

1

1 + 2

= tan 1( ) tan 1( ) =

Let us also consider the functions
Z

(0 1]

1
( ) = lim

Z 1

0

1( 1 1]( )
1

( )

= lim

Z 1

1

1
= lim

+1

1

¯

¯

¯

¯

1

1

=

½ 1
1 if 1

if 1
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If = 1 we find

Z

(0 1]

1
( ) = lim

Z 1

1

1
= lim ln( )|11 =

Example 8.26. Let { } =1 be an enumeration of the points in Q [0 1] and
define

( ) =
X

=1

2
1

p| |
with the convention that

1
p| | = 5 if =

Since, By Theorem 8.40,

Z 1

0

1
p| | =

Z 1 1
+

Z

0

1

= 2 |1 2 |0 = 2
¡

1
¢

4

we find
Z

[0 1]

( ) ( ) =
X

=1

2

Z

[0 1]

1
p| |

X

=1

2 4 = 4

In particular, ( = ) = 0 i.e. that for almost every [0 1] and
this implies that

X

=1

2
1

p| | for a.e. [0 1]

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0 1]

Proposition 8.27. Suppose that 0 is a measurable function. Then
R

= 0 i = 0 a.e. Also if 0 are measurable functions such that
a.e. then

R R

In particular if = a.e. then
R

=
R

Proof. If = 0 a.e. and is a simple function then = 0 a.e.
This implies that ( 1({ })) = 0 for all 0 and hence

R

= 0 and
therefore

R

= 0
Conversely, if

R

= 0 then by Chebyshev’s Inequality (Lemma 8.19),

( 1 )

Z

= 0 for all
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Therefore, ( 0)
P

=1 ( 1 ) = 0 i.e. = 0 a.e.
For the second assertion let be the exceptional set where i.e.
:= { : ( ) ( )} By assumption is a null set and 1 1

everywhere. Because = 1 + 1 and 1 = 0 a.e.
Z

=

Z

1 +

Z

1 =

Z

1

and similarly
R

=
R

1 Since 1 1 everywhere,
Z

=

Z

1

Z

1 =

Z

Corollary 8.28. Suppose that { } is a sequence of non-negative functions
and is a measurable function such that o a null set, then

Z Z

as

Proof. Let be a null set such that 1 1 as Then
by the monotone convergence theorem and Proposition 8.27,

Z

=

Z

1

Z

1 =

Z

as

Lemma 8.29 (Fatou’s Lemma). If : [0 ] is a sequence of mea-
surable functions then

Z

lim inf lim inf

Z

Proof. Define inf so that lim inf as Since

for all
Z Z

for all

and therefore
Z

lim inf

Z

for all

We may now use the monotone convergence theorem to let to find
Z

lim inf =

Z

lim
MCT
= lim

Z

lim inf

Z
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8.4 Integrals of Complex Valued Functions

Definition 8.30. A measurable function : R̄ is integrable if +

1{ 0} and = 1{ 0} are integrable. We write 1 for the space of
integrable functions. For 1 let

Z

=

Z

+

Z

Convention: If : R̄ are two measurable functions, let +
denote the collection of measurable functions : R̄ such that ( ) =
( )+ ( ) whenever ( )+ ( ) is well defined, i.e. is not of the form
or + We use a similar convention for Notice that if 1

and 1 2 + then 1 = 2 a.e. because | | and | | a.e.

Remark 8.31. Since
± | | + +

a measurable function is integrable i
R | | If 1 and

= a.e. then ± = ± a.e. and so it follows from Proposition 8.27 that
R

=
R

In particular if 1 we may define
Z

( + ) =

Z

where is any element of +

Proposition 8.32. The map

1

Z

R

is linear and has the monotonicity property:
R R

for all 1

such that a.e.

Proof. Let 1 and R By modifying and on a null set, we
may assume that are real valued functions. We have + 1 because

| + | | || |+ | | | | 1

If 0 then
( )+ = and ( ) = +

so that
Z

=

Z

+

Z

+ = (

Z

+

Z

) =

Z

A similar calculation works for 0 and the case = 0 is trivial so we have
shown that
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Z

=

Z

Now set = + Since = +

+ = + + +

or
+ + + = + + + +

Therefore,
Z

+ +

Z

+

Z

=

Z

+

Z

+ +

Z

+

and hence
Z

=

Z

+

Z

=

Z

+ +

Z

+

Z Z

=

Z

+

Z

Finally if + = = + then + + + + which
implies that

Z

+ +

Z Z

+ +

Z

or equivalently that
Z

=

Z

+

Z Z

+

Z

=

Z

The monotonicity property is also a consequence of the linearity of the in-
tegral, the fact that a.e. implies 0 a.e. and Proposition 8.27.

Definition 8.33. A measurable function : C is integrable if
R | | again we write 1 Because, max (|Re | |Im |) | |
2max (|Re | |Im |) R | | i

Z

|Re | +

Z

|Im |

For 1 define
Z

=

Z

Re +

Z

Im

It is routine to show the integral is still linear on the complex 1 (prove!).

Proposition 8.34. Suppose that 1 then
¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| |
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Proof. Start by writing
R

= . Then using the monotonicity in
Proposition 8.27,

¯

¯

¯

¯

Z

¯

¯

¯

¯

= =

Z

=

Z

=

Z

Re
¡ ¢

Z

¯

¯Re
¡ ¢

¯

¯

Z

| |

Proposition 8.35. 1 then

1. The set { 6= 0} is -finite, in fact {| | 1 } { 6= 0} and (| | 1 )
for all .

2. The following are equivalent
a)
R

=
R

for all M
b)
R | | = 0

c) = a.e

Proof. 1. By Chebyshev’s inequality, Lemma 8.19,

(| | 1
)

Z

| |

for all
2. (a) = (c) Notice that

Z

=

Z Z

( ) = 0

for all M. Taking = {Re( ) 0} and using 1 Re( ) 0 we
learn that

0 = Re

Z

( ) =

Z

1 Re( ) = 1 Re( ) = 0 a.e.

This implies that 1 = 0 a.e. which happens i

({Re( ) 0}) = ( ) = 0

Similar (Re( ) 0) = 0 so that Re( ) = 0 a.e. Similarly, Im( ) = 0
a.e and hence = 0 a.e., i.e. = a.e.
(c) = (b) is clear and so is (b) = (a) since

¯

¯

¯

¯

Z Z

¯

¯

¯

¯

Z

| | = 0
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Definition 8.36. Let ( M ) be a measure space and 1( ) = 1( M )
denote the set of 1 functions modulo the equivalence relation; i =
a.e. We make this into a normed space using the norm

k k 1 =

Z

| |

and into a metric space using 1( ) = k k 1

Remark 8.37. More generally we may define ( ) = ( M ) for
[1 ) as the set of measurable functions such that

Z

| |

modulo the equivalence relation; i = a.e.

We will see in Section 10 that

k k =

µ
Z

| |
¶1

for ( )

is a norm and ( ( ) k·k ) is a Banach space in this norm.

Theorem 8.38 (Dominated Convergence Theorem). Suppose
1 a.e., | | 1 a.e. and

R R

Then
1 and

Z

= lim

Z

(In most typical applications of this theorem = 1 for all )

Proof. Notice that | | = lim | | lim | | a.e. so that
1 By considering the real and imaginary parts of separately, it su ces

to prove the theorem in the case where is real. By Fatou’s Lemma,
Z

( ± ) =

Z

lim inf ( ± ) lim inf

Z

( ± )

= lim

Z

+ lim inf

µ

±
Z

¶

=

Z

+ lim inf

µ

±
Z

¶

Since lim inf ( ) = lim sup we have shown,
Z

±
Z Z

+

½

lim inf
R

lim sup
R

and therefore

lim sup

Z Z

lim inf

Z

This shows that lim
R

exists and is equal to
R
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Corollary 8.39. Let { } =1
1 be a sequence such that

P

=1 k k 1

then
P

=1 is convergent a.e. and

Z

Ã

X

=1

!

=
X

=1

Z

Proof. The condition
P

=1 k k 1 is equivalent to
P

=1 | | 1

Hence
P

=1 is almost everywhere convergent and if :=
P

=1 then

| |
X

=1

| |
X

=1

| | 1

So by the dominated convergence theorem,

Z

Ã

X

=1

!

=

Z

lim = lim

Z

= lim
X

=1

Z

=
X

=1

Z

Theorem 8.40 (The Fundamental Theorem of Calculus). Suppose
(( ) R) 1(( ) ) and ( ) :=

R

( ) ( )
Then

1. ([ ] R) 1(( ) R)
2. 0( ) = ( ) for all ( )
3. If ([ ] R) 1(( ) R) is an anti-derivative of on ( ) (i.e.

= 0|( )) then

Z

( ) ( ) = ( ) ( )

Proof. Since ( ) :=
R

R 1( )( ) ( ) ( ) lim 1( )( ) = 1( )( )

for — a.e. and
¯

¯1( )( ) ( )
¯

¯ 1( )( ) | ( )| is an 1 — function, it
follows from the dominated convergence Theorem 8.38 that is continuous
on [ ] Simple manipulations show,

¯

¯

¯

¯

( + ) ( )
( )

¯

¯

¯

¯

=
1

| |

¯

¯

¯

R +
[ ( ) ( )] ( )

¯

¯

¯
if 0

¯

¯

¯

R

+
[ ( ) ( )] ( )

¯

¯

¯
if 0

1

| |

(

R + | ( ) ( )| ( ) if 0
R

+
| ( ) ( )| ( ) if 0

sup {| ( ) ( )| : [ | | + | |]}

180 8 Measures and Integration

and the latter expression, by the continuity of goes to zero as 0 This
shows 0 = on ( )
For the converse direction, we have by assumption that 0( ) = 0( ) for
( ) Therefore by the mean value theorem, = for some constant
Hence

Z

( ) ( ) = ( ) = ( ) ( )

= ( ( ) + ) ( ( ) + ) = ( ) ( )

Example 8.41. The following limit holds,

lim

Z

0

(1 ) ( ) = 1

Let ( ) = (1 ) 1[0 ]( ) and notice that lim ( ) = We will
now show

0 ( ) for all 0

It su ces to consider [0 ] Let ( ) = ( ) then for (0 )

ln ( ) = 1 +
1

(1 )
(
1
) = 1

1

(1 )
0

which shows that ln ( ) and hence ( ) is decreasing on [0 ] Therefore
( ) (0) = 1 i.e.

0 ( )

From Example 8.25, we know
Z

0

( ) = 1

so that is an integrable function on [0 ) Hence by the dominated con-
vergence theorem,

lim

Z

0

(1 ) ( ) = lim

Z

0

( ) ( )

=

Z

0

lim ( ) ( ) =

Z

0

( ) = 1

Example 8.42 (Integration of Power Series). Suppose 0 and { } =0 is a
sequence of complex numbers such that

P

=0 | | for all (0 )
Then

Z

Ã

X

=0

!

( ) =
X

=0

Z

( ) =
X

=0

+1 +1

+ 1
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for all Indeed this follows from Corollary 8.39 since

X

=0

Z

| | | | ( )
X

=0

Ã

Z | |

0

| | | | ( ) +

Z | |

0

| | | | ( )

!

X

=0

| | | |
+1
+ | | +1
+ 1

2
X

=0

| |

where = max(| | | |)
Corollary 8.43 (Di erentiation Under the Integral). Suppose that
R is an open interval and : × C is a function such that

1. ( ) is measurable for each
2. ( 0 ·) 1( ) for some 0

3. ( ) exists for all ( )

4. There is a function 1 such that
¯

¯

¯
( ·)

¯

¯

¯

1 for each

Then ( ·) 1( ) for all (i.e.
R | ( )| ( ) )

R

( ) ( ) is a di erentiable function on and
Z

( ) ( ) =

Z

( ) ( )

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of separately, we may assume that is real. Also
notice that

( ) = lim ( ( + 1 ) ( ))

and therefore, for ( ) is a sequential limit of measurable functions
and hence is measurable for all By the mean value theorem,

| ( ) ( 0 )| ( ) | 0| for all (8.14)

and hence

| ( )| | ( ) ( 0 )|+ | ( 0 )| ( ) | 0|+ | ( 0 )|
This shows ( ·) 1( ) for all Let ( ) :=

R

( ) ( ) then

( ) ( 0)

0
=

Z

( ) ( 0 )

0
( )

By assumption,

lim
0

( ) ( 0 )

0
= ( ) for all

and by Eq. (8.14),
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¯

¯

¯

¯

( ) ( 0 )

0

¯

¯

¯

¯

( ) for all and

Therefore, we may apply the dominated convergence theorem to conclude

lim
( ) ( 0)

0
= lim

Z

( ) ( 0 )

0
( )

=

Z

lim
( ) ( 0 )

0
( )

=

Z

( 0 ) ( )

for all sequences \ { 0} such that 0 Therefore, ˙ ( 0) =

lim 0

( ) ( 0)

0
exists and

˙ ( 0) =

Z

( 0 ) ( )

Example 8.44. Recall from Example 8.25 that

1 =

Z

[0 )

( ) for all 0

Let 0 For 2 0 and N there exists ( ) such that

0

µ ¶

= ( )

Using this fact, Corollary 8.43 and induction gives

! 1 =

µ ¶

1 =

Z

[0 )

µ ¶

( )

=

Z

[0 )

( )

That is ! =
R

[0 )
( ) Recall that

( ) :=

Z

[0 )

1 for 0

(The reader should check that ( ) for all 0 ) We have just shown
that ( + 1) = ! for all N

Remark 8.45. Corollary 8.43 may be generalized by allowing the hypothesis
to hold for \ where M is a fixed null set, i.e. must be
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independent of Consider what happens if we formally apply Corollary 8.43
to ( ) :=

R

0
1 ( )

˙( ) =

Z

0

1 ( )
?
=

Z

0

1 ( )

The last integral is zero since 1 = 0 unless = in which case it is
not defined. On the other hand ( ) = so that ˙( ) = 1 (The reader should
decide which hypothesis of Corollary 8.43 has been violated in this example.)

8.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 8.46. Suppose that ( M ) is a complete measure space1 and
: R is measurable.

1. If : R is a function such that ( ) = ( ) for — a.e. then is
measurable.

2. If : R are measurable and : R is a function such that
lim = - a.e., then is measurable as well.

Proof. 1. Let = { : ( ) 6= ( )} which is assumed to be in M and
( ) = 0. Then = 1 + 1 since = on . Now 1 is measurable
so will be measurable if we show 1 is measurable. For this consider,

(1 ) 1( ) =

½

(1 ) 1( \ {0}) if 0
(1 ) 1( ) if 0

(8.15)

Since (1 ) 1( ) if 0 and ( ) = 0, it follow by completeness of
M that (1 ) 1( ) M if 0 Therefore Eq. (8.15) shows that 1 is
measurable.
2. Let = { : lim ( ) 6= ( )} by assumption M and ( ) = 0.

Since 1 = lim 1 , is measurable. Because = on and
( ) = 0 = a.e. so by part 1. is also measurable.
The above results are in general false if ( M ) is not complete. For

example, let = {0 1 2} M = {{0} {1 2} } and = 0 Take (0) =
0 (1) = 1 (2) = 2 then = 0 a.e. yet is not measurable.

Lemma 8.47. Suppose that ( M ) is a measure space and M̄ is the com-
pletion ofM relative to and ¯ is the extension of to M̄ Then a function
: R is (M̄ B = BR) — measurable i there exists a function : R

1 Recall this means that if is a set such that M and ( ) = 0
then M as well.
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that is (M B) — measurable such = { : ( ) 6= ( )} M̄ and ¯ ( ) = 0
i.e. ( ) = ( ) for ¯ — a.e. Moreover for such a pair and 1(¯)
i 1( ) and in which case

Z

¯ =

Z

Proof. Suppose first that such a function exists so that ¯( ) = 0 Since
is also (M̄ B) — measurable, we see from Proposition 8.46 that is (M̄ B)

— measurable.
Conversely if is (M̄ B) — measurable, by considering ± we may assume

that 0 Choose (M̄ B) — measurable simple function 0 such that
as Writing

=
X

1

with M̄ we may choose M such that and ¯( \ ) = 0
Letting

˜ :=
X

1

we have produced a (M B) — measurable simple function ˜ 0 such that
:= { 6= ˜ } has zero ¯ — measure. Since ¯ ( )

P

¯ ( ) there
exists M such that and ( ) = 0 It now follows that

1 ˜ = 1 := 1 as

This shows that = 1 is (M B) — measurable and that { 6= } has
¯ — measure zero.
Since = , ¯ — a.e.,

R

¯ =
R

¯ so to prove Eq. (8.16) it su ces to
prove

Z

¯ =

Z

(8.16)

Because ¯ = on M Eq. (8.16) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 8.12 it holds for all M — measurable functions
: [0 ] The rest of the assertions follow in the standard way by

considering (Re )± and (Im )±

8.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let and : [ ] R be a
bounded function. A partition of [ ] is a finite subset [ ] containing
{ } To each partition
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= { = 0 1 · · · = } (8.17)

of [ ] let
mesh( ) := max{| 1| : = 1 }

= sup{ ( ) : 1} = inf{ ( ) : 1}

= ( )1{ } +
X

1

1( 1 ] = ( )1{ } +
X

1

1( 1 ] and

=
X

( 1) and =
X

( 1)

Notice that

=

Z

and =

Z

The upper and lower Riemann integrals are defined respectively by
Z

( ) = inf and
Z

( ) = sup

Definition 8.48. The function is Riemann integrable i
R

=
R

and

which case the Riemann integral
R

is defined to be the common value:

Z

( ) =

Z

( ) =

Z

( )

The proof of the following Lemma is left as an exercise to the reader.

Lemma 8.49. If 0 and are two partitions of [ ] and 0 then

0 0 and

0 0

There exists an increasing sequence of partitions { } =1 such that mesh( )
0 and

Z

and
Z

as

If we let
lim and lim (8.18)

then by the dominated convergence theorem,
Z

[ ]

= lim

Z

[ ]

= lim =

Z

( ) (8.19)

and
Z

[ ]

= lim

Z

[ ]

= lim =

Z

( ) (8.20)
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Notation 8.50 For [ ] let

( ) = lim sup ( ) = lim
0
sup{ ( ) : | | [ ]} and

( ) lim inf ( ) = lim
0
inf { ( ) : | | [ ]}

Lemma 8.51. The functions : [ ] R satisfy:

1. ( ) ( ) ( ) for all [ ] and ( ) = ( ) i is continuous
at

2. If { } =1 is any increasing sequence of partitions such that mesh( ) 0
and and are defined as in Eq. (8.18), then

( ) = ( ) ( ) ( ) = ( ) := =1 (8.21)

(Note is a countable set.)
3. and are Borel measurable.

Proof. Let and

1. It is clear that ( ) ( ) ( ) for all and ( ) = ( ) i lim ( )

exists and is equal to ( ) That is ( ) = ( ) i is continuous at
2. For

( ) ( ) ( ) ( ) ( )

and letting in this equation implies

( ) ( ) ( ) ( ) ( ) (8.22)

Moreover, given 0 and

sup{ ( ) : | | [ ]} ( )

for all large enough, since eventually ( ) is the supremum of ( )
over some interval contained in [ + ] Again letting implies
sup

| |
( ) ( ) and therefore, that

( ) = lim sup ( ) ( )

for all Combining this equation with Eq. (8.22) then implies ( ) =
( ) if A similar argument shows that ( ) = ( ) if and

hence Eq. (8.21) is proved.
3. The functions and are limits of measurable functions and hence mea-
surable. Since = and = except possibly on the countable set
both and are also Borel measurable. (You justify this statement.)
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Theorem 8.52. Let : [ ] R be a bounded function. Then

Z

=

Z

[ ]

and
Z

=

Z

[ ]

(8.23)

and the following statements are equivalent:

1. ( ) = ( ) for -a.e.
2. the set

:= { [ ] : is disconituous at }
is an ¯ — null set.

3. is Riemann integrable.

If is Riemann integrable then is Lebesgue measurable2 , i.e. is L B —
measurable where L is the Lebesgue — algebra and B is the Borel — algebra
on [ ]. Moreover if we let ¯ denote the completion of then

Z

[ ]

=

Z

( ) =

Z

[ ]

¯ =

Z

[ ]

(8.24)

Proof. Let { } =1 be an increasing sequence of partitions of [ ] as
described in Lemma 8.49 and let and be defined as in Lemma 8.51. Since
( ) = 0 = a.e., Eq. (8.23) is a consequence of Eqs. (8.19) and (8.20).

From Eq. (8.23), is Riemann integrable i
Z

[ ]

=

Z

[ ]

and because this happens i ( ) = ( ) for - a.e. Since
= { : ( ) 6= ( )} this last condition is equivalent to being a — null

set. In light of these results and Eq. (8.21), the remaining assertions including
Eq. (8.24) are now consequences of Lemma 8.47.

Notation 8.53 In view of this theorem we will often write
R

( ) for
R

8.7 Appendix: Bochner Integral

In this appendix we will discuss how to define integrals of functions taking
values in a Banach space. The resulting integral will be called the Bochner
integral. In this section, let ( F ) be a probability space and be a
separable Banach space.

2 need not be Borel measurable.
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Remark 8.54. Recall that we have already seen in this case that the Borel —
field B = B( ) on is the same as the — field ( ( )) which is generated
by — the continuous linear functionals on As a consequence :
is F B( ) measurable i : R is F B(R) — measurable for all

.

Lemma 8.55. Let 1 and ( ; ) denote the space of measurable
functions : such that

R k k For ( ; ) define

k k =

Z

k k
1

Then after identifying function ( ; ) which agree modulo sets of —
measure zero, ( ( ; ) k · k ) becomes a Banach space.

Proof. It is easily checked that k · k is a norm, for example,

k + k =

Z

k + k
1

Z

(k k + k k )

1

k k + k k
So the main point is to check completeness of the space. For this suppose

{ }1 = ( ; ) such that
P

=1
k +1 k and define

0 0 Since k k 1 k k it follows that

Z

X

=1

k +1 k
X

=1

k +1 k 1

and therefore that
P

=1
k +1 k on as set 0 such that

( 0) = 1 Since is complete, we know
P

=0
( +1( ) ( )) exists in

for all 0 so we may define : by

P

=0
( +1 ) on 0

0 on 0

Then on 0

=
X

= +1

( +1 ) = lim
X

= +1

( +1 )
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So

k k
X

= +1

k +1 k = lim
X

+1

k +1 k

and therefore by Fatou’s Lemma and Minikowski’s inequality,

k k
°

°

°

°

°

lim inf
X

+1

k +1 k
°

°

°

°

°

lim inf

°

°

°

°

°

X

+1

| +1 |
°

°

°

°

°

lim inf
X

+1

k +1 k

=
X

+1

k +1 k 0 as

Therefore and lim = in

Definition 8.56. A measurable function : is said to be a simple
function provided that ( ) is a finite set. Let S denote the collection of
simple functions. For S set

( )
X

( 1({ })) =
X

({ = }) =
X

( )

({ = })

Proposition 8.57. The map : S is linear and satisfies for all S

k ( )k
Z

k k (8.25)

and

( ( )) =

Z

(8.26)

Proof. If 0 6= R and S then

( ) =
X

( = ) =
X

³

=
´

=
X

( = ) = ( )

and if = 0 (0 ) = 0 = 0 ( ) If S
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( + ) =
X

( + = )

=
X X

+ =

( = = )

=
X

( + ) ( = = )

=
X

( = ) +
X

( = ) = ( ) + ( )

Equation (8.25) is a consequence of the following computation:

k ( )k = k
X

( = )k
X

k k ( = ) =

Z

k k

and Eq. (8.26) follows from:

( ( )) = (
X

({ = }))

=
X

( ) ({ = }) =
Z

Proposition 8.58. The set of simple functions, S is dense in ( ) for
all [1 )

Proof. By assumption that is separable, there is a countable dense set
D ={ } =1 Given 0 and N set

= ( )r

Ã

1
[

=1

( )

!

where by convention 1 = ( 1 ) Then =
`

=1
disjoint union. For

( ; ) let

=
X

=1

1 1( )

and notice that k k on and therefore, k k . In
particular this shows that

k k k k + k k + k k

so that ( ; ) Since
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k k =
X

=1

k k ( 1( ))

there exists such that
P

= +1

k k ( 1( )) and hence

°

°

°

°

°

X

=1

1 1( )

°

°

°

°

°

k k +

°

°

°

°

°

X

=1

1 1( )

°

°

°

°

°

+

°

°

°

°

°

X

= +1

1 1( )

°

°

°

°

°

= +

Ã

X

= +1

k k ( 1( ))

!1

+ = 2

Since
P

=1
1 1( ) S and 0 is arbitrary, the last estimate proves the

proposition.

Theorem 8.59. There is a unique continuous linear map ¯ : 1( F ; )
such that |̄S = where is defined in Definition 8.56. Moreover, for

all 1( F ; )

k (̄ )k
Z

k k (8.27)

and (̄ ) is the unique element in such that

( (̄ )) =

Z

(8.28)

The map (̄ ) will be denoted suggestively by
R

so that Eq. (8.28) may
be written as

(

Z

) =

Z

Proof. The existence of a continuous linear map ¯ : 1( F ; )
such that |̄S = and Eq. (8.27) holds follows from Propositions 8.57 and
8.58 and the bounded linear transformation Theorem 2.68. If and

1( F ; ) choose S such that in 1( F ; ) as
Then (̄ ) = lim ( ) and hence by Eq. (8.26),

( (̄ )) = ( lim ( )) = lim ( ( )) = lim

Z
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This proves Eq. (8.28) since
¯

¯

¯

¯

¯

¯

Z

( )

¯

¯

¯

¯

¯

¯

Z

| |
Z

k k k k

= k k k k 1 0 as

The fact that (̄ ) is determined by Eq. (8.28) is a consequence of the Hahn
— Banach theorem.

Remark 8.60. The separability assumption on may be relaxed by assuming
that : has separable essential range. In this case we may still define
R

by applying the above formalism with replaced by the separable
Banach space 0 := essran ( ) For example if is a compact topological
space and : is a continuous map, then

R

is always defined.

8.8 Bochner Integrals (NEEDS WORK)

8.8.1 Bochner Integral Problems From Folland

#15
Let 1 C then |( + )( )| | ( )|+ | | | ( )| for all .

Integrating over k + k1 k k1 + | | k k1 . Hence and
C + so that is vector subspace of all functions from
. (By the way is a vector space since the map ( 1 2) 1 + 2

from × is continuous and therefore + = ( ) is a composition
of measurable functions). It is clear that is a linear space. Moreover if

=
X

=1

with ( ) then | ( )| P

=1
| | ( ) k k 1

P

=1
| | ( ) . So 1 . It is easily checked that k · k1 is a seminorm

with the property

k k1 = 0
Z

k ( )k ( ) = 0

k ( )k = 0
( ) = 0

Hence k · k1 is a norm on 1 (null functions).
#16
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= { : k k k k}
{ } =1 =

.

Let 0 6= and choose { } { } 3 as . Then
k k 0 while k k k k 6= 0 as . Hence eventually | k
k k for su ciently large, i.e. for all su ciently large. Thus

\ {0} S

=1
. Also \ {0} = S

=1
if 1. Since k0 k k k can

not happen.

#17
Let 1 and 1 0 as in problem 16. Define \ ( 1

· · · 1) and
1( ) and set

X

1

=
X

1

Suppose then k ( ) ( )k = k ( )k k k. Now k k
k ( )k+k ( )k k k+k ( )k. Therefore k k k ( )k

1
. So k ( )

( )k 1 k ( )k for . Since is arbitrary it follows by problem
16 that k ( ) ( )k 1 k ( )k for all 1({0}). Since 1, by
the end of problem 16 we know 0 for any ( ) = 0 if ( ) = 0.
Hence k ( ) ( )k 1 k ( )k holds for all . This implies k
k1 1 k k1 0 0. Also we see k k1 k k1 + k k1

P

=1
k k ( ) = k k1 . Choose ( ) {1 2 3 } such that

P

= ( )+1

k k ( ) . Set ( ) =
( )
P

=1
. Then

k k1 k k1 + k k1

1
k k1 +

X

= ( )+1

k k ( )

(1 +
k k1
1

) 0 as 0

Finally so we are done.

#18
Define

R

: by
R

( ) ( ) =
P

( 1({ }) Just is the real
variable case be in class are shows that

R

: is linear. For 1

choose such that k k1 0 . Then k k1 0 as
. Now .
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k
Z

k
X

k k ( 1({ })) =
Z

k k

Therefore k R R k k k1 0 . Hence

lim
R

exists in . Set
R

= lim
R

.

Claim.
R

is well defined. Indeed if such that k k1 0 as
. Then k k1 0 as also. k R R k

k k1 0 . So lim
R

= lim
R

Finally:

k
Z

k = lim k
Z

k
lim sup k k1 = k k1

#19 D.C.T { } 1 1 such that 1( ) for all k ( )k
( ) a.e. and ( ) ( ) a.e. Then k R R k k k 0 by

real variable.

8.9 Exercises

Exercise 8.61. Let be a measure on an algebra A P( ) then ( ) +
( ) = ( ) + ( ) for all A
Exercise 8.62. Problem 12 on p. 27 of Folland. Let ( M ) be a finite
measure space and for M let ( ) = ( ) where =
( \ ) ( \ ) Define i ( ) = 0 Show “ ” is an equivalence
relation, is a metric onM and ( ) = ( ) if Also show that
: (M ) [0 ) is a continuous function relative to the metric

Exercise 8.63. Suppose that :M [0 ] are measures on M for
N Also suppose that ( ) is increasing in for all M Prove that
:M [0 ] defined by ( ) := lim ( ) is also a measure.

Exercise 8.64. Now suppose that is some index set and for each
: M [0 ] is a measure on M Define : M [0 ] by ( ) =

P

( ) for each M Show that is also a measure.

Exercise 8.65. Let ( M ) be a measure space and : [0 ] be a
measurable function. For M set ( ) :=

R

1. Show :M [0 ] is a measure.
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2. Let : [0 ] be a measurable function, show
Z

=

Z

(8.29)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that 1( ) i 1( ) and if 1( ) then Eq. (8.29) still
holds.

Notation 8.66 It is customary to informally describe defined in Exercise
8.65 by writing =

Exercise 8.67. Let ( M ) be a measure space, ( F) be a measurable
space and : be a measurable map. Define a function : F [0 ]
by ( ) := ( 1( )) for all F
1. Show is a measure. (We will write = or = 1 )
2. Show

Z

=

Z

( ) (8.30)

for all measurable functions : [0 ] Hint: see the hint from
Exercise 8.65.

3. Show 1( ) i 1( ) and that Eq. (8.30) holds for all 1( )

Exercise 8.68. Let : R R be a 1-function such that 0( ) 0 for all
R and lim ± ( ) = ± (Notice that is strictly increasing so that
1 : R R exists and moreover, by the implicit function theorem that 1

is a 1 — function.) Let be Lebesgue measure on BR and
( ) = ( ( )) = (

¡

1
¢ 1

( )) =
¡

1
¢

( )

for all BR Show = 0 Use this result to prove the change of
variable formula,

Z

R
· 0 =

Z

R
(8.31)

which is valid for all Borel measurable functions : R [0 ]
Hint: Start by showing = 0 on sets of the form = ( ] with
R and Then use the uniqueness assertions in Theorem 8.8 to

conclude = 0 on all of BR To prove Eq. (8.31) apply Exercise 8.67
with = and = 1

Exercise 8.69. Let ( M ) be a measure space and { } =1 M show

({ a.a.}) lim inf ( )

and if ( ) for some then

({ i.o.}) lim sup ( )
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Exercise 8.70 (Peano’s Existence Theorem). Suppose : R × R
R is a bounded continuous function. Then for each 3 there exists a
solution to the di erential equation

˙( ) = ( ( )) for 0 with (0) = 0 (8.32)

Do this by filling in the following outline for the proof.

1. Given 0 show there exists a unique function ([ ) R )
such that ( ) 0 for 0 and

( ) = 0 +

Z

0

( ( )) for all 0 (8.33)

Here
Z

0

( ( )) =

µ
Z

0
1( ( ))

Z

0

( ( ))

¶

where = ( 1 ) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For

[0 ] it follows from Eq. (8.33) that

( ) = 0 +

Z

0

( 0)

Now that ( ) is known for [ ] it can be found by integration for
[ 2 ] The process can be repeated.

2. Then use Exercise 2.120 to show there exists { } =1 (0 ) such that
lim = 0 and converges to some ([0 ]) (relative to the
sup-norm: k k = sup [0 ] | ( )|) as

3. Pass to the limit in Eq. (8.33) with replaced by to show satisfies

( ) = 0 +

Z

0

( ( )) [0 ]

4. Conclude from this that ˙ ( ) exists for (0 ) and that solves Eq.
(8.32).

5. Apply what you have just prove to the ODE,

˙( ) = ( ( )) for 0 with (0) = 0

Then extend ( ) above to [ ] by setting ( ) = ( ) if [ 0]
Show so defined solves Eq. (8.32) for ( )

Exercise 8.71. Folland 2.12 on p. 52.
3 Using Corollary 3.18 below, we may in fact allow =
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Exercise 8.72. Folland 2.13 on p. 52.

Exercise 8.73. Folland 2.14 on p. 52.

Exercise 8.74. Give examples of measurable functions { } on R such that
decreases to 0 uniformly yet

R

= for all Also give an example
of a sequence of measurable functions { } on [0 1] such that 0 while
R

= 1 for all

Exercise 8.75. Folland 2.19 on p. 59.

Exercise 8.76. Suppose { } = C is a summable sequence (i.e.
P

= | | ) then ( ) :=
P

= is a continuous function
for R and

=
1

2

Z

( )

Exercise 8.77. Folland 2.26 on p. 59.

Exercise 8.78. Folland 2.28 on p. 59.

Exercise 8.79. Folland 2.31b on p. 60.
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This next example gives a “real world” example of the fact that it is not
always possible to interchange order of integration.

Example 9.1. Consider

Z 1

0

Z

1

( 2 2 ) =

Z 1

0

½

2
2

2

¾
¯

¯

¯

¯

=1

=

Z 1

0

·

2
¸

=

Z 1

0

µ

1
¶

(0 )

Note well that
³

1
´

has not singularity at 0 On the other hand

Z

1

Z 1

0

( 2 2 ) =

Z

1

½

2
2

2

¾
¯

¯

¯

¯

1

=0

=

Z

1

½

2
¾

=

Z

1

·

1
¸

( 0)

Moral
R R

( ) 6= R R

( ) is not always true.

In the remainder of this section we will let ( M ) and ( N ) be
fixed measure spaces. Our main goals are to show:

1. There exists a unique measure onM N such that ( × ) =
( ) ( ) for all M and N and

2. For all : × [0 ] which areM N — measurable,
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Z

×
( ) =

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( )

Before proving such assertions, we will need a few more technical measure
theoretic arguments which are of independent interest.

9.1 Measure Theoretic Arguments

Definition 9.2. Let C P( ) be a collection of sets. We say:

1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2. C is a — class if it is closed under finite intersections and
3. C is a —class if C satisfies the following properties:

a) C
b) If C and = , then C (Closed under disjoint
unions.)

c) If C and , then \ C. (Closed under proper di er-
ences.)

d) If C and , then C (Closed under countable increasing
unions.)

4. We will say C is a 0 — class if C satisfies conditions a) — c) but not
necessarily d).

Remark 9.3. Notice that every — class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 9.7
where he/she should then only read the second proof.)

Lemma 9.4 (Monotone Class Theorem). Suppose A P( ) is an alge-
bra and C is the smallest monotone class containing A. Then C = (A).
Proof. For C let

C( ) = { C : C}

then C( ) is a monotone class. Indeed, if C( ) and then
and so

C 3
C 3 and

C 3
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Since C is a monotone class, it follows that C
i.e. C( ) This shows that C( ) is closed under increasing limits and a
similar argument shows that C( ) is closed under decreasing limits. Thus we
have shown that C( ) is a monotone class for all C
If A C then A C for all A and

hence it follows that A C( ) C Since C is the smallest monotone class
containing A and C( ) is a monotone class containing A we conclude that
C( ) = C for any A
Let C and notice that C( ) happens i C( ) This observa-

tion and the fact that C( ) = C for all A implies A C( ) C for all
C Again since C is the smallest monotone class containing A and C( )

is a monotone class we conclude that C( ) = C for all C That is to say,
if C then C = C( ) and hence C So C
is closed under complements (since A C) and finite intersections and
increasing unions from which it easily follows that C is a — algebra.
Let E P( × ) be given by

E =M×N = { × : M N}
and recall from Exercise 7.15 that E is an elementary family. Hence the algebra
A = A(E) generated by E consists of sets which may be written as disjoint
unions of sets from E
Theorem 9.5 (Uniqueness). Suppose that E P( ) is an elementary class
andM = (E) (the — algebra generated by E) If and are two measures
onM which are — finite on E and such that = on E then = onM
Proof. Let A := A(E) be the algebra generated by E Since every element

of A is a disjoint union of elements from E it is clear that = on A
Henceforth we may assume that E = A We begin first with the special case
where ( ) and hence ( ) = ( ) Let

C = { M : ( ) = ( )}
The reader may easily check that C is a monotone class. Since A C the
monotone class lemma asserts thatM = (A) C M showing that C =M
and hence that = onM
For the — finite case, let A be sets such that ( ) = ( )

and as For N let

( ) := ( ) and ( ) = ( ) (9.1)

for all M Then one easily checks that and are finite measure on
M such that = on A Therefore, by what we have just proved, =
onM Hence or all M, using the continuity of measures,

( ) = lim ( ) = lim ( ) = ( )
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Lemma 9.6. If D is a 0 — class which contains a -class, C then D contains
A (C) — the algebra generated by C
Proof. We will give two proofs of this lemma. The first proof is “con-

structive” and makes use of Proposition 7.10 which tells how to construct
A(C) from C The key to the first proof is the following claim which will be
proved by induction.
Claim. Let C̃0 = C and C̃ denote the collection of subsets of of the

form

1 · · · = \ 1 \ 2 \ · · · \ (9.2)

with C and C { } Then C̃ D for all i.e. C̃ := =0C̃ D
By assumption C̃0 D and when = 1

\ 1 = \ ( 1 ) D

when 1 C D since 1 C D Therefore, C̃1 D For the
induction step, let C { } and C { } and let denote the set
in Eq. (9.2) We now assume C̃ D and wish to show +1 D where

+1 = \ +1 = \ ( +1 )

Because
+1 = 1 · · · ( +1) C̃ D

and ( +1 ) C̃ D we have +1 D as well. This finishes
the proof of the claim.
Notice that C̃ is still a multiplicative class and from Proposition 7.10 (using

the fact that C is a multiplicative class), A(C) consists of finite unions of
elements from C̃ By applying the claim to C̃ 1 · · · D for all C̃
and hence

1 · · · = ( 1 · · · ) D
Thus we have shown A(C) D which completes the proof.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest 0 — class containing C for if not just replace D by the intersection
of all 0 — classes containing C Let

D1 := { D : D C}

Then C D1 and D1 is also a 0—class as we now check. a) D1 b) If
D1 with = then ( ) = ( )

`

( ) D for all
C c) If D1 with then ( \ ) = \ ( ) D

for all C Since C D1 D and D is the smallest 0 — class containing C
it follows that D1 = D From this we conclude that if D and C then

D
Let

D2 := { D : D D}
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Then D2 is a 0—class (as you should check) which, by the above paragraph,
contains C As above this implies that D = D2 i.e. we have shown that
D is closed under finite intersections. Since 0 — classes are closed under
complementation, D is an algebra and hence A (C) D In fact D = A(C)
This Lemma along with the monotone class theorem immediately implies

Dynkin’s very useful “ — theorem.”

Theorem 9.7 ( — Theorem). If D is a class which contains a contains
a -class, C then (C) D
Proof. Since D is a 0 — class, Lemma 9.6 implies that A(C) D and

so by Remark 9.3 and Lemma 9.4, (C) D Let us pause to give a second
stand-alone proof of this Theorem.
(Second Proof.) With out loss of generality, we may assume that D is

the smallest — class containing C for if not just replace D by the intersection
of all — classes containing C Let

D1 := { D : D C}

Then C D1 and D1 is also a —class because as we now check. a) D1 b)
If D1 with = then ( ) = ( )

`

( ) D for
all C c) If D1 with then ( \ ) = \( ) D
for all C d) If D1 and as then D for
all D and hence D Since C D1 D and D is the
smallest — class containing C it follows that D1 = D From this we conclude
that if D and C then D
Let

D2 := { D : D D}
Then D2 is a —class (as you should check) which, by the above paragraph,
contains C As above this implies that D = D2 i.e. we have shown that D is
closed under finite intersections.
Since — classes are closed under complementation, D is an algebra which

is closed under increasing unions and hence is closed under arbitrary countable
unions, i.e. D is a — algebra. Since C D we must have (C) D and in
fact (C) = D
Using this theorem we may strengthen Theorem 9.5 to the following.

Theorem 9.8 (Uniqueness). Suppose that C P( ) is a — class such
that M = (C) If and are two measures on M and there exists C
such that and ( ) = ( ) for each then = onM
Proof. As in the proof of Theorem 9.5, it su ces to consider the case

where and are finite measure such that ( ) = ( ) In this case
the reader may easily verify from the basic properties of measures that

D = { M : ( ) = ( )}
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is a — class. By assumption C D and hence by the — theorem, D
containsM = (C)
As an immediate consequence we have the following corollaries.

Corollary 9.9. Suppose that ( ) is a topological space, B = ( ) is the
Borel — algebra on and and are two measures on B which are —
finite on If = on then = on B i.e.

Corollary 9.10. Suppose that and are two measures on BR which are
finite on bounded sets and such that ( ) = ( ) for all sets of the form

= ( ] = ( 1 1]× · · · × ( ]

with R and i.e. for all Then = on BR
To end this section we wish to reformulate the — theorem in a function

theoretic setting.

Definition 9.11 (Bounded Convergence). Let be a set. We say that a
sequence of functions from to R or C converges boundedly to a function
if lim ( ) = ( ) for all and

sup{| ( )| : and = 1 2 }

Theorem 9.12. Let be a set and H be a subspace of ( R) — the space
of bounded real valued functions on Assume:

1. 1 H i.e. the constant functions are in H and
2. H is closed under bounded convergence, i.e. if { } =1 H and
boundedly then H
If C P( ) is a multiplicative class such that 1 H for all C then

H contains all bounded (C) — measurable functions.
Proof. Let D := { : 1 H} Then by assumption C D and since

1 H we know D If D are disjoint then 1 = 1 + 1 H
so that D and if D and then 1 \ = 1 1 H
Finally if D and as then 1 1 boundedly so 1 H
and hence D So D is — class containing C and hence D contains (C)
From this it follows that H contains 1 for all (C) and hence all (C)
— measurable simple functions by linearity. The proof is now complete with
an application of the approximation Theorem 8.12 along with the assumption
that H is closed under bounded convergence.

Corollary 9.13. Suppose that ( ) is a metric space and B = ( ) is the
Borel — algebra on and H is a subspace of ( R) such that ( R)
H ( ( R) — the bounded continuous functions on ) and H is closed
under bounded convergence. Then H contains all bounded B — measurable
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real valued functions on (This may be paraphrased as follows. The smallest
vector space of bounded functions which is closed under bounded convergence
and contains ( R) is the space of bounded B — measurable real valued
functions on )

Proof. Let be an open subset of and for N let

( ) := min( · ( ) 1) for all

Notice that = where ( ) = min( 1) which is continuous and
hence ( R) for all Furthermore, converges boundedly to 1
as and therefore 1 H for all Since is a — class the
corollary follows by an application of Theorem 9.12.
Here is a basic application of this corollary.

Proposition 9.14. Suppose that ( ) is a metric space, and are two
measures on B = ( ) which are finite on bounded measurable subsets of
and

Z

=

Z

(9.3)

for all ( R) where

( R) = { ( R) : supp( ) is bounded}
Then

Proof. To prove this fix a and let

( ) = ([ + 1 ( )] 1) 0

so that ( [0 1]) supp( ) ( + 2) and 1 as
Let H denote the space of bounded measurable functions such that

Z

=

Z

(9.4)

Then H is closed under bounded convergence and because of Eq. (9.3) con-
tains ( R) Therefore by Corollary 9.13, H contains all bounded mea-
surable functions on Take = 1 in Eq. (9.4) with B and then use
the monotone convergence theorem to let The result is ( ) = ( )
for all B
Corollary 9.15. Let ( ) be a metric space, B = ( ) be the Borel —
algebra and : B [0 ] be a measure such that ( ) when is a
compact subset of Assume further there exists compact sets such
that Suppose that H is a subspace of ( R) such that ( R) H
( ( R) is the space of continuous functions with compact support) and
H is closed under bounded convergence. Then H contains all bounded B —
measurable real valued functions on
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Proof. Let and be positive integers and set ( ) = min(1 ·
( ) ( )) Then ( R) and { 6= 0} Let H denote

those bounded B — measurable functions, : R such that H
It is easily seen that H is closed under bounded convergence and that
H contains ( R) and therefore by Corollary 9.13, H for all
bounded measurable functions : R Since 1 boundedly
as 1 H for all and similarly 1 boundedly as
and therefore H
Here is another version of Proposition 9.14.

Proposition 9.16. Suppose that ( ) is a metric space, and are two
measures on B = ( ) which are both finite on compact sets. Further assume
there exists compact sets such that If

Z

=

Z

(9.5)

for all ( R) then

Proof. Let be defined as in the proof of Corollary 9.15 and let H
denote those bounded B — measurable functions, : R such that

Z

=

Z

By assumption ( R) H and one easily checks that H is closed
under bounded convergence. Therefore, by Corollary 9.13, H contains all
bounded measurable function. In particular for B

Z

1 =

Z

1

Letting in this equation, using the dominated convergence theorem,
one shows

Z

1 1 =

Z

1 1

holds for Finally using the monotone convergence theorem we may let
to conclude

( ) =

Z

1 =

Z

1 = ( )

for all B

9.2 Fubini-Tonelli’s Theorem and Product Measure

Recall that ( M ) and ( N ) are fixed measure spaces.
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Notation 9.17 Suppose that : C and : C are functions, let
denote the function on × given by

( ) = ( ) ( )

Notice that if are measurable, then is (M N BC) — measurable.
To prove this let ( ) = ( ) and ( ) = ( ) so that = · will
be measurable provided that and are measurable. Now = 1 where
1 : × is the projection map. This shows that is the composition
of measurable functions and hence measurable. Similarly one shows that is
measurable.

Theorem 9.18. Suppose ( M ) and ( N ) are -finite measure spaces
and is a nonnegative (M N BR) — measurable function, then for each

( ) isM — B[0 ] measurable, (9.6)

for each

( ) is N — B[0 ] measurable, (9.7)

Z

( ) ( ) isM — B[0 ] measurable, (9.8)
Z

( ) ( ) is N — B[0 ] measurable, (9.9)

and
Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( ) (9.10)

Proof. Suppose that = × E :=M×N and = 1 Then

( ) = 1 × ( ) = 1 ( )1 ( )

and one sees that Eqs. (9.6) and (9.7) hold. Moreover
Z

( ) ( ) =

Z

1 ( )1 ( ) ( ) = 1 ( ) ( )

so that Eq. (9.8) holds and we have
Z

( )

Z

( ) ( ) = ( ) ( ) (9.11)

Similarly,
Z

( ) ( ) = ( )1 ( ) and
Z

( )

Z

( ) ( ) = ( ) ( )
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from which it follows that Eqs. (9.9) and (9.10) hold in this case as well.
For the moment let us further assume that ( ) and ( ) and

let H be the collection of all bounded (M N BR) — measurable functions
on × such that Eqs. (9.6) — (9.10) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1 H for all in the — class, E it follows thatH is the space of all bounded
(M N BR) — measurable functions on × Finally if : × [0 ]
is a (M N BR̄) — measurable function, let = so that as

and Eqs. (9.6) — (9.10) hold with replaced by for all N
Repeated use of the monotone convergence theorem allows us to pass to the
limit in these equations to deduce the theorem in the case and
are finite measures.
For the — finite case, choose M N such that

( ) and ( ) for all N Then define ( ) = ( )
and ( ) = ( ) for all M and N or equivalently =
1 and = 1 By what we have just proved Eqs. (9.6) — (9.10) with
replaced by and by for all (M N BR̄) — measurable functions,
: × [0 ] The validity of Eqs. (9.6) — (9.10) then follows by passing

to the limits and then using the monotone convergence
theorem again to conclude

Z

=

Z

1

Z

as

and
Z

=

Z

1

Z

as

for all +( M) and +( N )
Corollary 9.19. Suppose ( M ) and ( N ) are -finite measure spaces.
Then there exists a unique measure on M N such that ( × ) =
( ) ( ) for all M and N Moreover is given by

( ) =

Z

( )

Z

( )1 ( ) =

Z

( )

Z

( )1 ( ) (9.12)

for all M N and is — finite.

Notation 9.20 The measure is called the product measure of and and
will be denoted by

Proof. Notice that any measure such that ( × ) = ( ) ( ) for
all M and N is necessarily — finite. Indeed, let M and

N be chosen so that ( ) ( ) and then
× M N × × and ( × ) for all The
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uniqueness assertion is a consequence of either Theorem 9.5 or by Theorem 9.8
with E =M×N . For the existence, it su ces to observe, using the monotone
convergence theorem, that defined in Eq. (9.12) is a measure on M N
Moreover this measure satisfies ( × ) = ( ) ( ) for all M and

N from Eq. (9.11

Theorem 9.21 (Tonelli’s Theorem). Suppose ( M ) and ( N ) are
-finite measure spaces and = is the product measure on M N If

+( × M N ) then (· ) +( M) for all ( ·)
+( N ) for all

Z

(· ) ( ) +( M)

Z

( ·) ( ) +( N )

and
Z

×
=

Z

( )

Z

( ) ( ) (9.13)

=

Z

( )

Z

( ) ( ) (9.14)

Proof. By Theorem 9.18 and Corollary 9.19, the theorem holds when
= 1 with M N Using the linearity of all of the statements, the the-

orem is also true for non-negative simple functions. Then using the monotone
convergence theorem repeatedly along with Theorem 8.12, one deduces the
theorem for general +( × M N )
Theorem 9.22 (Fubini’s Theorem). Suppose ( M ) and ( N ) are
-finite measure spaces and = be the product measure onM N If

1( ) then for a.e. ( ·) 1( ) and for a.e. (· ) 1( )
Moreover,

( ) =

Z

( ) ( ) and ( ) =

Z

( ) ( )

are in 1( ) and 1( ) respectively and Eq. (9.14) holds.

Proof. If 1( × ) + then by Eq. (9.13),
Z
µ
Z

( ) ( )

¶

( )

so
R

( ) ( ) for a.e. , i.e. for a.e. ( ·) 1( ). Similarly
for a.e. (· ) 1( ) Let be a real valued function in 1( × )
and let = + Apply the results just proved to ± to conclude, ±( ·)
1( ) for a.e. and that

Z

±(· ) ( ) 1( )
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Therefore for a.e. ,

( ·) = +( ·) ( ·) 1( )

and
Z

( ) ( ) =

Z

+( ·) ( )

Z

( ·) ( )

is a — almost everywhere defined function such that
R

(· ) ( ) 1( )
Because

Z

±( ) ( ) =

Z

( )

Z

( ) ±( )

Z

( ) =

Z

+ ( )

Z

( )

=

Z Z

+

Z Z

=

Z
µ
Z

+

Z
¶

=

Z Z

( + ) =

Z Z

The proof that
Z

( ) =

Z

( )

Z

( ) ( )

is analogous. As usual the complex case follows by applying the real results
just proved to the real and imaginary parts of

Notation 9.23 Given × and let

:= { : ( ) }
Similarly if is given let

:= { : ( ) }
If : × C is a function let = ( ·) and := (· ) so that
: C and : C

Theorem 9.24. Suppose ( M ) and ( N ) are complete -finite mea-
sure spaces. Let ( × L ) be the completion of ( × M N ). If
is L-measurable and (a) 0 or (b) 1( ) then is N -measurable

for a.e. and isM-measurable for a.e. and in case (b) 1( )
and 1( ) for a.e. and a.e. respectively. Moreover,

Z

and
Z



9.2 Fubini-Tonelli’s Theorem and Product Measure 211

are measurable and
Z

=

Z Z

=

Z Z

Proof. If M N is a null set (( )( ) = 0) then

0 = ( )( ) =

Z

( ) ( ) =

Z

( ) ( )

This shows that

({ : ( ) 6= 0}) = 0 and ({ : ( ) 6= 0}) = 0
i.e. ( ) = 0 for a.e. and ( ) = 0 for a.e.
If is L measurable and = 0 for - a.e., then there exists M N 3

{( ) : ( ) 6= 0} and ( )( ) = 0. Therefore | ( )| 1 ( )
and ( )( ) = 0. Since

{ 6= 0} = { : ( ) 6= 0} and

{ 6= 0} = { : ( ) 6= 0}
we learn that for a.e. and a.e. that { 6= 0} M { 6= 0} N
({ 6= 0}) = 0 and a.e. and ({ 6= 0}) = 0 This implies

for a.e.
Z

( ) ( ) exists and equals 0

and

for a.e.
Z

( ) ( ) exists and equals 0

Therefore

0 =

Z

=

Z
µ
Z

¶

=

Z
µ
Z

¶

For general 1( ) we may choose 1(M N ) such that
( ) = ( ) for a.e. ( ) Define Then = 0 a.e.
Hence by what we have just proved and Theorem 9.21 = + has the
following properties:

1. For a.e. ( ) = ( ) + ( ) is in 1( ) and
Z

( ) ( ) =

Z

( ) ( )

2. For a.e. ( ) = ( ) + ( ) is in 1( ) and
Z

( ) ( ) =

Z

( ) ( )
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From these assertions and Theorem 9.21, it follows that
Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( )

=

Z

( ) ( )( )

=

Z

( ) ( )

and similarly we shows
Z

( )

Z

( ) ( ) =

Z

( ) ( )

The previous theorems have obvious generalizations to products of any
finite number of — compact measure spaces. For example the following the-
orem holds.

Theorem 9.25. Suppose {( M )} =1 are — finite measure spaces
and := 1 × · · · × Then there exists a unique measure, on
( M1 · · · M ) such that ( 1 × · · · × ) = 1( 1) ( ) for all

M (This measure and its completion will be denote by 1 · · · )
If : [0 ] is a measurable function then

Z

=
Y

=1

Z

( )

( )( ( )) ( 1 )

where is any permutation of {1 2 } This equation also holds for any
1( ) and moreover, 1( ) i

Y

=1

Z

( )

( )( ( )) | ( 1 )|

for some (and hence all) permutation,

This theorem can be proved by the same methods as in the two factor
case. Alternatively, one can use induction on see Exercise 9.50.

Example 9.26.We have
Z

0

sin
=
1

2
arctan for all 0 (9.15)

and for [0 )
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¯

¯

¯

¯

¯

Z

0

sin 1

2
+ arctan

¯

¯

¯

¯

¯

(9.16)

where = max 0
1+
1+ 2 =

1
2 2 2

= 1 2 In particular,

lim

Z

0

sin
= 2 (9.17)

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sin | =
¯

¯

¯

¯

Z

0

cos

¯

¯

¯

¯

¯

¯

¯

¯

Z

0

|cos |
¯

¯

¯

¯

¯

¯

¯

¯

Z

0

1

¯

¯

¯

¯

= | |

so
¯

¯

sin
¯

¯ 1 for all 6= 0 Making use of the identity
Z

0

= 1

and Fubini’s theorem,

Z

0

sin
=

Z

0

sin

Z

0

=

Z

0

Z

0

sin ( + )

=

Z

0

1 (cos + ( + ) sin ) ( + )

( + )
2
+ 1

=

Z

0

1

( + )2 + 1

Z

0

cos + ( + ) sin

( + )2 + 1
( + )

=
1

2
arctan ( ) (9.18)

where

( ) =

Z

0

cos + ( + ) sin

( + )2 + 1

( + )

Since
¯

¯

¯

¯

¯

cos + ( + ) sin

( + )
2
+ 1

¯

¯

¯

¯

¯

1 + ( + )

( + )
2
+ 1

| ( )|
Z

0

( + ) =

This estimate along with Eq. (9.18) proves Eq. (9.16) from which Eq. (9.17)
follows by taking and Eq. (9.15) follows (using the dominated con-
vergence theorem again) by letting
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9.3 Lebesgue measure on Rd

Notation 9.27 Let

:=

times
z }| {

· · · on BR =

times
z }| {

BR · · · BR
be the — fold product of Lebesgue measure on BR We will also use
to denote its completion and let L be the completion of BR relative to
A subset L is called a Lebesgue measurable set and is called —
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.28. A function : R R is Lebesgue measurable if
1(BR) L

Theorem 9.29. Lebesgue measure is translation invariant. Moreover
is the unique translation invariant measure on BR such that ((0 1] ) = 1

Proof. Let = 1 × · · · × with BR and R Then

+ = ( 1 + 1)× ( 2 + 2)× · · · × ( + )

and therefore by translation invariance of on BR we find that
( + ) = ( 1 + 1) ( + ) = ( 1) ( ) = ( )

and hence ( + ) = ( ) for all BR by Corollary 9.10. From this
fact we see that the measure ( + ·) and (·) have the same null sets.
Using this it is easily seen that ( + ) = ( ) for all L The proof
of the second assertion is Exercise 9.51.

Notation 9.30 I will often be sloppy in the sequel and write for and
for ( ) = ( ) Hopefully the reader will understand the meaning

from the context.

The following change of variable theorem is an important tool in using
Lebesgue measure.

Theorem 9.31 (Change of Variables Theorem). Let R be an open
set and : ( ) R be a 1 — di eomorphism1 . Then for any Borel
measurable function, : ( ) [0 ]

Z

|det 0| =

Z

( )

(9.19)

where 0( ) is the linear transformation on R defined by 0( ) := |0 ( +
) Alternatively, the — matrix entry of 0( ) is given by 0( ) =
( ) where ( ) = ( 1( ) ( ))

1 That is : ( ) R is a continuously di erentiable bijection and the
inverse map 1 : ( ) is also continuously di erentiable.
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We will postpone the full proof of this theorem until Section 21. However
we will give here the proof in the case that is linear. The following elementary
remark will be used in the proof.

Remark 9.32. Suppose that

( ) ( ( ))

are two 1 — di eomorphisms and Theorem 9.31 holds for and separately,
then it holds for the composition Indeed

Z

|det ( )0 | =

Z

|det ( 0 ) 0|

=

Z

(|det 0| ) |det 0|

=

Z

( )

|det 0| =

Z

( ( ))

Theorem 9.33. Suppose ( R) = (R ) — the space of × in-
vertible matrices.

1. If : R R is Borel — measurable then so is and if 0 or
1 then

Z

R
( ) = |det |

Z

R
( ) (9.20)

2. If L then ( ) L and ( ( )) = |det | ( )

Proof. Since is Borel measurable and : R R is continuous and
hence Borel measurable, is also Borel measurable. We now break the
proof of Eq. (9.20) into a number of cases. In each case we make use Tonelli’s
theorem and the basic properties of one dimensional Lebesgue measure.

1. Suppose that and

( 1 2 ) = ( 1 1 +1 1 +1 )

then by Tonelli’s theorem,
Z

R
( 1 ) =

Z

R
( 1 ) 1

=

Z

R
( 1 ) 1

which prove Eq. (9.20) in this case since |det | = 1
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2. Suppose that R and ( 1 ) = ( 1 ) then
Z

R
( 1 ) =

Z

R
( 1 ) 1

= | | 1

Z

R
( 1 ) 1

= |det | 1

Z

R

which again proves Eq. (9.20) in this case.
3. Suppose that

( 1 2 ) = ( 1

i’th spot
+ )

Then
Z

R
( 1 ) =

Z

R
( 1 + ) 1

=

Z

R
( 1 ) 1

=

Z

R
( 1 ) 1

where in the second inequality we did the integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (9.20) in this
case since det( ) = 1

Since every invertible matrix is a product of matrices of the type occurring
in steps 1. — 3. above, it follows by Remark 9.32 that Eq. (9.20) holds in
general. For the second assertion, let BR and take = 1 in Eq. (9.20)
to find

|det | ( 1( )) = |det |
Z

R
1 1( )

= |det |
Z

R
1 =

Z

R
1 = ( )

Replacing by 1 in this equation shows that

( ( )) = |det | ( )

for all BR In particular this shows that and have the same
null sets and therefore the completion of BR is L for both measures. Using
Proposition 8.6 one now easily shows

( ( )) = |det | ( ) L
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9.4 Polar Coordinates and Surface Measure

Let

1 = { R : | |2 :=
X

=1

2 = 1}

be the unit sphere in R Let : R \ (0) (0 ) × 1 and 1 be the
inverse map given by

( ) := (| | | | ) and
1( ) = (9.21)

respectively. Since and 1 are continuous, they are Borel measurable.
Consider the measure on B(0 ) B 1 given by

( ) :=
¡

1( )
¢

for all B(0 ) B 1 For B 1 and 0 let

:= { : (0 ] and } = 1((0 ]× ) BR
Noting that = 1 we have for 0 B 1 and = ( ]×
that

1( ) = { : ( ] and } (9.22)

= 1 \ 1 (9.23)

Therefore,

( ) (( ]× ) = ( 1 \ 1) = ( 1) ( 1)

= ( 1) ( 1)

= · ( 1)

Z

1 (9.24)

Let denote the unique measure on B(0 ) such that

( ) =

Z

1 (9.25)

for all B(0 ) i.e. ( ) = 1

Definition 9.34. For B 1 , let ( ) := · ( 1) We call the surface
measure on

It is easy to check that is a measure. Indeed if B 1 then 1 =
1 ((0 1]× ) BR so that ( 1) is well defined. Moreover if =

`

=1

then 1 =
`

=1 ( )1 and
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( ) = · ( 1) =
X

=1

(( )1) =
X

=1

( )

The intuition behind this definition is as follows. If 1 is a set and
0 is a small number, then the volume of

(1 1 + ] · = { : (1 1 + ] and }
should be approximately given by ((1 1 + ] · ) = ( ) see Figure 9.1
below.

Fig. 9.1. Motivating the definition of surface measure for a sphere.

On the other hand

((1 1 + ] ) = ( 1+ \ 1) =
©

(1 + ) 1
ª

( 1)

Therefore we expect the area of should be given by

( ) = lim
0

©

(1 + ) 1
ª

( 1)
= · ( 1)

According to these definitions and Eq. (9.24) we have shown that

(( ]× ) = (( ]) · ( ) (9.26)

Let
E = {( ]× : 0 B 1}

then E is an elementary class. Since (E) = B(0 ) B 1 we conclude from
Eq. (9.26) that

=

and this implies the following theorem.
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Theorem 9.35. If : R [0 ] is a (B B)—measurable function then
Z

R

( ) ( ) =

Z

[0 )× 1

( ) ( ) 1 (9.27)

Let us now work out some integrals using Eq. (9.27).

Lemma 9.36. Let 0 and

( ) :=

Z

R

| |2 ( )

Then ( ) = ( ) 2

Proof. By Tonelli’s theorem and induction,

( ) =

Z

R 1×R
| |2 2

1( )

= 1( ) 1( ) = 1 ( ) (9.28)

So it su ces to compute:

2( ) =

Z

R2

| |2 ( ) =

Z

R2\{0}

( 2
1+

2
2)

1 2

We now make the change of variables,

1 = cos and 2 = sin for 0 and 0 2

In vector form this transform is

= ( ) =

µ

cos
sin

¶

and the di erential and the Jacobian determinant are given by

0( ) =

µ

cos sin
sin cos

¶

and

det 0( ) = cos2 + sin2 =

Notice that : (0 )×(0 2 ) R2\ where is the ray, := {( 0) : 0}
which is a 2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function : R2 [0 ] we have

Z

R2
( ) =

Z 2

0

Z

0

( cos sin )
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In particular,

2( ) =

Z

0

Z 2

0

2

= 2

Z

0

2

= 2 lim

Z

0

2

= 2 lim

2

2

Z

0

=
2

2
=

This shows that 2( ) = and the result now follows from Eq. (9.28).

Corollary 9.37. The surface area ( 1) of the unit sphere 1 R is

( 1) =
2 2

( 2)
(9.29)

where is the gamma function given by

( ) :=

Z

0

1 (9.30)

Moreover, (1 2) = (1) = 1 and ( + 1) = ( ) for 0

Proof. We may alternatively compute (1) = 2 using Theorem 9.35;

(1) =

Z

0

1 2

Z

1

= ( 1)

Z

0

1 2

We simplify this last integral by making the change of variables = 2 so
that = 1 2 and = 1

2
1 2 The result is

Z

0

1 2

=

Z

0

1
2

1

2
1 2

=
1

2

Z

0

2 1

=
1

2
( 2) (9.31)

Collecting these observations implies that

2 = (1) =
1

2
( 1) ( 2)

which proves Eq. (9.29).
The computation of (1) is easy and is left to the reader. By Eq. (9.31),

(1 2) = 2

Z

0

2

=

Z

2

= 1(1) =



9.5 Regularity of Measures 221

The relation, ( +1) = ( ) is the consequence of the following integration
by parts:

( + 1) =

Z

0

+1 =

Z

0

µ ¶

=

Z

0

1 = ( )

9.5 Regularity of Measures

Definition 9.38. Suppose that E is a collection of subsets of let E denote
the collection of subsets of which are finite or countable unions of sets
from E Similarly let E denote the collection of subsets of which are finite
or countable intersections of sets from E We also write E = (E ) and
E = (E ) etc.

Remark 9.39. Notice that if A is an algebra and = and = with
A then

= ( ) A
so that A is closed under finite intersections.

The following theorem shows how recover a measure on (A) from its
values on an algebra A
Theorem 9.40 (Regularity Theorem). Let A P( ) be an algebra of
sets, M = (A) and :M [0 ] be a measure on M which is — finite
on A Then for all M

( ) = inf { ( ) : A } (9.32)

Moreover, if M and 0 are given, then there exists A such that
and ( \ )

Proof. For define

( ) = inf { ( ) : A }
We are trying to show = onM We will begin by first assuming that
is a finite measure, i.e. ( )
Let

F = { M : ( ) = ( )} = { M : ( ) ( )}
It is clear that A F so the finite case will be finished by showing F is
a monotone class. Suppose F as and let 0 be
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given. Since ( ) = ( ) there exists A such that and
( ) ( ) + 2 i.e.

( \ ) 2

Let = A then and

( \ ) = ( ( \ ))
X

=1

(( \ ))

X

=1

(( \ ))
X

=1

2 =

Therefore,
( ) ( ) ( ) +

and since 0 was arbitrary it follows that F
Now suppose that F and as so that

( ) ( ) as

As above choose A such that and

0 ( ) ( ) = ( \ ) 2

Combining the previous two equations shows that lim ( ) = ( )
Since ( ) ( ) for all we conclude that ( ) ( ) i.e. that

F
Since F is a monotone class containing the algebra A the monotone class

theorem asserts that
M = (A) F M

showing the F =M and hence that = onM
For the — finite case, let A be sets such that ( ) and

as Let be the finite measure onM defined by ( ) :=
( ) for all M Suppose that 0 and M are given. By what
we have just proved, for all M there exists A such that
and

(( ) \ ( )) = ( \ ) 2

Notice that since A A and

:= =1 ( ) A
Moreover, and

( \ )
X

=1

(( ) \ )
X

=1

(( ) \ ( ))

X

=1

2 =



9.5 Regularity of Measures 223

Since this implies that

( ) ( ) ( ) +

and 0 is arbitrary, this equation shows that Eq. (9.32) holds.

Corollary 9.41. Let A P( ) be an algebra of sets, M = (A) and
: M [0 ] be a measure on M which is — finite on A Then for all

M and 0 there exists A such that and

( \ )

Furthermore, for any M there exists A and A such that
and ( \ ) = 0

Proof. By Theorem 9.40, there exist A such that and
( \ ) Let = and notice that A and that \ =

= \ so that

( \ ) = ( \ )

Finally, given M we may choose A and A such that
and ( \ ) 1 and ( \ ) 1 By replacing

by =1 and by =1 we may assume that and as
increases. Let = A and = A then and

( \ ) = ( \ ) + ( \ ) ( \ ) + ( \ )

2 0 as

Corollary 9.42. Let A P( ) be an algebra of sets, M = (A) and
:M [0 ] be a measure onM which is — finite on A Then for every
M such that ( ) and 0 there exists A such that ( 4 )

Proof. By Corollary 9.41, there exists A such and ( \ )
Now write = =1 with A for each By replacing by

=1 A if necessary, we may assume that as Since
\ \ and \ \ = as and ( \ 1) ( )

we know that

lim ( \ ) = ( \ ) and lim ( \ ) = ( \ ) = 0

Hence for su ciently large,

( 4 ) = ( ( \ ) + ( \ )

Hence we are done by taking = A for an su ciently large.
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Remark 9.43.We have to assume that ( ) as the following example
shows. Let = R M = B = A be the algebra generated by half open
intervals of the form ( ] and = =1(2 2 +1] It is easily checked that
for every A that ( ) =

For Exercises 9.44 — 9.46 let P( ) be a topology, M = ( ) and
:M [0 ) be a finite measure, i.e. ( )

Exercise 9.44. Let

F := { M : ( ) = inf { ( ) : }} (9.33)

1. Show F may be described as the collection of set M such that for all
0 there exists such that and ( \ )

2. Show F is a monotone class.

Exercise 9.45. Give an example of a topology on = {1 2} and a measure
onM = ( ) such that F defined in Eq. (9.33) is notM

Exercise 9.46. Suppose now P( ) is a topology with the property that
to every closed set there exists such that as
Let A = A( ) be the algebra generated by
1. With the aid of Exercise 7.12, show that A F Therefore by exercise
9.44 and the monotone class theorem, F =M i.e.

( ) = inf { ( ) : }

(Hint: Recall the structure of A from Exercise 7.12.)
2. Show this result is equivalent to following statement: for every 0 and

M there exist a closed set and an open set such that
and ( \ ) (Hint: Apply part 1. to both and )

Exercise 9.47 (Generalization to the — finite case). Let P( )
be a topology with the property that to every closed set there exists

such that as Also letM = ( ) and :M [0 ]
be a measure which is — finite on

1. Show that for all 0 and M there exists an open set and a
closed set such that and ( \ )

2. Let denote the collection of subsets of which may be written as a
countable union of closed sets. Use item 1. to show for all M there
exists ( is customarily written as ) and such that

and ( \ ) = 0

Exercise 9.48 (Metric Space Examples). Suppose that ( ) is a metric
space and is the topology of — open subsets of To each set and

0 let
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= { : ( ) } = ( )

Show that if is closed, then as 0 and in particular := 1

are open sets decreasing to Therefore the results of Exercises 9.46 and 9.47
apply to measures on metric spaces with the Borel — algebra, B = ( )

Corollary 9.49. Let R be an open set and B = B be the Borel —
algebra on equipped with the standard topology induced by open balls with
respect to the Euclidean distance. Suppose that : B [0 ] is a measure
such that ( ) whenever is a compact set.

1. Then for all B and 0 there exist a closed set and an open set
such that and ( \ )

2. If ( ) the set in item 1. may be chosen to be compact.
3. For all B we may compute ( ) using

( ) = inf{ ( ) : and is open} (9.34)

= sup{ ( ) : and is compact} (9.35)

Proof. For N let

:= { : | | and ( ) 1 } (9.36)

Then is a closed and bounded subset of R and hence compact. Moreover
as since2

{ : | | and ( ) 1 }
and { : | | and ( ) 1 } as This shows is —
finite on and Item 1. follows from Exercises 9.47 and 9.48.
If ( ) and as in item 1. Then as

and therefore since ( ) ( \ ) ( \ ) as Hence
by choosing su ciently large, ( \ ) and we may replace by
the compact set and item 1. still holds. This proves item 2.
Item 3. Item 1. easily implies that Eq. (9.34) holds and item 2. implies

Eq. (9.35) holds when ( ) So we need only check Eq. (9.35) when
( ) = By Item 1. there is a closed set such that ( \ ) 1 and
in particular ( ) = Since and is compact, it follows
that the right side of Eq. (9.35) is infinite and hence equal to ( )

9.6 Exercises

Exercise 9.50. Let ( M ) for = 1 2 3 be — finite measure spaces.
Let : 1 × 2 × 3 ( 1 × 2)× 3 be defined by

(( 1 2) 3) = ( 1 2 3)

2 In fact this is an equality, but we will not need this here.
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1. Show is ((M1 M2) M3 M1 M2 M3) — measurable and 1

is (M1 M2 M3 (M1 M2) M3) — measurable. That is

: (( 1 × 2)× 3 (M1 M2) M3) ( 1× 2× 3 M1 M2 M3)

is a “measure theoretic isomorphism.”
2. Let := [( 1 2) 3] i.e. ( ) = [( 1 2) 3] (

1( )) for all
M1 M2 M3 Then is the unique measure onM1 M2 M3

such that
( 1 × 2 × 3) = 1( 1) 2( 2) 3( 3)

for all M We will write := 1 2 3

3. Let : 1 × 2 × 3 [0 ] be a (M1 M2 M3 BR̄) — measurable
function. Verify the identity,
Z

1× 2× 3

=

Z

3

Z

2

Z

1

( 1 2 3) 1( 1) 2( 2) 3( 3)

makes sense and is correct. Also show the identity holds for any one of
the six possible orderings of the iterated integrals.

Exercise 9.51. Prove the second assertion of Theorem 9.29. That is show
is the unique translation invariant measure on BR such that ((0 1] ) = 1
Hint: Look at the proof of Theorem 8.10.

Exercise 9.52. (Part of Folland Problem 2.46 on p. 69.) Let = [0 1]
M = B[0 1] be the Borel — field on be Lebesgue measure on [0 1] and
be counting measure, ( ) = #( ) Finally let = {( ) 2 : }

be the diagonal in 2 Show
Z Z

1 ( ) ( ) ( ) 6=
Z Z

1 ( ) ( ) ( )

by explicitly computing both sides of this equation.

Exercise 9.53. Folland Problem 2.48 on p. 69. (Fubini problem.)

Exercise 9.54. Folland Problem 2.50 on p. 69. (Note theM×BR should be
M BR̄ in this problem.)
Exercise 9.55. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.56. Folland Problem 2.56 on p. 77. Let 1((0 ) ) ( ) =
R ( ) for (0 ) show 1((0 ) ) and

Z

0

( ) =

Z

0

( )

Exercise 9.57. Show
R

0

¯

¯

sin
¯

¯ ( ) = So sin 1([0 ) ) and
R

0
sin ( ) is not defined as a Lebesgue integral.
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Exercise 9.58. Folland Problem 2.57 on p. 77.

Exercise 9.59. Folland Problem 2.58 on p. 77.

Exercise 9.60. Folland Problem 2.60 on p. 77. Properties of — functions.

Exercise 9.61. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.62. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on 1

Exercise 9.63. Folland Problem 2.64 on p. 80. On the integrability of
| | |log | || for near 0 and near in R



10

Lp-spaces

Let ( M ) be a measure space and for 0 and a measurable
function : C let

k k (

Z

| | )1 (10.1)

When = let

k k = inf { 0 : (| | ) = 0} (10.2)

For 0 let

( M ) = { : C : is measurable and k k }
where i = a.e. Notice that k k = 0 i and if
then k k = k k In general we will (by abuse of notation) use to denote
both the function and the equivalence class containing

Remark 10.1. Suppose that k k then for all (| | ) = 0
and therefore (| | ) = lim (| | + 1 ) = 0 i.e. | ( )|
for - a.e. Conversely, if | | a.e. and then (| | ) = 0 and
hence k k This leads to the identity:

k k = inf { 0 : | ( )| for — a.e. }
Theorem 10.2 (Hölder’s inequality). Suppose that 1 and :=

1 or equivalently 1 + 1 = 1 If and are measurable functions then

k k1 k k · k k (10.3)

Assuming (1 ) and k k ·k k equality holds in Eq. (10.3) i | |
and | | are linearly dependent as elements of 1 If we further assume that
k k and k k are positive then equality holds in Eq. (10.3) i

| | k k = k k | | a.e. (10.4)
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Proof. The cases where k k = 0 or or k k = 0 or are easy to deal
with and are left to the reader. So we will now assume that 0 k k k k

Let = | | k k and = | | k k then Lemma 1.27 implies

| |
k k k k

1 | |
k k +

1 | |
k k (10.5)

with equality i | k k | = | | 1 k k( 1)
= | | k k , i.e. | | k k =

k k | | Integrating Eq. (10.5) implies

k k1
k k k k

1
+
1
= 1

with equality i Eq. (10.4) holds. The proof is finished since it is easily checked
that equality holds in Eq. (10.3) when | | = | | of | | = | | for some
constant
The following corollary is an easy extension of Hölder’s inequality.

Corollary 10.3. Suppose that : C are measurable functions for =
1 and 1 and are positive numbers such that

P

=1
1 = 1

then
°

°

°

°

°

Y

=1

°

°

°

°

°

Y

=1

k k where
X

=1

1 = 1

Proof. To prove this inequality, start with = 2 then for any [1 ]

k k =

Z

k k k k

where = 1 is the conjugate exponent. Let 1 = and 2 = so that
1

1 + 1
2 = 1 as desired. Then the previous equation states that

k k k k
1
k k

2

as desired. The general case is now proved by induction. Indeed,
°

°

°

°

°

+1
Y

=1

°

°

°

°

°

=

°

°

°

°

°

Y

=1

· +1

°

°

°

°

°

°

°

°

°

°

Y

=1

°

°

°

°

°

k +1k +1

where 1+ 1
+1 =

1 Since
P

=1
1 = 1 we may now use the induction

hypothesis to conclude
°

°

°

°

°

Y

=1

°

°

°

°

°

Y

=1

k k

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality.
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Theorem 10.4 (Minkowski’s Inequality). If 1 and
then

k + k k k + k k (10.6)

Moreover if then equality holds in this inequality i

sgn( ) = sgn( ) when = 1 and

= or = for some 0 when 1

Proof.When = | | k k a.e. and | | k k a.e. so that | + |
| |+ | | k k + k k a.e. and therefore

k + k k k + k k

When

| + | (2max (| | | |)) = 2 max (| | | | ) 2 (| | + | | )

k + k 2
¡k k + k k ¢

In case = 1

k + k1 =
Z

| + |
Z

| | +

Z

| |

with equality i | |+ | | = | + | a.e. which happens i sgn( ) = sgn( ) a.e.
In case (1 ) we may assume k + k k k and k k are all positive

since otherwise the theorem is easily verified. Now

| + | = | + || + | 1 (| |+ | |)| + | 1

with equality i sgn( ) = sgn( ) Integrating this equation and applying
Holder’s inequality with = ( 1) gives

Z

| + |
Z

| | | + | 1 +

Z

| | | + | 1

(k k + k k ) k | + | 1 k (10.7)

with equality i

sgn( ) = sgn( ) and
µ | |
k k

¶

=
| + |
k + k =

µ | |
k k

¶

a.e. (10.8)

Therefore

k| + | 1k =

Z

(| + | 1) =

Z

| + | (10.9)
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Combining Eqs. (10.7) and (10.9) implies

k + k k k k + k + k k k + k (10.10)

with equality i Eq. (10.8) holds which happens i = a.e. with 0..
Solving for k + k in Eq. (10.10) gives Eq. (10.6).
The next theorem gives another example of using Hölder’s inequality

Theorem 10.5. Suppose that ( M ) and ( N ) be -finite measure
spaces, [1 ] = ( 1) and : × C be a M N —
measurable function. Assume there exist finite constants 1 and 2 such that

Z

| ( )| ( ) 1 for a.e. and
Z

| ( )| ( ) 2 for a.e. .

If ( ) then
Z

| ( ) ( )| ( ) for — a.e.

( ) :=
R

( ) ( ) ( ) ( ) and

k k ( )
1
1

1
2 k k ( ) (10.11)

Proof. Suppose (1 ) to begin with and let = ( 1) then by
Hölder’s inequality,
Z

| ( ) ( )| ( ) =

Z

| ( )|1 | ( )|1 | ( )| ( )

·
Z

| ( )| ( )

¸1 ·
Z

| ( )| | ( )| ( )

¸1

1
2

·
Z

| ( )| | ( )| ( )

¸1

Therefore, using Tonelli’s theorem,
°

°

°

°

Z

| (· ) ( )| ( )

°

°

°

°

2

Z

( )

Z

( ) | ( )| | ( )|

= 2

Z

( ) | ( )|
Z

( ) | ( )|

2 1

Z

( ) | ( )| = 2 1 k k

From this it follows that ( ) :=
R

( ) ( ) ( ) ( ) and that
Eq. (10.11) holds.
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Similarly, if =

Z

| ( ) ( )| ( ) k k
Z

| ( )| ( ) 2 k k for — a.e.

so that k k ( ) 2 k k ( ) If = 1 then

Z

( )

Z

( ) | ( ) ( )| =
Z

( ) | ( )|
Z

( ) | ( )|

1

Z

( ) | ( )|

which shows k k 1( ) 1 k k 1( )

10.1 Jensen’s Inequality

Definition 10.6. A function : ( ) R is convex if for all 0 1

and [0 1] ( ) ( 1) + (1 ) ( 0) where = 1 + (1 ) 0

The following Proposition is clearly motivated by Figure 10.1.

20-2-4-6

20

15

10

5

0

x

y

x

y

Fig. 10.1. A convex function along with two cords corresponding to 0 = 2 and
1 = 4 and 0 = 5 and 1 = 2

Proposition 10.7. Suppose : ( ) R is a convex function, then

1. For all ( ) such that [ ) and ( ]

( ) ( ) ( ) ( )
(10.12)

234 10 -spaces

2. For each ( ) the right and left sided derivatives 0
±( ) exists in R

and if then 0
+( )

0 ( ) 0
+( )

3. The function is continuous.
4. For all ( ) and [ 0 ( ) 0

+( )] ( ) ( ) + ( ) for all
( ) In particular,

( ) ( ) + 0 ( )( ) for all ( )

Proof. 1a) Suppose first that = in which case Eq. (10.12) is
equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

which after solving for ( ) is equivalent to the following equations holding:

( ) ( ) + ( )

But this last equation states that ( ) ( ) + ( ) (1 ) where =
and = + (1 ) and hence is valid by the definition of being convex.
1b) Now assume = in which case Eq. (10.12) is equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

which after solving for ( ) is equivalent to

( ) ( ) ( ) ( ) + ( ) ( )

which is equivalent to

( ) ( ) + ( )

Again this equation is valid by the convexity of
1c) = in which case Eq. (10.12) is equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

and this is equivalent to the inequality,

( ) ( ) + ( )

which again is true by the convexity of
1) General case. If then by 1a-1c)

( ) ( ) ( ) ( ) ( ) ( )

and if
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( ) ( ) ( ) ( ) ( ) ( )

We have now taken care of all possible cases.
2) On the set Eq. (10.12) shows that ( ( ) ( )) ( )

is a decreasing function in and an increasing function in and therefore
0±( ) exists for all ( ) Also from Eq. (10.12) we learn that

0
+( )

( ) ( )
for all (10.13)

( ) ( ) 0 ( ) for all (10.14)

and letting in the first equation also implies that

0
+( )

0 ( ) for all

The inequality, 0 ( ) 0
+( ) is also an easy consequence of Eq. (10.12).

3) Since ( ) has both left and right finite derivatives, it follows that is
continuous. (For an alternative proof, see Rudin.)
4) Given let [ 0 ( ) 0

+( )] then by Eqs. (10.13) and (10.14),

( ) ( ) 0 ( ) 0
+( )

( ) ( )

for all Item 4. now follows.

Corollary 10.8. Suppose : ( ) R is di erential then is convex i 0

is non decreasing. In particular if 2( ) then is convex i 00 0

Proof. By Proposition 10.7, if is convex then 0 is non-decreasing. Con-
versely if 0 is increasing then by the mean value theorem,

( 1) ( )

1
= 0( 1) for some 1 ( 1)

and
( ) ( 0)

0
= 0( 2) for some 2 ( 0 )

Hence
( 1) ( )

1

( ) ( 0)

0

for all 0 1 Solving this inequality for ( ) gives

( )
0

1 0
( 1) +

1

1 0
( 0)

showing is convex.
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Example 10.9. The functions exp( ) and log( ) are convex and is
convex i 1

Theorem 10.10 (Jensen’s Inequality). Suppose that ( M ) is a prob-
ability space, i.e. is a positive measure and ( ) = 1 Also suppose that

1( ) : ( ) and : ( ) R is a convex function. Then
µ
Z

¶
Z

( )

where if 1( ) then is integrable in the extended sense and
R

( ) =

Proof. Let =
R

( ) and let R be such that ( ) ( )
( ) for all ( ) Then integrating the inequality, ( ) ( ) ( )
implies that

0

Z

( ) ( ) =

Z

( ) (

Z

)

Moreover, if ( ) is not integrable, then ( ) ( ) + ( ) which shows
that negative part of ( ) is integrable. Therefore,

R

( ) = in this
case.

Example 10.11. The convex functions in Example 10.9 lead to the following
inequalities,

exp

µ
Z

¶
Z

(10.15)
Z

log(| |) log

µ
Z

| |
¶

log

µ
Z

¶

and for 1

¯

¯

¯

¯

Z

¯

¯

¯

¯

µ
Z

| |
¶

Z

| |

The last equation may also easily be derived using Hölder’s inequality. As a
special case of the first equation, we get another proof of Lemma 1.27. Indeed,
more generally, suppose 0 for = 1 2 and

P

=1
1 = 1 then

1 =
P

=1 ln =
P

=1
1 ln

X

=1

1 ln =
X

=1

(10.16)

where the inequality follows from Eq. (10.15) with =
P

=1
1 Of course

Eq. (10.16) may be proved directly by directly using the convexity of the
exponential function.
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10.2 Modes of Convergence

As usual let ( M ) be a fixed measure space and let { } be a sequence
of measurable functions on Also let : C be a measurable function.
We have the following notions of convergence and Cauchy sequences.

Definition 10.12. 1. a.e. if there is a set M such that ( ) =
0 and lim 1 = 1

2. in — measure if lim (| | ) = 0 for all 0 We
will abbreviate this by saying in 0 or by

3. in i and for all and lim
R | | =

0

Definition 10.13. 1. { } is a.e. Cauchy if there is a set M such that
( ) = 0 and{1 } is a pointwise Cauchy sequences.

2. { } is Cauchy in — measure (or 0 — Cauchy) if lim (|
| ) = 0 for all 0

3. { } is Cauchy in if lim
R | | = 0

Lemma 10.14 (Chebyshev’s inequality again). Let [1 ) and
then

(| | )
1 k k for all 0

In particular if { } is — convergent (Cauchy) then { } is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (8.12),

(| | ) = (| | )
1
Z

| | =
1 k k

and therefore if { } is — Cauchy, then

(| | )
1 k k 0 as

showing { } is 0 — Cauchy. A similar argument holds for the — convergent
case.

Lemma 10.15. Suppose C and | +1 | and
P

=1
. Then

lim = C exists and | | P

=

.

Proof. Let then

| | =
¯

¯

¯

¯

1
P

=

( +1 )

¯

¯

¯

¯

1
P

=

| +1 | P

=

(10.17)

So | | min( ) 0 as i.e. { } is Cauchy. Let
in (10.17) to find | |
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Fig. 10.2. Modes of convergence examples. In picture 1. 0 a.e., 9 0 in 1

0 In picture 2. 0 a.e., 9 0 in 1 9 0 In picture 3., 0 a.e.,
0 but 9 0 in 1 In picture 4., 0 in 1 9 0 a.e., and 0

Theorem 10.16. Suppose { } is 0-Cauchy. Then there exists a subse-

quence = of { } such that lim exists a.e. and

as Moreover if is a measurable function such that
as then = a.e.

Proof. Let 0 such that
P

=1
( = 2 would do) and set

=
P

=

Choose = such that { } is a subsequence of N and

({| +1 | })
Let = {| +1 | }

=
[

=

=
[

=

{| +1 | }
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and
\

=1

=
\

=1

[

=

= {| +1 | i.o.}

Then ( ) = 0 since

( )
X

=

( )
X

=

= 0 as

For | +1( ) ( )| for all and by Lemma 10.15,
( ) = lim ( ) exists and | ( ) ( )| for all . Therefore,

lim ( ) = ( ) exists for all . Moreover, { : | ( ) ( )| }
for all and hence

(| | ) ( ) 0 as

Therefore as .
Since

{| | } = {| + | }
{| | 2} {| | 2}

({| | }) ({| | 2}) + (| | 2)

and

({| | }) lim sup (| | 2) 0 as

If also as then arguing as above

(| | ) ({| | 2}) + (| | 2) 0 as

Hence

(| | 0) = ( =1{| | 1 })
X

=1

(| | 1
) = 0

i.e. = a.e.

Corollary 10.17 (Dominated Convergence Theorem). Suppose { }
{ } and are in 1 and 0 are functions such that

| | a.e. and
Z Z

as

Then 1 and lim k k1 = 0 i.e. in 1 In particular
lim

R

=
R
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Proof. First notice that | | a.e. and hence 1 since 1 To
see that | | use Theorem 10.16 to find subsequences { } and { } of
{ } and { } respectively which are almost everywhere convergent. Then

| | = lim | | lim = a.e.

If (for sake of contradiction) lim k k1 6= 0 there exists 0 and
a subsequence { } of { } such that

Z

| | for all (10.18)

Using Theorem 10.16 again, we may assume (by passing to a further subse-
quences if necessary) that and almost everywhere. Noting,
| | + 2 and

R

( + )
R

2 an application of the
dominated convergence Theorem 8.38 implies lim

R | | = 0 which
contradicts Eq. (10.18).

Exercise 10.18 (Fatou’s Lemma). If 0 and in measure, then
R

lim inf
R

Theorem 10.19 (Egoro ’s Theorem). Suppose ( ) and
a.e. Then for all 0 there exists M such that ( ) and
uniformly on In particular as

Proof. Let a.e. Then ({| | 1 i.o. }) = 0 for all 0
i.e.

lim
[

{| | 1} =
\

=1

[

{| | 1} = 0

Let :=
S {| | 1} and choose an increasing sequence { } =1

such that ( ) 2 for all Setting := ( )
P

2 =
and if then | | 1 for all and all That is
uniformly on

Exercise 10.20. Show that Egoro ’s Theorem remains valid when the as-
sumption ( ) is replaced by the assumption that | | 1 for all

10.3 Completeness of Lp — spaces

Theorem 10.21. Let k·k be as defined in Eq. (10.2), then ( ( M ) k·k
a Banach space. A sequence { } =1 converges to i there ex-
ists M such that ( ) = 0 and uniformly on Moreover,
bounded simple functions are dense in
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Proof. By Minkowski’s Theorem 10.4, k·k satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure k·k is
a norm.
Suppose that { } =1 is a sequence such i.e.

k k 0 as Then for all N there exists such that
¡| | 1

¢

= 0 for all

Let
= =1

©| | 1
ª

Then ( ) = 0 and for | ( ) ( )| 1 for all This
shows that uniformly on Conversely, if there exists M such
that ( ) = 0 and uniformly on then for any 0

(| | ) = ({| | } ) = 0

for all su ciently large. That is to say lim sup k k for
all 0 The density of simple functions follows from the approximation
Theorem 8.12.
So the last item to prove is the completeness of for which we will

use Theorem 2.67. Suppose that { } =1 is a sequence such that
P

=1 k k Let := k k := {| | } and := =1

so that ( ) = 0 Then

X

=1

sup | ( )|
X

=1

which shows that ( ) =
P

=1 ( ) converges uniformly to ( ) :=
P

=1 ( ) on i.e. lim k k = 0
Alternatively, suppose := k k 0 as

Let = {| | } and := then ( ) = 0 and
k k = 0 as Therefore, := lim ex-
ists on and the limit is uniform on Letting = lim sup it then
follows that k k 0 as

Theorem 10.22 (Completeness of ( )). For 1 ( ) equipped
with the — norm, k·k (see Eq. (10.1)), is a Banach space.

Proof. By Minkowski’s Theorem 10.4, k·k satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure k·k
is a norm. So we are left to prove the completeness of ( ) for 1
the case = being done in Theorem 10.21. By Chebyshev’s inequality
(Lemma 10.14), { } is 0-Cauchy (i.e. Cauchy in measure) and by Theorem
10.16 there exists a subsequence { } of { } such that a.e. By Fatou’s
Lemma,
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k k =

Z

lim inf | | lim inf

Z

| |
= lim inf k k 0 as

In particular, k k k k +k k so the and . The
proof is finished because,

k k k k + k k 0 as

The ( ) — norm controls two types of behaviors of namely the “be-
havior at infinity” and the behavior of local singularities. So in particular, if
is blows up at a point 0 then locally near 0 it is harder for to be in
( ) as increases. On the other hand a function ( ) is allowed to de-

cay at “infinity” slower and slower as increases. With these insights in mind,
we should not in general expect ( ) ( ) or ( ) ( ) However,
there are two notable exceptions. (1) If ( ) then there is no behavior
at infinity to worry about and ( ) ( ) for all as is shown in
Corollary 10.23 below. (2) If is counting measure, i.e. ( ) = #( ) then
all functions in ( ) for any can not blow up on a set of positive measure,
so there are no local singularities. In this case ( ) ( ) for all
see Corollary 10.27 below.

Corollary 10.23. If ( ) then ( ) ( ) for all 0
and the inclusion map is bounded.

Proof. Choose [1 ] such that

1
=
1
+
1
i.e. =

Then by Corollary 10.3,

k k = k · 1k k k · k1k = ( )1 k k = ( )(
1 1 )k k

The reader may easily check this final formula is correct even when =
provided we interpret 1 1 to be 1

Proposition 10.24. Suppose that 0 then +
i.e. every function may be written as = + with and

For 1 and + let

k k := inf
n

k k + k k : = +
o

Then ( + k·k) is a Banach space and the inclusion map from to
+ is bounded; in fact k k 2 k k for all
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Proof. Let 0 then the local singularities of are contained in the
set := {| | } and the behavior of at “infinity” is solely determined
by on Hence let = 1 and = 1 so that = + By our earlier
discussion we expect that and and this is the case since,

k k =
°

° 1| |
°

° =

Z

| | 1| | =

Z

¯

¯

¯

¯

¯

¯

¯

¯

1| |
Z

¯

¯

¯

¯

¯

¯

¯

¯

1| | k k

and

k k =
°

° 1| |
°

° =

Z

| | 1| | =

Z

¯

¯

¯

¯

¯

¯

¯

¯

1| |
Z

¯

¯

¯

¯

¯

¯

¯

¯

1| | k k

Moreover this shows

k k 1 k k + 1 k k
Taking = k k then gives

k k
³

1 + 1
´

k k

and then taking = 1 shows k k 2 k k The the proof that ( + k·k)
is a Banach space is left as Exercise 10.48 to the reader.

Corollary 10.25 (Interpolation of — norms). Suppose that 0
then and

k k k k k k1 (10.19)

where (0 1) is determined so that

1
= +

1
with = if =

Further assume 1 and for let

k k := k k + k k
Then ( k·k) is a Banach space and the inclusion map of into
is bounded, in fact

k k max
¡

1 (1 ) 1
¢

³

k k + k k
´

(10.20)

where

=

1 1

1 1 =
( )

( )
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The heuristic explanation of this corollary is that if then
has local singularities no worse than an function and behavior at infinity
no worse than an function. Hence for any between and
Proof. Let be determined as above, = and = (1 ), then by

Corollary 10.3,

k k =
°

°

°
| | | |1

°

°

°

°

°

°
| |

°

°

°

°

°

°
| |1

°

°

°
= k k k k1

It is easily checked that k·k is a norm on To show this space is
complete, suppose that { } is a k·k — Cauchy sequence. Then
{ } is both and — Cauchy. Hence there exist and
such that lim k k = 0 and lim k k = 0 By Chebyshev’s
inequality (Lemma 10.14) and in measure and therefore by
Theorem 10.16, = a.e. It now is clear that lim k k = 0 The
estimate in Eq. (10.20) is left as Exercise 10.47 to the reader.

Remark 10.26. Let = 1 = 0 and for (0 1) let be defined by

1
=
1

0
+

1
(10.21)

Combining Proposition 10.24 and Corollary 10.25 gives

0 1 0 + 1

and Eq. (10.19) becomes

k k k k1
0
k k

1

Corollary 10.27. Suppose now that is counting measure on Then
( ) ( ) for all 0 and k k k k
Proof. Suppose that 0 = then

k k = sup {| ( )| : }
X

| ( )| = k k

i.e. k k k k for all 0 For 0 apply Corollary
10.25 with = to find

k k k k k k1 k k k k1 = k k

10.3.1 Summary:

1. Since (| | ) k k it follows that — convergence implies 0 —
convergence.
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2. 0 — convergence implies almost everywhere convergence for some subse-
quence.

3. If ( ) then for all in fact

k k [ ( )](
1 1 ) k k

i.e. — convergence implies — convergence.
4. 0 1 0 + 1 where

1
=
1

0
+

1

5. if In fact k k k k in this case. To prove this write

1
= +

(1 )

then using k k k k for all

k k k k k k1 k k k k1 = k k
6. If ( ) then almost everywhere convergence implies 0 — conver-
gence.

10.4 Converse of Hölder’s Inequality

Throughout this section we assume ( M ) is a -finite measure space,
[1 ] and [1 ] are conjugate exponents, i.e. 1 + 1 = 1 For
let ( ) be given by

( ) =

Z

(10.22)

By Hölder’s inequality

| ( )|
Z

| | k k k k (10.23)

which implies that

k k( ) := sup{| ( )| : k k = 1} k k (10.24)

Proposition 10.28 (Converse of Hölder’s Inequality). Let ( M ) be
a -finite measure space and 1 as above. For all

k k = k k( ) := sup
n

| ( )| : k k = 1
o

(10.25)

and for any measurable function : C

k k = sup

½
Z

| | : k k = 1 and 0

¾

(10.26)
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Proof. We begin by proving Eq. (10.25). Assume first that so
1 Then

| ( )| =
¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| | k k k k

and equality occurs in the first inequality when sgn( ) is constant a.e. while
equality in the second occurs, by Theorem 10.2, when | | = | | for some
constant 0 So let := sgn( )| | which for = is to be interpreted
as = sgn( ) i.e. | | 1
When =

| ( )| =
Z

sgn( ) = k k 1( ) = k k1 k k

which shows that k k( ) k k1 If then

k k =

Z

| | =
Z

| | = k k

while

( ) =

Z

=

Z

| || | =

Z

| | = k k

Hence
| ( )|
k k =

k k
k k

= k k (1 1 )
= k k

This shows that || k k k which combined with Eq. (10.24) implies Eq.
(10.25).
The last case to consider is = 1 and = Let := k k and choose
M such that as and ( ) for all For any

0 (| | ) 0 and {| | } {| | } Therefore,
( {| | }) 0 for su ciently large. Let

= sgn( )1 {| | }

then
k k1 = ( {| | }) (0 )

and

| ( )| =
Z

{| | }
sgn( ) =

Z

{| | }
| |

( ) ( {| | }) = ( )k k1
Since 0 is arbitrary, it follows from this equation that k k( 1) =
k k
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We now will prove Eq. (10.26). The key new point is that we no longer are
assuming that Let ( ) denote the right member in Eq. (10.26) and
set := 1 {| | } Then | | | | as and it is clear that ( ) is
increasing in Therefore using Lemma 1.10 and the monotone convergence
theorem,

lim ( ) = sup ( ) = sup sup

½
Z

| | : k k = 1 and 0

¾

= sup

½

sup

Z

| | : k k = 1 and 0

¾

= sup

½

lim

Z

| | : k k = 1 and 0

¾

= sup

½
Z

| | : k k = 1 and 0

¾

= ( )

Since for all and ( ) = k k( ) (as you should verify), it
follows from Eq. (10.25) that ( ) = k k When by the monotone
convergence theorem, and when = directly from the definitions, one
learns that lim k k = k k Combining this fact with lim ( ) =
( ) just proved shows ( ) = k k
As an application we can derive a sweeping generalization of Minkowski’s

inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 10.29 (Minkowski’s Inequality for Integrals). Let ( M )
and ( N ) be -finite measure spaces and 1 If is a M N
measurable function, then k (· )k ( ) is measurable and

1. if is a positiveM N measurable function, then

k
Z

(· ) ( )k ( )

Z

k (· )k ( ) ( ) (10.27)

2. If : × C is aM N measurable function and
R k (· )k ( ) ( )

then
a) for — a.e. ( ·) 1( )
b) the —a.e. defined function,

R

( ) ( ) is in ( ) and
c) the bound in Eq. (10.27) holds.

Proof. For [1 ] let ( ) := k (· )k ( ) If [1 )

( ) = k (· )k ( ) =

µ
Z

| ( )| ( )

¶1

is a measurable function on by Fubini’s theorem. To see that is mea-
surable, let M such that and ( ) for all Then by
Exercise 10.46,
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( ) = lim lim k (· )1 k ( )

which shows that is ( N ) — measurable as well. This shows that integral
on the right side of Eq. (10.27) is well defined.
Now suppose that 0 = ( 1)and ( ) such that 0 and

k k ( ) = 1 Then by Tonelli’s theorem and Hölder’s inequality,

Z
·
Z

( ) ( )

¸

( ) ( ) =

Z

( )

Z

( ) ( ) ( )

k k ( )

Z

k (· )k ( ) ( )

=

Z

k (· )k ( ) ( )

Therefore by Proposition 10.28,

k
Z

(· ) ( )k ( )

= sup

½
Z
·
Z

( ) ( )

¸

( ) ( ) : k k ( ) = 1 and 0

¾

Z

k (· )k ( ) ( )

proving Eq. (10.27) in this case.
Now let : × C be as in item 2) of the theorem. Applying the first

part of the theorem to | | shows
Z

| ( )| ( ) for — a.e.

i.e. ( ·) 1( ) for the —a.e. Since
¯

¯

R

( ) ( )
¯

¯

R | ( )| ( )
it follows by item 1) that

k
Z

(· ) ( )k ( ) k
Z

| (· )| ( )k ( )

Z

k (· )k ( ) ( )

Hence the function,
R

( ) ( ) is in ( ) and the bound in
Eq. (10.27) holds.
Here is an application of Minkowski’s inequality for integrals.

Theorem 10.30 (Theorem 6.20 in Folland). Suppose that : (0 ) ×
(0 ) C is a measurable function such that is homogenous of degree 1
i.e. ( ) = 1 ( ) for all 0 If

:=

Z

0

| ( 1)| 1



10.4 Converse of Hölder’s Inequality 249

for some [1 ] then for ((0 ) ) ( ·) (·) ((0 ) )
for — a.e. Moreover, the — a.e. defined function

( )( ) =

Z

0

( ) ( ) (10.28)

is in ((0 ) ) and

k k ((0 ) ) k k ((0 ) )

Proof. By the homogeneity of ( ) = 1 ( 1) Hence

Z

0

| ( ) ( )| =

Z

0

1 | (1 ) ( )|

=

Z

0

1 | (1 ) ( )| =

Z

0

| (1 ) ( )|

Since

k (· )k ((0 ) ) =

Z

0

| ( )| =

Z

0

| ( )|

k (· )k ((0 ) ) =
1 k k ((0 ) )

Using Minkowski’s inequality for integrals then shows
°

°

°

°

Z

0

| (· ) ( )|
°

°

°

°

((0 ) )

Z

0

| (1 )| k (· )k ((0 ) )

= k k ((0 ) )

Z

0

| (1 )| 1

= k k ((0 ) )

This shows that in Eq. (10.28) is well defined from — a.e. The proof
is finished by observing

k k ((0 ) )

°

°

°

°

Z

0

| (· ) ( )|
°

°

°

°

((0 ) )

k k ((0 ) )

for all ((0 ) )
The following theorem is a strengthening of Proposition 10.28. which will

be used (actually maybe not) in Theorem ?? below. (WHERE IS THIS THE-
OREM USED?)

Theorem 10.31 (Converse of Hölder’s Inequality II). Assume that
( M ) is a — finite measure space, [1 ] are conjugate exponents
and let S denote the set of simple functions on such that ( 6= 0)
For : C measurable such that 1 for all S 1 let

1 This is equivalent to requiring 1 1( ) for all M such that ( )
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( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: S with k k = 1

¾

(10.29)

If ( ) then and ( ) = k k
Proof. Let M be sets such that ( ) and as

Suppose that = 1 and hence = Choose simple functions on
such that | | 1 and sgn( ) = lim in the pointwise sense. Then
1 S and therefore

¯

¯

¯

¯

Z

1

¯

¯

¯

¯

( )

for all By assumption 1 1( ) and therefore by the dominated
convergence theorem we may let in this equation to find

Z

1 | | ( )

for all The monotone convergence theorem then implies that
Z

| | = lim

Z

1 | | ( )

showing 1( ) and k k1 ( ) Since Holder’s inequality implies that
( ) k k1 we have proved the theorem in case = 1
For 1 we will begin by assuming that ( ) Since [1 )

we know that S is a dense subspace of ( ) and therefore, using is
continuous on ( )

( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: ( ) with k k = 1

¾

= k k

where the last equality follows by Proposition 10.28.
So it remains to show that if 1 for all S and ( )

then ( ) For N let 1 1| | Then ( ) in fact
k k ( )1 So by the previous paragraph, k k = ( ) and
hence

k k = sup

½
¯

¯

¯

¯

Z

1 1| |

¯

¯

¯

¯

: ( ) with k k = 1

¾

( )
°

° 1 1| |
°

° ( ) · 1 = ( )

wherein the second to last inequality we have made use of the definition of
( ) and the fact that 1 1| | S If (1 ) an application of the

monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, k·k implies

k k = lim k k ( )

If = then k k ( ) for all implies | | ( ) a.e. which
then implies that | | ( ) a.e. since | | = lim | | That is ( )
and k k ( )



10.5 Uniform Integrability 251

10.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an 0 — convergent sequence is — convergent.

Notation 10.32 For 1( ) and M let

( : ) :=

Z

and more generally if M let

( : ) :=

Z

Lemma 10.33. Suppose 1( ) then for any 0 there exist a 0
such that (| | : ) whenever ( )

Proof. If the Lemma is false, there would exist 0 and sets such
that ( ) 0 while (| | : ) for all Since |1 | | | 1 and
for any (0 1) (1 | | ) ( ) 0 as the dominated
convergence theorem of Corollary 10.17 implies lim (| | : ) = 0 This
contradicts (| | : ) for all and the proof is complete.
Suppose that { } =1 is a sequence of measurable functions which con-

verge in 1( ) to a function Then for M and N

| ( : )| | ( : )|+ | ( : )| k k1 + | ( : )|
Let := sup k k1 then 0 as and

sup | ( : )| sup | ( : )| ( + | ( : )|) + ( : )

(10.30)
where = | | +P =1 | | 1 From Lemma 10.33 and Eq. (10.30) one
easily concludes,

0 0 3 sup | ( : )| when ( ) (10.31)

Definition 10.34. Functions { } =1
1( ) satisfying Eq. (10.31) are

said to be uniformly integrable.

Remark 10.35. Let { } be real functions satisfying Eq. (10.31), be a set
where ( ) and = { 0} Then ( ) so that ( + :
) = ( : ) and similarly ( : ) Therefore if Eq. (10.31)

holds then
sup (| | : ) 2 when ( ) (10.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of Therefore { } =1

1( ) is uniformly integrable i

0 0 3 sup (| | : ) when ( ) (10.33)
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Lemma 10.36. Assume that ( ) then { } is uniformly bounded in
1( ) (i.e. = sup k k1 ) and { } is uniformly integrable i

lim sup (| | : | | ) = 0 (10.34)

Proof. Since { } is uniformly bounded in 1( ) (| | )
So if (10.33) holds and 0 is given, we may choose su ceintly large so
that (| | ) ( ) for all and therefore,

sup (| | : | | )

Since is arbitrary, we concluded that Eq. (10.34) must hold.
Conversely, suppose that Eq. (10.34) holds, then automatically =

sup (| |) because

(| |) = (| | : | | ) + (| | : | | )

sup (| | : | | ) + ( )

Moreover,

(| | : ) = (| | : | | ) + (| | : | | )

sup (| | : | | ) + ( )

So given 0 choose so large that sup (| | : | | ) 2 and then
take = (2 )

Remark 10.37. It is not in general true that if { } 1( ) is uniformly
integrable then sup (| |) For example take = { } and ({ }) = 1
Let ( ) = Since for 1 a set such that ( ) is in fact
the empty set, we see that Eq. (10.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every 0 we may find a finite
partition of by sets { } =1 with ( ) Then if Eq. (10.32) holds with
2 = 1, then

(| |) =
X

=1

(| | : )

showing that (| |) for all

The following Lemmas gives a concrete necessary and su cient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 10.38. Suppose that ( ) and 0( ) is a collection of
functions.
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1. If there exists a non decreasing function : R+ R+ such that
lim ( ) = and

:= sup ( (| |)) (10.35)

then
lim sup

¡| | 1| |
¢

= 0 (10.36)

2. Conversely if Eq. (10.36) holds, there exists a non-decreasing continuous
function : R+ R+ such that (0) = 0 lim ( ) = and Eq.
(10.35) is valid.

Proof. 1. Let be as in item 1. above and set := sup ( ) 0

as by assumption. Then for

(| | : | | ) = (
| |
(| |) (| |) : | | ) ( (| |) : | | )

( (| |))

and hence
lim sup

¡| | 1| |
¢

lim = 0

2. By assumption, := sup
¡| | 1| |

¢

0 as Therefore
we may choose such that

X

=0

( + 1)

where by convention 0 := 0 Now define so that (0) = 0 and

0( ) =
X

=0

( + 1) 1( +1]( )

i.e.

( ) =

Z

0

0( ) =
X

=0

( + 1) ( +1 )

By construction is continuous, (0) = 0 0( ) is increasing (so is
convex) and 0( ) ( + 1) for In particular

( ) ( ) + ( + 1)
+ 1 for

from which we conclude lim ( ) = We also have 0( ) ( + 1)
on [0 +1] and therefore

254 10 -spaces

( ) ( + 1) for +1

So for

( (| |)) =
X

=0

¡

(| |)1( +1](| |)
¢

X

=0

( + 1)
¡| | 1( +1](| |)

¢

X

=0

( + 1)
¡| | 1| |

¢

X

=0

( + 1)

and hence

sup ( (| |))
X

=0

( + 1)

Theorem 10.39 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 A sequence { } is Cauchy i

1. { } is 0 — Cauchy,
2. {| | } — is uniformly integrable.
3. For all 0 there exists a set M such that ( ) and
R | | for all (This condition is vacuous when ( ) )

Proof. (= ) Suppose { } is Cauchy. Then (1) { } is 0 —
Cauchy by Lemma 10.14. (2) By completeness of , there exists such
that k k 0 as By the mean value theorem,

|| | | | | (max(| | | |)) 1 || | | || (| |+ | |) 1 || | | ||

and therefore by Hölder’s inequality,
Z

|| | | | |
Z

(| |+ | |) 1 || | | ||
Z

(| |+ | |) 1|

k k k(| |+ | |) 1k = k| |+ | |k k k
(k k + k k ) k k

where := ( 1) This shows that
R || | | | | 0 as 2 By

the remarks prior to Definition 10.34, {| | } is uniformly integrable.
2 Here is an alternative proof. Let || | | | | | | + | | =: 1 and

2| | . Then 0 and
R R

Therefore by the dominated
convergence theorem in Corollary 10.17, lim

R

= 0
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To verify (3), for 0 and N let = {| | } and ( ) =
{| | } Then ( ) 1 k || and by the dominated convergence
theorem,

Z

| | =

Z

| | 1| | 0 as 0

Moreover,
°

° 1
°

°

°

° 1
°

° +
°

°( )1
°

°

°

° 1
°

° + k k (10.37)

So given 0, choose su ciently large such that for all k
k . Then choose su ciently small such that

R | | and
R

( )
| | for all = 1 2 1. Letting (1) · · ·

( 1) we have

( )

Z

| | for 1

and by Eq. (10.37)
Z

| | ( 1 + 1 ) 2 for

Therefore we have found M such that ( ) and

sup

Z

| | 2

which verifies (3) since 0 was arbitrary.
( =) Now suppose{ } satisfies conditions (1) - (3). Let 0

be as in (3) and

{ | ( ) ( )| }
Then

k( ) 1 k k 1 k + k 1 k 2 1

and

k k = k( )1 k + k( )1 \ k
+ k( )1 k
k( )1 \ k + k( )1 k + 2 1 (10.38)

Using properties (1) and (3) and 1 {| | }| | 1 1 the
dominated convergence theorem in Corollary 10.17 implies

k( ) 1 \ k =

Z

1 {| | } | | 0
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which combined with Eq. (10.38) implies

lim sup k k lim sup k( )1 k + 2 1

Finally

k( )1 k k 1 k + k 1 k 2 ( )

where
( ) sup sup{ k 1 k : M 3 ( ) }

By property (2), ( ) 0 as 0. Therefore

lim sup k k 2 1 + 0 + 2 ( ) 0 as 0

and therefore { } is -Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 10.40 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that ( ) { } is uniformly integrable,
a.e. and | | a.e., then 1( ) and in 1( )

Proof. Let 0 be given and choose 0 as in the Eq. (10.32). Now use
Egoro ’s Theorem 10.19 to choose a set where { } converges uniformly on

and ( ) By uniform convergence on there is an integer
such that | | 1 on for all Letting we learn
that

| | 1 on

Therefore | | | |+ 1 on and hence

(| |) = (| | : ) + (| | : )

(| |) + ( ) + (| | : )

Now by Fatou’s lemma,

(| | : ) lim inf (| | : ) 2

by Eq. (10.32). This shows that 1 Finally

(| |) = (| | : ) + (| | : )

(| | : ) + (| |+ | | : )

(| | : ) + 4

and so by the Dominated convergence theorem we learn that

lim sup (| |) 4

Since 0 was arbitrary this completes the proof.
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Theorem 10.41 (Vitali again). Suppose that in measure and Eq.
(10.34) holds, then in 1

Proof. This could of course be proved using 10.40 after passing to subse-
quences to get { } to converge a.s. However I wish to give another proof.
First o , by Fatou’s lemma, 1( ) Now let

( ) = 1| | + 1| |

then ( ) ( ) because | ( ) ( )| | | and since
| | | ( )|+ | ( ) ( )|+ | ( ) |

we have that

| | | ( )|+ | ( ) ( )|+ | ( ) |
= (| | : | | ) + | ( ) ( )|+ (| | : | | )

Therefore by the dominated convergence theorem

lim sup | | (| | : | | ) + lim sup (| | : | | )

This last expression goes to zero as by uniform integrability.

10.6 Exercises

Definition 10.42. The essential range of essran( ) consists of those
C such that (| | ) 0 for all 0

Definition 10.43. Let ( ) be a topological space and be a measure on
B = ( ) The support of supp( ), consists of those such that
( ) 0 for all open neighborhoods, of

Exercise 10.44. Let ( ) be a second countable topological space and be
a measure on B — the Borel — algebra on Show

1. supp( ) is a closed set. (This is true on all topological spaces.)
2. ( \ supp( )) = 0 and use this to conclude that := \ supp( )
is the largest open set in such that ( ) = 0 Hint: U be a
countable base for the topology Show that may be written as a
union of elements from V with the property that ( ) = 0

Exercise 10.45. Prove the following facts about essran( )

1. Let = := 1 — a Borel measure on C Show essran( ) = supp( )
2. essran( ) is a closed set and ( ) essran( ) for almost every i.e.

( essran( )) = 0
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3. If C is a closed set such that ( ) for almost every then
essran( ) So essran( ) is the smallest closed set such that ( )
for almost every

4. k k = sup {| | : essran( )}
Exercise 10.46. Let for some Show k k =
lim k k If we further assume ( ) show k k = lim k k for
all measurable functions : C In particular, i lim k k

Exercise 10.47. Prove Eq. (10.20) in Corollary 10.25. (Part of Folland 6.3
on p. 186.) Hint: Use Lemma 1.27 applied to the right side of Eq. (10.19).

Exercise 10.48. Complete the proof of Proposition 10.24 by showing ( +
k·k) is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 10.49. Folland 6.5 on p. 186.

Exercise 10.50. Folland 6.6 on p. 186.

Exercise 10.51. Folland 6.9 on p. 186.

Exercise 10.52. Folland 6.10 on p. 186. Use the strong form of Theorem
8.38.

Exercise 10.53. Let ( M ) and ( N ) be -finite measure spaces,
2( ) and 2( ) Show

Z

| ( ) ( )| ( ) for — a.e.

Let ( ) :=
R

( ) ( ) ( ) when the integral is defined. Show
2( ) and : 2( ) 2( ) is a bounded operator with k k
k k 2( )

Exercise 10.54. Folland 6.27 on p. 196.

Exercise 10.55. Folland 2.32 on p. 63.

Exercise 10.56. Folland 2.38 on p. 63.
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Approximation Theorems and Convolutions

Let ( M ) be a measure space, A M an algebra.

Notation 11.1 Let S (A ) denote those simple functions : C such
that 1({ }) A for all C and ( 6= 0)
For S (A ) and [1 ) | | =P 6=0 | | 1{ = } and hence

Z

| | =
X

6=0
| | ( = )

so that S (A ) ( )

Lemma 11.2 (Simple Functions are Dense). The simple functions,
S (M ) form a dense subspace of ( ) for all 1

Proof. Let { } =1 be the simple functions in the approximation Theo-
rem 8.12. Since | | | | for all S (M ) (verify!) and

| | (| |+ | |) 2 | | 1

Therefore, by the dominated convergence theorem,

lim

Z

| | =

Z

lim | | = 0

Theorem 11.3 (Separable Algebras implies Separability of —
Spaces). Suppose 1 and A M is an algebra such that (A) =M
and is -finite on A Then S (A ) is dense in ( ) Moreover, if A is
countable, then ( ) is separable and

D = {
X

1 : Q+ Q A with ( ) }
is a countable dense subset.

260 11 Approximation Theorems and Convolutions

Proof. First Proof. Let A be sets such that ( ) and
as For N let H denote those boundedM — measurable

functions, on such that 1 S (A )
( )

It is easily seen that H is
a vector space closed under bounded convergence and this subspace contains
1 for all A Therefore by Theorem 9.12, H is the set of all boundedM
— measurable functions on
For ( ) the dominated convergence theorem implies 1 {| | }
in ( ) as We have just proved 1 {| | } S (A )

( )
for

all and hence it follows that S (A )
( )

The last assertion of the
theorem is a consequence of the easily verified fact that D is dense in S (A )
relative to the ( ) — norm.
Second Proof. Given 0 by Corollary 9.42, for all M such that

( ) there exists A such that ( 4 ) Therefore
Z

|1 1 | = ( 4 ) (11.1)

This equation shows that any simple function in S (M ) may be approxi-
mated arbitrary well by an element from D and hence D is also dense in ( )

Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that 1(R )
then

lim
±

Z

R
( ) ( ) = 0

Proof. Let A denote the algebra on R generated by the half open intervals,
i.e. A consists of sets of the form

a

=1

( ] R

where R̄ By Theorem 11.3given 0 there exists =
P

=1 1( ]

with R such that
Z

R
| |

Notice that
Z

R
( ) ( ) =

Z

R

X

=1

1( ]( ) ( )

=
X

=1

Z

( ) =
X

=1

1 |

= 1
X

=1

¡ ¢

0 as | |
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Combining these two equations with
¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

¯

¯

¯

¯

Z

R
( ( ) ( )) ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

Z

R
| | +

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

we learn that

lim sup
| |

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

+ lim sup
| |

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

=

Since 0 is arbitrary, we have proven the lemma.

Theorem 11.5 (Continuous Functions are Dense). Let ( ) be a met-
ric space, be the topology on generated by and B = ( ) be the Borel
— algebra. Suppose : B [0 ] is a measure which is — finite on
and let ( ) denote the bounded continuous functions on such that
( 6= 0) Then ( ) is a dense subspace of ( ) for any [1 )

Proof. First Proof. Let be open sets such that and
( ) Let and be positive integers and set

( ) = min(1 · ( )) = ( ( ))

and notice that 1 0 = 1 as see Figure 11.1 below.

21.510.50

1

0.75

0.5

0.25

0

x

y

x

y

Fig. 11.1. The plot of for = 1 2 and 4 Notice that 1(0 )

Then ( ) and { 6= 0} Let H denote those bounded

M — measurable functions, : R such that ( )
( )

It is
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easily seen thatH is a vector space closed under bounded convergence and this
subspace contains ( R) By Corollary 9.13, H is the set of all bounded

real valuedM — measurable functions on i.e. ( )
( )
for all

bounded measurable and N Let be a bounded measurable function,
by the dominated convergence theorem, 1 in ( ) as

therefore 1 ( )
( )

It now follows as in the first proof of Theorem

11.3 that ( )
( )
= ( )

Second Proof. Since S (M ) is dense in ( ) it su ces to show any
S (M ) may be well approximated by ( ) Moreover, to prove

this it su ces to show for M with ( ) that 1 may be well
approximated by an ( ) By Exercises 9.47 and 9.48, for any 0
there exists a closed set and an open set such that and
( \ ) (Notice that ( ) ( ) + ) Let be as in Eq. (3.1),
then ( ) and since |1 | 1 \

Z

|1 |
Z

1 \ = ( \ ) (11.2)

or equivalently
k1 k 1

Since 0 is arbitrary, we have shown that 1 can be approximated in ( )
arbitrarily well by functions from ( ))

Proposition 11.6. Let ( ) be a second countable locally compact Hausdor
space, B = ( ) be the Borel — algebra and : B [0 ] be a measure
such that ( ) when is a compact subset of Then ( ) (the
space of continuous functions with compact support) is dense in ( ) for all

[1 )

Proof. First Proof. Let { } =1 be a sequence of compact sets as in
Lemma 3.16 and set = Using Item 3. of Lemma 3.25, there exists
{ } =1 ( ) such that supp( ) and lim = 1
As in the first proof of Theorem 11.5, let H denote those bounded B —

measurable functions, : R such that ( )
( )

It is easily
seen that H is a vector space closed under bounded convergence and this
subspace contains ( R) By Corollary 3.26, H is the set of all bounded

real valued B — measurable functions on i.e. ( )
( )

for all
bounded measurable and N Let be a bounded measurable function,
by the dominated convergence theorem, 1 in ( ) as

therefore 1 ( )
( )

It now follows as in the first proof of Theorem

11.3 that ( )
( )
= ( )

Second Proof. Following the second proof of Theorem 11.5, let M
with ( ) Since lim ||1 1 || = 0 it su ces to assume
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for some Given 0 by Item 2. of Lemma 3.25 and Exercises
9.47 there exists a closed set and an open set such that and
( \ ) Replacing by we may assume that
The function defined in Eq. (3.1) is now in ( ) The remainder of the
proof now follows as in the second proof of Theorem 11.5.

Lemma 11.7. Let ( ) be a second countable locally compact Hausdor
space, B = ( ) be the Borel — algebra and : B [0 ] be a measure
such that ( ) when is a compact subset of If 1 ( ) is a
function such that

Z

= 0 for all ( ) (11.3)

then ( ) = 0 for — a.e.

Proof. First Proof. Let ( ) = | ( )| then is a measure on
such that ( ) for all compact subsets and hence ( ) is
dense in 1( ) by Proposition 11.6. Notice that

Z

· sgn( ) =

Z

= 0 for all ( ) (11.4)

Let { } =1 be a sequence of compact sets such that as in Lemma
3.16. Then 1 sgn( ) 1( ) and therefore there exists ( ) such
that 1 sgn( ) in 1( ) So by Eq. (11.4),

( ) =

Z

1 = lim

Z

sgn( ) = 0

Since as 0 = ( ) =
R | | i.e. ( ) = 0 for — a.e.

Second Proof. Let be as above and use Lemma 3.22 to find
( [0 1]) such that = 1 on Let H denote the set of bounded mea-

surable real valued functions on such that
R

= 0 Then it is easily
checked that H is linear subspace closed under bounded convergence which
contains ( ) Therefore by Corollary 3.26, 0 =

R

for all bounded
measurable functions : R and then by linearity for all bounded mea-
surable functions : C Taking = sgn( ) then implies

0 =

Z

| |
Z

| |

and hence by the monotone convergence theorem,

0 = lim

Z

| | =

Z

| |

Corollary 11.8. Suppose R is an open set, B is the Borel — algebra
on and is a measure on ( B ) which is finite on compact sets. Then
( ) is dense in ( ) for all [1 )
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11.1 Convolution and Young’s Inequalities

Definition 11.9. Let : R C be measurable functions. We define

( ) =

Z

R
( ) ( )

whenever the integral is defined, i.e. either ( ·) (·) 1(R ) or (
·) (·) 0 Notice that the condition that ( ·) (·) 1(R ) is equivalent
to writing | | | | ( )
Notation 11.10 Given a multi-index Z+ let | | = 1 + · · ·+

:=
Y

=1

and =

µ ¶

:=
Y

=1

µ ¶

Remark 11.11 (The Significance of Convolution). Suppose that =
P

| |
is a constant coe cient di erential operator and suppose that we can solve
(uniquely) the equation = in the form

( ) = ( ) :=

Z

R
( ) ( )

where ( ) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the inverse
operation to di erentiation.) Since = for all R (this is another
way to characterize constant coe cient di erential operators) and 1 =
we should have = Writing out this equation then says
Z

R
( ) ( ) = ( ) ( ) = ( ) = ( ) ( )

=

Z

R
( ) ( ) =

Z

R
( + ) ( )

Since is arbitrary we conclude that ( ) = ( + ) Taking = 0
then gives

( ) = ( 0) =: ( )

We thus find that = Hence we expect the convolution operation to
appear naturally when solving constant coe cient partial di erential equa-
tions. More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality
for integrals, Theorem 10.29.

Proposition 11.12. Suppose [1 ] 1 and then ( )
exists for almost every and

k k k k1 k k
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For R and : R C let : R C be defined by ( ) =
( )

Proposition 11.13. Suppose that [1 ) then : is an iso-
metric isomorphism and for R is continuous.

Proof. The assertion that : is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that

= For the continuity assertion, observe that

k k = k ( )k = k k
from which it follows that it is enough to show in as 0 R
When (R ) uniformly and since the := | | 1supp( )

is compact, it follows by the dominated convergence theorem that in
as 0 R For general and (R )

k k k k + k k + k k
= k k + 2 k k

and thus

lim sup
0
k k lim sup

0
k k + 2 k k = 2 k k

Because (R ) is dense in the term k k may be made as small as
we please.

Definition 11.14. Suppose that ( ) is a topological space and is a mea-
sure on B = ( ) For a measurable function : C we define the
essential support of by

supp ( ) = { : ({ : ( ) 6= 0}}) 0 for all neighborhoods of }
(11.5)

It is not hard to show that if supp( ) = (see Definition 10.43) and
( ) then supp ( ) = supp( ) := { 6= 0} see Exercise 11.59.

Lemma 11.15. Suppose ( ) is second countable and : C is a mea-
surable function and is a measure on B Then := \ supp ( ) may
be described as the largest open set such that 1 ( ) = 0 for — a.e.
Equivalently put, := supp ( ) is the smallest closed subset of such that
= 1 a.e.

Proof. To verify that the two descriptions of supp ( ) are equivalent,
suppose supp ( ) is defined as in Eq. (11.5) and := \ supp ( ) Then

= { : 3 3 such that ({ : ( ) 6= 0}}) = 0}
= { : ( 1 6= 0) = 0}
= { : 1 = 0 for — a.e.}
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So to finish the argument it su ces to show ( 1 6= 0) = 0 To to this let
U be a countable base for and set

U := { U : 1 = 0 a.e.}

Then it is easily seen that = U and since U is countable ( 1 6= 0)
P

U ( 1 6= 0) = 0
Lemma 11.16. Suppose : R C are measurable functions and as-
sume that is a point in R such that | | | | ( ) and | | (| | | |) ( )

then

1. ( ) = ( )
2. ( )( ) = ( ) ( )
3. If R and (| | | |)( ) = | | | | ( ) then

( )( ) = ( ) = ( )

4. If supp ( )+supp ( ) then ( ) = 0 and in particular, supp (
) supp ( ) + supp ( ) where in defining supp ( ) we will use the
convention that “ ( ) 6= 0” when | | | | ( ) =
Proof. For item 1.,

| | | | ( ) =
Z

R
| | ( ) | | ( ) =

Z

R
| | ( ) | | ( ) = | | | | ( )

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation Similar computations prove all
of the remaining assertions of the first three items of the lemma.
Item 4. Since ( ) = ˜ ˜( ) if = ˜and = ˜ a.e. we may, by replacing
by 1supp ( ) and by 1supp ( ) if necessary, assume that { 6= 0}

supp ( ) and { 6= 0} supp ( ) So if (supp ( ) + supp ( )) then
({ 6= 0}+ { 6= 0}) and for all R either { 6= 0} or

{ 6= 0} That is to say either { = 0} or { = 0} and hence
( ) ( ) = 0 for all and therefore ( ) = 0 This shows that = 0

on R \
³

supp ( ) + supp ( )
´

and therefore

R \
³

supp ( ) + supp ( )
´

R \ supp ( )

i.e. supp ( ) supp ( ) + supp ( )

Remark 11.17. Let be closed sets of R it is not necessarily true that
+ is still closed. For example, take

= {( ) : 0 and 1 } and = {( ) : 0 and 1 | |}
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then every point of + has a positive - component and hence is not zero.
On the other hand, for 0 we have ( 1 )+( 1 ) = (0 2 ) +
for all and hence 0 + showing + is not closed. Nevertheless if
one of the sets or is compact, then + is closed again. Indeed, if is
compact and = + + and R then by passing to a
subsequence if necessary we may assume lim = exists. In this
case

lim = lim ( ) =

exists as well, showing = + +

Proposition 11.18. Suppose that [1 ] and and are conjugate
exponents, and then (R ) k k k k k k
and if (1 ) then 0(R )

Proof. The existence of ( ) and the estimate | | ( ) k k k k for
all R is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows k k k k k k
By relabeling and if necessary we may assume that [1 ) Since

k ( ) k = k k
k k k k 0 as 0

it follows that is uniformly continuous. Finally if (1 ) we learn
from Lemma 11.16 and what we have just proved that (R )
where = 1| | and = 1| | Moreover,

k k k k + k k
k k k k + k k k k
k k k k + k k k k 0 as

showing, with the aid of Proposition 3.38, 0(R )

Theorem 11.19 (Young’s Inequality). Let [1 ] satisfy

1
+
1
= 1 +

1
(11.6)

If and then | | | | ( ) for — a.e. and

k k k k k k (11.7)

In particular 1 is closed under convolution. (The space ( 1 ) is an example
of a “Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq.
(11.6) by the following scaling argument. For 0 let ( ) := ( ) then
after a few simple change of variables we find
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k k = 1 k k and ( ) =

Therefore if Eq. (11.7) holds for some [1 ] we would also have

k k = 1 k( ) k 1 k k k k = (1+1 1 1 ) k k k k

for all 0 This is only possible if Eq. (11.6) holds.

Proof. Let [0 1] and 1 2 [0 ] satisfy 1
1 + 1

2 + 1 = 1
Then by Hölder’s inequality, Corollary 10.3,

| ( )| =
¯

¯

¯

¯

Z

( ) ( )

¯

¯

¯

¯

Z

| ( )|(1 ) | ( )|(1 ) | ( )| | ( )|
µ
Z

| ( )|(1 ) | ( )|(1 )

¶1 µ
Z

| ( )| 1

¶1 1

×

×
µ
Z

| ( )| 2

¶1 2

=

µ
Z

| ( )|(1 ) | ( )|(1 )

¶1

k k
1
k k

2

Taking the th power of this equation and integrating on gives

k k
Z
µ
Z

| ( )|(1 ) | ( )|(1 )

¶

· k k
1
k k

2

= k k(1 )
(1 ) k k(1 )

(1 ) k k 1
k k

2
(11.8)

Let us now suppose, (1 ) = 1 and (1 ) = 2 in which case Eq.
(11.8) becomes,

k k k k
1
k k

2

which is Eq. (11.7) with

:= (1 ) = 1 and := (1 ) = 2 (11.9)

So to finish the proof, it su ces to show and are arbitrary indices in [1 ]
satisfying 1 + 1 = 1 + 1

If 1 2 satisfy the relations above, then

=
+ 1

and =
+ 2

and
1
+
1
=
1

1

+ 1
+
1

2

+ 2
=
1

1
+
1

2
+
2
= 1 +

1
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Conversely, if satisfy Eq. (11.6), then let and satisfy = (1 )
and = (1 ) i.e.

:= = 1 1 and = = 1 1

From Eq. (11.6), = (1 1) 0 and = (1 1 ) 0 so that [0 1]

We then define 1 := and 2 := then

1

1
+
1

2
+
1
=

1
+

1
+
1
=
1 1

+
1 1

+
1
= 1

as desired.

Theorem 11.21 (Approximate — functions). Let [1 ]
1(R ) :=

R

R ( ) and for 0 let ( ) = ( ) Then

1. If with then in as 0
2. If (R ) and is uniformly continuous then k k 0 as

0
3. If and is continuous on R then uniformly
on compact subsets of as 0

Proof. Making the change of variables = implies

( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

so that

( ) ( ) =

Z

R
[ ( ) ( )] ( )

=

Z

R
[ ( ) ( )] ( ) (11.10)

Hence by Minkowski’s inequality for integrals (Theorem 10.29), Proposition
11.13 and the dominated convergence theorem,

k k
Z

R
k k | ( )| 0 as 0

Item 2. is proved similarly. Indeed, form Eq. (11.10)

k k
Z

R
k k | ( )|

which again tends to zero by the dominated convergence theorem because
lim 0 k k = 0 uniformly in by the uniform continuity of
Item 3. Let = (0 ) be a large ball in R and @@ then
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sup | ( ) ( )|
¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

¯

Z

| ( )| · sup | ( ) ( )|+ 2 k k
Z

| ( )|

k k1 · sup | ( ) ( )|+ 2 k k
Z

| |
| ( )|

so that using the uniform continuity of on compact subsets of

lim sup
0
sup | ( ) ( )| 2 k k

Z

| |
| ( )| 0 as

See Theorem 8.15 if Folland for a statement about almost everywhere
convergence.

Exercise 11.22. Let

( ) =

½

1 if 0
0 if 0

Show (R [0 1])

Lemma 11.23. There exists (R [0 )) such that (0) 0
supp( ) ¯(0 1) and

R

R ( ) = 1

Proof. Define ( ) = (1 ) ( + 1) where is as in Exercise 11.22.
Then (R [0 1]) supp( ) [ 1 1] and (0) = 2 0 Define =
R

R (| |2) Then ( ) = 1 (| |2) is the desired function.
Definition 11.24. Let R be an open set. A Radon measure on B is
a measure which is finite on compact subsets of For a Radon measure
we let 1 ( ) consists of those measurable functions : C such that

R | | for all compact subsets

The reader asked to prove the following proposition in Exercise 11.60 be-
low.

Proposition 11.25. Suppose that 1 (R ) and 1(R ) then
1(R ) and ( ) = Moreover if (R ) then
(R )

Corollary 11.26 ( — Uryhson’s Lemma). Given @@ R
there exists (R [0 1]) such that supp( ) and = 1 on
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Proof. Let be as in Lemma 11.23, ( ) = ( ) be as in Theorem
11.21, be the standard metric on R and = ( ) Since is compact
and is closed, 0 Let = { R : ( ) } and = 3 1

3

then
supp( ) supp( 3) + 3 2̄ 3

Since 2̄ 3 is closed and bounded, ( ) and for

( ) =

Z

R
1 ( ) 3 · 3( ) =

Z

R
3( ) = 1

The proof will be finished after the reader (easily) verifies 0 1
Here is an application of this corollary whose proof is left to the reader,

Exercise 11.61.

Lemma 11.27 (Integration by Parts). Suppose and are measur-
able functions on R such that ( 1 1 +1 ) and
( 1 1 +1 ) are continuously di erentiable functions on R
for each fixed = ( 1 ) R Moreover assume · · and

· are in 1(R ) Then

Z

R
· =

Z

R
·

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 11.28. For 1(R ) let

(̂ ) := (2 ) 2

Z

R
( ) · ( )

be the Fourier transform of Then ˆ
0(R ) and

°

°

°

ˆ
°

°

°
(2 ) 2 k k1

(The choice of the normalization factor, (2 ) 2 in ˆ is for later conve-
nience.)

Proof. The fact that ˆ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,

¯

¯

¯
(̂ )
¯

¯

¯

Z

| ( )| ( ) (2 ) 2 k k1

so it only remains to see that (̂ ) 0 as | |
First suppose that (R ) and let =

P

=1

2

2 be the Laplacian

on R Notice that · = · and · = | |2 · Using
Lemma 11.27 repeatedly,
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Z

( ) · ( ) =

Z

( ) · ( ) = | |2
Z

( ) · ( )

= (2 ) 2 | |2 (̂ )

for any N Hence (2 ) 2
¯

¯

¯
(̂ )
¯

¯

¯
| | 2 °

°

°

°

1
0 as | | and

ˆ
0(R ) Suppose that 1( ) and (R ) is a sequence such

that lim k k1 = 0 then lim
°

°

°

ˆ ˆ
°

°

°
= 0 Hence ˆ 0(R )

by an application of Proposition 3.38.

Corollary 11.29. Let R be an open set and be a Radon measure on
B
1. Then ( ) is dense in ( ) for all 1
2. If 1 ( ) satisfies

Z

= 0 for all ( ) (11.11)

then ( ) = 0 for — a.e.

Proof. Let ( ) be as in Lemma 11.23, be as in Theorem
11.21 and set := ( 1 ) Then by Proposition 11.25 ( ) and
by Lemma 11.16 there exists a compact set such that supp( )
for all su ciently small. By Theorem 11.21, uniformly on as 0

1. The dominated convergence theorem (with dominating function being
k k 1 ) shows in ( ) as 0 This proves Item 1., since
Proposition 11.6 guarantees that ( ) is dense in ( )

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being k k | | 1 ) implies

0 = lim
0

Z

=

Z

lim
0

=

Z

The proof is now finished by an application of Lemma 11.7.

11.1.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 3.32, Theorem 3.34 and
Corollary 3.35. The proofs of these results are the same as their continuous
counterparts. One simply uses the smooth version of Urysohn’s Lemma of
Corollary 11.26 in place of Lemma 3.22.
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Proposition 11.30 (Smooth Partitions of Unity for Compacts). Sup-
pose that is an open subset of R is a compact set and U = { } =1

is an open cover of Then there exists a smooth (i.e. ( [0 1]))
partition of unity { } =1 of such that for all = 1 2

Theorem 11.31 (Locally Compact Partitions of Unity). Suppose that
is an open subset of R and U is an open cover of Then there exists a

smooth partition of unity of { } =1 ( = is allowed here) subordinate to
the cover U such that supp( ) is compact for all

Corollary 11.32. Suppose that is an open subset of R and U =
{ } is an open cover of Then there exists a smooth partition
of unity of { } subordinate to the cover U such that supp( ) for
all Moreover if ¯ is compact for each we may choose so
that

11.2 Classical Weierstrass Approximation Theorem

Let Z+ := N {0}
Notation 11.33 For R and Z+ let =

Q

=1 and | | =
P

=1 A polynomial on R is a function : R C of the form

( ) =
X

:| |
with C and Z+

If 6= 0 for some such that | | = then we define deg( ) := to be
the degree of The function has a natural extension to C namely
( ) =

P

:| | where =
Q

=1

Remark 11.34. The mapping ( ) R × R = + C is an
isomorphism of vector spaces. Letting ¯ = as usual, we have = +¯

2
and = ¯

2 Therefore under this identification any polynomial ( ) on
R ×R may be written as a polynomial in ( ¯) namely

( ¯) = (
+ ¯

2

¯

2
)

Conversely a polynomial in ( ¯) may be thought of as a polynomial in
( ) namely ( ) = ( + )

Theorem 11.35 (Weierstrass Approximation Theorem). Let R
with (i.e. for = 1 2 ) and set [ ] := [ 1 1] × · · · ×
[ ] Then for ([ ] C) there exists polynomials on R such that

uniformly on [ ]
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We will give two proofs of this theorem below. The first proof is based on
the “weak law of large numbers,” while the second is base on using a certain
sequence of approximate — functions.

Corollary 11.36. Suppose that R is a compact set and ( C)
Then there exists polynomials on R such that uniformly on

Proof. Choose R such that and ( ) := ( 1 1)×· · ·×
( ) Let ˜ : ( ) C be the continuous function defined by |̃ =
and |̃( ) 0 Then by the Tietze extension Theorem (either of Theorems
3.2 or 3.24 will do) there exists (R C) such that ˜= | ( ) Apply
the Weierstrass Approximation Theorem 11.35 to |[ ] to find polynomials
on R such that uniformly on [ ] Clearly we also have

uniformly on

Corollary 11.37 (Complex Weierstrass Approximation Theorem).
Suppose that C is a compact set and ( C) Then there ex-
ists polynomials ( ¯) for C such that sup | ( ¯) ( )| 0 as

Proof. This is an immediate consequence of Remark 11.34 and Corollary
11.36.

Example 11.38. Let = 1 = { C : | | = 1} and A be the set of poly-
nomials in ( ¯) restricted to 1 Then A is dense in ( 1) 1 Since ¯ = 1

on 1 we have shown polynomials in and 1 are dense in ( 1) This
example generalizes in an obvious way to =

¡

1
¢

C

11.2.1 First proof of the Weierstrass Approximation Theorem
11.35

Proof. Let 0 : = (0 0 0) and 1 : = (1 1 1) By considering the real
and imaginary parts of separately, it su ces to assume is real valued. By
replacing by ( ) = ( 1 + 1( 1 1) + ( )) for [0 1]
it su ces to prove the theorem for ([0 1])
For [0 1] let be the measure on {0 1} such that ({0}) = 1

and ({1}) = Then
Z

{0 1}
( ) = 0 · (1 ) + 1 · = and (11.12)

Z

{0 1}
( )2 ( ) = 2(1 ) + (1 )2 · = (1 ) (11.13)

1 Note that it is easy to extend ( 1) to a function (C) by setting
( ) = ( | | ) for 6= 0 and (0) = 0 So this special case does not require the

Tietze extension theorem.
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For [0 1] let = 1 · · · be the product of 1 on
:= {0 1} Alternatively the measure may be described by

({ }) =
Y

=1

(1 )1 (11.14)

for Notice that ({ }) is a degree polynomial in for each
For N and [0 1] let denote the — fold product of with itself
on ( ) = R for and let

= ( 1 ) := ( 1 + 2 + · · ·+ )

so : R The reader is asked to verify (Exercise 11.39) that
Z

=

µ
Z

1

Z
¶

= ( 1 ) = (11.15)

and
Z

| |2 =
1X

=1

(1 ) (11.16)

From these equations it follows that is concentrating near as a
manifestation of the law of large numbers. Therefore it is reasonable to expect

( ) :=

Z

( ) (11.17)

should approach ( ) as
Let 0 be given, = sup {| ( )| : [0 1]} and

= sup {| ( ) ( )| : [0 1] and | | }
By uniform continuity of on [0 1] lim 0 = 0 Using these definitions and
the fact that ( ) = 1

| ( ) ( )| =
¯

¯

¯

¯

Z

( ( ) ( ))

¯

¯

¯

¯

Z

| ( ) ( )|
Z

{| | }
| ( ) ( )| +

Z

{| | }
| ( ) ( )|

2 (| | ) + (11.18)

By Chebyshev’s inequality,

(| | )
1
2

Z

( )2 =
2

and therefore, Eq. (11.18) yields the estimate
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k k 2
2
+

and hence
lim sup k k 0 as 0

This completes the proof since, using Eq. (11.14),

( ) =
X

( ( )) ({ }) =
X

( ( ))
Y

=1

({ })

is an — degree polynomial in R )

Exercise 11.39. Verify Eqs. (11.15) and (11.16). This is most easily done
using Eqs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course
Fubini’s theorem here is over kill since these are only finite sums after all.
Nevertheless it is convenient to use this formulation.)

11.2.2 Second proof of the Weierstrass Approximation Theorem
11.35

For the second proof we will first need two lemmas.

Lemma 11.40 (Approximate — sequences). Suppose that { } =1 is a
sequence of positive functions on R such that

Z

R
( ) = 1 and (11.19)

lim

Z

| |

( ) = 0 for all 0 (11.20)

For (R ) converges to uniformly on compact subsets of R

Proof. Let R then because of Eq. (11.19),

| ( ) ( )| =
¯

¯

¯

¯

Z

R
( ) ( ( ) ( ))

¯

¯

¯

¯

Z

R
( ) | ( ) ( )|

Let = sup
©| ( )| : R

ª

and 0 then by and Eq. (11.19)

| ( ) ( )|
Z

| |
( ) | ( ) ( )|

+

Z

| |
( ) | ( ) ( )|

sup
| |

| ( + ) ( )|+ 2
Z

| |
( )
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Let be a compact subset of R then

sup | ( ) ( )| sup
| |

| ( + ) ( )|+ 2
Z

| |
( )

and hence by Eq. (11.20),

lim sup sup | ( ) ( )| sup
| |

| ( + ) ( )|

This finishes the proof since the right member of this equation tends to 0 as
0 by uniform continuity of on compact subsets of R
Let : R [0 ) be defined by

( )
1
(1 2) 1| | 1where :=

Z 1

1

(1 2) (11.21)

Figure 11.2 displays the key features of the functions

10.50-0.5-1

5

3.75

2.5

1.25

0

x

y

x

y

Fig. 11.2. A plot of 1 50 and 100 The most peaked curve is 100 and the least
is 1 The total area under each of these curves is one.

Define
: R [0 ) by ( ) = ( 1) ( ) (11.22)

Lemma 11.41. The sequence { } =1 is an approximate — sequence, i.e.
they satisfy Eqs. (11.19) and (11.20).

Proof. The fact that integrates to one is an easy consequence of
Tonelli’s theorem and the definition of Since all norms on R are equiva-
lent, we may assume that | | = max {| | : = 1 2 } when proving Eq.
(11.20). With this norm
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©

R : | | ª

= =1

©

R : | | ª

and therefore by Tonelli’s theorem and the definition of

Z

{| | }

( )
X

=1

Z

{| | }

( ) =

Z

{ R| | }

( )

Since
Z

| |
( ) =

2
R 1
(1 2)

2
R

0
(1 2) + 2

R 1
(1 2)

R 1
(1 2)

R

0
(1 2)

=
(1 2) +1|1
(1 2) +1|0

=
(1 2) +1

1 (1 2) +1
0 as

the proof is complete.
We will now prove Corollary 11.36 which clearly implies Theorem 11.35.
Proof. Proof of Corollary 11.36. As in the beginning of the proof already

given for Corollary 11.36, we may assume that = [ ] for some and
= | where (R C) is a function such that | 0 Moreover, by

replacing ( ) by ( ) = ( 1+ 1( 1 1) + ( )) for R
we may further assume = [0 1]
Let ( ) be defined as in Eq. (11.22). Then by Lemma 11.41 and 11.40,
( ) := ( )( ) ( ) uniformly for [0 1] as So to finish

the proof it only remains to show ( ) is a polynomial when [0 1] For
[0 1]

( ) =

Z

R
( ) ( )

=
1
Z

[0 1]

( )
Y

=1

£

1(1 ( )2) 1| | 1

¤

=
1
Z

[0 1]

( )
Y

=1

£

1(1 ( )2)
¤

Since the product in the above integrand is a polynomial if ( ) R ×R
it follows easily that ( ) is polynomial in

11.3 Stone-Weierstrass Theorem

We now wish to generalize Theorem 11.35 to more general topological spaces.
We will first need some definitions.
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Definition 11.42. Let be a topological space and A ( ) = ( R) or
( C) be a collection of functions. Then

1. A is said to separate points if for all distinct points there exists
A such that ( ) 6= ( )

2. A is an algebra if A is a vector subspace of ( ) which is closed under
pointwise multiplication.

3. A is called a lattice if := max( ) and = min( ) A for
all A

4. A ( ) is closed under conjugation if ¯ A whenever A 2

Remark 11.43. If is a topological space such that ( R) separates points
then is Hausdor . Indeed if and ( R) such that
( ) 6= ( ) then 1( ) and 1( ) are disjoint open sets containing
and respectively when and are disjoint intervals containing ( ) and
( ) respectively.

Lemma 11.44. If A ( R) is a closed algebra then | | A for all A
and A is a lattice.

Proof. Let A and let = sup | ( )| Using Theorem 11.35 or

Exercise 11.62, there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

By replacing by (0) if necessary we may assume that (0) = 0
Since A is an algebra, it follows that = ( ) A and | | A because
| | is the uniform limit of the ’s. Since

=
1

2
( + + | |) and

=
1

2
( + | |)

we have shown A is a lattice.

Lemma 11.45. Let A ( R) be an algebra which separates points and
be distinct points such that

A 3 ( ) 6= 0 and ( ) 6= 0 (11.23)

Then
:= {( ( ) ( )) : A}= R2 (11.24)

2 This is of course no restriction when ( ) = ( R)
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Proof. It is clear that is a non-zero subspace of R2 If dim( ) = 1 then
= span( ) with 6= 0 and 6= 0 by the assumption in Eq. (11.23). Since

( ) = ( ( ) ( )) for some A and 2 A it follows that ( 2 2) =
( 2( ) 2( )) as well. Since dim = 1 ( ) and ( 2 2) are linearly
dependent and therefore

0 = det

µ

2

2

¶

= 2 2 = ( )

which implies that = But this the implies that ( ) = ( ) for all A
violating the assumption that A separates points. Therefore we conclude that
dim( ) = 2 i.e. = R2

Theorem 11.46 (Stone-Weierstrass Theorem). ppose is a compact
Hausdor space and A ( R) is a closed subalgebra which separates
points. For let

A { ( ) : A} and
I = { ( R) : ( ) = 0}

Then either one of the following two cases hold.

1. A = R for all i.e. for all there exists A such that
( ) 6= 0 3

2. There exists a unique point 0 such that A 0 = {0}
Moreover in case (1) A = ( R) and in case (2) A = I 0 = {
( R) : ( 0) = 0}
Proof. If there exists 0 such that A 0 = {0} ( 0 is unique since A

separates points) then A I
0
If such an 0 exists let C = I 0

and if A = R
for all set C = ( R) Let C then by Lemma 11.45, for all
such that 6= there exists A such that = on { } 4 The basic
idea of the proof is contained in the following identity,

( ) = inf sup ( ) for all (11.25)

To prove this identity, let := sup and notice that since
( ) = ( ) for all Moreover, ( ) = ( ) for all since
( ) = ( ) for all Therefore,

inf sup = inf =

The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (11.25) becoming only an
approximate identity.
3 If A contains the constant function 1 then this hypothesis holds.
4 If A 0 = {0} and = 0 or = 0 then exists merely by the fact that A
separates points.
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Claim. Given 0 and there exists A such that ( ) = ( )
and + on

To prove the claim, let be an open neighborhood of such that |
| on so in particular + on By compactness, there exists

such that =
S

Set

( ) = max{ ( ) : }

then for any + + on and therefore + on
Moreover, by construction ( ) = ( ) see Figure 11.3 below.

Fig. 11.3. Constructing the funtions

We now will finish the proof of the theorem. For each let be a
neighborhood of such that | | on Choose such that
=
S

and define

= min{ : } A

Then + on and for + on and hence + on
Since =

S

we conclude

+ and + on

i.e. | | on Since 0 is arbitrary it follows that Ā = A
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Theorem 11.47 (Complex Stone-Weierstrass Theorem). Let be a
compact Hausdor space. Suppose A ( C) is closed in the uniform
topology, separates points, and is closed under conjugation. Then either A =
( C) or A = IC

0
:= { ( C) : ( 0) = 0} for some 0

Proof. Since

Re =
+ ¯

2
and Im =

¯

2

Re and Im are both in A Therefore

AR = {Re Im : A}

is a real sub-algebra of ( R) which separates points. Therefore either AR =
( R) or AR = I 0 ( R) for some 0 and hence A = ( C) or IC

0

respectively.
As an easy application, Theorems 11.46 and 11.47 imply Corollaries 11.36

and 11.37 respectively.

Corollary 11.48. Suppose that is a compact subset of R and is a finite
measure on ( B ) then polynomials are dense in ( ) for all 1

Proof. Consider to be a metric space with usual metric induced
from R Then is a locally compact separable metric space and there-
fore ( C) = ( C) is dense in ( ) for all [1 ) Since, by the
dominated convergence theorem, uniform convergence implies ( ) — conver-
gence, it follows from the Stone - Weierstrass theorem that polynomials are
also dense in ( )
Here are a couple of more applications.

Example 11.49. Let ([ ]) be a positive function which is injective.
Then functions of the form

P

=1 with C and N are dense in
([ ]) For example if = 1 and = 2 then one may take ( ) = for

any 6= 0 or ( ) = etc.

Exercise 11.50. Let ( ) be a separable compact metric space. Show that
( ) is also separable. Hint: Let be a countable dense set and then

consider the algebra, A ( ) generated by { ( ·)}

11.4 Locally Compact Version of Stone-Weierstrass
Theorem

Theorem 11.51. Let be non-compact locally compact Hausdor space. If
A is a closed subalgebra of 0( R) which separates points. Then either A =
0( R) or there exists 0 such that A = { 0( R) : ( 0) = 0}
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Proof. There are two cases to consider.
Case 1. There is no point 0 such that A { 0( R) : ( 0) =

0} In this case let = { } be the one point compactification of
Because of Proposition 3.39 to each A there exists a unique extension
˜ ( R) such that = |̃ and moreover this extension is given by
(̃ ) = 0 Let eA := { ˜ ( R) : A} Then eA is a closed (you check)
sub-algebra of ( R) which separates points. An application of Theorem
11.46 implies eA = { ( R) 3 ( ) = 0} and therefore by Proposition
3.39 A = { | : eA} = 0( R)
Case 2. There exists 0 such A { 0( R) : ( 0) = 0} In this

case let := \ { 0} and A := { | : A} Since is locally compact,
one easily checksA 0( R) is a closed subalgebra which separates points.
By Case 1. it follows that A = 0( R) So if 0( R) and ( 0) = 0
| 0( R) =A i.e. there exists A such that | = | Since
( 0) = ( 0) = 0 it follows that = A and therefore A = {
0( R) : ( 0) = 0}
Example 11.52. Let = [0 ) 0 be fixed,A be the algebra generated by

So the general element A is of the form ( ) = ( ) where
( ) is a polynomial. Since A 0( R) separates points and A is
pointwise positive, Ā = 0( R)

As an application of this example, we will show that the Laplace transform
is injective.

Theorem 11.53. For 1([0 ) ) the Laplace transform of is de-
fined by

L ( )

Z

0

( ) for all 0

If L ( ) 0 then ( ) = 0 for -a.e.

Proof. Suppose that 1([0 ) ) such that L ( ) 0 Let
0([0 ) R) and 0 be given. Choose { } 0 such that

#({ 0 : 6= 0}) and

| ( )
X

0

| for all 0

Then
¯

¯

¯

¯

Z

0

( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

Z

0

Ã

( )
X

0

!

( )

¯

¯

¯

¯

¯

Z

0

¯

¯

¯

¯

¯

( )
X

0

¯

¯

¯

¯

¯

| ( )| k k1

Since 0 is arbitrary, it follows that
R

0
( ) ( ) = 0 for all

0([0 ) R) The proof is finished by an application of Lemma 11.7.
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11.5 Dynkin’s Multiplicative System Theorem

This section is devoted to an extension of Theorem 9.12 based on the Weier-
strass approximation theorem. In this section is a set.

Definition 11.54 (Multiplicative System). A collection of real valued
functions on a set is a multiplicative system provided ·
whenever

Theorem 11.55 (Dynkin’s Multiplicative System Theorem). Let H
be a linear subspace of ( R) which contains the constant functions and is
closed under bounded convergence. If H is multiplicative system, then H
contains all bounded real valued ( )-measurable functions.

Theorem 11.56 (Complex Multiplicative System Theorem). Let H
be a complex linear subspace of ( C) such that: 1 H H is closed under
complex conjugation, and H is closed under bounded convergence. If H is
multiplicative system which is closed under conjugation, then H contains all
bounded complex valued ( )-measurable functions.

Proof. Let F be R or C Let C be the family of all sets of the form:
:= { : 1( ) 1 ( ) } (11.26)

where = 1 2 and for = 1 2 and is an open interval
if F = R or is an open rectangle in C if F = C The family C is easily seen
to be a — system such that ( ) = (C) So By Theorem 9.12, to finish the
proof it su ces to show 1 H for all C
It is easy to construct, for each a uniformly bounded sequence of

continuous functions
© ª

=1
on F converging to the characteristic func-

tion 1 By Weierstrass’ theorem, there exists polynomials ( ) such that
¯

¯ ( ) ( )
¯

¯ 1 for | | k k in the real case and polynomials
( ¯) in and ¯ such that

¯

¯ ( ¯) ( )
¯

¯ 1 for | | k k in the
complex case. The functions

:= 1 ( 1)
2 ( 2) ( ) (real case)

:= 1 ( 1 1̄)
2 ( 2 2̄) ( ¯ ) (complex case)

on are uniformly bounded, belong to H and converge pointwise to 1 as
, where is the set in Eq. (11.26). Thus 1 H and the proof is

complete.

Remark 11.57. Given any collection of bounded real valued functions F on
let H(F) be the subspace of ( R) generated by F i.e. H(F) is the

smallest subspace of ( R) which is closed under bounded convergence and
contains F With this notation, Theorem 11.55 may be stated as follows. If F
is a multiplicative system then H(F) = (F)( R) — the space of bounded
(F) — measurable real valued functions on
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11.6 Exercises

Exercise 11.58. Let ( ) be a topological space, a measure on B =
( ) and : C be a measurable function. Letting be the measure,
= | | show supp( ) = supp ( ) where supp( ) is defined in Definition

10.43).

Exercise 11.59. Let ( ) be a topological space, a measure on B = ( )
such that supp( ) = (see Definition 10.43). Show supp ( ) = supp( ) =

{ 6= 0} for all ( )

Exercise 11.60. Prove Proposition 11.25 by appealing to Corollary 8.43.

Exercise 11.61 (Integration by Parts). Suppose that ( ) R×R 1

( ) C and ( ) R×R 1 ( ) C are measurable functions
such that for each fixed R 1 ( ) and ( ) are continu-
ously di erentiable. Also assume · · and · are integrable relative
to Lebesgue measure on R×R 1 where ( ) := ( + )| =0 Show
Z

R×R 1

( ) · ( ) =

Z

R×R 1

( ) · ( ) (11.27)

(Note: this result and Fubini’s theorem proves Lemma 11.27.)
Hints: Let (R) be a function which is 1 in a neighborhood of

0 R and set ( ) = ( ) First verify Eq. (11.27) with ( ) replaced by
( ) ( ) by doing the — integral first. Then use the dominated conver-

gence theorem to prove Eq. (11.27) by passing to the limit, 0

Exercise 11.62. Let show there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

using the following outline.

1. Let ( ) = 1 for | | 1 and use Taylor’s theorem with integral
remainder (see Eq. A.15 of Appendix A), or analytic function theory if
you know it, to show there are constants5 0 for N such that

1 = 1
X

=1

for all | | 1 (11.28)

2. Let ( ) := 1
P

=1 Use (11.28) to show
P

=1 = 1 and
conclude from this that

lim sup
| | 1

| 1 ( )| = 0 (11.29)

5 In fact := (2 3)!!
2 !

but this is not needed.
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3. Let 1 = 2 2 i.e. = 1 2 2 then

lim sup
| |

¯

¯

¯

¯

| |
(1 2 2)

¯

¯

¯

¯

= 0

so that ( ) := (1 2 2) are the desired polynomials.

Exercise 11.63. Given a continuous function : R C which is 2 -
periodic and 0 Show there exists a trigonometric polynomial, ( ) =
P

=

such that | ( ) ( )| for all R Hint: show that there

exists a unique function ( 1) such that ( ) = ( ) for all R

Remark 11.64. Exercise 11.63 generalizes to 2 — periodic functions on R
i.e. functions such that ( +2 ) = ( ) for all = 1 2 where { } =1
is the standard basis for R A trigonometric polynomial ( ) is a function of

R of the form
( ) =

X ·

where is a finite subset of Z The assertion is again that these trigonometric
polynomials are dense in the 2 — periodic functions relative to the supremum
norm.

Exercise 11.65. Let be a finite measure on BR then D := span{ · :
R } is a dense subspace of ( ) for all 1 Hints: By Proposition
11.6, (R ) is a dense subspace of ( ) For (R ) and N let

( ) :=
X

Z

( + 2 )

Show (R ) and ( ) is 2 — periodic, so by Exercise 11.63,
( ) can be approximated uniformly by trigonometric polynomials.

Use this fact to conclude that D̄ ( ) After this show in ( )

Exercise 11.66. Suppose that and are two finite measures on R such
that

Z

R

· ( ) =

Z

R

· ( ) (11.30)

for all R Show =
Hint: Perhaps the easiest way to do this is to use Exercise 11.65 with the

measure being replaced by + Alternatively, use the method of proof
of Exercise 11.63 to show Eq. (11.30) implies

R

R ( ) =
R

R ( ) for all
(R )
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Exercise 11.67. Again let be a finite measure on BR Further assume that
:=
R

R
| | ( ) for all (0 ) Let P(R ) be the space of

polynomials, ( ) =
P

| | with C on R (Notice that | ( )|
( ) | | so that P(R ) ( ) for all 1 ) Show P(R ) is

dense in ( ) for all 1 Here is a possible outline.
Outline: For R and N let ( ) = ( · ) !

1. Use calculus to verify sup 0 = ( ) for all 0 where
(0 )

0
:= 1 Use this estimate along with the identity

| · | | | | | =
³

| | | |
´

| | | |

to find an estimate on k k
2. Use your estimate on k k to show

P

=0 k k and conclude

lim

°

°

°

°

°

·(·) X

=0

°

°

°

°

°

= 0

3. Now finish by appealing to Exercise 11.65.

Exercise 11.68. Again let be a finite measure on BR but now assume
there exists an 0 such that :=

R

R
| | ( ) Also let 1 and

( ) be a function such that
R

R ( ) ( ) = 0 for all N0 (As
mentioned in Exercise 11.68, P(R ) ( ) for all 1 so ( )
is in 1( ) ) Show ( ) = 0 for — a.e. using the following outline.
Outline: For R and N let ( ) = ( · ) ! and let =
( 1) be the conjugate exponent to

1. Use calculus to verify sup 0 = ( ) for all 0 where
(0 )

0
:= 1 Use this estimate along with the identity

| · | | | | | =
³

| | | |
´

| | | |

to find an estimate on
°

°

°

°

2. Use your estimate on
°

°

°

° to show there exists 0 such that
P

=0

°

°

°

° when | | and conclude for | | that · =

( )—
P

=0 ( ) Conclude from this that
Z

R
( ) · ( ) = 0 when | |

3. Let R (| | not necessarily small) and set ( ) :=
R

R
· ( ) ( )

for R Show (R) and

( )( ) =

Z

R
( · ) · ( ) ( ) for all N
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4. Let = sup{ 0 : |[0 ] 0} By Step 2., If then

0 = ( )( ) =

Z

R
( · ) · ( ) ( ) for all N

Use Step 3. with replaced by · ( ) to conclude

( + ) =

Z

R

( + ) · ( ) ( ) = 0 for all | |

This violates the definition of and therefore = and in particular
we may take = 1 to learn

Z

R
( ) · ( ) = 0 for all R

5. Use Exercise 11.65 to conclude that
Z

R
( ) ( ) ( ) = 0

for all ( ) Now choose judiciously to finish the proof.
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Construction of Measures

Now that we have developed integration theory relative to a measure on a
— algebra, it is time to show how to construct the measures that we have

been using. This is a bit technical because there tends to be no “explicit”
description of the general element of the typical — algebras. On the other
hand, we do know how to explicitly describe algebras which are generated
by some class of sets E P( ) Therefore, we might try to define measures
on (E) by there restrictions to A(E) Theorem 9.5 shows this is a plausible
method.
So the strategy of this section is as follows: 1) construct finitely additive

measure on an algebra, 2) construct “integrals” associated to such finitely
additive measures, 3) extend these integrals (Daniell’s method) when possible
to a larger class of functions, 4) construct a measure from the extended integral
(Daniell — Stone construction theorem).

12.1 Finitely Additive Measures and Associated
Integrals

Definition 12.1. Suppose that E P( ) is a collection of subsets of a set
and : E [0 ] is a function. Then

1. is additive on E if ( ) =
P

=1 ( ) whenever =
`

=1 E
with E for = 1 2

2. is — additive (or countable additive) on E if Item 1. holds even
when =

3. is subadditive on E if ( )
P

=1 ( ) whenever =
`

=1 E
with E and N { }

4. is — finite on E if there exist E such that = and
( )
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The reader should check if E = A is an algebra and is additive on A
then is — finite on A i there exists A such that and
( ) for all

Proposition 12.2. Suppose E P( ) is an elementary family (see Defini-
tion 7.13) and A = A(E) is the algebra generated by E Then every additive
function : E [0 ] extends uniquely to an additive measure (which we
still denote by ) on A
Proof. Since by Proposition 7.14, every element A is of the form
=
`

with E it is clear that if extends to a measure the extension
is unique and must be given by

( ) =
X

( ) (12.1)

To prove the existence of the extension, the main point is to show that defining
( ) by Eq. (12.1) is well defined, i.e. if we also have =

`

with E
then we must show

X

( ) =
X

( ) (12.2)

But =
`

( ) and the property that is additive on E implies
( ) =

P

( ) and hence
X

( ) =
XX

( ) =
X

( )

By symmetry or an analogous argument,
X

( ) =
X

( )

which combined with the previous equation shows that Eq. (12.2) holds. It
is now easy to verify that extended to A as in Eq. (12.1) is an additive
measure on A
Proposition 12.3. Let = R and E be the elementary class

E = {( ] R : }
and A = A(E) be the algebra of disjoint union of elements from E Suppose
that 0 : A [0 ] is an additive measure such that 0(( ]) for all

Then there is a unique increasing function : R̄ R̄
such that (0) = 0 1({ }) { } 1({ }) { } and

0(( ] R) = ( ) ( ) in R̄ (12.3)

Conversely, given an increasing function : R̄ R̄ such that 1({ })
{ } 1({ }) { } there is a unique measure 0 = 0 on A such that
the relation in Eq. (12.3) holds.
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So the finitely additive measures 0 on A(E) which are finite on bounded
sets are in one to one correspondence with increasing functions : R̄ R̄
such that (0) = 0 1({ }) { } 1({ }) { }
Proof. If is going to exist, then

0((0 ] R) = ( ) (0) = ( ) if [0 ]
0(( 0]) = (0) ( ) = ( ) if [ 0]

from which we learn

( ) =

½

0(( 0]) if 0
0((0 ] R) if 0

Moreover, one easily checks using the additivity of 0 that Eq. (12.3) holds
for this
Conversely, suppose : R̄ R̄ is an increasing function such that
1({ }) { } 1({ }) { } Define 0 on E using the for-

mula in Eq. (12.3). I claim that 0 is additive on E and hence has a unique
extension to A which will finish the argument. Suppose that

( ] =
a

=1

( ]

By reordering ( ] if necessary, we may assume that

= 1 1 = 2 2 = 3 · · · =

Therefore,

0(( ]) = ( ) ( ) =
X

=1

[ ( ) ( )] =
X

=1

0(( ])

as desired.

12.1.1 Integrals associated to finitely additive measures

Definition 12.4. Let be a finitely additive measure on an algebra A
P( ) S = S (A ) be the collection of simple functions defined in Notation
11.1 and for S defined the integral ( ) = ( ) by

( ) =
X

R

( = ) (12.4)

The same proof used for Proposition 8.14 shows : S R is linear and
positive, i.e. ( ) 0 if 0 Taking absolute values of Eq. (12.4) gives

| ( )|
X

R

| | ( = ) k k ( 6= 0) (12.5)

292 12 Construction of Measures

where k k = sup | ( )| For A let S := { S : { 6= 0} }
The estimate in Eq. (12.5) implies

| ( )| ( ) k k for all S (12.6)

The B.L.T. Theorem 2.68 then implies that has a unique extension to
S̄ ( ) for any A such that ( ) The extension is still
positive. Indeed, let S̄ with 0 and let S be a sequence such
that k k 0 as Then 0 S and

k 0k k k 0 as

Therefore, ( ) = lim ( 0) 0
Suppose that A are sets such that ( )+ ( ) then S S

S and so S̄ S̄ S̄ Therefore ( ) = ( ) = ( ) for all
S̄ S̄ The next proposition summarizes these remarks.

Proposition 12.5. Let (A = ) be as in Definition 12.4, then we may
extend to

S̃ := {S̄ : A with ( ) }
by defining ( ) = ( ) when S̄ with ( ) Moreover this exten-
sion is still positive.

Notation 12.6 Suppose = R A=A(E) and 0 are as in Proposition
12.3. For S̃ we will write ( ) as

R

or
R

( ) ( ) and refer
to
R

as the Riemann Stieljtes integral of relative to

Lemma 12.7. Using the notation above, the map S̃
R

is linear,
positive and satisfies the estimate

¯

¯

¯

¯

Z

¯

¯

¯

¯

( ( ) ( )) k k (12.7)

if supp( ) ( ) Moreover (R R) S̃

Proof. The only new point of the lemma is to prove (R R) S̃ the
remaining assertions follow directly from Proposition 12.5. The fact that
(R R) S̃ has essentially already been done in Example 8.24. In more

detail, let (R R) and choose such that supp( ) ( ) Then
define S as in Example 8.24, i.e.

( ) =

1
X

=0

min
©

( ) : +1

ª

1( +1]
( )

where = { = 0 1 · · · = } for = 1 2 3 is a sequence
of refining partitions such that mesh( ) 0 as Since supp( )
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is compact and is continuous, is uniformly continuous on R Therefore
k k 0 as showing S̃ Incidentally, for (R R) it
follows that

Z

= lim

1
X

=0

min
©

( ) : +1

ª £

( +1) ( )
¤

(12.8)

The most important special case of a Riemann Stieljtes integral is when
( ) = in which case

R

( ) ( ) =
R

( ) is the ordinary Rie-
mann integral. The following Exercise is an abstraction of Lemma 12.7.

Exercise 12.8. Continue the notation of Definition 12.4 and Proposition
12.5. Further assume that is a metric space, there exists open sets
such that and for each N and 0 there exists a finite collection
of sets { } =1 A such that diam( ) ( ) and =1

Then ( R) S̃ and so is well defined on ( R)

Proposition 12.9. Suppose that ( ) is locally compact Hausdor space
and is a positive linear functional on ( R) Then for each compact
subset there is a constant such that | ( )| k k for
all ( R) with supp( ) Moreover, if ( [0 )) and

0 (pointwise) as then ( ) 0 as

Proof. Let ( R) with supp( ) By Lemma 3.22 there exists
such that = 1 on Since k k ± 0

0 (k k ± ) = k k ( )± ( )

from which it follows that | ( )| ( ) k k So the first assertion holds
with = ( )
Now suppose that ( [0 )) and 0 as Let =

supp( 1) and notice that supp( ) for all By Dini’s Theorem (see
Exercise 2.41), k k 0 as and hence

0 ( ) k k 0 as

This result applies to the Riemann Stieljtes integral in Lemma 12.7 re-
stricted to (R R) However it is not generally true in this case that ( ) 0
for all S such that 0 Proposition 12.11 below addresses this ques-
tion.

Definition 12.10. A countably additive function on an algebra A 2 is
called a premeasure.
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As for measures (see Remark 8.2 and Proposition 8.3), one easily shows if
is a premeasure on A { } =1 A and if A then ( ) ( )

as or if ( 1) and then ( ) 0 as Now suppose
that in Proposition 12.3 were a premeasure on A(E) Letting = ( ]
with as we learn,

( ) ( ) = (( ]) (( ]) = ( ) ( )

from which it follows that lim ( ) = ( ) i.e. is right continuous. We
will see below that in fact is a premeasure on A(E) i is right continuous.

Proposition 12.11. Let (A S = S (A ) = ) be as in Definition 12.4.
If is a premeasure on A then

S with 0 = ( ) 0 as (12.9)

Proof. Let 0 be given. Then

= 1 1 + 1 1 11 1 + 1

( ) ( 11 1) + ( 1) =
X

0

( 1 = ) + ( 1)

and hence

lim sup ( )
X

0

lim sup ( 1 = ) + ( 1) (12.10)

Because, for 0

A 3 { 1 = } := { 1 = } { } as

and ( 1 = ) lim sup ( 1 = ) = 0 Combining this
with Eq. (12.10) and making use of the fact that 0 is arbitrary we learn
lim sup ( ) = 0

12.2 The Daniell-Stone Construction Theorem

Definition 12.12. A vector subspace S of real valued functions on a set
is a lattice if it is closed under the lattice operations; = max( ) and

= min( )

Remark 12.13. Notice that a lattice S is closed under the absolute value op-
eration since | | = 0 0 Furthermore if S is a vector space of real
valued functions, to show that S is a lattice it su ces to show + = 0 S
for all S This is because
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| | = + + ( )+

=
1

2
( + + | |) and

=
1

2
( + | |)

Notation 12.14 Given a collection of extended real valued functions C on
let C+ := { C : 0} — denote the subset of positive functions C
Definition 12.15. A linear functional on S is said to be positive (i.e. non-
negative) if ( ) 0 for all S+ (This is equivalent to the statement the
( ) ( ) if S and )

Definition 12.16 (Property (D)). A non-negative linear functional on S
is said to be continuous under monotone limits if ( ) 0 for all { } =1

S+ satisfying (pointwise) 0 A positive linear functional on S satisfying
property (D) is called a Daniell integral on S We will also write S as ( )
— the domain of

Example 12.17. Let ( ) be a locally compact Hausdor space and be
a positive linear functional on S := ( R) It is easily checked that S
is a lattice and Proposition 12.9 shows is automatically a Daniell inte-
gral. In particular if = R and is an increasing function on R then
the corresponding Riemann Stieljtes integral restricted to S := (R R)
( (R R)

R

R ) is a Daniell integral.

Example 12.18. Let (A S = S (A ) = ) be as in Definition 12.4. It
is easily checked that S is a lattice. Proposition 12.11 guarantees that is a
Daniell integral on S when is a premeasure on A
Lemma 12.19. Let be a non-negative linear functional on a lattice S Then
property (D) is equivalent to either of the following two properties:

D1 If S satisfy; +1 for all and lim then ( )
lim ( )

D2 If S+ and S is such that
P

=1 then ( )
P

=1 ( )

Proof. (D) = (D1) Let S be as in D1 Then and
( ) 0 which implies

( ) ( ) = ( ( )) 0

Hence
( ) = lim ( ) lim ( )

(D1) = (D2) Apply (D1) with =
P

=1

(D2) = (D) Suppose S with 0 and let = +1 Then
P

=1 = 1 +1 1 and hence
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( 1)
X

=1

( ) = lim
X

=1

( )

= lim ( 1 +1) = ( 1) lim ( +1)

from which it follows that lim ( +1) 0 Since ( +1) 0 for all
we conclude that lim ( +1) = 0
In the remainder of this section, S will denote a lattice of bounded real

valued functions on a set and : S R will be a Daniell integral on S

Lemma 12.20. Suppose that { } { } S

1. If and with : ( ] such that then

lim ( ) lim ( ) (12.11)

2. If and with : [ ) such that then Eq.
(12.11) still holds.

In particular, in either case if = then lim ( ) = lim ( )

Proof.

1. Fix N then as and and hence

( ) = lim ( ) lim ( )

Passing to the limit in this equation proves Eq. (12.11).
2. Since ( ) and ( ) and ( ) what we just proved
shows

lim ( ) = lim ( ) lim ( ) = lim ( )

which is equivalent to Eq. (12.11).

Definition 12.21. Let

S = { : ( ] : S such that }

and for S let ( ) = lim ( ) ( ]

Lemma 12.20 shows this extension of to S is well defined and positive,
i.e. ( ) ( ) if

Definition 12.22. Let S = { : [ ) : S such that }
and define ( ) = lim ( ) on S
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Exercise 12.23. Show S = S and for S S that ( ) = ( )
R̄

We are now in a position to state the main construction theorem. The
theorem we state here is not as general as possible but it will su ce for our
present purposes. See Section 13 for a more general version and the full proof.

Theorem 12.24 (Daniell-Stone). Let S be a lattice of bounded functions
on a set such that 1 S and let be a Daniel integral on S Further
assume there exists S such that ( ) and ( ) 0 for all
Then there exists a unique measure onM := (S) such that

( ) =

Z

for all S (12.12)

Moreover, for all 1( M )

sup { ( ) : S 3 } =
Z

= inf { ( ) : S } (12.13)

Proof. Only a sketch of the proof will be given here. Full details may be
found in Section 13 below.
Existence. For : R̄ define

(̄ ) := inf{ ( ) : S }
( ) := sup{ ( ) : S 3 }

and set
1( ) := { : R̄ : (̄ ) = ( ) R}

For 1( ) let (̂ ) = (̄ ) = ( ) Then, as shown in Proposition 13.10,
1( ) is a “extended” vector space and ˆ : 1( ) R is linear as defined in
Definition 13.1 below. By Proposition 13.6, if S with ( ) then

1( ) Moreover, ˆ obeys the monotone convergence theorem, Fatou’s
lemma, and the dominated convergence theorem, see Theorem 13.11, Lemma
13.12 and Theorem 13.15 respectively.
Let

R := © : 1 1( ) for all S
ª

and for R set ( ) := (̄1 ) It can then be shown: 1) R is a algebra
(Lemma 13.23) containing (S) (Lemma 13.24), is a measure on R (Lemma
13.25), and that Eq. (12.12) holds. In fact it is shown in Theorem 13.28 and
Proposition 13.29 below that 1( M ) 1( ) and

(̂ ) =

Z

for all 1( M )

The assertion in Eq. (12.13) is a consequence of the definition of 1( ) and ˆ

and this last equation.
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Uniqueness. Suppose that is another measure on (S) such that

( ) =

Z

for all S

By the monotone convergence theorem and the definition of on S

( ) =

Z

for all S

Therefore if (S) R

( ) = (̄1 ) = inf{ ( ) : 1 S }
= inf{

Z

: 1 S }
Z

1 = ( )

which shows If (S) R with ( ) then, by Remark 13.22
below, 1 1( ) and therefore

( ) = (̄1 ) = (̂1 ) = (1 ) = sup{ ( ) : S 3 1 }
= sup{

Z

: S 3 1 } ( )

Hence ( ) ( ) for all (S) and ( ) = ( ) when ( )
To prove ( ) = ( ) for all (S) let := { 1 } (S) Since

1

( ) =

Z

1

Z

= ( )

Since 0 on and therefore by continuity of and

( ) = lim ( ) = lim ( ) = ( )

for all (S)
The rest of this chapter is devoted to applications of the Daniell — Stone

construction theorem.

Remark 12.25. To check the hypothesis in Theorem 12.24 that there exists
S such that ( ) and ( ) 0 for all it su ces to find

S+ such that
P

=1 0 on To see this let := max (k k ( ) 1)
and define :=

P

=1
1
2 then S 0 1 and ( ) 1

12.3 Extensions of premeasures to measures I

In this section let be a set, A be a subalgebra of 2 and 0 : A [0 ]
be a premeasure on A
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Definition 12.26. Let E be a collection of subsets of let E denote the
collection of subsets of which are finite or countable unions of sets from
E Similarly let E denote the collection of subsets of which are finite or
countable intersections of sets from E We also write E = (E ) and E =
(E ) etc.

Remark 12.27. Let 0 be a premeasure on an algebra A Any = =1
0

A with 0 A may be written as =
`

=1
with A by setting

:= 0 \ ( 0
1 · · · 0

1) If we also have =
`

=1
with A then

=
`

=1( ) and therefore because 0 is a premeasure,

0( ) =
X

=1

0( )

Summing this equation on shows,

X

=1

0( ) =
X

=1

X

=1

0( )

By symmetry (i.e. the same argument with the ’s and ’s interchanged) and
Fubini’s theorem for sums,

X

=1

0( ) =
X

=1

X

=1

0( ) =
X

=1

X

=1

0( )

and hence
P

=1 0( ) =
P

=1 0( ) Therefore we may extend 0 to A
by setting

0( ) :=
X

=1

0( )

if =
`

=1
with A In future we will tacitly assume this extension

has been made.

Theorem 12.28. Let be a set, A be a subalgebra of 2 and 0 be a pre-
measure on A which is — finite on A i.e. there exists A such that
0( ) and as Then 0 has a unique extension to a
measure, on M := (A) Moreover, if M and 0 is given, there
exists A such that and ( \ ) In particular,

( ) = inf{ 0( ) : A } (12.14)

= inf{
X

=1

0( ) :
a

=1

with A} (12.15)
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Proof. Let (A 0 = 0) be as in Definition 12.4. As mentioned in
Example 12.18, is a Daniell integral on the lattice S = S (A 0) It is clear
that 1 S for all S Since 1 S+ and

P

=1 1 0 on by
Remark 12.25 there exists S such that ( ) and 0 So the
hypothesis of Theorem 12.24 hold and hence there exists a unique measure
onM such that ( ) =

R

for all S Taking = 1 with A and
0( ) shows ( ) = 0( ) For general A we have

( ) = lim ( ) = lim 0( ) = 0( )

The fact that is the only extension of 0 to M follows from Theorem
9.5 or Theorem 9.8. It is also can be proved using Theorem 12.24. Indeed, if
is another measure onM such that = on A then = on S Therefore
by the uniqueness assertion in Theorem 12.24, = onM
By Eq. (12.13), for M

( ) = (̄1 ) = inf { ( ) : S with 1 }

= inf

½
Z

: S with 1
¾

For the moment suppose ( ) and 0 is given. Choose S such
that 1 and

Z

= ( ) ( ) + (12.16)

Let S be a sequence such that as and for (0 1) set

:= { } = =1 { } A
Then { 1} and by Chebyshev’s inequality,

( ) 1

Z

= 1 ( )

which combined with Eq. (12.16) implies ( ) ( )+ for all su ciently
close to 1 For such we then have A and ( \ ) = ( )
( )
For general A choose with A Then there exists
A such that ( \ ( )) 2 Define := =1 A

Then

( \ ) = ( =1 ( \ ))
X

=1

(( \ ))

X

=1

(( \ ( ))

Eq. (12.14) is an easy consequence of this result and the fact that ( ) =

0( )
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Corollary 12.29 (Regularity of ). Let A P( ) be an algebra of sets,
M = (A) and :M [0 ] be a measure onM which is — finite on A
Then

1. For all M
( ) = inf { ( ) : A } (12.17)

2. If M and 0 are given, there exists A such that and
( \ )

3. For all M and 0 there exists A such that and
( \ )

4. For any M there exists A and A such that
and ( \ ) = 0

5. The linear space S := S (A ) is dense in ( ) for all [1 ) briefly

put, S (A )
( )
= ( )

Proof. Items 1. and 2. follow by applying Theorem 12.28 to 0 = |A
Items 3. and 4. follow from Items 1. and 2. as in the proof of Corollary 9.41
above.
Item 5. This has already been proved in Theorem 11.3 but we will give

yet another proof here. When = 1 and 1( ;R) there exists, by Eq.
(12.13), S such that and k k1 =

R

( ) Let
{ } =1 S be chosen so that as Then by the dominated
convergence theorem, k k1 k k1 as Therefore for
large we have S with k k1 Since 0 is arbitrary this shows,

S (A )
1( )

= 1( )
Now suppose 1 ( ;R) and A are sets such that

and ( ) By the dominated convergence theorem, 1 ·
[( ) ( )] in ( ) as so it su ces to consider ( ;R)
with { 6= 0} and | | for some large N By Hölder’s inequality,
such a is in 1( ) So if 0 by the = 1 case, we may find S such
that k k1 By replacing by ( ) ( ) S we may assume is
bounded by as well and hence

k k =

Z

| | =

Z

| | 1 | |

(2 )
1
Z

| | (2 )
1

Since 0 was arbitrary, this shows S is dense in ( ;R)

Remark 12.30. If we drop the — finiteness assumption on 0 we may loose
uniqueness assertion in Theorem 12.28. For example, let = R BR and
A be the algebra generated by E := {( ] R : } Recall
BR = (E) Let R be a countable dense set and define ( ) := #( )
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Then ( ) = for all A such that 6= So if 0 R is another
countable dense subset of R 0 = on A while 6= 0 on BR Also
notice that is — finite on BR but not on A
It is now possible to use Theorem 12.28 to give a proof of Theorem 8.8, see

subsection 12.8 below. However rather than do this now let us give another
application of Theorem 12.28 based on Example 12.17 and use the result to
prove Theorem 8.8.

12.4 Riesz Representation Theorem

Definition 12.31. Given a second countable locally compact Hausdor space
( ) let M+ denote the collection of positive measures, on B := ( )
with the property that ( ) for all compact subsets Such a
measure will be called a Radon measure on For M+ and
( R) let ( ) :=

R

Theorem 12.32 (Riesz Representation Theorem). Let ( ) be a sec-
ond countable1 locally compact Hausdor space. Then the map taking
M+ to positive linear functionals on ( R) is bijective. Moreover every
measure M+ has the following properties:

1. For all 0 and B there exists such that is open
and is closed and ( \ ) If ( ) may be taken to be a
compact subset of

2. For all B there exists and ( is more conventionally
written as ) such that and ( \ ) = 0

3. For all B

( ) = inf{ ( ) : and is open} (12.18)

= sup{ ( ) : and is compact} (12.19)

4. For all open subsets,

( ) = sup{
Z

: } = sup{ ( ) : } (12.20)

5. For all compact subsets

( ) = inf{ ( ) : 1 } (12.21)

1 The second countability is assumed here in order to avoid certain technical issues.
Recall from Lemma 3.25 that under these assumptions, (S) = B Also recall
from Uryshon’s metrizatoin theorem that is metrizable. We will later remove
the second countability assumption.
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6. If k k denotes the dual norm on ( R) then k k = ( ) In par-
ticular is bounded i ( )

7. ( R) is dense in ( ;R) for all 1

Proof. First notice that is a positive linear functional on S := ( R)
for all M+ and S is a lattice such that 1 S for all S Example
12.17 shows that any positive linear functional, on S := ( R) is a Daniell
integral on S By Lemma 3.16, there exists compact sets such that

By Urysohn’s lemma, there exists such that = 1 on
Since S+ and

P

=1 0 on it follows from Remark 12.25 that
there exists S such that 0 on and ( ) So the hypothesis
of the Daniell — Stone Theorem 12.24 hold and hence there exists a unique
measure on (S) =B (Lemma 3.25) such that = Hence the map

taking M+ to positive linear functionals on ( R) is bijective. We
will now prove the remaining seven assertions of the theorem.

1. Suppose 0 and B satisfies ( ) Then 1 1( ) so there
exists functions ( R) such that 1 and

Z

= ( ) ( ) + (12.22)

Let (0 1) and := { } =1 { } Since 1
{ 1} and by Chebyshev’s inequality, ( ) 1

R

=
1 ( ) Combining this estimate with Eq. (12.22) shows ( \ ) =
( ) ( ) for su ciently closet to 1
For general B by what we have just proved, there exists open sets

such that and ( \ ( )) 2 for all
Let = =1 then and

( \ ) = ( =1 ( \ ))
X

=1

( \ )

X

=1

( \ ( ))
X

=1

2 =

Applying this result to shows there exists a closed set @ such
that and

( \ ) = ( \ )

So we have produced such that ( \ ) = ( \ ) + ( \
) 2

If ( ) using \ ( ) \ as we may choose
su ciently large so that ( \ ( )) Hence we may replace
by the compact set if necessary.

2. Choose such is closed, is open and ( \ ) 1
Let = and := Then and

304 12 Construction of Measures

( \ ) ( \ )
1

0 as

3. From Item 1, one easily concludes that

( ) = inf { ( ) : }
for all B and

( ) = sup { ( ) : @@ }
for all B with ( ) So now suppose B and ( ) =
Using the notation at the end of the proof of Item 1., we have ( ) =
and ( ) as This shows sup { ( ) : @@ } = =
( ) as desired.

4. For let
( ) := sup{ ( ) : }

It is evident that ( ) ( ) because implies 1 Let be a
compact subset of By Urysohn’s Lemma 3.22, there exists such
that = 1 on Therefore,

( )

Z

( ) (12.23)

and we have

( ) ( ) ( ) for all and @@ (12.24)

By Item 3.,

( ) = sup{ ( ) : @@ } ( ) ( )

which shows that ( ) = ( ) i.e. Eq. (12.20) holds.
5. Now suppose is a compact subset of From Eq. (12.23),

( ) inf{ ( ) : 1 } ( )

for any open subset such that Consequently by Eq. (12.18),

( ) inf{ ( ) : 1 } inf{ ( ) : } = ( )

which proves Eq. (12.21).
6. For ( R)

| ( )|
Z

| | k k (supp( )) k k ( ) (12.25)

which shows k k ( ) Let @@ and such that = 1 on
By Eq. (12.23),
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( )

Z

= ( ) k k k k = k k

and therefore,

( ) = sup{ ( ) : @@ } k k

7. This has already been proved by two methods in Proposition 11.6 but
we will give yet another proof here. When = 1 and 1( ;R) there
exists, by Eq. (12.13), S = ( R) such that and k k1 =
R

( ) Let { } =1 S = ( R) be chosen so that
as Then by the dominated convergence theorem (notice that
| | | 1| + | |), k k1 k k1 as Therefore for
large we have ( R) with k k1 Since 0 is arbitrary

this shows, S (A )
1( )

= 1( )
Now suppose 1 ( ;R) and { } =1 are as above. By the
dominated convergence theorem, 1 ( ) ( ) in ( ) as

so it su ces to consider ( ;R) with supp( ) and | |
for some large N By Hölder’s inequality, such a is in 1( ) So if

0 by the = 1 case, there exists S such that k k1 By
replacing by ( ) ( ) S we may assume is bounded by in
which case

k k =

Z

| | =

Z

| | 1 | |

(2 )
1
Z

| | (2 )
1

Since 0 was arbitrary, this shows S is dense in ( ;R)

Remark 12.33.We may give a direct proof of the fact that is injective.
Indeed, suppose M+ satisfy ( ) = ( ) for all ( R) By
Proposition 11.6, if B is a set such that ( ) + ( ) there exists

( R) such that 1 in 1( + ) Since 1 in 1( ) and
1( )

( ) = lim ( ) = lim ( ) = ( )

For general B choose compact subsets such that
Then

( ) = lim ( ) = lim ( ) = ( )

showing = Therefore the map is injective.

Theorem 12.34 (Lusin’s Theorem). Suppose ( ) is a locally compact
and second countable Hausdor space, B is the Borel — algebra on and
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is a measure on ( B ) which is finite on compact sets of Also let 0
be given. If : C is a measurable function such that ( 6= 0)
there exists a compact set { 6= 0} such that | is continuous and
({ 6= 0} \ ) Moreover there exists ( ) such that ( 6= )
and if is bounded the function may be chosen so that k k k k :=
sup | ( )|
Proof. Suppose first that is bounded, in which case

Z

| | k k ( 6= 0)

By Proposition 11.6 or Item 7. of Theorem 12.32, there exists ( ) such
that in 1( ) as By passing to a subsequence if necessary,
we may assume k k1 12 for all and thus

¡| | 1
¢

2 for all Let := =1

©| | 1
ª

so that ( ) On
| | 1 i.e. uniformly on and hence | is continuous.
Let := { 6= 0} \ By Theorem 12.32 (or see Exercises 9.47 and 9.48)

there exists a compact set and open set such that such that
( \ ) Notice that

({ 6= 0} \ ) ( \ ) + ( ) 2

By the Tietze extension Theorem 3.24, there exists ( ) such that
= | By Urysohn’s Lemma 3.22 there exists such that = 1 on
So letting = ( ) we have = on k k k k and since

{ 6= } ( \ ) ( 6= ) 3 This proves the assertions in the
theorem when is bounded.
Suppose that : C is (possibly) unbounded. By Lemmas 3.25 and

3.16, there exists compact sets { } =1 of such that Hence
:= {0 | | } { 6= 0} as Therefore if 0 is given

there exists an such that ({ 6= 0}\ ) We now apply what we have
just proved to 1 to find a compact set {1 6= 0} and open set

and ( ) ( ) such that ( \ ) ({1 6= 0}\ )
and = on The proof is now complete since

{ 6= } ({ 6= 0} \ ) ({1 6= 0} \ ) ( \ )

so that ( 6= ) 3
To illustrate Theorem 12.34, suppose that = (0 1) = is Lebesgue

measure and = 1(0 1) Q Then Lusin’s theorem asserts for any 0 there
exists a compact set (0 1) such that ((0 1) \ ) and | is con-
tinuous. To see this directly, let { } =1 be an enumeration of the rationales
in (0 1)

= ( 2 + 2 ) (0 1) and = =1

Then is an open subset of and ( ) Therefore := [1 1
1 ] \ is a compact subset of and ( \ ) 2 + ( ) Taking
su ciently large we have ( \ ) and | 0 is continuous.
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12.4.1 The Riemann — Stieljtes — Lebesgue Integral

Notation 12.35 Given an increasing function : R R let ( ) =
lim ( ) ( +) = lim ( ) and (± ) = lim ± ( ) R̄ Since
is increasing all of theses limits exists.

Theorem 12.36. Let : R R be increasing and define ( ) = ( +)
Then

1. The function is increasing and right continuous.
2. For R ( ) = lim ( )
3. The set { R : ( +) ( )} is countable and for each 0 and
moreover,

X

( ]

[ ( +) ( )] ( ) ( ) (12.26)

Proof.

1. The following observation shows is increasing: if then

( ) ( ) ( +) = ( ) ( ) ( ) ( +) = ( )
(12.27)

Since is increasing, ( ) ( +) If then ( +) ( ) and
hence ( +) ( +) = ( ) i.e. ( +) = ( )

2. Since ( ) ( ) ( ) for all it follows that

( ) lim ( ) lim ( ) = ( )

showing ( ) = lim ( )
3. By Eq. (12.27), if 6= then

( ( ) ( +)] ( ( ) ( +)] =

Therefore, {( ( ) ( +)]} R are disjoint possible empty intervals in
R. Let N and ( ) be a finite set, then

a

( ( ) ( +)] ( ( ) ( )]

and therefore,
X

[ ( +) ( )] ( ) ( )

Since this is true for all ( ] Eq. (12.26) holds. Eq. (12.26)
shows

:= { ( )| ( +) ( ) 0}
is countable and hence so is

:= { R| ( +) ( ) 0} = =1
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Theorem 12.37. If : R R is an increasing function, there exists a
unique measure = on BR such that

Z

=

Z

R
for all (R R) (12.28)

where
R

is as in Notation 12.6 above. This measure may also be char-
acterized as the unique measure on BR such that

(( ]) = ( +) ( +) for all (12.29)

Moreover, if BR then

( ) = inf

(

X

=1

( ( +) ( +)) : =1( ]

)

= inf

(

X

=1

( ( +) ( +)) :
a

=1

( ]

)

Proof. An application of Theorem 12.32 implies there exists a unique
measure on BR such Eq. (12.28) is valid. Let 0
be small and ( ) be the function defined in Figure 12.1, i.e. is one on
[ +2 + ] linearly interpolates to zero on [ + +2 ] and on [ + +2 ]
and is zero on ( + 2 ) Since 1( ] it follows by the dominated

Fig. 12.1. ).

convergence theorem that

(( ]) = lim
0

Z

R
= lim

0

Z

R
(12.30)

On the other hand we have 1( +2 + ] 1( + +2 ] and therefore,
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( + ) ( + 2 ) =

Z

R
1( +2 + ]

Z

R
Z

R
1( + +2 ) = ( + 2 ) ( + )

Letting 0 in this equation and using Eq. (12.30) shows

( +) ( +) (( ]) ( +) ( +)

The last assertion in the theorem is now a consequence of Corollary 12.29.

Corollary 12.38. The positive linear functionals on (R R) are in one to
one correspondence with right continuous non-decreasing functions such
that (0) = 0

12.5 Metric space regularity results resisted

Proposition 12.39. Let ( ) be a metric space and be a measure on
M = B which is — finite on :=

1. For all 0 and M there exists an open set and a closed set
such that and ( \ )

2. For all M there exists and such that and
( \ ) = 0 Here denotes the collection of subsets of which may be
written as a countable union of closed sets and = is the collection
of subsets of which may be written as a countable intersection of open
sets.

3. The space ( ) of bounded continuous functions on such that ( 6=
0) is dense in ( )

Proof. Let S := ( ) ( ) :=
R

for S and be chosen
so that ( ) and as Then 1 S for all S and
if = 1

¡ ¢

S+ then 1 as and so by Remark 12.25
there exists S such that 0 on and ( ) Similarly if
the function := 1

¡

( )

¢

S and 1 as showing
(S) =B If S+ and 0 as it follows by the dominated
convergence theorem that ( ) 0 as So the hypothesis of the
Daniell — Stone Theorem 12.24 hold and hence is the unique measure on
B such that = and for B and

( ) = (̄1 ) = inf { ( ) : S with 1 }

= inf

½
Z

: S with 1
¾

Suppose 0 and B are given. There exists ( ) such
that 1 and ( ) ( ) + The condition 1 implies
1 1{ 1} and hence that
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( ) ( 1) ( ) ( ) + (12.31)

Moreover, letting := =1 { 1 1 } we have { 1}
hence ( ) ( 1) ( ) as Combining this observation

with Eq. (12.31), we may choose su ciently large so that and

( \ ) = ( ) ( )

Hence there exists such that and ( \ ) Applying this
result to shows there exists @ such that and

( \ ) = ( \ )

So we have produced such that ( \ ) = ( \ )+ ( \ )
2
The second assertion is an easy consequence of the first and the third

follows in similar manner to any of the proofs of Item 7. in Theorem 12.32.

12.6 Measure on Products of Metric spaces

Let {( )} N be a sequence of compact metric spaces, for N let
:=

Q

=1 and : be the projection map ( ) =
|{1 2 } Recall from Exercise 2.108 and Exercise 7.80 that there is a metric
on :=

Q

N
such that = =1 (= ( : N) — the product

topology on ) and is compact in this topology. Also recall that compact
metric spaces are second countable, Exercise 3.14.

Proposition 12.40. Continuing the notation above, suppose that { } N
are given probability measures2 on B := B satisfying the compatibility
conditions, ( ) = for all Then there exists a unique mea-
sure on B = ( ) = ( : N) such that ( ) = for all N
i.e.

Z

( ( )) ( ) =

Z

( ) ( ) (12.32)

for all N and : R bounded a measurable.

Proof. An application of the Stone Weierstrass Theorem 11.46 shows that

D = { ( ) : = with ( ) and N}

is dense in ( ) For = D let

2 A typical example of such measures, is to set := 1 · · · where
is a probablity measure on B for each N



12.6 Measure on Products of Metric spaces 311

( ) =

Z

( ) ( )

Let us verify that is well defined. Suppose that may also be expressed as
= with N and ( ) By interchanging and if

necessary we may assume By the compatibility assumption,
Z

( ) ( ) =

Z

( ) ( ) =

Z

[( ) ]

=

Z

Since | ( )| k k the B.L.T. Theorem 2.68 allows us to extend
uniquely to a continuous linear functional on ( ) which we still denote by
Because was positive on D it is easy to check that is positive on ( )

as well. So by the Riesz Theorem 12.32, there exists a probability measure
on B such that ( ) =

R

for all ( ) By the definition of in now

follows that
Z

( ) =

Z

= ( ) =

Z

for all ( ) and N It now follows from Theorem 11.46he unique-
ness assertion in the Riesz theorem 12.32 (applied with replaced by )
that =

Corollary 12.41. Keeping the same assumptions from Proposition 12.40.
Further assume, for each N there exists measurable set
such that ( ) = 1 with := 1 × · · · × Then ( ) = 1 where
=
Q

=1

Proof. Since = =1
1( ) we have \ = =1

1( \ )
and therefore,

( \ )
X

=1

¡

1( \ )
¢

=
X

=1

( \ ) = 0

Corollary 12.42. Suppose that { } N are probability measures on BR for

all N :=
¡

R
¢N
and B := =1 (BR ) Then there exists a unique

measure on ( B) such that
Z

( 1 2 ) ( ) =

Z

(R )

( 1 2 ) 1( 1) ( )

(12.33)
for all N and bounded measurable functions :

¡

R
¢

R
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Proof. Let
¡

R
¢

denote the Alexandrov compactification of R Recall
form Exercise 3.52 that

¡

R
¢

is homeomorphic to and hence
¡

R
¢

is a
compact metric space. (Alternatively see Exercise 3.55.) Let ¯ := =

1 where : R
¡

R
¢

is the inclusion map. Then ¯ is a probability
measure on B(R ) such that ¯ ({ }) = 0 An application of Proposition
12.40 and Corollary 12.41 completes the proof.

Exercise 12.43. Extend Corollary 12.42 to construct arbitrary (not neces-
sarily countable) products of R

12.7 Measures on general infinite product spaces

In this section we drop the topological assumptions used in the last section.

Proposition 12.44. Let {( M )} be a collection of probability
spaces, that is ( ) = 1 for all Let

Q M = ( : )

and for let :=
Q

and : be the projection map
( ) = | and :=

Q

be product measure on M := M
Then there exists a unique measure on M such that ( ) = for all

i.e. if : R is a bounded measurable function then
Z

( ( )) ( ) =

Z

( ) ( ) (12.34)

Proof. Let S denote the collection of functions : R such that there
exists and a bounded measurable function : R such that
= For = S let ( ) =

R

Let us verify that is well defined. Suppose that may also be expressed
as = with and : R bounded and measurable. By
replacing by if necessary, we may assume that Making use of
Fubini’s theorem we learn

Z

( ) ( ) =

Z

× \
( ) ( ) \ ( )

=

Z

( ) ( ) ·
Z

\
\ ( )

= \
¡

\
¢ ·
Z

( ) ( )

=

Z

( ) ( )

wherein we have used the fact that ( ) = 1 for all since ( ) =
1 for all It is now easy to check that is a positive linear functional
on the lattice S We will now show that is a Daniel integral.
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Suppose that S+ is a decreasing sequence such that inf ( ) =
0 We need to show := lim is not identically zero. As in the proof that
is well defined, there exists and bounded measurable functions
: [0 ) such that is increasing in and = for each
For let : [0 ) be the bounded measurable function

( ) =

Z

\
( × ) \ ( )

where × is defined by ( × ) ( ) = ( ) if and ( × ) ( ) =
( ) for \ By convention we set = Since is decreasing it
follows that +1 for all and and therefore := lim
exists. By Fubini’s theorem,

( ) =

Z

\

+1( × )
+1\ ( ) when + 1

and hence letting in this equation shows

( ) =

Z

\

+1( × )
+1\ ( ) (12.35)

for all Now
Z

1

1( ) 1( ) = lim

Z

1

1( ) 1( ) = lim ( ) = 0

so there exists
1 1

such that 1( 1)

From Eq. (12.35) with = 1 and = 1 it follows that
Z

2\ 1

2( 1 × )
2\ 1

( )

and hence there exists

2 2\ 1
such that 2( 1 × 2)

Working this way inductively using Eq. (12.35) implies there exists

\ 1
such that ( 1 × 2 × · · · × )

for all Now for all and in particular for = thus

( 1 × 2 × · · · × ) = ( 1 × 2 × · · · × )

( 1 × 2 × · · · × ) (12.36)

for all Let be any point such that
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( ) = 1 × 2 × · · · ×

for all From Eq. (12.36) it follows that

( ) = ( ) = ( 1 × 2 × · · · × )

for all and therefore ( ) := lim ( ) showing is not zero.
Therefore, is a Daniel integral and there exists by Theorem 12.32 a

unique measure on ( (S) =M) such that

( ) =

Z

for all S

Taking = 1 in this equation implies

( ) = ( ) = 1( )

and the result is proved.

Remark 12.45. (Notion of kernel needs more explanation here.) The above
theorem may be Jazzed up as follows. Let {( M )} be a collection
of measurable spaces. Suppose for each pair there is a kernel

( ) for and \ such that if then

( × ) = ( ) ( × )

Then there exists a unique measure onM such that
Z

( ( )) ( ) =

Z

( ) ( )

for all and : R bounded and measurable. To prove this asser-
tion, just use the proof of Proposition 12.44 replacing \ ( ) by ( )
everywhere in the proof.

12.8 Extensions of premeasures to measures II

Proposition 12.46. Suppose that A P( ) is an algebra of sets and :
A [0 ] is a finitely additive measure on A Then if A and

=
`

=1
we have

X

=1

( ) ( ) (12.37)
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Proof. Since

=

Ã

a

=1

! Ã

\
[

=1

!

we find using the finite additivity of that

( ) =
X

=1

( ) +

Ã

\
[

=1

!

X

=1

( )

Letting in this last expression shows that
P

=1
( ) ( )

Because of Proposition 12.46, in order to prove that is a premeasure on
A it su ces to show is subadditive on A namely

( )
X

=1

( ) (12.38)

whenever =
`

=1
with A and each { } =1 A

Proposition 12.47. Suppose that E P( ) is an elementary family (see
Definition 7.13), A = A(E) and : A [0 ] is an additive measure. Then
the following are equivalent:

1. is a premeasure on A
2. is subadditivity on E i.e. whenever E is of the form =

`

=1

E with E then
( )

X

=1

( ) (12.39)

Proof. Item 1. trivially implies item 2. For the converse, it su ces to

show, by Proposition 12.46, that if =
`

=1
with A and each

A then Eq. (12.38) holds. To prove this, write =
`

=1 with E and
=
`

=1 with E Then

= =
a

=1

=
a

=1

a

=1

which is a countable union and hence by assumption,

( )
X

=1

X

=1

( )

Summing this equation on and using the additivity of shows that
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( ) =
X

=1

( )
X

=1

X

=1

X

=1

( )

=
X

=1

X

=1

X

=1

( ) =
X

=1

X

=1

( ) =
X

=1

( )

as desired.
The following theorem summarizes the results of Proposition 12.3, Propo-

sition 12.47 and Theorem 12.28 above.

Theorem 12.48. Suppose that E P( ) is an elementary family and 0 :
E [0 ] is a function.

1. If 0 is additive on E then 0 has a unique extension to a finitely additive
measure 0 on A = A(E)

2. If we further assume that 0 is countably subadditive on E then 0 is a
premeasure on A

3. If we further assume that 0 is — finite on E then there exists a unique
measure on (E) such that |E = 0 Moreover, for (E)

( ) = inf{ 0( ) : A }

= inf{
X

=1

0( ) :
a

=1

with E}

12.8.1 “Radon” measures on (R,BR) Revisited
Here we will use Theorem 12.48 to give another proof of Theorem 8.8. The
main point is to show that to each right continuous function : R R there
exists a unique measure such that (( ]) = ( ) ( ) for all

We begin by extending to a function from R̄ R̄ by defining
(± ) := lim ± ( ) As above let E = {( ] R : }

and set 0 (( ]) = ( ) ( ) for all R̄ with The proof will be
finished by Theorem 12.48 if we can show that 0 is sub-additive on E
First suppose that = ( ] = ( ] such that

=
`

=1
We wish to show

0( )
X

=1

0( ) (12.40)

To do this choose numbers ˜ ˜ and set = (˜ ] ˜ =

( ˜ ] and ˜ = ( ˜ ) Since ¯ is compact and ¯
S

=1

˜ there

exists such that
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¯
[

=1

˜
[

=1

˜

Hence by finite sub-additivity of 0

( ) (˜) = 0( )
X

=1

0( ˜ )
X

=1

0( ˜ )

Using the right continuity of and letting ˜ in the above inequality shows
that

0(( ]) = ( ) ( )
X

=1

0

³

˜
´

=
X

=1

0 ( ) +
X

=1

0( ˜ \ ) (12.41)

Given 0 we may use the right continuity of to choose ˜ so that

0( ˜ \ ) = (˜ ) ( ) 2

Using this in Eq. (12.41) show

0( ) = 0(( ])
X

=1

0 ( ) +

and since 0 we have verified Eq. (12.40).
We have now done the hard work. We still have to check the cases where
= or = or both. For example, suppose that = so that

= ( ) =
a

=1

with = ( ] R Then let := ( ] and notice that

= =
a

=1

So by what we have already proved,

( ) ( ) = 0( )
X

=1

0( )
X

=1

0( )

Now let in this last inequality to find that

0(( )) = ( ) ( )
X

=1

0( )

The other cases where = and R and = and = are
handled similarly.
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12.9 Supplement: Generalizations of Theorem 12.37 to
Rn

Theorem 12.49. Let A P( ) and B P( ) be algebras. Suppose that

: A×B C

is a function such that for each A the function

B ( × ) C

is an additive measure on B and for each B the function

A ( × ) C

is an additive measure on A Then extends uniquely to an additive measure
on the product algebra C generated by A×B
Proof. The collection

E = A× B = { × : A and B}

is an elementary family, see Exercise 7.15. Therefore, it su ces to show is
additive on E To check this suppose that × E and

× =
a

=1

( × )

with × E We wish to shows

( × ) =
X

=1

( × )

For this consider the finite algebras A0 P( ) and B0 P( ) generated
by { } =1 and { } =1 respectively. Let B A0 and G B0 be partition
of and respectively as found Proposition 7.22. Then for each we may
write

=
a

F
and =

a

G

Therefore,

( × ) = ( ×
[

) =
X

( × )

=
X

(

Ã

[

!

× ) =
X

( × )
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so that
X

( × ) =
X X

( × ) =
X

( × )

=
X

( × ) = ( × )

as desired.

Proposition 12.50. Suppose that A P( ) is an algebra and for each R
: A C is a finitely additive measure. Let = ( ] R be a finite inter-

val and B P( ) denote the algebra generated by E := {( ] : ( ] }
Then there is a unique additive measure on C the algebra generated by A×B
such that

( × ( ]) = ( ) ( ) ( ] E and A

Proof. By Proposition 12.3, for each A, the function ( ] ( ×
( ]) extends to a unique measure on B which we continue to denote by
Now if B then =

`

with E then

( × ) =
X

( × )

from which we learn that ( × ) is still finitely additive. The proof is
complete with an application of Theorem 12.49.
For R write ( ) if ( ) for all For

let ( ] denote the half open rectangle:

( ] = ( 1 1]× ( 2 2]× · · · × ( ]

E = {( ] : } {R }
and A (R ) P(R ) denote the algebra generated by E Suppose that :
R C is a function, we wish to define a finitely additive complex valued
measure on A(R ) associated to Intuitively the definition is to be

(( ]) =

Z

( ]

( 1 2 )

=

Z

( ]

( 1 2 ) ( 1 2 ) 1 2

=

Z

(˜ ˜]

( 1 2 1 ) ( 1 2 )| =
= 1 2 1

where
(˜ ˜] = ( 1 1]× ( 2 2]× · · · × ( 1 1]
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Using this expression as motivation we are led to define by induction on
For = 1 let

(( ]) = ( ) ( )

and then inductively using

(( ]) = (· )((˜ ˜])| ==
Proposition 12.51. The function extends uniquely to an additive func-
tion on A(R ) Moreover,

(( ]) =
X

( 1)| | ( × ) (12.42)

where = {1 2 } and

( × ) ( ) =

½

( ) if
( ) if

Proof. Both statements of the proof will be by induction. For = 1 we
have (( ]) = ( ) ( ) so that Eq. (12.42) holds and we have already
seen that extends to a additive measure on A (R) For general notice
that A(R ) = A(R 1) A(R) For R and A(R 1) let

( ) = (· )( )

where (· ) is defined by the induction hypothesis. Then

( × ( ]) = ( ) ( )

and by Proposition 12.50 has a unique extension to A(R 1) A(R) as a
finitely additive measure.
For = 1 Eq. (12.42) says that

(( ]) = ( ) ( )

where the first term corresponds to = and second to = {1} This
agrees with the definition of for = 1 Now for the induction step. Let
= {1 2 1} and suppose that R then

(( ]) = (· )((˜ ˜])| ==
=
X

( 1)| | (˜ × ˜ )| ==

=
X

( 1)| | (˜ × ˜ )
X

( 1)| | (˜ × ˜ )

=
X

:

( 1)| | ( × ) +
X

:

( 1)| | ( × )

=
X

( 1)| | ( × )

as desired.
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12.10 Exercises

Exercise 12.52. Let ( A ) be as in Definition 12.4 and Proposition 12.5,
be a Banach space and S( ) := S ( A ; ) be the collection of functions
: such that #( ( )) 1({ }) A for all and
( 6= 0) We may define a linear functional : S( ) by

( ) =
X

( = )

Verify the following statements.

1. Let k k = sup k ( )k be the sup norm on ( ) then for
S( )

k ( )k k k ( 6= 0)
Hence if ( ) extends to a bounded linear transformation from
S̄( ) ( ) to

2. Assuming ( A ) satisfies the hypothesis in Exercise 12.8, then
( ) S̄( )

3. Now assume the notation in Section 12.4.1, i.e. = [ ] for some
R and is determined by an increasing function Let { =

0 1 · · · = } denote a partition of := [ ] along with
a choice [ +1] for = 0 1 2 1 For ([ ] ) set

( 0)1[ 0 1] +
1

X

=1

( )1( +1]

Show that S and

k kF 0 as | | max{( +1 ) : = 0 1 2 1} 0

Conclude from this that

( ) = lim
| | 0

1
X

=0

( )( ( +1) ( ))

As usual we will write this integral as
R

and as
R

( ) if
( ) =

Exercise 12.53. Folland problem 1.28.

Exercise 12.54. Suppose that 1(R) is an increasing function and
is the unique Borel measure on R such that (( ]) = ( ) ( ) for all

Show that = for some function 0 Find explicitly in
terms of
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Exercise 12.55. Suppose that ( ) = 1 3 + 1 7 and is the is the
unique Borel measure on R such that (( ]) = ( ) ( ) for all
Give an explicit description of the measure

Exercise 12.56. Let BR with ( ) 0 Then for any (0 1) there
exists an open interval R such that ( ) ( ) 3 Hints: 1.
Reduce to the case where ( ) (0 ) 2) Approximate from the outside
by an open set R 3. Make use of Exercise 2.124, which states that
may be written as a disjoint union of open intervals.

Exercise 12.57. Let ( ) be a second countable locally compact Hausdor
space and : 0( R) R be a positive linear functional. Show is neces-
sarily bounded, i.e. there exists a such that | ( )| k k for all

0( R) Hint: Let be the measure on B coming from the Riesz Rep-
resentation theorem and for sake of contradiction suppose ( ) = k k =
To reach a contradiction, construct a function 0( R) such that
( ) =

Exercise 12.58. Suppose that : (R R) R is a positive linear func-
tional. Show

1. For each compact subset @@ R there exists a constant such
that

| ( )| k k
whenever supp( )

2. Show there exists a unique Radon measure on BR (the Borel — algebra
on R) such that ( ) =

R

R for all (R R)

12.10.1 The Laws of Large Number Exercises

For the rest of the problems of this section, let be a probability measure on
BR such that

R

R | | ( ) := for N and denote the infinite
product measure as constructed in Corollary 12.42. So is the unique measure
on ( := RN B := BRN) such that
Z

( 1 2 ) ( ) =

Z

R

( 1 2 ) ( 1) ( ) (12.43)

for all N and bounded measurable functions : R R We will also
use the following notation:

3 See also the Lebesgue di erentiation Theorem 20.13 from which one may prove
the much stronger form of this theorem, namely for -a.e. there exits
( ) 0 such that ( ( + )) (( + )) for all ( )
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( ) :=
1X

=1

for

:=

Z

R
( ) the average of

2 :=

Z

R
( )2 ( ) the variance of and

:=

Z

R
( )4 ( )

The variance may also be written as 2 =
R

R
2 ( ) 2

Exercise 12.59 (Weak Law of Large Numbers). Suppose further that
2 show

R

=

k k22 =
Z

( )2 =
2

and (| | )
2

2 for all 0 and N

Exercise 12.60 (A simple form of the Strong Law of Large Num-
bers). Suppose now that :=

R

R( )4 ( ) Show for all 0 and
N that

k k44 =
Z

( )
4

=
1
4

¡

+ 3 ( 1) 4
¢

=
1
2

£

1 + 3
¡

1 1
¢

4
¤

and

(| | )
1 + 3

¡

1 1
¢

4

4 2

Conclude from the last estimate and the first Borel Cantelli Lemma 8.22 that
lim ( ) = for — a.e.

Exercise 12.61. Suppose :=
R

R( )4 ( ) and =
R

R(

) ( ) 6= 0 For 0 let : RN RN be defined by ( ) =
( 1 2 ) = 1 and

:= RN : lim
1X

=1

=

Show

( 0) = 0 =

½

1 if = 0

0 if 6= 0

and use this to show if 6= 1 then 6= for any measurable function
: RN [0 ]
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Daniell Integral Proofs

(This section follows the exposition in Royden and Loomis.) In this section
we let be a given set. We will be interested in certain spaces of extended
real valued functions : R̄ on
Convention: Given functions : R̄ let + denote the collection

of functions : R̄ such that ( ) = ( ) + ( ) for all for which
( ) + ( ) is well defined, i.e. not of the form For example, if =
{1 2 3} and (1) = (2) = 2 and (3) = 5 and (1) = (2) = and
(3) = 4 then + i (2) = and (3) = 7 The value (1) may be
chosen freely. More generally if R and : R̄ we will write +
for the collection of functions : R̄ such that ( ) = ( ) + ( ) for
those where ( )+ ( ) is well defined with the values of ( ) at the
remaining points being arbitrary. It will also be useful to have some explicit
representatives for + which we define, for R̄ by

( + ) ( ) =

½

( ) + ( ) when defined
otherwise.

(13.1)

We will make use of this definition with = 0 and = below.

Definition 13.1. A set, of extended real valued functions on is an ex-
tended vector space (or a vector space for short) if is closed under scalar
multiplication and addition in the following sense: if and R then
( + ) A vector space is said to be an extended lattice (or a lattice
for short) if it is also closed under the lattice operations; = max( )
and = min( ) A linear functional on is a function : R
such that

( + ) = ( ) + ( ) for all and R (13.2)

Eq. (13.2) is to be interpreted as ( ) = ( )+ ( ) for all ( + ) and
in particular is required to take the same value on all members of ( + )
A linear functional is positive if ( ) 0 when + where + denotes
the non-negative elements of as in Notation 12.14.
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Remark 13.2. Notice that an extended lattice is closed under the absolute
value operation since | | = 0 0 = ( ) Also if is positive on
then ( ) ( ) when and Indeed, implies ( )0 0
so 0 = (0) = (( )0) = ( ) ( ) and hence ( ) ( )

In the remainder of this chapter we fix a lattice, S of bounded functions,
: R and a positive linear functional : S R satisfying Property (D)

of Definition 12.16.

13.1 Extension of Integrals

Proposition 13.3. The set S and the extension of to S in Definition
12.21 satisfies:

1. (Monotonicity) ( ) ( ) if S with
2. S is closed under the lattice operations, i.e. if S then S
and S Moreover, if ( ) and ( ) then ( )
and ( )

3. (Positive Linearity) ( + ) = ( )+ ( ) for all S and 0
4. S+ i there exists S+ such that =

P

=1 Moreover, ( ) =
P

=1 ( )
5. If S+ then

P

=1 =: S+ and ( ) =
P

=1 ( )

Remark 13.4. Similar results hold for the extension of to S in Definition
12.22.

Proof.

1. Monotonicity follows directly from Lemma 12.20.
2. If S are chosen so that and then and

If we further assume that ( ) then and
hence ( ) ( ) In particular it follows that ( 0) ( 0]
for all S Combining this with the identity,

( ) = ( 0 + 0) = ( 0) + ( 0)

shows ( ) i ( 0) Since 0 + 0 if both
( ) and ( ) then

( ) ( 0) + ( 0)

3. Let S be chosen so that and then ( + )
( + ) and therefore

( + ) = lim ( + ) = lim ( ) + lim ( )

= ( ) + ( )
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4. Let S+ and S be chosen so that By replacing by 0

if necessary we may assume that S+ Now set = 1 S for
= 1 2 3 with the convention that 0 = 0 S Then

P

=1 =
and

( ) = lim ( ) = lim (
X

=1

) = lim
X

=1

( ) =
X

=1

( )

Conversely, if =
P

=1 with S+ then :=
P

=1 as
and S+

5. Using Item 4., =
P

=1 with S+ Thus

=
X

=1

X

=1

= lim
X

S

and

( ) = lim (
X

) = lim
X

( )

=
X

=1

X

=1

( ) =
X

=1

( )

Definition 13.5. Given an arbitrary function : R̄ let

(̄ ) = inf { ( ) : S } R̄ and

( ) = sup { ( ) : S 3 } R̄

with the convention that sup = and inf = +

Proposition 13.6. Given functions : R̄ then:

1. (̄ ) = (̄ ) for all 0
2. (Chebyshev’s Inequality.) Suppose : [0 ] is a function and
(0 ) then (̄1{ }) 1 (̄ ) and if (̄ ) then (̄1{ = }) = 0

3. ¯ is subadditive, i.e. if (̄ ) + (̄ ) is not of the form or +
then

(̄ + ) (̄ ) + (̄ ) (13.3)

This inequality is to be interpreted to mean,

(̄ ) (̄ ) + (̄ ) for all ( + )

4. ( ) = (̄ )
5. ( ) (̄ )
6. If then (̄ ) (̄ ) and ( ) ( )
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7. If S and ( ) or S and ( ) then ( ) = (̄ ) = ( )

Proof.

1. Suppose that 0 (the = 0 case being trivial), then

(̄ ) = inf { ( ) : S } = inf © ( ) : 1 S
ª

= inf { ( ) : S } = inf { ( ) : S } = (̄ )

2. For (0 ) 1{ } and therefore,

(̄1{ }) = (̄ 1{ }) (̄ )

Since 1{ = } for all (0 )

(̄1{ = }) = (̄ 1{ = }) (̄ )

So if (̄ ) this inequality implies (̄1{ = }) = 0 because is
arbitrary.

3. If (̄ ) + (̄ ) = the inequality is trivial so we may assume that
(̄ ) (̄ ) [ ) If (̄ ) + (̄ ) = then we may assume, by
interchanging and if necessary, that (̄ ) = and (̄ ) By
definition of ¯ there exists S and S such that and

and ( ) and ( ) (̄ ). Since + + S (i.e.
+ for all ( + ) which holds because ) and

( + ) = ( ) + ( ) + (̄ ) =

it follows that (̄ + ) = i.e. (̄ ) = for all + Henceforth
we may assume (̄ ) (̄ ) R Let ( + ) and 1 S and

2 S Then 1 + 2 S because if (for example) ( ) =
and ( ) = then 1( ) = and 2( ) since 2 S Thus
1( ) + 2( ) = ( ) no matter the value of ( ) It now follows
from the definitions that (̄ ) ( 1) + ( 2) for all 1 S and

2 S Therefore,

(̄ ) inf { ( 1) + ( 2) : 1 S and 2 S }
= (̄ ) + (̄ )

and since ( + ) is arbitrary we have proven Eq. (13.3).
4. From the definitions and Exercise 12.23,

( ) = sup { ( ) : S } = sup { ( ) : S }
= sup { ( ) : S } = inf { ( ) : S }
= (̄ )
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5. The assertion is trivially true if (̄ ) = ( ) = or (̄ ) = ( ) = So
we now assume that (̄ ) and ( ) are not both or Since 0 ( )
and (̄ ) (̄ ) + (̄ ) (by Item 1),

0 = (̄0) (̄ ) + (̄ ) = (̄ ) ( )

provided the right side is well defined which it is by assumption. So again
we deduce that ( ) (̄ )

6. If then

(̄ ) = inf { ( ) : S } inf { ( ) : S } = (̄ )

and

( ) = sup { ( ) : S 3 } sup { ( ) : S 3 } = ( )

7. Let S with ( ) and choose S such that Then

(̄ ) ( ) ( ) ( ) as

Combining this with

(̄ ) = inf { ( ) : S } = ( )

shows
(̄ ) ( ) ( ) = (̄ )

and hence ( ) = ( ) = (̄ ) If S and ( ) then by what
we have just proved,

( ) = ( ) = (̄ )

This finishes the proof since ( ) = (̄ ) and ( ) = ( )

Lemma 13.7. Let : [0 ] be a sequence of functions and :=
P

=1 Then

(̄ ) = (̄
X

=1

)
X

=1

(̄ ) (13.4)

Proof. Suppose
P

=1 (̄ ) for otherwise the result is trivial. Let
0 be given and choose S+ such that and ( ) = (̄ ) +

where
P

=1 (For example take 2 ) Then
P

=1 =: S+
and so

(̄ ) (̄ ) = ( ) =
X

=1

( ) =
X

=1

¡

(̄ ) +
¢

X

=1

(̄ ) +

Since 0 is arbitrary, the proof is complete.

330 13 Daniell Integral Proofs

Definition 13.8. A function : R̄ is integrable if ( ) = (̄ ) R
Let

1( ) :=
©

: R̄ : ( ) = (̄ ) R
ª

and for 1( ) let (̂ ) denote the common value ( ) = (̄ )

Remark 13.9. A function : R̄ is integrable i there exists S 1( )
and S 1( )1 such that and ( ) Indeed if is
integrable, then ( ) = (̄ ) and there exists S 1( ) and S 1( )
such that and 0 ( ) ( ) 2 and 0 ( ) (̄ )
2 Adding these two inequalities implies 0 ( ) ( ) = ( )

Conversely, if there exists S 1( ) and S 1( ) such that
and ( ) then

( ) = ( ) ( ) ( ) = ( ) and

( ) = (̄ ) (̄ ) (̄ ) = ( )

and therefore

0 (̄ ) ( ) ( ) ( ) = ( )

Since 0 is arbitrary, this shows (̄ ) = ( )

Proposition 13.10. The space 1( ) is an extended lattice and ˆ : 1( ) R
is linear in the sense of Definition 13.1.

Proof. Let us begin by showing that 1( ) is a vector space. Suppose that
1 2

1( ) and ( 1+ 2) Given 0 there exists S 1( ) and
S 1( ) such that and ( ) 2 Let us now show

1( ) + 2( ) ( ) 1( ) + 2( ) (13.5)

This is clear at points where 1( ) + 2( ) is well defined. The other
case to consider is where 1( ) = = 2( ) in which case 1( ) =
and 2( ) = while 2( ) and 1( ) because 2 S and
1 S Therefore, 1( ) + 2( ) = and 1( ) + 2( ) = so that Eq.
(13.5) is valid no matter how ( ) is chosen.
Since 1 + 2 S 1( ) 1 + 2 S 1( ) and

(̂ ) ( ) + 2 and 2 + ( ) (̂ )

we find

(̂ 1) + (̂ 2) ( 1) + ( 2) = ( 1 + 2) ( ) (̄ )

( 1 + 2) = ( 1) + ( 2) (̂ 1) + (̂ 2) +

1 Equivalently, S with ( ) and S with ( )
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Because 0 is arbitrary, we have shown that 1( ) and (̂ 1)+ (̂ 2) =
(̂ ) i.e. (̂ 1 + 2) = (̂ 1) + (̂ 2)
It is a simple matter to show 1( ) and (̂ ) = (̂ ) for all

1( ) and R For example if = 1 (the most interesting case), choose
S 1( ) and S 1( ) such that and ( )

Therefore,
S 1( ) 3 S 1( )

with ( ( )) = ( ) and this shows that 1( ) and
(̂ ) = (̂ ) We have now shown that 1( ) is a vector space of extended
real valued functions and ˆ : 1( ) R is linear.
To show 1( ) is a lattice, let 1 2

1( ) and S 1( ) and
S 1( ) such that and ( ) 2 as above. Then

using Proposition 13.3 and Remark 13.4,

S 1( ) 3 1 2 1 2 1 2 S 1( )

Moreover,
0 1 2 1 2 1 1 + 2 2

because, for example, if 1 2 = 1 and 1 2 = 2 then

1 2 1 2 = 1 2 2 2

Therefore,

( 1 2 1 2) ( 1 1 + 2 2)

and hence by Remark 13.9, 1 2
1( ) Similarly

0 1 2 1 2 1 1 + 2 2

because, for example, if 1 2 = 1 and 1 2 = 2 then

1 2 1 2 = 1 2 1 1

Therefore,
( 1 2 1 2) ( 1 1 + 2 2)

and hence by Remark 13.9, 1 2
1( )

Theorem 13.11 (Monotone convergence theorem). If 1( ) and
then 1( ) i lim (̂ ) = sup (̂ ) in which case

(̂ ) = lim (̂ )

Proof. If 1( ) then by monotonicity (̂ ) (̂ ) for all and there-
fore lim (̂ ) (̂ ) Conversely, suppose := lim (̂ )
and let :=

P

=1( +1 )0 The reader should check that ( 1+ )
( 1 + ) So by Lemma 13.7,
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(̄ ) (̄( 1 + ) ) (̄ 1) + (̄ )

(̄ 1) +
X

=1

¯(( +1 )0) = (̂ 1) +
X

=1

ˆ( +1 )

= (̂ 1) +
X

=1

h

(̂ +1) (̂ )
i

= (̂ 1) + (̂ 1) = (13.6)

Because it follows that (̂ ) = ( ) ( ) which upon passing
to limit implies ( ) This inequality and the one in Eq. (13.6) shows
(̄ ) ( ) and therefore, 1( ) and (̂ ) = = lim (̂ )

Lemma 13.12 (Fatou’s Lemma). Suppose { } £

1( )
¤+

then inf
1( ) If lim inf (̂ ) then lim inf 1( ) and in this case

(̂lim inf ) lim inf (̂ )

Proof. Let := 1 · · · 1( ) then := inf Since
1( ) for all and (̂ ) (̂0) = 0 it follow from

Theorem 13.11 that 1( ) and hence so is inf = 1( )
By what we have just proved, := inf 1( ) for all Notice

that lim inf and by monotonicity that (̂ ) (̂ ) for all
Therefore,

lim (̂ ) = lim inf (̂ ) lim inf (̂ )

and by the monotone convergence Theorem 13.11, lim inf = lim
1( ) and

(̂lim inf ) = lim (̂ ) lim inf (̂ )

Before stating the dominated convergence theorem, it is helpful to remove
some of the annoyances of dealing with extended real valued functions. As we
have done when studying integrals associated to a measure, we can do this by
modifying integrable functions by a “null” function.

Definition 13.13. A function : R̄ is a null function if (̄| |) = 0
A subset is said to be a null set if 1 is a null function. Given two
functions : R̄ we will write = a.e. if { 6= } is a null set.
Here are some basic properties of null functions and null sets.

Proposition 13.14. Suppose that : R̄ is a null function and :
R̄ is an arbitrary function. Then

1. 1( ) and (̂ ) = 0
2. The function · is a null function.
3. The set { : ( ) 6= 0} is a null set.
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4. If is a null set and 1( ) then 1 1( ) and (̂ ) = (̂1 )
5. If 1( ) and = a.e. then 1( ) and (̂ ) = (̂ )
6. If 1( ) then {| | = } is a null set.

Proof.

1. If is null, using ± | | we find (̄± ) (̄| |) = 0 i.e. (̄ ) 0 and
( ) = (̄ ) 0 Thus it follows that (̄ ) 0 ( ) and therefore

1( ) with ˆ( ) = 0
2. Since | · | · | | ¯(| · |) ¯( · | |) For N | | 1( )
and (̂ | |) = (| |) = 0 so | | is a null function. By the monotone
convergence Theorem 13.11 and the fact | | · | | 1( ) as
ˆ( · | |) = lim ˆ( | |) = 0 Therefore · | | is a null function and
hence so is ·

3. Since 1{ 6=0} · 1{ 6=0} = · | | ¯
¡

1{ 6=0}
¢

¯( · | |) = 0 showing
{ 6= 0} is a null set.

4. Since 1 1( ) and ˆ(1 ) = 0

1 = ( 1 )0 ( 1 ) 1( )

and (̂ 1 ) = (̂ ) (̂1 ) = (̂ )
5. Letting be the null set { 6= } then 1 = 1 1( ) and 1 is
a null function and therefore, = 1 + 1 1( ) and

(̂ ) = (̂1 ) + (̂ 1 ) = (̂1 ) = (̂1 ) = (̂ )

6. By Proposition 13.10, | | 1( ) and so by Chebyshev’s inequality (Item
2 of Proposition 13.6), {| | = } is a null set.

Theorem 13.15 (Dominated Convergence Theorem). Suppose that
{ : N} 1( ) such that := lim exists pointwise and there exists

1( ) such that | | for all Then 1( ) and

lim (̂ ) = (̂ lim ) = (̂ )

Proof. By Proposition 13.14, the set := { = } is a null set and
(̂1 ) = (̂ ) and (̂1 ) = (̂ ) Since

(̂1 ( ± )) 2 (̂1 ) = 2 (̂ )

we may apply Fatou’s Lemma 13.12 to find 1 ( ± ) 1( ) and

(̂1 ( ± )) lim inf (̂1 ( ± ))

= lim inf
n

(̂1 )± (̂1 )
o

= lim inf
n

(̂ )± (̂ )
o
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Since = 1 a.e. and 1 = 1
21 ( + ( + )) 1( ) Proposition

13.14 implies 1( ) So the previous inequality may be written as

(̂ )± (̂ ) = (̂1 )± (̂1 )

= (̂1 ( ± )) (̂ ) +

½

lim inf (̂ )

lim sup (̂ )

wherein we have used lim inf ( ) = lim sup These two inequal-
ities imply lim sup (̂ ) (̂ ) lim inf (̂ ) which shows that
lim (̂ ) exists and is equal to (̂ )

13.2 The Structure of L1(I)

Let S denote the collections of functions : R̄ for which there exists
S 1( ) such that as and lim (̂ )

Applying the monotone convergence theorem to 1 it follows that 1
1( ) and hence 1( ) so that S 1( )

Lemma 13.16. Let : R̄ be a function. If (̄ ) R then there exists
S such that and (̄ ) = (̂ ) (Consequently, : [0 ) is

a positive null function i there exists S such that and (̂ ) = 0 )
Moreover, 1( ) i there exists S such that and = a.e.

Proof. By definition of (̄ ) we may choose a sequence of functions
S 1( ) such that and (̂ ) (̄ ) By replacing by 1 · · ·
if necessary ( 1 · · · S 1( ) by Proposition 13.3), we may

assume that is a decreasing sequence. Then lim =: and, since
lim (̂ ) = (̄ ) S By the monotone convergence theorem
applied to 1

(̂ 1 ) = lim (̂ 1 ) = (̂ 1) (̄ )

so (̂ ) = (̄ )
Now suppose that 1( ) then ( )0 0 and

ˆ(( )0) = ˆ( ) (̂ ) = (̂ ) (̄ ) = 0

Therefore ( )0 is a null functions and hence so is · ( )0 Because

1{ 6= } = 1{ } · ( )0

{ 6= } is a null set so if 1( ) there exists S such that = a.e.
The converse statement has already been proved in Proposition 13.14.
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Proposition 13.17. Suppose that and S are as above and is another
Daniell integral on a vector lattice T such that S T and = |S (We
abbreviate this by writing ) Then 1( ) 1( ) and ˆ = ˆ on 1( )
or in abbreviated form: if then ˆ ˆ

Proof. From the construction of the extensions, it follows that S T
and the = on S Similarly, it follows that S T and ˆ = ˆ on S
From Lemma 13.16 we learn, if 0 is an — null function then there exists

S T such that and 0 = ( ) = ( ) This shows that is also
a — null function and in particular every — null set is a — null set. Again
by Lemma 13.16, if 1( ) there exists S T such that { 6= } is
an — null set and hence a — null set. So by Proposition 13.14, 1( )
and ( ) = ( ) = ( ) = ( )

13.3 Relationship to Measure Theory

Definition 13.18. A function : [0 ] is said to measurable if
1( ) for all 1( )

Lemma 13.19. The set of non-negative measurable functions is closed under
pairwise minimums and maximums and pointwise limits.

Proof. Suppose that : [0 ] are measurable functions. The fact
that and are measurable (i.e. ( ) and ( ) are in
1( ) for all 1( )) follows from the identities

( ) = ( ) and ( ) = ( ) ( )

and the fact that 1( ) is a lattice. If : [0 ] is a sequence of
measurable functions such that = lim exists pointwise, then for

1( ) we have By the dominated convergence theorem
(using | | | |) it follows that 1( ) Since 1( ) is arbitrary
we conclude that is measurable as well.

Lemma 13.20. A non-negative function on is measurable i
1( ) for all S.

Proof. Suppose : [0 ] is a function such that 1( )
for all S and let S 1( ) Choose S such that as

then 1( ) and by the monotone convergence Theorem
13.11, 1( ) Similarly, using the dominated convergence
Theorem 13.15, it follows that 1( ) for all S Finally for any

1( ) there exists S such that = a.e. and hence =
a.e. and therefore by Proposition 13.14, 1( ) This completes the
proof since the converse direction is trivial.

336 13 Daniell Integral Proofs

Definition 13.21. A set is measurable if 1 is measurable and
integrable if 1 1( ) Let R denote the collection of measurable subsets
of

Remark 13.22. Suppose that 0 then 1( ) i is measurable and
(̄ ) Indeed, if is measurable and (̄ ) there exists S 1( )
such that Since is measurable, = 1( ) In particular if

R then is integrable i (̄1 )

Lemma 13.23. The set R is a ring which is a — algebra if 1 is measurable.
(Notice that 1 is measurable i 1 1( ) for all S This condition is
clearly implied by assuming 1 S for all S This will be the typical
case in applications.)

Proof. Suppose that R then and are in R by Lemma
13.19 because

1 = 1 1 and 1 = 1 1

If R then the identities,

1
=1

= lim 1
=1

and 1
=1

= lim 1
=1

along with Lemma 13.19 shows that =1 and =1 are in R as well.
Also if R and S then

1 \ = 1 1 + 0 1( ) (13.7)

showing the \ R as well.2 Thus we have shown that R is a ring. If
1 = 1 is measurable it follows that R and R becomes a — algebra.

Lemma 13.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.

1. If
£

1( )
¤+
then, for all R the set { } is measurable. More-

over, if 0 then { } is integrable and (̂1{ }) 1 (̂ )
2. (S) R
Proof.

2 Indeed, for \ and Eq. (13.7) evaluated at states,
respectively, that

0 = 1 1 + 0

1 = 1 0 + 0 and

0 = 0 0 + 0

all of which are true.
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1. If 0 { } = R since 1 is measurable. So now assume that
0 If = 0 let = 1( ) and if 0 let = 1

¡

1
¢

1
(Notice that is a di erence of two 1( ) — functions and hence in 1( ) )

The function
£

1( )
¤+

has been manufactured so that { 0} =
{ } Now let := ( ) 1

£

1( )
¤+
then 1{ } as

showing 1{ } is measurable and hence that { } is measurable.
Finally if 0

1{ } = 1{ }
¡

1
¢

1( )

showing the { } is integrable and
(̂1{ }) = (̂1{ }

¡

1
¢

) (̂ 1 ) = 1 (̂ )

2. Since S+ is R measurable by (1) and S = S+ S+ it follows that any
S is R measurable, (S) R

Lemma 13.25. Let 1 be measurable. Define ± : R [0 ] by

+( ) = (̄1 ) and ( ) = (1 )

Then ± are measures on R such that + and ( ) = +( ) whenever
+( )

Notice by Remark 13.22 that

+( ) =

½

(̂1 ) if is integrable
if R but is not integrable.

Proof. Since 1 = 0 ±( ) = (̂0) = 0 and if R then
+( ) = (̄1 ) (̄1 ) = +( ) and similarly, ( ) = (1 ) (1 ) =
( ) Hence ± are monotonic. By Remark 13.22 if +( ) then is

integrable so

( ) = (1 ) = (̂1 ) = (̄1 ) = +( )

Now suppose that { } =1 R is a sequence of pairwise disjoint sets
and let := =1 R If +( ) = for some then by monotonicity

+( ) = as well. If +( ) for all then :=
P

=1 1
£

1( )
¤+

with 1 Therefore, by the monotone convergence theorem, 1 is inte-
grable i

lim (̂ ) =
X

=1

+( )

in which case 1 1( ) and lim (̂ ) = (̂1 ) = +( ) Thus we have
shown that + is a measure and ( ) = +( ) whenever +( ) The
fact the is a measure will be shown in the course of the proof of Theorem
13.28.
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Example 13.26. Suppose is a set, S = {0} is the trivial vector space and
(0) = 0 Then clearly is a Daniel integral,

(̄ ) =

½

if ( ) 0 for some
0 if 0

and similarly,

( ) =

½

if ( ) 0 for some
0 if 0

Therefore, 1( ) = {0} and for any we have 1 0 = 0 S so that
R = 2 Since 1 1( ) = {0} unless = set, the measure + in Lemma
13.25 is given by +( ) = if 6= and +( ) = 0 i.e. +( ) = (̄1 )
while 0

Lemma 13.27. For R let

( ) := sup{ +( ) : R and +( ) }
then is a measure on R such that ( ) = +( ) whenever +( )
If is any measure on R such that ( ) = +( ) when +( ) then

Moreover,

Proof. Clearly ( ) = +( ) whenever +( ) Now let =

=1 with{ } =1 R being a collection of pairwise disjoint subsets.
Let with +( ) then := =1 and +( )
and hence

( ) +( ) =
X

=1

+( )

and since with +( ) is arbitrary it follows that ( )
P

=1 ( ) and hence letting implies ( )
P

=1 ( ) Con-
versely, if with +( ) then and +( )
Therefore,

+( ) =
X

=1

+( )
X

=1

( )

for all such and hence ( )
P

=1 ( )
Using the definition of and the assumption that ( ) = +( ) when

+( )

( ) = sup{ ( ) : R and +( ) } ( )

showing Similarly,

( ) = sup{ (̂1 ) : R and +( ) }
= sup{ (1 ) : R and +( ) } (1 ) = ( )
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Theorem 13.28 (Stone). Suppose that 1 is measurable and + and are
as defined in Lemma 13.25, then:

1. 1( ) = 1( R +) =
1( +) and for integrable 1( +)

(̂ ) =

Z

+ (13.8)

2. If is any measure on R such that S 1( ) and

(̂ ) =

Z

for all S (13.9)

then ( ) ( ) +( ) for all R with ( ) = ( ) = +( )
whenever +( )

3. Letting be as defined in Lemma 13.27, = and hence is a
measure. (So + is the maximal and is the minimal measure for which
Eq. (13.9) holds.)

4. Conversely if is any measure on (S) such that ( ) = +( ) when
(S) and +( ) then Eq. (13.9) is valid.

Proof.

1. Suppose that
£

1( )
¤+

then Lemma 13.24 implies that is R mea-
surable. Given N let

:=
22
X

=1
2
1{ 2 +1

2 } = 2
22
X

=1

1{ 2 } (13.10)

Then we know {2 } R and that 1{ 2 } = 1{ 2 }
¡

2
¢

1( ) i.e. +

¡

2

¢

Therefore
£

1( )
¤+
and Sup-

pose that is any measure such that ( ) = +( ) when +( )
then by the monotone convergence theorems for ˆ and the Lebesgue inte-
gral,

(̂ ) = lim (̂ ) = lim 2
22
X

=1

(̂1{ 2 }) = lim 2
22
X

=1

+

µ

2

¶

= lim 2
22
X

=1

µ

2

¶

= lim

Z

=

Z

(13.11)

This shows that
£

1( )
¤+
and that (̂ ) =

R

Since every
1( ) is of the form = + with ± £

1( )
¤+

it follows that
1( ) 1( +)

1( ) 1( ) and Eq. (13.9) holds for all 1( )

Conversely suppose that
£

1( +)
¤+

Define as in Eq. (13.10).
Chebyshev’s inequality implies that +(2 ) and hence {2
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} is — integrable. Again by the monotone convergence for Lebesgue
integrals and the computations in Eq. (13.11),

Z

+ = lim (̂ )

and therefore by the monotone convergence theorem for ˆ 1( ) and
Z

+ = lim (̂ ) = (̂ )

2. Suppose that is any measure such that Eq. (13.9) holds. Then by the
monotone convergence theorem,

( ) =

Z

for all S S

Let R and assume that +( ) i.e. 1 1( ) Then there
exists S 1( ) such that 1 and integrating this inequality
relative to implies

( ) =

Z

1

Z

= (̂ )

Taking the infinum of this equation over those S such that 1
implies ( ) (̄1 ) = +( ) If +( ) = in this inequality holds
trivially.
Similarly, if R and S such that 0 1 then

( ) =

Z

1

Z

= (̂ )

Taking the supremum of this equation over those S such that 0
1 then implies ( ) ( ) So we have shown that +

3. By Lemma 13.27, = is a measure as in (2) satisfying and
therefore and hence we have shown that = This also shows
that is a measure.

4. This can be done by the same type of argument used in the proof of (1).

Proposition 13.29 (Uniqueness). Suppose that 1 is measurable and there
exists a function 1( ) such that ( ) 0 for all Then there is only
one measure on (S) such that

(̂ ) =

Z

for all S
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Remark 13.30. The existence of a function 1( ) such that ( ) 0 for
all is equivalent to the existence of a function S such that (̂ )
and ( ) 0 for all Indeed by Lemma 13.16, if 1( ) there exists
˜ S 1( ) such ˜

Proof. As in Remark 13.30, we may assume S 1( ) The sets
:= { 1 } (S) R satisfy ( ) (̂ ) The proof is

completed using Theorem 13.28 to conclude, for any (S) that

+( ) = lim +( ) = lim ( ) = ( )

Since + = we see that = + =



Part IV

Hilbert Spaces and Spectral Theory of
Compact Operators



14

Hilbert Spaces

14.1 Hilbert Spaces Basics

Definition 14.1. Let be a complex vector space. An inner product on is
a function, h· ·i : × C such that

1. h + i = h i+ h i i.e. h i is linear.
2. h i = h i.
3. k k2 h i 0 with equality k k2 = 0 i = 0

Notice that combining properties (1) and (2) that h i is anti-linear
for fixed i.e.

h + i = ¯h i+¯h i

We will often find the following formula useful:

k + k2 = h + + i = k k2 + k k2 + h i+ h i
= k k2 + k k2 + 2Reh i (14.1)

Theorem 14.2 (Schwarz Inequality). Let ( h· ·i) be an inner product
space, then for all

|h i| k kk k

and equality holds i and are linearly dependent.

Proof. If = 0 the result holds trivially. So assume that 6= 0 First o
notice that if = for some C then h i = k k2 and hence

|h i| = | | k k2 = k kk k

Moreover, in this case := h i
k k2

346 14 Hilbert Spaces

Fig. 14.1. The picture behind the proof.

Now suppose that is arbitrary, let k k 2h i (So is
the “orthogonal projection” of onto see Figure 14.1.) Then

0 k k2 =
°

°

°

°

h i
k k2

°

°

°

°

2

= k k2 + |h i|2
k k4 k k2 2Reh h i

k k2 i

= k k2 |h i|2
k k2

from which it follows that 0 k k2k k2 |h i|2 with equality i = 0 or
equivalently i = k k 2h i
Corollary 14.3. Let ( h· ·i) be an inner product space and k k :=ph i
Then k · k is a norm on Moreover h· ·i is continuous on × where
is viewed as the normed space ( k·k)
Proof. The only non-trivial thing to verify that k·k is a norm is the triangle

inequality:

k + k2 = k k2 + k k2 + 2Reh i k k2 + k k2 + 2k k k k
= (k k+ k k)2

where we have made use of Schwarz’s inequality. Taking the square root of
this inequality shows k + k k k+ k k For the continuity assertion:

|h i h 0 0i| = |h 0 i+ h 0 0i|
k kk 0k+ k 0kk 0k
k kk 0k+ (k k+ k 0k) k 0k

= k kk 0k+ k kk 0k+ k 0kk 0k

from which it follows that h· ·i is continuous.
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Definition 14.4. Let ( h· ·i) be an inner product space, we say
are orthogonal and write i h i = 0 More generally if is a
set, is orthogonal to and write i h i = 0 for all
Let = { : } be the set of vectors orthogonal to We also say
that a set is orthogonal if for all such that 6= If
further satisfies, k k = 1 for all then is said to be orthonormal.

Proposition 14.5. Let ( h· ·i) be an inner product space then
1. (Parallelogram Law)

k + k2 + k k2 = 2k k2 + 2k k2 (14.2)

for all
2. (Pythagorean Theorem) If is a finite orthonormal set, then

k
X

k2 =
X

k k2 (14.3)

3. If is a set, then is a closed linear subspace of

Remark 14.6. See Proposition 14.46 in the appendix below for the “converse”
of the parallelogram law.

Proof. I will assume that is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

k + k2 + k k2 = k k2 + k k2 + 2Reh i
+ k k2 + k k2 2Reh i

= 2k k2 + 2k k2

and

k
X

k2 = h
X X

i =
X

h i

=
X

h i =
X

k k2

Item 3. is a consequence of the continuity of h· ·i and the fact that

= ker(h· i)

where ker(h· i) = { : h i = 0} — a closed subspace of
Definition 14.7. A Hilbert space is an inner product space ( h· ·i) such
that the induced Hilbertian norm is complete.
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Example 14.8. Let ( M ) be a measure space then := 2( M ) with
inner product

( ) =

Z

· ¯

is a Hilbert space. In Exercise 14.32 you will show every Hilbert space is
“equivalent” to a Hilbert space of this form.

Definition 14.9. A subset of a vector space is said to be convex if for
all the line segment [ ] := { + (1 ) : 0 1} joining to
is contained in as well. (Notice that any vector subspace of is convex.)

Theorem 14.10. Suppose that is a Hilbert space and be a closed
convex subset of Then for any there exists a unique such
that

k k = ( ) = inf k k
Moreover, if is a vector subspace of then the point may also be char-
acterized as the unique point in such that ( )

Proof. By replacing by := { : } we may assume
= 0 Let := (0 ) = inf k k and see Figure 14.2.

Fig. 14.2. The geometry of convex sets.

By the parallelogram law and the convexity of

2k k2+2k k2 = k + k2+k k2 = 4k +

2
||2+k k2 4 2+k k2

(14.4)
Hence if k k = k k = then 2 2+2 2 4 2+k k2 so that k k2 = 0
Therefore, if a minimizer for (0 ·)| exists, it is unique.
Existence. Let be chosen such that k k = (0 )

Taking = and = in Eq. (14.4) shows 2 2 +2 2 4 2+k k2
Passing to the limit in this equation implies,
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2 2 + 2 2 4 2 + lim sup k k2

Therefore { } =1 is Cauchy and hence convergent. Because is closed,
:= lim and because k·k is continuous,

k k = lim k k = = (0 )

So is the desired point in which is closest to 0
Now for the second assertion we further assume that is a closed subspace

of and Let be the closest point in to Then for
the function

( ) k ( + )k2 = k k2 2 Reh i+ 2k k2

has a minimum at = 0 Therefore 0 = 0(0) = 2Reh i Since
is arbitrary, this implies that ( ) Finally suppose is any
point such that ( ) Then for by Pythagorean’s theorem,

k k2 = k + k2 = k k2 + k k2 k k2

which shows ( )2 k k2 That is to say is the point in closest
to

Definition 14.11. Suppose that : is a bounded operator. The
adjoint of denote is the unique operator : such that
h i = h i (The proof that exists and is unique will be given in
Proposition 14.16 below.) A bounded operator : is self - adjoint
or Hermitian if =

Definition 14.12. Let be a Hilbert space and be a closed subspace.
The orthogonal projection of onto is the function : such that
for ( ) is the unique element in such that ( ( )) .

Proposition 14.13. Let be a Hilbert space and be a closed sub-
space. The orthogonal projection satisfies:

1. is linear (and hence we will write rather than ( )
2. 2 = ( is a projection).
3. = ( is self-adjoint).
4. Ran( ) = and ker( ) =

Proof.

1. Let 1 2 and F then 1 + 2 and

1 + 2 ( 1 + 2) = [ 1 1 + ( 2 2)]

showing 1 + 2 = ( 1 + 2) i.e. is linear.
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2. Obviously Ran( ) = and = for all . Therefore 2 =
.

3. Let then since ( ) and ( ) are in

h i = h + i
= h i
= h + ( ) i
= h i

4. It is clear that Ran( ) Moreover, if then = implies
that Ran( ) = Now ker( ) i = 0 i = 0

Corollary 14.14. Suppose that is a proper closed subspace of a
Hilbert space then =

Proof. Given let = so that Then =
+ ( ) + If then , i.e. k k2 = h i = 0

So = {0}
Proposition 14.15 (Riesz Theorem). Let be the dual space of (No-
tation 2.64). The map

h· i (14.5)

is a conjugate linear isometric isomorphism.

Proof. The map is conjugate linear by the axioms of the inner products.
Moreover, for

|h i| k k k k for all
with equality when = This implies that k k = kh· ik = k k
Therefore is isometric and this shows that is injective. To finish the proof
we must show that is surjective. So let which we assume with out
loss of generality is non-zero. Then = ker( ) — a closed proper subspace
of Since, by Corollary 14.14, = : = F is a
linear isomorphism. This shows that dim( ) = 1 and hence = F 0

where 0 \ {0} 1 Choose = 0 such that ( 0) = h 0 i (So
= (̄ 0) k 0k2 ) Then for = + 0 with and F

( ) = ( 0) = h 0 i = h 0 i = h + 0 i = h i
which shows that =

1 Alternatively, choose 0 \ {0} such that ( 0) = 1 For we have
( 0) = 0 provided that := ( ) Therefore 0 = {0}
i.e. = 0 This again shows that is spanned by 0
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Proposition 14.16 (Adjoints). Let and be Hilbert spaces and :
be a bounded operator. Then there exists a unique bounded operator

: such that

h i = h i for all and (14.6)

Moreover ( + ) = + ¯ := ( ) = k k = k k and
k k = k k2 for all ( ) and C

Proof. For each then map h i is in and therefore
there exists by Proposition 14.15 a unique vector such that

h i = h i for all

This shows there is a unique map : such that h i =
h ( )i for all and To finish the proof, we need only
show is linear and bounded. To see is linear, let 1 2 and C
then for any

h 1 + 2i = h 1i + ¯h 2i
= h ( 1)i + ¯h ( 2)i
= h ( 1) + ( 2)i

and by the uniqueness of ( 1 + 2) we find

( 1 + 2) = ( 1) + ( 2)

This shows is linear and so we will now write instead of ( ) Since

h i = h i = h i = h i
it follows that = he assertion that ( + ) = + ¯ is left to
the reader, see Exercise 14.17.
The following arguments prove the assertions about norms of and :

k k = sup
:k k=1

k k = sup
:k k=1

sup
:k k=1

|h i|

= sup
:k k=1

sup
:k k=1

|h i| = sup
:k k=1

k k = k k

k k k k k k = k k2 and
k k2 = sup

:k k=1
|h i| = sup

:k k=1
|h i|

sup
:k k=1

k k = k k
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Exercise 14.17. Let be Hilbert space, ( )
( ) and C Show ( + ) = + ¯ and ( ) =
( )

Exercise 14.18. Let = C and = C equipped with the usual inner
products, i.e. h i = · ¯ for Let be an × matrix thought of
as a linear operator from to Show the matrix associated to :
is the conjugate transpose of

Exercise 14.19. Let : 2( ) 2( ) be the operator defined in Exercise
10.53. Show : 2( ) 2( ) is the operator given by

( ) =

Z

¯( ) ( ) ( )

Definition 14.20. { } is an orthonormal set if for all
6= and k k = 1.

Proposition 14.21 (Bessel’s Inequality). Let { } be an orthonormal
set, then

X

|h i|2 k k2 for all (14.7)

In particular the set { : h i 6= 0} is at most countable for all
Proof. Let be any finite set. Then

0 k
X

h i k2 = k k2 2Re
X

h i h i+
X

|h i|2

= k k2
X

|h i|2

showing that
X

|h i|2 k k2

Taking the supremum of this equation of then proves Eq. (14.7).

Proposition 14.22. Suppose is an orthogonal set. Then =
P

exists in i
P k k2 (In particular must be at most a countable

set.) Moreover, if
P k k2 then

1. k k2 =P k k2 and
2. h i =P h i for all

Similarly if { } =1 is an orthogonal set, then =
P

=1
exists in

i
P

=1
k k2 In particular if

P

=1
exists, then it is independent of

rearrangements of { } =1
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Proof. Suppose =
P

exists. Then there exists such that

X

k k2 =
°

°

°

°

°

X

°

°

°

°

°

2

1

for all \ ,wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such shows that

P

\ k k2 1 and
therefore

X

k k2 1 +
X

k k2

Conversely, suppose that
P k k2 Then for all 0 there exists

such that if \
°

°

°

°

°

X

°

°

°

°

°

2

=
X

k k2 2 (14.8)

Hence by Lemma 2.96,
P

exists.
For item 1, let be as above and set :=

P

Then

|k k k k| k k

and by Eq. (14.8),

0
X

k k2 k k2 =
X

k k2 2

Letting 0 we deduce from the previous two equations that k k k k and
k k2 P k k2 as 0 and therefore k k2 =P k k2
Item 2. is a special case of Lemma 2.96.

For the final assertion, let
P

=1
and suppose that lim =

exists in and in particular { } =1 is Cauchy. So for

X

= +1

k k2 = k k2 0 as

which shows that
P

=1
k k2 is convergent, i.e. P

=1
k k2

Remark: We could use the last result to prove Item 1. Indeed, if
P k k2 then is countable and so we may writer = { } =1

Then = lim with as above. Since the norm k·k is continuous on
we have
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k k2 = lim k k2 = lim

°

°

°

°

°

X

=1

°

°

°

°

°

2

= lim
X

=1

k k2

=
X

=1

k k2 =
X

k k2

Corollary 14.23. Suppose is a Hilbert space, is an orthonormal
set and = span Then

=
X

h i (14.9)

X

|h i|2 = k k2 and (14.10)

X

h ih i = h i (14.11)

for all

Proof. By Bessel’s inequality,
P |h i|2 k k2 for all and

hence by Proposition 14.21, :=
P h i exists in and for all

h i =
X

hh i i =
X

h ih i (14.12)

Taking in Eq. (14.12) gives h i = h i i.e. that h i = 0 for
all So ( ) span and by continuity we also have ( )

= span Since is also in it follows from the definition of
that = proving Eq. (14.9). Equations (14.10) and (14.11) now follow
from (14.12), Proposition 14.22 and the fact that h i = h 2 i =
h i for all

14.2 Hilbert Space Basis

Definition 14.24 (Basis). Let be a Hilbert space. A basis of is a
maximal orthonormal subset

Proposition 14.25. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of ordered by
inclusion. If F is linearly ordered then is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element F
An orthonormal set is said to be complete if = {0} That is

to say if h i = 0 for all then = 0
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Lemma 14.26. Let be an orthonormal subset of then the following are
equivalent:

1. is a basis,
2. is complete and
3. span =

Proof. If is not complete, then there exists a unit vector \ {0}
The set { } is an orthonormal set properly containing so is not
maximal. Conversely, if is not maximal, there exists an orthonormal set
1 such that & 1 Then if 1 \ we have h i = 0 for all

showing is not complete. This proves the equivalence of (1) and (2).
If is not complete and \ {0} then span which is a proper

subspace of Conversely if span is a proper subspace of = span
is a non-trivial subspace by Corollary 14.14 and is not complete. This shows
that (2) and (3) are equivalent.

Theorem 14.27. Let be an orthonormal set. Then the following are
equivalent:

1. is complete or equivalently a basis.
2. =

P h i for all .

3. h i = P h i h i for all
4. k k2 = P |h i|2 for all

Proof. Let = span and =
(1) (2) By Corollary 14.23,

P h i = Therefore

X

h i = = = {0}

(2) (3) is a consequence of Proposition 14.22.
(3) (4) is obvious, just take =
(4) (1) If then by 4), k k = 0 i.e. = 0 This shows that is

complete.

Proposition 14.28. A Hilbert space is separable i has a countable
orthonormal basis Moreover, if is separable, all orthonormal bases
of are countable.

Proof. Let D be a countable dense set D = { } =1. By Gram-
Schmidt process there exists = { } =1 an orthonormal set such that
span{ : = 1 2 } span{ : = 1 2 } So if h i = 0 for
all then h i = 0 for all Since D is dense we may choose { } D
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such that = lim and therefore h i = lim h i = 0 That is
to say = 0 and is complete.
Conversely if is a countable orthonormal basis, then the countable

set

D =
X

: Q+ Q : #{ : 6= 0}

is dense in
Finally let = { } =1 be an orthonormal basis and 1 be another

orthonormal basis. Then the sets

= { 1 : h i 6= 0}

are countable for each N and hence :=
S

=1
is a countable subset

of 1 Suppose there exists 1 \ then h i = 0 for all and since
= { } =1 is an orthonormal basis, this implies = 0 which is impossible

since k k = 1 Therefore 1 \ = and hence 1 = is countable.

Definition 14.29. A linear map : is an isometry if k k =
k k for all and is unitary if is also surjective.

Exercise 14.30. Let : be a linear map, show the following are
equivalent:

1. : is an isometry,
2. h 0i = h 0i for all 0 (see Eq. (14.21) below)
3. =

Exercise 14.31. Let : be a linear map, show the following are
equivalent:

1. : is unitary
2. = and =
3. is invertible and 1 =

Exercise 14.32. Let be a Hilbert space. Use Theorem 14.27 to show there
exists a set and a unitary map : 2( ) Moreover, if is separable
and dim( ) = then can be taken to be N so that is unitarily
equivalent to 2 = 2(N)

Remark 14.33. Suppose that { } =1 is a total subset of i.e. span{ } =
. Let { } =1 be the vectors found by performing Gram-Schmidt on the set

{ } =1. Then { } =1 is an orthonormal basis for .
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Example 14.34. 1. Let = 2([ ] ) = 2(( ) ) and ( ) =
1
2

for Z Simple computations show := { } Z is an ortho-
normal set. We now claim that is an orthonormal basis. To see this recall
that (( )) is dense in 2(( ) ) Any (( )) may
be extended to be a continuous 2 — periodic function on R and hence by
Exercise 11.63), may uniformly (and hence in 2) be approximated by a
trigonometric polynomial. Therefore is a total orthonormal set, i.e. is
an orthonormal basis. The expansion of in this basis is the well known
Fourier series expansion of

2. Let = 2([ 1 1] ) and := {1 2 3 } Then is total in
by the Stone-Weierstrass theorem and a similar argument as in the

first example or directly from Exercise 11.67. The result of doing Gram-
Schmidt on this set gives an orthonormal basis of consisting of the
“Legendre Polynomials.”

3. Let = 2(R 1
2

2

) Exercise 11.67 implies := {1 2 3 }
is total in and the result of doing Gram-Schmidt on now gives an
orthonormal basis for consisting of “Hermite Polynomials.”

Remark 14.35 (An Interesting Phenomena). Let = 2([ 1 1] ) and
:= {1 3 6 9 } Then again is total in by the same argument as

in item 2. Example 14.34. This is true even though is a proper subset of
Notice that is an algebraic basis for the polynomials on [ 1 1] while is
not! The following computations may help relieve some of the reader’s anxiety.
Let 2([ 1 1] ) then, making the change of variables = 1 3 shows
that
Z 1

1

| ( )|2 =

Z 1

1

¯

¯

¯
( 1 3)

¯

¯

¯

2 1

3
2 3 =

Z 1

1

¯

¯

¯
( 1 3)

¯

¯

¯

2

( ) (14.13)

where ( ) = 1
3

2 3 Since ([ 1 1]) = ([ 1 1]) = 2 is a finite
measure on [ 1 1] and hence by Exercise 11.67 := {1 2 3 } is a
total in 2([ 1 1] ) In particular for any 0 there exists a polynomial
( ) such that

Z 1

1

¯

¯

¯
( 1 3) ( )

¯

¯

¯

2

( ) 2

However, by Eq. (14.13) we have

2

Z 1

1

¯

¯

¯
( 1 3) ( )

¯

¯

¯

2

( ) =

Z 1

1

¯

¯ ( ) ( 3)
¯

¯

2

Alternatively, if ([ 1 1]) then ( ) = ( 1 3) is back in ([ 1 1])
Therefore for any 0 there exists a polynomial ( ) such that

k k = sup {| ( ) ( )| : [ 1 1]}
= sup

©
¯

¯ ( 3) ( 3)
¯

¯ : [ 1 1]
ª

= sup
©
¯

¯ ( ) ( 3)
¯

¯ : [ 1 1]
ª
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This gives another proof the polynomials in 3 are dense in ([ 1 1]) and
hence in 2([ 1 1])

14.3 Fourier Series Considerations

(BRUCE: This needs work and some stu from Section 28.1.1 should be moved
to here.) In this section we will examine item 1. of Example 14.34 in more
detail. In the process we will give a direct and constructive proof of the result
in Exercise 11.63.
For C let ( ) :=

P

= Since ( ) ( ) = +1

( ) :=
X

=

=
+1

1

with the convention that

+1

1
| =1 = lim

1

+1

1
= 2 + 1 =

X

=

1

Writing = we find

( ) := ( ) =
( +1)

1
=

( +1 2) ( +1 2)

2 2

=
sin( + 1

2)

sin 12

Definition 14.36. The function

( ) :=
sin( + 1

2 )

sin 12
=
X

=

(14.14)

is called the Dirichlet kernel.

By the 2 — theory of the Fourier series (or other methods) one may
shows that 0 as when acting on smooth periodic functions of
However this kernel is not positive. In order to get a positive approximate
— function sequence, we might try squaring to find
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2 ( ) =
sin2( + 1

2)

sin2 12
=

"

X

=

#2

=
X

=

=
X

=

+

=
2
X

= 2

X

=

1 + = [ ] =
2
X

= 2

X

=

1| |

=
2
X

= 2

[ + 1 + | |] =
2
X

= 2

[2 + 1 | |]

=
2
X

= 2

[2 + 1 | |]

In particular this implies

1

2 + 1

sin2( + 1
2)

sin2 12
=

2
X

= 2

·

1
| |
2 + 1

¸

(14.15)

We will show in Lemma 14.38 below that Eq. (14.15) is valid for 1
2N

Definition 14.37. The function

( ) :=
1

+ 1

sin2( +1
2 )

sin2 12
(14.16)

is called the Fejér kernel.

Lemma 14.38. The Fejér kernel satisfies:

1.

( ) :=
X

=

·

1
| |
+ 1

¸

(14.17)

2. ( ) 0
3. 1

2

R

( ) = 1
4. sup | | ( ) 0 as for all 0 see Figure 14.3
5. For any continuous 2 — periodic function on R

( ) =
1

2

Z

( ) ( )

=
X

=

·

1
| |
+ 1

¸µ

1

2

Z

( )

¶

(14.18)

and ( ) ( ) uniformly in as
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2.51.250-1.25-2.5

12.5

10

7.5

5

2.5

0

x

y

x

y

Plots of ( ) for = 2 7 and 13

Proof. 1. Using

sin2
1

2
=

·

2 2

2

¸2

=
2 +

4
=
2

4

we find

4( + 1) sin2
1

2

X

=

·

1
| |
+ 1

¸

=
¡

2
¢

X

1| | [ + 1 | |]

=
X

½

21| | [ + 1 | |] 1| 1| [ + 1 | 1|]
1| +1| [ + 1 | + 1|]

¾

=
X

{0 1 +1}

21| | [ + 1 | |]
1| 1| [ + 1 | 1|]
1| +1| [ + 1 | + 1|]

= 2 ( +1) ( +1) = 4 sin2(
+ 1

2
)

which verifies item 1.
2.- 4. Clearly ( ) 0 being the square of a function and item 3. follows

by integrating the formula in Eq. (14.17). Item 4. is elementary to check and
is clearly indicated in Figure 14.3.
5. Items 2-4 show that ( ) has the classic properties of an approximate
— function when acting on 2 — periodic functions. Hence it is standard that

( ) ( ) uniformly in as Eq. (14.18) is a consequence of
the simple computation,
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( ) =
1

2

Z

( ) ( )

=
X

=

·

1
| |
+ 1

¸µ

1

2

Z

( )

¶

14.4 Weak Convergence

Suppose is an infinite dimensional Hilbert space and { } =1 is an ortho-
normal subset of Then, by Eq. (14.1), k k2 = 2 for all 6= and in
particular, { } =1 has no convergent subsequences. From this we conclude
that := { : k k 1} the closed unit ball in is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on having the property that is compact.

Definition 14.39. Let ( k·k) be a Banach space and be its continu-
ous dual. The weak topology, on is the topology generated by If
{ } =1 is a sequence we will write as to mean that

in the weak topology.

Because = ( ) k·k := ({k ·k : } it is harder for a
function : F to be continuous in the — topology than in the norm
topology, k·k In particular if : F is a linear functional which is —
continuous, then is k·k — continuous and hence

Proposition 14.40. Let { } =1 be a sequence, then as
i ( ) = lim ( ) for all

Proof. By definition of we have i for all
and 0 there exists an N such that | ( ) ( )| for all
and This later condition is easily seen to be equivalent to ( ) =
lim ( ) for all
The topological space ( ) is still Hausdor , however to prove this one

needs to make use of the Hahn Banach Theorem 28.16 below. For the moment
we will concentrate on the special case where = is a Hilbert space in
which case = { := h· i : } see Propositions 14.15. If
and := 6= 0 then

0 := k k2 = ( ) = ( ) ( )

Thus := { : | ( ) ( )| 2} and := { : | ( ) (
are disjoint sets from which contain and respectively. This shows that
( ) is a Hausdor space. In particular, this shows that weak limits are
unique if they exist.

362 14 Hilbert Spaces

Remark 14.41. Suppose that is an infinite dimensional Hilbert space
{ } =1 is an orthonormal subset of Then Bessel’s inequality (Propo-
sition 14.21) implies 0 as This points out the fact
that if as it is no longer necessarily true that
k k = lim k k However we do always have k k lim inf k k
because,

k k2 = lim h i lim inf [k k k k] = k k lim inf k k

Proposition 14.42. Let be a Hilbert space, be an orthonormal
basis for and { } =1 be a bounded sequence, then the following are
equivalent:

1. as
2. h i = lim h i for all
3. h i = lim h i for all
Moreover, if := lim h i exists for all then

P | |2
and :=

P

as

Proof. 1. = 2. This is a consequence of Propositions 14.15 and 14.40. 2.
= 3. is trivial.
3. = 1. Let := sup k k and 0 denote the algebraic span of Then

for and 0

|h i| |h i|+ |h i| |h i|+ 2 k k

Passing to the limit in this equation implies lim sup |h i|
2 k k which shows lim sup |h i| = 0 since 0 is dense in

To prove the last assertion, let Then by Bessel’s inequality
(Proposition 14.21),

X

| |2 = lim
X

|h i|2 lim inf k k2 2

Since was arbitrary, we conclude that
P | |2 and

hence we may define :=
P

By construction we have

h i = = lim h i for all

and hence as by what we have just proved.

Theorem 14.43. Suppose that { } =1 is a bounded sequence. Then
there exists a subsequence := of { } =1 and such that
as



14.4 Weak Convergence 363

Proof. This is a consequence of Proposition 14.42 and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise 14.60.

Theorem 14.44 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
is a separable Hilbert space, := { : k k 1} is the closed unit ball

in and { } =1 is an orthonormal basis for Then

( ) :=
X

=1

1

2
|h i| (14.19)

defines a metric on which is compatible with the weak topology on :=
( ) = { : } Moreover ( ) is a compact metric space.

Proof. The routine check that is a metric is left to the reader. Let
be the topology on induced by For any and N the map

h i = h i h i is continuous and since the sum in
Eq. (14.19) is uniformly convergent for it follows that ( )
is — continuous. This implies the open balls relative to are contained in
and therefore For the converse inclusion, let ( ) =

h i be an element of and for N let :=
P

=1h i Then
=
P

=1h i is continuous, being a finite linear combination of
the which are easily seen to be — continuous. Because as
it follows that

sup | ( ) ( )| = k k 0 as

Therefore | is — continuous as well and hence = ( | : )
The last assertion follows directly from Theorem 14.43 and the fact that

sequential compactness is equivalent to compactness for metric spaces.

Theorem 14.45 (Weak and Strong Di erentiability). Suppose that
2(R ) and R \ {0} Then the following are equivalent:

1. There exists { } =1 R\ {0} such that lim = 0 and

sup

°

°

°

°

(·+ ) (·)°°
°

°

2

2. There exists 2(R ) such that h i = h i for all (R )

3. There exists 2(R ) and (R ) such that
2

and
2

as
4. There exists 2 such that

(·+ ) (·) 2

as 0

(See Theorem 29.18 for the generalization of this theorem.)
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Proof. 1. = 2. We may assume, using Theorem 14.43 and passing to a
subsequence if necessary, that (·+ ) (·) for some 2(R ) Now
for (R )

h i = lim h (·+ ) (·) i = lim h (· ) (·)i

= h lim
(· ) (·) i = h i

wherein we have used the translation invariance of Lebesgue measure and the
dominated convergence theorem.
2. = 3. Let (R R) such that

R

R ( ) = 1 and let ( ) =
( ) then by Proposition 11.25, := (R ) for all and

( ) = ( ) =

Z

R
( ) ( ) = h [ ( ·)]i

= h ( ·)i = ( )

By Theorem 11.21, 2(R ) and = in 2(R )
as This shows 3. holds except for the fact that need not have
compact support. To fix this let (R [0 1]) such that = 1 in a
neighborhood of 0 and let ( ) = ( ) and ( ) ( ) := ( ) ( ) Then

( ) = + = ( ) +

so that in 2 and ( ) in 2 as 0 Let =
where is chosen to be greater than zero but small enough so that

k k2 + k ( ) k2 1

Then (R ) and in 2 as
3. = 4. By the fundamental theorem of calculus

( ) ( )
=

( + ) ( )

=
1
Z 1

0

( + ) =

Z 1

0

( ) ( + )

(14.20)

Let

( ) :=

Z 1

0

( ) =

Z 1

0

( + )

which is defined for almost every and is in 2(R ) by Minkowski’s inequality
for integrals, Theorem 10.29. Therefore

( ) ( )
( ) =

Z 1

0

[( ) ( + ) ( + )]
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and hence again by Minkowski’s inequality for integrals,
°

°

°

°

°

°

°

°

2

Z 1

0

k ( ) k2

=

Z 1

0

k k2

Letting in this equation implies ( ) = a.e. Finally one
more application of Minkowski’s inequality for integrals implies,

°

°

°

°

°

°

°

°

2

= k k2 =
°

°

°

°

Z 1

0

( )

°

°

°

°

2
Z 1

0

k k2

By the dominated convergence theorem and Proposition 11.13, the latter term
tends to 0 as 0 and this proves 4. The proof is now complete since 4. =
1. is trivial.

14.5 Supplement 1: Converse of the Parallelogram Law

Proposition 14.46 (Parallelogram Law Converse). If ( k·k) is a
normed space such that Eq. (14.2) holds for all then there exists
a unique inner product on h· ·i such that k k := ph i for all In
this case we say that k·k is a Hilbertian norm.
Proof. If k·k is going to come from an inner product h· ·i it follows from

Eq. (14.1) that
2Reh i = k + k2 k k2 k k2

and
2Reh i = k k2 k k2 k k2

Subtracting these two equations gives the “polarization identity,”

4Reh i = k + k2 k k2

Replacing by in this equation then implies that

4Imh i = k + k2 k k2

from which we find
h i = 1

4

X

k + k2 (14.21)

where = {±1 ± } — a cyclic subgroup of 1 C Hence if h· ·i is going to
exists we must define it by Eq. (14.21).
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Notice that

h i = 1

4

X

k + k2 = k k2 + k + k2 k k2

= k k2 + ¯

¯1 + |2¯¯ k k2 ¯

¯1 |2¯¯ k k2 = k k2

So to finish the proof of (4) we must show that h i in Eq. (14.21) is an inner
product. Since

4h i =
X

k + k2 =
X

k ( + ) k2

=
X

k + 2 k2

= k + k2 + k + k2 + k k2 k k2
= k + k2 + k k2 + k k2 k + k2
= 4h i

it su ces to show h i is linear for all (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (14.2). To do this we make use of Eq. (14.2) three times to find

k + + k2 = k + k2 + 2k + k2 + 2k k2
= k k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + + k2 + 2k + k2 + 2k k2

2k k2 2k k2 + 2k + k2 + 2k k2

Solving this equation for k + + k2 gives
k + + k2 = k + k2+ k + k2 k k2+ k k2+ k k2 k k2 (14.22)

Using Eq. (14.22), for

4Reh + i = k + + k2 k + k2
= k + k2 + k + k2 k k2 + k k2 + k k2 k k2
¡k k2 + k k2 k k2 + k k2 + k k2 k k2¢

= k + k2 k k2 + k + k2 k k2
= 4Reh i+ 4Reh i (14.23)

Now suppose that then since | | = 1

4h i = 1

4

X

k + k2 = 1

4

X

k + 1 k2

=
1

4

X

k + k2 = 4 h i (14.24)
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where in the third inequality, the substitution was made in the sum.
So Eq. (14.24) says h± i = ± h i and h i = h i Therefore

Imh i = Re ( h i) = Reh i

which combined with Eq. (14.23) shows

Imh + i = Reh i = Reh i+Reh i
= Imh i+ Imh i

and therefore (again in combination with Eq. (14.23)),

h + i = h i+ h i for all

Because of this equation and Eq. (14.24) to finish the proof that h i
is linear, it su ces to show h i = h i for all 0 Now if = N
then

h i = h + ( 1) i = h i+ h( 1) i
so that by induction h i = h i Replacing by then shows that
h i = h 1 i so that h 1 i = 1h i and so if N we
find

h i = h 1 i = h i
so that h i = h i for all 0 and Q By continuity, it now follows
that h i = h i for all 0

14.6 Supplement 2. Non-complete inner product spaces

Part of Theorem 14.27 goes through when is a not necessarily complete
inner product space. We have the following proposition.

Proposition 14.47. Let ( h· ·i) be a not necessarily complete inner product
space and be an orthonormal set. Then the following two conditions
are equivalent:

1. =
P h i for all

2. k k2 = P |h i|2 for all .

Moreover, either of these two conditions implies that is a maximal
orthonormal set. However being a maximal orthonormal set is not
su cient to conditions for 1) and 2) hold!
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Proof. As in the proof of Theorem 14.27, 1) implies 2). For 2) implies 1)
let and consider

°

°

°

°

°

X

h i
°

°

°

°

°

2

= k k2 2
X

|h i|2 +
X

|h i|2

= k k2
X

|h i|2

Since k k2 = P |h i|2 it follows that for every 0 there exists

such that for all such that
°

°

°

°

°

X

h i
°

°

°

°

°

2

= k k2
X

|h i|2

showing that =
P h i

Suppose = ( 1 2 ) If 2) is valid then k k2 = 0 i.e.
= 0 So is maximal. Let us now construct a counter example to prove the

last assertion.
Take = Span{ } =1 2 and let ˜ = 1 ( + 1) +1 for =

1 2 Applying Gramn-Schmidt to {˜ } =1 we construct an orthonormal
set = { } =1 I now claim that is maximal. Indeed if =
( 1 2 ) then for all i.e.

0 = ( ˜ ) = 1 ( + 1) +1

Therefore +1 = ( + 1)
1

1 for all Since Span{ } =1 = 0 for
some su ciently large and therefore 1 = 0 which in turn implies that
= 0 for all So = 0 and hence is maximal in On the other hand,

is not maximal in 2 In fact the above argument shows that in 2 is given
by the span of = (1 1

2
1
3

1
4

1
5 ) Let be the orthogonal projection of

2 onto the Span( ) = Then

X

=1

h i = =
h i
k k2

so that
P

=1
h i = i Span( ) = 2 For example if =

(1 0 0 ) (or more generally for = for any ) and hence
P

=1
h i 6=

14.7 Supplement 3: Conditional Expectation

In this section let ( F ) be a probability space, i.e. ( F ) is a measure
space and ( ) = 1 Let G F be a sub — sigma algebra of F and write
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G if : C is bounded and is (G BC) — measurable. In this section
we will write

:=

Z

Definition 14.48 (Conditional Expectation). Let G : 2( F )
2( G ) denote orthogonal projection of 2( F ) onto the closed sub-
space 2( G ) For 2( G ) we say that G 2( F ) is the
conditional expectation of

Theorem 14.49. Let ( F ) and G F be as above and
2( F )

1. If 0 — a.e. then G 0 — a.e.
2. If — a.e. there G G — a.e.
3. | G | G | | — a.e.
4. k G k 1 k k 1 for all 2 So by the B.L.T. Theorem 2.68, G
extends uniquely to a bounded linear map from 1( F ) to 1( G )
which we will still denote by G

5. If 1( F ) then = G 1( G ) i

( ) = ( ) for all G
6. If G and 1( F ) then G( ) = · G — a.e.

Proof. By the definition of orthogonal projection for G
( ) = ( · G ) = ( G · )

So if 0 then 0 ( ) ( G · ) and since this holds for all 0
in G G 0 — a.e. This proves (1). Item (2) follows by applying item
(1). to If is real, ± | | and so by Item (2), ± G G | | i.e.
| G | G | | — a.e. For complex let 0 be a bounded and G —
measurable function. Then

[| G | ] =
h

G · sgn ( G )
i

=
h

· sgn ( G )
i

[| | ] = [ G | | · ]
Since is arbitrary, it follows that | G | G | | — a.e. Integrating this
inequality implies

k G k 1 | G | [ G | | · 1] = [| |] = k k 1

Item (5). Suppose 1( F ) and G Let 2( F ) be a
sequence of functions such that in 1( F ) Then

( G · ) = ( lim G · ) = lim ( G · )
= lim ( · ) = ( · ) (14.25)
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This equation uniquely determines G for if 1( G ) also satisfies
( · ) = ( · ) for all G then taking = sgn ( G ) in Eq.

(14.25) gives
0 = (( G ) ) = (| G |)

This shows = G — a.e. Item (6) is now an easy consequence of this
characterization, since if G

[( G ) ] = [ G · ] = [ · ] = [ · ] = [ G ( ) · ]
Thus G ( ) = · G — a.e.

Proposition 14.50. If G0 G1 F . Then

G0 G1 = G1 G0 = G0 (14.26)

Proof. Equation (14.26) holds on 2( F ) by the basic properties of
orthogonal projections. It then hold on 1( F ) by continuity and the
density of 2( F ) in 1( F )

Example 14.51. Suppose that ( M ) and ( N ) are two — finite mea-
sure spaces. Let = × F =M N and ( ) = ( ) ( ) ( )
where 1( F ) is a positive function such that

R

× ( ) = 1
Let : be the projection map, ( ) = and

G := ( ) = 1(M) = { × : M}
Then : R is G — measurable i = for some function : R
which is N — measurable, see Lemma 7.69. For 1( F ) we will now
show G = where

( ) =
1

(̄ )
1(0 )( (̄ )) ·

Z

( ) ( ) ( )

(̄ ) :=
R

( ) ( ) (By convention,
R

( ) ( ) ( ) := 0 if
R | ( )| ( ) ( ) = )
By Tonelli’s theorem, the set

:= { : (̄ ) = }
½

:

Z

| ( )| ( ) ( ) =

¾

is a — null set. Since

[| |] =
Z

( )

Z

( ) | ( )| ( ) =

Z

( ) | ( )| (̄ )

=

Z

( )

¯

¯

¯

¯

Z

( ) ( ) ( )

¯

¯

¯

¯

Z

( )

Z

( ) | ( )| ( )
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1( G ) Let = be a bounded G — measurable function,
then

[ · ] =
Z

( )

Z

( ) ( ) ( ) ( )

=

Z

( ) ( ) ( ) (̄ )

=

Z

( ) ( )

Z

( ) ( ) ( )

= [ ]

and hence G = as claimed.

This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 14.54 to gain more intuition about
conditional expectations.

Theorem 14.52 (Jensen’s inequality). Let ( F ) be a probability space
and : R R be a convex function. Assume 1( F ;R) is a function
such that (for simplicity) ( ) 1( F ;R) then ( G ) G [ ( )]
— a.e.

Proof. Let us first assume that is 1 and is bounded. In this case

( ) ( 0)
0( 0)( 0) for all 0 R (14.27)

Taking 0 = G and = in this inequality implies

( ) ( G ) 0( G )( G )

and then applying G to this inequality gives

G [ ( )] ( G ) = G [ ( ) ( G )]
0( G )( G G G ) = 0

The same proof works for general one need only use Proposition 10.7
to replace Eq. (14.27) by

( ) ( 0)
0 ( 0)( 0) for all 0 R

where 0 ( 0) is the left hand derivative of at 0

If is not bounded, apply what we have just proved to = 1| | to
find

G
£

( )
¤

( G ) (14.28)

Since G : 1( F ;R) 1( F ;R) is a bounded operator and
and ( ) ( ) in 1( F ;R) as there exists { } =1

such that and and ( ) ( ) — a.e. So passing to
the limit in Eq. (14.28) shows G [ ( )] ( G ) — a.e.
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14.8 Exercises

Exercise 14.53. Let ( M ) be a measure space and := 2( M )
Given ( ) let : be the multiplication operator defined by

= Show 2 = i there exists M such that = 1 a.e.

Exercise 14.54. Suppose ( F ) is a probability space andA := { } =1
F is a partition of (Recall this means =

`

=1 ) Let G be the —
algebra generated by A Show:

1. G i = for some N
2. : R is G — measurable i =

P

=1 1 for some R
3. For 1( F ) let ( | ) := [1 ] ( ) if ( ) 6= 0 and

( | ) = 0 otherwise. Show

G =
X

=1

( | )1

Exercise 14.55. Folland 5.60 on p. 177.

Exercise 14.56. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 14.57. Folland 5.67 on p. 178 regarding the mean ergodic theorem.

Exercise 14.58 (Haar Basis). In this problem, let 2 denote 2([0 1] )
with the standard inner product,

( ) = 1[0 1 2)( ) 1[1 2 1)( )

and for N0 := N {0} with 0 2 let

( ) := 2 2 (2 )

The following pictures shows the graphs of 00 1 0 1 1 2 1 2 2 and 2 3

respectively.
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1. Show := {1} ©

: 0 and 0 2
ª

is an orthonormal set, 1
denotes the constant function 1

2. For N let := span
¡{1} ©

: 0 and 0 2
ª¢

Show
= span

¡{1[ 2 ( +1)2 ) : and 0 2
¢

3. Show =1 is a dense subspace of 2 and therefore is an orthonormal
basis for 2 Hint: see Theorem 11.3.

4. For 2 let

:= h 1i1+
1

X

=0

2 1
X

=0

h i

Show (compare with Exercise 14.54)

=
2 1
X

=0

Ã

2

Z ( +1)2

2

( )

!

1[ 2 ( +1)2 )

and use this to show k k 0 as for all ([0 1])
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Exercise 14.59. Let ( ) be the orthogonal groups consisting of × real
orthogonal matrices i.e. = For ( ) and 2(R ) let

( ) = ( 1 ) Show

1. is well defined, namely if = a.e. then = a.e.
2. : 2(R ) 2(R ) is unitary and satisfies

1 2
=

1 2
for all

1 2 ( ) That is to say the map ( ) U( 2(R )) — the
unitary operators on 2(R ) is a group homomorphism, i.e. a “unitary
representation” of ( )

3. For each 2(R ) the map ( ) 2(R ) is continu-
ous. Take the topology on ( ) to be that inherited from the Euclidean
topology on the vector space of all × matrices. Hint: see the proof of
Proposition 11.13.

Exercise 14.60. Prove Theorem 14.43. Hint: Let 0 := span { : N}
— a separable Hilbert subspace of Let { } =1 0 be an orthonormal
basis and use Cantor’s diagonalization argument to find a subsequence :=

such that := lim h i exists for all N Finish the proof by
appealing to Proposition 14.42.

Exercise 14.61. Suppose that { } =1 and as
Show as (i.e. lim k k = 0) i lim k k = k k
Exercise 14.62. Show the vector space operations of are continuous in the
weak topology. More explicitly show

1. ( ) × + is ( ) — continuous and
2. ( ) F× is ( F ) — continuous.

Exercise 14.63. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 14.64. Spherical Harmonics.

Exercise 14.65. The gradient and the Laplacian in spherical coordinates.

Exercise 14.66. Legendre polynomials.

Exercise 14.67. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose is an infinite dimensional Hilbert space and is a
countably additive measure on B which is invariant under translations
and satisfies, ( 0( )) 0 for all 0 Show ( ) = for all non-empty
open subsets
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14.9 Fourier Series Exercises

Notation 14.68 Let (R ) denote the 2 — periodic functions in (R )

(R ) :=
©

(R ) : ( + 2 ) = ( ) for all R and = 1 2

Also let h· ·i denote the inner product on the Hilbert space := 2([ ] )
given by

h i :=
µ

1

2

¶
Z

[ ]

( )¯( )

Recall that
©

( ) := · : Z
ª

is an orthonormal basis for in partic-
ular for

=
X

Z

h i (14.29)

where the convergence takes place in 2([ ] ) For 1([ ] ) we
will write (̃ ) for the Fourier coe cient,

(̃ ) := h i =
µ

1

2

¶
Z

[ ]

( ) · (14.30)

Lemma 14.69. Let 0 then the following are equivalent,

X

Z

1

(1 + | |)
X

Z

1

(1 + | |2) 2
and (14.31)

Proof. Let := (0 1] and Z For = + ( + )

2 + | | = 2 + | | 2 + | |+ | | 3 + | | and
2 + | | = 2 + | | 2 + | | | | | |+ 1

and therefore for 0

1

(3 + | |)
1

(2 + | |)
1

(1 + | |)
Thus we have shown

1

(3 + | |)
X

Z

1

(2 + | |) 1 + ( )
1

(1 + | |) for all R

Integrating this equation then shows
Z

R

1

(3 + | |)
X

Z

1

(2 + | |)
Z

R

1

(1 + | |)

from which we conclude that
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X

Z

1

(2 + | |) i (14.32)

Because the functions 1+ 2+ and 1 + 2 all behave like as the
sums in Eq. (14.31) may be compared with the one in Eq. (14.32) to finish
the proof.

Exercise 14.70 (Riemann Lebesgue Lemma for Fourier Series). Show
for 1([ ] ) that ˜ 0(Z ) i.e. ˜ : Z C and lim (̃ ) =
0 Hint: If this follows form Bessel’s inequality. Now use a density
argument.

Exercise 14.71. Suppose 1([ ] ) is a function such that ˜ 1(Z )
and set

( ) :=
X

Z

(̃ ) · (pointwise).

1. Show (R )

2. Show ( ) = ( ) for — a.e. in [ ] Hint: Show ˜( ) = (̃ ) and
then use approximation arguments to show

Z

[ ]

( ) ( ) =

Z

[ ]

( ) ( ) ([ ] )

3. Conclude that 1([ ] ) ([ ] ) and in particular
([ ] ) for all [1 ]

Exercise 14.72. Suppose N0 is a multi-index such that | | 2 and
2 (R )2 .

1. Using integration by parts, show

( ) (̃ ) = h i

Note: This equality implies

¯

¯

¯
(̃ )
¯

¯

¯

1 k k 1 k k

2. Now let =
P

=1
2 2 Working as in part 1) show

h(1 ) i = (1 + | |2) (̃ ) (14.33)

Remark 14.73. Suppose that is an even integer, is a multi-index and
+| |

(R ) then

2 We view (R) as a subspace of by identifying (R) with |[ ]
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X

Z

| |
¯

¯

¯
(̃ )
¯

¯

¯

2

=
X

Z

|h i| (1 + | |2) 2(1 + | |2) 2

2

=
X

Z

¯

¯

¯
h(1 ) 2 i

¯

¯

¯
(1 + | |2) 2

2

X

Z

¯

¯

¯
h(1 ) 2 i

¯

¯

¯

2

·
X

Z

(1 + | |2)

=
°

°

°
(1 ) 2

°

°

°

2

where :=
P

Z (1 + | |2) i 2 So the smoother is the
faster ˜ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of corresponds to decay of ˜at infinity and visa-versa.

Exercise 14.74. Suppose R and
©

C : Z
ª

are coe cients such
that

X

Z

| |2 (1 + | |2)

Show if 2 + the function defined by

( ) =
X

Z

·

is in (R ) Hint: Work as in the above remark to show
X

Z

| | | | for all | |

Exercise 14.75 (Poisson Summation Formula). Let 1(R )

:= R :
X

Z

| ( + 2 )| =

and set
ˆ( ) := (2 )

2
Z

R
( ) ·

Further assume ˆ 1(Z )

1. Show ( ) = 0 and + 2 = for all Z Hint: Compute
R

[ ]

P

Z | ( + 2 )|
2. Let

( ) :=

½
P

Z ( + 2 ) for
0 if

Show 1([ ] ) and (̃ ) = (2 )
2 ˆ( )
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3. Using item 2) and the assumptions on show 1([ ] )
([ ] ) and

( ) =
X

Z

(̃ ) · =
X

Z

(2 )
2 ˆ( ) · for — a.e.

i.e.
X

Z

( + 2 ) = (2 ) 2
X

Z

ˆ( ) · for — a.e. (14.34)

4. Suppose we now assume that (R ) and satisfies 1) | ( )|
(1 + | |) for some and and 2) ˆ 1(Z ) then show

Eq. (14.34) holds for all R and in particular
X

Z

(2 ) = (2 )
2
X

Z

ˆ( )

For simplicity, in the remaining problems we will assume that = 1

Exercise 14.76 (Heat Equation 1.). Let ( ) [0 )×R ( ) be a
continuous function such that ( ·) (R) for all 0 ˙ := and

exists and are continuous when 0 Further assume that satisfies the
heat equation ˙ = 1

2 Let ˜( ) := h ( ·) i for Z Show for 0

and Z that ˜( ) is di erentiable in and ˜( ) = 2˜( ) 2 Use
this result to show

( ) =
X

Z

2
2

(̃ ) (14.35)

where ( ) := (0 ) and as above

(̃ ) = h i = 1

2

Z

( )

Notice from Eq. (14.35) that ( ) ( ) is for 0

Exercise 14.77 (Heat Equation 2.). Let ( ) := 1
2

P

Z 2
2

Show that Eq. (14.35) may be rewritten as

( ) =

Z

( ) ( )

and
( ) =

X

Z

( + 2 )

where ( ) := 1
2

1
2

2

Also show ( ) may be written as

( ) = ( ) :=

Z

R
( ) ( )
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Hint: To show ( ) =
P

Z ( + 2 ) use the Poisson summation formula
along with the Gaussian integration formula

ˆ ( ) =
1

2

Z

R
( ) =

1

2
2

2

Exercise 14.78 (Wave Equation). Let 2(R×R) be such that ( ·)
(R) for all R Further assume that solves the wave equation, =
Let ( ) := (0 ) and ( ) = ˙ (0 ) Show ˜( ) := h ( ·) i for
Z is twice continuously di erentiable in and

2

2 ˜( ) = 2˜( ) Use
this result to show

( ) =
X

Z

µ

(̃ ) cos( ) + ˜( )
sin

¶

(14.36)

with the sum converging absolutely. Also show that ( ) may be written as

( ) =
1

2
[ ( + ) + ( )] +

1

2

Z

( + ) (14.37)

Hint: To show Eq. (14.36) implies (14.37) use

cos =
+

2
and sin =

2

and
( + ) ( )

=

Z

( + )

14.10 Dirichlet Problems on D

Exercise 14.79 (Worked Example). Let := { C : | | 1} be the
open unit disk in C = R2 where we write = + = in the usual
way. Also let =

2

2 +
2

2 and recall that may be computed in polar
coordinates by the formula,

= 1
¡

1
¢

+
1
2

2

Suppose that ( ¯) 2( ) and ( ) = 0 for Let = | and

˜( ) :=
1

2

Z

( )

(We are identifying 1 = :=
©

¯ : | | = 1ª with [ ] ( ) by
the map [ ] 1 ) Let

˜( ) :=
1

2

Z

( ) (14.38)

then:

380 14 Hilbert Spaces

1. ˜( ) satisfies the ordinary di erential equation

1 ( ˜( )) =
1
2

2˜( ) for (0 1)

2. Recall the general solution to

( ( )) = 2 ( ) (14.39)

may be found by trying solutions of the form ( ) = which then implies
2 = 2 or = ± From this one sees that ˜( ) may be written as
˜( ) = | | + | | for some constants and when 6= 0 If
= 0 the solution to Eq. (14.39) is gotten by simple integration and the

result is ˜( 0) = 0+ 0 ln Since ˜( ) is bounded near the origin for
each it follows that = 0 for all Z

3. So we have shown

| | = ˜( ) =
1

2

Z

( )

and letting 1 in this equation implies

=
1

2

Z

( ) = ˜( )

Therefore,
( ) =

X

Z

˜( ) | | (14.40)

for 1 or equivalently,

( ) =
X

N0

˜( ) +
X

N

˜( )¯

4. Inserting the formula for ˜( ) into Eq. (14.40) gives

( ) =
1

2

Z

Ã

X

Z

| | ( )

!

( ) for all 1

Now by simple geometric series considerations we find, setting =
that
X

Z

| | =
X

=0

+
X

=0

1 = 2Re
X

=0

1

= Re

·

2
1

1
1

¸

= Re

·

1 +

1

¸

= Re

"

¡

1 +
¢ ¡

1
¢

|1 |2
#

= Re

·

1 2 + 2 sin

1 2 cos + 2

¸

(14.41)

=
1 2

1 2 cos + 2
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Putting this altogether we have shown

( ) =
1

2

Z

( ) ( ) =: ( )

=
1

2
Re

Z

1 + ( )

1 ( )
( ) (14.42)

where

( ) :=
1 2

1 2 cos + 2

is the so called Poisson kernel. (The fact that 1
2 Re

R

( ) = 1
follows from the fact that

1

2

Z

( ) = Re
1

2

Z

X

Z

| |

= Re
1

2

X

Z

Z

| | = 1 )

Writing = Eq. (14.42) may be rewritten as

( ) =
1

2
Re

Z

1 +

1
( )

which shows = Re where

( ) :=
1

2

Z

1 +

1
( )

Moreover it follows from Eq. (14.41) that

Im ( ) =
1
Im

Z

sin( )

1 2 cos( ) + 2
( )

=: ( )

where

( ) :=
sin( )

1 2 cos( ) + 2

From these remarks it follows that is the harmonic conjugate of and
˜ =

Exercise 14.80. Show
P

=1
2 = 2 6 by taking ( ) = on [ ] and

computing k k22 directly and then in terms of the Fourier Coe cients ˜ of
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Polar Decomposition of an Operator

In this section and will be Hilbert spaces. Typically and will be
separable, but we will not assume this until it is needed later.

Theorem 15.1. Suppose ( ) := ( ) is a bounded self-adjoint
operator, then

k k = sup
6=0

|( )|
k k2

Moreover if there exists a non-zero element such that

|( )|
k k2 = k k

then is an eigenvector of with = and {±k k}
Proof. Let

:= sup
6=0

|( )|
k k2

We wish to show = k k Since |( )| k kk k k kk k2, we see
k k.

Conversely let and compute

( + ( + )) ( ( ))

= ( ) + ( ) + ( ) + ( )

= 2[( ) + ( )] = 2[( ) + ( )]

= 4Re( )

Therefore, if k k = k k = 1, it follows that

|Re( )|
4

©k + k2 + k k2ª =
4

©

2k k2 + 2k k2ª =

By replacing be where is chosen so that ( ) is real, we find
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|( )| for all k k = k k = 1

Hence
k k = sup

k k=k k=1
|( )|

If \ {0} and k k = |( )| k k2 then, using the Cauchy Schwarz
inequality,

k k = |( )|
k k2

k k
k k k k (15.1)

This implies |( )| = k kk k and forces equality in the Cauchy Schwarz
inequality. So by Theorem 14.2, and are linearly dependent, i.e. =
for some C Substituting this into (15.1) shows that | | = k k Since
is self-adjoint,

k k2 = ( ) = ( ) = ( ) = ( ) = ¯( )

which implies that R and therefore, {±k k}
Definition 15.2. An operator ( ) is said to be positive (more pre-
cisely, non-negative) if = and ( ) 0 for all We say is
strictly positive if is positive and ( ) = 0 i = 0 If ( )
are two self-adjoint operators, we write if 0

Remark 15.3. If ( ) are two self-adjoint operators then i
( ) ( ) for all

Lemma 15.4. Suppose ( ) is a positive operator, then

1. Nul( ) = { : ( ) = 0}
2. Nul( ) = Nul( 2)
3. If ( ) are two positive operators then Nul( + ) = Nul( )
Nul( )

Proof. Items 2. and 3. are fairly easy and will be left to the reader. To
prove Item 1., it su ces to show { : ( ) = 0} Nul( ) since the
reverse inclusion is trivial. For sake of contradiction suppose there exists 6= 0
such that = 6= 0 and ( ) = 0 Then or any 0 + 6= 0 because

Since

( + ( + )) = ( ) + 2 Re( ) + 2( )

= 2 k k2 + 2( )

it follows that ( + ( + )) 0 for 0 su ciently close to zero.
This contradicts the positivity of
The next few results are taken from Reed and Simon [9], see Theorem VI.9

on p. 196 and problems 14 and 15 on p. 217 of [9].
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Proposition 15.5 (Square Roots). Suppose ( ) and 0 Then
there exist a unique ( ) such that 0 and 2 = Moreover, if

( ) commutes with then commutes with as well. (We write
for and call the square root of )

Proof. Existence of By replacing by k k we may assume k k
1 Letting = and we have ( ) = k k2 ( ) from which
it follows that

k k2 ( ) k k2 k k k k2 0

Hence ( ) 0 = and k k 1 by Theorem 15.1.
Recall from Exercise 11.62 that there are 0 such that

P

=1 = 1

1 = 1
X

=1

for all | | 1 (15.2)

Hence let

= :=
X

=1

where the sum is convergent in ( ) Since

¯

¯( )
¯

¯

°

°

°

° k k2 k k k k2 k k2

( ) = k k2
X

=1

( ) k k2
"

1
X

=1

#

= 0

which shows 0 Similarly, since
¡

2
¢

=
¡ ¢

0 and
¡

2 +1
¢

=
¡ ¢

0 for all it follows that

( ) = k k2
X

=1

( ) k k2

so that 0
Letting 0 = 1 and squaring the identity in Eq. (15.2) shows

1 =

Ã

X

=0

!2

=
X

=0

+ =
X

=0

X

+ =

where the sums are absolutely and uniformly convergent for | | 1 From
this we conclude that

X

+ =

=
1 if = 0
1 if = 1
0 otherwise.
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Hence

³ ´2

=

Ã

X

=0

!2

=
X

=0

+

=
X

=0

X

+ =

= =

as desired and commutes with any operator commuting with
Uniqueness. Suppose 0 and 2 = Then [ ] = [ 2] = 0

and [ ] = 0 Therefore,

0 = 2
³ ´2

=
³ ´³

+
´

from which it follows
³ ´

= 0 on Ran( ) where := + Using
Lemma 15.4,

Ran( ) = Nul( ) = Nul( ) Nul( )

and hence = 0 on Ran( ) Therefore = 0 on Ran( )

Ran( ) = and this completes the proof.
Second proof of uniqueness. This proof is more algebraic and avoids

using Lemma 15.4. As before,

0 =
£

2 2
¤

( ) = ( ) ( + ) ( )

= ( ) ( ) + ( ) ( )

and since both terms in the last line of this equation are positive it follows
that each term individually is zero, see Theorem 15.1. Subtracting these two
terms then shows ( )3 = 0 which implies ( )4 = 0 This completes

the proof since, by Proposition 14.16, k k4 =
°

°

°
( )4

°

°

°
= 0

Definition 15.6. The absolute value of an operator ( ) is defined
to be

| | := ( )

Proposition 15.7 (Properties of the Square Root). Suppose that
and are positive operators on and k k ( ) 0 as then

in ( ) also. Moreover, and are general bounded operators
on and in the operator norm then | | | |
Proof. With out loss of generality, assume that k k 1 for all This

implies also that that k k 1 Then
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p

=
X

=1

{( ) ( ) }

and hence

k
p

k
X

=1

k( ) ( ) k (15.3)

For the moment we will make the additional assumption that where
(0 1) Then 0 (1 ) and in particular k k ( ) (1 )
Now suppose that are operators on then =

( ) + ( ) and hence

k k k kk k+ k kk k
Setting = ( ) 1 ( ) and = ( ) 1 in
this last inequality gives

k( ) ( ) k
k kk( ) 1k+ k( )kk( ) 1 ( ) 1k
k k(1 ) 1 + (1 )k( ) 1 ( ) 1k (15.4)

It now follows by induction that

k( ) ( ) k (1 ) 1k k
Inserting this estimate into (15.3) shows that

k
p

k
X

=1

(1 ) 1k k

=
1

2

1
p

1 (1 )
k k = 1

2

1 k k 0

Therefore we have shown if for all and in norm then
in norm.

For the general case where 0 we find that for all 0

lim
p

+ = + (15.5)

By the spectral theorem1

1 It is possible to give a more elementary proof here. Indeed, assume further that
k k 1 then for (0 1 ) k + k P

=1 k( + ) k
But

k( + ) k
X

=1

Ã !

k k
X

=1

Ã !

k k = (k k+ ) k k

so that k + k pk k+ pk k 0 as 0 uniformly in 0
such that k k 1
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k + k max
( )
| + |

max
0 k k

| + | 0 as 0

Since the above estimates are uniform in 0 such that k k is bounded, it
is now an easy matter to conclude that Eq. (15.5) holds even when = 0
Now suppose that in ( ) and and are general operators.

Then in ( ) So by what we have already proved,

| |
p

| | in ( ) as

Definition 15.8. An operator ( ) is a partial isometry if
|Nul( ) : Nul( ) is an isometry. We say Nul( ) is the initial space
and Ran( ) is the final subspace of (The reader should verify that Ran( )
is a closed subspace.) Let and denote orthogonal projections onto the
initial final subspaces.

Lemma 15.9. Let ( ) then is a partial isometry i and
are orthogonal projections. Moreover if is a partial isometry then =
and =

Proof. Suppose is a partial isometry then relative to the decompositions
of and as = Nul( ) Nul( ) and = Ran( ) Ran( ) has the
block diagonal form

=

µ

0 0
0 0

¶

where 0 : Nul( ) Ran( ) is a unitary map. Hence

=

µ

0 0
0 0

¶µ

0 0
0 0

¶

=

µ

0 0 0
0 0

¶

=

µ

Ran( ) 0
0 0

¶

=

and similarly,

=

µ

0 0 0
0 0

¶

=

µ

Nul( ) 0
0 0

¶

=

Now suppose that ( ) and := ( ) and :=
( ) are orthogonal projection maps. Notice that

Ran( ) = Nul( ) = Nul( )

Hence if Nul( )

k k2 = ( ) = ( ) = k k2

which shows is a partial isometry.
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Theorem 15.10 (Polar Decomposition). Let ( ) Then

1. there exists a partial isometry ( ) such that = | | and is
unique if we further require Nul( ) = Nul( )

2. If ( ) is a positive operator and ( ) is a partial isometry
such that = and Nul( ) = Ran( ) then = | | and is the
isometry in item 1.

Proof. Suppose that and are as in item 2., then

= = = 2

Therefore by Proposition 15.5, = | | If there exists ( ) such that
= | | it is clear that is uniquely determined on Ran(| |) by requiring

| | = for all (15.6)

Since k k2 = ( ) = k| | k2 it follows that defining on Ran(| |) by
Eq. (15.6) is well defined and : Ran(| |) is an isometry. By the B.L.T.
Theorem, we may extend uniquely to an isometry from Ran(| |) and

make into a partial isometry by setting = 0 on Ran(| |) Since this

uniquely determines Nul( ) = Ran(| |) and

Ran(| |) = Nul(| |) = Nul(| |2) = Nul( ) = Nul( )

the proof is complete.

Remark 15.11.When = we will see using the spectral theorem that is
a strong limit of polynomials in and i.e. is the von Neumann algebra
generated by To prove this let ( ) := min( 1 1) for 0 Then
notice that := (| |) converges strongly to as Since may be
uniformly approximated by polynomials, is the norm limit of polynomials
in and | | Finally | | is the norm limit of polynomials in and so
is the norm limit of polynomias in and Moreover these polynomials are
of the form ( )



16

Compact Operators

Proposition 16.1. Let be a finite dimensional subspace of a Hilbert space
then

1. is complete (hence closed).
2. Closed bounded subsets of are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonor-
mal basis { 1 } of Define : C to be the unique unitary
map such that = where is the ith standard basis vector in C It
now follows that is complete and that closed bounded subsets of are
compact since the same is true for C

Definition 16.2. A bounded operator : is compact if maps
bounded sets into precompact sets, i.e. ( ) is compact in where := {
: k k 1} is the unit ball in Equivalently, for all bounded sequences

{ } =1 the sequence { } =1 has a convergent subsequence in

Notice that if dim( ) = and : is invertible, then is not
compact.

Definition 16.3. : is said to have finite rank if Ran( ) is
finite dimensional.

Corollary 16.4. If : is a finite rank operator, then is compact.
In particular if either dim( ) or dim( ) then any bounded operator
: is finite rank and hence compact.

Example 16.5. Let ( ) be a measure space, = 2( ) and

( )
X

=1

( ) ( )

where
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2( ) for = 1

Define ( )( ) =
R

( ) ( ) ( ) then : 2( ) 2( ) is a
finite rank operator and hence compact.

Lemma 16.6. Let K := K( ) denote the compact operators from to
Then K( ) is a norm closed subspace of ( )

Proof. The fact that K is a vector subspace of ( ) will be left to the
reader. Now let : be compact operators and : be a
bounded operator such that lim k k = 0 We will now show
is compact.
First Proof. Given 0 choose = ( ) such that k k

Using the fact that is precompact, choose a finite subset such
that min k k for all ( ) Then for = 0 ( )
and

k k = k( ) 0 + ( 0 ) + ( ) k
2 + k 0 k

Therefore min k k 3 which shows ( ) is 3 bounded for all
0 ( ) is totally bounded and hence precompact.
Second Proof. Suppose { } =1 is a bounded sequence in By com-

pactness, there is a subsequence
©

1
ª

=1
of { } =1 such that

©

1
1
ª

=1
is convergent in Working inductively, we may construct subsequences

{ } =1

©

1
ª

=1

©

2
ª

=1
· · · { } =1

such that { } =1 is convergent in for each By the usual Cantor’s
diagonalization procedure, let := then { } =1 is a subsequence of
{ } =1 such that { } =1 is convergent for all Since

k k k( ) k+ k ( )k+ k( ) )k
2 k k+ k ( )k

lim sup k k 2 k k 0 as

which shows { } =1 is Cauchy and hence convergent.

Proposition 16.7. A bounded operator : is compact i there exists
finite rank operators, : such that k k 0 as

Proof. Since ( ) is compact it contains a countable dense subset and
from this it follows that ( ) is a separable subspace of Let { } be an
orthonormal basis for ( ) and =

P

=1
( ) be the orthogonal

projection of onto span{ } =1 Then lim k k = 0 for all
( )
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Define — a finite rank operator on For sake of contradiction
suppose that lim sup k k = 0 in which case there exists
such that k( ) k for all Since is compact, by passing

to a subsequence if necessary, we may assume { } =1 is convergent in
Letting lim

k( ) k = k(1 ) k
k(1 )( )k+ k(1 ) k
k k+ k(1 ) k 0 as

But this contradicts the assumption that is positive and hence we must
have lim k k = 0 i.e. is an operator norm limit of finite rank
operators. The converse direction follows from Corollary 16.4 and Lemma
16.6.

Corollary 16.8. If is compact then so is

Proof. First Proof. Let = be as in the proof of Proposition
16.7, then = is still finite rank. Furthermore, using Proposition
14.16,

k k = k k 0 as

showing is a limit of finite rank operators and hence compact.
Second Proof. Let { } =1 be a bounded sequence in then

k k2 = ( ( )) 2 k ( )k
(16.1)

where is a bound on the norms of the Since { } =1 is also a bounded
sequence, by the compactness of there is a subsequence { 0 } of the { }
such that 0 is convergent and hence by Eq. (16.1), so is the sequence
{ 0 }
Corollary 16.9. If ( ) then | | is compact.
Proof. Since is compact then any polynomial in is compact. Since

| | is the norm limit of polynomials in it follows that | | is compact
as well.

16.1 Hilbert Schmidt and Trace Class Operators

Proposition 16.10. Let and be a separable Hilbert spaces, :
be a bounded linear operator, { } =1 and { } =1 be orthonormal basis for
and respectively. Then:
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1.
P

=1 k k2 = P

=1 k k2 allowing for the possibility that the
sums are infinite. In particular the Hilbert Schmidt norm of

k k2 :=
X

=1

k k2

is well defined independent of the choice of orthonormal basis { } =1

We say : is a Hilbert Schmidt operator if k k and
let ( ) denote the space of Hilbert Schmidt operators from to

2. For all ( ) k k = k k and

k k k k := sup {k k : 3 k k = 1}

3. The set ( ) is a subspace of K( ) and k·k is a norm on
( ) for which ( ( ) k·k ) is a Hilbert space. The inner prod-

uct on ( ) is given by

( 1 2) =
X

=1

( 1 2 ) (16.2)

4. Let :=
P

=1( ) be orthogonal projection onto span { : }
and for ( ) let := Then

k k2 k k2 0 as

which shows that finite rank operators are dense in ( ( ) k·k )
5. If is another Hilbert space and : and : are bounded
operators, then

k k k k k k and k k k k k k

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

X

=1

k k2 =
X

=1

X

=1

|( )|2

=
X

=1

X

=1

|( )|2 =
X

=1

k k2

This proves k k is well defined independent of basis and that k k =
k k For \ {0} k k may be taken to be the first element in an
orthonormal basis for H and hence

°

°

°

° k k
°

°

°

°

k k
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Multiplying this inequality by k k shows k k k k k k and hence
k k k k
Item 3. For 1 2 ( )

k 1 + 2k =

v

u

u

t

X

=1

k 1 + 2 k2

v

u

u

t

X

=1

[k 1 k+ k 2 k]2

= k{k 1 k+ k 2 k} =1k 2

k{k 1 k} =1k 2
+ k{k 2 k} =1k 2

= k 1k + k 2k

From this triangle inequality and the homogeneity properties of k·k we
now easily see that ( ) is a subspace of K( ) and k·k is a norm
on ( ) Since

X

=1

|( 1 2 )|
X

=1

k 1 k k 2 k
v

u

u

t

X

=1

k 1 k2
v

u

u

t

X

=1

k 2 k2 = k 1k k 2k

the sum in Eq. (16.2) is well defined and is easily checked to define an inner
product on ( ) such that k k2 = ( 1 2) To see that ( )
is complete in this inner product suppose { } =1 is a k·k — Cauchy se-
quence in ( ) Because ( ) is complete, there exists ( )
such that k k 0 as Since

X

=1

k( ) k2 = lim
X

=1

k( ) k2 lim sup k k

k k2 =
X

=1

k( ) k2 = lim
X

=1

k( ) k2

lim sup k k 0 as

Item 4. Simply observe,

k k2 k k2 =
X

k k2 0 as
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Item 5. For ( ) and ( ) then

k k2 =
X

=1

k k2 k k2
X

=1

k k2 = k k2 k k2

and for ( )

k k = k k k k k k = k k k k

Remark 16.11. The separability assumptions made in Proposition 16.10 are
unnecessary. In general, we define

k k2 =
X

k k2

where is an orthonormal basis. The same proof of Item 1. of
Proposition 16.10 shows k k is well defined and k k = k k
If k k2 then there exists a countable subset 0 such that

= 0 if \ 0 Let 0 := span( 0) and 0 := ( 0) Then
( ) 0 |

0
= 0 and hence by applying the results of Proposition

16.10 to | 0 : 0 0 one easily sees that the separability of and are
unnecessary in Proposition 16.10.

Exercise 16.12. Suppose that ( ) is a —finite measure space such that
= 2( ) is separable and : × R is a measurable function, such

that

k k2 2( × )

Z

×
| ( )|2 ( ) ( )

Define, for

( ) =

Z

( ) ( ) ( )

when the integral makes sense. Show:

1. ( ) is defined for —a.e. in
2. The resulting function is in and : is linear.
3. k k = k k 2( × ) (This implies ( ) )

Solution 16.13 (16.12). Since

Z

( )

µ
Z

| ( ) ( )| ( )

¶2

Z

( )

µ
Z

| ( )|2 ( )

¶µ
Z

| ( )|2 ( )

¶

k k22 k k22 (16.3)
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we learn is almost everywhere defined and that The linearity
of is a consequence of the linearity of the Lebesgue integral. Now suppose
{ } =1 is an orthonormal basis for From the estimate in Eq. (16.3),
( ·) for — a.e. and therefore

k k2 =
X

=1

Z

( )

¯

¯

¯

¯

Z

( ) ( ) ( )

¯

¯

¯

¯

2

=
X

=1

Z

( )
¯

¯( ¯( ·))¯¯2 =
Z

( )
X

=1

¯

¯( ¯( ·))¯¯2

=

Z

( )
°

°¯( ·)°°2 =
Z

( )

Z

( ) | ( )|2 = k k22
Example 16.14. Suppose that R is a bounded set, then the
operator : 2( ) 2( ) defined by

( ) :=

Z

1

| | ( )

is compact.

Proof. For 0 let

( ) :=

Z

1

| | + ( ) = [ (1 )] ( )

where ( ) = 1
| | + 1 ( ) with R a su ciently large ball such that

Since it follows that

0 = |·| 1 1(R )

Hence it follows by Proposition 11.12 that

k( ) k 2( ) k( 0 ) (1 )k 2(R )

k( 0 )k 1(R ) k1 k 2(R )

= k( 0 )k 1(R ) k k 2( )

which implies

k k ( 2( )) k 0 k 1(R )

=

Z

¯

¯

¯

¯

1

| | +
1

| |
¯

¯

¯

¯

0 as 0 (16.4)

by the dominated convergence theorem. For any 0

Z

×

·

1

| | +
¸2

and hence is Hilbert Schmidt and hence compact. By Eq. (16.4),
as 0 and hence it follows that is compact as well.
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16.2 The Spectral Theorem for Self Adjoint Compact
Operators

Lemma 16.15. Suppose : is a bounded operator, then Nul( ) =
Ran( ) and Ran( ) = Nul( ) Moreover if = and is a —
invariant subspace (i.e. ( ) ) then is — invariant.

Proof. An element is in Nul( ) i 0 = ( ) = ( ) for
all which happens i Ran( ) Because Ran( ) = Ran( )
Ran( ) = Nul( )
Now suppose ( ) and then

( ) = ( ) = 0 for all

which shows
For the rest of this section, K( ) := K( ) will be a self-adjoint

compact operator or S.A.C.O. for short.

Example 16.16 (Model S.A.C.O.). Let = 2 and be the diagonal matrix

=

1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...
...
. . .
. . .

where lim | | = 0 and R Then is a self-adjoint compact operator.
(Prove!)

The main theorem of this subsection states that up to unitary equivalence,
Example 16.16 is essentially the most general example of an S.A.C.O.

Theorem 16.17. Let be a S.A.C.O., then either = k k or = k k is
an eigenvalue of

Proof.Without loss of generality we may assume that is non-zero since
otherwise the result is trivial. By Theorem 15.1, there exists such that
k k = 1 and

|( )|
k k2 = |( )| k k as (16.5)

By passing to a subsequence if necessary, we may assume that :=
lim ( ) exists and {±k k} By passing to a further subse-
quence if necessary, we may assume, using the compactness of that is
convergent as well. We now compute:
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0 k k2 = k k2 2 ( ) + 2

2 2 ( ) + 2

2 2 2 + 2 = 0 as

Hence
0 as (16.6)

and therefore
lim =

1
lim

exists. By the continuity of the inner product, k k = 1 6= 0 By passing to the
limit in Eq. (16.6) we find that =

Lemma 16.18. Let : be a self-adjoint operator and be a —
invariant subspace of i.e. ( ) Then is also a — invariant
subspace, i.e. ( )

Proof. Let and then and hence

0 = ( ) = ( ) for all

Thus

Theorem 16.19 (Spectral Theorem). Suppose that : is a non-
zero S.A.C.O., then

1. there exists at least one eigenvalue {±k k}
2. There are at most countable many non-zero eigenvalues, { } =1 where

= is allowed. (Unless is finite rank, will be infinite.)
3. The ’s (including multiplicities) may be arranged so that | | | +1|
for all If = then lim | | = 0 (In particular any eigenspace
for with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors { } =1 can be chosen to be an O.N. set such that =
span{ } Nul( )

5. Using the { } =1 above,

=
X

=1

( ) for all

6. The spectrum of is ( ) = {0} =1{ }
Proof. We will find ’s and ’s recursively. Let 1 {±k k} and

1 such that 1 = 1 1 as in Theorem 16.17. Take 1 = span( 1) so
( 1) 1 By Lemma 16.18, 1 1 Define 1 : 1 1 via
1 = |

1
Then 1 is again a compact operator. If 1 = 0 we are done.

If 1 6= 0 by Theorem 16.17 there exists 2 {±k k1} and 2 1

such that k 2k = 1 and 1 2 = 2 = 2 2 Let 2 span( 1 2) Again
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( 2) 2 and hence 2 |
2
: 2 2 is compact. Again if 2 = 0

we are done.
If 2 6= 0. Then by Theorem 16.17 there exists 3 {±k k2} and 3 2

such that k 3k = 1 and 2 3 = 3 = 3 3 Continuing this way indefinitely
or until we reach a point where = 0, we construct a sequence { } =1

of eigenvalues and orthonormal eigenvectors { } =1 such that | | | +1|
with the further property that

| | = sup
{ 1 2 1}

k k
k k (16.7)

If = then lim | | = 0 for if not there would exist 0 such that
| | 0 for all In this case { } =1 is sequence in bounded by 1

By compactness of there exists a subsequence such that =
is convergent. But this is impossible since { } is an orthonormal set. Hence
we must have that = 0
Let span{ } =1 with = possible. Then ( ) and hence

( ) Using Eq. (16.7),

k | k k | k = | | 0 as

showing | 0.
Define 0 to be orthogonal projection onto Then for

= 0 + (1 0) = 0 +
X

=1

( )

and

= 0 +
X

=1

( ) =
X

=1

( )

Since { } ( ) and ( ) is closed, it follows that 0 ( ) and hence
{ } =1 {0} ( ) Suppose that { } =1 {0} and let be the
distance between and { } =1 {0} Notice that 0 because lim =
0 A few simple computations show that:

( ) =
X

=1

( )( ) 0

( ) 1 exists,

( ) 1 =
X

=1

( )( ) 1 1
0

and
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k( ) 1 k2 =
X

=1

|( )|2 1

| |2 +
1

| |2 k 0 k2

µ

1
¶2
Ã

X

=1

|( )|2 + k 0 k2
!

=
1
2
k k2

We have thus shown that ( ) 1 exists, k( ) 1k 1 and
hence ( )

16.3 Structure of Compact Operators

Theorem 16.20. Let : be a compact operator. Then there exists
N { } orthonormal subsets { } =1 and { } =1 and a

sequences { } =1 R+ such that 1 2 lim = 0 if =
k k 1 for all and

=
X

=1

( ) for all (16.8)

Proof. Let = | | be the polar decomposition of Then | | is self-
adjoint and compact, by Corollary 16.9, and hence by Theorem 16.19 there
exists an orthonormal basis { } =1 for Nul(| |) = Nul( ) such that
| | = 1 2 and lim = 0 if = For

= | |
X

=1

( ) =
X

=1

( ) | | =
X

=1

( )

which is Eq. (16.8) with :=

16.4 Trace Class Operators

See B. Simon [11] for more details and ideals of compact operators.

Theorem 16.21. Let ( ) be a non-negative operator, { } =1 be an
orthonormal basis for and

tr( ) :=
X

=1

( )

Then tr( ) =
°

°

°

°

°

°

2

[0 ] is well defined independent of the choice

of orthonormal basis for Moreover if tr( ) then is a compact
operator.
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Proof. Let := then

tr( ) =
X

=1

( ) =
X

=1

¡

2
¢

=
X

=1

( ) = k k2

This shows tr( ) is well defined and that tr( ) =
°

°

°

°

°

°

2

If tr( )

then is Hilbert Schmidt and hence compact. Therefore =
³ ´2

is

compact as well.

Definition 16.22. An operator ( ) is trace class if tr(| |) =
tr( )

Proposition 16.23. If ( ) is trace class then is compact.

Proof. By the polar decomposition Theorem 15.10, = | | where is
a partial isometry and by Corollary 16.9 | | is also compact. Therefore is
compact as well.

Proposition 16.24. If ( ) is trace class and { } =1 is an orthonor-
mal basis for then

tr( ) :=
X

=1

( )

is absolutely convergent and the sum is independent of the choice of orthonor-
mal basis for

Proof. Let = | | be the polar decomposition of and { } =1 be an
orthonormal basis of eigenvectors for Nul(| |) = Nul( ) such that

| | =

with 0 and
P

=1 Then

X

|( )| =
X

|(| | )| =
X

¯

¯

¯

¯

¯

X

(| | ) ( )

¯

¯

¯

¯

¯

=
X

¯

¯

¯

¯

¯

X

( ) ( )

¯

¯

¯

¯

¯

X X

|( ) ( )|

=
X

|( )|
X

Moreover,
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X

( ) =
X

(| | ) =
XX

( ) ( )

=
X X

( ) ( )

=
X

( )

showing
P

( ) =
P

( ) which proves tr( ) is well defined
independent of basis.

Remark 16.25. Suppose is a compact operator written in the form

=
X

=1

( ) for all (16.9)

where { } =1 { } =1 are bounded sets and C such that
P

=1 | | Then is trace class and

tr( ) =
X

=1

( )

BRUCE STOP Indeed, =
P

=1
¯ ( ) and hence

=
X

=1

¯ ( )

=
X

=1

( ) for all (16.10)

We will say K( ) is trace class if

tr( ) :=
X

=1

in which case we define

tr( ) =
X

=1

( )

Notice that if { } =1 is any orthonormal basis in (or for the Ran( ) if
is not separable) then

X

=1

( ) =
X

=1

(
X

=1

( ) ) =
X

=1

X

=1

( )( )

=
X

=1

( )
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where is orthogonal projection onto Span( 1 ) Therefore by dom-
inated convergence theorem ,

X

=1

( ) = lim
X

=1

( ) =
X

=1

lim ( )

=
X

=1

( ) = tr( )

16.5 Fredholm Operators

Lemma 16.26. Let be a closed subspace and be a fi-
nite dimensional subspace. Then + is closed as well. In particular if
codim( ) dim( ) and is a subspace such that
then is closed and codim( )

Proof. Let : be orthogonal projection and let 0 := ( )
Since dim( 0) dim( ) 0 is still closed. Also it is easily seen that

+ = 0 from which it follows that + is closed because

{ = + } 0 is convergent i { } and { } 0 are
convergent.
If codim( ) and there is a finite dimensional subspace

such that = + and so by what we have just proved, is
closed as well. It should also be clear that codim( ) codim( )

Lemma 16.27. If : is a finite rank operator, then there exists
{ } =1 and { } =1 such that

1. =
P

=1( ) for all
2. =

P

=1( ) for all in particular is still finite rank.
For the next two items, further assume =

3. dimNul( + )
4. dim coker( + ) Ran( + ) is closed and

Ran( + ) = Nul( + )

Proof.

1. Choose { }1 to be an orthonormal basis for Ran( ). Then for

=
X

=1

( ) =
X

=1

( ) =
X

=1

( )

where



16.5 Fredholm Operators 405

2. Item 2. is a simple computation left to the reader.
3. SinceNul( + ) = { | = } Ran( ) it is finite dimensional.
4. Since = ( + ) Ran( + )for Nul( ) Nul( ) Ran( + )
Since { 1 2 } Nul( ) = Nul( ) + span ({ 1 2 })
and thus codim (Nul( )) From these comments and Lemma 16.26,
Ran( + ) is closed and codim (Ran( + )) codim (Nul( ))
The assertion that Ran( + ) = Nul( + ) is a consequence of Lemma
16.15 below.

Definition 16.28. A bounded operator : is Fredholmi the
dimNul( ) dim coker( ) and Ran( ) is closed in (Recall:
coker( ) := Ran( ).) The indexof is the integer,

index( ) = dimNul( ) dim coker( ) (16.11)

= dimNul( ) dimNul( ) (16.12)

Notice that equations (16.11) and (16.12) are the same since, (using
Ran( ) is closed)

= Ran( ) Ran( ) = Ran( ) Nul( )

so that coker( ) = Ran( ) = Nul( )

Lemma 16.29. The requirement that Ran( ) is closed in Definition 16.28 is
redundant.

Proof. By restricting to Nul( ) we may assume without loss of gen-
erality that Nul( ) = {0} Assuming dim coker( ) there exists a finite
dimensional subspace such that = Ran( ) Since is finite
dimensional, is closed and hence = Let : be the
orthogonal projection operator onto and let : which is
continuous, being the composition of two bounded transformations. Since is
a linear isomorphism, as the reader should check, the open mapping theorem
implies the inverse operator 1 : is bounded.
Suppose that is a sequence such that lim ( ) =:

exists in Then by composing this last equation with we find that
lim ( ) = ( ) exists in Composing this equation with 1 shows
that := lim = 1 ( ) exists in Therefore, ( ) ( )
Ran( ) which shows that Ran( ) is closed.

Remark 16.30. It is essential that the subspace Ran( ) in Lemma 16.29
is the image of a bounded operator, for it is not true that every finite codi-
mensional subspace of a Banach space is necessarily closed. To see this
suppose that is a separable infinite dimensional Banach space and let
be an algebraic basis for which exists by a Zorn’s lemma argument. Since
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dim( ) = and is complete, must be uncountable. Indeed, if were
countable we could write = =1 where are finite dimensional (nec-
essarily closed) subspaces of This shows that is the countable union of
nowhere dense closed subsets which violates the Baire Category theorem.
By separability of there exists a countable subset 0 such that the

closure of 0 span( 0) is equal to Choose 0 \ 0 and let
span( \ { 0}) Then 0 so that = ¯

0 = ¯ while codim( ) = 1
Clearly this can not be closed.

Example 16.31. Suppose that and are finite dimensional Hilbert spaces
and : is Fredholm. Then

index( ) = dim( ) dim( ) (16.13)

The formula in Eq. (16.13) may be verified using the rank nullity theorem,

dim( ) = dimNul( ) + dimRan( )

and the fact that

dim( Ran( )) = dim( ) dimRan( )

Theorem 16.32. A bounded operator : is Fredholm i there exists
a bounded operator : such that and are both compact
operators. (In fact we may choose so that and are both finite
rank operators.)

Proof. ( ) Suppose is Fredholm, then : Nul( ) Ran( ) is a
bijective bounded linear map between Hilbert spaces. (Recall that Ran( ) is
a closed subspace of and hence a Hilbert space.) Let ˜ be the inverse of this
map–a bounded map by the open mapping theorem. Let : Ran( )
be orthogonal projection and set ˜ . Then = ˜ =
˜ = where is the orthogonal projection onto Nul( ). Similarly,

= ˜ = ( ) Because and are finite rank projections
and hence compact, both and are compact.
( ) We first show that the operator : may be modified so

that and are both finite rank operators. To this end let
( is compact) and choose a finite rank approximation 1 to

such that = 1 + E where kEk 1. Define : to be the operator
( + E) 1 Since = ( + E) + 1

= ( + E) 1 = + ( + E) 1
1 = +

where is a finite rank operator. Similarly there exists a bounded operator
: and a finite rank operator such that = + Notice

that = + on one hand and = + on the
other. Therefore, = =: is a finite rank operator.
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Therefore = ( + ) = + + so that = is
still a finite rank operator. Thus we have shown that there exists a bounded
operator ˜ : such that ˜ and ˜ are both finite rank
operators.
We now assume that is chosen such that = 1 = 2

are finite rank. Clearly Nul( ) Nul( ) = Nul( + 1) and Ran( )
Ran( ) = Ran( + 2). The theorem now follows from Lemma 16.26 and
Lemma 16.27.

Corollary 16.33. If : is Fredholm then is Fredholm and
index( ) = index( )

Proof. Choose : such that both and are compact.
Then and are compact which implies that is Fredholm.
The assertion, index( ) = index( ) follows directly from Eq. (16.12).

Lemma 16.34. A bounded operator : is Fredholm if and only if
there exists orthogonal decompositions = 1 2 and = 1 2 such
that

1. 1 and 1 are closed subspaces,
2. 2 and 2 are finite dimensional subspaces, and
3. has the block diagonal form

=

µ

11 12

21 22

¶

:
1 1

2 2

(16.14)

with 11 : 1 1 being a bounded invertible operator.

Furthermore, given this decomposition, index( ) = dim( 2) dim( 2).

Proof. If is Fredholm, set 1 = Nul( ) 2 = Nul( ) 1 = Ran( ),

and 2 = Ran( ) . Then =

µ

11 0
0 0

¶

, where 11 | 1 : 1 1 is

invertible.
For the converse, assume that is given as in Eq. (16.14). Let

µ

1
11 0
0 0

¶

then

=

µ

1
11 12

0 0

¶

=

µ

0
0

¶

+

µ

0 1
11 12

0

¶

so that is finite rank. Similarly one shows that is finite rank,
which shows that is Fredholm.

Now to compute the index of notice that
µ

1

2

¶

Nul( ) i
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11 1 + 12 2 = 0

21 1 + 22 2 = 0

which happens i 1 =
1

11 12 2 and ( 21
1

11 12 + 22) 2 = 0 Let
( 22 21

1
11 12) : 2 2 then the mapping

2 Nul( )

µ

1
11 12 2

2

¶

Nul( )

is a linear isomorphism of vector spaces so that Nul( ) = Nul( ) Since

=

µ

11 21

12 22

¶ 1 1

2 2

similar reasoning implies Nul( ) = Nul( ) This shows that index( ) =
index( ) But we have already seen in Example 16.31 that index( ) =
dim 2 dim 2

Proposition 16.35. Let be a Fredholm operator and be a compact op-
erator from Further assume : (where is another Hilbert
space) is also Fredholm. Then

1. the Fredholm operators form an open subset of the bounded operators.
Moreover if E : is a bounded operator with kEk su ciently small
we have index( ) =index( + E)

2. + is Fredholm and index( ) = index( + )
3. is Fredholm and index( ) = index( ) + index( )

Proof.

1. We know may be written in the block form given in Eq. (16.14) with
11 : 1 1 being a bounded invertible operator. Decompose E into
the block form as

E =
µE11 E12
E21 E22

¶

and choose kEk su ciently small such that kE11k is su ciently small to
guarantee that 11 + E11 is still invertible. (Recall that the invertible
operators form an open set.) Thus + E =

µ

11 + E11
¶

has the block

form of a Fredholm operator and the index may be computed as:

index( + E) = dim 2 dim 2 = index( )

2. Given : compact, it is easily seen that + is still Fredholm.
Indeed if : is a bounded operator such that 1 and
2 are both compact, then ( + ) = 1 + and
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( + ) = 2 + are both compact. Hence + is Fredholm
by Theorem 16.32. By item 1., the function ( ) index( + ) is a
continuous locally constant function of R and hence is constant. In
particular, index( + ) = (1) = (0) = index( )

3. It is easily seen, using Theorem 16.32 that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3.
For this let 1 Nul( ) 2 Nul( ) 1 Ran( ) = ( 1) and
2 Ran( ) = Nul( ) Then decomposes into the block form:

=

µ

˜ 0
0 0

¶

:
1 1

2 2

where ˜ = | 1 : 1 1 is an invertible operator. Let 1 ( 1)
and 2 1 = ( 1) Notice that 1 = ( 1) = ( 1) where
: 1 is orthogonal projection onto 1 Since 1 is closed

and 2 is finite dimensional, is Fredholm. Hence is Fredholm and
1 = ( 1) is closed in and is of finite codimension. Using the above
decompositions, we may write in the block form:

=

µ

11 12

21 22

¶

:
1 1

2 2

Since =

µ

0 12

21 22

¶

: is a finite rank operator and hence

: is finite rank, index( ) = index( ) and index(
) = index( ) Hence without loss of generality we may assume that

has the form =

µ

˜ 0
0 0

¶

( ˜ = 11) and hence

=

µ

˜ ˜ 0
0 0

¶

:
1 1

2 2

We now compute the index( ) Notice that Nul( ) = Nul( ˜) 2 and
Ran( ) = ˜( 1) = 1 So

index( ) = index( ˜) + dim( 2) dim( 2)

Similarly,

index( ) = index( ˜ ˜) + dim( 2) dim( 2)

and as we have already seen
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index( ) = dim( 2) dim( 2)

Therefore,

index( ) index( ) index( ) = index( ˜ ˜) index( ˜)

Since ˜ is invertible, Ran( ˜) = Ran( ˜ ˜) and Nul( ˜) = Nul( ˜ ˜) Thus
index( ˜ ˜) index( ˜) = 0 and the theorem is proved.

16.6 Tensor Product Spaces

References for this section are Reed and Simon [9] (Volume 1, Chapter VI.5),
Simon [12], and Schatten [10]. See also Reed and Simon [8] (Volume 2 § IX.4
and §XIII.17).
Let and be separable Hilbert spaces and will denote the

usual Hilbert completion of the algebraic tensors Recall that the
inner product on is determined by ( 0 0) = ( 0)( 0) The
following proposition is well known.

Proposition 16.36 (Structure of ). There is a bounded linear map
: ( ) determined by

( ) 0 ( 0) for all 0 and

Moreover ( ) = ( )– the Hilbert Schmidt operators from to
The map : ( ) is unitary equivalence of Hilbert spaces.

Finally, any may be expressed as

=
X

=1

(16.15)

where { } and { } are orthonormal sets in and respectively and
{ } R such that k k2 =P | |2

Proof. Let
P

where { } and { } are orthonormal bases
for and respectively and { } R such that k k2 = P | |2
Then evidently, ( )

P

( ) and

k ( ) k2 =
X

|
X

( )|2
XX

| |2|( )|2

XX

| |2k k2

Thus : ( ) is bounded. Moreover,
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k ( )k2
X

k ( ) k2 =
X

| |2 = k k2

which proves the is an isometry.
We will now prove that is surjective and at the same time prove Eq.

(16.15). To motivate the construction, suppose that = ( ) where is
given as in Eq. (16.15). Then

= (
X

=1

) (
X

=1

) = (
X

=1

2 )

That is { } is an orthonormal basis for (nul ) with = 2

Also = so that = 1

We will now reverse the above argument. Let ( ) Then
is a self-adjoint compact operator on Therefore there is an orthonormal
basis { } =1 for the (nul ) which consists of eigenvectors of Let

(0 ) such that = 2 and set = 1 Notice that

( ) = ( 1 1 )

= ( 1 1 ) = ( 1 1 2 ) =

so that { } is an orthonormal set in Define

=
X

=1

and notice that ( ) = = for all and ( ) = 0 for all
nul = nul . That is ( ) = Therefore is surjective and Eq.

(16.15) holds.

Notation 16.37 In the future we will identify with ( )
( ) and drop from the notation. So that with this notation we have

( ) 0 = ( 0)

Let we set k k1 tr tr
p

( ) ( ) and we let

1 { : k k1 }

We will now compute k k1 for described as in Eq. (16.15). First
notice that =

P

=1 and

=
X

=1

2

Hence =
P

=1 | | and hence k k1 =
P

=1 | | Also notice
that k k2 =P =1 | |2 and k k = max | | Since
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k k21 = {
X

=1

| |}2
X

=1

| |2 = k k2

we have the following relations among the various norms,

k k k k k k1 (16.16)

Proposition 16.38. There is a continuous linear map : 1 R such
that ( ) = ( ) for all If 1 then

=
X

( ) (16.17)

where { } is any orthonormal basis for Moreover, if 1 is
positive, i.e. ( ) is a non-negative operator, then k k1 =
Proof. Let 1 be given as in Eq. (16.15) with

P

=1 | | =
k k1 Then define

P

=1 ( ) and notice that | |
P | | = k k1 which shows that is a contraction on 1 (Using the
universal property of it is easily seen that is well defined.) Also
notice that for Z+ that

X

=1

( ) =
X

=1

X

=1

( ) (16.18)

=
X

=1

( ) (16.19)

where denotes orthogonal projection onto span{ } =1 Since | (
| | and P =1 | | = k k1 we may let in Eq. (16.19) to find
that

X

=1

( ) =
X

=1

( ) =

This proves Eq. (16.17).
For the final assertion, suppose that 0 Then there is an orthonormal

basis { } =1 for the (nul ) which consists of eigenvectors of That is
=
P

and 0 for all Thus =
P

and k k1 =
P

Proposition 16.39 (Noncommutative Fatou’ s Lemma). Let be a
sequence of positive operators on a Hilbert space and weakly as

then
tr lim inf tr (16.20)

Also if 1 and in ( ) then

k k1 lim inf k k1 (16.21)
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Proof. Let be a sequence of positive operators on a Hilbert space
and weakly as and { } =1 be an orthonormal basis for
Then by Fatou’s lemma for sums,

tr =
X

=1

( ) =
X

=1

lim ( )

lim inf
X

=1

( ) = lim inf tr

Now suppose that 1 and in ( ) Then by Proposi-
tion 15.7, | | | | in ( ) as well. Hence by Eq. (16.20), k k1 tr| |
lim inf tr| | lim inf k k1
Proposition 16.40. Let be a Banach space, : × be a bounded
bi-linear form, and k k sup{| ( )| : k kk k 1} Then there is a unique
bounded linear map ˜ : 1 such that ˜( ) = ( ) Moreover
k ˜k = k ˜k
Proof. Let =

P

=1 1 as in Eq. (16.15). Clearly, if
˜ is to exist we must have ˜( )

P

=1 ( ) Notice that

X

=1

| || ( )|
X

=1

| |k k = k k1 · k k

This shows that ˜( ) is well defined and that k ˜k k ˜k The opposite
inequality follows from the trivial computation:

k k = sup{| ( )| : k kk k = 1}
= sup{| ˜( )| : k 1 k1 = 1} k ˜k

Lemma 16.41. Suppose that ( ) and ( ) then :
is a bounded operator. Moreover, ( 1 ) 1 and

we have the norm equalities

k k ( ) = k k ( )k k ( )

and
k k ( 1 ) = k k ( )k k ( )

Proof. We will give essentially the same proof of k k ( ) =
k k ( )k k ( ) as the proof on p. 299 of Reed and Simon [9]. Let
as in Eq. (16.15). Then
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( ) =
X

=1

and hence

( ) {( ) } =
X

=1

2

Therefore,

k( ) k2 = tr( ) {( ) }

=
X

=1

2 ( ) k k2
X

=1

2

= k k2k k21
which shows that Thus k k ( ) k k By symmetry, k
k ( ) k k Since = ( )( ) we have

k k ( ) k k ( )k k ( )

The reverse inequality is easily proved by considering on elements of
the form
Now suppose that 1 as in Eq. (16.15). Then

k( ) k1
X

=1

| |k k1

k kk k
X

=1

| | = k kk kk k

which shows that

k k ( 1 ) k k ( )k k ( )

Again the reverse inequality is easily proved by considering on elements
of the form 1

Lemma 16.42. Suppose that and are orthogonal projections on
and respectively which are strongly convergent to the identity on and
respectively. Then : 1 1 also converges strongly to
the identity in 1

Proof. Let =
P

=1 1 as in Eq. (16.15). Then
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k k1
X

=1

| |k k1

=
X

=1

| |k( ) + ( )k1

X

=1

| |{k kk k+ k kk k}

X

=1

| |{k k+ k k} 0 as

by the dominated convergence theorem.
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Spectral Theorem for Self-Adjoint Operators
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Complex Measures, Radon-Nikodym Theorem
and the Dual of Lp

Definition 18.1. A signed measure on a measurable space ( M) is a
function :M R such that

1. Either (M) ( ] or (M) [ )
2. is countably additive, this is to say if =

`

=1 with M then

( ) =
P

=1
( ) 1

3. ( ) = 0

If there exists M such that | ( )| and = =1 then
is said to be — finite and if (M) R then is said to be a finite signed
measure. Similarly, a countably additive set function :M C such that
( ) = 0 is called a complex measure.

A finite signed measure is clearly a complex measure.

Example 18.2. Suppose that + and are two positive measures onM such
that either +( ) or ( ) then = + is a signed measure.
If both +( ) and ( ) are finite then is a finite signed measure.

Example 18.3. Suppose that : R is measurable and either
R

+ or
R

then

( ) =

Z

M (18.1)

defines a signed measure. This is actually a special case of the last example
with ±( )

R ± Notice that the measure ± in this example have the
property that they are concentrated on disjoint sets, namely + “lives” on
{ 0} and “lives” on the set { 0}
1 If ( ) R then the series

P

=1

( ) is absolutely convergent since it is indepen-

dent of rearrangements.
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Example 18.4. Suppose that is a positive measure on ( M) and 1( )
then given as in Eq. (18.1) is a complex measure on ( M) Also if

©

± ±
ª

is any collection of four positive measures on ( M) then

:= + +
¡

+

¢

(18.2)

is a complex measure.

If is given as in Eq. 18.1, then may be written as in Eq. (18.2) with

± = (Re )± and ± = (Im )±

Definition 18.5. Let be a complex or signed measure on ( M) A set
M is a null set or precisely a — null set if ( ) = 0 for all M such

that i.e. |M = 0 Recall that M := { : M} = 1 (M)
is the “trace of on .

18.1 Radon-Nikodym Theorem I

We will eventually show that every complex and — finite signed measure
may be described as in Eq. (18.1). The next theorem is the first result in this
direction.

Theorem 18.6. Suppose ( M) is a measurable space, is a positive finite
measure on M and is a complex measure on M such that | ( )| ( )
for all M Then = where | | 1 Moreover if is a positive
measure, then 0 1

Proof. For a simple function, S( M) let ( ) :=
P

C ( = )
Then

| ( )|
X

C

| | | ( = )|
X

C

| | ( = ) =

Z

| |

So, by the B.L.T. Theorem 2.68, extends to a continuous linear functional
on 1( ) satisfying the bounds

| ( )|
Z

| |
p

( ) k k 2( ) for all
1( )

The Riesz representation Theorem (Proposition 14.15) then implies there ex-
ists a unique 2( ) such that

( ) =

Z

for all 2( )

Taking = sgn( )1 in this equation shows
Z

| | = (sgn( )1 ) ( ) =

Z

1
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from which it follows that | | 1 — a.e. If is a positive measure, then
for real 0 = Im [ ( )] =

R

Im and taking = Im shows 0 =
R

[Im ]
2 i.e. Im( ( )) = 0 for — a.e. and we have shown is real a.e.

Similarly,

0 (Re 0) =

Z

{Re 0}
0

shows 0 a.e.

Definition 18.7. Let and be two signed or complex measures on ( M)
Then and are mutually singular (written as ) if there exists

M such that is a — null set and is a — null set. The measure
is absolutely continuous relative to (written as ¿ ) provided
( ) = 0 whenever is a — null set, i.e. all — null sets are — null sets
as well.

Remark 18.8. If 1 2 and are signed measures on ( M) such that 1

and 2 and 1 + 2 is well defined, then ( 1 + 2) If { } =1 is a
sequence of positive measures such that for all then =

P

=1

as well.

Proof. In both cases, choose M such that is — null and is
-null for all Then by Lemma 18.17, := is still a —null set. Since

= for all

we see that is a - null set for all and is therefore a null set for =
P

=1 This shows that
Throughout the remainder of this section will be always be a positive

measure.

Definition 18.9 (Lebesgue Decomposition). Suppose that is a signed
(complex) measure and is a positive measure on ( M) Two signed (com-
plex) measures and form a Lebesgue decomposition of relative to
if

1. If = + where implicit in this statement is the assertion that if
takes on the value ( ) then and do not take on the value
( )

2. ¿ and

Lemma 18.10. Let is a signed (complex) measure and is a positive mea-
sure on ( M) If there exists a Lebesgue decomposition of relative to
then it is unique. Moreover, if is a positive measure and = + is the
Lebesgue decomposition of relative to then:

1. if is positive then and are positive.
2. If is a — finite measure then so are and
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Proof. Since there exists M such that ( ) = 0 and is
— null and because ¿ is also a null set for So for M
( ) = 0 and ( ) = 0 from which it follows that

( ) = ( ) + ( ) = ( ) + ( )

and hence,

( ) = ( ) = ( ) and

( ) = ( ) = ( ) (18.3)

Item 1. is now obvious from Eq. (18.3). For Item 2., if is a — finite measure
then there exists M such that = =1 and | ( )| for all
Since ( ) = ( ) + ( ) we must have ( ) R and ( ) R
showing and are — finite as well.
For the uniqueness assertion, if we have another decomposition = ˜ +˜

with ˜ ˜ and ˜ ¿ ˜ we may choose ˜ M such that ( ˜) = 0 and ˜

is ˜ — null. Letting = ˜ we have

( ) ( ) + ( ˜) = 0

and = ˜ is both a and a ˜ null set. Therefore by the same
arguments that proves Eqs. (18.3), for all M

( ) = ( ) = ˜ ( ) and

( ) = ( ) = ˜ ( )

Lemma 18.11. Suppose is a positive measure on ( M) and : R̄
are extended integrable functions such that

Z

=

Z

for all M (18.4)

R R

and the measures | | and | | are —
finite. Then ( ) = ( ) for — a.e.

Proof. By assumption there exists M such that and
R | | and

R | | for all Replacing by in
Eq. (18.4) implies

Z

1 =

Z

=

Z

=

Z

1

for all M Since 1 and 1 are in 1( ) for all this equation
implies 1 = 1 — a.e. Letting then shows that = — a.e.



18.1 Radon-Nikodym Theorem I 425

Remark 18.12. Suppose that and are two positive measurable functions
on ( M ) such that Eq. (18.4) holds. It is not in general true that =
— a.e. A trivial counter example is to take M = P( ) ( ) = for all

non-empty M = 1 and = 2 · 1 Then Eq. (18.4) holds yet 6=
Theorem 18.13 (Radon Nikodym Theorem for Positive Measures).
Suppose that are — finite positive measures on ( M) Then has a
unique Lebesgue decomposition = + relative to and there exists a
unique (modulo sets of — measure 0) function : [0 ) such that

= Moreover, = 0 i ¿
Proof. The uniqueness assertions follow directly from Lemmas 18.10 and

18.11.
Existence. (Von-Neumann’s Proof.) First suppose that and are finite

measures and let = + By Theorem 18.6, = with 0 1 and
this implies, for all non-negative measurable functions that

( ) = ( ) = ( ) + ( ) (18.5)

or equivalently
( (1 )) = ( ) (18.6)

Taking = 1{ =1} and = 1{ 1}(1 ) 1 with 0 in Eq. (18.6)

({ = 1}) = 0 and ( 1{ 1}) = ( 1{ 1}(1 ) 1 ) = ( )

where := 1{ 1} 1 and ( ) := ( 1{ =1}) This gives the desired decom-
position2 since

( ) = ( 1{ =1}) + ( 1{ 1}) = ( ) + ( )

and
2 Here is the motivation for this construction. Suppose that = + is
the Radon-Nikodym decompostion and =

`

such that ( ) = 0 and
( ) = 0 Then we find

( ) + ( ) = ( ) = ( ) = ( ) + ( )

Letting 1 then implies that

(1 ) = (1 )

which show that = 1 —a.e. on Also letting 1 implies that

( 1 (1 )) = (1 (1 )) = (1 ) = ( )

which shows that
(1 ) = 1 (1 ) = a.e.

This shows that =
1

— a.e.
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( 6= 1) = 0 while ( = 1) = ({ 6= 1} ) = 0
If ¿ then ( = 1) = 0 implies ( = 1) = 0 and hence that = 0

If = 0 then = and so if ( ) = 0 then ( ) = ( 1 ) = 0 as well.
For the — finite case, write =

`

=1 where M are chosen
so that ( ) and ( ) for all Let = 1 and =
1 Then by what we have just proved there exists 1( ) and
measure such that = + with i.e. there exists

M and ( ) = 0 and ( ) = 0 Define :=
P

=1 and
:=
P

=1 1 then

=
X

=1

=
X

=1

( + ) =
X

=1

( 1 + ) = +

and letting := =1 and := =1 we have = and

( ) =
X

=1

( ) = 0 and ( ) =
X

=1

( ) = 0

Theorem 18.14 (Dual of — spaces). Let ( M ) be a — finite mea-
sure space and suppose that [1 ] are conjugate exponents. Then for

[1 ) the map ( ) is an isometric isomorphism of Ba-
nach spaces. (Recall that ( ) :=

R

) We summarize this by writing
( ) = for all 1

Proof. The only point that we have not yet proved is the surjectivity of
the map ( ) When = 2 the result follows directly from
the Riesz theorem. We will begin the proof under the extra assumption that
( ) in which cased bounded functions are in ( ) for all So let
( ) We need to find ( ) such that = When [1 2]

2( ) ( ) so that we may restrict to 2( ) and again the result follows
fairly easily from the Riesz Theorem, see Exercise 18.44 below.
To handle general [1 ) define ( ) := (1 ) If =

`

=1 with
M then

k1
X

=1

1 k = k1
= +1

k =
£

( = +1 )
¤
1

0 as

Therefore

( ) = (1 ) =
X

1

(1 ) =
X

1

( )

showing is a complex measure.3

3 It is at this point that the proof breaks down when =
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For M let | | ( ) be the “total variation” of defined by

| | ( ) := sup {| ( 1 )| : | | 1}

and notice that

| ( )| | | ( ) k k( ) ( )1 for all M (18.7)

You are asked to show in Exercise 18.45 that | | is a measure on ( M)
(This can also be deduced from Lemma 18.31 and Proposition 18.35 below.)
By Eq. (18.7) | | ¿ by Theorem 18.6 = | | for some | | 1 and by
Theorem 18.13 | | = for some 1( ) Hence, letting = 1( )
= or equivalently

(1 ) =

Z

1 M (18.8)

By linearity this equation implies

( ) =

Z

(18.9)

for all simple functions on Replacing by 1{| | } in Eq. (18.9) shows

( 1{| | }) =
Z

1{| | }

holds for all simple functions and then by continuity for all ( ) By
the converse to Holder’s inequality, (Proposition 10.28) we learn that

°

°1{| | }
°

° = sup
k k =1

¯

¯ ( 1{| | })
¯

¯

sup
k k =1

k k( )

°

° 1{| | }
°

° k k( )

Using the monotone convergence theorem we may let in the previous
equation to learn k k k k( ) With this result, Eq. (18.9) extends by
continuity to hold for all ( ) and hence we have shown that =
Case 2. Now suppose that is — finite and M are sets such that

( ) and as We will identify ( ) with
1 ( ) and this way we may consider ( ) as a subspace of
( ) for all and [1 ]
By Case 1. there exists ( ) such that

( ) =

Z

for all ( )

and
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k k = sup
©| ( )| : ( ) and k k ( ) = 1

ª k k[ ( )]

It is easy to see that = a.e. on for all so that :=
lim exists — a.e. By the above inequality and Fatou’s lemma, k k
k k[ ( )] and since ( ) =

R

for all ( ) and
and =1 ( ) is dense in ( ) it follows by continuity that ( ) =
R

for all ( ) i.e. =

Example 18.15. Theorem 18.14 fails in general when = Consider =
[0 1] M = B and = Then ( ) 6= 1

Proof. Let := ([0 1])“ ” ([0 1] ) It is easily seen for
that k k = sup {| ( )| : [0 1]} for all Therefore is a closed
subspace of Define ( ) = (0) for all Then with
norm 1 Appealing to the Hahn-Banach Theorem 28.16 below, there exists an
extension ( ) such that = on and k k = 1 If 6= for some

1 i.e.

( ) = ( ) =

Z

[0 1]

for all

then replacing by ( ) = (1 ) 1 1 and letting implies,
(using the dominated convergence theorem)

1 = lim ( ) = lim

Z

[0 1]

=

Z

{0}
= 0

From this contradiction, we conclude that 6= for any 1

18.2 Signed Measures

Definition 18.16. Let be a signed measure on ( M) and M then

1. is positive if for all M such that ( ) 0 i.e. |M 0
2. is negative if for all M such that ( ) 0 i.e. |M 0

Lemma 18.17. Suppose that is a signed measure on ( M) Then

1. Any subset of a positive set is positive.
2. The countable union of positive (negative or null) sets is still positive
(negative or null).

3. Let us now further assume that (M) [ ) and M is a set
such that ( ) (0 ) Then there exists a positive set such that
( ) ( )
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Proof. The first assertion is obvious. If M are positive sets, let

=
S

=1
By replacing by the positive set \

Ã

1
S

=1

!

we may assume

that the { } =1 are pairwise disjoint so that =
`

=1
Now if and

M =
`

=1
( ) so ( ) =

P

=1 ( ) 0 which shows that

is positive. The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of

negative measure from . The set remaining from this procedure will be
We now proceed to the formal proof.
For all M let ( ) = 1 sup{ ( ) : } Since ( ) = 0

( ) 0 and ( ) = 0 i is positive. Choose 0 such that ( 0)
1
2 ( ) and set 1 = \ 0 then choose 1 1 such that ( 1)
1
2 ( 1) and set 2 = \ ( 0 1) Continue this procedure inductively,

namely if 0 1 have been chosen let = \
³ 1̀

=0

´

and choose

such that ( ) 1
2 ( ) Let := \ `

=0

=
T

=0

then

=
`

=0

and hence

(0 ) 3 ( ) = ( ) +
X

=0

( ) = ( )
X

=0

( ) ( ) (18.10)

From Eq. (18.10) we learn that
P

=0 ( ) and in particular that
lim ( ( )) = 0 Since 0 1

2 ( ) ( ) this also implies
lim ( ) = 0 If then for all and so, for large
so that ( ) 1 we find ( ) ( ) Letting in this estimate
shows ( ) 0 or equivalently ( ) 0 Since was arbitrary, we
conclude that is a positive set such that ( ) ( )

18.2.1 Hahn Decomposition Theorem

Definition 18.18. Suppose that is a signed measure on ( M) A Hahn
decomposition for is a partition { } of such that is positive and
is negative.

Theorem 18.19 (Hahn Decomposition Theorem). Every signed mea-
sure space ( M ) has a Hahn decomposition, { } Moreover, if { ˜ ˜}
is another Hahn decomposition, then ˜ = ˜ is a null set, so the de-
composition is unique modulo null sets.

Proof.With out loss of generality we may assume that (M) [ ).
If not just consider instead. Let us begin with the uniqueness assertion.
Suppose that M then
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( ) = ( ) + ( ) ( ) ( )

and similarly ( ) ( ˜) for all M Therefore

( ) ( ˜) ( ˜) and ( ˜) ( ˜) ( )

which shows that
:= ( ˜) = ( ˜) = ( )

Since

= ( ˜) = ( ) + ( ˜) ( ˜) = 2 ( ˜)

we see that ( ˜) = and since

= ( ˜) = ( ˜) + ( ˜ )

it follows that ( ˜ ) = 0 Thus ˜ = ˜ is a positive set with
zero measure, i.e. ˜ = ˜ is a null set and this proves the uniqueness
assertion.
Let

sup{ ( ) : M}
which is non-negative since ( ) = 0 If = 0 we are done since = and
= is the desired decomposition. So assume 0 and choose M

such that ( ) 0 and lim ( ) = By Lemma 18.17here exists
positive sets such that ( ) ( ). Then ( ) ( )
as implies that = lim ( ) The set =1 is a positive
set being the union of positive sets and since for all

( ) ( ) as

This shows that ( ) and hence by the definition of = ( )
We now claim that = is a negative set and therefore, { } is the

desired Hahn decomposition. If were not negative, we could find =
such that ( ) 0 We then would have

( ) = ( ) + ( ) = + ( )

which contradicts the definition of

18.2.2 Jordan Decomposition

Definition 18.20. Let = be a Hahn decomposition of and define

+( ) = ( ) and ( ) = ( ) M



18.2 Signed Measures 431

Suppose = e e is another Hahn Decomposition and e± are define as
above with and replaced by e and e respectively. Then

e+( ) = ( e) = ( e ) + (( e ) = ( e )

since ˜ is both positive and negative and hence null. Similarly +( ) =

( e ) showing that + = e+ and therefore also that = e

Theorem 18.21 (Jordan Decomposition). There exists unique positive
measure ± such that + and = +

Proof. Existence has been proved. For uniqueness suppose = +

is a Jordan Decomposition. Since + there exists = M such
that +( ) = 0 and ( ) = 0. Then clearly is positive for and is
negative for . Now ( ) = +( ) and ( ) = ( ). The uniqueness
now follows from the remarks after Definition 18.20.

Definition 18.22. | |( ) = +( ) + ( ) is called the total variation of .
A signed measure is called — finite provided that | | := ++ is a finite
measure.

(BRUCE: Use Exercise 18.50 to prove the uniqueness of the Jordan de-
compositions, or make an exercise.)

Lemma 18.23. Let be a signed measure on ( M) and M If ( )
R then ( ) R for all Moreover, ( ) R i | | ( ) In
particular, is finite i | | is — finite. Furthermore if M is a
Hahn decomposition for and = 1 1 then = | | i.e.

( ) =

Z

| | for all M

Proof. Suppose that and | ( )| = then since ( ) = ( ) +
( \ ) we must have | ( )| = Let M be a Hahn decomposition
for then

( ) = ( ) + ( ) = | ( )| | ( )| and
| | ( ) = ( ) ( ) = | ( )|+ | ( )| (18.11)

Therefore ( ) R i ( ) R and ( ) R i | | ( )
Finally,

( ) = ( ) + ( )

= | |( ) | |( )

=

Z

(1 1 ) | |

which shows that = | |
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Definition 18.24. Let be a signed measure on ( M) let

1( ) := 1( +) 1( ) = 1(| |)

and for 1( ) we define
Z

=

Z

+

Z

Lemma 18.25. Let be a positive measure on ( M) be an extended
integrable function on ( M ) and = Then 1( ) = 1(| | ) and
for 1( )

Z

=

Z

Proof. We have already seen that + = + = and | | =
| | so that 1( ) = 1(| |) = 1(| | ) and for 1( )

Z

=

Z

+

Z

=

Z

+

Z

=

Z

( + ) =

Z

Lemma 18.26. Suppose that is a positive measure on ( M) and :
R is an extended integrable function. If is the signed measure =
then ± = ± and | | = | | We also have

| |( ) = sup{
Z

: | | 1} for all M (18.12)

Proof. The pair, = { 0} and = { 0} = is a Hahn decom-
position for Therefore

+( ) = ( ) =

Z

=

Z

1{ 0} =

Z

+

( ) = ( ) =

Z

=

Z

1{ 0} =

Z

and

| | ( ) = +( ) + ( ) =

Z

+

Z

=

Z

( + ) =

Z

| |

If M and | | 1 then
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¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

+

Z

¯

¯

¯

¯

¯

¯

¯

¯

Z

+

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| | + +

Z

| | =

Z

| | | | | | ( )

For the reverse inequality, let 1 1 then
Z

= ( ) ( ) = +( ) + ( ) = | |( )

Lemma 18.27. Suppose is a signed measure, is a positive measure and
= + is a Lebesgue decomposition of relative to then | | = | |+| |
Proof. Let M be chosen so that is a null set for and is

a null set for Let = 0` 0 be a Hahn decomposition of |M and
= ˜` ˜ be a Hahn decomposition of |M Let = 0 ˜ and
= 0 ˜ Since for M

( ) = ( 0) + ( ˜)

= ( 0) + ( ˜) 0

and

( ) = ( 0) + ( ˜)

= ( 0) + ( ˜) 0

we see that { } is a Hahn decomposition for It also easy to see that
{ } is a Hahn decomposition for both and as well. Therefore,

| | ( ) = ( ) ( )

= ( ) ( ) + ( ) ( )

= | | ( ) + | | ( )

Lemma 18.28. 1) Let be a signed measure and be a positive measure on
( M) such that ¿ and then 0. 2) Suppose that =

P

=1

where are positive measures on ( M) such that ¿ then ¿
Also if 1 and 2 are two signed measure such that ¿ for = 1 2 and
= 1 + 2 is well defined, then ¿
Proof. (1) Because there exists M such that is a — null

set and = is a - null set. Since is — null and ¿ is also
— null. This shows by Lemma 18.17 that = is also — null, i.e. is
the zero measure. The proof of (2) is easy and is left to the reader.
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Theorem 18.29 (Radon Nikodym Theorem for Signed Measures).
Let be a — finite signed measure and be a — finite positive measure on
( M) Then has a unique Lebesgue decomposition = + relative to
and there exists a unique (modulo sets of — measure 0) extended integrable

function : R such that = Moreover, = 0 i ¿ i.e.
= i ¿
Proof. Uniqueness. Is a direct consequence of Lemmas 18.10 and 18.11.
Existence. Let = + be the Jordan decomposition of Assume,

without loss of generality, that +( ) i.e. ( ) for all M By
the Radon Nikodym Theorem 18.13 for positive measures there exist functions
± : [0 ) and measures ± such that ± = ± + ± with ±
Since

+( ) = +( ) + +( )

+
1( ) and +( ) so that = + is an extended integrable

function, := and = + are signed measures. This finishes the
existence proof since

= + = + + +

¡

+
¢

= +

and = ( + ) by Remark 18.8.
For the final statement, if = 0 then = and hence ¿

Conversely if ¿ then = ¿ so by Lemma 18.17, =
0 Alternatively just use the uniqueness of the Lebesgue decomposition to
conclude = and = 0 Or more directly, choose M such that
( ) = 0 and is a — null set. Since ¿ is also a — null set so
that, for M

( ) = ( ) = ( ) + ( ) = ( )

Notation 18.30 The function is called the Radon-Nikodym derivative of
relative to and we will denote this function by

18.3 Complex Measures II

Suppose that is a complex measure on ( M) let := Re := Im
and := | | + | | Then is a finite positive measure on M such that
¿ and ¿ By the Radon-Nikodym Theorem 18.29, there exists

real functions 1( ) such that = and = So letting
:= + 1( )

= ( + ) =

showing every complex measure may be written as in Eq. (18.1).
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Lemma 18.31. Suppose that is a complex measure on ( M) and for
= 1 2 let be a finite positive measure on ( M) such that =
with 1( ) Then

Z

| 1| 1 =

Z

| 2| 2 for all M

In particular, we may define a positive measure | | on ( M) by

| | ( ) =

Z

| 1| 1 for all M

The finite positive measure | | is called the total variation measure of
Proof. Let = 1+ 2 so that ¿ Let = 0 and =

Since

( ) =

Z

=

Z

=

Z

for all M

1 = 2 —a.e. Therefore
Z

| 1| 1 =

Z

| 1| 1 =

Z

| 1|

=

Z

| 2| =

Z

| 2| 2 =

Z

| 2| 2

Definition 18.32. Given a complex measure let = Re and = Im
so that and are finite signed measures such that

( ) = ( ) + ( ) for all M
Let 1( ) := 1( ) 1( ) and for 1( ) define

Z

:=

Z

+

Z

Example 18.33. Suppose that is a positive measure on ( M) 1( )
and ( ) =

R

as in Example 18.4, then 1( ) = 1(| | ) and for
1( )

Z

=

Z

(18.13)

To check Eq. (18.13), notice that = Re and = Im so that
(using Lemma 18.25)

1( ) = 1(Re ) 1(Im ) = 1(|Re | ) 1(|Im | ) = 1(| | )

If 1( ) then
Z

:=

Z

Re +

Z

Im =

Z

436 18 Complex Measures, Radon-Nikodym Theorem and the Dual of

Remark 18.34. Suppose that is a complex measure on ( M) such that
= and as above | | = | | Letting

= sgn( ) :=

½

| | if | | 6= 0
1 if | | = 0

we see that
= = | | = | |

and | | = 1 and is uniquely defined modulo | | — null sets. We will denote
by | | With this notation, it follows from Example 18.33 that 1( ) :=
1 (| |) and for 1( )

Z

=

Z

| | | |

Proposition 18.35 (Total Variation). Suppose A P( ) is an algebra,
M = (A) is a complex (or a signed measure which is — finite on A) on
( M) and for M let

0( ) = sup

(

X

1

| ( )| : A 3 = = 1 2

)

1( ) = sup

(

X

1

| ( )| : M 3 = = 1 2

)

2( ) = sup

(

X

1

| ( )| : M 3 =

)

3( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: is measurable with | | 1

¾

4( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: S (A | |) with | | 1

¾

then 0 = 1 = 2 = 3 = 4 = | |
Proof. Let = | | and recall that | | = 1 | | — a.e. We will start by

showing | | = 3 = 4 If is measurable with | | 1 then
¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

| |
¯

¯

¯

¯

Z

| | | |
Z

1 | | = | |( )

from which we conclude that 4 3 | | Taking = ¯ above shows
¯

¯

¯

¯

Z

¯

¯

¯

¯

=

Z

¯ | | =
Z

1 | | = | | ( )

which shows that | | 3 and hence | | = 3 To show | | = 4 as well
let A be chosen so that | | ( ) and as
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By Theorem 11.3 of Corollary 12.29, there exists S (A ) such that
1 in 1(| |) and each may be written in the form

=
X

=1

1 (18.14)

where C and A and = if 6= I claim that we may
assume that | | 1 in Eq. (18.14) for if | | 1 and

| ( ) |
¯

¯

¯
( ) | | 1

¯

¯

¯

This is evident from Figure 18.1 and formally follows from the fact that
¯

¯

¯
( ) | | 1

¯

¯

¯

2

= 2
h

Re(| | 1 ( ))
i

0

when 1

Fig. 18.1. Sliding points to the unit circle.

Therefore if we define

:=

½ | | 1 if | | 1
if | | 1

and ˜ =
P

=1

1 then

| ( ) ( )| | ( ) ˜ ( )|
and therefore ˜ 1 in 1(| |). So we now assume that is as in Eq.
(18.14) with | | 1.
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Now
¯

¯

¯

¯

Z

¯

Z

¯1

¯

¯

¯

¯

¯

¯

¯

¯

Z

(¯ 1̄ ) | |
¯

¯

¯

¯

Z

|¯ 1̄ | | | 0 as

and hence

4( )

¯

¯

¯

¯

Z

¯1

¯

¯

¯

¯

= | | ( ) for all

Letting in this equation shows 4 | |
We will now show 0 = 1 = 2 = | | Clearly 0 1 2 Suppose
M such that = then

X

| ( )| =
X

|
Z

| |
X

| |( ) = | |( ) | | ( )

which shows that 2 | | = 4 So it su ces to show 4 0 But if
S (A | |) with | | 1 then may be expressed as =

P

=1 1
with | | 1 and = Therefore,

¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

X

=1

| | | ( )|

X

=1

| ( )| 0( )

Since this equation holds for all S (A | |) with | | 1 4 0 as
claimed.

Theorem 18.36 (Radon Nikodym Theorem for Complex Measures).
Let be a complex measure and be a — finite positive measure on ( M)
Then has a unique Lebesgue decomposition = + relative to and there
exists a unique element 1( ) such that such that = Moreover,
= 0 i ¿ i.e. = i ¿
Proof. Uniqueness. Is a direct consequence of Lemmas 18.10 and 18.11.
Existence. Let : 1 C be a function such that = | |

By Theorem 18.13, there exists 1( ) and a positive measure | | such
that | | and | | = + | | Hence we have = + with
:= 1( ) and := | | This finishes the proof since, as is easily

verified,

18.4 Absolute Continuity on an Algebra

The following results will be useful in Section 20.4 below.
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Lemma 18.37. Let be a complex or a signed measure on ( M) Then
M is a — null set i | | ( ) = 0 In particular if is a positive measure

on ( M) ¿ i | | ¿
Proof. In all cases we have | ( )| | | ( ) for all M which clearly

shows that | | ( ) = 0 implies is a — null set. Conversely if is a — null
set, then, by definition, |M 0 so by Proposition 18.35

| | ( ) = sup

(

X

1

| ( )| : M 3 =

)

= 0

since implies ( ) = 0 and hence ( ) = 0
Alternate Proofs that is — null implies | | ( ) = 0
1) Suppose is a signed measure and { = } M is a Hahn de-

composition for Then

| | ( ) = ( ) ( ) = 0

Now suppose that is a complex measure. Then is a null set for both
:= Re and := Im Therefore | | ( ) | | ( ) + | | ( ) = 0
2) Here is another proof in the complex case. Let = | | then by as-

sumption of being — null,

0 = ( ) =

Z

| | for all M

This shows that 1 = 0 | | — a.e. and hence

| | ( ) =

Z

| | | | =
Z

1 | | | | = 0

Theorem 18.38 ( — Definition of Absolute Continuity). Let be a
complex measure and be a positive measure on ( M) Then ¿ i for
all 0 there exists a 0 such that | ( )| whenever M and
( )

Proof. ( =) If ( ) = 0 then | ( )| for all 0 which shows that
( ) = 0 i.e. ¿ .
(= ) Since ¿ i | | ¿ and | ( )| | |( ) for all M it su ces

to assume 0 with ( ) . Suppose for the sake of contradiction there
exists 0 and M such that ( ) 0 while ( ) 1

2 . Let

= { i.o.} =
\

=1

[

so that
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( ) = lim ( ) lim
X

=

( ) lim 2 ( 1) = 0

On the other hand,

( ) = lim ( ) lim inf ( ) 0

showing that is not absolutely continuous relative to

Corollary 18.39. Let be a positive measure on ( M) and 1( ).

Then for all 0 there exists 0 such that

¯

¯

¯

¯

R

¯

¯

¯

¯

for all M
such that ( )

Proof. Apply theorem 18.38 to the signed measure ( ) =
R

for all

M
Theorem 18.40 (Absolute Continuity on an Algebra). Let be a com-
plex measure and be a positive measure on ( M). Suppose that A M
is an algebra such that (A) =M and that is — finite on A Then ¿
i for all 0 there exists a 0 such that | ( )| for all A with
( )

Proof. (= ) This implication is a consequence of Theorem 18.38.
( =) Let us begin by showing the hypothesis | ( )| for all A

with ( ) implies | | ( ) 4 for all A with ( ) To prove this
decompose into its real and imaginary parts; = + and suppose that
=
`

=1 with A Then

X

=1

| ( )| =
X

: ( ) 0

( )
X

: ( ) 0

( )

= ( : ( ) 0 ) ( : ( ) 0 )
¯

¯ ( : ( ) 0 )
¯

¯+
¯

¯ ( : ( ) 0 )
¯

¯

2

using the hypothesis and the fact
¡

: ( ) 0

¢

( ) and
¡

: ( ) 0

¢

( ) Similarly,
P

=1 | ( )| 2 and therefore

X

=1

| ( )|
X

=1

| ( )|+
X

=1

| ( )| 4

Using Proposition 18.35, it follows that

| | ( ) = sup
X

=1

| ( )| : =
a

=1

with A and N 4
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Because of this argument, we may now replace by | | and hence we may
assume that is a positive finite measure.
Let 0 and 0 be such that ( ) for all A with ( )

Suppose that M with ( ) Use the regularity Theorem 9.40 or
Corollary 12.29 to find A such that and ( ) ( )
Write = with A. By replacing by =1 if necessary we
may assume that is increasing in Then ( ) ( ) for each
and hence by assumption ( ) . Since = it follows that
( ) ( ) = lim ( ) Thus we have shown that ( ) for all
M such that ( )

18.5 Dual Spaces and the Complex Riesz Theorem

Proposition 18.41. Let S be a vector lattice of bounded real functions on a
set We equip S with the sup-norm topology and suppose S Then there
exists ± S which are positive such that then = +

Proof. For S+ let

+( ) := sup
©

( ) : S+ and
ª

One easily sees that | +( )| k k k k for all S+ and +( ) = +( ) for
all S+ and 0 Let 1 2 S+ Then for any S+ such that
we have S+ 3 1 + 2 1 + 2 and hence

( 1) + ( 2) = ( 1 + 2) +( 1 + 2)

Therefore,

+( 1) + +( 2) = sup{ ( 1) + ( 2) : S+ 3 } +( 1 + 2) (18.15)

For the opposite inequality, suppose S+ and 1 + 2 Let 1 = 1

then

0 2 := 1 = 1 =

½

0 if 1

1 if 1
½

0 if 1

1 + 2 1 if 1
2

Since = 1 + 2 with S+ 3

( ) = ( 1) + ( 2) +( 1) + +( 2)

and since S+ 3 1 + 2 was arbitrary, we may conclude

+( 1 + 2) +( 1) + +( 2) (18.16)
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Combining Eqs. (18.15) and (18.16) shows that

+( 1 + 2) = +( 1) + +( 2) for all S+ (18.17)

We now extend + to S by defining, for S

+( ) = +( +) +( )

where + = 0 and = ( 0) = ( ) 0 (Notice that = + )
We will now shows that + is linear.
If 0 we may use ( )± = ± to conclude that

+( ) = +( +) +( ) = +( +) +( ) = +( )

Similarly, using ( )± = it follows that +( ) = +( ) +( +) =

+( ) Therefore we have shown

+( ) = +( ) for all R and S

If = with S+ then

+ + = + S+

and so by Eq. (18.17), +( ) + +( +) = +( ) + +( ) or equivalently

+( ) = +( +) +( ) = +( ) +( ) (18.18)

Now if S, then

+( + ) = +( + + + ( + ))

= +( + + +) +( + )

= +( +) + +( +) +( ) +( )

= +( ) + +( )

wherein the second equality we used Eq. (18.18).
The last two paragraphs show + : S R is linear. Moreover,

| +( )| = | +( +) +( )| max (| +( +)| | +( )|)
k kmax (k +k k k) = k k k k

which shows that k +k k k That is + is a bounded positive linear
functional on S Let = + S Then by definition of +( )
( ) = +( ) ( ) 0 for all S 3 0 Therefore = + with

± being positive linear functionals on S

Corollary 18.42. Suppose is a second countable locally compact Hausdor
space and 0( R) then there exists = + where is a finite
signed measure on BR such that ( ) =

R

R for all 0( R) Similarly
if 0( C) there exists a complex measure such that ( ) =

R

R
for all 0( C) TODO Add in the isometry statement here.
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Proof. Let = + be the decomposition given as above. Then we
know there exists finite measure ± such that

±( ) =
Z

± for all 0( R)

and therefore ( ) =
R

for all 0( R) where = +

Moreover the measure is unique. Indeed if ( ) =
R

for some finite
signed measure then the next result shows that ±( ) =

R

± where ±
is the Hahn decomposition of Now the measures ± are uniquely determined
by ± The complex case is a consequence of applying the real case just proved
to Re and Im

Proposition 18.43. Suppose that is a signed Radon measure and =
Let + and be the Radon measures associated to ± then = + is
the Jordan decomposition of

Proof. Let = where is a positive set for and is a negative
set. Then for B

( ) = +( ) ( ) +( ) +( ) (18.19)

To finish the proof we need only prove the reverse inequality. To this end let
0 and choose @@ such that | | ( \ ) Let

( [0 1]) with then

( ) = ( ) = ( : ) + ( : \ ) ( : ) + ( )

( ) + ( ) ( ) + ( )

Taking the supremum over all such we learn that +( ) ( ) +
( ) and then taking the supremum over all such shows that

+( ) ( ) + ( )

Taking the infimum over all such that shows that

+( ) ( ) + ( ) (18.20)

From Eqs. (18.19) and (18.20) it follows that ( ) = +( ) Since

( ) = sup
0

( ) ( ) = sup
0

( ) = sup
0

( ) = sup
0

( )

the same argument applied to shows that

( ) = ( )

Since
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( ) = ( ) + ( ) = +( ) ( ) and

( ) = +( ) ( )

it follows that
+( \ ) = ( \ ) = ( )

Taking = then shows that ( ) = 0 and taking = shows that
+( ) = 0 and hence

( ) = +( ) = +( ) and

( ) = ( ) = ( )

as was to be proved.

18.6 Exercises

Exercise 18.44. Prove Theorem 18.14 for [1 2] by directly applying the
Riesz theorem to | 2( )

Exercise 18.45. Show | | be defined as in Eq. (18.7) is a positive measure.
Here is an outline.

1. Show
| | ( ) + | | ( ) | | ( ) (18.21)

when are disjoint sets inM
2. If =

`

=1 with M then

| | ( )
X

=1

| | ( ) (18.22)

3. From Eqs. (18.21) and (18.22) it follows that is finitely additive, and
hence

| | ( ) =
X

=1

| | ( ) + | | ( )
X

=1

| | ( )

Letting in this inequality shows | | ( )
P

=1 | | ( ) which
combined with Eq. (18.22) shows | | is countable additive.

Exercise 18.46. Suppose are — finite positive measures on measurable
spaces, ( M ) for = 1 2 If ¿ for = 1 2 then 1 2 ¿ 1 2

and in fact

( 1 2)

( 1 2)
( 1 2) = 1 2( 1 2) := 1( 1) 2( 2)

where := for = 1 2
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Exercise 18.47. Folland 3.13 on p. 92.

Exercise 18.48. Let be a — finite signed measure, 1(| |) and define
Z

=

Z

+

Z

Suppose that is a — finite measure and ¿ Show
Z

=

Z

(18.23)

Exercise 18.49. Suppose that is a signed or complex measure on ( M)
and M such that either or and ( 1) R then show
( ) = lim ( )

Exercise 18.50. Suppose that and are positive measures and ( )
Let := then show + and

Exercise 18.51. Folland Exercise 3.5 on p. 88 showing | 1 + 2| | 1|+ | 2|
Exercise 18.52. Folland Exercise 3.7a on p. 88.

Exercise 18.53. Show Theorem 18.38 may fail if is not finite. (For a hint,
see problem 3.10 on p. 92 of Folland.)

Exercise 18.54. Folland 3.14 on p. 92.

Exercise 18.55. Folland 3.15 on p. 92.

Exercise 18.56. Folland 3.20 on p. 94.
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Banach Space Calculus

In this section, and will be Banach space and will be an open subset
of

Notation 19.1 ( and notation) Let 0 and : be
a function. We will write:

1. ( ) = ( ) if lim 0 k ( )k = 0
2. ( ) = ( ) if there are constants and 0 such that
k ( )k k k for all (0 ) This is equivalent to the condition
that lim sup 0

k ( )k
k k where

lim sup
0

k ( )k
k k lim

0
sup{k ( )k : 0 k k }

3. ( ) = ( ) if ( ) = ( ) ( ) i.e. lim 0 k ( )k k k = 0
Example 19.2. Here are some examples of properties of these symbols.

1. A function : is continuous at 0 if ( 0 + ) =
( 0) + ( )

2. If ( ) = ( ) and ( ) = ( ) then ( ) + ( ) = ( )
Now let : be another function where is another Banach space.

3. If ( ) = ( ) and ( ) = ( ) then ( ) = ( )
4. If ( ) = ( ) and ( ) = ( ) then ( ) = ( )

19.1 The Di erential

Definition 19.3. A function : is di erentiable at 0+ 0

if there exists a linear transformation ( ) such that

( 0 + ) ( 0 + 0) = ( ) (19.1)

We denote by 0( 0) or ( 0) if it exists. As with continuity, is dif-
ferentiable on if is di erentiable at all points in
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Remark 19.4. The linear transformation in Definition 19.3 is necessarily
unique. Indeed if 1 is another linear transformation such that Eq. (19.1)
holds with replaced by 1 then

( 1) = ( )

i.e.

lim sup
0

k( 1) k
k k = 0

On the other hand, by definition of the operator norm,

lim sup
0

k( 1) k
k k = k 1k

The last two equations show that = 1

Exercise 19.5. Show that a function : ( ) is a di erentiable at
( ) in the sense of Definition 4.6 i it is di erentiable in the sense of

Definition 19.3. Also show ( ) = ˙( ) for all R

Example 19.6. Assume that ( ) is non-empty. Then : ( )
( ) defined by ( ) 1 is di erentiable and

0( ) = 1 1 for all ( )

Indeed (by Eq. (4.19)),

( + ) ( ) = ( + ) 1 1 = (
¡

+ 1
¢

) 1 1

=
¡

+ 1
¢

) 1 1 1 =
X

=0

( 1 ) · 1 1

= 1 1 +
X

=2

( 1 )

Since

k
X

=2

( 1 ) k
X

=2

k 1 k k 1k2k k2
1 k 1 k

we find that
( + ) ( ) = 1 1 + ( )

19.2 Product and Chain Rules

The following theorem summarizes some basic properties of the di erential.

Theorem 19.7. The di erential has the following properties:
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Linearity is linear, i.e. ( + ) = +
Product Rule If : and : ( ) are di eren-

tiable at 0 then so is ( )( ) ( ) ( ) and

( )( 0) = ( ( 0) ) ( 0) + ( 0) ( 0)

Chain Rule If : is di erentiable at 0 and :
is di erentiable at 0 ( ) then is di erentiable at 0

and ( )0( 0) =
0( 0)

0( 0)
Converse Chain Rule Suppose that : is continuous at

0 : is di erentiable 0 ( ) 0( 0) is invertible,
and is di erentiable at 0 then is di erentiable at 0 and

0( 0) [ 0( 0)]
1( )0( 0) (19.2)

Proof. For the proof of linearity, let : be two functions
which are di erentiable at 0 and R then

( + )( 0 + )

= ( 0) + ( 0) + ( ) + ( ( 0) + ( 0) + ( )

= ( + )( 0) + ( ( 0) + ( 0)) + ( )

which implies that ( + ) is di erentiable at 0 and that

( + )( 0) = ( 0) + ( 0)

For item 2, we have

( 0 + ) ( 0 + )

= ( ( 0) + ( 0) + ( ))( ( 0) +
0( 0) + ( ))

= ( 0) ( 0) + ( 0)
0( 0) + [ ( 0) ] ( 0) + ( )

which proves item 2.
Similarly for item 3,

( )( 0 + )

= ( ( 0)) +
0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))

= ( ( 0)) +
0( ( 0))( ( 0) 0 + ( )) + ( ( 0 + ) ( 0)

= ( ( 0)) +
0( ( 0)) ( 0) + ( )

where in the last line we have used the fact that ( 0 + ) ( 0) = ( )
(see Eq. (19.1)) and ( ( )) = ( )
Item 4. Since is di erentiable at 0 = ( 0)

( ( 0 + )) ( ( 0))

= 0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))
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And since is di erentiable at 0

( )( 0 + ) ( ( 0)) = ( )0( 0) + ( )

Comparing these two equations shows that

( 0 + ) ( 0)

= 0( ( 0))
1{( )0( 0) + ( ) ( ( 0 + ) ( 0))}

= 0( ( 0))
1( )0( 0) + ( )

0( ( 0))
1 ( ( 0 + ) ( 0)) (19.3)

Using the continuity of ( 0 + ) ( 0) is close to 0 if is close to zero,
and hence k ( ( 0+ ) ( 0))k 1

2k ( 0+ ) ( 0)k for all su ciently
close to 0 (We may replace 12 by any number 0 above.) Using this remark,
we may take the norm of both sides of equation (19.3) to find

k ( 0 + ) ( 0)k
k 0( ( 0))

1( )0( 0)kk k+ ( ) +
1

2
k ( 0 + ) ( 0)k

for close to 0 Solving for k ( 0 + ) ( 0)k in this last equation shows
that

( 0 + ) ( 0) = ( ) (19.4)

(This is an improvement, since the continuity of only guaranteed that ( 0+
) ( 0) = ( ) ) Because of Eq. (49.18), we now know that ( ( 0 + )
( 0)) = ( ) which combined with Eq. (19.3) shows that

( 0 + ) ( 0) =
0( ( 0))

1( )0( 0) + ( )

i.e. is di erentiable at 0 and 0( 0) =
0( ( 0))

1( )0( 0)

Corollary 19.8. Suppose that : ( ) is di erentiable at
( ) and : is di erentiable at ( ) Then is
di erentiable at and

( )( ) = 0( ( )) ˙ ( )

Example 19.9. Let us continue on with Example 19.6 but now let = to
simplify the notation. So : ( ) ( ) is the map ( ) = 1 and

0( ) = 1 1 i.e. 0 =

where = and = for all ( ) As the reader may
easily check, the maps

( ) ( ( ))
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are linear and bounded. So by the chain and the product rule we find 00( )
exists for all ( ) and

00( ) = 0( ) 0( )

More explicitly

[ 00( ) ] = 1 1 1 + 1 1 1 (19.5)

Working inductively one shows : ( ) ( ) defined by ( ) 1

is

19.3 Partial Derivatives

Definition 19.10 (Partial or Directional Derivative). Let :
be a function, 0 and We say that is di erentiable at 0 in

the direction i |0( ( 0 + )) =: ( )( 0) exists. We call ( )( 0) the
directional or partial derivative of at 0 in the direction

Notice that if is di erentiable at 0 then ( 0) exists and is equal to
0( 0) see Corollary 19.8.

Proposition 19.11. Let : be a continuous function and
be a dense subspace of Assume ( ) exists for all and
and there exists a continuous function : ( ) such that

( ) = ( ) for all and Then 1( ) and
=

Proof. Let 0 0 such that ( 0 2 ) and sup{k ( )k :
( 0 2 )} 1. For ( 0 ) and (0 ) by the

fundamental theorem of calculus,

( + ) ( ) =

Z 1

0

( + )

=

Z 1

0

( )( + ) =

Z 1

0

( + ) (19.6)

1 It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not su cient to choose su ciently small so that
( 0 2 ) Here is a counter example. Let be a Hilbert space, { } =1

be an orthonormal set. Define ( )
P

=1 (k k) where is any contin-
uous function on R such that (0) = 1 and is supported in ( 1 1) Notice that
k k2 = 2 for all 6= so that k k = 2 Using this fact it is rather
easy to check that for any 0 there is an 0 such that for all ( 0 )
only one term in the sum defining is non-zero. Hence, is continuous. However,
( ) = as
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For general ( 0 ) and (0 ) choose ( 0 ) and
(0 ) such that and Then

( + ) ( ) =

Z 1

0

( + ) (19.7)

holds for all The left side of this last equation tends to ( + ) ( ) by
the continuity of For the right side of Eq. (19.7) we have

k
Z 1

0

( + )

Z 1

0

( + ) k
Z 1

0

k ( + ) ( + ) kk k + k k

It now follows by the continuity of the fact that k ( + ) ( + ) k
and the dominated convergence theorem that right side of Eq. (19.7)

converges to
R 1

0
( + ) Hence Eq. (19.6) is valid for all ( 0 )

and (0 ) We also see that

( + ) ( ) ( ) = ( ) (19.8)

where ( )
R 1

0
[ ( + ) ( )] Now

k ( )k
Z 1

0

k ( + ) ( )k
max
[0 1]

k ( + ) ( )k 0 as 0

by the continuity of Thus, we have shown that is di erentiable and that
( ) = ( )

19.4 Smooth Dependence of ODE’s on Initial Conditions

In this subsection, let be a Banach space, and be an open interval
with 0

Lemma 19.12. If ( × ) such that ( ) exists for all ( )
× and ( ) ( × ) then is locally Lipschitz in see

Definition 6.12.

Proof. Suppose @@ and By the continuity of for every
there an open neighborhood of and 0 such that ( )

and
sup {k ( 0 0)k : ( 0 0) × ( )}
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By the compactness of there exists a finite subset such that
Let ( ) := min { : } and

( ) sup {k ( 0)k( 0) × ( ( ))}

Then by the fundamental theorem of calculus and the triangle inequality,

k ( 1) ( 0)k
µ
Z 1

0

k ( 0 + ( 1 0)k
¶

k 1 0k

( )k 1 0k

for all 0 1 ( ( )) and

Theorem 19.13 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let be a Banach space, (R × ) such that

(R× ) and : D( ) R× denote the maximal solution
operator to the ordinary di erential equation

˙( ) = ( ( )) with (0) = (19.9)

see Notation 6.15 and Theorem 6.21. Then 1(D( ) ) ( )
exists and is continuous for ( ) D( ) and ( ) satisfies the linear
di erential equation,

( ) = [( ) ( ( ))] ( ) with (0 ) = (19.10)

for

Proof. Let 0 and be an open interval such that 0 ¯@@ 0

0 := (· 0)| and

O := { ( ) : k 0k } ( )

By Lemma 19.12, is locally Lipschitz and therefore Theorem 6.21 is applica-
ble. By Eq. (6.30) of Theorem 6.21, there exists 0 and 0 such that
: ( 0 ) O defined by ( ) (· )| is continuous. By Lemma 19.14

below, for 0 su ciently small the function : O ( ) defined by

( )

Z ·

0

( ( )) (19.11)

is 1 and

( ) =

Z ·

0

( ( )) ( ) (19.12)

By the existence and uniqueness Theorem 6.5 for linear ordinary di eren-
tial equations, ( ) is invertible for any ( ) By the definition
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of ( ( )) = ( ) for all ( 0 ) where : ( ) is de-
fined by ( )( ) = for all i.e. ( ) is the constant path at Since
is a bounded linear map, is smooth and ( ) = for all

We may now apply the converse to the chain rule in Theorem 19.7 to con-
clude 1 ( ( 0 ) O) and ( ) = [ ( ( ))] 1 ( ) or equivalently,

( ( )) ( ) = which in turn is equivalent to

( )

Z

0

[ ( ( )] ( ) =

As usual this equation implies ( ) is di erentiable in ( ) is
continuous in ( ) and ( ) satisfies Eq. (19.10).

Lemma 19.14. Continuing the notation used in the proof of Theorem 19.13
and further let

( )

Z ·

0

( ( )) for O

Then 1(O ) and for all O

0( ) =

Z ·

0

( ( )) ( ) =:

Proof. Let be su ciently small and then by fundamental
theorem of calculus,

( ( ) + ( )) ( ( ))

=

Z 1

0

[ ( ( ) + ( )) ( ( ))]

and therefore,

( + ) ( ) ( )

=

Z

0

[ ( ( ) + ( )) ( ( )) ( ( )) ( ) ]

=

Z

0

Z 1

0

[ ( ( ) + ( )) ( ( ))] ( )

Therefore,
k( ( + ) ( ) )k k k ( ) (19.13)

where

( ) :=

Z Z 1

0

k ( ( ) + ( )) ( ( ))k

With the aide of Lemmas 19.12 and Lemma 6.13,
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( ) [0 1]× × k ( ( ) + ( ))k
is bounded for small provided 0 is su ciently small. Thus it follows
from the dominated convergence theorem that ( ) 0 as 0 and hence
Eq. (19.13) implies 0( ) exists and is given by Similarly,

|| 0( + ) 0( )||
Z

k ( ( ) + ( )) ( ( ))k 0 as 0

showing 0 is continuous.

Remark 19.15. If ( ) then an inductive argument shows that
(D( ) ) For example if 2( ) then ( ( ) ( )) :=

( ( ) ( )) solves the ODE,

( ( ) ( )) = ˜ (( ( ) ( ))) with ( (0) (0)) = ( )

where ˜ is the 1 — vector field defined by

˜ ( ) = ( ( ) ( ) )

Therefore Theorem 19.13 may be applied to this equation to deduce: 2 ( )
and 2 ˙( ) exist and are continuous. We may now di erentiate Eq. (19.10)
to find 2 ( ) satisfies the ODE,

2 ( ) = [
¡

( )

¢

( ( ))] ( )

+ [( ) ( ( ))] 2 ( )

with 2 (0 ) = 0

19.5 Higher Order Derivatives

As above, let : be a function. If is di erentiable
on then the di erential of is a function from to the Banach
space ( ) If the function : ( ) is also di erentiable
on then its di erential 2 = ( ) : ( ( )) Similarly,
3 = ( ( )) : ( ( ( ))) if the di erential of ( )

exists. In general, let L1( ) ( ) and L ( ) be defined induc-
tively by L +1( ) = ( L ( )) Then ( )( ) L ( ) if it
exists. It will be convenient to identify the space L ( ) with the Banach
space defined in the next definition.

Definition 19.16. For {1 2 3 } let ( ) denote the set of func-
tions : such that
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1. For {1 2 } h 1 2 1 +1 i is
linear 2 for all { } =1

2. The norm k k ( ) should be finite, where

k k ( ) sup{k h 1 2 ik
k 1kk 2k · · · k k : { } =1 \ {0}}

Lemma 19.17. There are linear operators : L ( ) ( )
defined inductively as follows: 1 = ( ) (notice that 1( ) =
L1( ) = ( )) and

( +1 )h 0 1 i = ( ( 0))h 1 2 i
(Notice that 0 L ( ) ) Moreover, the maps are isometric isomor-
phisms.

Proof. To get a feeling for what is let us write out 2 and 3 explicitly.
If L2( ) = ( ( )) then ( 2 )h 1 2i = ( 1) 2 and if
L3( ) = ( ( ( ))) ( 3 )h 1 2 3i = (( 1) 2) 3 for all

It is easily checked that is linear for all We will now show by induction
that is an isometry and in particular that is injective. Clearly this is true
if = 1 since 1 is the identity map. For L +1( )

k +1 k
+1( )

:= sup{k( ( 0))h 1 2 ik
k 0kk 1kk 2k · · · k k : { } =0 \ {0}}

= sup{k( ( 0))k ( )

k 0k : 0 \ {0}}

= sup{k 0kL ( )

k 0k : 0 \ {0}}
= k k ( L ( )) k kL +1( )

wherein the second to last inequality we have used the induction hypothesis.
This shows that +1 is an isometry provided is an isometry.
To finish the proof it su ces to shows that is surjective for all Again

this is true for = 1 Suppose that is invertible for some 1 Given
+1( ) we must produce L +1( ) = ( L ( )) such

that +1 = If such an equation is to hold, then for 0 we would
have ( 0) = h 0 · · · i That is 0 =

1( h 0 · · · i) It is easily checked
that so defined is linear, bounded, and +1 =
From now on we will identify L with without further mention. In

particular, we will view as function on with values in ( )

2 I will routinely write h 1 2 i rather than ( 1 2 ) when the func-
tion depends on each of variables linearly, i.e. is a multi-linear function.
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Theorem 19.18 (Di erentiability). Suppose {1 2 } and is
a dense subspace of : is a function such that
(

1 2
· · · )( ) exists for all { } =1 and = 1 2

Further assume there exists continuous functions : ( )
such that such that ( 1 2 · · · )( ) = ( )h 1 2 i for all

{ } =1 and = 1 2 Then ( ) exists and is equal
to ( ) for all and = 1 2

Proof. We will prove the theorem by induction on We have already
proved the theorem when = 1 see Proposition 19.11. Now suppose that

1 and that the statement of the theorem holds when is replaced by 1
Hence we know that ( ) = ( ) for all and = 1 2 1 We
are also given that

(
1 2

· · · )( ) = ( )h 1 2 i { } (19.14)

Now we may write ( 2 · · · )( ) as ( 1 )( )h 2 3 i so that Eq.
(19.14) may be written as

1(
1 )( )h 2 3 i)

= ( )h 1 2 i { } (19.15)

So by the fundamental theorem of calculus, we have that

(( 1 )( + 1) ( 1 )( ))h 2 3 i

=

Z 1

0

( + 1)h 1 2 i (19.16)

for all and { } with 1 su ciently small. By the same
argument given in the proof of Proposition 19.11, Eq. (19.16) remains valid
for all and { } with 1 su ciently small. We may write this last
equation alternatively as,

( 1 )( + 1) ( 1 )( ) =

Z 1

0

( + 1)h 1 · · · i (19.17)

Hence

( 1 )( + 1) ( 1 )( ) ( )h 1 · · · i

=

Z 1

0

[ ( + 1) ( )]h 1 · · · i

from which we get the estimate,

k( 1 )( + 1) ( 1 )( ) ( )h 1 · · · ik ( 1)k 1k (19.18)

where ( 1)
R 1

0
k ( + 1) ( )k Notice by the continuity of

that ( 1) 0 as 1 0 Thus it follow from Eq. (19.18) that 1 is
di erentiable and that ( )( ) = ( )
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Example 19.19. Let : ( ) ( ) be defined by ( ) 1 We
assume that ( ) is not empty. Then is infinitely di erentiable and

( )( )h 1 2 i
= ( 1)

X

{ 1
(1)

1
(2)

1 · · · 1
( )

1} (19.19)

where sum is over all permutations of of {1 2 }
Let me check Eq. (19.19) in the case that = 2 Notice that we have

already shown that (
1
)( ) = ( ) 1 =

1
1

1 Using the product
rule we find that

( 2 1 )( ) = 1
2

1
1

1 + 1
1

1
2

1 =: 2( )h 1 2i

Notice that k 2( )h 1 2ik 2k 1k3k 1k · k 2k so that k 2( )k
2k 1k3 Hence 2 : ( ) 2( ( ) ( )) Also

k( 2( ) 2( ))h 1 2ik 2k 1
2

1
1

1 1
2

1
1

1k
2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
2k 1k2k 2kk 1kk 1 1k
+ 2k 1kk 1kk 2kk 1kk 1 1k
+ 2k 1k2k 2kk 1kk 1 1k

This shows that

k 2( ) 2( )k 2k 1 1k{k 1k2 + k 1kk 1k+ k 1k2}

Since 1 is di erentiable and hence continuous, it follows that 2( )
is also continuous in Hence by Theorem 19.18 2 ( ) exists and is given
as in Eq. (19.19)

Example 19.20. Suppose that : R R is a — function and ( )
R 1

0
( ( )) for ([0 1] R) equipped with the norm k k

max [0 1] | ( )| Then : R is also infinitely di erentiable and

( )( )h 1 2 i =
Z 1

0

( )( ( )) 1( ) · · · ( ) (19.20)

for all and { }
To verify this example, notice that
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( )( ) |0 ( + ) = |0
Z 1

0

( ( ) + ( ))

=

Z 1

0

|0 ( ( ) + ( )) =

Z 1

0

0( ( )) ( )

Similar computations show that

(
1 2

· · · )( ) =

Z 1

0

( )( ( )) 1( ) · · · ( ) =: ( )h 1 2 i

Now for

| ( )h 1 2 i ( )h 1 2 i|
Z 1

0

| ( )( ( )) ( )( ( ))| · | 1
Y

=1

k k
Z 1

0

| ( )( ( )) ( )(

which shows that

k ( ) ( )k
Z 1

0

| ( )( ( )) ( )( ( ))|

This last expression is easily seen to go to zero as in Hence is
continuous. Thus we may apply Theorem 19.18 to conclude that Eq. (19.20)
is valid.

19.6 Contraction Mapping Principle

Theorem 19.21. Suppose that ( ) is a complete metric space and :
is a contraction, i.e. there exists (0 1) such that ( ( ) ( ))
( ) for all Then has a unique fixed point in i.e. there

exists a unique point such that ( ) =

Proof. For uniqueness suppose that and 0 are two fixed points of
then

( 0) = ( ( ) ( 0)) ( 0)

Therefore (1 ) ( 0) 0 which implies that ( 0) = 0 since 1 0
Thus = 0

For existence, let 0 be any point in and define inductively
by +1 = ( ) for 0 We will show that lim exists in
and because is continuous this will imply,

= lim +1 = lim ( ) = ( lim ) = ( )

showing is a fixed point of
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So to finish the proof, because is complete, it su ces to show { } =1

is a Cauchy sequence in An easy inductive computation shows, for 0
that

( +1 ) = ( ( ) ( 1)) ( 1) · · · ( 1 0)

Another inductive argument using the triangle inequality shows, for
that,

( ) ( 1) + ( 1 ) · · ·
1

X

=

( +1 )

Combining the last two inequalities gives (using again that (0 1)),

( )
1

X

=

( 1 0) ( 1 0)
X

=0

= ( 1 0)
1

This last equation shows that ( ) 0 as i.e. { } =0 is a
Cauchy sequence.

Corollary 19.22 (Contraction Mapping Principle II). Suppose that
( ) is a complete metric space and : is a continuous map such
that ( ) is a contraction for some N Here

( )

times
z }| {

and we are assuming there exists (0 1) such that ( ( )( ) ( )( ))
( ) for all Then has a unique fixed point in

Proof. Let ( ) then : is a contraction and hence has
a unique fixed point Since any fixed point of is also a fixed point of
we see if has a fixed point then it must be Now

( ( )) = ( )( ( )) = ( ( )( )) = ( ( )) = ( )

which shows that ( ) is also a fixed point of Since has only one fixed
point, we must have that ( ) = So we have shown that is a fixed point
of and this fixed point is unique.

Lemma 19.23. Suppose that ( ) is a complete metric space, N is
a topological space, and (0 1) Suppose for each there is a map
: with the following properties:

Contraction property (
( )
( )

( )
( )) ( ) for all and

Continuity in For each the map ( ) is continuous.
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By Corollary 19.22 above, for each there is a unique fixed point
( ) of
Conclusion: The map : is continuous.

Proof. Let ( ) If then

( ( ) ( )) = ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ) ( ))

Solving this inequality for ( ( ) ( )) gives

( ( ) ( ))
1

1
( ( ( )) ( ( )))

Since ( ( )) is continuous it follows from the above equation that
( ) ( ) as i.e. is continuous.

19.7 Inverse and Implicit Function Theorems

In this section, let be a Banach space, be an open set, and :
and : be continuous functions. Question: under what conditions

on is ( ) := + ( ) a homeomorphism from 0( ) to ( 0( )) for some
small 0? Let’s start by looking at the one dimensional case first. So for
the moment assume that = R = ( 1 1) and : R is 1 Then
will be one to one i is monotonic. This will be the case, for example, if
0 = 1+ 0 0 This in turn is guaranteed by assuming that | 0| 1 (This

last condition makes sense on a Banach space whereas assuming 1 + 0 0 is
not as easily interpreted.)

Lemma 19.24. Suppose that = = (0 ) ( 0) is a ball in and
: is a 1 function such that k k on Then for all

we have:
k ( ) ( )k k k (19.21)

Proof. By the fundamental theorem of calculus and the chain rule:

( ) ( ) =

Z 1

0

( + ( ))

=

Z 1

0

[ ( + ( ))]( )

Therefore, by the triangle inequality and the assumption that k ( )k
on

k ( ) ( )k
Z 1

0

k ( + ( ))k · k( )k k( )k
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Remark 19.25. It is easily checked that if : = (0 ) is 1 and
satisfies (19.21) then k k on

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 19.26. Suppose that = = (0 ) ( 0) is a ball in
(0 1) : is continuous, ( ) + ( ) for and satisfies:

k ( ) ( )k k k (19.22)

Then ( ) is open in and : := ( ) is a homeomorphism.

Proof. First notice from (19.22) that

k k = k( ( ) ( )) ( ( ) ( ))k
k ( ) ( )k+ k ( ) ( )k
k ( ) ( )k+ k( )k

from which it follows that k k (1 ) 1k ( ) ( )k Thus is
injective on Let = ( ) and = 1 : denote the inverse
function which exists since is injective.
We will now show that is open. For this let 0 and 0 = ( 0) =

0 + ( 0) We wish to show for close to 0 that there is an such
that ( ) = + ( ) = or equivalently = ( ) Set ( ) = ( )
then we are looking for such that = ( ) i.e. we want to find a
fixed point of We will show that such a fixed point exists by using the
contraction mapping theorem.
Step 1. is contractive for all In fact for

k ( ) ( )k = k ( ) ( ))k k k (19.23)

Step 2. For any 0 such the = ( 0 ) and such that
k 0k (1 ) we have ( ) Indeed, let and compute:

k ( ) 0k = k ( ) 0( 0)k
= k ( ) ( 0 ( 0))k
= k 0 ( ( ) ( 0))k
k 0k+ k 0k
(1 ) + =

wherein we have used 0 = ( 0) and (19.22).
Since is a closed subset of a Banach space we may apply the con-

traction mapping principle, Theorem 19.21 and Lemma 19.23, to to show
there is a continuous function : ( 0 (1 ) ) such that

( ) = ( ( )) = ( ( )) = ( ( )) + ( )
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i.e. ( ( )) = This shows that ( 0 (1 ) ) ( ) ( ) =
That is 0 is in the interior of Since 1| ( 0 (1 ) ) is necessarily equal
to which is continuous, we have also shown that 1 is continuous in a
neighborhood of 0 Since 0 was arbitrary, we have shown that is
open and that 1 : is continuous.

Theorem 19.27 (Inverse Function Theorem). Suppose and are Ba-
nach spaces, ( ) with 1 0 and ( 0) is
invertible. Then there is a ball = ( 0 ) in centered at 0 such that

1. = ( ) is open,
2. | : is a homeomorphism,
3. = ( | ) 1 ( ) and

0( ) = [ 0( ( ))] 1 for all (19.24)

Proof. Define ( ) [ ( 0)]
1 ( + 0) and ( ) ( ) for

( 0) Notice that 0 0 (0) = and that (0) = = 0
Choose 0 such that ˜ (0 ) 0 and k ( )k 1

2 for
˜ By

Lemma 19.24, satisfies (19.23) with = 1 2 By Proposition 19.26, ( ˜)
is open and | ˜ : ˜ ( ˜) is a homeomorphism. Let | 1

˜ which we

know to be a continuous map from ( ˜) ˜

Since k ( )k 1 2 for ˜ ( ) = + ( ) is invertible, see
Corollary 4.21. Since ( ) = is 1 and = on ( ˜) it follows from
the converse to the chain rule, Theorem 19.7, that is di erentiable and

( ) = [ ( ( ))] 1 ( ) = [ ( ( ))] 1

Since and the map ( ) 1 ( ) are all continuous
maps, (see Example 19.6) the map ( ˜) ( ) ( ) is also
continuous, i.e. is 1

Let = ˜ + 0 = ( 0 ) Since ( ) = [ ( 0)] ( 0) and
( 0) is invertible (hence an open mapping), := ( ) = [ ( 0)] ( ˜) is

open in It is also easily checked that | 1 exists and is given by

| 1( ) = 0 + ([ ( 0)]
1 ) (19.25)

for = ( ) This shows that | : is a homeomorphism and
it follows from (19.25) that = ( | ) 1 1( ) Eq. (19.24) now follows
from the chain rule and the fact that

( ) = for all

Since 0 1( ( )) and ( ) := 1 is a smooth map by Example
19.19, 0 = 0 is 1 if 2 i.e. is 2 if 2 Again using
0 = 0 we may conclude 0 is 2 if 3 i.e. is 3 if 3 Continuing
bootstrapping our way up we eventually learn = ( | ) 1 ( ) if is
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Theorem 19.28 (Implicit Function Theorem). Now suppose that
and are three Banach spaces, 1 × is an open set, ( 0 0)
is a point in and : is a — map such ( 0 0) = 0 Assume
that 2 ( 0 0) ( ( 0 ·))( 0) : is a bounded invertible linear
transformation. Then there is an open neighborhood 0 of 0 in such that
for all connected open neighborhoods of 0 contained in 0 there is a unique
continuous function : such that ( 0) = ( ( )) and
( ( )) = 0 for all Moreover is necessarily and

( ) = 2 ( ( )) 1
1 ( ( )) for all (19.26)

Proof. Proof of 19.28. By replacing by ( ) 2 ( 0 0)
1 ( )

if necessary, we may assume with out loss of generality that = and
2 ( 0 0) = Define : × by ( ) ( ( )) for all

( ) Notice that

( ) =

·

1 ( )
0 2 ( )

¸

which is invertible i 2 ( ) is invertible and if 2 ( ) is invertible then

( ) 1 =

·

1 ( ) 2 ( ) 1

0 2 ( ) 1

¸

Since 2 ( 0 0) = is invertible, the implicit function theorem guarantees
that there exists a neighborhood 0 of 0 and 0 of 0 such that 0× 0

( 0 × 0) is open in × |( 0× 0) has a —inverse which we call 1

Let 2( ) for all ( ) × and define — function 0 on 0 by
0( ) 2

1( 0) Since 1( 0) = (˜ 0( )) i ( 0) = (˜ 0( )) =
(˜ (˜ 0( ))) it follows that = ˜ and ( 0( )) = 0 Thus ( 0( )) =

1( 0) 0 × 0 and ( 0( )) = 0 for all 0 Moreover, 0 is
being the composition of the — functions, ( 0) 1 and 2 So

if 0 is a connected set containing 0 we may define 0| to show
the existence of the functions as described in the statement of the theorem.
The only statement left to prove is the uniqueness of such a function
Suppose that 1 : is another continuous function such that

1( 0) = 0 and ( 1( )) and ( 1( )) = 0 for all Let

{ | ( ) = 1( )} = { | 0( ) = 1( )}
Clearly is a (relatively) closed subset of which is not empty since 0

Because is connected, if we show that is also an open set we will have
shown that = or equivalently that 1 = 0 on So suppose that
i.e. 0( ) = 1( ) For ˜ near

0 = 0 0 = (˜ 0(˜)) (˜ 1(˜)) = (˜)( 1(˜) 0(˜)) (19.27)

where



19.8 More on the Inverse Function Theorem 465

(˜)

Z 1

0
2 ((˜ 0(˜) + ( 1(˜) 0(˜))) (19.28)

From Eq. (19.28) and the continuity of 0 and 1 lim˜ (˜) =

2 ( 0( )) which is invertible3 . Thus (˜) is invertible for all ˜ su ciently
close to Using Eq. (19.27), this last remark implies that 1(˜) = 0(˜) for
all ˜ su ciently close to Since was arbitrary, we have shown that
is open.

19.8 More on the Inverse Function Theorem

In this section and will denote two Banach spaces, 1 and
( ) Suppose 0 and 0( 0) is invertible, then

( 0 + ) ( 0) =
0( 0) + ( ) = 0( 0) [ + ( )]

where
( ) = 0( 0)

1 [ ( 0 + ) ( 0)] = ( )

In fact by the fundamental theorem of calculus,

( ) =

Z 1

0

¡ 0( 0)
1 0( 0 + )

¢

but we will not use this here.
Let 0 (0 ) and apply the fundamental theorem of calculus to
( 0 + ( 0 )) to conclude

( 0) ( ) = 0( 0)
1 [ ( 0 +

0) ( 0 + )] ( 0 )

=

·
Z 1

0

¡ 0( 0)
1 0( 0 + ( 0 ))

¢

¸

( 0 )

Taking norms of this equation gives

k ( 0) ( )k
·
Z 1

0

°

°

0( 0)
1 0( 0 + ( 0 ))

°

°

¸

k 0 k k 0

where
:= sup

( 0 )

°

°

0( 0)
1 0( )

°

°

( )
(19.29)

We summarize these comments in the following lemma.

3 Notice that ( 0( )) is invertible for all 0 since | 0× 0 has a
1

inverse. Therefore 2 ( 0( )) is also invertible for all 0
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Lemma 19.29. Suppose 0 0 : ( 0 ) be a 1

— function such that 0( 0) is invertible, is as in Eq. (19.29) and
1
¡

(0 )
¢

is defined by

( 0 + ) = ( 0) +
0( 0) ( + ( )) (19.30)

Then

k ( 0) ( )k k 0 k for all 0 (0 ) (19.31)

Furthermore if 1 (which may be achieved by shrinking if necessary)
then 0( ) is invertible for all ( 0 ) and

sup
( 0 )

°

°

0( ) 1
°

°

( )

1

1

°

°

0( 0)
1
°

°

( )
(19.32)

Proof. It only remains to prove Eq. (19.32), so suppose now that 1
Then by Proposition 4.20 0( 0)

1 0( ) is invertible and
°

°

°

£ 0( 0)
1 0( )

¤ 1
°

°

°

1

1
for all ( 0 )

Since 0( ) = 0( 0)
£ 0( 0)

1 0( )
¤

this implies 0( ) is invertible and

°

°

0( ) 1
°

° =
°

°

°

£ 0( 0)
1 0( )

¤ 1 0( 0)
1
°

°

°

1

1

°

°

0( 0)
1
°

° for all

Theorem 19.30 (Inverse Function Theorem). Suppose 1
and ( ) such that 0( ) is invertible for all Then:

1. : is an open mapping, in particular := ( )
2. If is injective, then 1 : is also a — map and

¡

1
¢0
( ) =

£ 0( 1( ))
¤ 1

for all

3. If 0 and 0 such that ( 0 ) and

sup
( 0 )

°

°

0( 0)
1 0( )

°

° = 1

(which may always be achieved by taking su ciently small by continuity
of 0( )) then | ( 0 ) : ( 0 ) ( ( 0 )) is invertible and
| 1

( 0 )
:
¡

( 0 )
¢

( 0 ) is
4. Keeping the same hypothesis as in item 3. and letting 0 = ( 0)

( ( 0 )) ( 0 k 0( 0)k (1 + ) ) for all

and
( 0 ) ( ( 0 (1 )

1 °
°

0( 0)
1
°

° ))

for all ( 0) := (1 )
°

°

0( 0)
1
°

°
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Proof. Let 0 and 0 be as in item 3. above and be as defined in
Eq. (19.30) above, so that for 0 ( 0 )

( ) = ( 0) +
0( 0) [( 0) + ( 0)] and

( 0) = ( 0) +
0( 0) [(

0
0) + ( 0

0)]

Subtracting these two equations implies

( 0) ( ) = 0( 0) [
0 + ( 0

0) ( 0)]

or equivalently

0 = 0( 0)
1 [ ( 0) ( )] + ( 0) ( 0

0)

Taking norms of this equation and making use of Lemma 19.29 implies

k 0 k °

°

0( 0)
1
°

° k ( 0) ( )k+ k 0 k
which implies

k 0 k
°

°

0( 0)
1
°

°

1
k ( 0) ( )k for all 0 ( 0 ) (19.33)

This shows that | ( 0 ) is injective and that | 1
( 0 )

:
¡

( 0 )
¢

( 0 ) is Lipschitz continuous because

|| | 1
( 0 )

( 0) | 1
( 0 )

( )||
°

°

0( 0)
1
°

°

1
k 0 k for all 0 ¡

( 0 )
¢

Since 0 was chosen arbitrarily, if we know : is injective, we
then know that 1 : = ( ) is necessarily continuous. The remaining
assertions of the theorem now follow from the converse to the chain rule in
Theorem 19.7 and the fact that is an open mapping (as we shall now show)
so that in particular

¡

( 0 )
¢

is open.
Let (0 ) with to be determined later, we wish to solve the

equation, for (0 )

( 0) + = ( 0 + ) = ( 0) +
0( 0) ( + ( ))

Equivalently we are trying to find (0 ) such that

= 0( 0)
1 ( ) =: ( )

Now using Lemma 19.29 and the fact that (0) = 0

k ( )k °

°

0( 0)
1
°

°+ k ( )k °

°

0( 0)
1
°

° k k+ k k
°

°

0( 0)
1
°

° +
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Therefore if we assume is chosen so that
°

°

0( 0)
1
°

° + i.e. (1 )
°

°

0( 0)
1
°

° := ( 0)

then : (0 ) (0 ) (0 )

Similarly by Lemma 19.29, for all (0 )

k ( ) ( )k = k ( ) ( )k k k

which shows is a contraction on (0 ) Hence by the contraction map-
ping principle in Theorem 19.21, for every (0 ) there exists a unique
solution (0 ) such that = ( ) or equivalently

( 0 + ) = ( 0) +

Letting 0 = ( 0) this last statement implies there exists a unique function
: ( 0 ( 0)) ( 0 ) such that ( ( )) = ( 0 ( 0)) From

Eq. (19.33) it follows that

k ( ) 0k = k ( ) ( 0)k
°

°

0( 0)
1
°

°

1
k ( ( )) ( ( 0))k

=

°

°

0( 0)
1
°

°

1
k 0k

This shows

( ( 0 )) ( 0 (1 ) 1 °
°

0( 0)
1
°

° )

and therefore

( 0 ) =
¡

( ( 0 ))
¢

³

( 0 (1 )
1 °
°

0( 0)
1
°

° )
´

for all ( 0)
This last assertion implies ( 0) ( ) for any with 0

Since 0 was arbitrary, this shows is an open mapping.

19.8.1 Alternate construction of g

Suppose and : is a 2 — function. Then we are looking for
a function ( ) such that ( ( )) = Fix an 0 and 0 = ( 0)
Suppose such a exists and let ( ) = ( 0 + ) for some Then
di erentiating ( ( )) = 0 + implies

( ( )) = 0( ( )) ˙( ) =
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or equivalently that

˙ ( ) = [ 0( ( ))] 1
= ( ( )) with (0) = 0 (19.34)

where ( ) = [ 0( ( ))] 1 Conversely if solves Eq. (19.34) we have
( ( )) = and hence that

( (1)) = 0 +

Thus if we define
( 0 + ) := ( ·)( 0)

then ( ( 0+ )) = 0+ for all su ciently small. This shows is an open
mapping.

19.9 Applications

A detailed discussion of the inverse function theorem on Banach and Fréchet
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper.

Theorem 19.31 (Hamilton’s Theorem on p. 110.). Let : :=
( ) := ( ) be a smooth function with 0 0 on ( ) For every

2 (R ( )) there exists a unique function 2 (R ( )) such that

˙( ) + ( ( )) = ( )

Proof. Let ˜ := 0
2 (R ( )) 0

2 (R R) and ˜ 1
2 (R ( )) be

given by

˜ :=
©

1
2 (R R) : ( ) & ˙( ) + ( ( ))

ª

The proof will be completed by showing : ˜ ˜ defined by

( )( ) = ˙( ) + ( ( )) for ˜ and R

is bijective.
Step 1. The di erential of is given by 0( ) = ˙ + 0( ) see Exercise

19.37. We will now show that the linear mapping 0( ) is invertible. Indeed
let = 0( ) 0 then the general solution to the Eq. ˙ + = is given by

( ) =
R

0
( )

0 +

Z

0

R

( ) ( )

where 0 is a constant. We wish to choose 0 so that (2 ) = 0 i.e. so that
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0

³

1 ( )
´

=

Z 2

0

R

( ) ( )

where

( ) =

Z 2

0

( ) =

Z 2

0

0( ( )) 0

The unique solution 1
2 (R R) to 0( ) = is given by

( ) =
³

1 ( )
´ 1 R

0
( )

Z 2

0

R

( ) ( ) +

Z

0

R

( ) ( )

=
³

1 ( )
´ 1 R

0
( )

Z 2

0

R

( ) ( ) +

Z

0

R

( ) ( )

Therefore 0( ) is invertible for all Hence by the implicit function theorem,
: ˜ ˜ is an open mapping which is locally invertible.
Step 2. Let us now prove : ˜ ˜ is injective. For this suppose

1 2
˜ such that ( 1) = = ( 2) and let = 2 1 Since

˙( ) + ( 2( )) ( 1( )) = ( ) ( ) = 0

if R is point where ( ) takes on its maximum, then ˙( ) = 0 and
hence

( 2( )) ( 1( )) = 0

Since is increasing this implies 2( ) = 1( ) and hence ( ) = 0 This
shows ( ) 0 for all and a similar argument using a minimizer of shows
( ) 0 for all So we conclude 1 = 2

Step 3. Let := ( ˜) we wish to show = ˜ By step 1., we know
is an open subset of ˜ and since ˜ is connected, to finish the proof it

su ces to show is relatively closed in ˜ So suppose ˜ such that
:= ( ) ˜ Wemust now show i.e. = ( ) for some

If is a maximizer of then ˙ ( ) = 0 and hence ( ) = ( ( ))
and therefore ( ) because is increasing. A similar argument works
for the minimizers then allows us to conclude Ran ) Ran ) @@ ( )
for all Since is converging uniformly to there exists
such that Ran( ) Ran( ) [ ] for all Again since 0 0

Ran( ) 1 ([ ]) = [ ] @@ ( ) for all

In particular sup {| ˙ ( )| : R and } since

˙ ( ) = ( ) ( ( )) [ ] [ ] (19.35)

which is a compact subset of R The Ascoli-Arzela Theorem 2.86 now allows
us to assume, by passing to a subsequence if necessary, that is converging
uniformly to 0

2 (R [ ]) It now follows that
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˙ ( ) = ( ) ( ( )) ( )

uniformly in Hence we concluded that 1
2 (R R) 0

2 (R [ ]) ˙
and ( ) = This has proved that and hence that is relatively
closed in ˜

19.10 Exercises

Exercise 19.32. Suppose that : R ( ) is a continuous function and
: R ( ) is the unique solution to the linear di erential equation

˙ ( ) = ( ) ( ) with (0) = (19.36)

Assuming that ( ) is invertible for all R show that 1( ) [ ( )] 1

must solve the di erential equation

1( ) = 1( ) ( ) with 1(0) = (19.37)

See Exercise 6.39 as well.

Exercise 19.33 (Di erential Equations with Parameters). Let be
another Banach space, × × and 1( × ) For each
( ) × let ( ) denote the maximal solution to the
ODE

˙( ) = ( ( ) ) with (0) = (19.38)

and
D := {( ) R× × : }

as in Exercise 6.43.

1. Prove that is 1 and that ( ) solves the di erential equation:

( ) = ( )( ( ) ) ( )+( )( ( ) )

with (0 ) = 0 ( ) Hint: See the hint for Exercise 6.43
with the reference to Theorem 6.21 being replace by Theorem 19.13.

2. Also show with the aid of Duhamel’s principle (Exercise 6.41) and Theo-
rem 19.13 that

( ) = ( )

Z

0

( ) 1( )( ( ) )

Exercise 19.34. (Di erential of ) Let : ( ) ( ) be the expo-
nential function ( ) = Prove that is di erentiable and that
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( ) =

Z 1

0

(1 ) (19.39)

Hint: Let ( ) and define ( ) = ( + ) for all R Notice that

( ) = ( + ) ( ) with (0 ) = ( ) (19.40)

Use Exercise 19.33 to conclude that is 1 and that 0( 0) ( ) | =0
satisfies the di erential equation,

0( 0) = 0( 0) + with (0 0) = 0 ( ) (19.41)

Solve this equation by Duhamel’s principle (Exercise 6.41) and then apply
Proposition 19.11 to conclude that is di erentiable with di erential given
by Eq. (19.39).

Exercise 19.35 (Local ODE Existence). Let be defined as in Eq. (6.22)
from the proof of Theorem 6.10. Verify that satisfies the hypothesis of
Corollary 19.22. In particular we could have used Corollary 19.22 to prove
Theorem 6.10.

Exercise 19.36 (Local ODE Existence Again). Let = [ 1 1]
1( ) := ( ) and for and let be defined by
( ) := ( ) Use the following outline to prove the ODE

˙( ) = ( ( )) with (0) = (19.42)

has a unique solution for small and this solution is 1 in

1. If solves Eq. (19.42) then solves

˙ ( ) = ( ( )) with (0) =

or equivalently

( ) = +

Z

0

( ( )) (19.43)

Notice that when = 0 the unique solution to this equation is 0( ) =
2. Let : × × be defined by

( ) := ( ( )

Z

0

( ( )) )

Show the di erential of is given by

0( )( ) =

µ

( )

Z

0

0( ( )) ( )
Z ·

0

( ( ))

¶
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3. Verify 0(0 ) : R× R× is invertible for all and notice that
(0 ) = (0 )

4. For let be the constant path at i.e. ( ) = for all
Use the inverse function Theorem 19.27 to conclude there exists

0 and a 1 map : ( )× ( 0 ) such that

( ( )) = ( ) for all ( ) ( )× ( 0 )

5. Show, for that ( ) := ( )( ) satisfies Eq. (19.43). Now define
( ) = ( 2 )(2 ) and show ( ) solve Eq. (19.42) for | | 2
and ( 0 )

Exercise 19.37. Show defined in Theorem 19.31 is continuously di eren-
tiable and 0( ) = ˙ + 0( )
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Lebesgue Di erentiation and the Fundamental
Theorem of Calculus

Notation 20.1 In this chapter, let B = BR denote the Borel — algebra
on R and be Lebesgue measure on B If is an open subset of R let
1 ( ) := 1 ( ) and simply write 1 for 1 (R ) We will also write
| | for ( ) when B
Definition 20.2. A collection of measurable sets { } 0 B is said to shrink
nicely to R if (i) ( ) for all 0 and (ii) there exists 0
such that ( ) ( ( )) We will abbreviate this by writing { }
nicely. (Notice that it is not required that for any 0

The main result of this chapter is the following theorem.

Theorem 20.3. Suppose that is a complex measure on (R B) then there
exists 1(R ) and a complex measure such that =

+ and for - a.e.

( ) = lim
0

( )

( )
(20.1)

for any collection of { } 0 B which shrink nicely to { }
Proof. The existence of and such that and = +

is a consequence of the Radon-Nikodym Theorem 18.36. Since

( )

( )
=

1

( )

Z

( ) ( ) +
( )

( )

Eq. (20.1) is a consequence of Theorem 20.13 and Corollary 20.15 below.
The rest of this chapter will be devoted to filling in the details of the proof

of this theorem.
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20.1 A Covering Lemma and Averaging Operators

Lemma 20.4 (Covering Lemma). Let E be a collection of open balls in R
and = E . If ( ), then there exists disjoint balls 1 E
such that 3

P

=1
( )

Proof. Choose a compact set such that ( ) and then let
E1 E be a finite subcover of Choose 1 E1 to be a ball with largest
diameter in E1 Let E2 = { E1 : 1 = } If E2 is not empty, choose
2 E2 to be a ball with largest diameter in E2 Similarly let E3 = { E2 :

2 = } and if E3 is not empty, choose 3 E3 to be a ball with largest
diameter in E3 Continue choosing E for = 1 2 this way until
E +1 is empty, see Figure 20.1 below.

Fig. 20.1. Picking out the large disjoint balls.

If = ( 0 ) R let = ( 0 3 ) R , that is is the ball
concentric with which has three times the radius of We will now show

=1 For each E1 there exists a first such that 6= In
this case diam( ) diam( ) and . Therefore =1 and hence

{ : E1} =1 Hence by subadditivity,

( )
X

=1

( ) 3
X

=1

( )

Definition 20.5. For 1 R and 0 let

( )( ) =
1

| ( )|
Z

( )

(20.2)

where ( ) = ( ) R and | | := ( )
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Lemma 20.6. Let 1 then for each R (0 )such that
( )( ) is continuous and for each 0 R such that ( ) ( ) is
measurable.

Proof. Recall that | ( )| = ( 1) which is continuous in . Also
lim

0 1 ( )( ) = 1 ( 0)( ) if | | 6= 0 and since ({ : | | 6= 0}) = 0
(you prove!), lim

0
1 ( )( ) = 1 ( 0)( ) for -a.e. . So by the dominated

convergence theorem,

lim
0

Z

( )

=

Z

( 0)

and therefore

( )( ) =
1

( 1)

Z

( )

is continuous in Let ( ) := 1 ( )( ) = 1| | Then is B B —
measurable (for example write it as a limit of continuous functions or just
notice that : R ×R R defined by ( ) := | | is continuous) and
so that by Fubini’s theorem

Z

( )

=

Z

( )

( ) ( ) ( )

is B — measurable and hence so is ( ) ( )

20.2 Maximal Functions

Definition 20.7. For 1( ) the Hardy - Littlewood maximal function
is defined by

( )( ) = sup
0

| |( )

Lemma 20.6 allows us to write

( )( ) = sup
Q 0

| |( )

and then to concluded that is measurable.

Theorem 20.8 (Maximal Inequality). If 1( ) and 0 then

( )
3 k k 1
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This should be compared with Chebyshev’s inequality which states that

(| | )
k k 1

Proof. Let { }. For all there exists such that
| |( ) i.e.

| ( )| 1
Z

( )

Since ( ) if ( ) ( ( )) then, using
Lemma 20.4, there exists 1 and disjoint balls = ( ) for
= 1 2 such that

X

=1

3 | |
X 3

Z

| | 3
Z

R
| | =

3 k k 1

This shows that 3 1k k 1 for all ( ) which proves ( )
3 1k k
Theorem 20.9. If 1 then lim

0
( )( ) = ( ) for — a.e. R

Proof. With out loss of generality we may assume 1( ) We now
begin with the special case where = 1( ) is also continuous. In this
case we find:

|( )( ) ( )| 1

| ( )|
Z

( )

| ( ) ( )| ( )

sup
( )

| ( ) ( )| 0 as 0

In fact we have shown that ( )( ) ( ) as 0 uniformly for in
compact subsets of R
For general 1( )

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
= | ( )( )|+ | ( ) ( )|+ | ( ) ( )|

( )( ) + | ( ) ( )|+ | ( ) ( )|
and therefore,

lim
0
| ( ) ( )| ( )( ) + | ( ) ( )|

So if 0 then
½

lim
0
| ( ) ( )|

¾

n

( )
2

o n

| |
2

o
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and thus

( )
³

( )
2

´

+
³

| |
2

´

3

2
k k 1 +

1

2
k k 1

2(3 + 1) 1k k 1

where in the second inequality we have used the Maximal inequality (Theorem
20.8) and Chebyshev’s inequality. Since this is true for all continuous
(R ) 1( ) and this set is dense in 1( ) we may make k k 1 as

small as we please. This shows that

µ½

: lim
0
| ( ) ( )| 0

¾¶

= ( =1 1 )
X

=1

( 1 ) = 0

Corollary 20.10. If = with 1 then

( ( ))

| ( )| = ( ) ( ) for —

20.3 Lebesque Set

Definition 20.11. For 1 ( ) the Lebesgue set of is

L := R : lim
0

1

| ( )|
Z

( )

| ( ) ( )| = 0

=

½

R : lim
0
( | (·) ( )|) ( ) = 0

¾

Theorem 20.12. Suppose 1 and ( ) then
³

R \ L
´

=

0 where

L := R : lim
0

1

| ( )|
Z

( )

| ( ) ( )| = 0

Proof. For C define ( ) = | ( ) | and { : lim 0 ( ) ( )
Then by Theorem 20.9 ( ) = 0 for all C and therefore ( ) = 0
where

=
[

Q+ Q

480 20 Lebesgue Di erentiation and the Fundamental Theorem of Calculus

By definition of if then.

lim
0
( | (·) | )( ) = | ( ) |

for all Q+ Q Letting := 1 we have

| (·) ( )| (| (·) |+ | ( )|) 2 (| (·) | + | ( )| )

( | (·) ( )| )( ) 2 ( | (·) | ) ( ) + ( | ( )| ) ( )
= 2 ( | (·) | ) ( ) + 2 | ( )|

and hence for

lim
0
( | (·) ( )| )( ) 2 | ( ) | + 2 | ( )| = 22 | ( ) |

Since this is true for all Q+ Q we see that

lim
0
( | (·) ( )| )( ) = 0 for all

i.e. L or equivalently
³

L
´

So
³

R \ L
´

( ) = 0

Theorem 20.13 (Lebesque Di erentiation Theorem). Suppose 1

for all L (so in particular for — a.e. )

lim
0

1

( )

Z

| ( ) ( )| = 0

and

lim
0

1

( )

Z

( ) = ( )

when { } nicely.
Proof. For all L

¯

¯

¯

¯

1

( )

Z

( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

1

( )

Z

( ( ) ( ))

¯

¯

¯

¯

1

( )

Z

| ( ) ( )|
1

( ( ))

Z

( )

| ( ) ( )|

which tends to zero as 0 by Theorem 20.12. In the second inequality we
have used the fact that ( ( ) \ ( )) = 0
BRUCE: ADD an — version of this theorem.



20.3 Lebesque Set 481

Lemma 20.14. Suppose is positive — finite measure on B BR such
that Then for — a.e.

lim
0

( ( ))

( ( ))
= 0

Proof. Let B such that ( ) = 0 and ( ) = 0 By the regularity
theorem (Corollary 12.29 or Exercise 9.47), for all 0 there exists an open
set R such that and ( ) Let

½

: lim
0

( ( ))

( ( ))

1
¾

the for choose 0 such that ( ) (see Figure 20.2) and
( ( ))
( ( ))

1 i.e.
( ( )) ( ( ))

Fig. 20.2. Covering a small set with balls.

Let E = { ( )} and
S

( ) Heuristically if all the

balls in E were disjoint and E were countable, then

( )
X

( ( ))
X

( ( ))

= ( ) ( )

Since 0 is arbitrary this would imply that ( ) = 0.
To fix the above argument, suppose that ( ) and use the covering

lemma to find disjoint balls 1 E such that

482 20 Lebesgue Di erentiation and the Fundamental Theorem of Calculus

3
X

=1

( ) 3
X

=1

( )

3 ( ) 3 ( ) 3

Since ( ) is arbitrary we learn that ( ) ( ) 3 and in par-
ticular that ( ) 3 Since 0 is arbitrary, this shows that ( ) = 0
and therefore, ( ) = 0 where

½

: lim
0

( ( ))

( ( ))
0

¾

= =1

Since

{ R : lim
0

( ( ))

( ( ))
0}

and ( ) = 0 we have shown

({ R : lim
0

( ( ))

( ( ))
0}) = 0

Corollary 20.15. Let be a complex or a — finite signed measure such that
. Then for — a.e.

lim
0

( )

( )
= 0

whenever { } nicely.
Proof. Recalling the implies | | Lemma 20.14 and the

inequalities,

| ( )|
( )

| |( )

( ( ))

| |( ( ))

( ( ))

| |( (2 ))

2 ( (2 ))

proves the result.

Proposition 20.16. TODO Add in almost everywhere convergence result of
convolutions by approximate — functions.

20.4 The Fundamental Theorem of Calculus

In this section we will restrict the results above to the one dimensional setting.
The following notation will be in force for the rest of this chapter: denotes
one dimensional Lebesgue measure on B := BR A =
A[ ] denote the algebra generated by sets of the form ( ] [ ] with

A denotes those sets in A which are bounded, and B[ ]

is the Borel — algebra on [ ] R
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Notation 20.17 Given a function : R R̄ or : R C let ( ) =
lim ( ) ( +) = lim ( ) and (± ) = lim ± ( ) whenever
the limits exist. Notice that if is a monotone functions then (± ) and
( ±) exist for all

Theorem 20.18. Let : R R be increasing and define ( ) = ( +)
Then

1. { R : ( +) ( )} is countable.
2. The function increasing and right continuous.
3. For — a.e. 0( ) and 0( ) exists and 0( ) = 0( )
4. The function 0 is in 1 ( ) and there exists a unique positive measure

on (R BR) such that

( +) ( +) =

Z

0 + (( ]) for all

Moreover the measure is singular relative to

Proof. Properties (1) and (2) have already been proved in Theorem 12.36.
(3) Let denote the unique measure on B such that (( ]) = ( )
( ) for all By Theorem 20.3, for - a.e. for all sequences { } 0

which shrink nicely to { } lim
0
( ( ) ( )) exists and is independent of

the choice of sequence { } 0 shrinking to { } Since ( + ] { } and
( ] { } nicely,

lim
0

( + ])

(( + ])
= lim

0

( + ) ( )
=

+
( ) (20.3)

and

lim
0

(( ])

(( ])
= lim

0

( ) ( )

= lim
0

( ) ( )
= ( ) (20.4)

exist and are equal for - a.e. i.e. 0( ) exists for -a.e.
For R let

( ) ( ) ( ) = ( +) ( ) 0

Since ( ) = ( ) ( ) the proof of (3) will be complete once we show
0( ) = 0 for — a.e.
From Theorem 12.36,

:= { R : ( +) ( )} { R : ( +) ( )}
is a countable set and
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X

( )

( ) =
X

( )

( ( +) ( ))
X

( )

( ( +) ( ))

for all Therefore :=
P

R
( ) (i.e. ( ) :=

P

( ) for all

BR) defines a Radon measure on BR Since ( ) = 0 and ( ) = 0 the
measure By Corollary 20.15 for - a.e.

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

| ( + )|+ | ( )|
| |

( + | |) + ( | |) + ( )

| |
2
([ | | + | |])

2 | |
and the last term goes to zero as 0 because {[ + ]} 0 shrinks
nicely to { } as 0 and ([ | | + | |]) = 2 | | Hence we conclude for
— a.e. that 0( ) = 0
(4) From Theorem 20.3, item (3) and Eqs. (20.3) and (20.4), 0 = 0

1 ( ) and = 0 + where is a positive measure such that
Applying this equation to an interval of the form ( ] gives

( +) ( +) = (( ]) =

Z

0 + (( ])

The uniqueness of such that this equation holds is a consequence of Theo-
rem 9.8.
Our next goal is to prove an analogue of Theorem 20.18 for complex valued

Definition 20.19. For a partition P of [ ] is a fi-
nite subset of [ ] R such that { } R P For P\ { } let
+ = min { P : } and if = let + =

Proposition 20.20. Let be a complex measure on BR and let be a func-
tion such that

( ) ( ) = (( ]) for all

for example let ( ) = (( ]) in which case ( ) = 0 The function
is right continuous and for

| |( ] = sup
P

X

P

| ( +]| = sup
P

X

P

| ( +) ( )| (20.5)

where supremum is over all partitions P of [ ] Moreover ¿ i for all
0 there exists 0 such that

X

=1

| (( ])| =
X

=1

| ( ) ( )| (20.6)
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whenever {( ) ( ]} =1 are disjoint open intervals in ( ] such that
P

=1
( )

Proof. Eq. (20.5) follows from Proposition 18.35 and the fact that B =
(A) where A is the algebra generated by ( ] R with R̄ Equation
(20.6) is a consequence of Theorem 18.40 withA being the algebra of half open
intervals as above. Notice that {( ) ( ]} =1 are disjoint intervals i
{( ] ( ]} =1 are disjoint intervals,

P

=1
( ) = (( ] =1( ])

and the general element A( ] is of the form = ( ] =1( ]

Definition 20.21. Given a function : R [ ] C let be the unique
additive measure on A such that (( ]) = ( ) ( ) for all [ ]
with and also define

([ ]) = sup
P

X

P

| ( +]| = sup
P

X

P

| ( +) ( )|

where supremum is over all partitions P of [ ] We will also abuse no-
tation and define ( ) := ([ ]) A function : R [ ] C is
said to be of bounded variation if ( ) := ([ ]) and we
write ([ ]) If = and = + we will simply denote

([ + ]) by

Definition 20.22. A function : R C is said to be of normalized bounded
variation if is right continuous and ( ) := lim ( ) = 0
We will abbreviate this by saying (The condition: ( ) = 0 is
not essential and plays no role in the discussion below.)

Definition 20.23. A function : R [ ] C is absolutely continuous
if for all 0 there exists 0 such that

X

=1

| ( ) ( )| (20.7)

whenever {( )} =1 are disjoint open intervals in R [ ] such that
P

=1
(

)

Lemma 20.24. Let : R [ ] C be any function and and with
R [ ] then

1.
([ ]) = ([ ]) + ([ ]) (20.8)

2. Letting = in this expression implies

( ) = ( ) + ([ ]) (20.9)

and in particular is monotone increasing.
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3. If ( ) for some R [ ] then

( +) ( ) lim sup | ( ) ( )| (20.10)

for all R [ ) In particular is right continuous if is right
continuous.

4. If = and ( ) for some ( ] R then ( ) :=
lim ( ) = 0

Proof. (1 — 2) By the triangle inequality, if P and P0 are partition of [ ]
such that P P0 then

X

P

| ( +) ( )|
X

P0
| ( +) ( )|

So if P is a partition of [ ] then P P0 := P { } implies
X

P

| ( +) ( )|
X

P0
| ( +) ( )|

=
X

P0 [ ]

| ( +) ( )|+
X

P0 [ ]

| ( +) ( )|

([ ]) + ([ ])

Thus we see that ([ ]) ([ ])+ ([ ]) Similarly if P1 is a partition
of [ ] and P2 is a partition of [ ] then P = P1 P2 is a partition of [ ]
and
X

P1

| ( +) ( )|+
X

P2

| ( +) ( )| =
X

P

| ( +) ( )| ([ ])

From this we conclude ([ ]) + ([ ]) ([ ]) which finishes the
proof of Eqs. (20.8) and (20.9).
(3) Let R [ ) and given 0 let P be a partition of [ ] such that

( ) ( ) = ([ ])
X

P

| ( +) ( )|+ (20.11)

Let ( +) then
X

P

| ( +) ( )|+
X

P { }
| ( +) ( )|+

= | ( ) ( )|+
X

P\{ }
| ( +) ( )|+

| ( ) ( )|+ ([ ]) + (20.12)

Combining Eqs. (20.11) and (20.12) shows



20.4 The Fundamental Theorem of Calculus 487

( ) ( ) + ([ ]) = ( ) ( )

| ( ) ( )|+ ([ ]) +

Since ( +) is arbitrary we conclude that

( +) ( ) = lim sup ( ) ( ) lim sup | ( ) ( )|+

Since 0 is arbitrary this proves Eq. (20.10).
(4) Suppose that ( ) and given 0 let P be a partition of [ ]

such that
( )

X

P

| ( +) ( )|+

Let 0 = minP then by the previous equation

( 0) + ([ 0 ]) = ( )
X

P

| ( +) ( )|+

([ 0 ]) +

which shows, using the monotonicity of that ( ) ( 0)
Since 0 we conclude that ( ) = 0
The following lemma should help to clarify Proposition 20.20 and Defini-

tion 20.23.

Lemma 20.25. Let and be as in Proposition 20.20 and A be the algebra
generated by ( ] R with R̄ . Then the following are equivalent:

1. ¿
2. | | ¿
3. For all 0 there exists a 0 such that ( ) whenever ( )
4. For all 0 there exists a 0 such that | ( )| whenever ( )

Moreover, condition 4. shows that we could replace the last statement in
Proposition 20.20 by: ¿ i for all 0 there exists 0 such that

¯

¯

¯

¯

¯

X

=1

(( ])

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

X

=1

[ ( ) ( )]

¯

¯

¯

¯

¯

whenever {( ) ( ]} =1 are disjoint open intervals in ( ] such that
P

=1
( )

Proof. This follows directly from Lemma 18.37 and Theorem 18.40.

Lemma 20.26.

1. Monotone functions : R [ ] R are in ([ ])
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2. Linear combinations of functions in are in i.e. is a vector
space.

3. If : R [ ] C is absolutely continuous then is continuous and
([ ])

4. If and : R [ ] R is a di erentiable function
such that sup R | 0( )| = then is absolutely continuous and
([ ]) ( ) for all

5. Let 1(R [ ] ) and set

( ) =

Z

( ]

(20.13)

for [ ] R Then : R [ ] C is absolutely continuous.

Proof.

1. If is monotone increasing and P is a partition of ( ] then

X

P

| ( +) ( )| =
X

P

( ( +) ( )) = ( ) ( )

so that ([ ]) = ( ) ( ) Also note that i ( )
( )

2. Item 2. follows from the triangle inequality.
3. Since is absolutely continuous, there exists 0 such that whenever

+ and P is a partition of ( ]

X

P

| ( +) ( )| 1

This shows that ([ ]) 1 for all with Thus using Eq.
(20.8), it follows that ([ ]) if for an N.

4. Suppose that {( )} =1 ( ] are disjoint intervals, then by the mean
value theorem,

X

=1

| ( ) ( )|
X

=1

| 0( )| ( ) ( =1( ))

X

=1

( ) ( )

form which it clearly follows that is absolutely continuous. Moreover
we may conclude that ([ ]) ( )

5. Let be the positive measure = | | on ( ] Let {( )} =1
( ] be disjoint intervals as above, then
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X

=1

| ( ) ( )| =
X

=1

¯

¯

¯

¯

¯

Z

( ]

¯

¯

¯

¯

¯

X

=1

Z

( ]

| |

=

Z

=1( ]

| | = ( =1( ]) (20.14)

Since is absolutely continuous relative to for all 0 there exist
0 such that ( ) if ( ) Taking = =1( ] in Eq.

(20.14) shows that is absolutely continuous. It is also easy to see from
Eq. (20.14) that ([ ])

R

( ]
| |

Theorem 20.27. Let : R C be a function, then

1. i Re and Im
2. If : R R is in then the functions ± := ( ± ) 2 are bounded
and increasing functions.

3. : R R is in i = + where ± are bounded increasing
functions.

4. If then ( ±) exist for all R̄ Let ( ) := ( +)
5. then { : lim ( ) 6= ( )} is a countable set and in partic-
ular ( ) = ( +) for all but a countable number of R

6. If then for — a.e. 0( ) and 0( ) exist and 0( ) = 0( )

Proof.

1. Item 1. is a consequence of the inequalities

| ( ) ( )| |Re ( ) Re ( )|+|Im ( ) Im ( )| 2 | ( ) ( )

2. By Lemma 20.24, for all

( ) ( ) = ([ ]) | ( ) ( )| (20.15)

and therefore
( )± ( ) ( )± ( )

which shows that ± are increasing. Moreover from Eq. (20.15), for 0
and 0

| ( )| | ( ) (0)|+ | (0)| (0 ] + | (0)|
(0 ) + | (0)|

and similarly
| ( )| | (0)|+ ( 0)

which shows that is bounded by | (0)| + ( ) Therefore ± is
bounded as well.
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3. By Lemma 20.26 if = + then

([ ]) +([ ]) + ([ ])

= | +( ) +( )|+ | ( ) ( )|
which is bounded showing that Conversely if is bounded
variation, then = + where ± are defined as in Item 2.

Items 4. — 6. follow from Items 1. — 3. and Theorem 20.18.

Theorem 20.28. Suppose that : R C is in then

| ( +) ( )| | ( +) ( )| (20.16)

for all R If we further assume that is right continuous then there exists
a unique measure on B = BR. such that

(( ]) = ( ) ( ) for all R (20.17)

Proof. Since ( +) exists for all R and hence Eq. (20.16) is
a consequence of Eq. (20.10). Now assume that is right continuous. In this
case Eq. (20.16) shows that ( ) is also right continuous. By considering
the real and imaginary parts of separately it su ces to prove there exists a
unique finite signed measure satisfying Eq. (20.17) in the case that is real
valued. Now let ± = ( ± ) 2 then ± are increasing right continuous
bounded functions. Hence there exists unique measure ± on B such that

±(( ]) = ±( ) ±( ) R

The finite signed measure + satisfies Eq. (20.17). So it only remains
to prove that is unique.
Suppose that ˜ is another such measure such that (20.17) holds with

replaced by ˜ Then for ( ]

| | ( ] = sup
P

X

P

| ( +) ( )| = |˜| ( ]

where the supremum is over all partition of ( ] This shows that | | = |˜|
on A B — the algebra generated by half open intervals and hence | | = |˜|
It now follows that | | + and |˜| + ˜ are finite positive measure on B such
that

(| |+ ) (( ]) = | | (( ]) + ( ( ) ( ))

= |˜| (( ]) + ( ( ) ( ))

= (|˜|+ ˜) (( ])

from which we infer that | |+ = |˜|+ ˜ = | |+ ˜ on B Thus = ˜
Alternatively, one may prove the uniqueness by showing that C := {

B : ( ) = e( )} is a monotone class which contains A or using the —
theorem.
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Theorem 20.29. Suppose that and is the measure defined by
Eq. (20.17), then

= 0 + (20.18)

where and in particular for

( ) ( ) =

Z

0 + (( ]) (20.19)

Proof. By Theorem 20.3, there exists 1( ) and a complex measure
such that for -a.e.

( ) = lim
0

( )

( )
(20.20)

for any collection of { } 0 B which shrink nicely to { } and

= +

From Eq. (20.20) it follows that

lim
0

( + ) ( )
= lim

0

(( + ])
= ( ) and

lim
0

( ) ( )
= lim

0

(( ])
= ( )

for — a.e. i.e. + ( ) = ( ) = ( ) for —a.e. This implies
that is — a.e. di erentiable and 0( ) = ( ) for — a.e.

Corollary 20.30. Let : R C be in then

1. i 0 = 0 a.e.
2. ¿ i = 0 i

(( ]) =

Z

( ]

0( ) ( ) for all (20.21)

Proof.

1. If 0( ) = 0 for a.e. then by Eq. (20.18), = . If
then by Eq. (20.18), 0 = and by Remark 18.8
0 = 0 i.e. 0 = 0 -a.e.

2. If ¿ then = 0 ¿ which implies, by Lemma
18.28, that = 0 Therefore Eq. (20.19) becomes (20.21). Now let

( ) :=

Z

0( ) ( ) for all B
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Recall by the Radon - Nikodym theorem that
R

R | 0( )| ( ) so
that is a complex measure on B So if Eq. (20.21) holds, then = on
the algebra generated by half open intervals. Therefore = as in the
uniqueness part of the proof of Theorem 20.28. Therefore = 0

and hence = 0

Theorem 20.31. Suppose that : [ ] C is a measurable function. Then
the following are equivalent:

1. is absolutely continuous on [ ]
2. There exists 1([ ]) ) such that

( ) ( ) =

Z

[ ] (20.22)

3. 0 exists a.e., 0 1([ ] ) and

( ) ( ) =

Z

0 [ ] (20.23)

Proof. In order to apply the previous results, extend to R by ( ) =
( ) if and ( ) = ( ) if
1. = 3. If is absolutely continuous then is continuous on [ ] and
( ) = ( ) by Lemma 20.26. By Proposition 20.20,

¿ and hence Item 3. is now a consequence of Item 2. of Corollary
20.30. The assertion 3. = 2. is trivial.
2. = 1. If 2. holds then is absolutely continuous on [ ] by Lemma

20.26.

Corollary 20.32 (Integration by parts). Suppose and
: [ ] C are two absoutely continuous functions. Then

Z

0 =

Z

0 + |

Proof. Suppose that {( )} =1 is a sequence of disjoint intervals in [ ]
then

X

=1

| ( ) ( ) ( ) ( )|

X

=1

| ( )| | ( ) ( )|+
X

=1

| ( ) ( )| | ( )|

k k
X

=1

| ( ) ( )|+ k k
X

=1

| ( ) ( )|
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From this inequality, one easily deduces the absolutely continuity of the prod-
uct from the absolutely continuity of and Therefore,

| =
Z

( )0 =

Z

( 0 + 0)

20.5 Alternative method to the Fundamental Theorem
of Calculus

For simplicity assume that = = and Let 0 = 0 be
the finitely additive set function on A such that 0(( ]) = ( ) ( ) for
all As in the real increasing case (Notation 12.6 above) we
may define a linear functional, : S (A) C by

( ) =
X

C

0( = )

If we write =
P

=1 1( ] with {( ]} =1 pairwise disjoint subsets of
A inside ( ] we learn

| ( )| =
¯

¯

¯

¯

¯

X

=1

( ( ) ( )

¯

¯

¯

¯

¯

X

=1

| | | ( ) ( )| k k (( ])

(20.24)
In the usual way this estimate allows us to extend to the those compactly
supported functions S (A) in the closure of S (A) As usual we will still denote
the extension of to S (A) by and recall that S (A) contains (R C)
The estimate in Eq. (20.24) still holds for this extension and in particular we
have | ( )| ( ) · k k for all (R C) Therefore extends uniquely
by continuity to an element of 0(R C) So by appealing to the complex Riesz
Theorem (Corollary 18.42) there exists a unique complex measure = such
that

( ) =

Z

R
for all (R) (20.25)

This leads to the following theorem.

Theorem 20.33. To each function there exists a unique mea-
sure = on (R BR) such that Eq. (20.25) holds. Moreover, ( +) =
lim ( ) exists for all R and the measure satisfies

(( ]) = ( +) ( +) for all (20.26)

Remark 20.34. By applying Theorem 20.33 to the function ( ) one
shows every has left hand limits as well, i.e ( ) = lim ( )
exists for all R
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Proof. We must still prove ( +) exists for all R and Eq. (20.26)
holds. To prove let and be the functions shown in Figure 20.3 below.
The reader should check that S (A) Notice that

Fig. 20.3. A couple of functions in S (A)

( + ) = ( + 1( + ]) = ( ) + ( + ) ( )

and since k + k = 1

| ( ) ( + )| = | ( + )|
([ + + 2 ]) = ( + 2 ) ( + )

which implies ( ) := ( ) ( + ) 0 as 0 because is monotonic.
Therefore,

( ) = ( + ) + ( ) ( + )

= ( ) + ( + ) ( ) + ( ) (20.27)

Because converges boundedly to as 0 the dominated convergence
theorem implies

lim
0
( ) = lim

0

Z

R
=

Z

R
=

Z

R
+ (( ])

So we may let 0 in Eq. (20.27) to learn ( +) exists and
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Z

R
+ (( ]) = ( ) + ( +) ( )

Similarly this equation holds with replaced by , i.e.
Z

R
+ (( ]) = ( ) + ( +) ( )

Subtracting the last two equations proves Eq. (20.26).

20.5.1 Proof of Theorem 20.29.

Proof. Given Theorem 20.33 we may now prove Theorem 20.29 in the same
we proved Theorem 20.18.

20.6 Examples:

These are taken from I. P. Natanson,“Theory of functions of a real variable,”
p.269. Note it is proved in Natanson or in Rudin that the fundamental theorem
of calculus holds for ([0 1]) such that 0( ) exists for all [0 1] and
0 1 Now we give a couple of examples.

Example 20.35. In each case ([ 1 1])

1. Let ( ) = | |3 2
sin 1 with (0) = 0 then is everywhere di erentiable

but 0 is not bounded near zero. However, the function 0 1([ 1 1])
2. Let ( ) = 2 cos 2 with (0) = 0 then is everywhere di erentiable
but 0 1 ( ) Indeed, if 0 ( ) then

Z

0( ) = ( ) ( ) = 2 cos
2

2 cos
2

Now take :=
q

2
4 +1 and = 1 2 Then

Z

0( ) =
2

4 + 1
cos

(4 + 1)

2

1

2
cos 2 =

1

2

and noting that {( )} =1 are all disjoint, we find
R

0
| 0( )| =

Example 20.36. Let [0 1] denote the cantor set constructed as follows.
Let 1 = [0 1] \ (1 3 2 3) 2 := 1 \ [(1 9 2 9) (7 9 8 9)] etc., so that
we keep removing the middle thirds at each stage in the construction. Then

:= =1 = =
X

=0

3 : {0 2}
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and

( ) = 1

µ

1

3
+
2

9
+
22

33
+

¶

= 1
1

3

X

=0

µ

2

3

¶

= 1
1

3

1

1 2 3
= 0

Associated to this set is the so called cantor function ( ) := lim ( )
where the { } =1 are continuous non-decreasing functions such that (0) =
0 (1) = 1 with the pictured in Figure 20.4 below. From the pictures one

Fig. 20.4. Constructing the Cantor function.

sees that { } are uniformly Cauchy, hence there exists ([0 1]) such
that ( ) := lim ( ) The function has the following properties,

1. is continuous and non-decreasing.
2. 0( ) = 0 for — a.e. [0 1] because is flat on all of the middle third
open intervals used to construct the cantor set and the total measure
of these intervals is 1 as proved above.
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3. The measure on B[0 1] associated to namely ([0 ]) = ( ) is singular
relative to Lebesgue measure and ({ }) = 0 for all [0 1] Notice that
([0 1]) = 1

20.7 Exercises

Exercise 20.37. Folland 3.22 on p. 100.

Exercise 20.38. Folland 3.24 on p. 100.

Exercise 20.39. Folland 3.25 on p. 100.

Exercise 20.40. Folland 3.27 on p. 107.

Exercise 20.41. Folland 3.29 on p. 107.

Exercise 20.42. Folland 3.30 on p. 107.

Exercise 20.43. Folland 3.33 on p. 108.

Exercise 20.44. Folland 3.35 on p. 108.

Exercise 20.45. Folland 3.37 on p. 108.

Exercise 20.46. Folland 3.39 on p. 108.

Exercise 20.47. Folland 3.40 on p. 108.

Exercise 20.48. Folland 8.4 on p. 239.

Solution 20.49. 20.48Notice that

=
1

| 0( )|1 0( )

and there for ( ) 0(R ) for all 0 by Proposition 11.18. Since

( ) ( ) =
1

| 0( )|
Z

0( )

( + ) ( )

=
1

| 0( )|
Z

0( )

( ) ( )

it follows from Minikowski’s inequality for integrals (Theorem 10.29) that

k k 1

| 0( )|
Z

0( )

k k sup
| |

k k

and the latter goes to zero as 0 by assumption. In particular we learn that

k k k k + k k 0 as 0

showing { } 0 is uniformly Cauchy as 0 Therefore lim 0 ( ) =
( ) exists for all R and = a.e.
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The Change of Variable Theorem

This section is devoted to the proof of the change of variables theorem 9.31.
For convenience we restate the theorem here.

Theorem 21.1 (Change of Variables Theorem). Let R be an open
set and : ( ) R be a 1 — di eomorphism. Then for any Borel
measurable : ( ) [0 ] we have

Z

|det 0| =

Z

( )

(21.1)

Proof. We will carry out the proof in a number of steps.
Step 1. Eq. (21.1) holds when = R and is linear and invertible. This

was proved in Theorem 9.33 above using Fubini’s theorem, the scaling and
translation invariance properties of one dimensional Lebesgue measure and
the fact that by row reduction arguments may be written as a product of
“elementary” transformations.
Step 2. For all B

( ( ))

Z

|det 0| (21.2)

This will be proved in Theorem 21.4below.
Step 3. Step 2. implies the general case. To see this, let B ( ) and
= 1( ) in Eq. (21.2) to learn that

Z

1 = ( )

Z

1( )

|det 0| =

Z

1 |det 0|

Using linearity we may conclude from this equation that
Z

( )

Z

|det 0| (21.3)

500 21 The Change of Variable Theorem

for all non-negative simple functions on ( ) Using Theorem 8.12 and the
monotone convergence theorem one easily extends this equation to hold for
all nonnegative measurable functions on ( )
Applying Eq. (21.3) with replaced by ( ) replaced by 1 and

by : [0 ] we see that
Z

=

Z

1( ( ))

Z

( )

1
¯

¯

¯
det

¡

1
¢0¯
¯

¯
(21.4)

for all Borel measurable Taking = ( ) |det 0| in this equation shows,
Z

|det 0|
Z

( )

¯

¯det 0 1
¯

¯

¯

¯

¯
det

¡

1
¢0¯
¯

¯

=

Z

( )

(21.5)

wherein the last equality we used the fact that 1 = so that
¡ 0 1

¢ ¡

1
¢0
= and hence det 0 1 det

¡

1
¢0
= 1

Combining Eqs. (21.3) and (21.5) proves Eq. (21.1). Thus the proof is
complete modulo Eq. (21.3) which we prove in Theorem 21.4 below.

Notation 21.2 For R we will write is for all and
if for all Given let [ ] =

Q

=1[ ] and ( ] =
Q

=1( ]
(Notice that the closure of ( ] is [ ] ) We will say that = ( ] is a cube
provided that = 2 0 is a constant independent of When is a
cube, let

:= + ( )

be the center of the cube.

Notice that with this notation, if is a cube of side length 2

¯ = { R : | | } (21.6)

and the interior ( 0) of may be written as

0 = { R : | | }

Notation 21.3 For R let | | = max | | and if is a × matrix let
k k = max P | |
A key point of this notation is that

| | = max
¯

¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯

¯

max
X

| | | |

k k | | (21.7)
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Theorem 21.4. Let R be an open set and : ( ) R be a
1 — di eomorphism. Then for any B

( ( ))

Z

|det 0( )| (21.8)

Proof. Step 1. We will first assume that = = ( ] is a cube such
that ¯ = [ ] Let = ( ) 2 be half the side length of By the
fundamental theorem of calculus (for Riemann integrals) for

( ) = ( ) +

Z 1

0

0( + ( ))( )

= ( ) + 0( ) ( )

where

( ) =

·
Z 1

0

0( ) 1 0( + ( ))

¸

( )

Therefore ( ) = ( ) + 0( ) ( ) and hence

( ( )) = ( ( ) + 0( ) ( )) = ( 0( ) ( ))

= |det 0( )| ( ( )) (21.9)

Now for ¯ i.e. | |

| ( )|
°

°

°

°

Z 1

0

0( ) 1 0( + ( ))

°

°

°

°

| |

( )

where

( ) :=

Z 1

0

°

°

0( ) 1 0( + ( ))
°

° (21.10)

Hence
( ) max ( ){ R : | | max ( )}

and

( ( )) max ( ) (2 ) = max ( ) ( ) (21.11)

Combining Eqs. (21.9) and (21.11) shows that

( ( )) |det 0( )| ( ) ·max ( ) (21.12)

To refine this estimate, we will subdivide into smaller cubes, i.e. for
N let
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Q =

½

( +
2
( )] +

2
: {0 1 2 }

¾

Notice that =
`

Q By Eq. (21.12),

( ( )) |det 0( )| ( ) ·max ( )

and summing the equation on gives

( ( )) =
X

Q
( ( ))

X

Q
|det 0( )| ( ) ·max ( )

Since ( ) = 1 for all ¯ and : ¯ × ¯ [0 ) is continuous
function on a compact set, for any 0 there exists such that if ¯

and | | then ( ) 1+ Using this in the previously displayed
equation, we find that

( ( ) (1 + )
X

Q
|det 0( )| ( )

= (1 + )

Z

X

Q
|det 0( )| 1 ( ) ( ) (21.13)

Since |det 0( )| is continuous on the compact set ¯ it easily follows by uni-
form continuity that

X

Q
|det 0( )| 1 ( ) |det 0( )| as

and the convergence in uniform on ¯ Therefore the dominated convergence
theorem enables us to pass to the limit, in Eq. (21.13) to find

( ( )) (1 + )

Z

|det 0( )| ( )

Since 0 is arbitrary we are done we have shown that

( ( ))

Z

|det 0( )| ( )

Step 2.We will now show that Eq. (21.8) is valid when = is an open
subset of For N let

Q =
©

(0 ( )] + 2 : Z
ª

so that Q is a partition of R Let F1 :=
© Q1 : ¯

ª

and define
F =1Q inductively as follows. Assuming F 1 has been defined, let
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Fig. 21.1. Filling out an open set with half open disjoint cubes. We have drawn
F2

F = F 1

© Q : ¯ and = for all F 1

ª

= F 1

© Q : ¯ and * for any F 1

ª

Now set F = F (see Figure 21.1) and notice that =
`

F Indeed by
construction, the sets in F are pairwise disjoint subset of so that

`

F
If there exists an and Q such that and ¯ Then

by construction of F either F or there is a set F such that
In either case

`

F which shows that =
`

F Therefore by step
1.,

( ( )) = ( ( F )) = (( F ( )))

=
X

F
( ( ))

X

F

Z

|det 0( )| ( )

=

Z

|det 0( )| ( )

which proves step 2.
Step 3. For general B let be the measure,

( ) :=

Z

|det 0( )| ( )

Then and are ( — finite measures as you should check) on B such
that on open sets. By regularity of these measures, we may conclude
that Indeed, if B

( ( )) = inf ( ( )) inf ( ) = ( ) =

Z

|det 0( )| ( )
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21.1 Appendix: Other Approaches to proving Theorem
21.1

Replace by 1 in Eq. (21.1) gives
Z

|det 0| =

Z

( )

1 =

Z

( )

so we are trying to prove ( ) = |det 0| Since both sides are measures
it su ces to show that they agree on a multiplicative system which generates
the — algebra. So for example it is enough to show ( ( )) =

R |det 0|
when is a small rectangle.
As above reduce the problem to the case where (0) = 0 and 0(0) =

Let ( ) = ( ) and set ( ) = + ( ) (Notice that det 0 0 in
this case so we will not need absolute values.) Then : ( ) is a 1 —
morphism for small and ( ) contains some fixed smaller cube for all
Let 1( ) then it su ces to show

Z

|det 0| = 0

for then
Z

det 0 =

Z

0 det
0
0 =

Z

=

Z

( )

So we are left to compute
Z

det 0 =

Z
½

( ) ( ) det 0 + det 0
¾

=

Z

{( ) ( ) + · ( 0 )}det 0

Now let := ( 0) 1 then

( ) = ( ) =
¡

0
¢

( ) = ( ) ( )

Therefore,
Z

det 0 =

Z

{ ( ) + · ( 0 )}det 0

Let us now do an integration by parts,
Z

( ) det 0 =

Z

( ) { det 0 + · det 0}
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so that
Z

det 0 =

Z

{ ( 0 ) det 0 det 0 · det 0}

Finally,

det 0 = det 0 · (( 0) 1 0) = det 0 · (( 0) 1 00 ( 0) 1
)

while

· = 0 =
h

( 0) 1 00 ( 0) 1
i

+
h

( 0) 1 0
i

so that
det 0 + · det 0 = det 0 ·

h

( 0) 1 0
i

and therefore
Z

det 0 = 0

as desired.
The problem with this proof is that it requires or equivalently to be

twice continuously di erentiable. I guess this can be overcome by smoothing
a 1 — and then removing the smoothing after the result is proved.
Proof. Take care of lower bounds also.
(1) Show ( ( )) =

R

( 0( )) =: ( ) for all
(2) Fix . Claim = on B = { : B}
Proof Equality holds on a k. Rectangles contained in . Therefore the

algebra of finite disjoint unison of such of rectangles here as ({rectangle
contained in }. But ({rectangle } = B .

(3) Since =
S

=1
of such rectangles (even cubes) it follows that ( ) =

P

( ) =
P

( ) = ( ) for all B .

Now for general open sets write =
S

=1
almost disjoint union.

Then

( ( )) (
[

=1

( ))
X X

Z

| 0| =

Z

| 0|

so ( ( ))
R | 0| for all . Let such that bounded.

Choose C such that and ( \ ) 0. Then ( ) ( )
R | 0| R | 0| so ( ( ))

R | 0| for all bounded for general

( ( )) = lim ( ( )) lim

Z

| 0| =

Z

| 0|

Therefore ( ( ))
R | 0| for all measurable.
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21.2 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 21.5. Let R ( R ) and := { : rank( 0( ))
be the set of critical points of Then the critical values, ( ) is a Borel mea-
suralbe subset of R of Lebesgue measure 0

Remark 21.6. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the
norm, | | := max | | Recall that if 1( R ) and then

( + ) = ( )+

Z 1

0

0( + ) = ( )+ 0( ) +
Z 1

0

[ 0( + ) 0( )]

so that if

( ) := ( + ) ( ) 0( ) =

Z 1

0

[ 0( + ) 0( )]

we have

| ( )| | |
Z 1

0

| 0( + ) 0( )| = | | ( )

By uniform continuity, it follows for any compact subset that

sup {| ( )| : and | | } 0 as 0

Proof. Notice that if \ then 0( ) : R R is surjective,
which is an open condition, so that \ is an open subset of This shows
is relatively closed in i.e. there exists ˜ @ R such that = ˜

Let be compact subsets of such that then
and = ˜ is compact for each Therefore, ( ) ( )
i.e. ( ) = ( ) is a countable union of compact sets and therefore
is Borel measurable. Moreover, since ( ( )) = lim ( ( )) it
su ces to show ( ( )) = 0 for all compact subsets
Case 1. ( ) Let = [ + ] be a cube contained in and by

scaling the domain we may assume = (1 1 1 1) For N and
:= {0 1 1} let = + [ + ] so that =

with 0 = if 6= 0 Let { : = 1 } be the collection of
those { : } which intersect For each let and for

we have

( + ) = ( ) + 0( ) + ( )
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where | ( )| ( ) and ( ) := max ( ) 0 as Now

( ( )) = ( ( ) + ( 0( ) + ) ( ))

= (( 0( ) + ) ( ))

= ( ( 0( ) + ) ( )) (21.14)

where ( ) is chosen so that 0( )R R 1 × {0} Now
0( )( ) is contained in × {0} where R 1 is a cube

cetered at 0 R 1 with side length at most 2 | 0( )| 2 where
= max | 0( )| It now follows that ( 0( ) + ) ( ) is con-

tained the set of all points within ( ) of × {0} and in particular
( 0( ) + ) ( ) (1 + ( ) ) × [ ( ) ( ) ]

From this inclusion and Eq. (21.14) it follows that

( ( ))

·

2 (1 + ( ) )

¸ 1

2 ( )

= 2 1 [(1 + ( ) )]
1
( )

1

and therefore,

( ( ))
X

( ( )) 2 1 [(1 + ( ) )] 1 ( )
1

= 2 1 [(1 + ( ) )] 1 ( )
1

0 as

since This proves the easy case since we may write as a countable
union of cubes as above.
Remark. The case ( ) also follows brom the case = as follows.

When = and we must show ( ( )) = 0 Letting : ×
R R be the map ( ) = ( ) Then 0( )( ) = 0( ) and
hence := ×R So if the assetion holds for = we have

( ( )) = ( ( ×R )) = 0

Case 2. ( ) This is the hard case and the case we will need in the
co-area formula to be proved later. Here I will follow the proof in Milnor. Let

:= { : ( ) = 0 when | | }
so that 1 2 3 The proof is by induction on and goes by
the following steps:

1. ( ( \ 1)) = 0
2. ( ( \ +1)) = 0 for all 1

508 21 The Change of Variable Theorem

3. ( ( )) = 0 for all su ciently large.

Step 1. If = 1 there is nothing to prove since = 1 so we may assume
2 Suppose that \ 1 then 0( ) 6= 0 and so by reordering the

components of and ( ) if necessary we may assume that 1( ) 1 6= 0
The map ( ) := ( 1( ) 2 ) has di erential

0( ) =

1( ) 1 1( ) 2 1( )
0 1 0 0
...

...
. . .

...
0 0 0 1

which is not singular. So by the implicit function theorem, there exists there
exists such that : ( ) ( ) is a di eomorphism and in
particular 1( ) 1 6= 0 for and hence \ 1 Consider the
map := 1 : 0 := ( ) R which satisfies

( 1( ) 2( ) ( )) = ( ) = ( ( )) = (( 1( ) 2 ))

which implies ( ) = ( ( )) for ( ) 0 := ( ) ( ) see Figure
21.2 below where = ¯ and = Since

Fig. 21.2. Making a change of variable so as to apply induction.

0( ) =

·

1 0
( ) ( )

¸

it follows that ( ) is a critical point of i 0 — the set of critical points
of ( ) Since is a di eomorphism we have 0 := ( ) are the
critical points of in 0 and

( ) = ( 0) = [{ } × ( 0)]
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By the induction hypothesis, 1( ( 0)) = 0 for all and therefore by
Fubini’s theorem,

( ( )) =

Z

R
1( ( 0))1 0 6= = 0

Since \ 1 may be covered by a countable collection of open sets as above,
it follows that ( ( \ 1)) = 0
Step 2. Suppose that \ +1 then there is an such that | | = +1

such that ( ) = 0 while ( ) = 0 for all | | Again by permuting
coordinates we may assume that 1 6= 0 and 1( ) 6= 0 Let ( ) :=

1
1( ) then ( ) = 0 while 1 ( ) 6= 0 So again the implicit function

theorem there exists such that ( ) := ( ( ) 2 ) maps
0 := ( ) ( ) in di eomorphic way and in particular 1 ( ) 6= 0 on
so that \ +1 As before, let := 1 and notice that 0 :=
( ) {0} ×R 1 and

( ) = ( 0 ) = ¯ ( 0 )

where ¯ := |({0}×R 1) 0 Clearly 0 is contained in the critical points of ¯
and therefore, by induction

0 = (¯( 0 )) = ( ( ))

Since \ +1 is covered by a countable collection of such open sets, it follows
that

( ( \ +1)) = 0 for all 1

Step 3. Supppose that is a closed cube with edge length contained in
and 1 We will show ( ( )) = 0 and since is arbitrary

it will forllow that ( ( )) = 0 as desired.
By Taylor’s theorem with (integral) remainder, it follows for

and such that + that

( + ) = ( ) + ( )

where
| ( )| k k +1

where = ( ) Now subdivide into cubes of edge size and let
0 be one of the cubes in this subdivision such that 0 6= and let

0 It then follows that ( 0) is contained in a cube centered at
( ) R with side length at most 2 ( ) +1 and hence volume at most
(2 ) ( )

( +1) Therefore, ( ) is contained in the union of at most
cubes of volume (2 ) ( )

( +1) and hence each

( ( )) (2 ) ( )
( +1)

= (2 ) ( +1) ( +1) 0 as

provided that ( + 1) 0 i.e. provided 1
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Surfaces, Surface Integrals and Integration by
Parts

Definition 22.1. A subset R is a 1 dimensional -Hypersurface
if for all 0 there exists 0 an open set 0 R and a -
di eomorphism : ( 0 ) such that ( { = 0}) = ( 0 )
See Figure 22.1 below.

Fig. 22.1. An embedded submanifold of R2

Example 22.2. Suppose 0 R 1 and : R Then := ( ) =
{( ( )) : } is a hypersurface. To verify this assertion, given 0 =
( 0 ( 0)) ( ) define

( ) := ( + 0 ( + 0) )
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Then : { 0)×R × R di eomorphism
(( 0)× {0}) = {( + 0 ( + 0)) : 0} = ( )

Proposition 22.3 (Parametrized Surfaces). Let 1 0 R 1 and
( R ) satisfy

1. : := ( ) is a homeomorphism and
2. 0( ) : R 1 R is injective for all (We will call a —
parametrized surface and : a parametrization of )

Then is a -hypersurface in R Moreover if ( 0 R R ) is
a continuous function such that ( ) then ( R ) i 1

( )

Proof. Let 0 and 0 = ( 0) and 0 be a normal vector to at
0, i.e. 0 Ran ( 0( 0)) and let

( ) := ( 0 + ) + 0 for R and 0

see Figure 22.2 below. Since (0 0) = 0( 0) and (0 0) = 0

Fig. 22.2. Showing a parametrized surface is an embedded hyper-surface.

Ran ( 0( 0))
0(0 0) is invertible. so by the inverse function theorem there

exists a neighborhood of (0 0) R such that | : R is a —
di eomorphism.
Choose an 0 such that ( 0 ) ( { = 0}) and ( 0 )

( ). Then set := 1( ( 0 )). One finds | : ( 0 ) has the
desired properties.
Now suppose ( 0 R R ) such that ( ) and 0 =

( ) By shrinking if necessary we may assume ( ) ( 0 )where
( 0 ) is the ball used previously. (This is where we used the continuity of
) Then

1 = 1

where is projection onto { = 0} Form this identity it clearly follows 1

is if is The converse is easier since if 1 is then =
( 1 ) is as well.
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22.1 Surface Integrals

Definition 22.4. Suppose : 0 R 1 R is a 1- parameterized
hypersurface of R and ( R) Then the surface integral of over
R

is defined by

Z

=

Z

( )

¯

¯

¯

¯

det[
( )

1
| ( )

1
| ( )]

¯

¯

¯

¯

=

Z

( ) |det[ 0( ) 1| | 0( ) 1| ( )]|

where ( ) R is a unit normal vector perpendicular of ( 0( )) for each
We will abbreviate this formula by writing

=

¯

¯

¯

¯

det[
( )

1
| ( )

1
| ( )]

¯

¯

¯

¯

(22.1)

see Figure 22.3 below for the motivation.

Fig. 22.3. The approximate area spanned by ([ + ]) should be equal to
the area spaced by ( )

1
1 and

( )

2
2 which is equal to the volume of the

parallelepiped spanned by ( )

1
1

( )

2
2 and ( ( )) and hence the formula

in Eq. (22.1).

Remark 22.5. Let = ( ) := [ 0( ) 1
0( ) 1 ( )] Then
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tr =

1

2

...
1

[ 1 | | 1 | ]

=

1 · 1 1 · 2 1 · 1 0

2 · 1 2 · 2 2 · 1 0
...

...
...

...
...

1 · 1 1 · 2 1 · 1 0
0 0 0 1

and therefore
¯

¯

¯

¯

det[
( )

1
| ( )

1
| ( )]

¯

¯

¯

¯

= |det( )| =
p

det ( tr )

=

r

det
h

( · ) 1
=1

i

=

r

det
h

( 0)tr 0
i

This implies = ( ) or more precisely that
Z

=

Z

( ) ( )

where

( ) :=

r

det
h

( · )
1
=1

i

=

r

det
h

( 0)tr 0
i

The next lemma shows that
R

is well defined, i.e. independent of how

is parametrized.

Example 22.6. Suppose 0 R 1 and : R and := ( ) =
{( ( )) : } as in Example 22.2. We now compute in the para-
metrization : defined by ( ) = ( ( )) To simplify notation,
let

( ) := ( 1 ( ) 1 ( ))

As is standard from multivariable calculus (and is easily verified),

( ) :=
( ( ) 1)
q

1 + | ( )|2

is a normal vector to at ( ) i.e. ( )· ( ) = 0 for all = 1 2 1
Therefore,
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= |det [ 1 | | 1 | ]|

=
1

q

1 + | ( )|2
¯

¯

¯

¯

det

·

1 ( )
1

¸
¯

¯

¯

¯

=
1

q

1 + | ( )|2
¯

¯

¯

¯

det

·

1 0

1 | |2
¸
¯

¯

¯

¯

=
1

q

1 + | ( )|2
³

1 + | ( )|2
´

=

q

1 + | ( )|2

Hence if : R we have
Z

=

Z

( ( ))

q

1 + | ( )|2

Example 22.7. Keeping the same notation as in Example 22.6, but now taking

:= (0 ) R 1 and ( ) :=

q

2 | |2 In this case = 1
+ the

upper-hemisphere of 1 ( ) = ( )

=

q

1 + | |2 2( ) =
( )

and so
Z

1
+

=

Z

| |
(

q

2 | |2)q
2 | |2

A similar computation shows, with 1 being the lower hemisphere, that

Z

1
=

Z

| |
(

q

2 | |2)q
2 | |2

Lemma 22.8. If e : e is another — parametrization of then
Z

( ) ( ) =

Z

e

e( )
˜
( )

Proof. By Proposition 22.3, := 1
e : ˜ is a — di eo-

morphism. By the change of variables theorem on R 1 with = (˜) (using
e = see Figure 22.4) we find
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Z

e

e(˜)
˜
(˜) ˜ =

Z

e

e

r

det
³

e
0
´tr

e
0 ˜

=

Z

e

q

det ( )0tr ( )0 ˜

=

Z

e

r

det
h

( 0( ) 0)tr 0( ) 0
i

˜

=

Z

e

q

det[ 0tr [ 0( )tr 0( ) ] 0 ˜

=

Z

e

( ) ·
³

det 0tr 0
´

· |det 0| ˜

=

Z

det 0tr 0

Fig. 22.4. Verifying surface integrals are independent of parametrization.

Definition 22.9. Let be a 1-embedded hypersurface and ( )
Then we define the surface integral of over as

Z

=
X

=1

Z

where 1( [0 1]) are chosen so that
P

1 with equality on supp( )
and the supp( ) where is a subregion of which may be
viewed as a parametrized surface.
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Remark 22.10. The integral
R

is well defined for if 1( [0 1]) is

another sequence satisfying the properties of { } with supp( ) 0

then (using Lemma 22.8 implicitly)

X

Z

=
X

Z

X

=
X

Z

0

with a similar computation showing

X

Z

0

=
X

Z

0

=
X

Z

0

Remark 22.11. By the Reisz theorem, there exists a unique Radon measure
on such that

Z

=

Z

This is called surface measure on

Lemma 22.12 (Surface Measure). Let be a 2 — embedded hypersurface
in R and be a measurable set such that ¯ is compact and contained
inside ( ) where : R is a parametrization. Then

( ) = lim
0

( ) = |0+ ( )

where
:= { + ( ) : 0 }

and ( ) is a unit normal to at see Figure 22.5.

Fig. 22.5. Computing the surface area of as the volume of an - fattened neigh-
borhood of
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Proof. Let := 1( ) and ( ) := ( ( )) so that 1( R )
if ( R ) Define

( ) = ( ) + ( ( )) = ( ) + ( )

so that = ( × [0 ]) Hence by the change of variables formula

( ) =

Z

×[0 ]

|det 0( )| =

Z

0

Z

|det 0( )| (22.2)

so that by the fundamental theorem of calculus,

|0+ ( ) = |0+
Z

0

Z

|det 0( )| =
Z

|det 0( 0)|

But
|det 0( 0)| = |det[ 0( )| ( ( ))]| = ( )

which shows

|0+ ( ) =

Z

( ) =

Z

1 ( ( )) ( ) =: ( )

Example 22.13. Let = 1 be the sphere of radius 0 contained in R
and for and 0 let

:= { : and 0 } = 1

Assuming ( ) = is the outward pointing normal to 1 we have

= (1+ ) \ 1 = [(1 + ) 1] \ 1

and hence

( ) = ([(1 + ) 1] \ 1) = ([(1 + ) 1]) ( 1)

= [(1 + ) 1] ( 1)

Therefore,

( ) = |0 [(1 + ) 1] ( 1) = ( 1)

= 1
¡

1
1

¢

= 1 ( 1 )

i.e.
( ) = ( 1) =

1
¡

1
1

¢

= 1 ( 1 )
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Fig. 22.6. Computing the area of region on the surface of the sphere of radiur

Theorem 22.14. If : R [0 ] is a (B B)—measurable function then
Z

R
( ) ( ) =

Z

[0 )× 1

( ) 1 ( ) (22.3)

In particular if : R+ R+ is measurable then
Z

R

(| |) =

Z

0

( ) ( ) (22.4)

where ( ) = ( (0 )) = ( (0 1)) = 1
¡

1
¢

Proof. Let 1 0 and let ( ) = 1 \ ( ) see Figure
22.7. Then

Fig. 22.7. The region \
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Z

[0 )× 1

( ) 1 ( ) =

Z

[0 )× 1

1 ( )1[ ]( )
1 ( )

= ( )

Z

1 = 1 ( ) ( )

= ( 1) ( ) = ( \ )

=

Z

R
( ) ( )

Since sets of the form \ generate B and are closed under intersections,
this su ces to prove the theorem.
Alternatively one may show that any (R ) may be uniformly ap-

proximated by linear combinations of characteristic functions of the form

1 \ Indeed, let 1 =
S

=1
be a partition of 1 with small and

choose . Let 0 1 2 3 · · · = . Assume
supp( ) (0 ). Then {( )

+1
\ ( ) } partitions R into small re-

gions. Therefore
Z

R
( ) =

X

( ) (( )
+1
\ ( ) )

=
X

¡

)( +1

¢

(( )1)

=
X

( )

Z

+1
1 (( )1)

=
X

Z

+1

( ) 1 ( )

=
X

Z

+1
Z

1

( ) ( ) 1

=

Z

0

Z

1

( ) ( ) 1

Eq. (22.4) is a simple special case of Eq. (22.3). It can also be proved
directly as follows. Suppose first 1([0 )) then

Z

R

(| |) =

Z

R

Z

| |
0( ) =

Z

R

Z

R
1| | 0( )

=

Z

0

( ) 0( ) =

Z

0

0( ) ( )

The result now extends to general by a density argument.
We are now going to work out some integrals using Eq. (22.3). The first

we leave as an exercise.
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Exercise 22.15. Use the results of Example 22.7 and Theorem 22.14 to show,

( 1) = 2 ( 2)

Z 1

0

1
p

1 2

2

The result in Exercise 22.15 may be used to compute the volume of spheres
in any dimension. This method will be left to the reader. We will do this in
another way. The first step will be to directly compute the following Gaussian
integrals. The result will also be needed for later purposes.

Lemma 22.16. Let 0 and

( ) :=

Z

R

| |2 ( ) (22.5)

Then ( ) = ( ) 2

Proof. By Tonelli’s theorem and induction,

( ) =

Z

R 1×R
| |2 2

1( )

= 1( ) 1( ) = 1 ( ) (22.6)

So it su ces to compute:

2( ) =

Z

R2

| |2 ( ) =

Z

R2\{0}

( 2
1+

2
2)

1 2

We now make the change of variables,

1 = cos and 2 = sin for 0 and 0 2

In vector form this transform is

= ( ) =

µ

cos
sin

¶

and the di erential and the Jacobian determinant are given by

0( ) =

µ

cos sin
sin cos

¶

and det 0( ) = cos2 + sin2 =

Notice that : (0 )×(0 2 ) R2\ where is the ray, := {( 0) : 0}
which is a 2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function : R2 [0 ] we have

Z

R2
( ) =

Z 2

0

Z

0

( cos sin )
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In particular,

2( ) =

Z

0

Z 2

0

2

= 2

Z

0

2

= 2 lim

Z

0

2

= 2 lim

2

2

Z

0

=
2

2
=

This shows that 2( ) = and the result now follows from Eq. (22.6).

Corollary 22.17. Let 1 R be the unit sphere in R and

( ) :=

Z

0

1 for 0

be the gamma function. Then

1. The surface area ( 1) of the unit sphere 1 R is

( 1) =
2 2

( 2)
(22.7)

2. The — function satisfies
a) (1 2) = (1) = 1 and ( + 1) = ( ) for 0
b) For N

( + 1) = ! and ( + 1 2) =
(2 1)!!

2
· (22.8)

3. For N

( 2 +1) =
2 +1

!
and ( 2 ) =

2 (2 )

(2 1)!!
(22.9)

Proof. Let be as in Lemma 22.16. Using Theorem 22.14 we may alter-
natively compute 2 = (1) as

2 = (1) =

Z

0

1 2

Z

1

= ( 1)

Z

0

1 2

We simplify this last integral by making the change of variables = 2 so
that = 1 2 and = 1

2
1 2 The result is

Z

0

1 2

=

Z

0

1
2

1

2
1 2

=
1

2

Z

0

2 1 =
1

2
( 2) (22.10)

Collecting these observations implies that
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2 = (1) =
1

2
( 1) ( 2)

which proves Eq. (22.7).
The computation of (1) is easy and is left to the reader. By Eq. (22.10),

(1 2) = 2

Z

0

2

=

Z

2

= 1(1) =

The relation, ( + 1) = ( ) is the consequence of integration by parts:

( + 1) =

Z

0

+1 =

Z

0

µ ¶

=

Z

0

1 = ( )

Eq. (22.8) follows by induction from the relations just proved. Eq. (22.9) is a
consequence of items 1. and 2. as follows:

( 2 +1) =
2 (2 +2) 2

((2 + 2) 2)
=

2 +1

( + 1)
=
2 +1

!

and

( 2 ) =
2 (2 +1) 2

((2 + 1) 2)
=

2 +1 2

( + 1 2)
=

2 +1 2

(2 1)!!
2 ·

=
2 (2 )

(2 1)!!

22.2 More spherical coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when = 2 define spherical coordinates ( ) (0 ) ×
[0 2 ) so that

µ

1

2

¶

=

µ

cos
sin

¶

= 2( )

For = 3 we let 3 = cos 1 and then
µ

1

2

¶

= 2( sin 1)

as can be seen from Figure 22.8, so that
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Fig. 22.8. Setting up polar coordinates in two and three dimensions.

1

2

3

=

µ

2( sin 1)
cos 1

¶

=
sin 1 cos
sin 1 sin
cos 1

=: 3( 1 )

We continue to work inductively this way to define

1

...

+1

=

µ

( 1 2 sin 1 )
cos 1

¶

= +1( 1 2 1

So for example,

1 = sin 2 sin 1 cos

2 = sin 2 sin 1 sin

3 = sin 2 cos 1

4 = cos 2

and more generally,

1 = sin 2 sin 2 sin 1 cos

2 = sin 2 sin 2 sin 1 sin

3 = sin 2 sin 2 cos 1

...

2 = sin 2 sin 3 cos 4

1 = sin 2 cos 3

= cos 2 (22.11)

By the change of variables formula,
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Z

R
( ) ( )

=

Z

0

Z

0 0 2
1 2 ( 1 2 ) ( ( 1

(22.12)

where
( 1 2 ) := |det 0 ( 1 2 )|

Proposition 22.18. The Jacobian, is given by

( 1 2 ) = 1 sin 2
2 sin2 2 sin 1 (22.13)

If is a function on 1 — the sphere of radius centered at 0 inside of
R then
Z

1

( ) ( ) = 1

Z

1

( ) ( )

=

Z

0 0 2

( ( 1 2 )) ( 1 2 ) 1 2

(22.14)

Proof. We are going to compute inductively. Letting := sin 1

and writing for ( 1 2 ) we have

+1( 1 2 1 )

=

¯

¯

¯

¯

·

1

0 0
2

0

cos 1

sin 1

sin 1

cos 1

¸
¯

¯

¯

¯

=
¡

cos2 1 + sin
2

1

¢

( 1 2 )

= ( 1 2 sin 1)

i.e.

+1( 1 2 1 ) = ( 1 2 sin 1) (22.15)

To arrive at this result we have expanded the determinant along the bottom
row.
Staring with the well known and easy to compute fact that 2( ) =

Eq. (22.15) implies

3( 1 ) = 2( sin 1) =
2 sin 1

4( 1 2 ) = 3( 1 sin 2) =
3 sin2 2 sin 1

...

( 1 2 ) = 1 sin 2
2 sin2 2 sin 1
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which proves Eq. (22.13). Eq. (22.14) now follows from Eqs. (22.3), (22.12)
and (22.13).
As a simple application, Eq. (22.14) implies

( 1) =

Z

0 0 2

sin 2
2 sin2 2 sin 1 1 2

= 2
2

Y

=1

= ( 2) 2 (22.16)

where :=
R

0
sin If 1 we have by integration by parts that,

=

Z

0

sin =

Z

0

sin 1 cos = 2 1 + ( 1)

Z

0

sin 2 cos2

= 2 1 + ( 1)

Z

0

sin 2
¡

1 sin2
¢

= 2 1 + ( 1) [ 2 ]

and hence satisfies 0 = 1 = 2 and the recursion relation

=
1

2 for 2

Hence we may conclude

0 = 1 = 2 2 =
1

2
3 =

2

3
2 4 =

3

4

1

2
5 =

4

5

2

3
2 6 =

5

6

3

4

1

2

and more generally by induction that

2 =
(2 1)!!

(2 )!!
and 2 +1 = 2

(2 )!!

(2 + 1)!!

Indeed,

2( +1)+1 =
2 + 2

2 + 3
2 +1 =

2 + 2

2 + 3
2
(2 )!!

(2 + 1)!!
= 2

[2( + 1)]!!

(2( + 1) + 1)!!

and

2( +1) =
2 + 1

2 + 1
2 =

2 + 1

2 + 2

(2 1)!!

(2 )!!
=

(2 + 1)!!

(2 + 2)!!

The recursion relation in Eq. (22.16) may be written as

( ) =
¡

1
¢

1 (22.17)

which combined with
¡

1
¢

= 2 implies
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¡

1
¢

= 2

( 2) = 2 · 1 = 2 · 2

( 3) = 2 · 2 · 2 = 2 · 2 · 1
2
=
22 2

2!!

( 4) =
22 2

2!!
· 3 =

22 2

2!!
· 22
3
=
23 2

3!!

( 5) = 2 · 2 · 1
2
· 2
3
2 · 3
4

1

2
=
23 3

4!!

( 6) = 2 · 2 · 1
2
· 2
3
2 · 3
4

1

2
· 4
5

2

3
2 =

24 3

5!!

and more generally that

( 2 ) =
2 (2 )

(2 1)!!
and ( 2 +1) =

(2 ) +1

(2 )!!
(22.18)

which is verified inductively using Eq. (22.17). Indeed,

( 2 +1) = ( 2 ) 2 =
2 (2 )

(2 1)!!

(2 1)!!

(2 )!!
=
(2 )

+1

(2 )!!

and

( ( +1)) = ( 2 +2) = ( 2 +1) 2 +1 =
(2 )

+1

(2 )!!
2
(2 )!!

(2 + 1)!!
=
2 (2 )

+1

(2 + 1)!!

Using
(2 )!! = 2 (2( 1)) (2 · 1) = 2 !

we may write ( 2 +1) = 2 +1

! which shows that Eqs. (22.9) and (22.18) are
in agreement. We may also write the formula in Eq. (22.18) as

( ) =

2(2 ) 2

( 1)!! for even
(2 )

+1
2

( 1)!! for odd.

22.3 n — dimensional manifolds with boundaries

Definition 22.19. A set R is said to be a — manifold with
boundary if for each 0 := \ (here is the interior of ) there
exists 0 an open set 0 R and a -di eomorphism :
( 0 ) such that ( { 0}) = ( 0 ) See Figure 22.9 below.

We call the manifold boundary of
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Fig. 22.9. Flattening out a neighborhood of a boundary point.

Remarks 22.20 1. In Definition 22.19 we have defined = \ which
is not the topological boundary of defined by bd( ) := ¯ \ 0 Clearly
we always have bd( ) with equality i is closed.

2. It is easily checked that if R is a — manifold with boundary, then
is a — hypersurface in R

The reader is left to verify the following examples.

Example 22.21. Let H = { R : 0}
1. H̄ is a — manifold with boundary and

H̄ = bd
¡

H̄
¢

= R 1 × {0}

2. = ( ) is a — manifold with boundary and = bd ( ( )) as
the reader should verify. See Exercise 22.23 for a general result containing
this statement.

3. Let be the open unit ball in R 1, then = H ( ×{0}) is a —
manifold with boundary and = × {0} while bd( ) = R 1 × {0}

4. Now let = H ( ¯×{0}) then is not a 1 — manifold with boundary.
The bad points are bd( )× {0}

5. Suppose is an open subset of R 1 and : R is a — function
and set

:= {( ) ×R R : ( )}
then is a — manifold with boundary and = ( ) — the graph of
Again the reader should check this statement.
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6. Let
= [(0 1)× (0 1)] [( 1 0)× ( 1 0)] [( 1 1)× {0}]

in which case

= [(0 1)× (0 1)] [( 1 0)× ( 1 0)]

and hence = ( 1 1)× {0} is a — hypersurface in R2 Nevertheless
is not a — manifold with boundary as can be seen by looking at the

point (0 0)
7. If = 1 R then = is a - hypersurface. However, as
in the previous example is not an — dimensional — manifold with
boundary despite the fact that is now closed. (Warning: there is a
clash of notation here with that of the more general theory of manifolds
where 1 = when viewing 1 as a manifold in its own right.)

Lemma 22.22. Suppose R such that bd( ) is a — hypersur-
face, then ¯ is — manifold with boundary. (It is not necessarily true
that ¯ = bd( ) For example, let := (0 1) { R : 1 | | 2}
In this case ¯ = (0 2) so ¯ = { R : | | = 2} while bd( ) =
{ R : | | = 2 or | | = 1} )
Proof. Claim: Suppose = ( 1 1) R and such that

bd( ) = H Then is either, + := H = { 0} or
:= { 0} or \ H = +

To prove the claim, first observe that \ H and is not empty,
so either + or is not empty. Suppose for example there exists

+ Let : [0 1) H be a continuous path such that (0) =
and

= sup { 1 : ([0 ]) }
If 6= 1 then := ( ) is a point in + which is also in ( ) = ¯ \ But
this contradicts ( ) = H and hence = 1 Because + is path
connected, we have shown + Similarly if 6= then as
well and this completes the proof of the claim.
We are now ready to show ¯ is a — manifold with boundary. To this

end, suppose

¯ = bd( ¯) = ¯ \ ¯ ¯ \ = bd( )

Since bd( ) is a — hypersurface, we may find an open neighborhood
of such that there exists a — di eomorphism : such that
( bd( )) = H Recall that

bd( ) = ¯ = \ ( \ ) = bd ( )

where and bd ( ) denotes the closure and boundary of a set in
the relative topology on Since is a — di eomorphism, it follows that
:= ( ) is an open set such that
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bd( ) = bd ( ) = (bd ( )) = ( bd( )) = H

Therefore by the claim, we learn either = + of or + However
the latter case can not occur because in this case would be in the interior
of ¯ and hence not in bd( ¯) This completes the proof, since by changing
the sign on the coordinate of if necessary, we may arrange it so that
¡

¯
¢

= +

Exercise 22.23. Suppose : R R is a — function such that

{ 0} := { R : ( ) 0} 6=
and 0( ) : R R is surjective (or equivalently ( ) 6= 0) for all

{ = 0} := { R : ( ) = 0}
Then := { 0} is a — manifold with boundary and = { = 0}
Hint: For { = 0} let : R R 1 be a linear transformation

such that |Nul( 0( )) : Nul(
0( )) R 1 is invertible and |Nul( 0( )) 0

and then define

( ) := ( ( ) ( )) R 1 ×R = R
Now use the inverse function theorem to construct

Definition 22.24 (Outward pointing unit normal vector). Let be a
1 — manifold with boundary, the outward pointing unit normal to is

the unique function : R satisfying the following requirements.

1. (Unit length.) | ( )| = 1 for all
2. (Orthogonality to ) If 0 and : ( 0 ) is as in the
Definition 22.19, then ( ) 0(0) ( H ) i.e. ( 0) is perpendicular of

3. (Outward Pointing.) If := 1 then 0(0) ( ) · 0 or equivalently
put 0(0) · ( 0) 0 see Figure 22.11 below.

22.4 Divergence Theorem

Theorem 22.25 (Divergence Theorem). Let R be a manifold with
2 — boundary and : R be the unit outward pointing normal to

If ( R ) 1( R ) and
Z

| · | (22.19)

then
Z

( ) · ( ) ( ) =

Z

· ( ) (22.20)
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The proof of Theorem 22.25 will be given after stating a few corollaries
and then a number preliminary results.

Example 22.26. Let

( ) =

½

sin
¡

1
¢

on [0 1]
0 if = 0

then ([0 1]) ((0 1)) and 0( ) = sin
¡

1
¢

1 sin
¡

1
¢

for 0 Since

1
Z

0

1
¯

¯

¯

¯

sin

µ

1
¶
¯

¯

¯

¯

=

Z

1

| sin( )| 1
2

=

Z

1

| sin( )|
=

1
R

0

| 0( )| = and the integrability assumption,
R | · | in The-

orem 22.25 is necessary.

Corollary 22.27. Let R be a closed manifold with 2 — boundary and
: R be the outward pointing unit normal to If ( R )
1( R ) and

Z

{| |+ | · |} +

Z

| · | (22.21)

then Eq. (22.20) is valid, i.e.
Z

( ) · ( ) ( ) =

Z

· ( )

Proof. Let (R [0 1]) such that = 1 in a neighborhood of 0
and set ( ) := ( ) and := We have supp( ) supp( )
— which is a compact set since is closed. Since ( ) = 1 ( ) ( ) is
bounded,

Z

| · | =

Z

| · + · |
Z

| | +

Z

| · |

Hence Theorem 22.25 implies
Z

· =

Z

· (22.22)

By the D.C.T.,
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Z

· =

Z
·

1
( ) ( ) · ( ) + ( ) · ( )

¸

Z

·

and
Z

· =

Z

·
Z

·

which completes the proof by passing the limit in Eq. (22.22).

Corollary 22.28 (Integration by parts I). Let R be a closed mani-
fold with 2 — boundary, : R be the outward pointing normal to

( R ) 1( R ) and ( R) 1( R) such that
Z

{| | [| |+ | · |] + | | | |} +

Z

| | | · |

then
Z

( ) · ( ) =

Z

( ) · ( ) +

Z

( ) · ( ) ( )

Proof. Apply Corollary 22.27 with replaced by

Corollary 22.29 (Integration by parts II). Let R be a closed man-
ifold with 2 — boundary , : R be the outward pointing normal to
and ( R) 1( R) such that

Z

{| | | |+ | | | |+ | | | |} +

Z

| |

then
Z

( ) ( ) =

Z

( ) · ( ) +

Z

( ) ( ) ( ) ( )

Proof. Apply Corollary 22.28 with chosen so that = 0 if 6= and
= (i.e. = (0 0 0))

Proposition 22.30. Let be as in Corollary 22.27 and suppose
2( ) 1( ) such that 2( ) and
2( ) then

Z

4 · =

Z

· +

Z

(22.23)

and
Z

(4 4 ) =

Z
µ ¶

(22.24)
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Proof. Eq. (22.23) follows by applying Corollary 22.28 with = and
= Similarly applying Corollary 22.28 with = and = implies

Z

4 · =

Z

· +

Z

and subtracting this equation from Eq. (22.23) implies Eq. (22.24).

Lemma 22.31. Let = ( ) be a smoothly varying domain and : R
R Then

Z

=

Z

( · )

where ( ) =
¯

¯

¯

0
+ (

1( )) as in Figure 22.10.

Fig. 22.10. The vector-field ( ) measures the velocity of the boundary point
at time

Proof.With out loss of generality we may compute the derivative at = 0
and replace by 0( ) and by 1

0 if necessary so that 0( ) = and

( ) =
¯

¯

¯

0
( ) By the change of variables theorem,

Z

=

Z

=

Z

( ) det[ 0 ( )]

and hence
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¯

¯

¯

0

Z

=

Z

0

[ ( ) +
¯

¯

¯

0
det[ 0 ( )] ( )]

=

Z

0

[ ( ) + ( · ( )) ( )]

=

Z

0

· ( )( ) =

Z

0

( ) ( ) · ( ) ( )

In the second equality we have used the fact that
¯

¯

¯

0
det[ 0 ( )] =

·

¯

¯

¯

0

0 ( )
¸

= [ 0( )] = · ( )

22.5 The proof of the Divergence Theorem

Lemma 22.32. Suppose R and 1( R ) and 1( R)
then

Z

· =

Z

·

Proof. Let := on and = 0 on then (R R ) By
Fubini’s theorem and the fundamental theorem of calculus,

Z

· ( ) =

Z

R

( · ) =
X

=1

Z

R
1 = 0

This completes the proof because · ( ) = · + ·
Corollary 22.33. If R 1( R ) and ( R) then = ·
i

Z

=

Z

· for all 1( ) (22.25)

Proof. By Lemma 22.32, Eq. (22.25) holds i
Z

=

Z

· for all 1( )

which happens i = ·
Proposition 22.34 (Behavior of under coordinate transforma-
tions). Let : is a 2 — di eomorphism where and and
open subsets of R Given 1( R) and 1( R ) let =
1( R) and 1( R ) be defined by ( ) = 0( ) 1 ( ( )) Then
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1. = ( ) = ( 0)tr ( ) and
2. · [det 0 ] = ( · ) · det 0 (Notice that we use is 2 at this
point.)

Proof. 1. Let R then by definition of the gradient and using the
chain rule,

( ) · = ( ) = ( ) · 0 = ( 0)tr ( ) ·
2. Let 1( ) By the change of variables formula,

Z

· =

Z

( · ) |det 0|

=

Z

( · ) |det 0| (22.26)

On the other hand
Z

· =

Z

· =

Z

( ) · ( ) |det 0|

=

Z

h

( 0)tr
i 1

· ( ) |det 0|

=

Z

· ( 0) 1
( ) |det 0|

=

Z

¡ · ¢ |det 0|

=

Z

· ¡|det 0| ¢

(22.27)

Since Eqs. (22.26) and (22.27) hold for all 1( ) we may conclude

· ¡|det 0| ¢

= ( · ) |det 0|
and by linearity this proves item 2.

Lemma 22.35. Eq. (22.20 of the divergence Theorem 22.25 holds when =
H̄ = { R : 0} and (H̄ R ) 1(H R ) satisfies

Z

H

| · |

Proof. In this case = R 1 × {0} and ( ) = for is
the outward pointing normal to By Fubini’s theorem and the fundamental
theorem of calculus,

1
X

=1

Z

= 0
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and
Z

=

Z

R 1

( )

Therefore. using the dominated convergence theorem,
Z

H

· = lim
0

Z

· = lim
0

Z

R 1

( )

=

Z

R 1

( 0) =

Z

H

( ) · ( ) ( )

Remark 22.36. The same argument used in the proof of Lemma 22.35 shows
Theorem 22.25 holds when

= R̄+ := { R : 0 for all }

Notice that R̄+ has a corners and edges, etc. and so is not smooth in this
case.

22.5.1 The Proof of the Divergence Theorem 22.25

Proof. First suppose that supp( ) is a compact subset of ( 0 ) for
some 0 and 0 is su ciently small so that there exists R
and 2 — di eomorphism : ( 0 ) (see Figure 22.11) such that
( { 0}) = ( 0 ) and

( { = 0}) = ( 0 )

Because is the outward pointing normal, ( ( )) · 0( ) 0 on = 0
Since is connected and det 0( ) is never zero on := sgn (det 0( ))
{±1} is constant independent of For H̄

( · )( ( )) |det[ 0( ) 1| | 0( ) 1| ( ( ))]|
= ( · )( ( )) det[ 0( ) 1| | 0( ) 1| ( ( ))]
= det[ 0( ) 1| | 0( ) 1| ( ( ))]
= det[ 0( ) 1| | 0( ) 1| 0( ) ( )]

= det 0( ) · det[ 1| | 1| ( )]

= |det 0( )| ( ) ·

wherein the second equality we used the linearity properties of the determinant
and the identity
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Fig. 22.11. Reducing the divergence theorem for general to = H

( ( )) = · ( ( )) +
1

X

=1

0( ) for some

Starting with the definition of the surface integral we find
Z

· =

Z

H̄

( · )( ( )) |det[ 0( ) 1| | 0( ) 1| ( ( ))]|

=

Z

H̄

det 0( ) ( ) · ( )

=

Z

H

· £det 0 ¤

(by Lemma 22.35)

=

Z

H

[( · ) ] det 0 (by Proposition 22.34)

=

Z

( · ) (by the Change of variables theorem).

2) We now prove the general case where ( R ) 1( R ) and
R | · | Using Theorem 42.26, we may choose (R ) such
that

1.
P

=1
1 with equality in a neighborhood of = Supp ( )

2. For all either supp( ) or supp( ) ( 0 ) where 0 and
0 are as in the previous paragraph.

Then by special cases proved in the previous paragraph and in Lemma
22.32,
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Z

· =

Z

· (
X

) =
X

Z

· ( )

=
X

Z

( ) ·

=

Z

X

· =

Z

·

22.5.2 Extensions of the Divergence Theorem to Lipschitz domains

The divergence theorem holds more generally for manifolds with Lipschitz
boundary. By this we mean, locally near a boundary point, should be of
the form

:= {( ) ×R R : ( )} = { }
where : R is a Lipschitz function and is the open unit ball in R 1

To prove this remark, first suppose that 1(R R ) such that
supp( ) × R Let ( ) = ( ) where ( (0 1) [0 ))
such that

R

R = 1 and let := defined on 1 1 — the open
ball of radius 1 1 in R 1 and let := { } For large enough
we will have supp( ) 1 1 × R and so by the divergence theorem we
have already proved,

Z

· =

Z

· =

Z

( ( )) · ( ( ) 1)

Now
¯

¯

¯
1 lim 1

¯

¯

¯
1 = ( )

and by Fubini’s theorem,
Z

×R
1 = ( ) =

Z Z

R
1 = ( ) = 0

Hence by the dominated convergence theorem,

lim

Z

· = lim

Z

1 · =

Z

lim 1 ·

=

Z

1 · =

Z

·

Moreover we also have from results to be proved later in the course that ( )
exists for a.e. and is bounded by the Lipschitz constant for and

= in for any 1
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Therefore,

lim

Z

( ( )) · ( ( ) 1) =

Z

( ( )) · ( ( ) 1)

=

Z

·

where is the vector valued measure on determined in local coordinates
by ( ( ) 1)
Finally if 1( ) ( ) with

R | · | with as above.
We can use the above result applied to the vector field ( ) := ( + )
which we may now view as an element of 1( ) We then have

Z

· (· ·+ ) =

Z

( ( ) + ) · ( ( ) 1)

Z

( ( )) · ( ( ) 1) =

Z

·
(22.28)

And again by the dominated convergence theorem,

lim
0

Z

· (· ·+ ) = lim
0

Z

R
1 ( ) · ( + )

= lim
0

Z

R
1 ( ) · ( )

=

Z

R
lim
0
1 ( ) · ( )

=

Z

R
1 ( ) · ( ) =

Z

·
(22.29)

wherein we have used

lim
0
1 ( ) = lim

0
1

( )+ = 1 ( )

Comparing Eqs. (22.28) and (22.29) finishes the proof of the extension.

22.6 Application to Holomorphic functions

Let C = R2 be a compact manifold with 2 — boundary.

Definition 22.37. Let C = R2 be a compact manifold with 2 — bound-
ary and ( C) The contour integral,

R

( ) of along is
defined by
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Fig. 22.12. The induced direction for countour integrals along boundaries of re-
gions.

Z

( ) :=

Z

n

where n : 1 C is chosen so that := (Ren Imn) is the outward
pointing normal, see Figure 22.12.

In order to carry out the integral in Definition 22.37 more e ectively,
suppose that = ( ) with is a parametrization of a part of the
boundary of and is chosen so that := ˙ ( ) | ˙ ( )| = ( ( )) That is
to say is gotten from by a 90 rotation in the counterclockwise direction.
Combining this with = | ˙ ( )| we see that

= | ˙ ( )| = ˙ ( ) =:

so that
Z

( ) =

Z

( ( )) ˙ ( )

Proposition 22.38. Let 1( ¯ C) and ¯ := 1
2 ( + ) then

Z

( ) = 2

Z

¯ (22.30)

Now suppose then

( ) =
1

2

Z

( ) 1
Z ¯ ( )

( ) (22.31)

Proof. By the divergence theorem,
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Z

¯ =
1

2

Z

( + ) =
1

2

Z

( 1 + 2)

=
1

2

Z

=
2

Z

( )

Given 0 small, let := \ ( ) Eq. (22.30) with = and
being replaced by ( ) implies

Z

( )
= 2

Z ¯
(22.32)

wherein we have used the product rule and the fact that ¯( ) 1 = 0 to
conclude

¯
·

( )
¸

=
¯ ( )

Noting that = ( ) and ( ) may be parametrized by
= + with 0 2 we have

Z

( )
=

Z

( )
+

Z 2

0

( + )
( )

=

Z

( )
Z 2

0

( + )

and hence
Z

( )
Z 2

0

( + ) = 2

Z ¯ ( )
( ) (22.33)

Since

lim
0

Z 2

0

( + ) = 2 ( )

and

lim
0

Z ¯
=

Z ¯ ( )
( )

we may pass to the limit in Eq. (22.33) to find
Z

( )
2 ( ) = 2

Z ¯ ( )
( )

which is equivalent to Eq. (22.31).

Remark 22.39. Eq. (22.31) implies ¯1 = ( ) Indeed if
¡

C = R2
¢

then by Eq. (22.31)

h¯ 1 i := h 1 ¯ i = 1
Z

C

1 ¯ ( ) ( ) = (0)

which is equivalent to ¯1 = ( )
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Exercise 22.40. Let be as above and assume 1( ¯ C) satisfies :=
¯ ( C) Show ( C) Hint, let 0 and 0 be small
and choose ( ( 0 )) such that = 1 in a neighborhood of 0 and
let = 1 Then by Eq. (22.31),

( ) =
1

2

Z

( ) 1
Z

( )
( ) ( )

1
Z

( )
( ) ( )

Now show each of the three terms above are smooth in for near 0 To
handle the middle term notice that

Z

( )
( ) ( ) =

Z

C

( + )
( + ) ( )

for near 0

Definition 22.41. A function 1( C) is said to be holomorphic if ¯ =
0

By Proposition 22.38, if 1( ¯ C) and ¯ = 0 on then Cauchy’s
integral formula holds for namely

( ) =
1

2

Z

( )

and ( C) For more details on Holomorphic functions, see the com-
plex variable appendix.

22.7 Dirichlet Problems on D

Let := { C : | | 1} be the open unit disk in C = R2 where we write
= + = in the usual way. Also let =

2

2 +
2

2 and recall that
may be computed in polar coordinates by the formula,

= 1
¡

1
¢

+
1
2

2 (22.34)

Indeed if 1( ) then
Z

=

Z

· =

Z

10 2 10 1

µ

+
1
2

¶

=

Z

10 2 10 1

µ

( ) +
1

¶

=

Z

10 2 10 1

µ

1
( ) +

1
2

¶

2

=

Z
µ

1
( ) +

1
2

¶



22.7 Dirichlet Problems on 543

which shows Eq. (22.34) is valid. See Exercises 22.45 and 22.47 for more
details.
Suppose that ( ¯) 2( ) and ( ) = 0 for Let = |

and

:= ˆ( ) :=
1

2

Z

( )

(We are identifying 1 = :=
©

¯ : | | = 1ª with [ ] ( ) by
the map [ ] 1 ) Let

ˆ( ) :=
1

2

Z

( ) (22.35)

then:

1. ˜( ) satisfies the ordinary di erential equation

1 ( ˆ( )) =
1
2

2ˆ( ) for (0 1)

2. Recall the general solution to

( ( )) = 2 ( ) (22.36)

may be found by trying solutions of the form ( ) = which then implies
2 = 2 or = ± From this one sees that ˜( ) may be written as
ˆ( ) = | | + | | for some constants and when 6= 0 If
= 0 the solution to Eq. (22.36) is gotten by simple integration and the

result is ˆ( 0) = 0+ 0 ln Since ˆ( ) is bounded near the origin for
each it follows that = 0 for all Z

3. So we have shown

| | = ˆ( ) =
1

2

Z

( )

and letting 1 in this equation implies

=
1

2

Z

( ) =
1

2

Z

( )

Therefore,
( ) =

X

Z

| | (22.37)

for 1 or equivalently,

( ) =
X

N0

+
X

N

¯ = 0 +
X

1

+
X

1

¯

= Re 0 + 2
X

1
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In particular = 0 implies ( ) is the sum of a holomorphic and an anti-
holomorphic functions and also that is the real part of a holomorphic
function ( ) := 0+

1
2

P

1 The imaginary part ( ) := Im ( )
is harmonic as well and is given by

( ) = 2 Im
X

1

=
1 X

1

X

1

¯

=
1 X

1

X

1

¯

=
1 X

1

X

1

=
X

6=0

1
sgn( ) = sgn(

1
) ( )

wherein we are writing as Here sgn( 1 ) is the bounded self-adoint
operator on 2( 1) which satisfies

sgn(
1

) = sgn( )

and

sgn( ) =
1 if 0
0 if = 0
1 if 0

4. Inserting the formula for into Eq. (22.37) gives

( ) =
1

2

Z

Ã

X

Z

| | ( )

!

( ) for all 1

Now by simple geometric series considerations we find, setting =
that

X

Z

| | =
X

=0

+
X

=0

1 = 2Re
X

=0

1

= Re

·

2
1

1
1

¸

= Re

·

1 +

1

¸

= Re

"

¡

1 +
¢ ¡

1
¢

|1 |2
#

= Re

·

1 2 + 2 sin

1 2 cos + 2

¸

(22.38)

=
1 2

|1 |2 =
1 2

1 2 cos + 2
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Putting this altogether we have shown

( ) =
1

2

Z

( ) ( ) =: ( )

=
1

2
Re

Z

1 + ( )

1 ( )
( ) (22.39)

where

( ) :=
1 2

1 2 cos + 2
(22.40)

is the so called Poisson kernel. The fact that 1
2 Re

R

( ) = 1 follows
from the fact that

1

2

Z

( ) = Re
1

2

Z

X

Z

| |

= Re
1

2

X

Z

Z

| | = 1

Writing = Eq. (22.39) may be rewritten as

420-2-4

8

6

4

2

0

x

y

x

y

Fig. 22.13. Here is a plot of ( ) for = 5 and = 8

( ) =
1

2
Re

Z

1 +

1
( )

which shows = Re where

( ) :=
1

2

Z

1 +

1
( )
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Moreover it follows from Eq. (22.38) that

Im ( ) =
1
Im

Z

sin( )

1 2 cos( ) + 2
( )

=: ( )

where

( ) :=
sin( )

1 2 cos( ) + 2

From these remarks it follows that is the harmonic conjugate of and
˜ = Summarizing these results gives

(̃ ) = sgn(
1

) ( ) = lim
1
( ) ( )

22.7.1 Appendix: More Proofs of Proposition 22.34

Exercise 22.42. det0( ) = det( ) tr( 1 )

Solution 22.43 (22.42).
¯

¯

¯

0
det( + ) = det( )

¯

¯

¯

0
det( + 1 )

= det( ) tr( 1 )

Proof. 2nd Proof of Proposition 22.34 by direct computation. Letting
= 0

1

det
· (det ) =

1

det
{ · det + det · }

= tr[ 1 ] + · (22.41)

and

· = · ( 1 ) = ( 1 ) ·
= · ( 1 1 ) + · 1( 0 )

= · ( 1 00h 1 i) + tr( 1( 0 ) )

= · ( 1 00h 1 i) + tr( 0 )

= tr( 1 00h i) + ( · )

= tr
£

1
¤

+ ( · ) (22.42)

Combining Eqs. (22.41) and (22.42) gives the desired result:

· (det 0 ) = det 0( · )
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Lemma 22.44 (Flow interpretation of the divergence). Let
1( R ) Then

· =
¯

¯

¯

0
det( )0

and
Z

· ( ) =
¯

¯

0

Z

( )

Proof. By Exercise 22.42 and the change of variables formula,

¯

¯

¯

0
det( )0 = tr

µ

¯

¯

¯

0
( )0

¶

= tr( 0) = ·

and
¯

¯

¯

0

Z

( )

( ) =
¯

¯

¯

0

Z

( ( )) det( )0( )

=

Z

{ ( ) · ( ) + ( ) · ( )}

=

Z

· ( )

Proof. 3rd Proof of Proposition 22.34. Using Lemma 22.44 with =
det 0 and = and the change of variables formula,

Z

· (det 0 ) =
¯

¯

¯

0

Z

( )

det 0

=
¯

¯

¯

0
( ( ))

=
¯

¯

¯

0
( 1 ( ))

=
¯

¯

¯

0
( ( ( )))

=
¯

¯

¯

0

Z

( ( ))

1 =

Z

( )

·

=

Z

( · ) det 0

Since this is true for all regions it follows that ·(det 0 ) = det 0( ·
)
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22.8 Exercises

Exercise 22.45. Let = ( 1 ) = ( 1 ) = ( ) be a 2 —
di eomorphism, : where and are open subsets of R For

define

( ) = ( ) · ( )

( ) = ( ( )) 1 and ( ) = det ( ( ))

Show

1. = ( 0 0) and = |det 0| (So in the making the change of
variables = ( ) we have = )

2. Given functions 1( ) let = and = Show

( ) · ( ) =

3. For 2( ) show

( ) =
1

µ ¶

(22.43)

Hint: for 2( ) compute we have
Z

( ) ( ) =

Z

( ) · ( )

Now make the change of variables = ( ) in both of the above integrals
and then do some more integration by parts to prove Eq. (22.43).

Notation 22.46 We will usually abuse notation in the future and write the
above equation as

=
1

µ ¶

Exercise 22.47. Let ( 1 2 ) = ( 1 ) where ( 1 )
are as in Eq. (22.11). Show:

1. The vectors
n

1 2

o

form an orthogonal set and that

¯

¯

¯

¯

¯

¯

¯

¯

= 1

¯

¯

¯

¯

2

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

¯

¯

¯

= sin 2 sin 1 and
¯

¯

¯

¯

¯

¯

¯

¯

= sin 2 sin +1 for = 1 3
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2. Use item 1. to give another derivation of Eq. (22.13), i.e.

= |det 0| = 1 sin 2
2 sin2 2 sin 1

3. Use Eq. (22.43) to conclude

=
1
1

µ

1

¶

+
1
2

1

where

1 :=
2

X

=1

1

sin2 2 sin2 +1

1

sin

µ

sin

¶

+
1

sin2 2 sin2 1

2

2

and
1

sin2 2 sin2 +1

:= 1 if = 2

In particular if = ( 2) we have

=
1
1

µ

1

¶

+
1
2

1

sin 2
2 2

µ

sin 2
2

2

¶

(22.44)
It is also worth noting that

1 :=
1

sin 2
2 2

µ

sin 2
2

2

¶

+
1

sin 2
2

2

Let us write := 2 and suppose = ( ) According to Eq.
(22.44),

=
1
1

Ã

1

¡

( )
¢

!

+
1
2

1

sin 2

Ã

sin 2

¡

( )
¢

= ( )
1
1

¡

1+ 1
¢

+ 2 1

sin 2

µ

sin 2

¶

= ( ) ( + 2) 2 + 2 1

sin 2

µ

sin 2

¶

= 2

·

( + 2) ( ) +
1

sin 2

µ

sin 2

¶¸

Write ( ) = ( ) where = cos then = 0( ) sin and hence

1

sin 2

µ

sin 2

¶

=
1

sin 2

¡

sin 1 0( )
¢

=
( 1) sin 2 cos 0( )

sin 2

sin 1

sin 2 {

= ( 1) 0( ) + (1 2) 00( )
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Hence we have shown, with = cos that
£

( )
¤

= 2
£

( + 2) ( ) ( 1) 0( ) + (1 2) 00( )
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Inverse Function Theorem and Embedded
Submanifolds

This section is devoted to inverse function theorem arguments and their rela-
tionship to “embedded submanifolds”

23.1 Embedded Submanifolds

Theorem 23.1. Let be a —dimensional manifold, be a subset of
: be the inclusion map, be a positive integer less than and

( ) = { : ( ) 3 = }
That is we give the induced topology from Then the following are equiv-
alent:

1. For each point there exists ( ) and ( R ) such
that is a submersion (i.e. is surjective for all D( ) = ) and

= { = 0} { : ( ) = 0}
2. For each point there exists a chart A ( ) such that

D( ) = { = 0} = { : ( ) = 0 for + 1 }
where ( +1 )

3. There exists a manifold structure (A( )) on the topological space
( ( )) such is a —dimensional manifold, : is a smooth
immersion, i.e. is injective for all

Proof. (1 2) Choose a chart A ( ) such that ˜ ( 1 )
has an invertible di erential at (This can be done since { 1 }
are linearly independent in and { } =1 is a basis for ) Then by
the implicit function theorem, ( ) such that D( ) and

˜| is in A ( ) Furthermore,
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{ = 0} = { | = 0} = { = 0} = ( ) =

(2 1) Take ( +1 ) on D( )
(2 3) Let A ( ) as in item 2 above. Set ( 1 ) and
( +1 ). We define the manifold structure on by requiring

¯ with D(¯) D( ) to be a chart on We must show this
defines a manifold structure on For this let A ( ) be another chart
on such that D( ) = { = 0} Then for ¯(D(¯) D(¯)) we have:
¯ ¯ 1( ) = ( 0) which is clearly smooth. Thus is now endowed
with a manifold structure, i.e. a collection of —related charts covering
To see that is smooth with injective di erential near it su ces to
notice that ¯ 1 = on R(¯) R where A ( ) is a chart as
above.

(3 2) We now assume that is a smooth manifold with the topology
on ( ( )) being the induced topology coming from , and :
is a smooth immersion. Let and A ( ) such that ¯ = has
an invertible di erential at By shrinking the domain of if necessary
(using the implicit function theorem and the fact that has the relative
topology) we may assume that ¯ with D(¯) D( ) is a chart on .
Let ¯ 1 on R(¯) ¯(D(¯)) Then is smooth on R(¯) and

= .̄ Let ( ) on D( ) 1(R(¯)) ( ) It
is easy to check that D( ) is injective, 1( ) = ( ( )),
and 1( ) = ( + ( )) This clearly shows that A ( ). So to
finish the proof it su ces to show that { = 0} = D( ) It should be
clear that = 0 on D( ) so that { = 0} D( ) Now suppose
that { = 0} so that ( ) = ( ( )) and ( ) R(¯) Let

¯ 1( ( )) then

( ) = ( ) and ( ) = ( ( )) = ( ( )) = ( )

Therefore ( ) = ( ), so that = This shows that { = 0}
D( )
Remark 23.2. As can be seen from the above proof, the manifold structure on
, for which item 3 of the theorem holds, is unique. Furthermore, a collection

of charts covering were described in the proof of 2 3

Definition 23.3. A k-dimensional embedded submanifold of a manifold
is a subset of satisfying one and hence all of the properties in Theorem
23.1 above.

23.2 Exercises

1. Show { R +1 : | |2 P +1
=1

2 = 1} is an embedded submani-
fold of R +1
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2. Show that a torus ( ) of revolution in R3 is an embedded submanifold.
More explicitly, let 0 and be the surface of revolution found
by revolving the circle ( )2 + 2 = 2 around the y-axis.

3. Suppose that is an embedded submanifold of and
is an embedded submanifold of Show that is also an embedded

submanifold of
4. Suppose that is an embedded submanifold of for = 1 2
Show that 1 × 2 is an embedded submanifold of 1 × 2.

5. Show that the k-dimensional torus

{ C || | = 1 for = 1 2 }

is an embedded submanifold of C = R2

23.3 Construction of Embedded Submanifolds

Theorem 23.4. Suppose that and are manifolds, ( ) and
is an embedded submanifold of . Let 1( ) which is assumed

to be non-empty. Assume for each ( ) + ( ) = ( ) .
Then is an embedded submanifold of and codim( ) = codim( ) that
is codim( 1( )) = codim( ) where codim( ) dim( ) dim( ) and
codim( ) dim( ) dim( )

Proof. Case 1) First assume that is an open subset of R = R ×R
and = (R × {0}) . Let : R denote projection onto the
last R factor in R = R × R Then = ( ) 1(0) So it su ces
to show that is a submersion. By assumption h i + R × {0} =
R ×R . Hence it easily follows that ( )h i = R Therefore
is and embedded submanifold of and the dim( ) = dim( ) ( ) =
dim( ) (dim( ) dim( ))
Case 2) (General case.) Let and ( ) Choose A ( )

such that D( ) = { = 0} where = ( ) Set ˜ R( )
( ) R = R × R ˜ R( ) (R × {0}) = ( D( )) and
˜ | 1(D( )) Notice that ˜ 1( ˜) = 1(D( ) ) and hence by
case one it follows that 1(D( )) = 1(D( ) ) is an embedded
submanifold of 1(D( )) — an open submanifold of Hence there is an
open subset of 1(D( )) and a smooth submersion : R such
that = ( 1(D( ))) = { = 0}. From this it follows that is
an embedded submanifold of

Theorem 23.5. Suppose that + and + are smooth manifolds and
( ). Let , and suppose that rank = is a constant for in

a neighborhood of Then there are charts A ( ) and A ( )( )

such that 1 : R ×R R ×R is given by 1( ) = ( 0).
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Proof. Let A ( )( ) be chosen such that the di erential of
has rank near where ( ), = ( 1 ), and =
( +1 + ) Set ( 1 ) where for = 1
Choose smooth functions +1 + on such that = ( ) has
an invertible di erential at where = ( +1 + ) By the implicit
function theorem, it follows that is a chart when restricted to a su ciently
small neighborhood D( ) of Set 1 : R ×R R ×R then
( ) = ( ( )) for some smooth function : R × R R Since

has rank near it follows that has rank near ( ) But ( )( ) =
( 1 ( ) + 2 ( ) ) ( ) which has rank i 2 ( ) 0 There-
fore, in fact has the form ( ) = ( ( )) where : R R . Rewriting
this result in terms of shows that = ( ) and hence

= and = = (23.1)

Define a new chart = ( ) A ( )( ) via: and
It now follows that = ( ) = ( 0)

Corollary 23.6. Suppose that and are smooth manifolds and that
( ) Let ran and set 1( ) If has constant rank
in a neighborhood of then is an embedded submanifold of with

dim( ) = dim( ) rank( )

Proof. Let and A ( ) and A ( ) be charts as in
the above theorem. Without loss of generality we may assume that ( ) = 0
Then

D( ) = { : ( ) = ( ) = 0} = { : ( 0)( ) = 0} = {

This clearly shows that is an embedded submanifold and dim( ) =
dim( )
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The Flow of a Vector Fields on Manifolds

For the purposes of this section will be a manifold. The next theorem
is basic existence theorem for ordinary di erential equations on manifolds.

Theorem 24.1. Let be a smooth vector field on then for each point
there exist an open interval R containing 0 and a path :

such that

1. solves ˙ ( ) = ( ( )) with (0) =
2. If : is also solves the di erential equation

˙( ) = ( ( )) with (0) =

then and = |
3. If is bounded above then for all compact subsets there exists

= ( ) such that for all in ( )
4. If is bounded below then for all compact subsets there exists

= ( ) such that for all in ( )

Set ( ) = ( × { }) R × and define : ( )
via ( ) = ( ) Then ( ) is an open set in R × and is a smooth
function on ( ) Furthermore if and ( ), then + and

( ( )) = ( + ) (24.1)

Let ( ) { |( ) ( )} (notice that ( ) is open in ). We
now write for the function ( ), ( ) Then : ( )

( ) is a di eomorphism with inverse With this notation (24.1) may
be rephrased as

( ) = ( + ) ( ) (24.2)

I will give a sketch of the proof and refer the reader to Chapter IV of Lang
[5], Chapter 5. of Spivak, or Theorem 1.48 of Warner [15] for a detailed proof.
The main ingredient in the proof is the local properties of O.D.E.’s proved in
the last section. For convenience, we state the properties we will use in the
proof:
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Lemma 24.2. For all there is an 0 and neighborhood ( )
such that for all the di erential equation

˙ ( ; ) = ( ( ; )) with (0; ) =

has a unique solution for | | . Furthermore, the function ( ) ( ; )
is smooth.

Proof. Let be the union over all open intervals = ( ( ) ( )) such
that: 0 and there is a 1—curve : such that

˙ ( ) = ( ( )) with (0) =

Suppose that and are two such intervals and ( ) ( ) By local unique-
ness we know that = for 0 Let = sup{ ( ) : =
on [0 ]} If ( ) set = ( ) = ( ) = and = .

Choose such that 2 and = ( ) = ( ) Set
( ) = ( ) and ( ) = ( ) Then and both satisfy

˙( ) = ( ( )) with (0) =

By the local uniqueness theorem it follows that ( ) = ( ) when | |
provided both ( ) and ( ) are defined. But this implies that

( ) = ( ) for 0 min( + 2 ( ))

which contradicts the definition of From this argument and a similar ar-
gument for 0, it follows that = in Therefore x( ) ( ) if

is a well defined solution to

˙ ( ) = ( ( )) with (0) =

and clearly by construction ( ) satisfies items 1 and 2 of the theorem.
Now write = ( ) and assume that . Suppose that there is

a compact set in a sequence such that ( ) for all
Then by compactness, we can find a subsequence (which we still call { })
such that lim ( ) exists in Again let = and = as in
Lemma 24.2. Choose 0 such that ( ) and 2. Let
( ) solve

˙( ) = ( ( )) with (0) =

By local uniqueness it follows that ( + ) = ( ) when both sides are
defined so that

( ) =

½

( ) if
( ) | |

solves ˙ ( ) = ( ( )) for ( + 2) This contradicts the definition of
and hence proves item 3. Item 4 has a similar proof.
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To verify that ( ) is open and : ( ) is smooth let
and define to be the supremum of all times such that there exists
an open subset ( ) such that for and |( )×
is smooth. By Lemma 24.2 it follows that We wish to show that
= For contradiction, assume that and set = ( ) = ,

and = Choose a 0 such that 0 2 and ( )
Also choose 1 ( ) then by the definition of there is an open subset
1 ( ) such that ˜ |( 1)× 1

is smooth. Set ˜ ( ) ˜( ) and
˜ 1( ) ( ) (Note 1 ) For ( ) ( + 2)× set

( )

½

( ) if 1

( ( )) if +
(24.3)

By uniqueness of solutions already proved it is easily verified that is well
defined. Since satisfies

˙ ( ) = ( ( )) with (0 ) =

it follows that ( + 2)× ( ) and = |( + )× The formula
(24.3) shows that = |( + 2)× is smooth on ( + )× But since
+ this contradicts the definition of Therefore in fact =
To summarize, we have shown for all and 0 , there is

an open set ( ) such that ( ) × ( ) and |( )× is
smooth. As similar argument for 0 shows if 0 there exists

( ) such that ( ) × ( ) and |( )× is smooth. From
these two assertions it follows for all bounded open intervals such that
¯ there exists ( ) such that × ( ) and | × is
smooth. This clearly implies that ( ) is open and : ( ) is smooth.
The rest of the assertions of the theorem are left as exercise for the reader.

(The remaining assertions only use the smoothness uniqueness results that
have already been proven.)

Definition 24.3. A vector field on is said to be complete if ( ) =
R×
Definition 24.4. A one parameter group of di eomorphisms on a smooth
manifold is a smooth function : R× (write ( ) for ( ))
such that = + for all R and 0 = |
Notice that = = 0 = | shows, for each R that
is a di eomorphism on with inverse

Proposition 24.5. There is a one to one correspondence between one para-
meter groups of di eomorphisms on and complete vector fields on

Proof. If is a complete vector field, set Conversely, if is a
one parameter group of di eomorphisms, set ( ) = |0 ( )
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Corollary 24.6. If is a compact manifold, then all smooth vector fields
on are complete.

Proof. According to item 3. in Theorem 24.1, for each , must
not be bounded above. Otherwise ( ) would have to eventually leave the
compact set which is clearly impossible. Similarly by item 4. of Theorem
24.1 we must have that is not bounded below. Hence = R for all

Remark 24.7. Notice that for all that ( ) is the unique maximal
path solving the di erential equation

( ) = ( ( )) with 0 ( ) =

The next few sections of these notes comes from co-area.tex.
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Co-Area Formula in Riemannian Geometry

The co-area material is from “C:\driverdat\Bruce\DATA\MATHFILE\qft-
notes\co-area.tex.” for this material. For Stokes theorem, see Whitney’s "Geo-
metric Integration Theory," p. 100. for a fairly genral form of Stokes Theorem
allowing for rough boundaries.
In this section and are smooth manifolds and : is a smooth

map.

Definition 25.1. A map : is a submersion if ( ) = ( )

for all

Let us begin by noting that a submersion need not be a fiber bundle. In
fact given 0 it need not be the case that there is a neighborhood
about 0 such that : 1( ) is a fiber bundle, see Figures 25.1 and
25.2 below.

Fig. 25.1. For 0 1 ( ) consists of two points while for 1( ) consists of one
point for 0

We do have the following theorem however.

Theorem 25.2. Suppose : is a submersion, then
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Fig. 25.2. For 6= 0 1 ( ) is di eomorphic to a circle while 1 (0) is di eomor-
phic to a R

1. is an open mapping.
2. To each there exists and a smooth map : R
such that ( ) : ( )× R is a di eomorphism.

Proof. Since this is a local theorem, we map assume = R = R
= 0 and (0) = 0 By precomposing with a linear transformation, we may

also assume that

0(0) =
£

× 0
¤

: R = R ×R R

Letting ( ) := ( ( ) ) we have 0(0 0) = × and so by the implicit
function theorem, there is an open neighborhood R of 0 such that
: := ( ) is a di eomorphism with be chosen so that is an

open cube in R centered at 0 Given we then have ( ) = 1( ( ))
where 1 : R × R R is the canonical projection map. Since 1 is an
open mapping and is a di eomorphism, it follows that ( ) is open and
hence is an open mapping. To finish the proof let 2 : R ×R R
be projection onto the second factor and := 2 Then = ( ) and
( ) is an open cube inside of R which is di eomorphic to R
Suppose now that we are given a smooth measure on Our next goal

is to describe the measure This will be done in the most intrinsic way in
the next subsection. Here we will put Riemannian metrics on both and
and use these structures to describe the answer.

Theorem 25.3 (Co-Area Formula). Assume both and are Rie-
mannian manifolds, and are the Riemann volume measures on
and respectively, = for some function : [0 ) and
: is a smooth submersion. Further, for each let denote the

Riemannian volume measure on determined by the induced Riemannian
metric on and for let
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( ) :=
p

det ( ) (25.1)

Then
( )

( ) =

Z

1

( )
( ) ( )

i.e., if : [0 ) is a measurable function then
Z

( ) =

Z

( ) ( )

Z

1

( )
( ) ( ) (25.2)

Remark 25.4. Since we may absorb into the function in Eq. (25.2), the
co-area formula is equivalent to

Z

=

Z
·
Z

1

( )
( ) ( )

¸

( ) (25.3)

holding for all positive measurable functions on

Before going to the formal proof, let us make a few comments to under-
stand co-area formula intuitively. First suppose that = R and = R2
(or R more generally) in which case ( ) = | ( )| Let R be a
small interval centered at then 1( ) is a tubular neighborhood of

= 1 ({ }) see Figure 25.3 below.

Fig. 25.3. Computing the measure

Referring to Figure 25.3, we should have
Z

1( )

( ) =

Z

( ) ( )

where denotes the width of the tubular neighborhood at Now by
the definition of the gradient, we have 2 = | ( )| since if = ( )

| ( )|
is the unit normal to at we have
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= ( +
1

2
) ( ) = ( ) · 1

2
=
1

2
| ( )|

Therefore,
Z

1( )

( ) = 2

Z

1

| ( )| ( ) ( )

= | |
Z

1

| ( )| ( ) ( )

and so
1

| |
Z

1( )

( )

Z

1

| ( )| ( ) ( )

as shrinks to { } So letting ( ) = ( ) ( ) :=
R

1( )
( ) we expect

( ) =

Z

1

| ( )| ( ) ( )

and therefore
Z

( ) = ( ) =

Z

( ) ( ) =

Z

( ) ( )

=

Z
·
Z

1

| ( )| ( ) ( )

¸

( )

As a concrete example of this form, let ( ) = (| |) where (0) = 0 and
is monotonically increasing and lim ( ) = In this case ( ) =
0(| |) ˆ | ( )| = 0(| |) and = { = } = 1( ) where is the
unit circle in Parametrizing = 1( ) by 1( )(cos sin ) we find

= 1( ) and the co-area formula then says,
Z

( ) =

Z

0

·
Z 2

=0

1
0( 1( ))

( 1( )(cos sin )) 1( )

¸

Letting = 1( ) above or = ( ) so = 0( ) we find
Z

( ) =

Z

0

0( )
·
Z 2

=0

1
0( )

( (cos sin ))

¸

=

Z

0

·
Z 2

=0

( (cos sin ))

¸

which is the usual polar coordinates formula.
As a better example, let ( ) be polar coordinates on = R2 and take

( ) = ( ) Since is constant along rays emanating from the origin, if we
let ( ) = (cos sin ) then ( ( )) = and so so

1 = = ( ( )) · ˙ ( ) = | ( ( ))| · | ˙ ( )| = | ( ( ))|
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Therefore, | ( )| = 1
( ) and the co-area formula says that

Z

( ) =

Z
·
Z

0

1

1
( (cos sin ))

¸

=

Z
·
Z

0

( (cos sin ))

¸

which is the usual polar coordinates formula. Here we are using the area =
length measure on { = } parameterized by (cos sin ) is simply given
by since

=

q

[ cos ]2 + [ sin ]2 =

Let us now consider another special case, namely = R3 and = R2
see Figure 25.3 below. Working similarly to the last example let now be a

Fig. 25.4. Computing again.

small ball in R2 centered at and let denote the area of the almost
elliptical cross section of 1( ) at in the plane, normal to
at Then we should have

( ) =

Z

1( )

( ) =

Z

( ) ( )

So we now have to compute To this end, notice that : 1( )
is bijective and since is a small ball, we should have

2( ) = 2( (
1( ))) = ( ) ·Area( 1( )) = ( ) ·

where ( ) denotes the dilation factor for 0( ) : R2 To compute this
factor, let : R2 be an orthogonal map, then
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( ) = |det ( 0( ) )| =
r

det
³

0( ) [ 0( ) ]
´

=

r

det
³

0( ) [ 0( )]
´

Combining these remarks then gives

( )

2( )
=

1

2( )

Z

( ) ( )

=
1

2( )

Z

( )
2( )

( )
( )

So letting shrink to { } we find
( )

2
( ) =

Z

( )
1

( )
( )

which is again the co-area formula.
As an explicit example in this category, let = R3 = 2 be the unit

sphere in and : 2 be given by ( ) = | | In this case is
the ray through 2 and

( ) =
1

| | [ ( · ˆ) ˆ] = 1

| |
where is orthogonal projection of onto ˆ

2 Since = 2 =
= on ˆ

2 we have

:=

r

det
h

0 ( 0)
i

=

v

u

u

tdet

"

µ

1

| |
¶2

2×2

#

=

µ

1

| |
¶2

So parametrizing by [0 ) and using = in this
case we learn from the co-area formula that
Z

( ) =

Z

2

·
Z

0

1

( )
( )

¸

2( ) =

Z

2

·
Z

0

( ) 2

¸

2( )

which is the usual polar coordinates formula on R3 This same method works
in any dimension to give

Z

R
( ) =

Z

1

·
Z

0

( ) 1

¸

1( )

Lemma 25.5. Suppose that : and : are linear transfor-
mations of finite dimensional vector spaces, then det( ) = det( )

Proof. If dim( ) 6= dim( ) then neither or can be invertible
so that det( ) = det( ) = 0 and the lemma holds. So now suppose
dim( ) = dim( ) = { } =1 be a basis for and { } =1 be a basis for
and let and be defined so that
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= and =

so that
= = = ( )

That is to say the matrix associated to is By a similar computation
the matrix associated to is so that det( ) := det( ) = det( ) =:
det( )
Before starting the formal proof of Theorem 25.3, let us recall the meaning

of the measures that are involved in the theorem. Suppose is a Riemannian
manifold which is di eomorphic to some open subset O of R and let : O
be a di eomorphism. Then given : R we want to define

Z

=

Z

O
( ) ( )

where ( ) = ( 0( ) ) where is a unit cube in R To compute this
volume for each O let : ( ) R be an orthogonal transformation,
then

( ) =
( )

( 0( ) ) = ( 0( ) ) = |det( 0( ))|
Using the basic properties of the determinant we have

( ) =

q

det([ 0( )] 0( ))

=

q

det([ 0( )] 0( )) =
q

det( 0( ) [ 0( )] )

To simplify the linear algebra in the proof of Theorem 25.3 given below it will
be useful to introduce

( 1 ) := det([ 1| 2| | ])

for It should be noted that is well defined modulo a sign and
that

( ) = | ( 0( ) 1
0( ) )| =

q

det ({ 0( ) 0( ) })

where { } =1 is the standard orthonormal basis for R

25.0.1 Formal Proof of Theorem 25.3

The heart of the proof is contained in the following Lemma.

Lemma 25.6. Let = ( ) { } =1 be a collection of
vectors such that nul( 0( )) = for then

( 1 ) = ± 1

( )
( 0( ) 1

0( ) ) ( +1 )

(25.4)
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Proof. Since both sides of Eq. (25.4) are multi-linear in ( 1 2 ) it
su ces to prove Eq. (25.4) under the additional assumption that { } =1 is
an orthonormal basis for nul( 0( )) = ( ) Assuming this we have

( 1 ) = ±
s

det

·

× 0
0 { · } = +1

¸

= ± ( +1 ) (25.5)

Letting := 0( )|( ) we have

[ ( 0( ) 1
0( ) )]

2
= det (( 0( ) 0( ) ))

= det (( ))

= det ( ) = det ( )

= det ( 0( ) 0( ) ) = 2( )

so that
1 = ± 1

( )
( 0( ) 1

0( ) ) (25.6)

Combining Eqs. (25.5) and (25.6) proves Eq. (25.4).
Proof. (Proof of Theorem 25.3.)
Using a partition of unity argument we may suppose that supp( ) is

“small,” i.e. it is enough to prove the assertion on a countable neighborhood
base of So we now assume that is an open subset of R and is
an open neighborhood of R Let 0 := := R = R
and choose a smooth map (a linear map will do) : such that
( )0( 0) : R × = R is invertible. By the implicit function the-
orem, we may shrink the if necessary, so that ( ) : ( )( )
is a di eomorphism. Moreover, by shrinking more, we may assume that
( )( ) is a rectangle in × i.e. ( )( ) = ( ) × ( ) =: ×
so we now have that

( ) : × × R

is a di eomorphism. Let := ( ) 1 : × be the inverse map and
assume that supp( ) is compactly contained in see Figure 25.5 below.
Let = ( ) := 0( ) for = 1 2 + 1 then by

definition of and Lemma 25.6 we have

= | ( 1 )|
=

1

( )
( 0( ) 1

0( ) ) ( +1 ) (25.7)

and
= ( +1 ) (25.8)
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Fig. 25.5. The geometry behind the surface area measure and the proof of the
co-area formula.

Since ( ) = it follows that

= 0( ( )) 0( ) = 0( ( )) for = 1 2

and therefore

( 0( ) 1
0( ) ) = ( 1 ) = (25.9)

Hence if : R is a function, then by the definitions, Eqs. (25.7), (25.8)
and (25.9) and Fubini’s theorem,

Z

=

Z

=

Z

×
( ) ( ( ))

1

( ( ))
×

½

( 0( ( )) 1
0( ( )) )

· ( +1 )

¾

=

Z

×
( ) ( ( ))

1

( ( ))
×

( +1 ) · ( 1 )

=

Z

( )

µ
Z

1
¶

· ( 1 )

=

Z
µ
Z

1
¶

·

568 25 Co-Area Formula in Riemannian Geometry

Corollary 25.7 (Co-Area Formula). Let : be any smooth
map of Riemannian manifolds (not necessarily a submersion), ( ) :=
p

det ( )
:= { : ( ) = 0}

and be the measure on such than is surface measure on ( \ ) :=
\ and ( ) = 0 Then for any measurable function : [0 )

we have
Z

( ) =

Z

( )

·
Z

( ) ( )

¸

( ) (25.10)

which we abbreviate by

( ) ( ) = ( ) ( )

Proof. Let us first observe that ( ) = 0 i is not invertible which
happens i rank( ) dim( ) Hence is the set of critical points of and
: \ ( \ ) is a submersion. By applying Theorem 25.3 to
: \ ( \ ) we find

Z

( ) =

Z

\
( )

=

Z

( \ )

( ) ( )

Z

( \ )

( ) ( )

=

Z

( \ )

( ) ( )

Z

( ) ( )

By Sard’s theorem, ( ( )) = 0 so the the integral over ( \ ) in the
last line may be replaced by an integral over ( \ ) ( ) = ( ) =
which completes the proof.

25.1 Special case of the Co-area formula when X = R

Corollary 25.8. Suppose is a Riemannian manifold and ( )
then

Z

| | =

Z

0

(| | = )

Proof. Referring to Corollary 25.7 with = R = 1 = 1 and =
we have =

p

det ( ) = | | because = · and 1 =
Therefore by Eq. (25.10),

Z

| | =

Z

R
({ = }) =

Z

0

(| | = )
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where is used to denote the Riemann surface measure. (By Sard’s theorem,
{| | = } = { = } { = } is a smooth co-dimension one submanifold of
for almost every This completes the proof.
Second Proof following Maz’ya. Let be a smooth vector field on
and := { : | ( )| } By Sard’s theorem, for almost every
( ) 6= 0 for all

{ = } { = } = {| | = }
For these non-exceptional we have = {| | = } is a smooth co-dimension
one submanifold of Indeed we always have

= = {| | } {| | } {| | } {| | } = {| | = }
The reverse inclusion is not always true since could have a flat spot in which
case {| | } Ã {| | } However for non-exceptional where ( ) 6= 0
for all {| | = } no such flat spots exist and one easily shows {| | } =
{| | } and therefore that = {| | = } as desired.
Let be a smooth vector field on with compact support, then by the

divergence theorem,
Z

· =

Z

·

=

Z

0

·
Z

0

·

Now letting := | | be the outward normal to { } on the boundary
{ = } we have
Z

0

· =

Z

0

Z

1 · =

Z

0

Z

{ }
·

=

Z

0

Z

{ = }
· =

Z

0

Z

{ = }
· | |

Applying this equality to shows
Z

0

· ( ) =

Z

0

Z

{ = }
· ( )

| |
and combining all of these identities the gives

Z

· =

Z

0

Z

{ = }
· | |

+

Z

0

Z

{ = }
· | |

=

Z

0

Z

{| |= }
· | | (25.11)
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Now, formally, we want to take = | | in which case

Z

| | =

Z

0

Z

{| |= }
1 =

Z

0

({| | = })

as desired. This is not quite correct since is not smooth with compact
support. In order to fix this let 0 and choose ( [0 1]) such that

1 as 0 Then set :=
(| |2+ )1 2 in Eq. (25.11) to find

Z | |2
³

| |2 +
´1 2

=

Z

0

Z

{| |= }

| |
³

| |2 +
´1 2

and pass to the limit 0 using the monotone convergence theorem on each
side to conclude

Z

| | =

Z

0

Z

{| |= }
=

Z

0

({| | = })

as desired where again we have used Sard’s theorem in showing for almost
ever

lim
0
1{| |= }

| |
³

| |2 +
´1 2

= 1{| |= } | |

Corollary 25.9. Suppose is a Riemannian manifold, ( ) and
( [0 )) then

Z

| | =

Z

0

"

Z

{| |= }= {| | }

#

Proof. This proof is a consequence of the following identities
Z

| | =

Z Z

0

1 | | =
Z

0

Z

{ }
| |

=

Z

0

Z

0

({| | = and })

=

Z

0

Z

0

Z

{| |= }
1 =

Z

0

Z

{| |= }

as claimed, where Corollary 25.8 in the third equality.
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25.2 Di erential Geometric Version of Co-Area Formula

In this subsection we will remove the superfluous Riemannian geometry used
above and give a more pure form of the Co-area formula. Using this result, it
is possible to recover the results in Theorem 25.3. Recall that absolutely con-
tinuous measures are in one to one correspondence with measurable densities.
So let be the density corresponding to and absolutely continuous measure
on

Theorem 25.10. Suppose that : is a submersion and is
an absolutely continuous positive measure on then is an absolutely
continuous measure on If is described by the density on then
is described by the density ¯ on defined by

(̄ ) =

Z

(— ˜)

where := 1 ({ }) ( ) and ˜ is chosen in ( ) so that
˜ = for all

Proof. First notice that if =
P

=1 then =
P

=1 and

(̄ ) =

Z

(— ˜) =
X

=1

Z

(— ˜) =
X

=1

¯ ( )

Therefore by a partition of unity argument, we may assume without loss of
generality that supp( ) is contained in an open set as described in Theorem
25.2. Using Theorem 25.2, we may find a di eomorphism of the form =
( ) : ( ) × where is a cube in R centered at 0 Let be a
chart for ( ) and be a chart for and : ( ) [0 ) be a measurable
function, then

Z

( )

=

Z

:=

Z

( )×
1

=

Z

( )×

Now the density for is (̃ ) := ( 1 ) so
Z

( )×
=

Z

( )×
( 1 ( ))

=

Z

( )

Z

( 1 1 )

On the other hand,
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Z

( 1 —) =
Z

( 1 1
( ·) ) = (̄ )

where the last equality follows from the identity, 1 = Putting the
last three displayed equations together gives

Z

( )

=

Z

( )

(̄ )

from which we conclude that ¯ is indeed the density associated to

Remark 25.11. If is a finite measure, then is a finite measure and there-
fore ¯ is an integrable density. On the other hand if is an infinite measure, it
is possible that ¯ is identically infinite. For example if is Lebesgue measure
on R2 and : R2 R is projection onto the first factor, then = 1

showing ¯ is the infinite density.
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Application of the Co-Area Formulas

26.1 Existence of Densities for Push Forwards of
Measures

Theorem 26.1. Let and be Riemannian manifolds, and be the
Riemann volume measures on and respectively, = for some
measurable function : [0 ) and : be smooth map. Then

¿ i ( ) = 0 where

:= { : ( ) = 0} = {Critical points of }
and ( ) :=

p

det ( ) as above. Moreover if ( ) = 0 then

( )
( ) =

"

Z

\

( )

( )
( )

#

Proof. By Sard’s theorem ( ( )) = 0 so if ¿ then

0 = ( ( )) = ( 1( ( ))) ( )

which shows ( ) = 0
Conversely if ( ) = 0 then 0 — a.e. on the set { 0} Hence if
:= 1 0 then ( ) ( ) = ( ) for — a.e. Using this function
in Eq. (25.10) of Corollary 25.9,
Z

( ) =

Z

( ) =

Z

( ) =

Z

( )

=

Z

( )

·
Z

( ) ( )

¸

( )

for all non-negative measurable functions on From this we conclude

( ) =

·
Z

( ) ( )

¸

( )
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which completes the proof of the theorem.
Let us work out some examples.

Example 26.2. In these examples, let = R2 = 2 = R :
be a smooth map and be the critical point set for

1. Suppose ( ) = 3 then = ( ) 3 which is clearly not absolutely
continuous. Notice that = in this example.

2. Suppose ( ) = then ( )( ) =
R

R ( ) For example if

( ) =
1

2

1
2 (

2+ 2) (26.1)

we would find
( )

( ) =
1

2

1
2

2

3. Again let ( ) be as in Eq. (26.1), but now take ( ) = 3 In this
case
Z

R
( ) =

Z

( 3)
1

2

1
2 (

2+ 2) =

Z

( 3)
1

2

1
2

2

=

Z

( )
1

2

1
2

2 3 1

3
2 3

In this case
( )

( ) =
1

3 2 2 3

1
2

2 3

Notice the density is smooth away from the origin where it blows up.
4. Let ( ) be as in Eq. (26.1) and ( ) = We will make the change
of variables = and = on \ { = 0} which satisfies = and
= and

=

¯

¯

¯

¯

det

·

0 1

¸
¯

¯

¯

¯

= | | = | |

So
Z

R
( ) =

Z

( )
1

2

1
2 (

2+ 2) =

Z

( )
1

2

1
2 (

2 2+ 2)

| |
Therefore,

( )
( ) =

Z

R

1

2

1
2 (

2 2+ 2)

| |
Again notice that = { = 0} ( ) = {0} (0) = and is smooth
away from 0
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5. Let ( ) be as in Eq. (26.1) and ( ) = 2 + 2 Since = 2( )
= {0} and ( ) = {0} By computing in polar coordinates we find
Z

R
( ) =

Z

( 2 + 2)
1

2

1
2 (

2+ 2)

=

Z

0 | |
( 2)

1

2

1
2

2

=

Z

0

( 2)
1
2

2

Letting = 2 in the last integral shows
Z

R
( ) =

1

2

Z

0

( )
1
2

so that
( )

( ) =
1

2
1 0

1
2

6. Let ( ) be as in Eq. (26.1) and let ( ) = ( ) for some function
Then

= ( ) = ( ) i ( ) = ln

In this case, = | | = | | and =
p

2 + 2 is the element of
arc — length on := { = ln } Since = + and = 0
when restricted to

=

and hence

=

s

(1 +

µ ¶2

=
1

| |
q

( )2 + ( )2

=
1

| | | | =
1

| | =
1

| |
So by the co-area formula we find

( )
=

1

2

Z

R

1

| |
1
2 (

2+ 2)

¯

¯

¯

¯

= ( )

where ( ) is the solution to ( ( )) =
To be more concrete, suppose ( ) = 1

4 (
2) Then ( ) = ln

implies
( ) = 4 ln + 2

and = 1 4 Therefore,
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( )
=

1

2

Z

R

1

1 4

1
2 (

2+ 2)

¯

¯

¯

¯

= ( )

=
2
Z

R

1
2 (

2+(4 ln + 2)2)

=
2
Z

R

1
2 (

4+(1+8 ln ) 2+16 ln2 )

=
2
Z

R

4 2 1
2 (

4+ 2+16 ln2 )

=
2 8 ln Z

R

4 2 1
2(

4+ 2)

Once upon a time I had claimed that ( ) is smooth near = 0 I am
not so sure about this at this point. In this example we have

Z

=

Z

=

Z

| | =

Z

|( 2 1 4)|

=
1

2

Z

¯

¯

2 4 + 1 16
¯

¯

2 1
4 (

2) 1
2 (

2+ 2)

which is finite i 2

26.2 Sobolev Inequalities and Isoperimetric Inequalities

Lemma 26.3. Suppose : [0 ) [0 ) is a decreasing function and
[1 ) then

Z

0

( )

µ
Z

0

( )

¶

(26.2)

Proof. Because is decreasing, ( ) ( ) for all and hence

( ) =

Z

0

( )

Z

0

( )

Therefore,
Z

0

( ) =

Z

0

( ) 1 1( )

Z

0

( )

µ
Z

0

( )

¶ 1

So to finish the proof is su ces to show

Z

0

( )

µ
Z

0

( )

¶ 1

=

µ
Z

0

( )

¶

(26.3)
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To verify Eq. (26.3), let ( ) = 1 ( ) and ( ) =
R

0
( )

for any Then is absolutely continuous and ˙ ( ) = ( ) for a.e.
Therefore,

Z

0

( )

µ
Z

0

( )

¶ 1

=

Z

0

( ) 1( ) =

Z

0

˙ ( ) 1( )

=

Z

0

( ) = ( ) =

µ
Z

0

1 ( )

¶

Now use the monotone convergence theorem to let to conclude Eq. (
26.3) holds.

Lemma 26.4. Let ( M ) be a measure space and : C be a mea-
surable function. Then for 1

k k =

Z

| | =

Z

0

(| | ) :=

Z

0

(| | ) 1 (26.4)

and

k k
Z

0

(| | )1 (26.5)

Proof. By the fundamental theorem of calculus,
Z

| | =

Z

0

1

Z

1| | =

Z

0

(| | )

proving Eq. (26.4). Equation (26.5) follows from Eq. (26.4) and Eq. (26.2)
with ( ) := (| | )

1

Theorem 26.5. Let ( ) be a Riemannian manifold, = be the Rie-
mann volume measure on be any radon measure on and

0 := sup

½

( )1

( )
: ¯ @@ and is smooth

¾

(26.6)

Then 0 is the best constant in the inequality

k k ( ) k| |k 1( ) for all ( ) (26.7)

Proof. Let be the area measure on co-dimension one sub-manifolds of
Given ( ) by Eq. (26.5) we have

k k ( )

Z

0

(| | )1 =

Z

0

( )1 (26.8)
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where := {| | } Notice that is a relatively compact open subset
of for all (0 ) and by Sard’s theorem, = {| | = } and is
smooth for a.e. (0 ) For the non-exceptional we have from Eq. (26.6)
that

( )
1

( ) = (| | = )

and using this in Eq. (26.8) implies

k k ( ) 0

Z

0

(| | = ) = 0

Z

| |

where we have used the Co-area formula in the last equality. This shows that
the best constant in Eq. (26.7) is less than or equal to 0 0

To prove the reverse inequality, let ¯ @@ with smooth boundary.
Formally we would like to take = 1 and we expect that | | =
Assuming this we would learn form Eq. (26.7) that

( )1 ( )

Since this holds for all pre-compact open sets with smooth boundary, it follows
that 0

To make this last argument rigorous, we must regularize the function 1
To do this let denote the outward normal field to and then extend
to be a non-zero vector field in a neighborhood of By compactness of
there exists 0 such that ( ) exists for | | By shrinking more if
necessary, one shows that

( ) × = ( )× ( )

is a di emorphism onto some “tubular neighborhood” of Let =
( ) : × be the inverse map. Given (0 ) choose =

(R [0 1]) such that (1) = 1 and ([ )) = {0} and define

( ) :=
( ( )) if and ( ) 0
1 if
0 otherwise.

Then ( ) 1 ¯ as 0 (I think we may need to assume that
is a smooth measure here or at least that does not charge hypersurface

in ) So by the dominated convergence theorem,
Z

| |
Z

|1 ¯ | = ( ¯) = ( )

Also
( ) = 0 ( ( )) ( )

so on one hand
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Z

| ( )| =

Z

| 0 ( ( ))| | ( )| ( )

Z

0( ( )) ( ) = ( )

since | ( )| = 1 for and 0
0 as 0 To prove this rigorously

we invoke the co-area formula again, to find

Z

| | =

Z

0

(| | = ) =

Z 1

0

¡

= 1( )
¢

Now make the change of variables, = ( ) for 0 to find

Z

| | =

Z

0

( = ) | 0 ( )| ( = 0) = ( )
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27

More Point Set Topology

27.1 Product Spaces

Let {( )} be a collection of topological spaces (we assume 6= )
and let =

Q

Recall that is a function

:
a

such that := ( ) for all An element is called a
choice function and the axiom of choice states that 6= provided that

6= for each If each above is the same set we will denote
=
Q

by So is a function from to

Notation 27.1 For let : be the canonical projection
map, ( ) = The product topology = is the smallest topology
on such that each projection is continuous. Explicitly, is the topology
generated by

E = { 1( ) : } (27.1)

A “basic” open set in this topology is of the form

= { : ( ) for } (27.2)

where is a finite subset of and for all We will sometimes
write above as

=
Y

×
Y

= × \

Proposition 27.2. Suppose is a topological space and : is a
map. Then is continuous i : is continuous for all
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Proof. If is continuous then is the composition of two continuous
functions and hence is continuous. Conversely if is continuous for all

the ( ) 1( ) = 1( 1( )) is open in for all and
That is to say, 1(E) consists of open sets, and therefore is

continuous since E is a sub-basis for the product topology.
Proposition 27.3. Suppose that ( ) is a topological space and { }
is a sequence. Then in the product topology of i ( ) ( )
for all

Proof. Since is continuous, if then ( ) = ( ) ( ) =
( ) for all Conversely, ( ) ( ) for all i ( ) ( )
for all Therefore if = 1( ) E and then ( ) and
( ) a.a. and hence a.a.. This shows that as

Proposition 27.4. Let ( ) be topological spaces and be the product
space with the product topology.

1. If is Hausdor for all then so is
2. If each is connected for all then so is

Proof.

1. Let be distinct points. Then there exists such that
( ) = 6= = ( ) Since is Hausdor , there exists disjoint

open sets such ( ) and ( ) Then 1( ) and
1( ) are disjoint open sets in containing and respectively.

2. Let us begin with the case of two factors, namely assume that and
are connected topological spaces, then we will show that × is

connected as well. To do this let = ( 0 0) × and denote the
connected component of Since { 0}× is homeomorphic to { 0}×
is connected in × and therefore { 0}× i.e. ( 0 ) for all

A similar argument now shows that × { } for any
that is to × = By induction the theorem holds whenever is a
finite set.
For the general case, again choose a point = and let =
be the connected component of in Recall that is closed and
therefore if is a proper subset of then \ is a non-empty
open set. By the definition of the product topology, this would imply that

\ contains an open set of the form

:= 1( ) = × \

where and for all We will now show that no such
can exist and hence = i.e. is connected.

Define : by ( ) = where
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=

½

if
if

If ( ) = = ( ) and if \ then ( ) =
so that in every case : is continuous and therefore is
continuous.
Since is a product of a finite number of connected spaces it is con-
nected by step 1. above. Hence so is the continuous image, ( ) =

×{ } \ of Now ( ) and ( ) is connected implies
that ( ) On the other hand one easily sees that

6= ( )

contradicting the assumption that

27.2 Tychono ’s Theorem

The main theorem of this subsection is that the product of compact spaces is
compact. Before going to the general case an arbitrary number of factors let
us start with only two factors.

Proposition 27.5. Suppose that and are non-empty compact topological
spaces, then × is compact in the product topology.

Proof. Let U be an open cover of × Then for each ( ) ×
there exist U such that ( ) By definition of the product topology,
there also exist and such that × Therefore
V := { × : ( ) × } is also an open cover of × We will now
show that V has a finite sub-cover, say V0 V Assuming this is proved
for the moment, this implies that U also has a finite subcover because each

V0 is contained in some U So to complete the proof it su ces to
show every cover V of the form V = { × : } where and

has a finite subcover.
Given let : × be the map ( ) = ( ) and notice

that is continuous since ( ) = and ( ) = are continuous
maps. From this we conclude that { } × = ( ) is compact. Similarly, it
follows that × { } is compact for all
Since V is a cover of { } × there exist such that { } ×

S

( × ) without loss of generality we may assume that is chosen so

that for all Let
T

and notice that

[

( × )
[

( × ) = × (27.3)
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Fig. 27.1. Constructing the open set

see Figure 27.1 below.
Since { } is now an open cover of and is compact, there exists

such that = The finite subcollection, V0 := { × :
} of V is the desired finite subcover. Indeed using Eq. (27.3),
V0 = ( × ) ( × ) = ×

The results of Exercises 2.108 and 7.80 prove Tychono ’s Theorem for a
countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 27.6 (Tychono ’s Theorem). Let { } be a collection of
non-empty compact spaces. Then := =

Q

is compact in the prod-

uct space topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom
of choice, see Theorem B.7 of Appendix B below. For let denote
the projection map from to Suppose that F is a family of closed
subsets of which has the finite intersection property, see Definition 2.31.
By Proposition 2.32 the proof will be complete if we can show F 6=
The first step is to apply Zorn’s lemma to construct a maximal collection

F0 of (not necessarily closed) subsets of with the finite intersection property.
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To do this, let :=
©G 2 : F Gª equipped with the partial order, G1

G2 if G1 G2 If is a linearly ordered subset of then G:= is an upper
bound for which still has the finite intersection property as the reader should
check. So by Zorn’s lemma, has a maximal element F0
The maximal F0 has the following properties.

1. If { } =1 F0 then =1 F0 as well. Indeed, if we let (F0) denote
the collection of all finite intersections of elements from F0 then (F0)
has the finite intersection property and contains F0 Since F0 is maximal,
this implies (F0) = F0

2. If and 6= for all F0 then F0 For if not
F0 { } would still satisfy the finite intersection property and would
properly contain F0 this would violate the maximallity of F0

3. For each (F0) := { ( ) : F0} has the finite intersec-
tion property. Indeed, if { } =1 F0 then =1 ( ) ( =1 ) 6=

Since is compact, item 3. above along with Proposition 2.32 implies
F0 ( ) 6= Since this true for each using the axiom of choice,

there exists such that = ( ) F0 ( ) for all The
proof will be completed by showing F , hence F is not empty as desired.
Since

©

¯ : F0
ª F it su ces to show :=

©

¯ : F0
ª

For this suppose that is an open neighborhood of in By the definition
of the product topology, there exists and open sets for all

such that 1( ) Since F0 ( ) and
for all it follows that ( ) 6= for all F0 and all
and this implies 1 ( ) 6= for all F0 and all By item 2.
above we concluded that 1 ( ) F0 for all and by then by item 1.,

1 ( ) F0 In particular 6= ¡

1 ( )
¢

for all
F0 which shows ¯ for each F0

27.3 Baire Category Theorem

Definition 27.7. Let ( ) be a topological space. A set is said to be
nowhere dense if

¡

¯
¢

= i.e. ¯ has empty interior.

Notice that is nowhere dense is equivalent to

=
¡¡

¯
¢ ¢

=
¡

¯
¢

= ( )

That is to say is nowhere dense i has dense interior.

Theorem 27.8 (Baire Category Theorem). Let ( ) be a complete met-
ric space.
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1. If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

2. If { } =1 is a sequence of nowhere dense sets, then
S

=1
S

=1
¯ & and in particular 6= S =1

Proof. 1) We must shows that ¯ = which is equivalent to showing
that 6= for all non-empty open sets Since 1 is dense,

1 6= and hence there exists 1 and 1 0 such that

( 1 1) 1

Since 2 is dense, ( 1 1) 2 6= and hence there exists 2 and 2 0
such that

( 2 2) ( 1 1) 2

Continuing this way inductively, we may choose { and 0} =1 such
that

( ) ( 1 1)

Furthermore we can clearly do this construction in such a way that 0 as
Hence { } =1 is Cauchy sequence and = lim exists in since

is complete. Since ( ) is closed, ( ) so that
for all and hence Moreover, ( 1 1) 1 implies
and hence showing 6=
2) The second assertion is equivalently to showing

6=
Ã

[

=1

¯

!

=
\

=1

¡

¯
¢

=
\

=1

( )

As we have observed, is nowhere dense is equivalent to ( ) being a dense
open set, hence by part 1),

T

=1 ( ) is dense in and hence not empty.
Here is another version of the Baire Category theorem when is a locally

compact Hausdor space.

Proposition 27.9. Let be a locally compact Hausdor space.

1. If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

2. If { } =1 is a sequence of nowhere dense sets, then 6= S =1

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if su ces to show 6= for all open sets

Since 1 is dense, there exists 1 1 and by Proposition 3.19
there exists 1 such that 1 1

¯
1 1 with ¯1 being compact.

Similarly, there exists a non-empty open set 2 such that 2
¯
2 1 2
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Working inductively, we may find non-empty open sets { } =1 such that
¯

1 Since =1
¯ = ¯ 6= for all the finite intersection

characterization of ¯1 being compact implies that

6= =1
¯

Definition 27.10. A subset is meager or of the first category if

=
S

=1
where each is nowhere dense. And a set is called

residual if is meager.

Remarks 27.11 The reader should think of meager as being the topological
analogue of sets of measure 0 and residual as being the topological analogue of
sets of full measure.

1. is residual i contains a countable intersection of dense open sets.
Indeed if is a residual set, then there exists nowhere dense sets { }
such that

= =1 =1
¯

Taking complements of this equation shows that

=1
¯

i.e. contains a set of the form =1 with each (= ¯ ) being an
open dense subset of
Conversely, if =1 with each being an open dense subset of
then =1 and hence = =1 where each = is
a nowhere dense subset of

2. A countable union of meager sets is meager and any subset of a meager
set is meager.

3. A countable intersection of residual sets is residual.

Remarks 27.12 The Baire Category Theorems may now be stated as follows.
If is a complete metric space or is a locally compact Hausdor space,
then

Remark 27.13. 1. all residual sets are dense in and
2. is not meager.
It should also be remarked that incomplete metric spaces may be meager.

For example, let ([0 1]) be the subspace of polynomial functions on
[0 1] equipped with the supremum norm. Then = =1 where
denotes the subspace of polynomials of degree less than or equal to You
are asked to show in Exercise 27.20 below that is nowhere dense for all
Hence is meager and the empty set is residual in

Here is an application of Theorem 27.8.
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Theorem 27.14. Let N ([0 1] R) be the set of nowhere di erentiable
functions. (Here a function is said to be di erentiable at 0 if 0(0) :=
lim 0

( ) (0) exists and at 1 if 0(1) := lim 0
(1) ( )
1 exists.) Then N is

a residual set so the “generic” continuous functions is nowhere di erentiable.

Proof. If N then 0( 0) exists for some 0 [0 1] and by the
definition of the derivative and compactness of [0 1] there exists N such
that | ( ) ( 0)| | 0| [0 1] Thus if we define

:= { ([0 1]) : 0 [0 1] 3 | ( ) ( 0)| | 0| [0 1]}

then we have just shown N := =1 So to finish the proof it su ces
to show (for each ) is a closed subset of ([0 1] R) with empty interior.
1) To prove is closed, let { } =1 be a sequence of functions

such that there exists ([0 1] R) such that k k 0 as
Since there exists [0 1] such that

| ( ) ( )| | | [0 1] (27.4)

Since [0 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume 0 = lim [0 1] exists. Passing to the limit
in Eq. (27.4), making use of the uniform convergence of to show
lim ( ) = ( 0) implies

| ( ) ( 0)| | 0| [0 1]

and therefore that This shows is a closed subset of ([0 1] R)
2) To finish the proof, we will show 0 = by showing for each

and 0 given, there exists ([0 1] R) \ such that k k We
now construct
Since [0 1] is compact and is continuous there exists N such that

| ( ) ( )| 2 whenever | | 1 Let denote the piecewise
linear function on [0 1] such that ( ) = ( ) for = 0 1 and
00( ) = 0 for := { : = 0 1 } Then it is easily seen that
k k 2 and for ( +1) that

| 0( )| = | ( +1) ( )|
1 2

We now make “rougher” by adding a small wiggly function which we define
as follows. Let N be chosen so that 4 2 and define uniquely
by ( ) = ( 1) 2 for = 0 1 and 00( ) = 0 for Then
k k and | 0( )| = 4 2 for See Figure 27.2 below.
Finally define := + Then

k k k k + k k 2 + 2 =
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Fig. 27.2. Constgructing a rough approximation, , to a continuous function

and
| 0( )| | 0( )| | 0 ( )| 2 =

It now follows from this last equation and the mean value theorem that for
any 0 [0 1]

¯

¯

¯

¯

( ) ( 0)

0

¯

¯

¯

¯

for all [0 1] su ciently close to 0 This shows and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 27.9.

Proposition 27.15. Suppose that : R R is a function such that 0( )
exists for all R Let

:= 0

(

R : sup
| |

| 0( + )|
)

Then is a dense open set. (It is not true that = R in general, see Example
20.35 above.)

Proof. It is easily seen from the definition of that is open. Let R
be an open subset of R For N let

:=

½

: | ( ) ( )| | | when | | 1
¾

=
\

:| | 1

{ : | ( + ) ( )| | |}

which is a closed subset of R since is continuous. Moreover, if and
= | 0( )| then

592 27 More Point Set Topology

| ( ) ( )| = | 0( ) ( ) + ( )|
( + 1) | |

for close to (Here ( ) denotes a function such that lim (
) ( ) = 0 ) In particular, this shows that for all su ciently
large. Therefore = =1 and since is not meager by the Baire category
Theorem in Proposition 27.9, some has non-empty interior. That is there
exists 0 and 0 such that

:= ( 0 0 + )

For we have | ( + ) ( )| | | provided that | | 1 and
therefore that | 0( )| for Therefore 0 showing is
dense.

Remark 27.16. This proposition generalizes to functions : R R in an
obvious way.

For our next application of Theorem 27.8, let := (( 1 1)) denote
the set of smooth functions on ( 1 1) such that and all of its derivatives
are bounded. In the metric

( ) :=
X

=0

2

°

°

( ) ( )
°

°

1 +
°

°
( ) ( )

°

°

for

becomes a complete metric space.

Theorem 27.17. Given an increasing sequence of positive numbers { } =1

the set

F :=
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

is dense in In particular, there is a dense set of such that the power
series expansion of at 0 has zero radius of convergence.

Proof. Step 1. Let N Choose (( 1 1)) such that k k 2
while 0(0) = 2 and define

( ) :=

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

Then for

( )( ) =

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

( )( ) = 0( ) ( )
(0) = 2 and ( ) satisfies
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°

°

°

( )
°

°

°

2

( 1 )!
2 for

Consequently,

( 0) =
X

=0

2

°

°

°

( )
°

°

°

1 +
°

°

°

( )
°

°

°

1
X

=0

2 2 +
X

=

2 · 1 2
¡

2 + 2
¢

= 4 · 2

Thus we have constructed such that lim ( 0) = 0 while
( )
(0) = 2 for all
Step 2. The set

:=
n

:
¯

¯

¯

( )(0)
¯

¯

¯

o

is a dense open subset of The fact that is open is clear. To see that is
dense, let be given and define := + where := ( ( )(0))
Then

¯

¯

¯

( )(0)
¯

¯

¯
=
¯

¯

¯

( )(0)
¯

¯

¯
+
¯

¯

¯

( )(0)
¯

¯

¯
2 for all

Therefore, for all and since

( ) = ( 0) 0 as

it follows that ¯

Step 3. By the Baire Category theorem, is a dense subset of This
completes the proof of the first assertion since

F =
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

= =1

½

:

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1 for some
¾

=1

Step 4. Take = ( !)2 and recall that the power series expansion for
near 0 is given by

P

=0
(0)
! This series can not converge for any F

and any 6= 0 because

lim sup

¯

¯

¯

¯

(0)

!

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)2
!

¯

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)
2

¯

¯

¯

¯

¯

· lim ! | | =

where we have used lim ! | | = and lim sup
¯

¯

¯

(0)

( !)2

¯

¯

¯
1
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Remark 27.18. Given a sequence of real number { } =0 there always exists
such that ( )(0) = To construct such a function let

( 1 1) be a function such that = 1 in a neighborhood of 0 and (0 1)
be chosen so that 0 as and

P

=0 | | The desired
function can then be defined by

( ) =
X

=0
!

( ) =:
X

=0

( ) (27.5)

The fact that is well defined and continuous follows from the estimate:

| ( )| =
¯

¯

¯

!
( )

¯

¯

¯

k k
!
| |

and the assumption that
P

=0 | | The estimate

| 0 ( )| =
¯

¯

¯

¯( 1)!
1 ( ) +

!
0( )

¯

¯

¯

¯

k k
( 1)!

| | 1 +
k 0k

!
| |

(k k + k 0k ) | |

and the assumption that
P

=0 | | shows 1( 1 1) and
0( ) =

P

=0
0 ( ) Similar arguments show ( 1 1) and ( )( ) =

P

=0
( )
( ) for all and N This completes the proof since, using

( ) = 1 for in a neighborhood of 0 ( )
(0) = and hence

( )(0) =
X

=0

( )(0) =

27.4 Exercises

Exercise 27.19. Folland 5.27. Hint: Consider the generalized cantor sets
discussed on p. 39 of Folland.

Exercise 27.20. Let ( k·k) be an infinite dimensional normed space and
be a finite dimensional subspace. Show that is nowhere dense.

Exercise 27.21. Now suppose that ( k·k) is an infinite dimensional Banach
space. Show that can not have a countable algebraic basis. More explicitly,
there is no countable subset such that every element may be
written as a finite linear combination of elements from Hint: make use of
Exercise 27.20 and the Baire category theorem.



28

Three Fundamental Principles of Banach
Spaces

28.1 The Open Mapping Theorem

Theorem 28.1 (Open Mapping Theorem). Let be Banach spaces,
( ). If is surjective then is an open mapping, i.e. ( ) is open

in for all open subsets

Proof. For all 0 let = { : k k } =
{ : k k } and = ( ) The proof will be carried out
by proving the following three assertions.

1. There exists 0 such that for all 0
2. For the same 0 i.e. we may remove the closure in assertion
1.

3. The last assertion implies is an open mapping.

1. Since =
S

1
, the Baire category Theorem 27.8 implies there exists

such that
0 6= , i.e. there exists and 0 such that ( )

Suppose k 0k then and + 0 are in ( ) hence there
exists 0 such that k 0 ( + 0)k and k k may be made as
small as we please, which we abbreviate as follows

k 0 ( + 0)k 0 and k k 0

Hence by the triangle inequality,

k ( 0 ) 0k = k 0 ( + 0) ( )k
k 0 ( + 0)k+ k k 0

with 0
2 This shows that 0

2 which implies (0 ) 2

Since the map : given by ( ) = 2 is a homeomorphism,
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( 2 ) = and ( (0 )) = (0 2 ) it follows that
where 2 0
2. Let be as in assertion 1., and 1 (k k 1) Choose

{ } =2 (0 ) such that
P

=1 1 Since
1 1 =

¡

1

¢

by assertion 1. there exists 1 1
such that k 1k 2 (Notice that

k 1k can be made as small as we please.) Similarly, since 1

2
¯

2 =
¡

2

¢

there exists 2 2
such that k 1 2k

3 Continuing this way inductively, there exists such that

k
X

=1

k +1 for all N (28.1)

Since
P

=1
k k P

=1
1

P

=1
exists and k k 1 i.e. 1

Passing to the limit in Eq. (28.1) shows, k k = 0 and hence ( 1 ) =

1 Therefore we have shown 1 The same scaling argument as above
then shows for all 0
3. If and = we must show that contains a

ball ( ) = + for some 0 Now ( ) = +
i = ( ) Since is a neighborhood of 0
there exists 0 such that ( ) and hence by assertion 2.,

( ) and therefore ( ) with :=

Corollary 28.2. If are Banach spaces and ( ) is invertible
(i.e. a bijective linear transformation) then the inverse map, 1, is bounded,
i.e. 1 ( ) (Note that 1 is automatically linear.)

Theorem 28.3 (Closed Graph Theorem). Let and be Banach space
: linear is continuous i is closed i.e. ( ) × is closed.

Proof. If is continuous and ( ) ( ) × as then
= which implies ( ) = ( ) ( ).

Conversely suppose is closed and let ( ) := ( ) The map 2 : ×
is continuous and 1| ( ) : ( ) is continuous bijection which

implies 1| 1
( ) is bounded by the open mapping Theorem 28.1. Therefore

= 2 1| 1
( ) is bounded, being the composition of bounded operators

sincethe following diagram commutes

( )
% & 2

As an application we have the following proposition.
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Proposition 28.4. Let be a Hilbert space. Suppose that : is a
linear (not necessarily bounded) map such that there exists : such
that

h i = h i
Then is bounded.

Proof. It su ces to show is closed. To prove this suppose that
such that ( ) ( ) × . Then for any

h i = h i h i = h i as
On the other hand lim h i = h i as well and therefore h i =
h i for all This shows that = and proves that is closed.
Here is another example.

Example 28.5. Suppose thatM 2([0 1] ) is a closed subspace such that
each element of M has a representative in ([0 1]) We will abuse notation
and simply writeM ([0 1]) Then

1. There exists (0 ) such that k k k k 2 for all M
2. For all [0 1] there exists M such that

( ) = h i for all M
Moreover we have k k

3. The subspaceM is finite dimensional and dim(M) 2

Proof. 1) I will give a two proofs of part 1. Each proof requires that we
first show that (M k·k ) is a complete space. To prove this it su ces to show
M is a closed subspace of ([0 1]) So let { } M and ([0 1]) such
that k k 0 as Then k k 2 k k 0 as

and sinceM is closed in 2([0 1]) 2 lim = M By
passing to a subsequence if necessary we know that ( ) = lim ( ) =
( ) for - a.e. So = M
i)Let : (M k · k ) (M k · k2) be the identity map. Then is bounded

and bijective. By the open mapping theorem, = 1 is bounded as well.
Hence there exists such that k k = k ( )k k k2 for all M
ii) Let : (M k · k2) (M k · k ) be the identity map. We will shows

that is a closed operator and hence bounded by the closed graph theorem.
Suppose that M such that in 2 and = ( ) in ([0 1])
Then as in the first paragraph, we conclude that = = ( ) a.e. showing
is closed. Now finish as in last line of proof i).
2) For [0 1] let : M C be the evaluation map ( ) = ( )

Then
| ( )| | ( )| k k k k 2

which shows that M Hence there exists a unique element M such
that

598 28 Three Fundamental Principles of Banach Spaces

( ) = ( ) = h i for all M
Moreover k k 2 = k kM
3) Let { } =1 be an

2 — orthonormal subset ofM Then

2 k k2M = k k2 2
X

=1

|h i|2 =
X

=1

| ( )|2

and integrating this equation over [0 1] implies that

2
X

=1

Z 1

0

| ( )|2 =
X

=1

1 =

which shows that 2 Hence dim(M) 2

Remark 28.6. Keeping the notation in Example 28.5, ( ) = ( ) for all
[0 1] Then

( ) = ( ) =

Z 1

0

( ) ( ) for all M

The function is called the reproducing kernel forM
The above example generalizes as follows.

Proposition 28.7. Suppose that ( M ) is a finite measure space,
[1 ) and is a closed subspace of ( ) such that ( ) ( )
Then dim( )

Proof. With out loss of generality we may assume that ( ) = 1 As
in Example 28.5, we shows that is a closed subspace of ( ) and hence
by the open mapping theorem, there exists a constant such that
k k k k for all Now if 1 2 then

k k k k k k2

and if (2 ) then k k k k22 k k 2 or equivalently,

k k k k22 k k1 2 k k22
³

k k
´1 2

from which we learn that k k 1 2 k k2 and therefore that k k
1 2 k k2 so that in any case there exists a constant such that

k k k k2
Let { } =1 be an orthonormal subset of and =

P

=1 with
C then
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°

°

°

°

°

X

=1

°

°

°

°

°

2

2
X

=1

| |2 2 | |2

where | |2 :=P =1 | |2 For each C there is an exception set such
that for

¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

2

2 | |2

Let D := (Q+ Q) and = D Then ( ) = 0 and for
¯

¯

¯

P

=1 ( )
¯

¯

¯

2 | |2 for all D By continuity it then follows for

that
¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

2

2 | |2 for all C

Taking = ( ) in this inequality implies that

¯

¯

¯

¯

¯

X

=1

| ( )|2
¯

¯

¯

¯

¯

2

2
X

=1

| ( )|2 for all

and therefore that

X

=1

| ( )|2 2 for all

Integrating this equation over then implies that 2 i.e. dim( ) 2

Theorem 28.8 (Uniform Boundedness Principle). Let and be a
normed vector spaces, A ( ) be a collection of bounded linear operators
from to

= A = { : sup
A
k k } and

= A = = { : sup
A
k k = } (28.2)

1. If sup
A
k k then =

2. If is not meager, then sup
A
k k

3. If is a Banach space, is not meager i sup
A
k k In particular,

if sup
A
k k for all then sup

A
k k
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4. If is a Banach space, then sup
A
k k = i is residual. In particular

if sup
A
k k = then sup

A
k k = for in a dense subset of

Proof. 1. If := sup
A
k k then sup

A
k k k k for all

showing =
2. For each N let be the closed sets given by

= { : sup
A
k k } =

\

A
{ : k k }

Then = =1 which is assumed to be non-meager and hence there exists
an N such that has non-empty interior. Let ( ) be a ball such that
( ) Then for with k k = we know ( ) so

that = ( ) and hence for any A
k k k k+ k ( )k + = 2

Hence it follows that k k 2 for all A i.e. sup
A
k k 2

3. If is a Banach space, = is not meager by the Baire Category
Theorem 27.8. So item 3. follows from items 1. and 2 and the fact that =
i sup

A
k k for all

4. Item 3. is equivalent to is meager i sup
A
k k = Since =

is residual i is meager, so is residual i sup
A
k k =

Remarks 28.9 Let be the unit sphere in ( ) = for
and A
1. The assertion sup

A
k k for all implies sup

A
k k may

be interpreted as follows. If sup A k ( )k for all then
sup
A
k k where k k := sup k ( )k = k k

2. If dim( ) we may give a simple proof of this assertion. Indeed
if { } =1 is a basis for there is a constant 0 such that
°

°

°

P

=1

°

°

°

P

=1 | | and so the assumption sup A k ( )k
implies

sup
A
k k = sup

A
sup
6=0

°

°

°

P

=1

°

°

°

°

°

°

P

=1

°

°

°

sup
A
sup
6=0

P

=1 | | k k
P

=1 | |
1 sup

A
sup k k = 1 sup sup

A
k k

Notice that we have used the linearity of each A in a crucial way.
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3. If we drop the linearity assumption, so that ( ) for all A
— some index set, then it is no longer true that sup A k ( )k
for all then sup

A
k k The reader is invited to construct a

counter example when = R2 and = R by finding a sequence { } =1

of continuous functions on 1 such that lim ( ) = 0 for all 1

while lim k k ( 1) =
4. The assumption that is a Banach space in item 3.of Theorem 28.8 can
not be dropped. For example, let ([0 1]) be the polynomial functions
on [0 1] equipped with the uniform norm k·k and for (0 1] let ( ) :=
( ( ) (0)) for all Then lim 0 ( ) = |0 ( ) and therefore
sup (0 1] | ( )| for all If the conclusion of Theorem 28.8
(item 3.) were true we would have := sup (0 1] k k This would
then imply

¯

¯

¯

¯

( ) (0)
¯

¯

¯

¯

k k for all and (0 1]

Letting 0 in this equation gives, | ˙ (0)| k k for all But
taking ( ) = in this inequality shows =

Example 28.10. Suppose that { } =1 C is a sequence of numbers such that

lim
X

=1

exists in C for all 1

Then

Proof. Let
¡

1
¢

be given by ( ) =
P

=1 and set :=
max {| | : = 1 } Then

| ( )| k k 1

and by taking = with such = | | we learn that k k =
Now by assumption, lim ( ) exists for all 1 and in particular,

sup | ( )| for all 1

So by the Theorem 28.8,

sup k k = sup = sup {| | : = 1 2 3 }
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28.1.1 Applications to Fourier Series

Let = 1 be the unit circle in 1 and denote the normalized arc length
measure on So if : [0 ) is measurable, then

Z

( ) :=

Z

:=
1

2

Z

( )

Also let ( ) = for all Z Recall that { } Z is an orthonormal basis
for 2( ) For N let

( ) :=
X

=

h i ( ) =
X

=

h i =
X

=

µ
Z

( ) ¯

¶

=

Z

( )

Ã

X

=

¯

!

=

Z

( ) ( ¯)

where ( ) :=
P

= Now ( ) ( ) = +1 so that

( ) :=
X

=

=
+1

1

with the convention that

+1

1
| =1 = lim

1

+1

1
= 2 + 1 =

X

=

1

Writing = we find

( ) := ( ) =
( +1)

1
=

( +1 2) ( +1 2)

2 2

=
sin( + 1

2)

sin 12

Recall by Hilbert space theory, 2( ) — lim ( ·) = for all 2( )
We will now show that the convergence is not pointwise for all ( )
2( )

Proposition 28.11. For each there exists a residual set ( )
such that sup | ( )| = for all Recall that ( ) is a complete
metric space, hence is a dense subset of ( )

Proof. By symmetry considerations, it su ces to take = 1 Let
: ( ) C be given by

:= ( 1) =

Z

( ) ( ¯)
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From Corollary 18.42 we know that

k k = k k1 =
Z

| ( ¯)|

=
1

2

Z

¯

¯ ( )
¯

¯ =
1

2

Z

¯

¯

¯

¯

sin( + 1
2 )

sin 12

¯

¯

¯

¯

(28.3)

which can also be proved directly as follows. Since

| | =
¯

¯

¯

¯

Z

( ) ( ¯)

¯

¯

¯

¯

Z

| ( ) ( ¯)| k k
Z

| ( ¯)|

we learn k k R | ( ¯)| Since ( ) is dense in 1( ) there exists
( R) such that ( ) sgn ( ¯) in 1 By replacing by ( 1) ( 1)

we may assume that k k 1 It now follows that

k k | |
k k

¯

¯

¯

¯

Z

( ) ( ¯)

¯

¯

¯

¯

and passing to the limit as implies that k k R | ( ¯)|
Since

sin =

Z

0

cos

Z

0

|cos |

for all 0 Since sin is odd, |sin | | | for all R Using this in Eq.
(28.3) implies that

k k 1

2

Z

¯

¯

¯

¯

sin( + 1
2)

1
2

¯

¯

¯

¯

=
2
Z

0

¯

¯

¯

¯

sin( +
1

2
)

¯

¯

¯

¯

=
2
Z

0

¯

¯

¯

¯

sin( +
1

2
)

¯

¯

¯

¯

=

Z ( + 1
2 )

0

|sin | as

and hence sup k k = So by Theorem 28.8,

1 = { ( ) : sup | | = }

is a residual set.
See Rudin Chapter 5 for more details.

Lemma 28.12. For 1( ) let

(̃ ) := h i =
Z

( ) ¯

Then ˜
0 := 0(Z) (i.e lim (̃ ) = 0) and the map 1( ) ˜

0 is a one to one bounded linear transformation into but not onto 0
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Proof. By Bessel’s inequality,
P

Z

¯

¯

¯
(̃ )
¯

¯

¯

2

for all 2( ) and

in particular lim| |
¯

¯

¯
(̃ )
¯

¯

¯
= 0 Given 1( ) and 2( ) we have

¯

¯

¯
(̃ ) ˆ( )

¯

¯

¯
=

¯

¯

¯

¯

Z

[ ( ) ( )] ¯

¯

¯

¯

¯

k k1

and hence

lim sup
¯

¯

¯
(̃ )
¯

¯

¯
= lim sup

¯

¯

¯
(̃ ) ˆ( )

¯

¯

¯
k k1

for all 2( ) Since 2( ) is dense in 1( ) it follows that

lim sup
¯

¯

¯
(̃ )
¯

¯

¯
= 0 for all 1 i.e. ˜ 0

Since
¯

¯

¯
(̃ )
¯

¯

¯
k k1 we have

°

°

°

˜
°

°

°

0

k k1 showing that := ˜ is a

bounded linear transformation from 1( ) to 0

To see that is injective, suppose ˜= 0 then
R

( ) ( ¯) = 0
for all polynomials in and ¯ By the Stone - Wierestrass and the dominated
convergence theorem, this implies that

Z

( ) ( ) = 0

for all ( ) Lemma 11.7 now implies = 0 a.e.
If were surjective, the open mapping theorem would imply that 1 :

0
1( ) is bounded. In particular this implies there exists such

that
k k 1

°

°

°

˜
°

°

°

0

for all 1( ) (28.4)

Taking = we find
°

°

°

˜
°

°

°

0

= 1 while lim k k 1 = contradicting

Eq. (28.4). Therefore Ran ) 6= 0

28.2 Hahn Banach Theorem

Our next goal is to show that continuous dual of a Banach space is
always large. This will be the content of the Hahn — Banach Theorem 28.16
below.

Proposition 28.13. Let be a complex vector space over C. If and
= Re R then

( ) = ( ) ( ) (28.5)

Conversely if R and is defined by Eq. (28.5), then and
k k

R
= k k . More generally if is a semi-norm on then

| | i
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Proof. Let ( ) = Im ( ), then

( ) = Im ( ) = Im( ( )) = Re ( ) = ( )

Therefore

( ) = ( ) + ( ) = ( ) + ( ) = ( ) ( )

Conversely for R let ( ) = ( ) ( ) Then

(( + ) ) = ( + ) ( )

= ( ) + ( ) ( ( ) ( ))

while
( + ) ( ) = ( ) + ( ) + ( ( ) ( ))

So is complex linear.
Because | ( )| = |Re ( )| | ( )|, it follows that k k k k For

choose 1 C such that | ( )| = ( ) so

| ( )| = ( ) = ( ) k k k k = k kk k
Since is arbitrary, this shows that k k k k so k k = k k.1
For the last assertion, it is clear that | | implies that | | | |

Conversely if and choose 1 C such that | ( )| = ( )
Then

| ( )| = ( ) = ( ) = ( ) ( ) = ( )

holds for all

Definition 28.14 (Minkowski functional). : R is a Minkowski
functional if

1

Proof. To understand better why k k = k k notice that

k k2 = sup
k k=1

| ( )|2 = sup
k k=1

(| ( )|2 + | ( )|2)

Supppose that = sup
k k=1

| ( )| and this supremum is attained at 0 with

k 0k = 1 Replacing 0 by 0 if necessary, we may assume that ( 0) =
Since has a maximum at 0

0 =

¯

¯

¯

¯

0

µ

0 + 0

k 0 + 0k
¶

=

¯

¯

¯

¯

0

½

1

|1 + | ( ( 0) + ( 0))

¾

= ( 0)

since |0|1 + | = |0 1 + 2 = 0 This explains why k k = k k.
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1. ( + ) ( ) + ( ) for all and
2. ( ) = ( ) for all 0 and

Example 28.15. Suppose that = R and

( ) = inf { 0 : [ 1 2] = [ 2 ]}
Notice that if 0 then ( ) = 2 and if 0 then ( ) = i.e.

( ) =

½

2 if 0
| | if 0

From this formula it is clear that ( ) = ( ) for all 0 but not for 0
Moreover, satisfies the triangle inequality, indeed if ( ) = and ( ) =
then [ 1 2] and [ 1 2] so that

+ [ 1 2] + [ 1 2] ( + ) [ 1 2]

which shows that ( + ) + = ( )+ ( ) To check the last set inclusion
let [ 1 2] then

+ = ( + )

µ

+
+

+

¶

( + ) [ 1 2]

since [ 1 2] is a convex set and + + + = 1

TODO: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example.

Theorem 28.16 (Hahn-Banach). Let be a real vector space, be
a subspace : R be a linear functional such that on . Then
there exists a linear functional : R such that | = and .

Proof. Step (1) We show for all \ there exists and extension
to R with the desired properties. If exists and = ( ) then for

all and R we must have ( ) + = ( + ) ( + ) i.e.
( + ) ( ) Equivalently put we must find R such that

( + ) ( )
for all and 0

( ) ( )
for all and 0

So if R is going to exist, we have to prove, for all and
0 that

( ) ( ) ( + ) ( )

or equivalently
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( + ) ( + ) + ( ) (28.6)

= ( + ) + ( )

But by assumtion and the triangle inequality for

( + ) ( + ) = ( + + )

( + ) + ( )

which shows that Eq. (28.6) is true and by working backwards, there exist an
R such that ( ) + ( + ) Therefore ( + ) := ( ) + is

the desired extension.
Step (2) Let us now write : R to mean is defined on a linear

subspace ( ) and : ( ) R is linear. For : R we will
say if ( ) ( ) and = | ( ) that is is an extension of
Let

F = { : R : and on ( )}
Then (F ) is a partially ordered set. If F is a chain (i.e. a linearly
ordered subset of F) then has an upper bound F defined by ( ) =
S

( ) and ( ) = ( ) for ( ) Then it is easily checked that

( ) is a linear subspace, F and for all We may now
apply Zorn’s Lemma (see Theorem B.7) to conclude there exists a maximal
element F Necessarily, ( ) = for otherwise we could extend by
step (1), violating the maximality of Thus is the desired extension of

The use of Zorn’s lemma in Step (2) above may be avoided in the case
that may be written as span( ) where := { } =1 is a countable
subset of In this case : R may be extended to a linear functional
: R with the desired properties by step (1) and induction. If ( ) is

a norm on and = span( ) with as above, then this function
constructed above extends by continuity to

Corollary 28.17. Suppose that is a complex vector space, : [0 )
is a semi-norm, is a linear subspace, and : C is linear
functional such that | ( )| ( ) for all Then there exists 0 ( 0

is the algebraic dual of ) such that | = and | |
Proof. Let = Re then on and hence by Theorem 28.16,

there exists 0
R such that | = and on . Define ( ) =

( ) ( ) then as in Proposition 28.13, = on and | |
Theorem 28.18. Let be a normed space be a closed subspace and

\ . Then there exists such that k k = 1 ( ) = = ( )
and = 0 on .

608 28 Three Fundamental Principles of Banach Spaces

Proof. Define : C Cby ( + ) for all and
C Then

k k := sup
and 6=0

| |
k + k = sup

and 6=0 k + k = = 1

and by the Hahn-Banach theorem there exists such that | C =
and k k 1 Since 1 = k k k k 1 it follows that k k = 1
Corollary 28.19. The linear map ˆ where ˆ( ) = ( ) for
all is an isometry. (This isometry need not be surjective.)

Proof. Since |ˆ( )| = | ( )| k k k k for all it follows
that kˆk k k Now applying Theorem 28.18 with = {0} there
exists such that k k = 1 and |ˆ( )| = ( ) = k k which shows that
kˆk k k This shows that ˆ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 28.20. A Banach space is reflexive if the map ˆ
is surjective.

Example 28.21. Every Hilbert space is reflexive. This is a consequence of
the Riesz Theorem, Proposition 14.15.

Example 28.22. Suppose that is a — finite measure on a measurable space
( M) then ( M ) is reflexive for all (1 ) see Theorem 18.14.

Example 28.23 (Following Riesz and Nagy, p. 214). The Banach space :=
([0 1]) is not reflexive. To prove this recall that may be identified with

complex measures on [0 1] which may be identified with right continuous
functions of bounded variation ( ) on [0 1] namely

(

Z

[0 1]

=

Z 1

0

)

Define by

( ) =
X

[0 1]

({ }) =
X

[0 1]

( ( ) ( ))

so ( ) is the sum of the “atoms” of Suppose there existed an such
that ( ) =

R

[0 1]
for all Choosing = for some (0 1)

would then imply that

( ) =

Z

[0 1]

= ( ) = 1

showing would have to be the constant function,1 which clearly can not
work.
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Example 28.24. The Banach space := 1([0 1] ) is not reflexive. As we
have seen in Theorem 18.14, = ([0 1] ) The argument in Example
18.15 shows ( ([0 1] )) À 1([0 1] ) Recall in that example, we show
there exists = ( ([0 1] )) such that ( ) = (0) for all in
the closed subspace, ([0 1]) of If there were to exist a such that
ˆ = we would have

(0) = ( ) = ˆ( ) = ( ) :=

Z 1

0

( ) ( ) (28.7)

for all ([0 1]) ([0 1] ) Taking ((0 1]) in this equation and
making use of Lemma 11.7, it would follow that ( ) = 0 for a.e. (0 1]
But this is clearly inconsistent with Eq. (28.7).

28.3 Banach — Alaoglu’s Theorem

28.3.1 Weak and Strong Topologies

Definition 28.25. Let and be be a normed vector spaces and ( )
the normed space of bounded linear transformations from to

1. The weak topology on is the topology generated by , i.e. sets of the
form

= =1{ : | ( ) ( 0)| }
where and 0 form a neighborhood base for the weak topology
on at 0

2. The weak- topology on is the topology generated by i.e.

=1{ : | ( ) ( )| }
where and 0 forms a neighborhood base for the weak— topology
on at

3. The strong operator topology on ( ) is the smallest topology such
that ( ) is continuous for all

4. The weak operator topology on ( ) is the smallest topology such
that ( ) ( ) C is continuous for all and

Theorem 28.26 (Alaoglu’s Theorem). If is a normed space the unit
ball in is weak - compact.

Proof. For all let = { C : | | k k} Then C is a
compact set and so by Tychono ’s Theorem

Q

is compact in the

product topology. If := { : k k 1} | ( )| k k k k k k
which implies that ( ) for all i.e. The topology on

inherited from the weak— topology on is the same as that relative
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topology coming from the product topology on So to finish the proof it
su ces to show is a closed subset of the compact space To prove this
let ( ) = ( ) be the projection maps. Then

= { : is linear}
= { : ( + ) ( ) ( ) = 0 for all and C}
=

\ \

C

{ : ( + ) ( ) ( ) = 0}

=
\ \

C

( + ) 1 ({0})

which is closed because ( + ) : C is continuous.

Theorem 28.27 (Alaoglu’s Theorem for separable spaces). Suppose
that is a separable Banach space, := { : k k 1} is the
closed unit ball in and { } =1 is an countable dense subset of :=
{ : k k 1} Then

( ) :=
X

=1

1

2
| ( ) ( )| (28.8)

defines a metric on which is compatible with the weak topology on
:= ( ) = { : } Moreover ( ) is a compact metric

space.

Proof. The routine check that is a metric is left to the reader. Let
be the topology on induced by For any and N the map

( ( ) ( )) C is continuous and since the sum in Eq.
(28.8) is uniformly convergent for it follows that ( ) is —
continuous. This implies the open balls relative to are contained in and
therefore
We now wish to prove Since is the topology generated by

{ˆ| : } it su ces to show ˆ is — continuous for all But given
there exists a subsequence := of { } =1 such that such that

= lim Since

sup |ˆ( ) ˆ ( )| = sup | ( )| k k 0 as

ˆ ˆ uniformly on and using ˆ is — continuous for all (as is easily
checked) we learn ˆ is also continuous. Hence = (ˆ| : )
The compactness assertion follows from Theorem 28.26. The compactness

assertion may also be verified directly using: 1) sequential compactness is
equivalent to compactness for metric spaces and 2) a Cantor’s diagonalization
argument as in the proof of Theorem 14.44. (See Proposition 29.16 below.)
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28.3.2 Weak Convergence Results

The following is an application of theorem 2.73 characterizing compact sets
in metric spaces.

Proposition 28.28. Suppose that ( ) is a complete separable metric space
and is a probability measure on B = ( ) Then for all 0 there exists

@@ such that ( ) 1

Proof. Let { } =1 be a countable dense subset of Then =
(1 ) for all N Hence by continuity of there exists, for all

N such that ( ) 1 2 where := =1 (1 ) Let
:= =1 then

( \ ) = ( =1 )

X

=1

( ) =
X

=1

(1 ( ))
X

=1

2 =

so that ( ) 1 Moreover is compact since is closed and totally
bounded; for all and each is 1 — bounded.

Definition 28.29. A sequence of probability measures { } =1 is said to con-
verge to a probability if for every ( ) ( ) ( ) This is
actually weak-* convergence when viewing ( )

Proposition 28.30. The following are equivalent:

1. as
2. ( ) ( ) for every ( ) which is uniformly continuous.
3. lim sup ( ) ( ) for all @
4. lim inf ( ) ( ) for all
5. lim ( ) = ( ) for all B such that (bd( )) = 0

Proof. 1. = 2. is obvious. For 2. = 3.,

( ) :=
1 if 0

1 if 0 1
0 if 1

(28.9)

and let ( ) := ( ( )) Then ( [0 1]) is uniformly continu-
ous, 0 1 for all and 1 as Passing to the limit
in the equation

0 ( ) ( )

gives
0 lim sup ( ) ( )

and then letting in this inequality implies item 3.
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3. 4. Assuming item 3., let = then

1 lim inf ( ) = lim sup (1 ( )) = lim sup ( )

( ) = 1 ( )

which implies 4 Similarly 4 = 3
3. 5. Recall that bd( ) = ¯ \ so if (bd( )) = 0 and 3 (and

hence also 4. holds) we have

lim sup ( ) lim sup ( ¯) ( ¯) = ( ) and

lim inf ( ) lim inf ( ) ( ) = ( )

from which it follows that lim ( ) = ( ) Conversely, let @ and
set := { : ( ) } Then

bd( ) \ { : ( ) } =

where :== { : ( ) = } Since { } 0 are all disjoint, we must
have

X

0

( ) ( ) 1

and in particular the set := { 0 : ( ) 0} is at most countable. Let
be chosen so that 0 as then

( ) = lim ( ) lim sup ( )

Let this equation to conclude ( ) lim sup ( ) as desired.
To finish the proof we will now show 3 = 1. By an a ne change of

variables it su ces to consider ( (0 1)) in which case we have

X

=1

( 1)
1{ ( 1) }

X

=1

1{ ( 1) } (28.10)

Let :=
© ª

and notice that = then we for any probability
that

X

=1

( 1)
[ ( 1) ( )] ( )

X

=1

[ ( 1) ( )] (28.11)

Now
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X

=1

( 1)
[ ( 1) ( )]

=
X

=1

( 1)
( 1)

X

=1

( 1)
( )

=
1

X

=1

( )
X

=1

1
( ) =

1
1

X

=1

( )

and

X

=1

[ ( 1) ( )]

=
X

=1

1
[ ( 1) ( )] +

X

=1

1
[ ( 1) ( )]

=
1

X

=1

( ) +
1

so that Eq. (28.11) becomes,

1
1

X

=1

( ) ( )
1

1
X

=1

( ) + 1

Using this equation with = and then with = we find

lim sup ( ) lim sup

"

1
1

X

=1

( ) + 1

#

1
1

X

=1

( ) + 1 ( ) + 1

Since is arbitary,
lim sup ( ) ( )

This inequality also hold for 1 and this implies lim inf ( ) ( )
and hence lim ( ) = ( ) as claimed.
Let := [0 1]N and for let

( ) :=
X

=1

1

2
| |

as in Notation 3.27 and recall that in this metric ( ) is a complete metric
space that is the product topology on see Exercises 2.108 and 7.80.
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Theorem 28.31. To every separable metric space ( ) there exists a con-
tinuous injective map : such that : ( ) is a homeo-
morphism. In short, any separable metrizable space is homeomorphic to a
subset of ( )

Remark 28.32. Notice that if we let 0( ) := ( ( ) ( )) then 0 induces
the same topology on as and : ( 0) ( ) is isometric.

Proof. Let = { } =1 be a countable dense subset of and for
N let

( ) := 1 ( ( ))

where is as in Eq. (28.9). Then = 0 if ( ) 1 and = 1
if ( ) 2 Let { } =1 be an enumeration of { : N} and
define : by

( ) = ( 1( ) 2( ) )

We will now show : ( ) is a homeomorphism. To show
is injective suppose and ( ) = 1 In this case we may
find such that ( ) 1

2 ( ) 1
2

1
2 and hence

4 ( ) = 1 while 4 ( ) = 0 From this it follows that ( ) 6= ( ) if
6= and hence is injective.
The continuity of is a consequence of the continuity of each of the com-

ponents of So it only remains to show 1 : ( ) is continuous.
Given = ( ) ( ) and 0 choose N and such that
( ) 1

2 2 Then ( ) = 0 and for ( 2 ) ( ) = 1 So
if is chosen so that = we have shown that for

( ( ) ( )) 2 for ( 2 )

or equivalently put, if

( ( ) ( )) 2 then ( 2 ) ( 1 ) ( )

This shows that if ( ) is su ciently close to ( ) then ( ) i.e. 1

is continuous at = ( )

Definition 28.33. Let be a topological space. A collection of probability
measures on ( B ) is said to be tight if for every 0 there exists a
compact set B such that ( ) 1 for all

Theorem 28.34. Suppose is a separable metrizable space and =
{ } =1 is a tight sequence of probability measures on B Then there exists
a subsequence { } =1 which is weakly convergent to a probability measure
on B
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Proof. First suppose that is compact. In this case ( ) is a Banach
space which is separable by the Stone — Weirstrass theorem. By the Riesz
theorem, Corollary 18.42, we know that ( ) is in one to one correspon-
dence with complex measure on ( B ) We have also seen that ( ) is
metrizable and the unit ball in ( ) is weak - * compact. Hence there exists
a subsequence { } =1 which is weak -* convergent to a probability measure
on Alternatively, use the cantor’s diagonalization procedure on a count-

able dense set ( ) so find { } =1 such that ( ) := lim ( )
exists for all Then for ( ) and we have

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|
+ | ( ) ( )|

2 k k + | ( ) ( )|

which shows
lim sup | ( ) ( )| 2 k k

Letting tend to in ( ) shows lim sup | ( ) ( )| = 0
and hence ( ) := lim ( ) for all ( ) It is now clear that
( ) 0 for all 0 so that is a positive linear functional on and thus
there is a probability measure such that ( ) = ( )
For the general case, by Theorem 28.31 we may assume that is a subset

of a compact metric space which we will denote by ¯ We now extend
to ¯ by setting ¯ ( ) := ¯ ( ¯) for all B ¯ By what we have just
proved, there is a subsequence

©

¯0 := ¯
ª

=1
such that ¯0 converges weakly

to a probability measure ¯ on ¯ The main thing we now have to prove is
that “ ¯( ) = 1 ” this is where the tightness assumption is going to be used.
Given 0 let be a compact set such that ¯ ( ) 1 for

all Since is compact in it is compact in ¯ as well and in particular
a closed subset of ¯ Therefore by Proposition 28.30

¯( ) lim sup ¯0 ( ) = 1

Since 0 is arbitrary, this shows with 0 := =1 1 satisfies ¯( 0) = 1
Because 0 B B ¯ we may view ¯ as a measure on B by letting
( ) := ¯( 0) for all B
Given a closed subset choose ˜ @ ¯ such that = ˜ Then

lim sup 0 ( ) = lim sup ¯0 ( ˜) ¯( ˜) = ¯( ˜ 0) = ( )

which shows 0
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28.4 Supplement: Quotient spaces, adjoints, and more
reflexivity

Definition 28.35. Let and be Banach spaces and : be a linear
operator. The transpose of is the linear operator † : defined
by
¡ † ¢ ( ) = ( ) for and The null space of is the

subspace Nul( ) := { : = 0} For and let

0 := { : | = 0} and
:= { : ( ) = 0 for all }

Proposition 28.36 (Basic Properties).

1. k k = °° †°
° and ††ˆ = c for all

2. 0 and are always closed subspace of and respectively.
3.
¡

0
¢

= ¯

4. ¯
¡ ¢0

with equality when is reflexive.
5. Nul( ) = Ran †) and Nul( †) = Ran( )0 Moreover, Ran( ) =

Nul( †) and if is reflexive, then Ran( †) = Nul( )0

6. is reflexive i is reflexive. More generally = c ˆ0

Proof.

1.

k k = sup
k k=1

k k = sup
k k=1

sup
k k=1

| ( )|

= sup
k k=1

sup
k k=1

¯

¯

† ( )
¯

¯ = sup
k k=1

°

°

† °
° =

°

°

†°
°

2. This is an easy consequence of the assumed continuity o all linear func-
tionals involved.

3. If then ( ) = 0 for all 0 so that
¡

0
¢

Therefore
¯

¡

0
¢

If ¯ then there exists such that | = 0

while ( ) 6= 0 i.e. 0 yet ( ) 6= 0 This shows ¡

0
¢

and we

have shown
¡

0
¢

¯

4. It is again simple to show
¡ ¢0

and therefore ¯
¡ ¢0

Moreover, as above if ¯ there exists such that | ¯ = 0
while ( ) 6= 0 If is reflexive, = ˆ for some and since
( ) = ( ) = 0 for all ¯ we have On the other hand,
( ) = ( ) 6= 0 so ¡ ¢0

Thus again
¡ ¢0 ¯

5.
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Nul( ) = { : = 0} = { : ( ) = 0 }
=
©

: † ( ) = 0
ª

=
©

: ( ) = 0 Ran( †)
ª

= Ran( †)

Similarly,

Nul( †) =
©

: † = 0
ª

=
©

: ( † )( ) = 0
ª

= { : ( ) = 0 }
=
©

: |Ran( ) = 0
ª

= Ran( )0

6. Let and define by ( ) = (ˆ) for all and set
0 := ˆ For (so ˆ ) we have

0(ˆ) = (ˆ) ˆ (ˆ) = ( ) ˆ( ) = ( ) ( ) = 0

This shows 0 ˆ0 and we have shown = c + ˆ0 If c ˆ0

then = ˆ for some and 0 = (̂ˆ) = ˆ( ) = ( ) for all
i.e. = 0 so = 0 Therefore = c ˆ0 as claimed. If is
reflexive, then ˆ = and so ˆ0 = {0} showing = c i.e.
is reflexive. Conversely if is reflexive we conclude that ˆ0 = {0} and
therefore = {0} =

³

ˆ0
´

= ˆ so that is reflexive.

Alternative proof. Notice that = † where : is given
by = ˆ and the composition

ˆ ˆ
† † ˆ

is the identity map since
³

† ˆ
´

( ) = (̂ ) = (̂ˆ) = ˆ( ) = ( ) for all

Thus it follows that ˆ is invertible i † is its inverse
which can happen i Nul( †) = {0} But as above Nul( †) = Ran )0

which will be zero i Ran( ) = and since is an isometry this is
equivalent to saying Ran ) = So we have again shown is reflexive
i is reflexive.

Theorem 28.37. Let be a Banach space, be a proper closed
subspace, the quotient space, : the projection map
( ) = + for and define the quotient norm on by

k ( )k = k + k = inf k + k

Then

1. k·k is a norm on
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2. The projection map : has norm 1 k k = 1
3. ( k·k ) is a Banach space.
4. If is another normed space and : is a bounded linear trans-
formation such that Nul( ) then there exists a unique linear trans-
formation : such that = and moreover k k = k k
Proof. 1) Clearly k + k 0 and if k + k = 0 then there exists

such that k + k 0 as i.e. = lim ¯ =

Since + = 0 If C\ {0} then

k + k = inf k + k = | | inf k + k = | | k + k

because runs through as runs through Let 1 2 and
1 2 then

k 1 + 2 + k k 1 + 2 + 1 + 2k k 1 + 1k+ k 2 + 2k

Taking infinums over 1 2 then implies

k 1 + 2 + k k 1 + k+ k 2 + k

and we have completed the proof the ( k · k) is a normed space.
2) Since k ( )k = inf k + k k k for all k k 1 To see

k k = 1 let \ so that ( ) 6= 0 Given (0 1) there exists
such that

k + k 1 k ( )k
Therefore,

k ( + )k
k + k =

k ( )k
k + k

k + k
k + k =

which shows k k Since (0 1) is arbitrary we conclude that k ( )k =
1
3) Let ( ) be a sequence such that

P k ( )k As above
there exists such that k ( )k 1

2k + k and hence P k +

k 2
P k ( )k Since is complete, :=

P

=1
( + ) exists in

and therefore by the continuity of

( ) =
X

=1

( + ) =
X

=1

( )

showing is complete.
4) The existence of is guaranteed by the “factor theorem” from linear

algebra. Moreover k k = k k because

k k = k k k k k k = k k
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and

k k = sup
k ( ( ))k
k ( )k = sup

k k
k ( )k

sup
k k
k k = sup

6=0
k k
k k = k k

Theorem 28.38. Let be a Banach space. Then

1. Identifying with ˆ the weak — topology on induces the
weak topology on More explicitly, the map ˆ ˆ is a
homeomorphism when is equipped with its weak topology and ˆ with
the relative topology coming from the weak- topology on

2. ˆ is dense in the weak- topology on
3. Letting and be the closed unit balls in and respectively, then
ˆ := {ˆ : } is dense in in the weak — topology on

4. is reflexive i is weakly compact.

Proof.

1. The weak — topology on is generated by
n

ˆ :
o

= { ( ) : }

So the induced topology on is generated by

{ ˆ ˆ( ) = ( ) : } =
and so the induced topology on is precisely the weak topology.

2. A basic weak - neighborhood of a point is of the form

N := =1 { : | ( ) ( )| } (28.12)

for some { } =1 and 0 be given. We must now find
such that ˆ N or equivalently so that

|ˆ( ) ( )| = | ( ) ( )| for = 1 2 (28.13)

In fact we will show there exists such that ( ) = ( ) for
= 1 2 To prove this stronger assertion we may, by discard-

ing some of the ’s if necessary, assume that { } =1 is a linearly
independent set. Since the { } =1 are linearly independent, the map

( 1( ) ( )) C is surjective (why) and hence there
exists such that

( 1( ) ( )) = = ( ( 1) ( )) (28.14)

as desired.
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3. Let and N be the weak - open neighborhood of as
in Eq. (28.12). Working as before, given 0 we need to find
such that Eq. (28.13). It will be left to the reader to verify that it su ces
again to assume { } =1 is a linearly independent set. (Hint: Suppose that
{ 1 } were a maximal linearly dependent subset of { } =1 then
each with may be written as a linear combination { 1 } )
As in the proof of item 2., there exists such that Eq. (28.14)
holds. The problem is that may not be in To remedy this, let :=

=1Nul( ) = Nul( ) : = C be the projection map and
¯ ( ) be chosen so that = ¯ for = 1 2 Then we
have produced such that

( ( 1) ( )) = ( 1( ) ( )) = ( 1̄( ( )) ¯ ( ( )))

Since
©

1̄
¯
ª

is a basis for ( ) we find

k ( )k = sup
C \{0}

¯

¯

P

=1
¯( ( ))

¯

¯

°

°

P

=1
¯
°

°

= sup
C \{0}

|P =1 ( )|
kP =1 k

= sup
C \{0}

| (P =1 )|
kP =1 k

k k sup
C \{0}

kP =1 k
kP =1 k = 1

Hence we have shown k ( )k 1 and therefore for any 1 there
exists = + such that k k and ( ( 1) ( )) =
( 1( ) ( )) Hence

| ( ) ( )| ¯

¯ ( ) 1 ( )
¯

¯ (1 1) | ( )|

which can be arbitrarily small (i.e. less than ) by choosing su ciently
close to 1

4. Let ˆ := {ˆ : } If is reflexive, ˆ = is weak -
compact and hence by item 1., is weakly compact in Conversely

if is weakly compact, then ˆ is weak — compact being the
continuous image of a continuous map. Since the weak — topology on

is Hausdor , it follows that ˆ is weak — closed and so by item 3,

= ˆ
weak—

= ˆ So if k k = ˆ i.e. there exists
such that ˆ = k k This shows = (k k )ˆ and therefore

ˆ =



28.5 Exercises 621

28.5 Exercises

28.5.1 More Examples of Banach Spaces

Exercise 28.39. Let ( M) be a measurable space and ( ) denote the
space of complex measures on ( M) and for ( ) let k k | k( )
Show ( ( ) k·k) is a Banach space. (Move to Section 20.)
Exercise 28.40. Folland 5.9, p. 155.

Exercise 28.41. Folland 5.10, p. 155.

Exercise 28.42. Folland 5.11, p. 155.

28.5.2 Hahn-Banach Theorem Problems

Exercise 28.43. Folland 5.17, p. 159.

Exercise 28.44. Folland 5.18, p. 159.

Exercise 28.45. Folland 5.19, p. 160.

Exercise 28.46. Folland 5.20, p. 160.

Exercise 28.47. Folland 5.21, p. 160.

Exercise 28.48. Let be a Banach space such that is separable. Show
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e.

suppose \ {0} is a countable dense subset of for choose
such that k k = 1 and | ( )| 1

2k k
Exercise 28.49. Folland 5.26.

Exercise 28.50. Give another proof Corollary 4.10 based on Remark 4.8.
Hint: the Hahn Banach theorem implies

k ( ) ( )k = sup
6=0
| ( ( )) ( ( ))|

k k

28.5.3 Baire Category Result Problems

Exercise 28.51. Folland 5.29, p. 164.

Exercise 28.52. Folland 5.30, p. 164.

Exercise 28.53. Folland 5.31, p. 164.

Exercise 28.54. Folland 5.32, p. 164.
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Exercise 28.55. Folland 5.33, p. 164.

Exercise 28.56. Folland 5.34, p. 164.

Exercise 28.57. Folland 5.35, p. 164.

Exercise 28.58. Folland 5.36, p. 164.

Exercise 28.59. Folland 5.37, p. 165.

Exercise 28.60. Folland 5.38, p. 165.

Exercise 28.61. Folland 5.39, p. 165.

Exercise 28.62. Folland 5.40, p. 165.

Exercise 28.63. Folland 5.41, p. 165.

28.5.4 Weak Topology and Convergence Problems

Exercise 28.64. Folland 5.47, p. 171.

Definition 28.65. A sequence { } =1 is weakly Cauchy if for all
such that 0 for all su ciently large. Similarly

a sequence { } =1 is weak— Cauchy if for all such that
0 for all su ciently large.

Remark 28.66. These conditions are equivalent to { ( )} =1 being Cauchy
for all and { ( )} =1 being Cauchy for all respectively.

Exercise 28.67. Folland 5.48, p. 171.

Exercise 28.68. Folland 5.49, p. 171.

Exercise 28.69. land 5.50, p. 172.

Exercise 28.70. Let be a Banach space. Show every weakly compact sub-
set of is norm bounded and every weak— compact subset of is norm
bounded.

Exercise 28.71. Folland 5.51, p. 172.

Exercise 28.72. Folland 5.53, p. 172.
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Weak and Strong Derivatives

For this section, let be an open subset of R [1 ] ( ) =
( B ) and ( ) = ( B ) where is Lebesgue measure

on BR and B is the Borel — algebra on If = R we will simply write
and for (R ) and (R ) respectively. Also let

h i :=
Z

for any pair of measurable functions : C such that 1( )
For example, by Hölder’s inequality, if h i is defined for ( ) and

( ) when = 1

Definition 29.1. A sequence { } =1 ( ) is said to converge to
( ) if lim k k ( ) = 0 for all compact subsets

The following simple but useful remark will be used (typically without
further comment) in the sequel.

Remark 29.2. Suppose [1 ] are such that 1 = 1 + 1 and
in ( ) and in ( ) as 0 then in ( )

Indeed,

k k = k( ) + ( )k
k k k k + k k k k 0 as 0

29.1 Basic Definitions and Properties

Definition 29.3 (Weak Di erentiability). Let R and ( )
( ( )) then is said to exist weakly in ( ) ( ( )) if there
exists a function ( ) ( ( )) such that
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h i = h i for all ( ) (29.1)

The function if it exists will be denoted by ( ) Similarly if N0 and
is as in Notation 11.10, we say exists weakly in ( ) ( ( )) i

there exists ( ) ( ( )) such that

h i = ( 1)| |h i for all ( )

More generally if ( ) =
P

| | is a polynomial in R then ( )

exists weakly in ( ) ( ( )) i there exists ( ) ( ( )) such
that

h ( ) i = h i for all ( ) (29.2)

and we denote by w ( )

By Corollary 11.29, there is at most one 1 ( ) such that Eq. (29.2)
holds, so w ( ) is well defined.

Lemma 29.4. Let ( ) be a polynomial on R = deg ( ) N and
1 ( ) such that ( ) exists weakly in 1 ( ) Then

1. supp (w ( ) ) supp ( ) where supp ( ) is the essential support of
relative to Lebesgue measure, see Definition 11.14.

2. If deg = and | ( C) for some open set then
w ( ) = ( ) a.e. on

Proof.

1. Since

hw ( ) i = h ( ) i = 0 for all ( \ supp ( ))

an application of Corollary 11.29 shows w ( ) = 0 a.e. on \
supp ( ) So by Lemma 11.15, \ supp ( ) \ supp (w ( ) )
i.e. supp (w ( ) ) supp ( )

2. Suppose that | is and let ( ) (We view as a function
in (R ) by setting 0 on R \ ) By Corollary 11.26, there exists

( ) such that 0 1 and = 1 in a neighborhood of supp( )
Then by setting = 0 on R \ supp( ) we may view (R ) and
so by standard integration by parts (see Lemma 11.27) and the ordinary
product rule,

hw ( ) i = h ( ) i = h ( ) i
= h ( ) ( ) i = h ( ) i (29.3)

wherein the last equality we have is constant on supp( ) Since Eq.
(29.3) is true for all ( ) an application of Corollary 11.29 with
= w ( ) ( ) and = shows w ( ) = ( ) a.e. on
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Notation 29.5 In light of Lemma 29.4 there is no danger in simply writing
( ) for w ( ) So in the sequel we will always interpret ( ) in the
weak or “distributional” sense.

Example 29.6. Suppose ( ) = | | for R then ( ) = sgn( ) in 1 (R)
while 2 ( ) = 2 ( ) so 2 ( ) does not exist weakly in 1 (R)

Example 29.7. Suppose = 2 and ( ) = 1 Then 1
¡

R2
¢

while
1 = ( ) and 1 = ( ) and so that neither or

exists weakly. On the other hand ( + ) = 0 weakly. To prove these as-
sertions, notice

¡

R2 \ ¢

where =
©

( ) : R2
ª

So by Lemma
29.4, for any polynomial ( ) without constant term, if ( ) exists weakly
then ( ) = 0 However,

h i =
Z

( ) =

Z

R
( )

h i =
Z

( ) =

Z

R
( ) and

h ( + ) i = 0
from which it follows that and can not be zero while ( + ) = 0
On the other hand if ( ) and ( ) are two polynomials and 1 ( )

is a function such that ( ) exists weakly in 1 ( ) and ( ) [ ( ) ] exists
weakly in 1 ( ) then ( ) ( ) exists weakly in 1 ( ) This is because

h ( ) ( ) i = h ( ) ( ) i
= h ( ) ( ) i = h ( ) ( ) i for all ( )

Example 29.8. Let ( ) = 1 0 +1 0 in 1
¡

R2
¢

Then ( ) = ( )
and ( ) = ( ) so ( ) and ( ) do not exist weakly in
1
¡

R2
¢

However does exists weakly and is the zero function. This
shows may exists weakly despite the fact both and do not
exists weakly in 1

¡

R2
¢

Lemma 29.9. Suppose 1 ( ) and ( ) is a polynomial of degree such
that ( ) exists weakly in 1 ( ) then

h ( ) i = h ( ) i for all ( ) (29.4)

Note: The point here is that Eq. (29.4) holds for all ( ) not just
( )

Proof. Let ( ) and choose ( (0 1)) such that
R

R ( ) = 1 and let ( ) := ( ) Then ( ) for su -
ciently small and ( ) [ ] = ( ) ( ) and
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uniformly on compact sets as 0 Therefore by the dominated convergence
theorem,

h ( ) i = lim
0
h ( ) i = lim

0
h ( ) ( )i = h ( ) i

Lemma 29.10 (Product Rule). Let 1 ( ) R and 1( )

If ( ) exists in 1 ( ) then ( )
( ) exists in 1 ( ) and

( ) ( ) = · + ( ) a.e.

Moreover if 1( ) and := 1 (here we define on R by setting
= 0 on R \ ), then ( ) = · +

( ) exists weakly in 1(R )

Proof. Let ( ) then using Lemma 29.9,

h i = h i = h ( ) · i
= h ( ) i+ h · i
= h ( ) i+ h · i

This proves the first assertion. To prove the second assertion let ( )
such that 0 1 and = 1 on a neighborhood of supp( ) So for

(R ) using = 0 on supp( ) and ( ) we find

h i = h i = h i = h( ) ( ) · i
= h( ) ( )i = h ( ) ( ) ( )i
= h · + ( ) i = h · + ( ) i

This show ( )
= · +

( ) as desired.

Lemma 29.11. Suppose [1 ) ( ) is a polynomial in R and
( ) If there exists { } =1 ( ) such that ( ) exists in

( ) for all and there exists ( ) such that for all ( )

lim h i = h i and lim h ( ) i = h i

then ( ) exists in ( ) and ( ) =

Proof. Since

h ( ) i = lim h ( ) i = lim h ( ) i = h i

for all ( ) ( ) exists and is equal to ( )
Conversely we have the following proposition.
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Proposition 29.12 (Mollification). Suppose [1 ) 1( ) ( ) is
a collection of polynomials in R and ( ) such that ( ) exists
weakly in ( ) for = 1 2 Then there exists ( ) such that

in ( ) and ( ) ( ) in ( ) for = 1 2

Proof. Let ( (0 1)) such that
R

R = 1 and ( ) :=

( ) be as in the proof of Lemma 29.9. For any function 1 ( )
0 and := { : dist( ) } let

( ) := ( ) := 1 ( ) =

Z

( ) ( )

Notice that ( ) and as 0
Given a compact set let := { : dist( ) } Then

as 0 there exists 0 0 such that 0 := 0 is a compact subset
of 0 := 0 (see Figure 29.1) and for

( ) :=

Z

( ) ( ) =

Z

( ) ( )

Therefore, using Theorem 11.21,

Fig. 29.1. The geomentry of 0 0

k k ( ) = k(1 0 ) 1 0 k ( )

k(1 0 ) 1 0 k (R ) 0 as 0

Hence, for all ( ) ( ) and

lim
0
k k ( ) = 0 (29.5)

628 29 Weak and Strong Derivatives

Now let ( ) be a polynomial on R ( ) such that ( ) ( )
and := ( ) as above. Then for and 0

( ) ( ) =

Z

( ) ( ) ( ) =

Z

( ) ( ) ( )

=

Z

( ) ( ) ( ) = h ( ) ( ·)i
= h ( ) ( ·)i = ( ( ) ) ( ) (29.6)

From Eq. (29.6) we may now apply Eq. (29.5) with = and = ( ) for
1 to find

k k ( ) +
X

=1

k ( ) ( ) k ( ) 0 as 0

For N let

:= { : | | and ( ) 1 }
(so +1 +1 for all and as or see Lemma 3.16)
and choose ( +1 [0 1]) using Corollary 11.26, so that = 1 on
a neighborhood of Choose 0 such that +1 and

k k ( ) +
X

=1

k ( ) ( ) k ( ) 1

Then := · ( ) and since = on we still have

k k ( ) +
X

=1

k ( ) ( ) k ( ) 1 (29.7)

Since any compact set is contained in for all su ciently large,
Eq. (29.7) implies

lim

"

k k ( ) +
X

=1

k ( ) ( ) k ( )

#

= 0

The following proposition is another variant of Proposition 29.12 which
the reader is asked to prove in Exercise 29.32 below.

Proposition 29.13. Suppose [1 ) 1( ) ( ) is a collection of
polynomials in R and =

¡

R
¢

such that ( ) for
= 1 2 Then there exists

¡

R
¢

such that

lim

"

k k +
X

=1

k ( ) ( ) k
#

= 0
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Notation 29.14 (Di erence quotients) For R and R \ {0} and
a function : C let

( ) :=
( + ) ( )

for those such that + When is one of the standard basis
elements, for 1 we will write ( ) rather than ( ) Also let

( ) :=
¡

1 ( ) ( )
¢

be the di erence quotient approximation to the gradient.

Definition 29.15 (Strong Di erentiability). Let R and then
is said to exist strongly in if the lim 0 exists in We will

denote the limit by ( )

It is easily verified that if R and ( ) exists then ( )

exists and ( )
=

( ) The key to checking this assetion is the identity,

h i =
Z

R

( + ) ( )
( )

=

Z

R
( )

( ) ( )
= h i (29.8)

Hence if ( )
= lim 0 exists in and (R ) then

h ( ) i = lim
0
h i = lim

0
h i = |0h (· )i = h i

wherein Corollary 8.43 has been used in the last equality to bring the deriva-
tive past the integral. This shows ( ) exists and is equal to ( ) What is
somewhat more surprising is that the converse assertion that if ( ) exists
then so does ( ) Theorem 29.18 is a generalization of Theorem 14.45 from
2 to For the reader’s convenience, let us give a self-contained proof of
the version of the Banach - Alaoglu’s Theorem which will be used in the proof
of Theorem 29.18. (This is the same as Theorem 28.27 above.)

Proposition 29.16 (Weak- Compactness: Banach - Alaoglu’s The-
orem). Let be a separable Banach space and { } be a bounded
sequence, then there exist a subsequence { ˜ } { } such that lim ( ) =

( ) for all with

Proof. Let be a countable linearly independent subset of such
that span( ) = Using Cantor’s diagonal trick, choose { ˜ } { } such
that := lim ˜ ( ) exist for all Define : span( ) R by the

formula
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(
X

) =
X

where by assumption #({ : 6= 0}) Then : span( ) R is
linear and moreover ˜ ( ) ( ) for all span( ) Now

| ( )| = lim | ˜ ( )| lim sup k ˜ k k k k k for all span( )

Hence by the B.L.T. Theorem 2.68, extends uniquely to a bounded linear
functional on We still denote the extension of by Finally, if

and span( )

| ( ) ˜ ( )| | ( ) ( )|+ | ( ) ˜ ( )|+ | ˜ ( ) ˜ ( )|
k k k k+ k ˜ k k k+ | ( ) ˜ ( )k
2 k k+ | ( ) ˜ ( )| 2 k k as

Therefore lim sup | ( ) ˜ ( )| 2 k k 0 as

Corollary 29.17. Let (1 ] and = 1 Then to every bounded se-
quence { } =1 ( ) there is a subsequence {˜ } =1 and an element

( ) such that

lim h˜ i = h i for all ( )

Proof. By Theorem 18.14, the map

( ) h ·i ( ( ))

is an isometric isomorphism of Banach spaces. By Theorem 11.3, ( ) is
separable for all [1 ) and hence the result now follows from Proposition
29.16.

Theorem 29.18 (Weak and Strong Di erentiability). Suppose
[1 ) (R ) and R \ {0} Then the following are equivalent:

1. There exists (R ) and { } =1 R\ {0} such that lim = 0
and

lim h i = h i for all (R )

2. ( ) exists and is equal to (R ) i.e. h i = h i for all
(R )

3. There exists (R ) and (R ) such that and
as

4. ( ) exists and is is equal to (R ) i.e. in as 0

Moreover if (1 ) any one of the equivalent conditions 1. — 4. above
are implied by the following condition.
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10. There exists { } =1 R\ {0} such that lim = 0 and sup
°

°

°

°

Proof. 4. = 1. is simply the assertion that strong convergence implies
weak convergence.
1. = 2. For (R ) Eq. (29.8) and the dominated convergence

theorem implies

h i = lim h i = lim h i = h i

2. = 3. Let (R R) such that
R

R ( ) = 1 and let ( ) =

( ) then by Proposition 11.25, := (R ) for all and

( ) = ( ) =

Z

R
( ) ( )

= h [ ( ·)]i = h ( ·)i = ( )

By Theorem 11.21, (R ) and = in (R )
as This shows 3. holds except for the fact that need not have
compact support. To fix this let (R [0 1]) such that = 1 in a
neighborhood of 0 and let ( ) = ( ) and ( ) ( ) := ( ) ( ) Then

( ) = + = ( ) +

so that in and ( ) in as 0 Let =
where is chosen to be greater than zero but small enough so that

k k + k ( ) k 1

Then (R ) and in as
3. = 4. By the fundamental theorem of calculus

( ) =
( + ) ( )

=
1
Z 1

0

( + ) =

Z 1

0

( ) ( + ) (29.9)

and therefore,

( ) ( ) =

Z 1

0

[( ) ( + ) ( )]

So by Minkowski’s inequality for integrals, Theorem 10.29,

°

° ( )
°

°

Z 1

0

k( ) (·+ ) k

and letting in this equation then implies
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°

°

°

°

Z 1

0

k (·+ ) k

By the dominated convergence theorem and Proposition 11.13, the right mem-
ber of this equation tends to zero as 0 and this shows item 4. holds.
(10. = 1. when 1) This is a consequence of Corollary 29.17 (or see

Theorem 28.27 above) which asserts, by passing to a subsequence if necessary,
that for some (R )

Example 29.19. The fact that (10) does not imply the equivalent conditions 1
— 4 in Theorem 29.18 when = 1 is demonstrated by the following example.
Let := 1[0 1] then

Z

R

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

=
1

| |
Z

R

¯

¯1[ 1 ]( ) 1[0 1]( )
¯

¯ = 2

for | | 1 On the other hand the distributional derivative of is ( ) =
( ) ( 1) which is not in 1

Alternatively, if there exists 1(R ) such that

lim
( + ) ( )

= ( ) in 1

for some sequence { } =1 as above. Then for (R) we would have on
one hand,
Z

R

( + ) ( )
( ) =

Z

R

( ) ( )
( )

Z 1

0

0( ) = ( (0) (1)) as

while on the other hand,
Z

R

( + ) ( )
( )

Z

R
( ) ( )

These two equations imply
Z

R
( ) ( ) = (0) (1) for all (R) (29.10)

and in particular that
R

R ( ) ( ) = 0 for all (R\ {0 1}) By Corol-
lary 11.29, ( ) = 0 for — a.e. R\ {0 1} and hence ( ) = 0 for —
a.e. R But this clearly contradicts Eq. (29.10). This example also shows
that the unit ball in 1(R ) is not weakly sequentially compact. Compare
with Example 28.24.

Corollary 29.20. If 1 such that then
°

°

°

°

k k for all 6= 0 and R
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Proof. By Minkowski’s inequality for integrals, Theorem 10.29, we may
let in Eq. (29.9) to find

( ) =

Z 1

0

( ) ( + ) for a.e. R

and
°

°

°

°

Z 1

0

k( ) (·+ )k = k k

Proposition 29.21 (A weak form of Weyls Lemma). If 2(R ) such
that := 4 2(R ) then 2

¡

R
¢

for | | 2 Furthermore if N0
and 2

¡

R
¢

for all | | then 2
¡

R
¢

for | | + 2

Proof. By Proposition 29.13, there exists
¡

R
¢

such that
and = in 2

¡

R
¢

By integration by parts we find

Z

R
| ( )|2 = ( ( ) ( )) 2

( ) = 0 as

and hence by item 3. of Theorem 29.18, 2 for each Since

k k2 2 = lim

Z

R
| |2 = ( ) 2 ( ) as

we also learn that

k k2 2 = ( ) k k 2 · k k 2 (29.11)

Let us now consider

X

=1

Z

R
| |2 =

X

=1

Z

R

2

=
X

=1

Z

R
=
X

=1

Z

R

2

=

Z

R
| |2 = k k2 2

Replacing by in this calculation shows

X

=1

Z

R
| ( )|2 = k ( )k2 2 0 as
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and therefore by Lemma 29.4 (also see Exercise 29.34), 2
¡

R
¢

for
all and

X

=1

Z

R
| |2 = k k2 2 = k k2 2 (29.12)

Combining Eqs. (29.11) and (29.12) gives the estimate

X

| | 2

k k2 2 k k2 2 + k k 2 · k k 2 + k k2 2

= k k2 2 + k k 2 · k k 2 + k k2 2 (29.13)

Let us now further assume = 2
¡

R
¢

Then for R \ {0}
2(R ) and = = 2(R ) and hence by Eq. (29.13)

and what we have just proved, = 2 and

X

| | 2

°

°

°

°

2
2(R )

°

°

°

°

2
2 +

°

°

°

°

2 ·
°

°

°

°

2 +
°

°

°

°

2
2

k k2 2 + k k 2 · k k 2 + k k2 2
where the last inequality follows from Corollary 29.20. Therefore applying
Theorem 29.18 again we learn that 2(R ) for all | | 2 and

X

| | 2

k k2 2(R ) k k2 2 + k k 2 · k k 2 + k k2 2

k k2 2 + k k 2 · k k 2 + k k2 2
k k 2 · k k 2

+ k k 2 ·
q

k k 2 · k k 2 + k k2 2

The remainder of the proof, which is now an induction argument using the
above ideas, is left as an exercise to the reader.

Theorem 29.22. Suppose that is an open subset of R and is an open
precompact subset of

1. If 1 ( ) and ( ) then k k ( ) k k ( )

for all 0 | | 1
2dist( )

2. Suppose that 1 ( ) and assume there exists a constants
and (0 1

2dist( )) such that

k k ( ) for all 0 | |

Then ( ) and k k ( ) Moreover if := sup
then in fact ( ) and k k ( )
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Proof. 1. Let such that ¯ and ¯ is a compact subset of
For 1 ( ) ( ) and 0 | | 1

2dist( )

( ) =
( + ) ( )

=

Z 1

0

( + )

and in particular,

| ( )|
Z 1

0

| ( + )|

Therefore by Minikowski’s inequality for integrals,

k k ( )

Z 1

0

k (·+ )k ( ) k k ( ) (29.14)

For general ( ) with ( ) by Proposition 29.12, there
exists ( ) such that and in ( ) Therefore
we may replace by in Eq. (29.14) and then pass to the limit to find

k k ( ) k k ( ) k k ( )

2. If k k ( ) for all su ciently small then by Corollary 29.17
there exists 0 such that ( ) Hence if ( )

Z

= lim

Z

= lim

Z

=

Z

=

Z

Therefore = ( ) and k k ( ) k k ( )
1 Finally if

:= sup then by the dominated convergence theorem,

k k ( ) = lim k k ( )

We will now give a couple of applications of Theorem 29.18.

1 Here we have used the result that if and such that h i h i
for all ( ) then k k ( ) lim inf k k ( ) To prove this, we
have with =

1
that

|h i| = lim |h i| lim inf k k ( ) · k k ( )

and therefore,

k k ( ) = sup6=0

|h i|
k k ( )

lim inf k k ( )
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Lemma 29.23. Let R

1. If 1 and exists in 1 then
R

R ( ) = 0
2. If [1 ) satisfy 1 = 1+ 1 and are functions
such that and exists in and respectively, then ( ) exists
in and ( ) = · + · Moreover if = 1 we have the
integration by parts formula,

h i = h i (29.15)

3. If = 1 exists in 1 and 1(R ) (i.e. 1(R ) with
and its first derivatives being bounded) then ( ) exists in 1 and
( ) = · + · and again Eq. (29.15) holds.

Proof. 1) By item 3. of Theorem 29.18 there exists (R ) such
that and in 1 Then

Z

R
( ) = |0

Z

R
( + ) = |0

Z

R
( ) = 0

and letting proves the first assertion.
2) Similarly there exists (R ) such that and
in and and in as So by the standard

product rule and Remark 29.2, as and

( ) = · + · · + · in as

It now follows from another application of Theorem 29.18 that ( ) exists
in and ( ) = · + · Eq. (29.15) follows from this product rule
and item 1. when = 1
3) Let (R ) such that and in 1 as

Then as above, in 1 and ( ) · + in 1 as
In particular if (R ) then

h i = lim h i = lim h ( ) i
= lim h · + i = h · + i

This shows ( ) exists (weakly) and ( ) = · + · Again Eq.
(29.15) holds in this case by item 1. already proved.

Lemma 29.24. Let [1 ] satisfy 1+ 1 = 1+ 1

and R

1. If exists strongly in then ( ) exists strongly in and

( ) = ( )
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2. If exists strongly in then ( ) exists strongly in and

( ) =

3. If exists weakly in and (R ) then (R ) ( )
exists strongly in and

( ) = = ( )

Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple
computations:

°

°

°

°

( )
( )

°

°

°

°

=

°

°

°

°

( )

°

°

°

°

=

°

°

°

°

·

( )

¸
°

°

°

°

°

°

°

°

( )

°

°

°

°

k k

which tends to zero as 0 The second item is proved analogously, or just
make use of the fact that = and apply Item 1.
Using the fact that ( ·) (R ) and the definition of the weak

derivative,

( ) =

Z

R
( ) ( ) ( ) =

Z

R
( ) ( ( ·)) ( )

=

Z

R
( ) ( ) = ( )

Item 3. is a consequence of this equality and items 1. and 2.

29.2 The connection of Weak and pointwise derivatives

Proposition 29.25. Let = ( ) R be an open interval and 1 ( )
such that ( ) = 0 in 1 ( ) Then there exists C such that = a.e.
More generally, suppose : ( ) C is a linear functional such that
( 0) = 0 for all ( ) where 0( ) = ( ) then there exists C

such that

( ) = h i =
Z

( ) for all ( ) (29.16)
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Proof. Before giving a proof of the second assertion, let us show it includes
the first. Indeed, if ( ) :=

R

and ( ) = 0 then ( 0) = 0 for all
( ) and therefore there exists C such that

Z

= ( ) = h 1i =
Z

But this implies = a.e. So it only remains to prove the second assertion.
Let ( ) such that

R

= 1 Given ( ) (R)
let ( ) =

R

( ( ) ( )h 1i) Then 0( ) = ( ) ( )h 1i and
( ) as the reader should check. Therefore,

0 = ( ) = ( h i ) = ( ) h 1i ( )

which shows Eq. (29.16) holds with = ( ) This concludes the proof, how-
ever it will be instructive to give another proof of the first assertion.
Alternative proof of first assertion. Suppose 1 ( ) and ( ) =

0 and := as is in the proof of Lemma 29.9. Then 0 = ( ) = 0
so = for some constant C By Theorem 11.21, in 1 ( )
and therefore if = [ ] is a compact subinterval of

| | = 1
Z

| | 0 as

So { } =1 is a Cauchy sequence and therefore := lim exists and
= lim = a.e.

Theorem 29.26. Suppose 1 ( ) Then there exists a complex measure
on B such that

h 0i = ( ) :=

Z

for all ( ) (29.17)

i there exists a right continuous function of bounded variation such that
= a.e. In this case = i.e. (( ]) = ( ) ( ) for all

Proof. Suppose = a.e. where is as above and let = be the
associated measure on B Let ( ) = ( ) ( ) = (( ]) then
using Fubini’s theorem and the fundamental theorem of calculus,

h 0i = h 0i = h 0i =
Z

0( )
·
Z

1( ]( ) ( )

¸

=

Z Z

0( )1( ]( ) ( ) =

Z

( ) ( ) = ( )

Conversely if Eq. (29.17) holds for some measure let ( ) := (( ])
then working backwards from above,
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h 0i = ( ) =

Z

( ) ( ) =

Z Z

0( )1( ]( ) ( )

=

Z

0( ) ( )

This shows ( ) ( ) = 0 and therefore by Proposition 29.25, = +
a.e. for some constant C Since + is right continuous with bounded
variation, the proof is complete.

Proposition 29.27. Let R be an open interval and 1 ( ) Then
exists in 1 ( ) i has a continuous version ˜ which is absolutely

continuous on all compact subintervals of Moreover, = 0̃ a.e., where
0̃( ) is the usual pointwise derivative.

Proof. If is locally absolutely continuous and ( ) with
supp( ) [ ] then by integration by parts, Corollary 20.32,

Z

0 =

Z

0 =

Z

0 + | =
Z

0

This shows exists and = 0 1 ( )
Now suppose that exists in 1 ( ) and Define ( )

by ( ) :=
R

( ) Then is absolutely continuous on compacts and
therefore by fundamental theorem of calculus for absolutely continuous func-
tions (Theorem 20.31), 0( ) exists and is equal to ( ) for a.e.
Moreover, by the first part of the argument, exists and = and
so by Proposition 29.25 there is a constant such that

(̃ ) := ( ) + = ( ) for a.e.

Definition 29.28. Let and be metric spaces. A function : is
said to be Lipschitz if there exists such that

( ( ) ( 0)) ( 0) for all 0

and said to be locally Lipschitz if for all compact subsets there exists
such that

( ( ) ( 0)) ( 0) for all 0

Proposition 29.29. Let 1 ( ) Then there exists a locally Lipschitz
function ˜ : C such that ˜ = a.e. i 1 ( ) exists and is locally
(essentially) bounded for = 1 2
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Proof. Suppose = ˜ a.e. and ˜ is Lipschitz and let (1 ) and be a
precompact open set such that ¯ and let :=

©

: dist( ¯ )
ª

Then for dist( ¯ ) and therefore there is constant ( )
such that |˜( ) ˜( )| ( ) | | for all So for 0 | | 1
and R with | | = 1
Z

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

=

Z

¯

¯

¯

¯

˜( + ) ˜( )
¯

¯

¯

¯

( ) | |

Therefore Theorem 29.18 may be applied to conclude exists in and
moreover,

lim
0

˜( + ) ˜( )
= ( ) for — a.e.

Since there exists { } =1 R\ {0} such that lim = 0 and

| ( )| = lim

¯

¯

¯

¯

˜( + ) ˜( )
¯

¯

¯

¯

( ) for a.e.

it follows that k k ( ) where ( ) := lim 0 ( )
Conversely, let := { : dist( ) } and ( (0 1) [0 ))

such that
R

R ( ) = 1 ( ) = ( ) and := as in the
proof of Theorem 29.18. Suppose with ¯ and is su ciently
small. Then ( ) = | ( )| k k ( 1 )

=:

( ) and therefore for ¯ with | |

| ( ) ( )| =
¯

¯

¯

¯

Z 1

0

( + ( ))

¯

¯

¯

¯

=

¯

¯

¯

¯

Z 1

0

( ) · ( + ( ))

¯

¯

¯

¯

Z 1

0

| | · | ( + ( ))| ( ) | |
(29.18)

By passing to a subsequence if necessary, we may assume that lim ( ) =
( ) for — a.e. ¯ and then letting in Eq. (29.18) implies

| ( ) ( )| ( ) | | for all \ and | | (29.19)

where ¯ is a — null set. Define ˜ : ¯ C by ˜ = on ¯ \ and
˜ ( ) = lim ( ) if Then clearly ˜ = a.e. on ¯ and it is easy

to show ˜ is well defined and ˜ : ¯ C is continuous and still satisfies

|˜ ( ) ˜ ( )| | | for ¯ with | |
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Since ˜ is continuous on ¯ there exists such that |˜ | on
¯ Hence if ¯ with | | we find

|˜ ( ) ˜ ( )|
| |

2

and hence

|˜ ( ) ˜ ( )| max

½

2
¾

| | for ¯

showing ˜ is Lipschitz on ¯ To complete the proof, choose precompact
open sets such that ¯

+1 for all and for let
˜( ) := ˜ ( )
Here is an alternative way to construct the function ˜ above. For
\

| ( ) ( )| =
¯

¯

¯

¯

Z

( ) ( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

[ ( ) ( )]

Z

| ( ) ( )| ( )
Z

| | ( )

wherein the last equality we have used Eq. (29.19) with replaced by for
some small 0 Letting :=

R | | ( ) we have shown

k k 0 as

and consequently

k k = k k 2 0 as

Therefore, converges uniformly to a continuous function ˜
The next theorem is from Chapter 1. of Maz’ja [6].

Theorem 29.30. Let 1 and be an open subset of R R be written
as = ( ) R 1 ×R

:=
©

R 1 : ({ } ×R) 6= ª

and ( ) Then exists weakly in ( ) i there is a version ˜ of
such that for a.e. the function ˜( ) is absolutely continuous,
( ) = ˜( ) a.e., and

°

°

˜
°

°

( )

Proof. For the proof of Theorem 29.30, it su ces to consider the case
where = (0 1) Write as = ( ) × (0 1) = (0 1) 1 × (0 1)
and for the weak derivative By assumption

Z

| ( )| = k k1 k k
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and so by Fubini’s theorem there exists a set of full measure, 0 such
that

Z 1

0

| ( )| for 0

So for 0 the function ( ) :=
R

0
( ) is well defined and ab-

solutely continuous in with ( ) = ( ) for a.e. (0 1) Let
( ) and ((0 1)) then integration by parts for absolutely

functions implies
Z 1

0

( ) ˙( ) =

Z 1

0

( ) ( ) for all 0

Multiplying both sides of this equation by ( ) and integrating in shows
Z

( ) ˙( ) ( ) =

Z

( ) ( ) ( )

=

Z

( ) ( ) ( )

Using the definition of the weak derivative, this equation may be written as
Z

( ) ˙( ) ( ) =

Z

( ) ( ) ( )

and comparing the last two equations shows
Z

[ ( ) ( )] ˙( ) ( ) = 0

Since ( ) is arbitrary, this implies there exists a set 1 0 of full
measure such that

Z

[ ( ) ( )] ˙( ) = 0 for all 1

from which we conclude, using Proposition 29.25, that ( ) = ( )+ ( )
for where 1 ( ) = 1 here denotes — dimensional Lebesgue
measure. In conclusion we have shown that

( ) = ˜( ) :=

Z

0

( ) + ( ) for all 1 and (29.20)

We can be more precise about the formula for ˜( ) by integrating both
sides of Eq. (29.20) on we learn

( ) =

Z 1

0

Z

0

( )

Z 1

0

( )

=

Z 1

0

(1 ) ( )

Z 1

0

( )

=

Z 1

0

[(1 ) ( ) ( )]
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and hence

˜( ) :=

Z

0

( ) +

Z 1

0

[(1 ) ( ) ( )]

which is well defined for 0

For the converse suppose that such a ˜ exists, then for ( )

Z

( ) ( ) =

Z

˜( ) ( )

=

Z

˜( )
( )

wherein we have used integration by parts for absolutely continuous functions.
From this equation we learn the weak derivative ( ) exists and is given
by ˜( ) a.e.

29.3 Exercises

Exercise 29.31. Give another proof of Lemma 29.10 base on Proposition
29.12.

Exercise 29.32. Prove Proposition 29.13. Hints: 1. Use as defined in
the proof of Proposition 29.12 to show it su ces to consider the case where

¡

R
¢ ¡

R
¢

with
¡

R
¢

for all N0 2. Then let
( (0 1) [0 1]) such that = 1 on a neighborhood of 0 and let

( ) := ( ) ( )

Exercise 29.33. Suppose ( ) is a polynomial in R (1 ) :=

1 such that ( ) and such that ( ) Show
h ( ) i = h ( ) i
Exercise 29.34. Let [1 ) be a multi index (if = 0 let 0 be the
identity operator on )

( ) := { (R ) : exists weakly in (R )}
and for ( ) (the domain of ) let denote the — weak derivative
of (See Definition 29.3.)

1. Show is a densely defined operator on i.e. ( ) is a dense linear
subspace of and : ( ) is a linear transformation.

2. Show : ( ) is a closed operator, i.e. the graph,

( ) := {( ) × : ( )}
is a closed subspace of ×
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3. Show : ( ) is not bounded unless = 0 (The norm on
( ) is taken to be the — norm.)

Exercise 29.35. Let [1 ) and be a multi index. Show
exists weakly (see Definition 29.3) in i there exists (R ) and

such that and in as Hints: See
exercises 29.32 and 29.34.

Exercise 29.36. Folland 8.8 on p. 246.

Exercise 29.37. Assume = 1 and let = 1 where 1 = (1) R1 = R

1. Let ( ) = | | show exists weakly in 1 (R) and ( ) = sgn( ) for
— a.e.

2. Show ( ) does not exists weakly in 1 (R)
3. Generalize item 1. as follows. Suppose (R R) and there exists a
finite set := { 1 2 · · · } R such that 1(R \ R)
Assuming 1 (R) show exists weakly and ( ) ( ) = ( )
for — a.e.

Exercise 29.38. Suppose that 1 ( ) and R and { } =1 is the
standard basis for R If := exists weakly in 1 ( ) for all =
1 2 then exists weakly in 1 ( ) and =

P

=1

Exercise 29.39. Suppose 1 (R ) and exists weakly and = 0
in 1 (R ) for all R Then there exists C such that ( ) = for
— a.e. R Hint: See steps 1. and 2. in the outline given in Exercise 29.40
below.

Exercise 29.40 (A generalization of Exercise 29.39). Suppose is a
connected open subset of R and 1 ( ) If = 0 weakly for Z+
with | | = +1 then ( ) = ( ) for — a.e. where ( ) is a polynomial
of degree at most Here is an outline.

1. Suppose 0 and 0 such that := 0( ) and let be a
sequence of approximate — functions such supp( ) 0(1 ) for all
Then for large enough, ( ) = ( ) on for | | = + 1
Now use Taylor’s theorem to conclude there exists a polynomial of
degree at most such that = on

2. Show := lim exists on and then let in step 1. to show
there exists a polynomial of degree at most such that = a.e. on

3. Use Taylor’s theorem to show if and are two polynomials on R which
agree on an open set then =

4. Finish the proof with a connectedness argument using the results of steps
2. and 3. above.
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Exercise 29.41. Suppose R and R Assume 1 ( )
and that exists weakly in 1 ( ), show also exists weakly and

=

Exercise 29.42. Let = 2 and ( ) = 1 0 Show (1 1) = 0 weakly in
1 despite the fact that 1 does not exist weakly in 1 !
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Complex Variable Theory



30

Complex Di erentiable Functions

30.1 Basic Facts About Complex Numbers

Definition 30.1. C = R2 and we write 1 = (1 0) and = (0 1). As usual C
becomes a field with the multiplication rule determined by 12 = 1 and 2 = 1,
i.e.

( + )( + ) ( ) + ( + )

Notation 30.2 If = + with R let ¯ = and

| |2 ¯ = 2 + 2

Also notice that if 6= 0 then is invertible with inverse given by

1 =
1
=

¯

| |2
Given = + C the map C C is complex and hence

real linear so we may view this a linear transformation : R2 R2 To
work out the matrix of this transformation, let = + , then the map
is + = ( ) + ( + ) which written in terms of real and
imaginary parts is equivalent to

µ ¶µ ¶

=

µ

+

¶

Thus

=

µ ¶

= + where =

µ

0 1
1 0

¶

Remark 30.3. Continuing the notation above, = det( ) = 2 +
2 = | |2 and = for all C Moreover the ready may
easily check that a real 2 × 2 matrix is equal to for some C i
0 = [ ] =: Hence C and the set of real 2 × 2 matrices such
that 0 = [ ] are algebraically isomorphic objects.
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30.2 The complex derivative

Definition 30.4. A function : C C is complex di erentiable
at 0 if

lim
0

( ) ( 0)

0
= (30.1)

exists.

Proposition 30.5. A function : C C is complex di erentiable i
: C is di erentiable (in the real sense as a function from R2

R2) and [ 0( 0) ] = 0, i.e. by Remark 30.3,

0( 0) = =

µ ¶

for some = + C

Proof. Eq. (30.1) is equivalent to the equation:

( ) = ( 0) + ( 0) + ( 0)

= ( 0) + ( 0) + ( 0) (30.2)

and hence is complex di erentiable i is di erentiable and the di erential
is of the form 0( 0) = for some C

Corollary 30.6 (Cauchy Riemann Equations). : C is complex
di erentiable at 0 i 0( 0) exists1 and, writing 0 = 0 + 0

( 0 + 0)
= ( 0 + 0) (30.3)

or in short we write + = 0

Proof. The di erential 0( 0) is, in general, an arbitrary matrix of the
form

0( 0) =

· ¸

where

( 0) = + and ( 0) = + (30.4)

Since is complex di erentiable at 0 i = and = which is easily
seen to be equivalent to Eq. (30.3) by Eq. (30.4) and comparing the real and
imaginary parts of ( 0) and ( 0)

1 For example this is satisfied if If : C is continuous at 0 and exists
in a neighborhood of 0 and are continuous near 0
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Second Proof. If is complex di erentiable at 0 = 0 + 0 then by
the chain rule,

( 0 + 0) =
0( 0 + 0) =

( 0 + 0)

Conversely if is real di erentiable at 0 there exists a real linear transfor-
mation : C = R2 C such that

( ) = ( 0) + ( 0) + ( 0) (30.5)

and as usual this implies

( 0)
= (1) and

( 0)
= ( )

where 1 = (1 0) and = (0 1) under the identification of C with R2 So if Eq.
(30.3) holds, we have

( ) = (1)

from which it follows that is complex linear. Hence if we set := (1) we
have

( + ) = (1) + ( ) = (1) + (1) = ( + )

which shows Eq. (30.5) may be written as

( ) = ( 0) + ( 0) + ( 0)

This is equivalent to saying is complex di erentiable at 0 and 0( 0) =

Notation 30.7 Let

=
1

2

µ

+

¶

and =
1

2

µ ¶

With this notation we have

+ ¯ ¯ =
1

2

µ ¶

( + ) +
1

2

µ

+

¶

( )

= + =

In particular if ( ) C is a smooth curve, then

( ( )) = ( ( )) 0( ) + ¯ ( ( ))¯0( )

Corollary 30.8. Let C be a given open set and : C be a 1 —
function in the real variable sense. Then the following are equivalent:
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1. The complex derivative ( ) exists for all 2

2. The real di erential 0( ) satisfies [ 0( ) ] = 0 for all
3. The function satisfies the Cauchy Riemann equations ¯ = 0 on

Notation 30.9 A function 1( C) satisfying any and hence all of the
conditions in Corollary 30.8 is said to be a holomorphic or an analytic
function on We will let ( ) denote the space of holomorphic functions
on

Corollary 30.10. The chain rule holds for complex di erentiable functions.
In particular, C C C are functions, 0 and 0 =
( 0) Assume that 0( 0) exists, 0( 0) exists then ( )0( 0) exists and
is given by

( )0( 0) =
0( ( 0))

0( 0) (30.6)

Proof. This is a consequence of the chain rule for : R2 R2 when
restricted to those functions whose di erentials commute with Alternatively,
one can simply follow the usual proof in the complex category as follows:

( ) = ( ( )) = ( 0) +
0( 0)( ( ) ( 0)) + ( ( ) ( 0))

and hence

( ) ( ( 0))

0
= 0( 0)

( ) ( 0)

0
+

( ( ) ( 0))

0
(30.7)

Since ( ( ) ( 0))

0
0 as 0 we may pass to the limit 0 in Eq.

(30.7) to prove Eq. (30.6).

Lemma 30.11 (Converse to the Chain rule). Suppose :
C C and : C C are functions such that is continu-
ous, ( ) and := ( ) then ( \ { : 0( ( )) = 0})
Moreover 0( ) = 0( ) 0( ( )) when and 0( ( )) 6= 0
Proof. This follow from the previous converse to the chain rule or directly

as follows3. Suppose that 0 and 0( ( 0)) 6= 0 On one hand
( ) = ( 0) +

0( 0)( 0) + ( 0)

while on the other

( ) = ( ( )) = ( ( 0)) +
0( ( 0)( ( ) ( 0)) + ( ( ) ( 0))

Combining these equations shows

2 As we will see later in Theorem 30.48, the assumption that is 1 in this condition
is redundant. Complex di erentiablity of at all points already implies
that is ( C)!!

3 One could also apeal to the inverse function theorem here as well.
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0( 0)( 0) =
0( ( 0))( ( ) ( 0))+ ( ( ) ( 0))+ ( 0) (30.8)

Since 0( ( 0)) 6= 0 we may conclude that

( ) ( 0) = ( ( ) ( 0)) + ( 0)

in particular it follow that

| ( ) ( 0)| 1

2
| ( ) ( 0)|+ ( 0) for near 0

and hence that ( ) ( 0) = ( 0) Using this back in Eq. (30.8) then
shows that

0( 0)( 0) =
0( ( 0))( ( ) ( 0)) + ( 0)

or equivalently that

( ) ( 0) =
0( 0)

0( ( 0))
( 0) + ( 0)

Example 30.12. Here are some examples.

1. ( ) = is analytic and more generally ( ) =
P

=0
with C are

analytic on C
2. If ( ) then · + ( ) and ( \ { = 0})
3. ( ) = ¯ is not analytic and 1(C R) is analytic i is constant.

The next theorem shows that analytic functions may be averaged to pro-
duce new analytic functions.

Theorem 30.13. Let : × C be a function such that

1. (· ) ( ) for all and write 0( ) for ( )
2. There exists 1( ) such that | 0( )| ( ) on ×
3. ( ·) 1( ) for

Then

( ) :=

Z

( ) ( )

is holomorphic on and the complex derivative is given by

0( ) =
Z

0( ) ( )
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Exercise 30.14. Prove Theorem 30.13 using the dominated convergence the-
orem along with the mean value inequality of Corollary 4.10. Alternatively
one may use the corresponding real variable di erentiation theorem to show

and exists and are continuous and then to show ¯ = 0

As an application we will shows that power series give example of complex
di erentiable functions.

Corollary 30.15. Suppose that { } =0 C is a sequence of complex num-
bers such that series

( ) :=
X

=0

( 0)

is convergent for | 0| where is some positive number. Then :
( 0 ) C is complex di erentiable on ( 0 ) and

0( ) =
X

=0

( 0)
1 =

X

=1

( 0)
1 (30.9)

By induction it follows that ( ) exists for all and that

( )( ) =
X

=0

( 1) ( + 1) ( 0)
1

Proof. Let be given and choose ( ) Since = 0 +

( 0 ) by assumption the series
P

=0
is convergent and in particular

:= sup | | We now apply Theorem 30.13 with = N {0}
being counting measure, = ( 0 ) and ( ) := ( 0) Since

| 0( )| = | ( 0)
1| | | 1

1 ³ ´ 1

| | 1 ³ ´ 1

and the function ( ) :=
¡ ¢ 1

is summable (by the Ratio test for
example), we may use as our dominating function. It then follows from
Theorem 30.13

( ) =

Z

( ) ( ) =
X

=0

( 0)

is complex di erentiable with the di erential given as in Eq. (30.9).

Example 30.16. Let C := C\ { } and ( ) = 1 Then ( )
Let 0 and write = 0 + then
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( ) =
1

=
1

0
=

1

0

1

1 ( 0)

=
1

0

X

=0

µ

0

¶

=
X

=0

µ

1

0

¶ +1

( 0)

which is valid for | 0| | 0| Summarizing this computation we have
shown

1
=
X

=0

µ

1

0

¶ +1

( 0) for | 0| | 0| (30.10)

Proposition 30.17. The exponential function =
P

=0
! is holomorphic on

C and = Moreover,

1. ( + ) = for all C
2. (Euler’s Formula) = cos + sin for all R and | | = 1 for all

R
3. + = (cos + sin ) for all R
4. =

Proof. By the chain rule for functions of a real variable,

[ ( + )] = ( + ) + ( + ) = 0

and hence ( + ) is constant in So by evaluating this expression at
= 0 and = 1 we find

( + ) = for all C (30.11)

Choose = 0 in Eq. (30.11) implies = 1 i.e. = 1 which used
back in Eq. (30.11 proves item 1. Similarly,

[ (cos + sin )]

= (cos + sin ) + ( sin + cos ) = 0

Hence (cos + sin ) = (cos + sin )| =0 = 1 which proves item 2.
Item 3. is a consequence of items 1) and 2) and item 4) follows from item 3)
or directly from the power series expansion.

Remark 30.18. One could define by = (cos( ) + sin( )) when =
+ and then use the Cauchy Riemann equations to prove is complex

di erentiable.
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Exercise 30.19. By comparing the real and imaginary parts of the equality
= ( + ) prove the formulas:

cos( + ) = cos cos sin sin and

sin( + ) = cos sin + cos sin

for all R

Exercise 30.20. Find all possible solutions to the equation = where
and are complex numbers. Let log( ) { : = } Note that log :

C (subsets of C). One often writes log : C C and calls log a multi-valued
function. A continuous function defined on some open subset of C is called
a branch of log if ( ) log( ) for all Use the reverse chain rule to
show any branch of log is holomorphic on its domain of definition and that
0( ) = 1 for all

Exercise 30.21. Let = { = C : 0 and } =
C \ ( 0] and define : C by ( ) ln( ) + for 0 and
| | Show that is a branch of log This branch of the log function is
often called the principle value branch of log The line ( 0] where is
not defined is called a branch cut.

Exercise 30.22. Let { C : = } The “function”
is another example of a multi-valued function. Let ( ) be any branch of

, that is is a continuous function on an open subset of C such that
( ) . Show that is holomorphic away from = 0 and that 0( ) =
1 ( )

Exercise 30.23. Let be any branch of the log function. Define ( )

for all C and ( ) where ( ) denotes the domain of Show that
1 is a branch of and also show that = 1

30.3 Contour integrals

Definition 30.24. Suppose that : [ ] is a Piecewise 1 function and
: C is continuous, we define the contour integral of along (written

R

( ) ) by
Z

( ) :=

Z

( ( )) ˙ ( )

Notation 30.25 Given C and a 2 map : [ ] × [0 1] let
:= (· ) 1([ ] ) In this way, the map may be viewed as a

map
[0 1] := (· ) 2([ ] )

i.e. is a path of contours in
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Definition 30.26. Given a region and 2 ([ ] ) we will write
' in provided there exists a 2 — map : [ ]× [0 1] such that
0 = 1 = and satisfies either of the following two conditions:

1. ( ) = ( ) = 0 for all [0 1] i.e. the end points of the paths
for [0 1] are fixed.

2. ( ) = ( ) for all [0 1] i.e. is a loop in for all [0 1]

Proposition 30.27. Let be a region and 2([ ] ) be two con-
tours such that ' in Then

Z

( ) =

Z

( ) for all ( )

Proof. Let : [ ]× [0 1] be as in Definition 30.26, then it su ces
to show the function

( ) :=

Z

( )

is constant for [0 1] For this we compute:

0( ) =
Z

( ( )) ˙ ( ) =

Z

[ ( ( )) ˙ ( )]

=

Z

{ 0( ( )) 0( ) ˙ ( ) + ( ( )) ˙ 0( )}

=

Z

[ ( ( )) 0( )]

= [ ( ( )) 0( )]
¯

¯

¯

=

=
= 0

where the last equality is a consequence of either of the two endpoint assump-
tions of Definition 30.26.

Remark 30.28. For those who know about di erential forms and such we may
generalize the above computation to 1( ) using = + ¯ ¯ We
then find

658 30 Complex Di erentiable Functions

0( ) =
Z

( ( )) ˙ ( ) =

Z

[ ( ( )) ˙ ( )]

=

Z
½£

( ( )) 0( ) + ¯ ( ( ))¯0( )
¤

˙ ( )
+ ( ( )) ˙ 0( )

¾

=

Z
½£

( ( )) ˙ ( ) 0( ) + ¯ ( ( ))¯ ( ) 0( )
¤

+ ( ( )) ˙ 0( )

¾

+

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

[ ( ( )) 0( )]

+

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

= [ ( ( )) 0( )]
¯

¯

¯

=

=

+

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

Integrating this expression on then shows that
Z

1

Z

0

=

Z 1

0

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

¯( ) =

Z

¯ ¯

We have just given a proof of Green’s theorem in this context.

The main point of this section is to prove the following theorem.

Theorem 30.29. Let C be an open set and 1( C) then the
following statements are equivalent:

1. ( )
2. For all disks = ( 0 ) such that ¯

( ) =
1

2

I

( )
for all (30.12)

3. For all disks = ( 0 ) such that ¯ ( ) may be represented as
a convergent power series

( ) =
X

=0

( 0) for all (30.13)

In particular ( C)
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Moreover if is as above, we have

( )( ) =
!

2

I

( )

( )
for all (30.14)

and the coe cients in Eq. (30.13) are given by

= ( )( 0) ! =
1

2

I

( )

( 0) +1

Proof. 1) = 2) For [0 1] let = (1 ) 0+ := dist( ) =
| 0| and ( ) = + for 0 2 Notice that 0 is a

parametrization of 0 ' 1 in \ { } ( ) is in ( \ { }) and
hence by Proposition 30.27,

I

( )
=

Z

0

( )
=

Z

1

( )

Now let ( ) = + 1 for 0 2 and (0 1] Then 1 = 1 and
1 ' in \ { } and so again by Proposition 30.27,

I

( )
=

Z

1

( )
=

Z

( )

=

Z 2

0

( + 1 )

1
1

=

Z 2

0

( + 1 ) 2 ( ) as 0

2) = 3) By 2) and Eq. (30.10)

( ) =
1

2

I

( )

=
1

2

I

( )
X

=0

µ

1

0

¶ +1

( 0)

=
1

2

X

=0

Ã

I

( )

µ

1

0

¶ +1
!

( 0)

(The reader should justify the interchange of the sum and the integral.) The
last equation proves Eq. (30.13) and shows that

=
1

2

I

( )

( 0) +1

Also using Theorem 30.13 we may di erentiate Eq. (30.12) repeatedly to find
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( )( ) =
!

2

I

( )

( ) +1 for all (30.15)

which evaluated at = 0 shows that = ( )( 0) !
3) = 1)This follows from Corollary 30.15 and the fact that being complex

di erentiable is a local property.
The proof of the theorem also reveals the following corollary.

Corollary 30.30. If ( ) then 0 ( ) and by induction ( )

( ) with ( ) defined as in Eq. (30.15).

Corollary 30.31 (Cauchy Estimates). Suppose that ( ) where
C and suppose that ( 0 ) then

¯

¯

¯

( )( 0)
¯

¯

¯

!
sup

| 0|=
| ( )| (30.16)

Proof. From Eq. (30.15) evaluated at = 0 and letting ( ) = 0 +
for 0 2 we find

( )( 0) =
!

2

I

( )

( 0)
+1 =

!

2

Z

( )

( 0)
+1

=
!

2

Z 2

0

( 0 + )

( )
+1

=
!

2

Z 2

0

( 0 + )
(30.17)

Therefore,

¯

¯

¯

( )( 0)
¯

¯

¯

!

2

Z 2

0

¯

¯

¯

¯

( 0 + )
¯

¯

¯

¯

=
!

2

Z 2

0

¯

¯ ( 0 + )
¯

¯

!
sup

| 0|=
| ( )|

Exercise 30.32. Show that Theorem 30.13 is still valid with conditions 2)
and 3) in the hypothesis being replaced by: there exists 1( ) such
that | | ( )| ( )
Hint: Use the Cauchy estimates.

Corollary 30.33 ( Liouville’s Theorem). If (C) and is bounded
then is constant.

Proof. This follows from Eq. (30.16) with = 1 and the letting
to find 0( 0) = 0 for all 0 C
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Corollary 30.34 (Fundamental theorem of algebra). Every polynomial
( ) of degree larger than 0 has a root in C

Proof. Suppose that ( ) is polynomial with no roots in Then ( ) =
1 ( ) is a bounded holomorphic function and hence constant. This shows
that ( ) is a constant, i.e. has degree zero.

Definition 30.35.We say that is a region if is a connected open subset
of C

Corollary 30.36. Let be a region and ( ) and ( ) = 1({0})
denote the zero set of Then either 0 or ( ) has no accumulation
points in More generally if ( ) and the set { : ( ) = ( )}
has an accumulation point in then

Proof. The second statement follows from the first by considering the
function For the proof of the first assertion we will work strictly in
with the relative topology.
Let denote the set of accumulation points of ( ) (in ) By continuity

of ( ) and is a closed4 subset of with the relative topology. The
proof is finished by showing that is open and thus = or = because
is connected.
Suppose that 0 and express ( ) as its power series expansion

( ) =
X

=0

( 0)

for near 0 Since 0 = ( 0) it follows that 0 = 0 Let ( )\{ 0} such
that lim = 0 Then

0 =
( )

0
=
X

=1

( 0)
1

1 as

so that ( ) =
P

=2 ( 0) Similarly

0 =
( )

( 0)
2 =

X

=2

( 0)
2

2 as

and continuing by induction, it follows that 0 i.e. is zero in a neigh-
borhood of 0

Definition 30.37. For C let

cos( ) =
+

2
and sin( ) =

2
4 Recall that i 0 6= for all C where 0 := \ { } Hence

i there exists C such that 0 = Since 0 is open, it
follows that 0 and thus So is open, i.e. is closed.

662 30 Complex Di erentiable Functions

Exercise 30.38. Show the these formula are consistent with the usual def-
inition of cos and sin when is real. Also shows that the addition formula
in Exercise 30.19 are valid for C This can be done with no additional
computations by making use of Corollary 30.36.

Exercise 30.39. Let

( ) :=
1

2

Z

R
exp(

1

2
2 + ) ( ) for C

Show ( ) = exp( 12
2) using the following outline:

1. Show ( )
2. Show ( ) = exp(12

2) for R by completing the squares and using the
translation invariance of Also recall that you have proved in the first
quarter that (0) = 1

3. Conclude ( ) = exp(12
2) for all C using Corollary 30.36.

Corollary 30.40 (Mean vaule property). Let C and ( )
then satisfies the mean value property

( 0) =
1

2

Z 2

0

( 0 + ) (30.18)

which holds for all 0 and 0 such that ( 0 )

Proof. Take = 0 in Eq. (30.17).

Proposition 30.41. Suppose that is a connected open subset of C If
( ) is a function such that | | has a local maximum at 0 then is

constant.

Proof. Let 0 such that ¯ = ( 0 ) and | ( )| | ( 0)| =:
for ¯ By replacing by with an appropriate R we may assume
= ( 0) Letting ( ) = Re ( ) and ( ) = Im ( ) we learn from Eq.

(30.18) that

= ( 0) = Re ( 0) =
1

2

Z 2

0

( 0 + )

1

2

Z 2

0

min( ( 0 + ) 0)

since
¯

¯ ( 0 + )
¯

¯

¯

¯ ( 0 + )
¯

¯ for all From the previous equation
it follows that

0 =

Z 2

0

©

min( ( 0 + ) 0)
ª
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which in turn implies that = min( ( 0+ ) 0) since min( ( 0+
) 0) is positive and continuous. So we have proved = ( 0 + ) for

all Since

2
¯

¯ ( 0 + )
¯

¯

2
= 2( 0 + ) + 2( 0 + ) = 2 + 2( 0 + )

we find ( 0 + ) = 0 for all Thus we have shown ( 0 + ) = for
all and hence by Corollary 30.36, ( ) = for all
The following lemma makes the same conclusion as Proposition 30.41 using

the Cauchy Riemann equations. This Lemma may be skipped.

Lemma 30.42. Suppose that ( ) where = ( 0 ) for some 0
If | ( )| = is constant on then is constant on

Proof. If = 0 we are done, so assume that 0 By assumption

0 = 2 = | |2 = ( ¯ ) = ¯ · + ¯

= ¯ = ¯ 0

wherein we have used

¯=
1

2
( ) ¯=

1

2
( + ) ( ) = ¯ = 0

by the Cauchy Riemann equations. Hence 0 = 0 and is constant.

Corollary 30.43 (Maximum modulous principle). Let be a bounded
region and ( ) ( ) Then for all | ( )| sup | ( )|
Furthermore if there exists 0 such that | ( 0)| = sup | ( )| then is

constant.

Proof. If there exists 0 such that | ( 0)| = max | ( )| then
Proposition 30.41 implies that is constant and hence | ( )| = sup | ( )|
If no such 0 exists then | ( )| sup | ( )| for all ¯

30.4 Weak characterizations of H( )

The next theorem is the deepest theorem of this section.

Theorem 30.44. Let C and : C is a function which is complex
di erentiable at each point Then

H

( ) = 0 for all solid triangles
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Fig. 30.1. Spliting into four similar triangles of equal size.

Proof. Write = 1 2 3 4 as in Figure 30.1 below.
Let 1 { 1 2 3 4} such that |

R

( ) | = max{| R ( ) | : =

1 2 3 4} then

|
Z

( ) | = |
4
X

=1

Z

( ) |
4
X

=1

|
Z

( ) | 4|
Z

1

( ) |

Repeating the above argument with replaced by 1 again and again, we
find by induction there are triangles { } =1 such that
1. 1 2 3

2. ( ) = 2 ( ) where ( ) denotes the length of the boundary of
3. diam( ) = 2 diam( ) and

|
Z

( ) | 4 |
Z

( ) | (30.19)

By finite intersection property of compact sets there exists 0

T

=1
Because

( ) = ( 0) +
0( 0)( 0) + ( 0)

we find



30.4 Weak characterizations of ( ) 665
¯

¯

¯

¯

¯

¯

4

Z

( )

¯

¯

¯

¯

¯

¯

= 4

¯

¯

¯

¯

¯

¯

Z

( 0) +

Z

0( 0)( 0) +

Z

( 0)

¯

¯

¯

¯

¯

¯

= 4

¯

¯

¯

¯

¯

¯

Z

( 0)

¯

¯

¯

¯

¯

¯

4

Z

| 0| | |

where 0 as Since
Z

| 0| | | diam( ) ( ) = 2 diam( )2 ( )

= 4 diam( ) ( )

we see

4

¯

¯

¯

¯

¯

¯

Z

( )

¯

¯

¯

¯

¯

¯

4 4 diam( ) ( ) = 0 as

Hence by Eq. (30.19),
R

( ) = 0

Theorem 30.45 (Morera’s Theorem). Suppose that C and
( ) is a complex function such that

Z

( ) = 0 for all solid triangles (30.20)

then ( )

Proof. Let = ( 0 ) be a disk such that ¯ and for let

( ) =

Z

[ 0 ]

( )

where [ 0 ] is by definition the contour, ( ) = (1 ) 0 + for 0 1
For we have, using Eq. (30.20),

( ) ( ) =

Z

[ ]

( ) =

Z 1

0

( + ( ))( )

= ( )

Z 1

0

( + ( ))

From this equation and the dominated convergence theorem we learn that
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( ) ( )
=

Z 1

0

( + ( )) ( ) as

Hence 0 = so that ( ) Corollary 30.30 now implies = 0 ( )
Since was an arbitrary disk contained in and the condition for being in
( ) is local we conclude that ( )
The method of the proof above also gives the following corollary.

Corollary 30.46. Suppose that C is convex open set. Then for every
( ) there exists ( ) such that 0 = In fact fixing a point

0 we may define by

( ) =

Z

[ 0 ]

( ) for all

Exercise 30.47. Let C and { } ( ) be a sequence of functions
such that ( ) = lim ( ) exists for all and the convergence is
uniform on compact subsets of Show ( ) and 0( ) = lim 0 ( )
Hint: Use Morera’s theorem to show ( ) and then use Eq. (30.14)

with = 1 to prove 0( ) = lim 0 ( )

Theorem 30.48. Let C be an open set. Then

( ) =

½

: C such that
( )

exists for all
¾

(30.21)

In other words, if : C is complex di erentiable at all points of then
0 is automatically continuous and hence by Theorem 30.29!!!

Proof. Combine Theorems 30.44 and 30.45.

Corollary 30.49 (Removable singularities). Let C 0 and
( \ { 0}) If lim sup 0

| ( )| i.e. sup
0 | 0|

| ( )| for

some 0 then lim
0

( ) exists. Moreover if we extend to by setting

( 0) = lim
0

( ) then ( )

Proof. Set

( ) =

½

( 0)
2 ( ) for \ { 0}

0 for = 0

Then 0( 0) exists and is equal to zero. Therefore 0( ) exists for all
and hence ( ) We may now expand into a power series using ( 0) =

0( 0) = 0 to learn ( ) =
P

=2
( 0) which implies
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( ) =
( )

( 0)2
=
X

=0

( 0)
2 for 0 | 0|

Therefore, lim 0 ( ) = 2 exists. Defining ( 0) = 2 we have ( ) =
P

=0
( 0)

2 for near 0 This shows that is holomorphic in a neigh-

borhood of 0 and since was already holomorphic away from 0 ( )

Exercise 30.50. Show
Z 1

1

sin
=

Z

sin
as (30.22)

using the following method.5

1. Show that

( ) =

½

1 sin for 6= 0
1 if = 0

defines a holomorphic function on C
2. Let denote the straight line path from to 1 along the real axis
followed by the contour for going from to 2 and then followed by
the straight line path from 1 to Explain why

Z

sin
=

Z

sin
µ

=
1

2

Z

1

2

Z
¶

3. Let + denote the path with going from 0 to and denote
the path with going from to 2 By deforming paths and using
the Cauchy integral formula, show

Z

+ +
= 2 and

Z

= 0

4. Show (by writing out the integrals explicitly) that

lim

Z

+
= 0 = lim

Z

5. Conclude from steps 3. and 4. that Eq. (30.22) holds.

5 In previous notes we evaluated this limit by real variable techniques based on the
identity that 1 =

R

0
for 0
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30.5 Summary of Results

Theorem 30.51. Let C be an open subset and : C be a given
function. If 0( ) exists for all then in fact has complex derivatives
to all orders and hence ( ) Set ( ) to be the set of holomorphic
functions on
Now assume that 0( ) Then the following are equivalent:

1. ( )
2.
H

( ) = 0 for all triangles .
3.
H

( ) = 0 for all “nice” regions .
4.
H

( ) = 0 for all closed paths in which are null-homotopic.
5. 1( ) and ¯ 0 or equivalently if ( + ) = ( ) + ( )
then the pair of real valued functions should satisfy

" #

· ¸

=

·

0
0

¸

6. For all closed discs and

( ) =

I

( )

7. For all 0 and 0 such that ( 0 ) the function restricted
to ( 0 ) may be written as a power series:

( ) =
X

=0

( 0) for ( 0 ).

Furthermore

= ( )( 0) ! =
1

2

I

| 0|=

( )

( 0) +1

where 0

Remark 30.52. The operator =

" #

is an example of an elliptic

di erential operator. This means that if is replaced by 1 and is replaced

by 2 then the “principal symbol” of ˆ( )

·

1 2

2 1

¸

is an invertible

matrix for all = ( 1 2) 6= 0 Solutions to equations of the form = where
is an elliptic operator have the property that the solution is “smoother”

than the forcing function Another example of an elliptic di erential operator
is the Laplacian =

2

2 +
2

2 for which ˆ( ) = 2
1+

2
2 is invertible provided

6= 0 The wave operator ¤ = 2

2

2

2 for which ¤̂( ) = 2
1

2
2 is not elliptic

and also does not have the smoothing properties of an elliptic operator.
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30.6 Exercises

1. Set =
P

=0 ! Show that = (cos( ) + sin( )) and that =

= and ¯ = 0
2. Find all possible solutions to the equation = where and are
complex numbers. Let log( ) { : = } Note that log : C
(subsets of C). One often writes log : C C and calls log a multi-valued
function. A continuous function defined on some open subset of C is
called a branch of log if ( ) log( ) for all Use a result from
class to show any branch of log is holomorphic on its domain of definition
and that 0( ) = 1 for all

3. Let = { = C : 0 and } = C \ ( 0]
and define : C by ( ) ln( ) + for 0 and | |
Show that is a branch of log This branch of the log function is often
called the principle value branch of log The line ( 0] where is
not defined is called a branch cut. We will see that such a branch cut is
necessary. In fact for any continuous “simple” curve joining 0 and
there will be a branch of the log - function defined on the complement of

4. Let { C : = } The “function” is another
example of a multivalued function. Let ( ) be any branch of , that is
is a continuous function on an open subset of C such that ( ) .

Show that is holomorphic away from = 0 and that 0( ) = 1 ( )

5. Let be any branch of the log function. Define ( ) for all C
and ( ) where ( ) denotes the domain of Show that 1 is a
branch of and also show that = 1

6. Suppose that ( ) is a measure space and that : × C is a
function ( is an open subset of C) such that for all the function

( ) is in ( ) and
R | ( )| ( ) for all (in fact

one is enough). Also assume there is a function 1( ) such
that | ( ) | ( ) for all ( ) × Show that the function ( )
R

( ) ( ) is holomorphic on and that 0( ) =
R ( ) ( )

for all Hint: use the Hahn Banach theorem and the mean valued
theorem to prove the following estimate:

| ( + ) ( ) | ( )

all C su ciently close to but not equal to zero.
7. Assume that is a 1 function on C Show that [ (¯)] = (¯ )(¯).
(By the way, a 1 function on C is said to be anti-holomorphic if

= 0 This problem shows that is anti-holomorphic i (¯) is
holomorphic.)

8. Let C be connected and open. Show that ( ) is constant on
i 0 0 on
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9. Let ( ) and be a “nice” closed region (See Figure To be
supplied later.). Use Green’s theorem to show

R

( ) = 0 where
Z

( )
X

=1

Z

( )

and { } =1 denote the components of the boundary appropriately ori-
ented, see the Figure 1.

10. The purpose of this problem is to understand the Laurent Series of a
function holomorphic in an annulus. Let 0 0 0 1 1

0 C { C| 0 | 0| 1} and { C| 0 | 0|
1}
a) Use the above problem (or otherwise) and the simple form of the

Cauchy integral formula proved in class to show if ( ) 1( )

then for all ( ) = 1
2

R ( ) Hint: Apply the above

problem to the function ( ) = ( ) with a judiciously chosen region

b) Mimic the proof (twice, one time for each component of ) of the
Taylor series done in class to show if ( ) 1( ) then

( ) =
X

=

( 0)

where

=
1

2

Z

( )

( ) +1

and ( ) = (0 2 ) and is any point in ( 0 1)
c) Suppose that 0 = 0 ( ) 1( ) and is bounded near 0

Show in this case that 0 for all 0 and in particular conclude
that may be extended uniquely to 0 in such a way that is complex
di erentiable at 0

11. A Problem from Berenstein and Gay, “Complex Variables: An introduc-
tion,” Springer, 1991, p. 163.
Notation and Conventions: Let denote an open subset of R Let
= =

P

=1

2

2 be the Laplacian on 2( R).
12. (Weak Maximum Principle)

a) Suppose that 2( R) such that ( ) 0 Show that
can have no local maximum in In particular if is a bounded open
subset of R and ( ¯ R) 2( R) then ( ) max ( )
for all

b) (Weak maximum principle) Suppose that is now a bounded open
subset of R and that ( ¯ R) 2( R) such that 0 on
Show that ( ) : max ( ) for all (Hint: apply

part a) to the function ( ) = ( ) + | |2 where 0 and then let
0 )
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Remark 30.53 (Fact:). Assume now that is connected. It is possible to
prove, using just calculus techniques, the “strong maximum principle”
which states that if as in part b) of the problem above has an interior
maximum then must be a constant. (One may prove this result when the
dimension = 2 by using the mean value property of harmonic functions
discussed in Chapter 11 of Rudin.) The direct calculus proof of this fact
is elementary but tricky. If you are interested see Protter and Weinberger,
“Maximum Principles in Di erential Equations”, p.61—.

13. (Maximum modulus principle) Prove the maximum modulus principle
using the strong maximum principle. That is assume that is a con-
nected bounded subset of C and that ( ) ( ¯ C). Show that
| ( )| max | ( )| for all and if equality holds for some
then is a constant.
Hint: Assume for contradiction that | ( )| has a maximum greater than
zero at 0 . Write ( ) = ( ) for some analytic function in a
neighborhood of 0 (We have shown such a function must exist.) Now
use the strong maximum principle on the function = Re( )

30.7 Problems from Rudin

p. 229: #17
Chapter 10: 2, 3, 4, 5
Chapter 10: 8-13, 17, 18-21, 26, 30 (replace the word “show” by “convince

yourself that” in problem 30.)

Remark 30.54. Remark. Problem 30. is related to the fact that the funda-
mental group of is not commutative, whereas the first homology group of
and is in fact the abelianization of the fundamental group.

Chapter 11: 1, 2, 5, 6,

Chapter 12: 2 (Hint: use the fractional linear transformation

( )
+

which maps + conformally.), 3, 4 (Hint: on 4a, apply Maxi-
mum modulus principle to 1 ), 5, 11 (Hint: Choose 1 0

such that | ( 0)| and (0 1) such that ¯ ( 0 )
and | ( )| on ¯ For let ( ( 0 )) \ ¯
Show that ( ) ( ( )) ( 0) satisfies ( ) 0( ¯ ) and
| | max{ } on Now apply the maximum modulus
principle to then let then and finally let 1 )
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Littlewood Payley Theory

Lemma 31.1 (Hadamard’s three line lemma). Let be the vertical strip

= { : 0 Re( ) 1} = (0 1)× R

and ( ) be a continuous bounded function on ¯ = [0 1] × R which is holo-
morphic on If := supRe( )= | ( )| then 1

0 1 (In words
this says that the maximum of ( ) on the line Re( ) = is controlled by the
maximum of ( ) on the lines Re( ) = 0 and Re( ) = 1 Hence the reason for
the naming this the three line lemma.

Proof. Let 0 0 and 1 1
1 and 0 be given. For = +

¯

max( 0 1)
¯

¯

1
0 1

¯

¯ = 1
0 1 min( 0 1)

and Re( 2 1) = ( 2 1 2) 0 and Re( 2 1) as in the
strip Therefore,

( ) :=
( )

1
0 1

exp( ( 2 1)) for ¯

is a bounded continuous function ¯ ( ) and ( ) 0 as
in the strip By the maximum modulus principle applied to ¯ := [0 1] ×
[ ] for su ciently large, shows that

max
©| ( )| : ¯

ª

= max
©| ( )| : ¯

ª

For = we have

| ( )| =
¯

¯

¯

¯

( )
1
0 1

exp( ( 2 1))

¯

¯

¯

¯

| ( )|
0

0

0
1

and for = 1 +

1 If 0 and 1 are both positive, we may take 0 = 0 and 1 = 1
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| ( )| | (1 + )|
1

1

1
1

Combining the last three equations implies max
©| ( )| : ¯

ª

1 Letting
0 then shows that

¯

¯

¯

¯

( )
1
0 1

¯

¯

¯

¯

1 for all ¯

or equivalently that

| ( )| ¯

¯

1
0 1

¯

¯ = 1
0 1 for all = + ¯

Since 0 0 and 1 1 were arbitrary, we conclude that

| ( )| ¯

¯

1
0 1

¯

¯ = 1
0 1 for all = + ¯

from which it follows that 1
0 1 for all (0 1)

As a first application we have.

Proposition 31.2. Suppose that and are complex × matrices with
0 ( 0 can be handled by a limiting argument.) Suppose that k k 1

and k k 1 then
°

°

°

°

°

°
1 as well.

Proof. Let ( ) = 1 for where := = ln when
= Then one checks that is holomorphic and

( + ) = + 1 = ( )

so that
k ( + )k = k ( )k

Hence is bounded on and

k (0 + )k = k (0)k = k k 1 and

k (1 + )k = k (1)k = k k 1

So by the three lines lemma (and the Hahn Banach theorem) k ( )k 1 for
all Taking = 1 2 then proves the proposition.

Theorem 31.3 (Riesz-Thorin Interpolation Theorem). Suppose that
( M ) and ( N ) are — finite measure spaces and that 1
for = 0 1 For 0 1 let and be defined by

1
=
1

0
+

1
and

1
=
1

0
+

1

If is a linear map from 0( ) + 1( ) to 0( ) + 1( ) such that
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k k
0 0 0 and k k

1 1 1

then
k k =

(1 )
0 1

Alternatively put we are trying to show

k k k k for all (0 1) and ( ) (31.1)

given

k k
0 0 k k 0

for all 0( ) and

k k
1 1 k k 1

for all 1( )

Proof. Let us first give the main ideas of the proof. At the end we will
fill in some of the missing technicalities. (See Theorem 6.27 in Folland for the
details.)
Eq. (31.1) is equivalent to showing

¯

¯

¯

¯

Z

¯

¯

¯

¯

for all ( ) such that k k = 1 and for all such that k k = 1
where is the conjugate exponent to Define and by

1
=
1

0
+

1
and

1
=
1

0

+
1

and let

= | | | | and = | | | |
Writing = + we have | | = | | and | | = | | so that

k k = 1 and k k = 1 (31.2)

for all = + with 0 1 Let

( ) := h i =
Z

·

and assume that and are simple functions. It is then routine to show
( ¯) ( ) where is the strip = (0 1) + R Moreover using Eq.

(31.2),
| ( )| = |h i| 0 k k

0
k k

0
= 0

and

| (1 + )| = |h 1+ 1+ i| 1 k 1+ k
1
k 1+ k

1
= 1
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for all R By the three lines lemma, it now follows that

|h i| = | ( )| 1 Re
0

Re
1

and in particular taking = using = and = gives

|h i| = ( ) 1
0 1

Taking the supremum over all simple such that k k = 1 shows

k k 1
0 1 for all simple ( ) such that k k = 1 or equiv-

alently that

k k 1
0 1 k k for all simple ( ) (31.3)

Now suppose that and are simple functions in such that
| | | | and point wise as Set = {| | 1} = 1
= 1 = 1 and = 1 By renaming 0 and 1 if necessary

we may assume 0 1 Under this hypothesis we have 0 and
1 and = + and = + By the dominated convergence

theorem

k k 0 k k
0

0 and k k
1

0

as Therefore k k
0

0 and k k
1

0 as
Passing to a subsequence if necessary, we may also assume that 0
and 0 a.e. as It then follows that = +

+ = a.e. as This result, Fatou’s lemma, the dominated
convergence theorem and Eq. (31.3) then gives

k k lim inf k k lim inf 1
0 1 k k = 1

0 1 k k

31.0.1 Applications

For the first application, we will give another proof of Theorem 11.19.
Proof. Proof of Theorem 11.19. The case = 1 is simple, namely

k k =

°

°

°

°

Z

R
(· ) ( )

°

°

°

°

Z

R
k (· )k | ( )|

= k k k k1
and by interchanging the roles of and we also have

k k = k k1 k k
Letting = the above comments may be reformulated as saying
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k k1 k k

Another easy case is when = since

| ( )| =
¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

k ( ·)k k k = k k k k

which may be formulated as saying that

k k k k

By the Riesz Thorin interpolation with 0 = 1 0 = 1 = and 1 =

k k k k1 k k1 k k1 k k k k

for all (0 1) which is equivalent to

k k k k k k

Since

1 = (1 ) + 1 and 1 = (1 ) 1 + 1 = (1 ) 1

and therefore if = and = then

1 + 1 = (1 ) + 1 + 1

= (1 ) + ( 1 + 1) + (1 ) 1

= 1 + (1 ) 1 = 1 + 1

Example 31.4. By the Riesz Thorin interpolation theorem we conclude that
F : is bounded for all [1 2] where = is the conjugate expo-
nent to Indeed, in the notation of the Riesz Thorin interpolation theorem
F : is bounded where

1
=
1

1
+
2
and

1
=
1

+
2
=
2

i.e.
1
+
1
= 1 +

2
+
2
= 1

See Theorem 32.12.

For the next application we will need the following general duality argu-
ment.
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Lemma 31.5. Suppose that ( M ) and ( N ) are — finite measure
spaces and : 2( ) 2( ) is a bounded operator. If there exists
[1 ] and a constant such that

k k k k for all ( ) 2( )

then
k k k k for all ( ) 2( )

where is the 2 — adjoint of and and are the conjugate exponents
to and

Proof. Suppose that ( ) 2( ) then by the reverse Holder
inequality

k k = sup
n

|( )| : ( ) 2( ) with k k = 1
o

= sup
n

|( )| : ( ) 2( ) with k k = 1
o

k k sup
n

k k : ( ) 2( ) with k k = 1
o

k k

Lemma 31.6. Suppose that = { 0} =1 is a symmetric matrix such
that

:= sup
X

=1

= sup
X

=1

(31.4)

and define by ( ) =
P

when the sum converges. Given
[1 ] and be the conjugate exponent, then : is bounded

k k

Proof. Let =
P

=1 =
P

=1 For

Ã

X

| |
!

=

Ã

X

| |
!

X

| | 1
X

| | (31.5)

and hence

X

Ã

X

| |
!

1
XX

| | = 1
XX

| |

k k
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which shows : with k k Moreover from Eq. (31.5) we
see that

sup
X

| | k k

which shows that : is bounded with k k for all and
in particular for = 1 By duality it follows that k k as well. This
is easy to check directly as well.
Let 0 = 1 = 1 and 1 = = 0 so that
1 = (1 )1 1 + 1 = (1 ) and 1 = (1 ) 1 + 1 1 =

so that = Applying the Riesz-Thorin interpolation theorem shows

k k = k k

The following lemma only uses the case = 2 which we proved without
interpolation.

Lemma 31.7. Suppose that { } is a sequence in a Hilbert space such that:
1)
P | |2 and 2) there exists constants = 0 satisfying Eq.

(31.4) and
|( )| | || | for all and

Then =
P

exists and

| |2
X

| |2 (31.6)

Proof. Let us begin by assuming that only a finite number of the { }
are non-zero. The key point is to prove Eq. (31.6). In this case

| |2 =
X

( )
X

| || | = ·

where = | | Now by the above remarks
· | |2 =

X

2 =
X

| |2

which establishes Eq. (31.6) in this case.
For let =

P

= then by what we have just proved

| |2
X

=

| |2 0 as

This shows that =
P

exists. Moreover we have

| 1 |2
X

=1

| |2
X

=1

| |2

Letting in this last equation shows that Eq. (31.6) holds in general.
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The Fourier Transform



32

Fourier Transform

The underlying space in this section is R with Lebesgue measure. The Fourier
inversion formula is going to state that

( ) =

µ

1

2

¶
Z

R

Z

R
( ) (32.1)

If we let = 2 this may be written as

( ) =

Z

R

2

Z

R
( ) 2

and we have removed the multiplicative factor of
¡

1
2

¢

in Eq. (32.1) at the
expense of placing factors of 2 in the arguments of the exponential. Another
way to avoid writing the 2 ’s altogether is to redefine and and this is
what we will do here.

Notation 32.1 Let be Lebesgue measure on R and define:

d =

µ

1

2

¶

( ) and d
µ

1

2

¶

( )

To be consistent with this new normalization of Lebesgue measure we will
redefine k k and h i as

k k =

µ
Z

R
| ( )| d

¶1

=

Ã

µ

1

2

¶ 2 Z

R
| ( )| ( )

!1

and

h i :=
Z

R
( ) ( )d when 1

Similarly we will define the convolution relative to these normalizations by
Fg :=

¡

1
2

¢ 2
i.e.
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F ( ) =

Z

R
( ) ( )d =

Z

R
( ) ( )

µ

1

2

¶ 2

( )

The following notation will also be convenient; given a multi-index Z+
let | | = 1 + · · ·+

:=
Y

=1

=

µ ¶

:=
Y

=1

µ ¶

and

=

µ

1
¶| |µ ¶

=

µ

1
¶

Also let
h i := (1 + | |2)1 2

and for R let
( ) = (1 + | |)

32.1 Fourier Transform

Definition 32.2 (Fourier Transform). For 1 let

(̂ ) = F ( ) :=

Z

R

· ( )d (32.2)

( ) = F 1 ( ) =

Z

R

· ( )d = F ( ) (32.3)

The next theorem summarizes some more basic properties of the Fourier
transform.

Theorem 32.3. Suppose that 1 Then

1. ˆ 0(R ) and
°

°

°

ˆ
°

°

°
k k1

2. For R ( ) ˆ( ) = · (̂ ) where, as usual, ( ) := ( )

3. The Fourier transform takes convolution to products, i.e. ( F )
ˆ
= ˆ̂

4. For 1 h ˆ i = h ˆi
5. If : R R is an invertible linear transformation, then

( ) ( ) = |det | 1
(̂
¡

1
¢

) and

( ) ( ) = |det | 1 (
¡

1
¢

)

6. If (1 + | |) ( ) 1 then ˆ and ˆ
0 for all | |

Moreover,
(̂ ) = F [( ) ( )] ( ) (32.4)

for all | |
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7. If and 1 for all | | then (1 + | |) (̂ ) 0 and

( )
ˆ
( ) = ( ) (̂ ) (32.5)

for all | |
8. Suppose 1(R ) and 1(R ) and = i.e.

( ) = ( 1 ) ( +1 )

then ˆ= ˆ ˆ

Proof. Item 1. is the Riemann Lebesgue Lemma 11.28. Items 2. — 5. are
proved by the following straight forward computations:

( ) ˆ( ) =

Z

R

· ( )d =

Z

R

( + )· ( )d = · (̂ )

h ˆ i =
Z

R
(̂ ) ( )d =

Z

R
d ( )

Z

R
d · ( )

=

Z

R ×R
d d · ( ) ( ) =

Z

R ×R
d ˆ( ) ( ) = h ˆi

( F )
ˆ
( ) =

Z

R

· F ( )d =

Z

R

·
µ
Z

R
( ) ( )d

¶

d

=

Z

R
d

Z

R
d · ( ) ( )

=

Z

R
d

Z

R
d ( + )· ( ) ( )

=

Z

R
d · ( )

Z

R
d · ( ) = (̂ )ˆ( )

and letting = so that d = |det | 1
d

( )
ˆ
( ) =

Z

R

· ( )d =

Z

R

1 · ( ) |det | 1
d

= |det | 1
(̂
¡

1
¢

)

Item 6. is simply a matter of di erentiating under the integral sign which is
easily justified because (1 + | |) ( ) 1

Item 7. follows by using Lemma 11.27 repeatedly (i.e. integration by parts)
to find

( )ˆ ( ) =

Z

R
( ) · d = ( 1)| |

Z

R
( ) · d

= ( 1)| |
Z

R
( )( ) · d = ( ) (̂ )
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Since 1 for all | | it follows that ( ) (̂ ) = ( )
ˆ
( ) 0 for

all | | Since

(1 + | |)
Ã

1 +
X

=1

| |
!

=
X

| |
| |

where 0
¯

¯

¯
(1 + | |) (̂ )

¯

¯

¯

X

| |

¯

¯

¯
(̂ )
¯

¯

¯
0 as

Item 8. is a simple application of Fubini’s theorem.

Example 32.4. If ( ) = | |2 2 then (̂ ) = | |2 2 in short

F | |2 2 = | |2 2 and F 1 | |2 2 = | |2 2 (32.6)

More generally, for 0 let

( ) := 2 1
2 | |2 (32.7)

then
b ( ) = 2 | |2 and (b ) ( ) = ( ) (32.8)

By Item 8. of Theorem 32.3, to prove Eq. (32.6) it su ces to con-
sider the 1 — dimensional case because | |2 2 =

Q

=1

2 2 Let ( ) :=
³

F 2 2
´

( ) then by Eq. (32.4) and Eq. (32.5),

0( ) = F
h

( )
2 2
i

( ) = F
·

2 2

¸

( ) = ( )F
h

2 2
i

( ) = (

(32.9)
Lemma 9.36 implies

(0) =

Z

R

2 2d =
1

2

Z

R

2 2 ( ) = 1

and so solving Eq. (32.9) with (0) = 1 gives F
h

2 2
i

( ) = ( ) =
2 2

as desired. The assertion that F 1 | |2 2 = | |2 2 follows similarly or by
using Eq. (32.3) to conclude,

F 1
h

| |2 2
i

( ) = F
h

| |2 2
i

( ) = F
h

| |2 2
i

( ) = | |2 2

The results in Eq. (32.8) now follow from Eq. (32.6) and item 5 of Theorem
32.3. For example, since ( ) = 2

1( )

(b )( ) = 2
³ ´

1̂( ) = 2 | |2

This may also be written as (b )( ) = 2
1 ( ) Using this and the fact that

is an even function,

(b ) ( ) = Fb ( ) = 2F 1 ( ) = 2 2 ( ) = ( )
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32.2 Schwartz Test Functions

Definition 32.5. A function (R C) is said to have rapid decay or
rapid decrease if

sup
R
(1 + | |) | ( )| for = 1 2

Equivalently, for each N there exists constants such that
| ( )| (1 + | |) for all R A function (R C) is said
to have (at most) polynomial growth if there exists such

sup (1 + | |) | ( )|
i.e. there exists N and such that | ( )| (1 + | |) for all

R

Definition 32.6 (Schwartz Test Functions). Let S denote the space of
functions (R ) such that and all of its partial derivatives have rapid
decay and let

k k = sup
R

¯

¯(1 + | |) ( )
¯

¯

so that
S =

n

(R ) : k k for all and
o

Also let P denote those functions (R ) such that and all of its
derivatives have at most polynomial growth, i.e. (R ) is in P i for
all multi-indices there exists such

sup (1 + | |) | ( )|
(Notice that any polynomial function on R is in P )
Remark 32.7. Since (R ) S 2 (R ) it follows that S is dense in
2(R )

Exercise 32.8. Let
=
X

| |
( ) (32.10)

with P Show (S) S and in particular and are back in S
for all multi-indices

Notation 32.9 Suppose that ( ) = | | ( ) where each function
( ) is a smooth function. We then set

( ) := | | ( )

and if each ( ) is also a polynomial in we will let

( ) := | | ( )

where is the operation of multiplication by
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Proposition 32.10. Let ( ) be as above and assume each ( ) is a poly-
nomial in Then for S

( ( ) ) ( ) = ( ) ˆ( ) (32.11)

and
( ) (̂ ) = [ ( ) ( )] ( ) (32.12)

Proof. The identities ( ) · = · and · = ·

imply, for any polynomial function on R

( ) · = ( ) · and ( ) · = ( ) · (32.13)

Therefore using Eq. (32.13) repeatedly,

( ( ) ) ( ) =

Z

R

X

| |
( ) ( ) · · d

=

Z

R

X

| |
( ) · ( ) · d

=

Z

R
( )

X

| |
( )

£

( ) · ¤d

=

Z

R
( )

X

| |
( )

£ · ¤d = ( ) ˆ( )

wherein the third inequality we have used Lemma 11.27 to do repeated in-
tegration by parts, the fact that mixed partial derivatives commute in the
fourth, and in the last we have repeatedly used Corollary 8.43 to di erentiate
under the integral. The proof of Eq. (32.12) is similar:

( ) (̂ ) = ( )

Z

R
( ) · d =

Z

R
( ) ( ) · d

=
X

| |

Z

R
( )( ) ( ) · d

=
X

| |

Z

R
( )( ) ( ) · d

=
X

| |

Z

R

· ( ) [( ) ( )]d

= [ ( ) ( )] ( )

Corollary 32.11. The Fourier transform preserves the space S i.e. F(S)
S
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Proof. Let ( ) = | | ( ) with each ( ) being a polynomial
function in If S then ( ) S 1 and so by Eq. (32.12),
( ) (̂ ) is bounded in i.e.

sup
R
| ( ) (̂ )| ( )

Taking ( ) = (1 + | |2) with Z+ in this estimate shows (̂ ) and
all of its derivatives have rapid decay, i.e. ˆ is in S

32.3 Fourier Inversion Formula

Theorem 32.12 (Fourier Inversion Theorem). Suppose that 1 and
ˆ 1 then

1. there exists 0 0(R ) such that = 0 a.e.
2. 0 = F 1F and 0 = FF 1

3. and ˆ are in 1 and

4. k k2 =
°

°

°

ˆ
°

°

°

2

In particular, F : S S is a linear isomorphism of vector spaces.

Proof. First notice that ˆ 0 (R ) and ˆ 1 by assumption,
so that ˆ 1 Let ( ) 2 1

2 | |2 be as in Example 32.4 so that
b ( ) = 2 | |2 and b = Define 0 := ˆ

0 then

0( ) = ( )̂ ( ) =

Z

R
(̂ ) · d = lim

0

Z

R
(̂ ) ·

b ( )d

= lim
0

Z

R

Z

R
( ) ·( )

b ( )d d

= lim
0

Z

R
( ) ( )d = ( ) a.e.

wherein we have used Theorem 11.21 in the last equality along with the obser-
vations that ( ) = 1( ) and

R

R 1( )d = 1 In particular this shows
that 1 A similar argument shows that F 1F = 0 as well.
Let us now compute the 2 — norm of ˆ

k k̂22 =
Z

R
(̂ ) (̂ )d =

Z

R
d (̂ )

Z

R
d ( ) ·

=

Z

R
d ( )

Z

R
d (̂ ) ·

=

Z

R
d ( ) ( ) = k k22

because
R

R d (̂ ) · = F 1 (̂ ) = ( ) a.e.
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Corollary 32.13. By the B.L.T. Theorem 2.68, the maps F|S and F 1|S
extend to bounded linear maps F̄ and F̄ 1 from 2 2 These maps satisfy
the following properties:

1. F̄ and F̄ 1 are unitary and are inverses to one another as the notation
suggests.

2. For 2 we may compute F̄ and F̄ 1 by

F̄ ( ) = 2— lim
Z

| |
( ) · d and (32.14)

F̄ 1 ( ) = 2— lim
Z

| |
( ) · d (32.15)

3. We may further extend F̄ to a map from 1+ 2
0+

2 (still denote
by F̄) defined by F̄ = ˆ+F̄ where = + 1+ 2 For 1+ 2

F̄ may be characterized as the unique function 1 (R ) such that

h i = h ˆi for all (R ) (32.16)

Moreover if Eq. (32.16) holds then 0+
2 1 (R ) and Eq.(32.16)

is valid for all S
Proof. Item 1., If 2 and S such that in 2 then

F̄ := lim ˆ Since ˆ S 1 we may concluded that
°

°

°

ˆ
°

°

°

2
= k k2

for all Thus
°

°F̄ °

°

2
= lim

°

°

°

ˆ
°

°

°

2
= lim k k2 = k k2

which shows that F̄ is an isometry from 2 to 2 and similarly F̄ 1 is an
isometry. Since F̄ 1F̄ = F 1F = on the dense set S it follows by conti-
nuity that F̄ 1F̄ = on all of 2 Hence F̄F̄ 1

= and thus F̄ 1 is the
inverse of F̄ This proves item 1.
Item 2. Let 2 and and set ( ) := ( )1| | Then

1 2 Let (R ) be a function such that
R

R ( )d = 1 and set
( ) = ( ) Then F 1 2 with F (R ) S

Hence
F̄ = 2— lim F ( F ) = F a.e.

where in the second equality we used the fact that F is continuous on 1

Hence
R

| | ( ) · d represents F̄ ( ) in 2 Since in 2 Eq.

(32.14) follows by the continuity of F̄ on 2

Item 3. If = + 1 + 2 and S then

hˆ + F̄ i = h i+ hF̄ i = h ˆi+ lim hF ¡ 1|·|
¢ i

= h ˆi+ lim h 1|·| ˆi = h + ˆi (32.17)
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In particular if + = 0 a.e., then hˆ + F̄ i = 0 for all S and since
ˆ + F̄ 1 it follows from Corollary 11.29 that ˆ + F̄ = 0 a.e. This shows
that F̄ is well defined independent of how 1 + 2 is decomposed into
the sum of an 1 and an 2 function. Moreover Eq. (32.17) shows Eq. (32.16)
holds with = ˆ + F̄ 0 +

2 and S Now suppose 1 and
h i = h ˆi for all (R ) Then by what we just proved, h i =
h i for all (R ) and so an application of Corollary 11.29 shows
= 0 +

2

Notation 32.14 Given the results of Corollary 32.13, there is little danger
in writing ˆ or F for F̄ when 1 + 2

Corollary 32.15. If and are 1 functions such that ˆ ˆ 1 then

F( ) = ˆFˆ and F 1( ) = F

Since S is closed under pointwise products and F : S S is an isomorphism
it follows that S is closed under convolution as well.
Proof. By Theorem 32.12, ˆ ˆ 1 and hence · 1

and ˆFˆ 1 Since

F 1
³

ˆFˆ
´

= F 1
³

ˆ
´

· F 1 (ˆ) = · 1

we may conclude from Theorem 32.12 that

ˆFˆ = FF 1
³

ˆFˆ
´

= F( · )

Similarly one shows F 1( ) = F

Corollary 32.16. Let ( ) and ( ) be as in Notation 32.9 with each
function ( ) being a smooth function of R Then for S

( ) ( ) =

Z

R
( ) ˆ( ) · d (32.18)

Proof. For S we have

( ) ( ) = ( )
³

F 1 ˆ
´

( ) = ( )

Z

R
ˆ( ) · d

=

Z

R

ˆ( ) ( ) · d =

Z

R

ˆ( ) ( ) · d

If ( ) is a more general function of ( ) then that given in Notation
32.9, the right member of Eq. (32.18) may still make sense, in which case we
may use it as a definition of ( ) A linear operator defined this way is
called a pseudo di erential operator and they turn out to be a useful class
of operators to study when working with partial di erential equations.
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Corollary 32.17. Suppose ( ) =
P

| | is a polynomial in R
and 2 Then ( ) exists in 2 (see Definition 29.3) i ( ) (̂ )
2 in which case

( ( ) )ˆ ( ) = ( ) (̂ ) for a.e.

In particular, if 2 then 2 solves the equation, ( ) = i
( ) (̂ ) = ˆ( ) for a.e.

Proof. By definition ( ) = in 2 i

h i = h ( ) i for all (R ) (32.19)

If follows from repeated use of Lemma 29.23 that the previous equation is
equivalent to

h i = h ( ) i for all S(R ) (32.20)

This may also be easily proved directly as well as follows. Choose (R )
such that ( ) = 1 for 0(1) and for S(R ) let ( ) := ( ) ( )
By the chain rule and the product rule (Eq. A.5 of Appendix A),

( ) =
X

µ ¶

| | ¡ ¢

( ) · ( )

along with the dominated convergence theorem shows and
in 2 as Therefore if Eq. (32.19) holds, we find Eq. (32.20) holds

because

h i = lim h i = lim h ( ) i = h ( ) i
To complete the proof simply observe that h i = hˆ i and

h ( ) i = h ˆ [ ( ) ] i = h (̂ ) ( ) ( )i
= h ( ) (̂ ) ( )i

for all S(R ) From these two observations and the fact that F is bijective
on S one sees that Eq. (32.20) holds i ( ) (̂ ) 2 and ˆ( ) =
( ) (̂ ) for a.e.

32.4 Summary of Basic Properties of F and F 1

The following table summarizes some of the basic properties of the Fourier
transform and its inverse.

ˆ or
Smoothness Decay at infinity

Multiplication by (± )
S S

2(R ) 2(R )
Convolution Products.
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32.5 Fourier Transforms of Measures and Bochner’s
Theorem

To motivate the next definition suppose that is a finite measure on R which
is absolutely continuous relative to Lebesgue measure, ( ) = ( )d Then
it is reasonable to require

ˆ( ) := (̂ ) =

Z

R

· ( )d =

Z

R

· ( )

and

( F ) ( ) := F ( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

when : R C is a function such that the latter integral is defined, for
example assume is bounded. These considerations lead to the following
definitions.

Definition 32.18. The Fourier transform, ˆ of a complex measure on BR
is defined by

ˆ( ) =

Z

R

· ( ) (32.21)

and the convolution with a function is defined by

( F ) ( ) =

Z

R
( ) ( )

when the integral is defined.

It follows from the dominated convergence theorem that ˆ is continuous.
Also by a variant of Exercise 11.66, if and are two complex measure on
BR such that ˆ = ˆ then = The reader is asked to give another proof
of this fact in Exercise 32.28 below.

Example 32.19. Let be the surface measure on the sphere of radius
centered at zero in R3 Then

ˆ ( ) = 4
sin | |
| |

Indeed,

ˆ ( ) =

Z

2

· ( ) = 2

Z

2

· ( )

= 2

Z

2

3| | ( ) = 2

Z 2

0

Z

0

sin cos | |

= 2 2

Z 1

1

| | = 2 2 1

| |
| || =1= 1 = 4

2 sin | |
| |
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Definition 32.20. A function : R C is said to be positive (semi)
definite i the matrices := { ( )} =1 are positive definite for all

N and { } =1 R

Lemma 32.21. If (R C) is a positive definite function, then

1. (0) 0
2. ( ) = ( ) for all R
3. | ( )| (0) for all R
4. For all S(R )

Z

R ×R
( ) ( ) ( ) 0 (32.22)

Proof. Taking = 1 and 1 = 0 we learn (0) | |2 0 for all C
which proves item 1. Taking = 2 1 = and 2 = the matrix

:=

·

(0) ( )
( ) (0)

¸

is positive definite from which we conclude ( ) = ( ) (since =
by definition) and

0 det

·

(0) ( )
( ) (0)

¸

= | (0)|2 | ( )|2

and hence | ( )| (0) for all This proves items 2. and 3. Item 4. follows
by approximating the integral in Eq. (32.22) by Riemann sums,

Z

R ×R
( ) ( ) ( ) = lim

0

X

( ) ( ) ( ) 0

The details are left to the reader.

Lemma 32.22. If is a finite positive measure on BR then := ˆ
(R C) is a positive definite function.

Proof. As has already been observed after Definition 32.18, the dominated
convergence theorem implies ˆ (R C) Since is a positive measure (and
hence real),

ˆ( ) =

Z

R

· ( ) =

Z

R

· ( ) = ˆ( )

From this it follows that for any N and { } =1 R the matrix
:= {ˆ( )} =1 is self-adjoint. Moreover if C
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X

=1

ˆ( ) ¯ =

Z

R

X

=1

( )· ¯ ( )

=

Z

R

X

=1

· · ( )

=

Z

R

¯

¯

¯

¯

¯

X

=1

·
¯

¯

¯

¯

¯

2

( ) 0

showing is positive definite.

Theorem 32.23 (Bochner’s Theorem). Suppose (R C) is positive
definite function, then there exists a unique positive measure on BR such
that = ˆ

Proof. If ( ) = ˆ( ) then for S we would have
Z

R
=

Z

R
( )

ˆ
=

Z

R
( )ˆ( )d

This suggests that we define

( ) :=

Z

R
( ) ( )d for all S

We will now show is positive in the sense if S and 0 then ( ) 0
For general S we have

(| |2) =
Z

R
( )
³

| |2
´

( )d =

Z

R
( )
¡

F ¯
¢

( )d

=

Z

R
( ) ( ) ¯ ( )d d =

Z

R
( ) ( ) ( )d d

=

Z

R
( ) ( ) ( )d d 0

For 0 let ( ) := 2 | |2 2 S and define

F ( ) := ( ( ·)) = (
¯

¯

¯

p

( ·)
¯

¯

¯

2

)

which is non-negative by above computation and because
p

( ·) S
Using

[ ( ·)] ( ) =
Z

R
( ) · d =

Z

R
( ) ( + )· d

= · ( ) = · | |2 2
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h F i =
Z

R
( ( ·)) ( )d

=

Z

R

Z

R
( ) [ ( ·)] ( ) ( )d d

=

Z

R
( ) ( ) | |2 2d

which coupled with the dominated convergence theorem shows

h F i
Z

R
( ) ( )d = ( ) as 0

Hence if 0 then ( ) = lim 0h F i 0
Let R be a compact set and (R [0 )) be a function such

that = 1 on If (R R) is a smooth function with supp( )
then 0 k k S and hence

0 h k k i = k k h i h i

and therefore h i k k h i Replacing by implies, h i
k k h i and hence we have proved

|h i| (supp( )) k k (32.23)

for all DR := (R R) where ( ) is a finite constant for each
compact subset of R Because of the estimate in Eq. (32.23), it follows that
|DR has a unique extension to (R R) still satisfying the estimates in
Eq. (32.23) and moreover this extension is still positive. So by the Riesz —
Markov theorem, there exists a unique Radon — measure on R such that
such that h i = ( ) for all (R R)
To finish the proof we must show ˆ( ) = ( ) for all R given

( ) =

Z

R
( ) ( )d for all (R R)

Let (R R+) be a radial function such (0) = 1 and ( ) is decreasing
as | | increases. Let ( ) := ( ) then by Theorem 32.3,

F 1
£

( )
¤

( ) = ( )

and therefore
Z

R
( ) ( ) =

Z

R
( ) ( )d (32.24)

Because
R

R ( )d = F (0) = (0) = 1 we may apply the approximate
— function Theorem 11.21 to Eq. (32.24) to find
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Z

R
( ) ( ) ( ) as 0 (32.25)

On the the other hand, when = 0 the monotone convergence theorem
implies ( ) (1) = (R ) and therefore (R ) = (1) = (0) Now
knowing the is a finite measure we may use the dominated convergence
theorem to concluded

( ( )) ( ) = ˆ( ) as 0

for all Combining this equation with Eq. (32.25) shows ˆ( ) = ( ) for all
R

32.6 Supplement: Heisenberg Uncertainty Principle

Suppose that is a Hilbert space and are two densely defined sym-
metric operators on More explicitly, is a densely defined symmetric
linear operator on means there is a dense subspace D and a lin-
ear map : D such that ( ) = ( ) for all D
Let D := { : D and D } and for D let
( ) = ( ) with a similar definition of D and Moreover, let
D := D D and for D let

=
1
[ ] =

1
( )

Notice that for D we have

( ) =
1 {( ) ( )} = 1 {( ) ( )}

=
1 {( ) ( )} = ( )

so that is symmetric as well.

Theorem 32.24 (Heisenberg Uncertainty Principle). Continue the
above notation and assumptions,

1

2
|( )|

q

k k2 ( ) ·
q

k k2 ( ) (32.26)

for all D Moreover if k k = 1 and equality holds in Eq. (32.26), then

( ( )) = ( ( )) or

( ( )) = ( ( )) (32.27)

for some R
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Proof. By homogeneity (32.26) we may assume that k k = 1 Let :=
( ) = ( ) ˜ = and ˜ = Then we have still have

[ ˜ ˜] = [ ] =

Now

( ) = ( ) = ( [ ˜ ˜] ) = ( ˜ ˜ ) ( ˜ ˜ )

= ( ˜ ˜ ) ( ˜ ˜ ) = 2 Im( ˜ ˜ )

from which we learn

|( )| = 2
¯

¯

¯
Im( ˜ ˜ )

¯

¯

¯
2
¯

¯

¯
( ˜ ˜ )

¯

¯

¯
2
°

°

°

˜
°

°

°

°

°

°

˜
°

°

°

with equality i Re( ˜ ˜ ) = 0 and ˜ and ˜ are linearly dependent, i.e.
i Eq. (32.27) holds.
The result follows from this equality and the identities

°

°

°

˜
°

°

°

2

= k k2 = k k2 + 2 k k2 2 Re( )

= k k2 + 2 2 2 = k k2 ( )

and
°

°

°

˜
°

°

°
= k k2 ( )

Example 32.25. As an example, take = 2(R) = 1 and =
with D := { : 0 } ( 0 is the weak derivative) and D :=
n

:
R

R | ( )|2
o

In this case,

D = { : 0 and 0 are in }

and = on D Therefore for a unit vector D
1

2

°

°

°

°

1 0
°

°

°

°

2

· k k2

where =
R

R
¯0 1 and =

R

R | ( )|2 ( ) Thus we have

1 The constant may also be described as

=

Z

R

¯0 = 2

Z

R

ˆ( )
¡

¯0¢ˆ( )

=

Z

R

¯

¯

¯

ˆ( )
¯

¯

¯

2

( )
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1

4
=
1

4

Z

R
| |2

Z

R
( )

2
¯

¯

¯

ˆ( )
¯

¯

¯

2

·
Z

R
( )

2 | ( )|2 (32.28)

Equality occurs if there exists R such that

( ) ( ) = (
1

) ( ) a.e.

Working formally, this gives rise to the ordinary di erential equation (in weak
form),

= [ ( ) + ] (32.29)

which has solutions (see Exercise 32.29 below)

= exp

µ
Z

R
[ ( ) + ]

¶

= exp

µ

2
( )2 +

¶

(32.30)

Let = 1
2 and choose so that k k2 = 1 to find

( ) =

µ

1

2

¶1 4

exp

µ

1

4
( )2 +

¶

are the functions which saturate the Heisenberg uncertainty principle in Eq.
(32.28).

32.6.1 Exercises

Exercise 32.26. Let 2(R ) and be a multi-index. If exists in
2(R ) then F( ) = ( ) (̂ ) in 2(R ) and conversely if

³

(̂ )
´

2(R ) then exists.

Exercise 32.27. Suppose ( ) is a polynomial in R and 2 such
that ( ) 2 Show

F ( ( ) ) ( ) = ( )ˆ ( ) 2

Conversely if 2 such that ( )ˆ ( ) 2 show ( ) 2

Exercise 32.28. Suppose is a complex measure on R and ˆ( ) is its
Fourier transform as defined in Definition 32.18. Show satisfies,

hˆ i :=
Z

R
ˆ( ) ( ) = (ˆ) :=

Z

R
ˆ for all S

and use this to show if is a complex measure such that ˆ 0 then 0

Exercise 32.29. Show that described in Eq. (32.30) is the general solution
to Eq. (32.29). Hint: Suppose that is any solution to Eq. (32.29) and is
given as in Eq. (32.30) with = 1 Consider the weak — di erential equation
solved by

700 32 Fourier Transform

32.6.2 More Proofs of the Fourier Inversion Theorem

Exercise 32.30. Suppose that 1(R) and assume that continuously
di erentiable in a neighborhood of 0 show

lim

Z

sin
( ) = (0) (32.31)

using the following steps.

1. Use Example 9.26 to deduce,

lim

Z 1

1

sin
= lim

Z

sin
=

2. Explain why

0 = lim

Z

| | 1

sin · ( )
and

0 = lim

Z

| | 1

sin · ( ) (0)

3. Add the previous two equations and use part (1) to prove Eq. (32.31).

Exercise 32.31 (Fourier Inversion Formula). Suppose that 1(R)
such that ˆ 1(R)

1. Further assume that is continuously di erentiable in a neighborhood of
0 Show that

:=

Z

R
(̂ )d = (0)

Hint: by the dominated convergence theorem, := lim
R

| | (̂ )d

Now use the definition of (̂ ) Fubini’s theorem and Exercise 32.30.
2. Apply part 1. of this exercise with replace by for some R to
prove

( ) =

Z

R
(̂ ) · d (32.32)

provided is now continuously di erentiable near

The goal of the next exercises is to give yet another proof of the Fourier
inversion formula.

Notation 32.32 For 0 let (R) denote the space of — 2 periodic
functions:

(R) :=
©

(R) : ( + 2 ) = ( ) for all R
ª
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Also let h· ·i denote the inner product on the Hilbert space :=
2([ ]) given by

( ) :=
1

2

Z

[ ]

( )¯( )

Exercise 32.33. Recall that
©

( ) := : Z
ª

is an orthonormal ba-
sis for and in particular for

=
X

Z

h i (32.33)

where the convergence takes place in 2([ ]) Suppose now that
2 (R)2 . Show (by two integration by parts)

¯

¯( )
¯

¯

2

2
k 00k

where k k denote the uniform norm of a function Use this to conclude
that the sum in Eq. (32.33) is uniformly convergent and from this conclude
that Eq. (32.33) holds pointwise.

Exercise 32.34 (Fourier Inversion Formula on S). Let S(R) 0
and

( ) :=
X

Z

( + 2 ) (32.34)

Show:

1. The sum defining is convergent and moreover that (R)
2. Show ( ) = 1

2
(̂ )

3. Conclude from Exercise 32.33 that

( ) =
1

2

X

Z

(̂ ) for all R (32.35)

4. Show, by passing to the limit, in Eq. (32.35) that Eq. (32.32)
holds for all R Hint: Recall that ˆ S

Exercise 32.35. Folland 8.13 on p. 254.

Exercise 32.36. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 32.37. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution ?? below.)

2 We view 2 (R) as a subspace of by identifying 2 (R) with |[ ]
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Exercise 32.38. Folland 8.16 on p. 255.

Exercise 32.39. Folland 8.17 on p. 255.

Exercise 32.40. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 32.41. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 32.42. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 32.43. Folland 8.31 on p. 263. (Poisson Summation formula prob-
lem.)
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Constant Coe cient partial di erential
equations

Suppose that ( ) =
P

| | with C and

= ( ) := | | = | |

µ

1
¶

(33.1)

Then for S
c ( ) = ( ) (̂ )

that is to say the Fourier transform takes a constant coe cient partial di er-
ential operator to multiplication by a polynomial. This fact can often be used
to solve constant coe cient partial di erential equation. For example suppose
: R C is a given function and we want to find a solution to the equation
= Taking the Fourier transform of both sides of the equation =

would imply ( ) (̂ ) = ˆ( ) and therefore (̂ ) = ˆ( ) ( ) provided ( )
is never zero. (We will discuss what happens when ( ) has zeros a bit more
later on.) So we should expect

( ) = F 1

µ

1

( )
ˆ( )

¶

( ) = F 1

µ

1

( )

¶

F ( )

Definition 33.1. Let = ( ) as in Eq. (33.1). Then we let ( ) :=Ran( )
C and call ( ) the spectrum of Given a measurable function : ( )
C we define (a possibly unbounded operator) ( ) : 2(R ) 2(R )
by

( ) := F 1 F
where denotes the operation on 2(R ) of multiplication by
i.e.

= ( )

with domain given by those 2 such that ( ) 2

At a formal level we expect

( ) = F 1 ( )F
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33.1 Elliptic examples

As a specific example consider the equation
¡

+ 2
¢

= (33.2)

where : R C and =
P

=1
2 2 is the usual Laplacian on R By

Corollary 32.17 (i.e. taking the Fourier transform of this equation), solving
Eq. (33.2) with 2 is equivalent to solving

¡| |2 + 2
¢

(̂ ) = ˆ( ) (33.3)

The unique solution to this latter equation is

(̂ ) =
¡| |2 + 2

¢ 1
ˆ( )

and therefore,

( ) = F 1
³

¡| |2 + 2
¢ 1

ˆ( )
´

( ) =:
¡

+ 2
¢ 1

( )

We expect

F 1
³

¡| |2 + 2
¢ 1

ˆ( )
´

( ) = F ( ) =

Z

R
( ) ( )d

where

( ) := F 1
¡| |2 + 2

¢ 1
( ) =

Z

R

1
2 + | |2

· d

At the moment F 1
¡| |2 + 2

¢ 1
only makes sense when = 1 2 or 3

because only then is
¡| |2 + 2

¢ 1 2(R )
For now we will restrict our attention to the one dimensional case, = 1

in which case

( ) =
1

2

Z

R

1

( + ) ( )
(33.4)

The function may be computed using standard complex variable contour
integration methods to find, for 0

( ) =
1

2
2

2

2
=

1

2
2

and since is an even function,

( ) = F 1
¡| |2 + 2

¢ 1
( ) =

2

2
| | (33.5)
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This result is easily verified to be correct, since

F
"

2

2
| |
#

( ) =
2

2

Z

R

| | · d

=
1

2

µ
Z

0

· +

Z 0
·

¶

=
1

2

µ

1

+
+

1
¶

=
1

2 + 2

Hence in conclusion we find that
¡

+ 2
¢

= has solution given by

( ) = F ( ) =
2

2

Z

R

| | ( )d =
1

2

Z

R

| | ( )

Question. Why do we get a unique answer here given that ( ) =
sinh( ) + cosh( ) solves

¡

+ 2
¢

= 0?

The answer is that such an is not in 2 unless = 0! More generally it is
worth noting that sinh( ) + cosh( ) is not in P unless = = 0
What about when = 0 in which case 2 + 2 becomes 2 which has a

zero at 0 Noting that constants are solutions to = 0 we might look at

lim
0
( ( ) 1) = lim

0

2

2
( | | 1) =

2

2
| |

as a solution, i.e. we might conjecture that

( ) :=
1

2

Z

R
| | ( )

solves the equation 00 = To verify this we have

( ) :=
1

2

Z

( ) ( )
1

2

Z

( ) ( )

so that

0( ) =
1

2

Z

( ) +
1

2

Z

( ) and

00( ) =
1

2
( )

1

2
( )
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33.2 Poisson Semi-Group

Let us now consider the problems of finding a function ( 0 ) [0 )×R
( 0 ) C such that

µ

2

2
0

+

¶

= 0 with (0 ·) = 2(R ) (33.6)

Let ˆ( 0 ) :=
R

R ( 0 ) · d denote the Fourier transform of in the
R variable. Then Eq. (33.6) becomes

µ

2

2
0

| |2
¶

ˆ( 0 ) = 0 with ˆ(0 ) = (̂ ) (33.7)

and the general solution to this di erential equation ignoring the initial con-
dition is of the form

ˆ( 0 ) = ( ) 0| | + ( ) 0| | (33.8)

for some function ( ) and ( ) Let us now impose the extra condition that
( 0 ·) 2(R ) or equivalently that ˆ( 0 ·) 2(R ) for all 0 0 The
solution in Eq. (33.8) will not have this property unless ( ) decays very
rapidly at The simplest way to achieve this is to assume = 0 in which
case we now get a unique solution to Eq. (33.7), namely

ˆ( 0 ) = (̂ ) 0| |

Applying the inverse Fourier transform gives

( 0 ) = F 1
h

(̂ ) 0| |
i

( ) =:
³

0

´

( )

and moreover
³

0

´

( ) =
0

( )

where 0( ) = (2 )
2 ¡F 1 0| |¢ ( ) From Exercise 33.12,

0
( ) = (2 ) 2

³

F 1 0| |
´

( ) =
0

( 2
0 + | |2)( +1) 2

where

= (2 )
2 (( + 1) 2)

2 2
=

(( + 1) 2)

2 ( +1) 2

Hence we have proved the following proposition.

Proposition 33.2. For 2(R )

0 = 0 for all 0 0

and the function ( 0 ) := 0 ( ) is for ( 0 ) (0 ) × R
and solves Eq. (33.6).
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33.3 Heat Equation on Rn

The heat equation for a function : R+ × R C is the partial di erential
equation

µ

1

2

¶

= 0 with (0 ) = ( ) (33.9)

where is a given function on R By Fourier transforming Eq. (33.9) in the
— variables only, one finds that (33.9) implies that

µ

+
1

2
| |2
¶

ˆ( ) = 0 with ˆ(0 ) = (̂ ) (33.10)

and hence that ˆ( ) = | |2 2 (̂ ) Inverting the Fourier transform then
shows that

( ) = F 1
³

| |2 2 (̂ )
´

( ) =
³

F 1
³

| |2 2
´

F
´

( ) =: 2 ( )

From Example 32.4,

F 1
³

| |2 2
´

( ) = ( ) = 2 1
2 | |2

and therefore,

( ) =

Z

R
( ) ( )d

This suggests the following theorem.

Theorem 33.3. Let

( ) := (2 )
2 | |2 2 (33.11)

be the heat kernel on R Then
µ

1

2

¶

( ) = 0 and lim
0
( ) = ( ) (33.12)

where is the — function at in R More precisely, if is a contin-
uous bounded (can be relaxed considerably) function on R , then ( ) =
R

R ( ) ( ) is a solution to Eq. (33.9) where (0 ) := lim 0 ( )

Proof. Direct computations show that
¡

1
2

¢

( ) = 0 and an
application of Theorem 11.21 shows lim 0 ( ) = ( ) or equivalently
that lim 0

R

R ( ) ( ) = ( ) uniformly on compact subsets of R
This shows that lim 0 ( ) = ( ) uniformly on compact subsets of R
This notation suggests that we should be able to compute the solution to
to ( 2) = using
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( ) =
¡

2
¢ 1

( ) =

Z

0

³

( 2 )
´

( ) =

Z

0

³

2

2 F
´

( )

a fact which is easily verified using the Fourier transform. This gives us a
method to compute ( ) from the previous section, namely

( ) =

Z

0

2

2 ( ) =

Z

0

(2 ) 2 2 1
4 | |2

We make the change of variables, = | |2 4 ( = | |2 4 = | |2
4 2 ) to

find

( ) =

Z

0

(2 ) 2 2 1
4 | |2 =

Z

0

Ã

| |2
2

! 2
2| |2 4 | |2

(2 )
2

=
2( 2 2)

| | 2

Z

0

2 2 2| |2 4 (33.13)

In case = 3 Eq. (33.13) becomes

( ) =
2 | |

Z

0

1 2| |2 4 =
2 | |

| |

where the last equality follows from Exercise 33.12. Hence when = 3 we
have found

¡

2
¢ 1

( ) = F ( ) = (2 ) 3 2

Z

R3 2 | |
| | ( )

=

Z

R3

1

4 | |
| | ( ) (33.14)

The function 1
4 | |

| | is called the Yukawa potential.
Let us work out ( ) for odd. By di erentiating Eq. (33.26) of Exercise

33.12 we find
Z

0

1 2 1
4

2 2

=

Z

0

1 1
4

2

µ ¶

| = 2

=

µ ¶

= ( )

where ( ) is a polynomial in with deg = with

(0) =

µ ¶

1 2| = 2 = (
1

2

3

2

2 1

2
) 2 +1

= 2 +1 2 (2 1)!!
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Letting 1 2 = 2 2 and = 1 we find = 1
2 2 N for = 3 5

and we find
Z

0

2 2 1
4

2

= 1 ( ) for all 0

Therefore,

( ) =
2( 2 2)

| | 2

Z

0

2 2 2| |2 4 =
2( 2 2)

| | 2 1 2 2( | |) |

Now for even I think we get Bessel functions in the answer. (BRUCE:
look this up.) Let us at least work out the asymptotics of ( ) for
To this end let

( ) :=

Z

0

2 2 ( + 1 2) = 2

Z

0

2 2 ( 2+ 1)

The function ( ) := ( 2 + 1) satisfies,

0 ( ) =
¡

2 2
¢

and 00( ) = 2 3 and 000( ) = 6 4

so by Taylor’s theorem with remainder we learn

( ) = 2 + 3( 1)2 for all 0

see Figure 33.3 below.

2.521.510.50

30

25

20

15

10

5

0

x

y

x

y

Plot of 4 and its second order Taylor approximation.

So by the usual asymptotics arguments,
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( ) = 2

Z

( + 1 1+ )

2 2 ( 2+ 1)

= 2

Z

( + 1 1+ )

2 2 exp
¡

2 3( 1)2
¢

= 2 2

Z

R

2 2 exp
¡

3( 1)2
¢

(let 1)

= 2 2 2+1

Z

R

2 2 exp
¡

( 1)2
¢

= 2 2 2+1

Z

R
( + 1) 2 2 exp

¡

2
¢

The point is we are still going to get exponential decay at
When = 0 Eq. (33.13) becomes

0( ) =
2( 2 2)

| | 2

Z

0

2 1 =
2( 2 2)

| | 2 ( 2 1)

where ( ) in the gamma function defined in Eq. (9.30). Hence for “reason-
able” functions (and 6= 2)

( ) 1 ( ) = 0F ( ) = 2( 2 2) ( 2 1)(2 ) 2

Z

R

1

| | 2 ( )

=
1

4 2
( 2 1)

Z

R

1

| | 2 ( )

The function
˜
0( ) :=

1

4 2
( 2 1)

1

| | 2

is a “Green’s function” for Recall from Exercise 9.60 that, for = 2
( 2 1) = ( 1) = ( 2)! and for = 2 + 1

(
2

1) = ( 1 2) = ( 1 + 1 2) =
1 · 3 · 5 · · · · · (2 3)

2 1

=
(2 3)!!

2 1
where ( 1)!! 1

Hence
˜
0( ) =

1

4

1

| | 2

½ 1 ( 2)! if = 2
1 (2 3)!!

2 1 if = 2 + 1

and in particular when = 3

˜
0( ) =

1

4

1

| |
which is consistent with Eq. (33.14) with = 0
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33.4 Wave Equation on Rn

Let us now consider the wave equation on R

0 =
¡

2
¢

( ) with

(0 ) = ( ) and (0 ) = ( ) (33.15)

Taking the Fourier transform in the variables gives the following equation

0 = ˆ ( ) + | |2 ˆ( ) with

ˆ(0 ) = (̂ ) and ˆ (0 ) = ˆ( ) (33.16)

The solution to these equations is

ˆ( ) = (̂ ) cos ( | |) + ˆ( )sin | || |
and hence we should have

( ) = F 1

µ

(̂ ) cos ( | |) + ˆ( )sin | || |
¶

( )

= F 1 cos ( | |)F ( ) + F 1 sin | |
| | F ( )

= F 1

·

sin | |
| |

¸

F ( ) + F 1

·

sin | |
| |

¸

F ( ) (33.17)

The question now is how interpret this equation. In particular what
are the inverse Fourier transforms of F 1 cos ( | |) and F 1 sin | |

| | Since

F 1 sin | |
| | F ( ) = F 1 cos ( | |)F ( ) it really su ces to understand

F 1
h

sin | |
| |

i

The problem we immediately run into here is that sin | |
| |

2(R ) i = 1 so that is the case we should start with.
Again by complex contour integration methods one can show

¡F 1 1 sin
¢

( ) =
2

¡

1 + 0 1( ) 0

¢

=
2
(1 1 ) =

2
1[ ]( )

where in writing the last line we have assume that 0 Again this easily
seen to be correct because

F
·

2
1[ ]( )

¸

( ) =
1

2

Z

R
1[ ]( )

· =
1

2
· |

=
1

2

£ ¤

= 1 sin
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Therefore,
¡F 1 1 sin

¢

F ( ) =
1

2

Z

( )

and the solution to the one dimensional wave equation is

( ) =
1

2

Z

( ) +
1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z +

( )

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
¡

2 2
¢

( ) = ( ) ( + ) ( )

Let ( ) := ( + ) ( ) then the wave equation states ( ) = 0
and hence by the chain rule ( ) = 0 So

( ) = (0 ) = ( ) + 0( )

and replacing by + in this equation shows

( + ) ( ) = ( ) = ( + ) + 0( + )

Working similarly, we learn that

( + ) = ( + 2 ) + 0( + 2 )

which upon integration implies

( + ) = (0 ) +

Z

0

{ ( + 2 ) + 0( + 2 )}

= ( ) +

Z

0

( + 2 ) +
1

2
( + 2 )|0

=
1

2
( ( ) + ( + 2 )) +

Z

0

( + 2 )

Replacing in this equation gives

( ) =
1

2
( ( ) + ( + )) +

Z

0

( + 2 )

and then letting = + 2 in the last integral shows again that
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( ) =
1

2
( ( ) + ( + )) +

1

2

Z +

( )

When 3 it is necessary to treat F 1
h

sin | |
| |

i

as a “distribution” or

“generalized function,” see Section 34 below. So for now let us take = 3 in
which case from Example 32.19 it follows that

F 1

·

sin | |
| |

¸

=
4 2

= ¯ (33.18)

where ¯ is 1
4 2 the surface measure on normalized to have total mea-

sure one. Hence from Eq. (33.17) the solution to the three dimensional wave
equation should be given by

( ) = ( ¯ F ( )) + ¯ F ( ) (33.19)

Using this definition in Eq. (33.19) gives

( ) =

½
Z

( ) ¯ ( )

¾

+

Z

( ) ¯ ( )

=

½
Z

1

( ) ¯1( )

¾

+

Z

1

( ) ¯1( )

=

½
Z

1

( + ) ¯1( )

¾

+

Z

1

( + ) ¯1( ) (33.20)

Proposition 33.4. Suppose 3(R3) and 2(R3) then ( ) de-
fined by Eq. (33.20) is in 2

¡

R×R3¢ and is a classical solution of the wave
equation in Eq. (33.15).

Proof. The fact that 2
¡

R×R3¢ follows by the usual di eren-
tiation under the integral arguments. Suppose we can prove the proposi-
tion in the special case that 0 Then for 3(R3) the function
( ) = +

R

1
( + ) ¯1( ) solves the wave equation 0 =

¡

2
¢

( )

with (0 ) = 0 and (0 ) = ( ) Di erentiating the wave equation
in shows = also solves the wave equation with (0 ) = ( ) and
(0 ) = (0 ) = (0 ) = 0
These remarks reduced the problems to showing in Eq. (33.20) with
0 solves the wave equation. So let

( ) :=

Z

1

( + ) ¯1( ) (33.21)

We now give two proofs the solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and ( )

only depends on the values of in ( ) we it su ces to consider the case
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where 2
¡

R3
¢

Taking the Fourier transform of Eq. (33.21) in the
variable shows

ˆ( ) =

Z

1

¯1( )

Z

R3
( + ) · d

=

Z

1

¯1( )

Z

R3
( ) · · d = ˆ( )

Z

1

· ¯1( )

= ˆ( )
sin | |
| | = ˆ( )

sin ( | |)
| |

wherein we have made use of Example 32.19. This completes the proof since
ˆ( ) solves Eq. (33.16) as desired.
Proof 2. Di erentiating

( ) :=

Z

1

( + ) ¯1( )

in gives

( ) =
1

4

Z

1

( + ) · ( )

=
1

4

Z

(0 1)

· ( + ) ( )

=
4

Z

(0 1)

( + ) ( )

=
1

4 2

Z

(0 )

( + ) ( )

=
1

4 2

Z

0

2

Z

| |=
( + ) ( )

where we have used the divergence theorem, made the change of variables
= and used the disintegration formula in Eq. (9.27),
Z

R

( ) ( ) =

Z

[0 )× 1

( ) ( ) 1 =

Z

0

Z

| |=
( ) ( )

Since ( ) = ( ) if follows that



33.4 Wave Equation on R 715

Fig. 33.1. The geometry of the solution to the wave equation in three dimensions.
The observer sees a flash at = 0 and = 0 only at time = | | The wave progates
sharply with speed 1

( ) = [ ( ) + ( )]

= ( ) +

"

1

4

Z

0

2

Z

| |=
( + ) ( )

#

= ( )
1

4 2

Z

0

Z

| |=
( + ) ( )

+
1

4

Z

| |=
( + ) ( )

= ( ) ( ) +
4 2

Z

| |=1
( + ) ( )

= ( )

as required.
The solution in Eq. (33.20) exhibits a basic property of wave equations,

namely finite propagation speed. To exhibit the finite propagation speed, sup-
pose that = 0 (for simplicity) and has compact support near the origin,
for example think of = 0( ) Then + = 0 for some i | | = Hence
the “wave front” propagates at unit speed and the wave front is sharp. See
Figure 33.1 below.
The solution of the two dimensional wave equation may be found using

“Hadamard’s method of decent” which we now describe. Suppose now that
and are functions on R2 which we may view as functions on R3 which

happen not to depend on the third coordinate. We now go ahead and solve
the three dimensional wave equation using Eq. (33.20) and and as initial
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Fig. 33.2. The geometry of the solution to the wave equation in two dimensions. A
flash at 0 R2 looks like a line of flashes to the fictitious 3 — d observer and hence
she sees the e ect of the flash for | | The wave still propagates with speed 1
However there is no longer sharp propagation of the wave front, similar to water
waves.

conditions. It is easily seen that the solution ( ) is again independent
of and hence is a solution to the two dimensional wave equation. See figure
33.2 below.
Notice that we still have finite speed of propagation but no longer sharp

propagation. The explicit formula for is given in the next proposition.

Proposition 33.5. Suppose 3(R2) and 2(R2) then

( ) :=

"

2

ZZ

1

( + )
p

1 | |2 ( )

#

+
2

ZZ

1

( + )
p

1 | |2 ( )

is in 2
¡

R×R2¢ and solves the wave equation in Eq. (33.15).
Proof. As usual it su ces to consider the case where 0 By symmetry
may be written as
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( ) = 2

Z

+
( ) ¯ ( ) = 2

Z

+
( + ) ¯ ( )

where + is the portion of with 0 The surface + may be parametrized
by ( ) = ( 2 2 2) with ( ) :=

©

( ) : 2 + 2 2
ª

In these coordinates we have

4 2 ¯ =
¯

¯

¯

³

p

2 2 2
p

2 2 2 1
´
¯

¯

¯

=

¯

¯

¯

¯

µ

2 2 2 2 2 2
1

¶
¯

¯

¯

¯

=

r

2 + 2

2 2 2
+ 1 =

| |
2 2 2

and therefore,

( ) =
2

4 2

Z

( + (
p

2 2 2))
| |

2 2 2

=
1

2
sgn( )

Z

( + ( ))
2 2 2

This may be written as

( ) =
1

2
sgn( )

ZZ

( + )
p

2 | |2 ( )

=
1

2
sgn( )

2

| |
ZZ

1

( + )
p

1 | |2 ( )

=
1

2

ZZ

1

( + )
p

1 | |2 ( )

33.5 Elliptic Regularity

The following theorem is a special case of the main theorem (Theorem 33.10)
of this section.

Theorem 33.6. Suppose that R ( ) and 1 ( ) sat-
isfies = weakly, then has a (necessarily unique) version ˜ ( )

Proof.We may always assume 3 by embedding the = 1 and = 2
cases in the = 3 cases. For notational simplicity, assume 0 and we will
show is smooth near 0 To this end let ( ) such that = 1 in a
neighborhood of 0 and ( ) such that supp( ) { = 1} and = 1
in a neighborhood of 0 as well. Then formally, we have with := 1
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( ) = ( ) = ( ( + ))

= ( ( ) + ( )) = + ( ( ))

so that
( ) = ( ) ( ) ( ( ))( )

for supp( ) The last term is formally given by

( ( ))( ) =

Z

R
( ) ( ) ( ( ) ( ))

=

Z

R
( ) [ ( ) ( )] · ( )

which makes sense for near 0 Therefore we find

( ) = ( ) ( )

Z

R
( ) [ ( ) ( )] · ( )

Clearly all of the above manipulations were correct if we know were 2 to
begin with. So for the general case, let = with { } =1 — the usual
sort of — sequence approximation. Then = =: away from
and

( ) = ( ) ( )

Z

R
( ) [ ( ) ( )] · ( ) (33.22)

Since in 1 (O) where O is a su ciently small neighborhood of 0 we
may pass to the limit in Eq. (33.22) to find ( ) = ˜( ) for a.e. O where

˜( ) := ( ) ( )

Z

R
( ) [ ( ) ( )] · ( )

This concluded the proof since ˜ is smooth for near 0

Definition 33.7.We say = ( ) as defined in Eq. (33.1) is elliptic
if ( ) :=

P

| |= is zero i = 0 We will also say the polynomial
( ) :=

P

| | is elliptic if this condition holds.

Remark 33.8. If ( ) :=
P

| | is an elliptic polynomial, then there
exists such that inf | | | ( )| 0 Since ( ) is everywhere non-
zero for 1 and 1 R is compact, := inf| |=1 | ( )| 0 By
homogeneity this implies

| ( )| | | for all A

Since

| ( )| =
¯

¯

¯

¯

¯

¯

( ) +
X

| |

¯

¯

¯

¯

¯

¯

| ( )|
¯

¯

¯

¯

¯

¯

X

| |

¯

¯

¯

¯

¯

¯

| |
³

1 + | | 1
´
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for some constant from which it is easily seen that for su ciently
large,

| ( )|
2
| | for all | |

For the rest of this section, let = ( ) be an elliptic operator and
0 R As mentioned at the beginning of this section, the formal solution

to = for 2 (R ) is given by

= 1 =

where

( ) :=

Z

R

1

( )
· d

Of course this integral may not be convergent because of the possible zeros of
and the fact 1

( ) may not decay fast enough at infinity. We we will introduce
a smooth cut o function ( ) which is 1 on 0( ) := { R : | | } and
supp( ) 0(2 ) where is as in Remark 33.8. Then for 0 let

( ) =

Z

R

(1 ( )) ( )

( )
· d (33.23)

( ) := ( ) =

Z

R
( ) · d and ( ) = ( ) (33.24)

Notice
R

R ( ) = F (0) = (0) = 1 S since S and

( ) =

Z

R
(1 ( )) ( ) · d =

Z

R
[ ( ) ( )] · d

= ( ) ( )

provided 2

Proposition 33.9. Let be an elliptic polynomial of degree The function
defined in Eq. (33.23) satisfies the following properties,

1. S for all 0
2. ( ) = ( ) ( )
3. There exists (R \ {0}) such that for all multi-indecies
lim ( ) = ( ) uniformly on compact subsets in R \ {0}
Proof.We have already proved the first two items. For item 3., we notice

that

( ) ( ) =

Z

R

(1 ( )) ( )

( )
( ) · d

=

Z

R

·

(1 ( ))

( )
( )

¸

· d

=

Z

R

(1 ( ))

( )
· ( ) · d + ( )
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where

( ) =
X

µ ¶

| | | |
Z

R

(1 ( ))

( )
· ¡ ¢

( ) · d

Using
¯

¯

¯

¯

·

( )
(1 ( ))

¸
¯

¯

¯

¯

| || | | |

and the fact that

supp(
¡ ¢

( )) { R : | | 2 }
= { R : | | 2 }

we easily estimate

| ( )|
X

µ ¶

| | | |
Z

{ R : | | 2 }
| || | | | d

X

µ ¶

| | | | | | | |+ = | | | | +

Therefore, 0 uniformly in as provided | | | | + It
follows easily now that in (R \ {0}) and furthermore that

( ) ( ) =

Z

R

(1 ( ))

( )
· · d

provided is su ciently large. In particular we have shown,

( ) =
1

| |2
Z

R
( )

(1 ( ))

( )
· · d

provided | |+ 2 i.e. ( + | |) 2
We are now ready to use this result to prove elliptic regularity for the

constant coe cient case.

Theorem 33.10. Suppose = ( ) is an elliptic di erential operator on
R R ( ) and 1 ( ) satisfies = weakly, then
has a (necessarily unique) version ˜ ( )

Proof. For notational simplicity, assume 0 and we will show is
smooth near 0 To this end let ( ) such that = 1 in a neighbor-
hood of 0 and ( ) such that supp( ) { = 1} and = 1 in a
neighborhood of 0 as well. Then formally, we have with := 1

( ) = ( ) = ( ( + ))

= ( ( ) + ( ))

= ( ) ( ) + ( ( ))
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so that

( ) ( ) = ( ) ( ) ( ( ))( ) + ( ) (33.25)

Since

F [ ( )] ( ) = ˆ ( ) ( )
ˆ
( ) =

(1 ( )) ( )

( )
( )

ˆ
( )

(1 ( ))

( )
( )ˆ ( ) as

with the convergence taking place in 2 (actually in S) it follows that

( ) “ ( ) ”( ) :=
Z

R

(1 ( ))

( )
( )

ˆ
( ) · d

= F 1

·

(1 ( ))

( )
( )ˆ ( )

¸

( ) S

So passing the the limit, in Eq. (33.25) we learn for almost every
R

( ) = ( ) ( ) lim ( ( ))( ) + ( ) ( )

for a.e. supp( ) Using the support properties of and we see for
near 0 that ( ( ))( ) = 0 unless supp( ) and { = 1} i.e. unless
is in an annulus centered at 0 So taking su ciently close to 0 we find

stays away from 0 as varies through the above mentioned annulus,
and therefore

( ( ))( ) =

Z

R
( )( ( ))( )d

=

Z

R
{ ( ) ( )} · ( ) ( )d

Z

R
{ ( ) ( )} · ( ) ( )d as

Therefore we have shown,

( ) = ( ) ( )

Z

R
{ ( ) ( )} · ( ) ( )d + ( ) ( )

for almost every in a neighborhood of 0 (Again it su ces to prove this
equation and in particular Eq. (33.25) assuming 2( ) because of the
same convolution argument we have use above.) Since the right side of this
equation is the linear combination of smooth functions we have shown has
a smooth version in a neighborhood of 0
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Remarks 33.11 We could avoid introducing ( ) if deg( ) in which
case (1 ( ))

( )
1 and so

( ) :=

Z

R

(1 ( ))

( )
· d

is already well defined function with (R \{0}) (R ) If deg( )
we may consider the operator = [ ( )] = ( ) where is chosen

so that · deg( ) Since = implies = 1 weakly, we see to
prove the hypoellipticity of it su ces to prove the hypoellipticity of

33.6 Exercises

Exercise 33.12. Using

1

| |2 + 2
=

Z

0

(| |2+ 2)

the identity in Eq. (33.5) and Example 32.4, show for 0 and 0 that

=

Z

0

1 1
4

2 2

(let 2) (33.26)

=

Z

0

1 2

4
2

(33.27)

Use this formula and Example 32.4 to show, in dimension that

F
h

| |
i

( ) = 2 2 (( + 1) 2)

( 2 + | |2)( +1) 2

where ( ) in the gamma function defined in Eq. (9.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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34.1 Distributions on U o Rn

Let be an open subset of R and

( ) = @@ ( ) (34.1)

denote the set of smooth functions on with compact support in

Definition 34.1. A sequence { } =1 D( ) converges to D( ) i
there is a compact set @@ such that supp( ) for all and
in ( )

Definition 34.2 (Distributions on R ). A generalized function
on R is a continuous linear functional on D( ) i.e. : D( ) C
is linear and lim h i = 0 for all { } D( ) such that 0 in
D( ) We denote the space of generalized functions by D0( )

Proposition 34.3. Let : D( ) C be a linear functional. Then D0( )
i for all @@ there exist N and such that

| ( )| ( ) for all ( ) (34.2)

Proof. Suppose that { } D( ) such that 0 in D( ) Let be
a compact set such that supp( ) for all Since lim ( ) = 0 it
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follows that if Eq. (34.2) holds that lim h i = 0 Conversely, suppose
that there is a compact set @@ such that for no choice of N and

Eq. (34.2) holds. Then we may choose non-zero ( ) such
that

| ( )| ( ) for all

Let = 1
( ) ( ) then ( ) = 1 0 as which

shows that 0 in D( ) On the other hence | ( )| 1 so that
lim h i 6= 0
Alternate Proof:The definition of being continuous is equivalent to

| ( ) being sequentially continuous for all @@ Since ( ) is a
metric space, sequential continuity and continuity are the same thing. Hence
is continuous i | ( ) is continuous for all @@ Now | ( ) is

continuous i a bound like Eq. (34.2) holds.

Definition 34.4. Let be a topological space and D0( ) for all
We say that D0( ) as 0 i

lim
0

h i = h i for all D( )

34.2 Examples of distributions and related computations

Example 34.5. Let be a positive Radon measure on and 1 ( )
Define D0( ) by h i = R

for all D( ) Notice that if
( ) then

|h i|
Z

| | =

Z

| | k k

where :=
R | | Hence D0( ) Furthermore, the map

1 ( ) D0( )

is injective. Indeed, = 0 is equivalent to
Z

= 0 for all D( ) (34.3)

for all ( ) By the dominated convergence theorem and the usual
convolution argument, this is equivalent to

Z

= 0 for all ( ) (34.4)

Now fix a compact set @@ and ( ) such that sgn( )1
in 1( ) By replacing by ( ) if necessary, where
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( ) =

½

if | | 1

| | if | | 1

we may assume that | | 1 By passing to a further subsequence, we may
assume that sgn( )1 a.e.. Thus we have

0 = lim

Z

=

Z

sgn( )1 =

Z

| |

This shows that | ( )| = 0 for -a.e. Since is arbitrary and is
the countable union of such compact sets it follows that ( ) = 0 for
-a.e.

The injectivity may also be proved slightly more directly as follows. As
before, it su ces to prove Eq. (34.4) implies that ( ) = 0 for — a.e. We
may further assume that is real by considering real and imaginary parts
separately. Let @@ and 0 be given. Set = { 0} then
( ) and hence since all finite measure on are Radon, there exists

with compact and such that ( \ ) By
Uryshon’s lemma, there exists ( ) such that 0 1 and = 1 on
Then by Eq. (34.4)

0 =

Z

=

Z

+

Z

\
=

Z

+

Z

\

so that
Z

=

¯

¯

¯

¯

¯

Z

\

¯

¯

¯

¯

¯

Z

\
| |

provided that is chosen su ciently small by the — definition of absolute
continuity. Similarly, it follows that

0

Z Z

+ 2

Since 0 is arbitrary, it follows that
R

= 0 Since was arbitrary, we
learn that

Z

{ 0}
= 0

which shows that 0 — a.e. Similarly, one shows that 0 — a.e. and
hence = 0 — a.e.

Example 34.6. Let us now assume that = and write h i = R
For the moment let us also assume that = R Then we have

1. lim sin = 0
2. lim 1 sin = 0 where 0 is the point measure at 0
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3. If 1(R ) with
R

R = 1 and ( ) = ( ) then
lim 0 = 0 As a special case,
consider lim 0 ( 2+ 2) = 0

Definition 34.7 (Multiplication by smooth functions). Suppose that
( ) and D0( ) then we define D0( ) by

h i = h i for all D( )

It is easily checked that is continuous.

Definition 34.8 (Di erentiation). For D0( ) and {1 2 } let
D0( ) be the distribution defined by

h i = h i for all D( )

Again it is easy to check that is a distribution.

More generally if =
P

| | with ( ) for all then
is the distribution defined by

h i = h
X

| |
( 1)| | ( )i for all D( )

Hence we can talk about distributional solutions to di erential equations of
the form = .

Example 34.9. Suppose that 1 and ( ) then = If
further 1( ) then = If ( ) then =

Example 34.10. Suppose that then

h i = ( )

and more generally we have

h i =
X

| |
( 1)| | ( ) ( )

Example 34.11. Consider the distribution := | | for R i.e. take = R
Then

= sgn( ) and
2

2
= 2 0

More generally, suppose that is piecewise 1 the

= 0 +
X

( ( +) ( ))
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Example 34.12. Consider = ln| | on D(R) Then

h 0 i =
Z

R
ln | | 0( ) = lim

0

Z

| |
ln | | 0( )

= lim
0

Z

| |
ln | | 0( )

= lim
0

Z

| |

1
( ) lim

0
[ln ( ( ) ( ))]

= lim
0

Z

| |

1
( )

We will write 0 = 1 in the future. Here is another formula for 0

h 0 i = lim
0

Z

1 | |

1
( ) +

Z

| | 1

1
( )

= lim
0

Z

1 | |

1
[ ( ) (0)] +

Z

| | 1

1
( )

=

Z

1 | |

1
[ ( ) (0)] +

Z

| | 1

1
( )

Please notice in the last example that 1 1 (R) so that 1 is not well
defined. This is an example of the so called division problem of distributions.
Here is another possible interpretation of 1 as a distribution.

Example 34.13. Here we try to define 1 as lim 0
1
± that is we want to

define a distribution ± by

h ± i := lim
0

Z

1

± ( )

Let us compute + explicitly,

lim
0

Z

R

1

+
( )

= lim
0

Z

| | 1

1

+
( ) + lim

0

Z

| | 1

1

+
( )

= lim
0

Z

| | 1

1

+
[ ( ) (0)] + (0) lim

0

Z

| | 1

1

+

+

Z

| | 1

1
( )

=

Z

R

1
( ) + (0) lim

0

Z

| | 1

1

+

Now by deforming the contour we have
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Z

| | 1

1

+
=

Z

| | 1

1

+
+

Z

1

+

where : = with : 0 Therefore,

lim
0

Z

| | 1

1

+
= lim

0

Z

| | 1

1

+
+ lim

0

Z

1

+

=

Z

| | 1

1
+

Z

1
= 0

Hence we have shown that + = 1
0 Similarly, one shows that

= 1 + 0 Notice that it follows from these computations that
+ = 2 0 Notice that

1 1

+
=

2
2 + 2

and hence we conclude that lim 0 2+ 2 = 0 — a result that we saw in
Example 34.6, item 3.

Example 34.14. Suppose that is a complex measure on R and ( ) =
(( ]) then 0 = Moreover, if 1 (R) and 0 = then
= + a.e. for some constant

Proof. Let D := D(R) then

h 0 i = h 0i =
Z

R
( ) 0( ) =

Z

R

Z

R
( ) 0( )1

=

Z

R
( )

Z

R

0( )1 =

Z

R
( ) ( ) = h i

by Fubini’s theorem and the fundamental theorem of calculus. If 0 = then
0 = 0 and the result follows from Corollary 34.16 below.

Lemma 34.15. Suppose that D0(R ) is a distribution such that = 0
for some then there exists a distribution D0(R 1) such that h i =
h ¯ i for all D(R ) where

¯ =

Z

R
D(R 1)

Proof. To simplify notation, assume that = and write R as
= ( ) with R 1 and R Let (R) such that

R

R ( ) = 1
and for D(R 1) let ( ) = ( ) ( ) The mapping

D(R 1) D(R )

is easily seen to be sequentially continuous and therefore h i := h i
defined a distribution in D0(R ) Now suppose that D(R ) If = for
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some D(R ) we would have to have
R

( ) = 0 This is not generally
true, however the function ¯ does have this property. Define

( ) :=

Z

£

( 0) ¯( ) ( 0)
¤ 0

then D(R ) and = ¯ Therefore,

0 = h i = h i = h i h ¯ i = h i h ¯i

Corollary 34.16. Suppose that D0(R ) is a distribution such that there
exists 0 such that

= 0 for all | | =
then = where ( ) is a polynomial on R of degree less than or equal to

1 where by convention if deg( ) = 1 then 0

Proof. The proof will be by induction on and The corollary is trivially
true when = 0 and is arbitrary. Let = 1 and assume the corollary holds
for = 1 with 1 Let D0(R) such that 0 = = 1 By
the induction hypothesis, there exists a polynomial, of degree 2 such
that 0 = Let ( ) =

R

0
( ) then is a polynomial of degree at most

1 such that 0 = and hence 0 = = 0 So ( )0 = 0 and hence
by Lemma 34.15, = where = h i and is as in the proof
of Lemma 34.15. This proves the he result for = 1
For the general induction, suppose there exists ( ) N2 with 0

and 1 such that assertion in the corollary holds for pairs ( 0 0) such
that either 0 of 0 = and 0 Suppose that D0(R ) is a
distribution such that

= 0 for all | | = + 1

In particular this implies that = 0 for all | | = 1 and hence by
induction = where is a polynomial of degree at most 1 on
R Let ( ) =

R

0
( 0) 0 a polynomial of degree at most on R The

polynomial satisfies, 1) = 0 if | | = and = 0 and 2) =
Hence ( ) = 0 and so by Lemma 34.15,

h i = h ¯ i
for some distribution D0(R 1) If is a multi-index such that = 0
and | | = then

0 = h i = h i = h ( ) i
= h ¯ i = ( 1)| |h ¯ i
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and in particular by taking = we learn that h i = 0 for all
D(R 1) Thus by the induction hypothesis, = for some polynomial ( )
of degree at most on R 1 Letting ( ) = ( )+ ( ) — a polynomial
of degree at most on R it is easily checked that =

Example 34.17. Consider the wave equation

( ) ( + ) ( ) =
¡

2 2
¢

( ) = 0

From this equation one learns that ( ) = ( + ) + ( ) solves the
wave equation for 2 Suppose that is a bounded Borel measurable
function on R and consider the function ( + ) as a distribution on R We
compute

h( ) ( + ) ( )i =
Z

R2
( + ) ( ) ( )

=

Z

R2
( ) [( ) ] ( )

=

Z

R2
( ) [ ( )]

=

Z

R
( ) [ ( )] | == = 0

This shows that ( ) ( + ) = 0 in the distributional sense. Similarly,
( + ) ( ) = 0 in the distributional sense. Hence ( ) = ( + ) +
( ) solves the wave equation in the distributional sense whenever and
are bounded Borel measurable functions on R

Example 34.18. Consider ( ) = ln | | for R2 and let = Then,
pointwise we have

ln | | = | |2 and ln | | = 2

| |2 2 · | |4 = 0

Hence ( ) = 0 for all R2 except at = 0 where it is not defined. Does
this imply that = 0? No, in fact = 2 as we shall now prove. By
definition of and the dominated convergence theorem,

h i = h i =
Z

R2
ln | | ( ) = lim

0

Z

| |
ln | | ( )

Using the divergence theorem,
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Z

| |
ln | | ( )

=

Z

| |
ln | | · ( ) +

Z

{| | }
ln | | ( ) · ( ) ( )

=

Z

| |
ln | | ( )

Z

{| | }
ln | | · ( ) ( ) ( )

+

Z

{| | }
ln | | ( ( ) · ( )) ( )

=

Z

{| | }
ln | | ( ( ) · ( )) ( )

Z

{| | }
ln | | · ( ) ( ) ( )

where ( ) is the outward pointing normal, i.e. ( ) = ˆ := | | Now
¯

¯

¯

¯

¯

Z

{| | }
ln | | ( ( ) · ( )) ( )

¯

¯

¯

¯

¯

¡

ln 1
¢

2 0 as 0

where is a bound on ( ( ) · ( )) While
Z

{| | }
ln | | · ( ) ( ) ( ) =

Z

{| | }

ˆ

| | · ( ˆ) ( ) ( )

=
1
Z

{| | }
( ) ( )

2 (0) as 0

Combining these results shows

h i = 2 (0)

Exercise 34.19. Carry out a similar computation to that in Example 34.18
to show

1 | | = 4

where now R3

Example 34.20. Let = + and ¯ = 1
2( + ) Let = 1 then

¯ = 0 or imprecisely ¯
1
= ( )

Proof. Pointwise we have ¯1 = 0 so we shall work as above. We then have
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h¯ i = h ¯ i =
Z

R2

1 ¯ ( ) ( )

= lim
0

Z

| |

1 ¯ ( ) ( )

= lim
0

Z

| |
¯1 ( ) ( )

lim
0

Z

{| | }

1
( )
1

2
( 1( ) + 2( )) ( )

= 0 lim
0

Z

{| | }

1
( )
1

2

µ

| |
¶

( )

=
1

2
lim
0

Z

{| | }

1

| | ( ) ( )

= lim
0

1

2

Z

{| | }
( ) ( ) = (0)

34.3 Other classes of test functions

(For what follows, see Exercises 7.78 and 7.79 of Chapter 7.

Notation 34.21 Suppose that is a vector space and { } =0 is a family
of semi-norms on such that +1 for all and with the property that
( ) = 0 for all implies that = 0 (We allow for = 0 for all in

which case is a normed vector space.) Let be the smallest topology on
such that ( ·) : [0 ) is continuous for all N and For

N and 0 let ( ) := { : ( ) }
Proposition 34.22. The balls B := { ( ) : N and 0} for
a basis for the topology This topology is the same as the topology induced
by the metric on defined by

( ) =
X

=0

2
( )

1 + ( )

Moreover, a sequence { } is convergent to i lim ( ) =
0 i lim ( ) = 0 for all N and { } is Cauchy in i
lim ( ) = 0 i lim ( ) = 0 for all N

Proof. Suppose that ( ) ( ) and assume with out loss of
generality that Then if ( ) we have

( ) ( ) + ( ) + ( )
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provided that (0 ( )) and similarly

( ) ( ) ( ) + ( ) + ( )

provided that (0 ( )) So choosing

=
1

2
min ( ( ) ( ))

we have shown that ( ) ( ) ( ) This shows that B forms
a basis for a topology. In detail, i for all there exists N
and 0 such that ( ) := { : ( ) }
Let (B) be the topology generated by B Since| ( ) ( )|
( ) we see that ( ·) is continuous on relative to (B) for each

and N This shows that (B) On the other hand, since ( ·) is
— continuous, it follows that ( ) = { : ( ) } for all

0 and N This shows that B and therefore that (B)
Thus = (B)
Given and 0 let ( ) = { : ( ) } be a — ball.

Choose large so that
P

= +1 2 2. Then ( 4) we have

( ) = ( )
X

=0

2 + 2 2
4
+ 2

which shows that ( 4) ( ) Conversely, if ( ) then

2
( )

1 + ( )

which implies that

( )
2

1 2
=:

when 2 1 which shows that ( ) contains ( ) with and as
above. This shows that and the topology generated by are the same.
The moreover statements are now easily proved and are left to the reader.

Exercise 34.23. Keeping the same notation as Proposition 34.22 and further
assume that { 0 } N is another family of semi-norms as in Notation 34.21.
Then the topology 0 determined by { 0 } N is weaker then the topology
determined by { } N (i.e.

0 ) i for every N there is an N and
such that 0

Solution 34.24. Suppose that 0 Since 0 { 0 1} 0 there
exists an N and 0 such that { } { 0 1} So for

2 ( )
{ } { 0 1}
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which implies 0 ( ) 2 ( ) and hence 0 with = 2 (Actually
1 would do here.)
For the converse assertion, let 0 and 0 Then there exists an
N and 0 such that { 0 ( 0 ·) } If N and so

that 0 then

0 { ( 0 ·) } { 0 ( 0 ·) }

which shows that

Lemma 34.25. Suppose that and are vector spaces equipped with se-
quences of norms { } and { } as in Notation 34.21. Then a linear map
: is continuous if for all N there exists and N

such that ( ) ( ) for all In particular, i
| ( )| ( ) for some and N (We may also characterize
continuity by sequential convergence since both and are metric spaces.)

Proof. Suppose that is continuous, then { : ( ) 1} is an open
neighborhood of 0 in Therefore, there exists N and 0 such that

(0 ) { : ( ) 1} So for and 1 ( ) (0 )
and thus

(
( )

) 1 = ( )
1

( )

for all Letting 1 shows that ( ) 1 ( ) for all
Conversely, if satisfies

( ) ( ) for all

then

( 0) = ( ( 0)) ( 0) for all

This shows 0 as 0 i.e. that is continuous.

Definition 34.26. A Fréchet space is a vector space equipped with a family
{ } of semi-norms such that is complete in the associated metric

Example 34.27. Let @@ R and ( ) := { (R ) : supp( ) }
For N let

( ) :=
X

| |
k k

Then ( ( ) { } =1) is a Fréchet space. Moreover the derivative opera-
tors { } and multiplication by smooth functions are continuous linear maps
from ( ) to ( ) If is a finite measure on then ( ) :=

R

is an element of ( ) for any multi index
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Example 34.28. Let R and for N and a compact set @@ let

( ) :=
X

| |
k k :=

X

| |
max | ( )|

Choose a sequence @@ such that +1 +1 @@ for
all and set ( ) = ( ) Then ( ( ) { } =1) is a Fréchet space
and the topology in independent of the choice of sequence of compact sets
exhausting Moreover the derivative operators { } and multiplication by
smooth functions are continuous linear maps from ( ) to ( ) If is
a finite measure with compact support in then ( ) :=

R

is an
element of ( ) for any multi index

Proposition 34.29. A linear functional on ( ) is continuous, i.e.
( ) i there exists a compact set @@ N and such that

|h i| ( ) for all ( )

Notation 34.30 Let ( ) := (1+ | |) (or change to ( ) = (1+ | |2) 2 =
h i ?) for R and R

Example 34.31. Let S denote the space of functions (R ) such that
and all of its partial derivatives decay faster that (1+ | |) for all 0 as
in Definition 32.6. Define

( ) =
X

| |
k(1 + | · |) (·)k =

X

| |
k( (·)k

then (S { }) is a Fréchet space. Again the derivative operators { } and
multiplication by function P are examples of continuous linear operators
on S For an example of an element S let be a measure on R such
that

Z

(1 + | |) | |( )

for some N Then ( ) :=
R

defines and element of S
Proposition 34.32. The Fourier transform F : S S is a continuous linear
transformation.

Proof. For the purposes of this proof, it will be convenient to use the
semi-norms

0 ( ) =
X

| |

°

°(1 + | · |2) (·)°°

This is permissible, since by Exercise 34.23 they give rise to the same topology
on S
Let S and N then
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(1 + | |2) (̂ ) = (1 + | |2) F (( ) ) ( )

= F [(1 ) (( ) )] ( )

and therefore if we let = (1 ) (( ) ) S
¯

¯

¯
(1 + | |2) (̂ )

¯

¯

¯
k k1 =

Z

R
| ( )|

=

Z

R
| ( )| (1 + | |2) 1

(1 + | |2)
°

°

°
| (·)| (1 + |·|2)

°

°

°

where =
R

R
1

(1+| |2) Using the product rule repeatedly, it is not
hard to show

°

°

°
| (·)| (1 + |·|2)

°

°

°
=
°

°

°
(1 + |·|2) (1 ) (( ) )

°

°

°

X

| | 2

°

°

°
(1 + |·|2) +| | 2

°

°

°

0
2 + ( )

for some constant Combining the last two displayed equations implies
that 0 ( )̂ 0

2 + ( ) for all S and thus F is continuous.

Proposition 34.33. The subspace (R ) is dense in S(R )

Proof. Let (R ) such that = 1 in a neighborhood of 0 and set
( ) = ( ) for all N We will now show for all S that

converges to in S The main point is by the product rule,

( ) ( ) =
X

µ ¶

( ) ( )

=
X

: 6=

µ ¶

1
| | ( ) ( )

Sincemax
©
°

°

°

° :
ª

is bounded it then follows from the last equation
that k ( )k = (1 ) for all 0 and That is to say
in S

Lemma 34.34 (Peetre’s Inequality). For all R and R

(1 + | + |) min
n

(1 + | |)| |(1 + | |) (1 + | |) (1 + | |)| |
o

(34.5)

that is to say ( + ) | |( ) ( ) and ( + ) ( ) | |( ) for all
R where ( ) = (1 + | |) as in Notation 34.30. We also have the same

results for h i namely
h + i 2| | 2min

n

h i| |h i h i h i| |
o

(34.6)
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Proof. By elementary estimates,

(1 + | + |) 1 + | |+ | | (1 + | |)(1 + | |)
and so for Eq. (34.5) holds if 0 Now suppose that 0 then

(1 + | + |) (1 + | |) (1 + | |)
and letting and in this inequality implies

(1 + | |) (1 + | + |) (1 + | |)
This inequality is equivalent to

(1 + | + |) (1 + | |) (1 + | |) = (1 + | |) (1 + | |)| |
By symmetry we also have

(1 + | + |) (1 + | |)| |(1 + | |)
For the proof of Eq. (34.6

h + i2 = 1 + | + |2 1 + (| |+ | |)2 = 1 + | |2 + | |2 + 2 | | | |
1 + 2 | |2 + 2 | |2 2(1 + | |2)(1 + | |2) = 2h i2h i2

From this it follows that h i 2 2h + i 2h i2 and hence
h + i 2 2h i 2h i2

So if 0 then
h + i 2 2h i h i

and
h + i 2 2h i h i

Proposition 34.35. Suppose that S then S
Proof. First proof. Since F( ) = ˆ̂ S it follows that =

F 1( ˆ̂ ) S as well.
For the second proof we will make use of Peetre’s inequality. We have for

any N that

( ) | ( )( )| = ( ) | ( )| ( )

Z

| ( )| | ( )|

( )

Z

( ) ( ) ( )

Z

( ) ( )

= ( )

Z

( )

Choosing = and + we learn that

( ) | ( )( )|
Z

( )

showing k ( )k for all 0 and N
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34.4 Compactly supported distributions

Definition 34.36. For a distribution D0( ) and we say | = 0
if h i = 0 for all D( )

Proposition 34.37. Suppose that V := { } is a collection of open subset
of such that | = 0 for all then | = 0 where =

Proof. Let { } be a smooth partition of unity subordinate to V i.e.
supp( ) for all for each point there exists a neighborhood

such that #{ : supp( ) 6= } and 1 =
P

Then for D( ) we have =
P

and there are only a finite
number of nonzero terms in the sum since supp( ) is compact. Since
D( ) for all

h i = h
X

i =
X

h i = 0

Definition 34.38. The support, supp( ) of a distribution D0( ) is the
relatively closed subset of determined by

\ supp( ) = { : | = 0}

By Proposition 34.29, supp( ) may described as the smallest (relatively)
closed set such that | \ = 0

Proposition 34.39. If 1 ( ) then supp( ) = ess sup( ) where

ess sup( ) := { : ({ : ( ) 6= 0}}) 0 for all neighborhoods of

as in Definition 11.14.

Proof. The key point is that | = 0 i = 0 a.e. on and therefore

\ supp( ) = { : 1 = 0 a.e.}

On the other hand,

\ ess sup( ) = { : ({ : ( ) 6= 0}}) = 0 for some neighborhood
= { : 1 = 0 a.e. for some neighborhood of }
= { : 1 = 0 a.e.}

Definition 34.40. Let E 0( ) := { D0( ) : supp( ) is compact} —
the compactly supported distributions in D0( )
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Lemma 34.41. Suppose that D0( ) and ( ) is a function such
that := supp( ) supp( ) is a compact subset of Then we may define
h i := h i where D( ) is any function such that = 1 on a
neighborhood of Moreover, if @@ is a given compact set and @@
is a compact set such that then there exists N and such
that

|h i|
X

| |

°

°

°

° (34.7)

for all ( ) such that supp( ) supp( ) In particular if
E 0( ) then extends uniquely to a linear functional on ( ) and there is
a compact subset @@ such that the estimate in Eq. (34.7) holds for all

( )

Proof. Suppose that ˜ is another such cuto function and let be an open

neighborhood of such that = ˜= 1 on Setting :=
³

˜
´

D( )

we see that

supp( ) supp( ) \ supp( ) \ = supp( ) \ supp( ) \ supp( )

see Figure 34.1 below. Therefore,

0 = h i = h
³

˜
´

i = h i h ˜ i

which shows that h i is well defined.

Fig. 34.1. Intersecting the supports.

Moreover, if @@ is a compact set such that and ( 0)
is a function which is 1 on a neighborhood of we have
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|h i| = |h i| =
X

| |
k ( )k

X

| |

°

°

°

°

and this estimate holds for all ( ) such that supp( ) supp( )

Theorem 34.42. The restriction of ( ) to ( ) defines an ele-
ment in E 0( ) Moreover the map

( ) |D( ) E 0( )

is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given E 0( ) and ( ) such that = 1 on = supp( ) then
1( ) = where ( ) defined by

h i = h i for all ( )

Proof. Suppose that ( ) then there exists a compact set @@
N and such that

|h i| ( ) for all ( )

where is defined in Example 34.28. It is clear using the sequential notion of
continuity that |D( ) is continuous on D( ) i.e. |D( ) D0( ) Moreover,
if ( ) such that = 1 on a neighborhood of then

|h i h i| = |h ( 1) i| (( 1) ) = 0

which shows = Hence supp( ) = supp( ) supp( ) @@ showing
that |D( ) E 0( ) Therefore the map is well defined and is clearly linear.
I also claim that is injective because if ( ) and ( ) = |D( ) 0
then h i = h i = h |D( ) i = 0 for all ( )
To show is surjective suppose that E 0( ) By Lemma 34.41 we know

that extends uniquely to an element ˜ of ( ) such that ˜|D( ) =

i.e. ( ˜) = and = supp( )

Lemma 34.43. The space E 0( ) is a sequentially dense subset of D0( )

Proof. Choose @@ such that +1 +1 as
Let ( 0

+1) such that = 1 on Then for D0( ) E 0( )
and as

34.5 Tempered Distributions and the Fourier Transform

The space of tempered distributions S 0 (R ) is the continuous dual to S =
S(R ) A linear functional on S is continuous i there exists N and

such that
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|h i| ( ) :=
X

| |
k k (34.8)

for all S Since D = D (R ) is a dense subspace of S any element S 0
is determined by its restriction to D Moreover, if S 0 it is easy to see that
|D D0 Conversely and element D0 satisfying an estimate of the form
in Eq. (34.8) for all D extend uniquely to an element of S 0 In this way
we may view S 0 as a subspace of D0

Example 34.44. Any compactly supported distribution is tempered, i.e.
E 0( ) S 0(R ) for any R

One of the virtues of S 0 is that we may extend the Fourier transform to
S 0 Recall that for 1 functions and we have the identity,

h ˆ i = h ˆi

This suggests the following definition.

Definition 34.45. The Fourier and inverse Fourier transform of a tempered
distribution S 0 are the distributions ˆ = F S 0 and = F 1

S 0defined by

h ˆ i = h ˆi and h i = h i for all S

Since F : S S is a continuous isomorphism with inverse F 1 one easily
checks that ˆ and are well defined elements of S and that F 1 is the
inverse of F on S 0

Example 34.46. Suppose that is a complex measure on R . Then we may
view as an element of S 0 via h i = R for all S 0 Then by Fubini-
Tonelli,

hˆ i = h ˆi =
Z

ˆ( ) ( ) =

Z
·
Z

( ) ·
¸

( )

=

Z
·
Z

( ) · ( )

¸

which shows that ˆ is the distribution associated to the continuous func-
tion

R · ( )
R · ( )We will somewhat abuse notation and

identify the distribution ˆ with the function
R · ( ) When

( ) = ( ) with 1 we have ˆ = ,̂ so the definitions are all
consistent.

Corollary 34.47. Suppose that is a complex measure such that ˆ = 0 then
= 0 So complex measures on R are uniquely determined by their Fourier

transform.
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Proof. If ˆ = 0 then = 0 as a distribution, i.e.
R

= 0 for all S
and in particular for all D By Example 34.5 this implies that is the
zero measure.
More generally we have the following analogous theorem for compactly

supported distributions.

Theorem 34.48. Let E 0(R ) then ˆ is an analytic function and ˆ( ) =
h ( ) · i Also if supp( ) @@ (0 ) then ˆ( ) satisfies a bound of the
form

¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

for some N and If D(R ) i.e. if is assumed to be smooth,
then for all N there exists such that

¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

Proof. The function ( ) = h ( ) · i for C is analytic since the
map C · ( R ) is analytic and is complex linear.
Moreover, we have the bound

| ( )| = ¯¯h ( ) · i¯¯
X

| |

°

°

· °
°

(0 )

=
X

| |

°

°

· °
°

(0 )

X

| |
| || | °° · °

°

(0 )
(1 + | |) |Im |

If we now assume that D(R ) then

¯

¯

¯

ˆ( )
¯

¯

¯
=

¯

¯

¯

¯

Z

R
( ) ·

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( )( ) ·

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( ) ( ) ·

¯

¯

¯

¯

|Im |
Z

R
| ( )|

showing

| |
¯

¯

¯

ˆ( )
¯

¯

¯

|Im | k k1
and therefore

(1 + | |)
¯

¯

¯

ˆ( )
¯

¯

¯

|Im | X

| |
k k1 |Im |

So to finish the proof it su ces to show = ˆ in the sense of distributions1.
For this let D @@ R be a compact set for 0 let
1 This is most easily done using Fubini’s Theorem 35.2 for distributions proved
below. This proof goes as follows. Let D(R ) such that = 1 on a neigh-
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ˆ ( ) = (2 ) 2
X

Z

( ) ·

This is a finite sum and

sup
¯

¯

¯

³

ˆ ( ) ˆ( )
´
¯

¯

¯

= sup

¯

¯

¯

¯

¯

¯

X

Z

Z

+ (0 1]

¡

( ) ( ) · ( ) ( ) · ¢
¯

¯

¯

¯

¯

¯

X

Z

Z

+ (0 1]

sup
¯

¯ ( ) · ( ) · ¯
¯

By uniform continuity of ( ) · for ( ) × R ( has compact
support),

( ) = sup sup
Z

sup
+ (0 1]

¯

¯ ( ) · ( ) · ¯
¯ 0 as 0

which shows
sup

¯

¯

¯

³

ˆ ( ) ˆ( )
´
¯

¯

¯
( )

where is the volume of a cube in R which contains the support of This
shows that ˆ ˆ in (R ) Therefore,

h ˆ i = h ˆi = lim
0
h ˆ i = lim

0
(2 ) 2

X

Z

( )h ( ) · i

= lim
0
(2 ) 2

X

Z

( ) ( ) =

Z

R
( ) ( ) = h i

Remark 34.49. Notice that

ˆ( ) = h ( ) · i = h ( ) ( ) · i = h( ) ( ) · i
borhood of supp( ) and = 1 on a neighborhood of supp( ) then

h i = h ( ) h ( ) · ii = h ( ) ( ) h ( ) ( ) · ii
= h ( ) h ( ) ( ) ( ) · ii

We may now apply Theorem 35.2 to conclude,

h i = h ( ) h ( ) ( ) ( ) · ii = h ( ) ( )h ( ) · ii = h ( ) h ( )
= h ( ) ˆ( )i
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and ( ) ( ) E 0(R ) Therefore, we find a bound of the form
¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) 0 |Im |

where and 0 depend on In particular, this shows that ˆ P i.e. S 0 is
preserved under multiplication by ˆ

The converse of this theorem holds as well. For the moment we only have
the tools to prove the smooth converse. The general case will follow by using
the notion of convolution to regularize a distribution to reduce the question
to the smooth case.

Theorem 34.50. Let S(R ) and assume that ˆ is an analytic function
and there exists an such that for all N there exists such
that

¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

Then supp( ) (0 )

Proof. By the Fourier inversion formula,

( ) =

Z

R
ˆ( ) ·

and by deforming the contour, we may express this integral as

( ) =

Z

R +

ˆ( ) · =

Z

R
ˆ( + ) ( + )·

for any R From this last equation it follows that

| ( )| ·
Z

R

¯

¯

¯

ˆ( + )
¯

¯

¯

· | |
Z

R
(1 + | + |)

· | |
Z

R
(1 + | |) ˜ · | |

where ˜ if Letting = with 0 we learn

| ( )| ˜ exp
¡ | |2 + | |¢ = ˜ | |( | |) (34.9)

Hence if | | we may let in Eq. (34.9) to show ( ) = 0 That is
to say supp( ) (0 )
Let us now pause to work out some specific examples of Fourier transform

of measures.

Example 34.51 (Delta Functions). Let R and be the point mass mea-
sure at then

ˆ ( ) = ·
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In particular it follows that

F 1 · =

To see the content of this formula, let S Then
Z

· ( ) = h · F 1 i = hF 1 · i = h i = ( )

which is precisely the Fourier inversion formula.

Example 34.52. Suppose that ( ) is a polynomial. Then

hˆ i = h ˆi =
Z

( )ˆ( )

Now

( )ˆ( ) =

Z

( ) ( ) · =

Z

( ) ( ) ·

=

Z

( ) ( ) · = F ( ( ) ) ( )

which combined with the previous equation implies

hˆ i =
Z

F ( ( ) ) ( ) =
¡F 1F ( ( ) )

¢

(0) = ( ) (0)

= h 0 ( ) i = h ( ) 0 i
Thus we have shown that ˆ = ( ) 0

Lemma 34.53. Let ( ) be a polynomial in R = ( ) (a constant
coe cient partial di erential operator) and S 0 then

F ( ) = ˆ

In particular if = 0 we have

F ( ) 0 = · 0̂ =

Proof. By definition,

hF i = h ˆi = h ( ) ˆi = h ( )ˆi
and

( )ˆ( ) = ( )

Z

( ) · =

Z

( ) ( ) · = ( ) ˆ

Thus
hF i = h ( )ˆi = h ( ) ˆi = h ˆ i = h ˆ i

which proves the lemma.
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Example 34.54. Let = 1 and ( ) = 1[ ]( ) Then

ˆ( ) =

Z

· =
1

2

·
| = 1

2

· ·

=
1

2

· ·

So by the inversion formula we may conclude that

F 1

µ

1

2

· · ¶
( ) = 1[ ]( ) (34.10)

in the sense of distributions. This also true at the Level of 2 — functions.
When = and 0 these formula reduce to

F1[ ] =
1

2

· ·
=

2

2

sin

and

F 1 2

2

sin
= 1[ ]

Let us pause to work out Eq. (34.10) by first principles. For (0 )
let be the complex measure on R defined by

( ) =
1

2
1| |

· ·

then
1

2

· ·
= lim in the S 0 topology.

Hence

F 1

µ

1

2

· · ¶
( ) = lim F 1

and

F 1 ( ) =

Z

1

2

· ·

Since is 1
2

· ·
is a holomorphic function on C we may

deform the contour to any contour in C starting at and ending at Let
denote the straight line path from to 1 along the real axis followed

by the contour for going from to 2 and then followed by the straight
line path from 1 to Then
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Z

| |

1

2

· ·
=

Z

1

2

· ·

=

Z

1

2

( )· ( )·

=
1

2

Z ( )· ( )·
( )

By the usual contour methods we find

lim
1

2

Z

( ) =

½

1 if 0
0 if 0

and therefore we have

F 1

µ

1

2

· · ¶
( ) = lim F 1 ( ) = 1 1 = 1[ ]( )

Example 34.55. Let be the surface measure on the sphere of radius
centered at zero in R3 Then

ˆ ( ) = 4
sin | |
| |

Indeed,

ˆ ( ) =

Z

2

· ( ) = 2

Z

2

· ( )

= 2

Z

2

3| | ( ) = 2

Z 2

0

Z

0

sin cos | |

= 2 2

Z 1

1

| | = 2 2 1

| |
| || =1= 1 = 4

2 sin | |
| |

By the inversion formula, it follows that

F 1 sin | |
| | =

4 2
= ¯

where ¯ is 1
4 2 the surface measure on normalized to have total measure

one.

Let us again pause to try to compute this inverse Fourier transform di-
rectly. To this end, let ( ) := sin | |

| | 1| | By the dominated convergence

theorem, it follows that sin | |
| | in S 0 i.e. pointwise on S Therefore,

hF 1 sin | |
| | i = h sin | |

| | F 1 i = lim h F 1 i = lim hF 1 i
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and

(2 )3 2F 1 ( ) = (2 )3 2

Z

R3

sin | |
| | 1| |

·

=

Z

=0

Z 2

=0

Z

=0

sin | | cos 2 sin

=

Z

=0

Z 2

=0

Z 1

= 1

sin | | 2

= 2

Z

=0

sin | | | |

| |

=
4

| |
Z

=0

sin sin | |

=
4

| |
Z

=0

1

2
(cos( ( + | |) cos( ( | |))

=
4

| |
1

2( + | |) (sin( ( + | |) sin( ( | |)) | =0

=
4

| |
1

2

µ

sin( ( + | |)
+ | |

sin( ( | |)
| |

¶

Now make use of the fact that sin ( ) in one dimension to finish the
proof.

34.6 Wave Equation

Given a distribution and a test function we wish to define
by the formula

( ) = “

Z

( ) ( ) ” = h ( ·)i

As motivation for wanting to understand convolutions of distributions let us
reconsider the wave equation in R

0 =
¡

2
¢

( ) with

(0 ) = ( ) and (0 ) = ( )

Taking the Fourier transform in the variables gives the following equation

0 = ˆ ( ) + | |2 ˆ( )with

ˆ(0 ) = (̂ ) and ˆ (0 ) = ˆ( )

The solution to these equations is
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ˆ( ) = (̂ ) cos ( | |) + ˆ( )sin | || |
and hence we should have

( ) = F 1

µ

(̂ ) cos ( | |) + ˆ( )sin | || |
¶

( )

= F 1 cos ( | |) ( ) + F 1 sin | |
| | ( )

= F 1 sin | |
| | ( ) + F 1 sin | |

| | ( )

The question now is how interpret this equation. In particular what are the in-
verse Fourier transforms of F 1 cos ( | |) and F 1 sin | |

| | Since F 1 sin | |
| |

( ) = F 1 cos ( | |) ( ) it really su ces to understand F 1 sin | |
| | This

was worked out in Example 34.54 when = 1 where we found

¡F 1 1 sin
¢

( ) =
2

¡

1 + 0 1( ) 0

¢

=
2
(1 1 ) =

2
1[ ]( )

where in writing the last line we have assume that 0 Therefore,

¡F 1 1 sin
¢

( ) =
1

2

Z

( )

Therefore the solution to the one dimensional wave equation is

( ) =
1

2

Z

( ) +
1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z +

( )

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
¡

2 2
¢

( ) = ( ) ( + ) ( )

Let ( ) := ( + ) ( ) then the wave equation states ( ) = 0
and hence by the chain rule ( ) = 0 So

( ) = (0 ) = ( ) + 0( )

and replacing by + in this equation shows
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( + ) ( ) = ( ) = ( + ) + 0( + )

Working similarly, we learn that

( + ) = ( + 2 ) + 0( + 2 )

which upon integration implies

( + ) = (0 ) +

Z

0

{ ( + 2 ) + 0( + 2 )}

= ( ) +

Z

0

( + 2 ) +
1

2
( + 2 )|0

=
1

2
( ( ) + ( + 2 )) +

Z

0

( + 2 )

Replacing in this equation then implies

( ) =
1

2
( ( ) + ( + )) +

Z

0

( + 2 )

Finally, letting = + 2 in the last integral gives

( ) =
1

2
( ( ) + ( + )) +

1

2

Z +

( )

as derived using the Fourier transform.
For the three dimensional case we have

( ) = F 1 sin | |
| | ( ) + F 1 sin | |

| | ( )

= ( ¯ ( )) + ¯ ( )

The question is what is ( ) where is a measure. To understand the
definition, suppose first that ( ) = ( ) then we should have

( ) = ( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

Thus we expect our solution to the wave equation should be given by

( ) =

½
Z

( ) ¯ ( )

¾

+

Z

( ) ¯ ( )

=

½
Z

1

( )

¾

+

Z

1

( )

=

½
Z

1

( + )

¾

+

Z

1

( + ) (34.11)
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where := ¯1( ) Notice the sharp propagation of speed. To understand
this suppose that = 0 for simplicity and has compact support near the
origin, for example think of = 0( ) the + = 0 for some i | | =
Hence the wave front propagates at unit speed in a sharp way. See figure
below.

Fig. 34.2. The geometry of the solution to the wave equation in three dimensions.

We may also use this solution to solve the two dimensional wave equation
using Hadamard’s method of decent. Indeed, suppose now that and are
function on R2 which we may view as functions on R3 which do not depend
on the third coordinate say. We now go ahead and solve the three dimensional
wave equation using Eq. (34.11) and and as initial conditions. It is easily
seen that the solution ( ) is again independent of and hence is a
solution to the two dimensional wave equation. See figure below.
Notice that we still have finite speed of propagation but no longer sharp

propagation. In fact we can work out the solution analytically as follows.
Again for simplicity assume that 0 Then

( ) =
4

Z 2

0

Z

0

sin (( ) + (sin cos sin sin ))

=
2

Z 2

0

Z 2

0

sin (( ) + (sin cos sin sin ))

and letting = sin so that = cos = 1 2 we find

( ) =
2

Z 2

0

Z 1

0 1 2
(( ) + (cos sin ))

and then letting = we learn,
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Fig. 34.3. The geometry of the solution to the wave equation in two dimensions.

( ) =
1

2

Z 2

0

Z

0

p

1 2 2
(( ) + (cos sin ))

=
1

2

Z 2

0

Z

0
2 2

(( ) + (cos sin ))

=
1

2

ZZ

(( ) + ))
p

2 | |2 ( )

Here is a better alternative derivation of this result. We begin by using
symmetry to find

( ) = 2

Z

+
( ) ¯ ( ) = 2

Z

+
( + ) ¯ ( )

where + is the portion of with 0 This sphere is parametrized by
( ) = ( 2 2 2) with ( ) :=

©

( ) : 2 + 2 2
ª

In
these coordinates we have

4 2 ¯ =
¯

¯

¯

³

p

2 2 2
p

2 2 2 1
´
¯

¯

¯

=

¯

¯

¯

¯

µ

2 2 2 2 2 2
1

¶
¯

¯

¯

¯

=

r

2 + 2

2 2 2
+ 1 =

| |
2 2 2

and therefore,
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( ) =
2

4 2

Z

+
( + (

p

2 2 2))
| |

2 2 2

=
1

2
sgn( )

Z

+

( + ( ))
2 2 2

This may be written as

( ) =
1

2
sgn( )

ZZ

(( ) + ))
p

2 | |2 ( )

as before. (I should check on the sgn( ) term.)

34.7 Appendix: Topology on Cc (U)

Let be an open subset of R and

( ) = @@ ( ) (34.12)

denote the set of smooth functions on with compact support in Our
goal is to topologize ( ) in a way which is compatible with he topologies
defined in Example 34.27 above. This leads us to the inductive limit topology
which we now pause to introduce.

Definition 34.56 (Indcutive Limit Topology). Let be a set,
for ( is an index set) and assume that P( ) is a topology on

for each Let : denote the inclusion maps. The inductive
limit topology on is the largest topology on such that is continuous
for all That is to say, = ( ) i.e. a set is open
( ) i 1( ) = for all

Notice that is closed i is closed in for all Indeed,
is closed i = \ is open, i = \ is open in

i = \ ( \ ) is closed in for all

Definition 34.57. Let D( ) denote ( ) equipped with the inductive limit
topology arising from writing ( ) as in Eq. (34.12) and using the Fréchet
topologies on ( ) as defined in Example 34.27.

For each @@ ( ) is a closed subset of D( ) Indeed if is
another compact subset of then ( ) ( ) = ( ) which is
a closed subset of ( ) The set U D( ) defined by

U = D( ) :
X

| |
k ( )k (34.13)
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for some D( ) and 0 is an open subset of D( ) Indeed, if @@
then

U ( ) = ( ) :
X

| |
k ( )k

is easily seen to be open in ( )

Proposition 34.58. Let ( ) be as described in Definition 34.56 and :
be a function where is another topological space. Then is contin-

uous i : is continuous for all

Proof. Since the composition of continuous maps is continuous, it follows
that : is continuous for all if : is continuous.
Conversely, if is continuous for all then for all we have

3 ( ) 1 ( ) = 1( 1( )) = 1( ) for all

showing that 1( )

Lemma 34.59. Let us continue the notation introduced in Definition 34.56.
Suppose further that there exists such that 0 := as
and for each there exists an N such that 0 and the
inclusion map is continuous. Then = { : 0 0 for all }
and a function : is continuous i | 0 : 0 is continuous
for all In short the inductive limit topology on arising from the two
collections of subsets { } and { 0 } N are the same.

Proof. Suppose that if then 0 = 0

by definition. Now suppose that 0 0 for all For choose
such that 0 then = ( 0 ) since 0

is open in 0 and by assumption that is continuously embedded in 0

for all 0 The characterization of continuous functions
is prove similarly.
Let @@ for N such that +1 +1 for all
and as Then it follows for any @@ there exists

an such that One now checks that the map ( ) em-
beds continuously into ( ) and moreover, ( ) is a closed subset of

( +1) Therefore we may describe D( ) as ( ) with the inductively
limit topology coming from N ( )

Lemma 34.60. Suppose that { } =1 D( ) then D( ) i
0 D( )

Proof. Let D( ) and U D( ) be a set. We will begin by showing
that U is open in D( ) i U is open in D( ) To this end let be
the compact sets described above and choose 0 su ciently large so that

( ) for all 0 Now U D( ) is open i (U ) ( )
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is open in ( ) for all 0 Because ( ) we have (U )
( ) = U ( ) which is open in ( ) i U ( ) is open
( ) Since this is true for all 0 we conclude that U is an open

subset of D( ) i U is open in D( )
Now in D( ) i for all U D( ) U for almost all

which happens i U for almost all Since U ranges over
all open neighborhoods of 0 when U ranges over the open neighborhoods of
the result follows.

Lemma 34.61. A sequence { } =1 D( ) converges to D( ) i there
is a compact set @@ such that supp( ) for all and in

( )

Proof. If in ( ) then for any open set V D( ) with V
we have V ( ) is open in ( ) and hence V ( ) V for
almost all This shows that D( )
For the converse, suppose that there exists { } =1 D( ) which con-

verges to D( ) yet there is no compact set such that supp( )
for all Using Lemma34.60, we may replace by if necessary so
that we may assume 0 in D( ) By passing to a subsequences of { }
and { } if necessary, we may also assume there +1 \ such that
( ) 6= 0 for all Let denote the semi-norm on ( ) defined by

( ) =
X

=0

sup

½ | ( )|
| ( )| : +1 \

¾

One then checks that

( )

Ã

X

=0

1

| ( )|

!

k k

for ( +1) This shows that | ( +1) is continuous for all and
hence is continuous on D( ) Since is continuous on D( ) and 0
in D( ) it follows that lim ( ) = (lim ) = (0) = 0 While on
the other hand, ( ) 1 by construction and hence we have arrived at a
contradiction. Thus for any convergent sequence { } =1 D( ) there is a
compact set @@ such that supp( ) for all
We will now show that { } =1 is convergent to in ( ) To this

end let U D( ) be the open set described in Eq. (34.13), then U for
almost all and in particular, U ( ) for almost all (Letting

0 tend to zero shows that supp( ) i.e. ( ) ) Since sets of
the form U ( ) with U as in Eq. (34.13) form a neighborhood base for
the ( ) at we concluded that in ( )

Definition 34.62 (Distributions on R ). A generalized function on
R is a continuous linear functional on D( ) We denote the space of

generalized functions by D0( )
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Proposition 34.63. Let : D( ) C be a linear functional. Then the
following are equivalent.

1. is continuous, i.e. D0( )
2. For all @@ there exist N and such that

| ( )| ( ) for all ( ) (34.14)

3. For all sequences { } D( ) such that 0 in D( ) lim ( ) =
0

Proof. 1) 2) If is continuous, then by definition of the inductive
limit topology | ( ) is continuous. Hence an estimate of the type in Eq.
(34.14) must hold. Conversely if estimates of the type in Eq. (34.14) hold for
all compact sets then | ( ) is continuous for all @@ and again by
the definition of the inductive limit topologies, is continuous on D0( )
1) 3) By Lemma 34.61, the assertion in item 3. is equivalent to saying

that | ( ) is sequentially continuous for all @@ Since the topology on
( ) is first countable (being a metric topology), sequential continuity and

continuity are the same think. Hence item 3. is equivalent to the assertion that
| ( ) is continuous for all @@ which is equivalent to the assertion
that is continuous on D0( )

Proposition 34.64. The maps ( ) C×D( ) D( ) and ( )
D( )×D( ) + D( ) are continuous. (Actually, I will have to look
up how to decide to this.) What is obvious is that all of these operations are
sequentially continuous, which is enough for our purposes.
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Convolutions involving distributions

35.1 Tensor Product of Distributions

Let R and R and D0( ) and D0( ) We wish to define
D0( × ) Informally, we should have

h i =
Z

×
( ) ( ) ( )

=

Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( )

Of course we should interpret this last equation as follows,

h i = h ( ) h ( ) ( )ii = h ( ) h ( ) ( )ii (35.1)

This formula takes on particularly simple form when = with D( )
and D( ) in which case

h i = h ih i (35.2)

We begin with the following smooth version of the Weierstrass approximation
theorem which will be used to show Eq. (35.2) uniquely determines

Theorem 35.1 (Density Theorem). Suppose that R and R
then D( ) D( ) is dense in D( × )

Proof. First let us consider the special case where = (0 1) and =
(0 1) so that × = (0 1) + To simplify notation, let + =
and = (0 1) and : (0 1) be projection onto the i factor of
Suppose that ( ) and = supp( ) We will view (R ) by
setting = 0 outside of Since is compact ( ) [ ] for some 0

1 Let = min { : = 1 } and = max { : = 1 }
Then supp( ) = [ ]
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As in the proof of the Weierstrass approximation theorem, let ( ) =
(1 2) 1| | 1 where is chosen so that

R

R ( ) = 1 Also set =

· · · i.e. ( ) =
Q

=1 ( ) for R Let

( ) := ( ) =

Z

R
( )
Y

=1

(1 ( )2) 1| | 1 (35.3)

By standard arguments, we know that uniformly on R as
Moreover for it follows from Eq. (35.3) that

( ) :=

Z

( )
Y

=1

(1 ( )2) = ( )

where ( ) is a polynomial in Notice that ((0 1)) · · · ((0 1))
so that we are almost there.1 We need only cuto these functions so that they
have compact support. To this end, let ((0 1)) be a function such that
= 1 on a neighborhood of [ ] and define

= ( · · · )

= ( · · · ) ((0 1)) · · · ((0 1))

I claim now that in D( ) Certainly by construction supp( )
[ ] @@ for all Also

( ) = ( ( · · · ) )

= ( · · · ) ( ) + (35.4)

where is a sum of terms of the form ( · · · ) · with 6= 0
Since ( · · · ) = 0 on [ ] and converges uniformly to zero on
R \ [ ] it follows that 0 uniformly as Combining this with
Eq. (35.4) and the fact that uniformly on R as we see
that in D( ) This finishes the proof in the case = (0 1) and
= (0 1)
For the general case, let = supp( ) @@ × and 1 = 1( ) @@

and 2 = 2( ) @@ where 1 and 2 are projections from × to

1 One could also construct (R) such that uniformlly as
using Fourier series. To this end, let ˜ be the 1 — periodic extension of

to R Then ˜ p eriod ic(R ) and hence it may be written as

˜( ) =
X

Z

2 ·

where the
©

: Z
ª

are the Fourier coe cients of ˜ which decay faster that
(1+ | |) for any 0 Thus ( ) :=

P

Z :| |
2 · (R) and

unifromly on as
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and respectively. Then @ 1 × 2 @@ × Let { } =1 and
{ } =1 be finite covers of 1 and 2 respectively by open sets = ( )

and = ( ) with and Also let ( )
for = 1 and ( ) for = 1 be functions such that
P

=1 = 1 on a neighborhood of 1 and
P

=1 = 1 on a neighborhood of

2 Then =
P

=1

P

=1 ( ) and by what we have just proved (after
scaling and translating) each term in this sum, ( ) may be written as
a limit of elements in D( ) D( ) in the D( × ) topology.

Theorem 35.2 (Distribution-Fubini-Theorem). Let D0( )
D0( ) ( ) := h ( ) ( )i and ( ) := h ( ) ( )i Then =

D( ) = D( ) ( ) = h ( ) ( )i and ( ) =
h ( ) ( )i for all multi-indices and Moreover

h ( ) h ( ) ( )ii = h i = h i = h ( ) h ( ) ( )ii (35.5)

We denote this common value by h i and call the tensor product
of and This distribution is uniquely determined by its values on D( )
D( ) and for D( ) and D( ) we have

h i = h ih i
Proof. Let = supp( ) @@ × and 1 = 1( ) and 2 = 2( )

Then 1 @@ and 2 @@ and 1 × 2 × If
and 2 then ( ) = 0 and more generally ( ) = 0 so that
{ : ( ) 6= 0} 2 Thus for all supp( ( ·)) 2 By
the fundamental theorem of calculus,

( + ) ( ) =

Z 1

0

( + ) (35.6)

and therefore

°

° ( + ·) ( ·)°° | |
Z 1

0

°

° ( + ·)°°

| |°° °

° 0 as 0

This shows that ( ·) D( ) is continuous. Thus is continuous
being the composition of continuous functions. Letting = in Eq. (35.6)
we find

( + ) ( )
( )

=

Z 1

0

·

( + ) ( )

¸

and hence
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°

°

°

°

°

( + ·) ( ·)
( ·)

°

°

°

°

°

Z 1

0

°

°

°

°

( + ·) ( ·)
°

°

°

°

which tends to zero as 0 Thus we have checked that

( ·) = D0( )— lim
0

( + ·) ( ·)

and therefore,

( + ) ( )
= h ( + ·) ( ·)i h ( ·)i

as 0 showing ( ) exists and is given by h ( ·)i By what we
have proved above, it follows that ( ) = h ( ·)i is continuous in
By induction on | | it follows that ( ) exists and is continuous and
( ) = h ( ) ( )i for all Now if 1 then ( ·) 0 show-

ing that { : ( ) 6= 0} 1 and hence supp( ) 1 @@ Thus
has compact support. This proves all of the assertions made about The
assertions pertaining to the function are prove analogously.
Let h i = h ( ) h ( ) ( )ii = h i for D( × ) Then

is clearly linear and we have

|h i| = |h i|
X

| |
k k

1
=

X

| |
kh ( ) (· )ik

1

which combined with the estimate

|h ( ) ( )i|
X

| |

°

° ( )i°°
2

shows
|h i|

X

| |

X

| |

°

° ( )i°°
1× 2

So is continuous, i.e. D0( × ) i.e.

D( × ) h ( ) h ( ) ( )ii
defines a distribution. Similarly,

D( × ) h ( ) h ( ) ( )ii
also defines a distribution and since both of these distributions agree on the
dense subspace D( ) D( ) it follows they are equal.
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Theorem 35.3. If ( ) is a distribution test function pair satisfying one of
the following three conditions

1. E 0(R ) and (R )
2. D0(R ) and D(R ) or
3. S 0(R ) and S(R )

let

( ) = “

Z

( ) ( ) ” = h ( ·)i (35.7)

Then (R ) ( ) = ( ) = ( ) for all and
supp( ) supp( ) + supp( ) Moreover if (3) holds then P — the
space of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar
and easier. Let ( ) := ( ) Since S 0(R ) there exists N and

such that |h i| ( ) for all S where is defined in
Example 34.31. Therefore,

| ( ) ( )| = |h ( ·) ( ·)i| ( ( ·) ( ·))
=

X

| |
k ( ( ·) ( ·))k

Let := then

( ) ( ) =

Z 1

0

( + ( ) ) · ( ) (35.8)

and hence

| ( ) ( )| | | ·
Z 1

0

| ( + ( ) )|

| |
Z 1

0

( + ( ) )

for any By Peetre’s inequality,

( + ( ) ) ( ) ( + ( ))

so that

| ( ) ( )| | | ( )

Z 1

0

( + ( ))

( ) | | ( ) (35.9)

where ( ) is a continuous function of ( ) Putting all of this together
we see that
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| ( ) ( )| ˜( ) | | 0 as

showing is continuous. Let us now compute a partial derivative of Suppose
that R is a fixed vector, then by Eq. (35.8),

( + ) ( )
( )

=

Z 1

0

( + ) · ( )

=

Z 1

0

[ ( + ) ( )]

This then implies
¯

¯

¯

¯

½

( + ) ( )
( )

¾
¯

¯

¯

¯

=

¯

¯

¯

¯

Z 1

0

[ ( + ) ( )]

¯

¯

¯

¯

Z 1

0

| [ ( + ) ( )]|

But by the same argument as above, it follows that

| [ ( + ) ( )]| ( + ) | | ( )

and thus
¯

¯

¯

¯

½

( + ) ( )
( )

¾
¯

¯

¯

¯

( )

Z 1

0

( + ) | | ( )

Putting this all together shows
°

°

°

°

½

( + ) ( )
( )

¾
°

°

°

°

= ( )

0 as 0

That is to say ( + ·) ( ·) ( ·) in S as 0 Hence since is
continuous on S we learn

( ) ( ) = h ( ·)i = lim
0
h ( + ·) ( ·) i

= h ( ·)i = ( )

By the first part of the proof, we know that ( ) is continuous and hence
by induction it now follows that is and = Since
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( ) = h ( ) ( ) ( )i = ( 1) h ( ) ( )i
= h ( ) ( )i = ( )

the proof is complete except for showing P
For the last statement, it su ces to prove | ( )| ( ) for some

and This goes as follows

| ( )| = |h ( ·)i| ( ( ·)) =
X

| |
k ( ( ·)k

and using Peetre’s inequality, | ( )| ( ) ( ) ( )
so that

k ( ( ·)k ( )

Thus it follows that | ( )| ( ) for some
If R \ (supp( ) + supp( )) and supp( ) then supp( )

for otherwise = + supp( ) + supp( ) Thus

supp( ( ·)) = supp( ) R \ supp( )
and hence ( ) = h ( ·)i = 0 for all R \ (supp( ) + supp( )) This
implies that { 6= 0} supp( ) + supp( ) and hence

supp( ) = { 6= 0} supp( ) + supp( )

As we have seen in the previous theorem, is a smooth function and
hence may be used to define a distribution in D0(R ) by

h i =
Z

( ) ( ) =

Z

h ( ·)i ( )

Using the linearity of we might expect that
Z

h ( ·)i ( ) = h
Z

( ·) ( ) i

or equivalently that
h i = h ˜ i (35.10)

where ˜( ) := ( )

Theorem 35.4. Suppose that if ( ) is a distribution test function pair sat-
isfying one the three condition in Theorem 35.3, then as a distribution
may be characterized by

h i = h ˜ i (35.11)

for all D(R ) Moreover, if S 0 and S then Eq. (35.11) holds for
all S
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Proof. Let us first assume that D0 and D and D be a
function such that = 1 on a neighborhood of the support of Then

h i =
Z

R
h ( ·)i ( ) = h ( ) h ( ) ( )ii

= h ( ) ( ) h ( ) ( )ii
= h ( ) ( )h ( ) ( )ii
= h ( ) h ( ) ( ) ( )ii

Now the function, ( ) ( ) D(R × R ) so we may apply Fubini’s
theorem for distributions to conclude that

h i = h ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( )ii
= h ( ) ˜( )i = h ˜i

as claimed.
If E 0 let D(R ) be a function such that = 1 on a neighborhood

of supp( ) then working as above,

h i = h ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( ) ( ) ( )ii

and since ( ) ( ) ( ) D(R ×R ) we may apply Fubini’s theorem for
distributions to conclude again that

h i = h ( ) h ( ) ( ) ( ) ( )ii
= h ( ) ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( )ii = h ˜i

Now suppose that S 0 and S Let D be a sequences such
that and in S then using arguments similar to those in the
proof of Theorem 35.3, one shows

h i = lim h i = lim h ˜ i = h ˜i

Theorem 35.5. Let R then D( ) is sequentially dense in E 0( )
When = R we have E 0(R ) is a dense subspace of S 0(R ) D0(R )
Hence we have the following inclusions,

D( ) E 0( ) D0( )

D(R ) E 0(R ) S 0(R ) D0(R ) and

D(R ) S(R ) S 0(R ) D0(R )

with all inclusions being dense in the next space up.
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Proof. The key point is to show D( ) is dense in E 0( ) Choose
(R ) such that supp( ) (0 1) = and

R

( ) = 1 Let ( ) =
( ) so that supp( ) (0 1 ) An element in E 0( ) may be

viewed as an element in E 0(R ) in a natural way. Namely if ( ) such
that = 1 on a neighborhood of supp( ) and (R ) let h i =
h i Define = It is easily seen that supp( ) supp( ) +
(0 1 ) for all su ciently large. Hence D( ) for large enough
Moreover, if D( ) then

h i = h i = h i = h i h i

since in D( ) by standard arguments. If = R E 0(R )
S 0(R ) and S the same argument goes through to show h i h i
provided we show in S(R ) as This latter is proved by
showing for all and 0 I

k ( )k 0 as

which is a consequence of the estimates:

| ( ) ( )| = | ( ) ( )|

=

¯

¯

¯

¯

Z

( ) [ ( ) ( )]

¯

¯

¯

¯

sup
| | 1

| ( ) ( )|

1
sup

| | 1

| ( )|

1
sup

| | 1

( )

1
( ) sup

| | 1

( )

1 ¡

1 + 1
¢

( )

Definition 35.6 (Convolution of Distributions). Suppose that D0
and E 0 then define D0 by

h i = h +i

where +( ) = ( + ) for all R More generally we may define
for any two distributions having the property that supp( ) supp( +) =
[supp( )× supp( )] supp( +) is compact for all D
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Proposition 35.7. Suppose that D0 and E 0 then is well defined
and

h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii (35.12)

Moreover, if S 0 then S 0 and F( ) = ˆ ˆ Recall from Remark
34.49 that ˆ P so that ˆ ˆ S 0

Proof. Let D be a function such that = 1 on a neighborhood of
supp( ) then by Fubini’s theorem for distributions,

h +i = h ( ) ( ) ( + )i = h ( ) ( ) ( ) ( + )i
= h ( ) h ( ) ( ) ( + )ii = h ( ) h ( ) ( + )ii

and

h +i = h ( ) ( ) ( ) ( + )i = h ( ) h ( ) ( ) ( + )ii
= h ( ) ( )h ( ) ( + )ii = h ( ) h ( ) ( + )ii

proving Eq. (35.12).
Suppose that S 0 then

|h i| = |h ( ) h ( ) ( + )ii|
X

| |
k h ( ) (·+ )ik

=
X

| |
k h ( ) (·+ )ik

and

|h ( ) ( + )i|
X

| |
sup

¯

¯ ( + )
¯

¯

+ ( ) sup ( + )

+ ( ) ( ) sup + ( )

= ˜ ( ) + ( )

Combining the last two displayed equations shows

|h i| + ( )

which shows that S 0 We still should check that
h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii

still holds for all S This is a matter of showing that all of the expressions
are continuous in S when restricted to D Explicitly, let D be a sequence
of functions such that in S then
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h i = lim h i = lim h ( ) h ( ) ( + )ii (35.13)

and

h i = lim h i = lim h ( ) h ( ) ( + )ii (35.14)

So it su ces to show the map S h ( ) (·+ )i S is continuous and
S h ( ) ( + ·)i (R ) are continuous maps. These may verified

by methods similar to what we have been doing, so I will leave the details to
the reader. Given these continuity assertions, we may pass to the limits in Eq.
(35.13d (35.14) to learn

h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii
still holds for all S
The last and most important point is to show F( ) = ˆ ˆ Using

ˆ( + ) =

Z

R
( ) ·( + ) =

Z

R
( ) · ·

= F ¡ ( ) · ¢ ( )

and the definition of F on S 0 we learn
hF( ) i = h ˆi = h ( ) h ( ) ˆ( + )ii

= h ( ) h ( ) F ¡ ( ) · ¢ ( )ii
= h ( ) h ˆ( ) ( ) · ii (35.15)

Let D be a function such that = 1 on a neighborhood of supp( ) and
assume D for the moment. Then from Eq. (35.15) and Fubini’s theorem
for distributions we find

hF( ) i = h ( ) ( )h ˆ( ) ( ) · ii
= h ( ) h ˆ( ) ( ) ( ) · ii
= h ˆ( ) h ( ) ( ) ( ) · ii
= h ˆ( ) ( )h ( ) · ii
= h ˆ( ) ( ) ˆ( )i = h ˆ( ) ˆ( ) ( )i (35.16)

Since F( ) S 0 and ˆ ˆ S 0 we conclude that (35.16) holds for all
S and hence F( ) = ˆ ˆ as was to be proved.

35.2 Elliptic Regularity

Theorem 35.8 (Hypoellipticity). Suppose that ( ) =
P

| | is a
polynomial on R and is the constant coe cient di erential operator
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= (
1
) =

X

| |
(
1
) =

X

| |
( )

Also assume there exists a distribution D0(R ) such that :=
(R ) and |R \{0} (R \ {0}) Then if ( ) and D0( )

solves = then ( ) In particular, all solutions to the equation
= 0 are smooth.

Proof.We must show for each 0 that is smooth on a neighborhood
of 0 So let 0 and D( ) such that 0 1 and = 1 on
neighborhood of 0 Also pick D( ) such that 0 1 and = 1
on a neighborhood of 0 Then

= ( ) = ( + ) ( ) = ( ) ( ) + ( )

= ( ) + ( )

= { ( ) + (1 ) ( )}+ ( )

= { + (1 ) ( )}+ ( )

= ( ) + ( ) + [(1 ) ( )]

Since D( ) and D0(R ) it follows that ( ) (R ) Also
since (R ) and E 0( ) ( ) (R ) So to show and
hence is smooth near 0 it su ces to show is smooth near 0 where
:= (1 ) ( ) Working formally for the moment,

( ) =

Z

R
( ) ( ) =

Z

R \{ =1}
( ) ( )

which should be smooth for near 0 since in this case 6= 0 when
( ) 6= 0 To make this precise, let 0 be chosen so that = 1 on a
neighborhood of ( 0 ) so that supp( ) ( 0 ) For D( ( 0 2)

h i = h ( ) h ( ) ( + )ii = h i

where ( ) := h ( ) ( + )i If | | 2

supp( ( + ·)) = supp( ) ( 0 2) ( 0 )

so that ( ) = 0 and hence supp( ) ( 0 2) Hence if we let
D( (0 2)) be a function such that = 1 near 0 we have 0 and thus

h i = h i = h i = h(1 ) i = h[(1 ) ] i

Since this last equation is true for all D( ( 0 2)) = [(1 ) ]
on ( 0 2) and this finishes the proof since [(1 ) ] (R ) because
(1 ) (R )
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Definition 35.9. Suppose that ( ) =
P

| | is a polynomial on R
and is the constant coe cient di erential operator

= (
1
) =

X

| |
(
1
) =

X

| |
( )

Let ( )( ) :=
P

| |= and call ( ) the principle symbol of The
operator is said to be elliptic provided that ( )( ) 6= 0 if 6= 0
Theorem 35.10 (Existence of Parametrix). Suppose that = (1 ) is
an elliptic constant coe cient di erential operator, then there exists a dis-
tribution D0(R ) such that := (R ) and |R \{0}

(R \ {0})
Proof. The idea is to try to find such that = Taking the Fourier

transform of this equation implies that ( ) ˆ( ) = 1 and hence we should try
to define ˆ( ) = 1 ( ) The main problem with this definition is that ( )
may have zeros. However, these zeros can not occur for large by the ellipticity
assumption. Indeed, let ( ) := ( )( ) =

P

| |= ( ) = ( ) ( ) =
P

| | and let = min {| ( )| : | | = 1} max {| ( )| : | | = 1} =:
Then because | (·)| is a nowhere vanishing continuous function on the compact
set := { R : | | = 1|} 0 For R let ˆ = | | and
notice

| ( )| = | ( )| | ( )| | | | ( )| = | | (
| ( )|
| | ) 0

for all | | with su ciently large since lim | ( )|
| | = 0 Choose

D(R ) such that = 1 on a neighborhood of (0 ) and let

( ) =
1 ( )

( )
=

( )

( )
(R )

where = 1 Since ( ) is bounded (in fact lim ( ) = 0) S 0(R )
so there exists := F 1 S 0(R ) is well defined. Moreover,

F ( ) = 1 ( ) ( ) = 1 ( ) = ( ) D(R )

which shows that

:= S(R ) (R )

So to finish the proof it su ces to show

|R \{0} (R \ {0})
To prove this recall that
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F ( ) = ( ) ˆ = ( )

By the chain rule and the fact that any derivative of is has compact support
in (0 ) and any derivative of 1 is non-zero on this set,

=
1
+

where D(R ) Moreover,

1
=

2
and

1
=

2
=

2
+ 2

3

from which it follows that
¯

¯

¯

¯

( )
1
( )

¯

¯

¯

¯

| | ( +1) and

¯

¯

¯

¯

( )
1
¯

¯

¯

¯

| | ( +2)

More generally, one shows by inductively that
¯

¯

¯

¯

( )
1
¯

¯

¯

¯

| | ( +| |) (35.17)

In particular, if N is given and is chosen so that | |+ + then
| | ( ) 1( ) and therefore

= F 1 [( ) ] (R )

Hence we learn for any N we may choose su ciently large so that

| |2 (R )

This shows that |R \{0} (R \ {0})
Here is the induction argument that proves Eq. (35.17). Let :=

| |+1 1 with 0 = 1 then

1 =
³

| | 1
´

= ( | | 1) | | 2 + | | 1

so that
+ = | |+2 1 = ( | | 1) +

It follows by induction that is a polynomial in and letting := deg( )
we have + + 1 with 0 = 1 Again by indunction this implies

| | ( 1) Therefore

1 = | |+1 | | (| |+1) = | || |( 1) (| |+1) = | | ( +| |)

as claimed in Eq. (35.17).
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35.3 Appendix: Old Proof of Theorem 35.4

This indeed turns out to be the case but is a bit painful to prove. The next
theorem is the key ingredient to proving Eq. (35.10).

Theorem 35.11. Let D ( S) ( ) = ( ) and (R )
( S) For 0 we may write R =

`

Z ( + ) where = (0 1]
For ( + ) let + ¯ be the point closest to the origin in
+ ¯ (This will be one of the corners of the translated cube.) In this way

we define a function R Z which is constant on each cube
( + ) Let

( ) :=

Z

( ) ( ) =
X

Z

( ( ) ) ( ( + )) (35.18)

then the above sum converges in (R ) (S) and in (R ) (S)
as 0 (In particular if S then S )
Proof. First suppose that D the measure has compact support

and hence the sum in Eq. (35.18) is finite and so is certainly convergent in
(R ) To shows in (R ) let be a compact set and N

Then for | |

| ( ) ( )| =
¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

Z

| ( ) ( )| | ( )| (35.19)

and therefore,

k k
Z

k (· ) (· )k | ( )|

sup
supp( )

k (· ) (· )k
Z

| ( )|

Since ( ) has compact support, we may us the uniform continuity of on
compact sets to conclude

sup
supp( )

k (· ) (· )k 0 as 0

This finishes the proof for D and (R )
Now suppose that both and are in S in which case the sum in Eq.

(35.18) is now an infinite sum in general so we need to check that it converges
to an element in S For this we estimate each term in the sum. Given 0
and a multi-index using Peetre’s inequality and simple estimates,
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| ( ( ) ) ( ( + ))| ( ( ) )

Z

( + )

| ( )|

( ) (( ) )

Z

( + )

( )

for some finite constants and Making the change of variables = +
we find

Z

( + )

( ) =

Z

( + )

( )

Z

( )

= ( )

Z

1

(1 + | |)
( )

Combining these two estimates shows

k (· ( ) ) ( ( + ))k (( ) ) ( )

( ) ( )

= (( )

and therefore for some (di erent constant )
X

Z

( (· ( ) ) ( ( + )))
X

Z

( )

=
X

Z

1

(1 + | |)
which can be made finite by taking + as can be seen by an comparison
with the integral

R

1
(1+ | |) Therefore the sum is convergent in S as

claimed.
To finish the proof, we must show that in S From Eq. (35.19)

we still have

| ( ) ( )|
Z

| ( ) ( )| | ( )|

The estimate in Eq. (35.9) gives

| ( ) ( )|
Z 1

0

( + ( )) | | ( )

( )

Z 1

0

( + ( ))

( )

Z 1

0

( ) = ( ) ( )
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where in the last inequality we have used the fact that | + ( )| | |
Therefore,

k ( ( ) )k
Z

R
( ) | ( )| 0 as

because
R

R ( ) | ( )| for all since S
We are now in a position to prove Eq. (35.10). Let us state this in the form

of a theorem.

Theorem 35.12. Suppose that if ( ) is a distribution test function pair
satisfying one the three condition in Theorem 35.3, then as a distribution
may be characterized by

h i = h ˜ i (35.20)

for all D(R ) and all S when S 0 and S
Proof. Let

˜ =

Z

˜( ) ( ) =
X

Z

˜( ( ) ) ( ( + ))

then making use of Theorem 35.12 in all cases we find

h ˜ i = lim
0
h ˜ i

= lim
0
h ( )

X

Z

˜( ( ) ) ( ( + ))i

= lim
0

X

Z

h ( ) (( ) ) ( ( + ))i

= lim
0

X

Z

h (( ) i ( ( + )) (35.21)

To compute this last limit, let ( ) = ( ) and let us do the hard case
where S 0 In this case we know that P and in particular there exists

and such that k k So we have
¯

¯

¯

¯

¯

Z

R
( ) ( )

X

Z

h (( ) i ( ( + ))

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
[ ( ) ( )] ( )

¯

¯

¯

¯

Z

R
| ( ) ( )| | ( )|

Now
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| ( ) ( )| ( ( ) + ( )) 2 ( )

and since | | 1 we may use the dominated convergence theorem to
conclude

lim
0

¯

¯

¯

¯

¯

Z

R
( ) ( )

X

Z

h (( ) i ( ( + ))

¯

¯

¯

¯

¯

= 0

which combined with Eq. (35.21) proves the theorem.


