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PDE Examples

36

Some Examples of PDE’s

Example 36.1 (Tra c Equation). Consider cars travelling on a straight road,
i.e. R and let ( ) denote the density of cars on the road at time and space
and ( ) be the velocity of the cars at ( ) Then for = [ ] R
( ) :=

R

( ) is the number of cars in the set at time We must
have

Z

˙ ( ) = ˙ ( ) = ( ) ( ) ( ) ( )

=

Z

[ ( ) ( )]

Since this holds for all intervals [ ] we must have

˙ ( ) = [ ( ) ( )]

To make life more interesting, we may imagine that ( ) = ( ( ) ( ))
in which case we get an equation of the form

= ( ) where ( ) = ( ) ( ( ) ( ))

A simple model might be that there is a constant maximum speed, and
maximum density and the tra c interpolates linearly between 0 (when
= ) to when ( = 0) i.e. = (1 ) in which case we get

= ( (1 ))

Example 36.2 (Burger’s Equation). Suppose we have a stream of particles
travelling on R each of which has its own constant velocity and let ( )
denote the velocity of the particle at at time Let ( ) denote the trajec-
tory of the particle which is at 0 at time 0 We have = ˙( ) = ( ( ))
Di erentiating this equation in at = 0 implies
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0 = [ ( ( )) + ( ( )) ˙ ( )] | = 0 = ( 0 0) + ( 0 0) ( 0 0)

which leads to Burger’s equation

0 = +

Example 36.3 (Minimal surface Equation). (Review Dominated convergence
theorem and di erentiation under the integral sign.) Let R2 be a bounded
region with reasonable boundary, 0 : R be a given function. We wish
to find the function : R such that = 0 on and the graph of
( ) has least area. Recall that the area of ( ) is given by

( ) = ( ( )) =

Z
q

1 + | |2

Assuming is a minimizer, let 1( ) such that = 0 on then

0 = |0 ( + ) = |0
Z
q

1 + | ( + )|2

=

Z

|0
q

1 + | ( + )|2

=

Z

1
q

1 + | |2
·

=

Z

· 1
q

1 + | |2

from which it follows that

· 1
q

1 + | |2
= 0

Example 36.4 (Heat or Di usion Equation). Suppose that R is a region
of space filled with a material, ( ) is the density of the material at and
( ) is the heat capacity. Let ( ) denote the temperature at time [0 )
at the spatial point Now suppose that R is a “little” volume in
R is the boundary of and ( ) is the heat energy contained in the
volume at time Then

( ) =

Z

( ) ( ) ( )

So on one hand,
˙ ( ) =

Z

( ) ( ) ˙ ( ) (36.1)
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Fig. 36.1. A test volume in

while on the other hand,

˙ ( ) =

Z

h ( ) ( ) ( )i ( ) (36.2)

where ( ) is a × —positive definite matrix representing the conduction
properties of the material, ( ) is the outward pointing normal to at

and denotes surface measure on (We are using h· ·i to denote the
standard dot product on R )
In order to see that we have the sign correct in (36.2), suppose that

and ( ) · ( ) 0 then the temperature for points near outside of are
hotter than those points near inside of and hence contribute to a increase
in the heat energy inside of (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)
Comparing Eqs. (36.1) to (36.2) after an application of the divergence

theorem shows that
Z

( ) ( ) ˙ ( ) =

Z

· ( (·) ( ·))( ) (36.3)

Since this holds for all volumes we conclude that the temperature
functions should satisfy the following partial di erential equation.

( ) ( ) ˙ ( ) = · ( (·) ( ·))( ) (36.4)

or equivalently that

˙ ( ) =
1

( ) ( )
· ( ( ) ( )) (36.5)

Setting ( ) := ( ) ( ( ) ( )) and

( ) :=
X

=1

( ( ) ( ( ) ( )))
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the above equation may be written as:

˙ ( ) = ( ) (36.6)

where

( )( ) =
X

( )
2

( ) +
X

( ) ( ) (36.7)

The operator is a prototypical example of a second order “elliptic” di er-
ential operator.

Example 36.5 (Laplace and Poisson Equations). Laplaces Equation is of the
form = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like = appear in electrostatics
for example, where is the electric potential and is the charge distribution.

Example 36.6 (Shrodinger Equation and Quantum Mechanics).

( ) =
2
( ) + ( ) ( ) with k (· 0)k2 = 1.

Interpretation,
Z

| ( )|2 = the probability of finding the particle in at time

(Notice similarities to the heat equation.)

Example 36.7 (Wave Equation). Suppose that we have a stretched string sup-
ported at = 0 and = and = 0 Suppose that the string only undergoes
vertical motion (pretty bad assumption). Let ( ) and ( ) denote the
height and tension of the string at ( ) 0( ) denote the density in equilib-
rium and 0 be the equilibrium string tension. Let = [ + ] [0 ]

Fig. 36.2. A piece of displace string

then

( ) :=

Z

( ) 0( )

36 Some Examples of PDE’s 783

is the momentum of the piece of string above (Notice that 0( ) is the
weight of the string above ) Newton’s equations state

( )
=

Z

( ) 0( ) = Force on String.

Since the string is to only undergo vertical motion we require

( + ) cos( + ) ( ) cos( ) = 0

for all and therefore that ( ) cos( ) = 0 i.e.

( ) =
0

cos( )

The vertical tension component is given by

( + ) sin( + ) ( ) sin( ) = 0

·

sin( + )

sin( + )

sin( )

cos( )

¸

= 0 [ ( + ) ( )]

Finally there may be a component due to gravity and air resistance, say

gravity =
Z

0( ) and resistance =
Z

( ) ( )

So Newton’s equations become
Z +

( ) 0( ) = 0 [ ( + ) ( )]

Z +

0( )

Z +

( ) ( )

and di erentiating this in gives

( ) 0( ) = ( ) 0( ) ( ) ( )

or equivalently that

( ) =
1

0( )
( ) 1

( )

0( )
( ) (36.8)

Example 36.8 (Maxwell Equations in Free Space).

E
= ×B

B
= ×E

·E = ·B = 0
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Notice that

2E
2
= × B

= × ( ×E) = E ( ·E) = E

and similarly,
2B
2 = B so that all the components of the electromagnetic

fields satisfy the wave equation.

Example 36.9 (Navier — Stokes). Here ( ) denotes the velocity of a fluid
ad ( ) ( ) is the pressure. The Navier — Stokes equations state,

+ = + with (0 ) = 0( ) (36.9)

· = 0 (incompressibility) (36.10)

where are the components of a given external force and 0 is a given di-
vergence free vector field, is the viscosity constant. The Euler equations
are found by taking = 0 Equation (36.9) is Newton’s law of motion again,
= See http://www.claymath.org for more information on this Million

Dollar problem.

36.1 Some More Geometric Examples

Example 36.10 (Einstein Equations). Einstein’s equations from general rela-
tivity are

Ric
1

2
=

where is the stress energy tensor.

Example 36.11 (Yamabe Problem). Does there exists a metric 1 =
4 ( 2)

0

in the conformal class of 0 so that 1 has constant scalar curvature. This is
equivalent to solving

0 + 0 =

where = 4 1
2 = +2

2 is a constant and
0
is the scalar curvature of

0

Example 36.12 (Ricci Flow). Hamilton introduced the Ricci — flow,

= Ric

as another method to create “good” metrics on manifolds. This is a possible
solution to the 3 dimensional Poincaré conjecture, again go to the Clay math
web site for this problem.

Part XI

First Order Scalar Equations



37

First Order Quasi-Linear Scalar PDE

37.1 Linear Evolution Equations

Consider the first order partial di erential equation

( ) =
X

=1

( ) ( ) with (0 ) = ( ) (37.1)

where R and ( ) are smooth functions on R Let ( ) =
( 1( ) ( )) and for 1 (R C) let

˜ ( ) := |0 ( + ( )) = ( ) · ( ) =
X

=1

( ) ( )

i.e. ˜( ) is the first order di erential operator, ˜( ) =
P

=1 ( ) With
this notation we may write Eq. (37.1) as

= ˜ with (0 ·) = (37.2)

The following lemma contains the key observation needed to solve Eq. (37.2).

Lemma 37.1. Let and ˜ be as above and 1(R R) then

( ) = ˜ ( ) = ˜
¡ ¢

( ) (37.3)

Proof. By definition,

( ) = ( ( ))

and so by the chain rule

( ) = ( ( )) · ( ( )) = ˜ ( ( ))
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which proves the first Equality in Eq. (37.3). For the second we will need to
use the following two facts: 1) ( + ) = and 2) ( ) is smooth in
Assuming this we find

( ) = |0 ( + ) ( ) = |0
£

( )
¤

= ˜
¡ ¢

( )

which is the second equality in Eq. (37.3).

Theorem 37.2. The function 1 (D( ) R) defined by

( ) := ( ( )) (37.4)

solves Eq. (37.2). Moreover this is the unique function defined on D( ) which
solves Eq. (37.3).

Proof. Suppose that 1 (D( ) R) solves Eq. (37.2), then

( ( )) = ( ( )) ˜ ( ( )) = 0

and hence
( ( )) = (0 ) = ( )

Let ( 0 0) D( ) and apply the previous computations with = ( 0)
to find ( 0 ) = ( ( 0)) This proves the uniqueness assertion. The ver-
ification that defined in Eq. (37.4) solves Eq. (37.2) is simply the second
equality in Eq. (37.3).

Notation 37.3 Let ˜
( ) = ( ) where solves Eq. (37.2), i.e.

˜
( ) = ( ( ))

The di erential operator ˜ : 1(R R) C(R R) is no longer bounded
so it is not possible in general to conclude

˜
=
X

=0
!
˜ (37.5)

Indeed, to make sense out of the right side of Eq. (37.5) we must know
is infinitely di erentiable and that the sum is convergent. This is typically
not the case. because if is only 1 However there is still some truth to
Eq. (37.5). For example if (R R) then by Taylor’s theorem with
remainder,

˜
X

=0
!
˜ = ( )

by which I mean, for any R
"

˜
( )

X

=0
!
˜ ( )

#

0 as 0
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Example 37.4. Suppose = 1 and ( ) = 1 ˜( ) = then ( ) = +
and hence

( ) = ( + )

It is interesting to notice that

( ) =
X

=0
!
( )( )

is simply the Taylor series expansion of ( + ) centered at This series
converges to the correct answer (i.e. ( + )) i is “real analytic.” For more
details see the Cauchy — Kovalevskaya Theorem in Section 39.

Example 37.5. Suppose = 1 and ( ) = 2 ˜( ) = 2 then ( ) =

1 on D( ) = {( ) : 1 0} and hence ˜
( ) = (1 ) = ( )

on D( ) where
= 2 (37.6)

It may or may not be possible to extend this solution, ( ) to a 1 solution
on all R2 For example if lim ( ) does not exist, then lim ( ) does
not exist for any 0 and so can not be the restriction of 1 — function
on R2 On the other hand if there are constants ± and 0 such that
( ) = + for and ( ) = for then we may extend to
all R2 by defining

( ) =

½

+ if 0 and 1
if 0 and 1

It is interesting to notice that ( ) = 1 solves ˙ ( ) = 2( ) = ( ( ))
so any solution 1(R2 R) to Eq. (37.6) satisfies ( 1 ) = 0 i.e.
must be constant on the curves = 1 for 0 and = 1 for 0 See
Example 37.13 below for a more detailed study of Eq. (37.6).

Example 37.6. Suppose = 2

1. If ( ) = ( ) i.e.
µ ¶

=

µ

0 1
1 0

¶µ ¶

then

µ ¶

=

µ

cos sin
sin cos

¶µ ¶

and hence

˜
( ) = ( cos sin cos + sin )

2. If ( ) = ( ) i.e.
µ ¶

=

µ

1 0
0 1

¶µ ¶

then
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µ ¶

=

µ

0
0

¶µ ¶

and hence
˜
( ) =

¡ ¢

Theorem 37.7. Given 1(R R ) and 1 (R×R R)

1. (Duhamel’ s Principle) The unique solution 1(D( ) R) to

= ˜ + with (0 ·) = (37.7)

is given by

( ·) = ˜
+

Z

0

( ) ˜ ( ·)

or more explicitly,

( ) := ( ( )) +

Z

0

( ( ) ( )) (37.8)

2. The unique solution 1(D( ) R) to

= ˜ + with (0 ·) = (37.9)

is given by
( ·) =

R

0
( ( ) ( )) ( ( )) (37.10)

which we abbreviate as

( ˜+ ) ( ) =
R

0
( ( ) ( )) ( ( )) (37.11)

Proof.We will verify the uniqueness assertions, leaving the routine check
the Eqs. (37.8) and (37.9) solve the desired PDE’s to the reader. Assuming
solves Eq. (37.7), we find

h

˜
( ·)

i

( ) = ( ( )) =
³

˜
´

( ( ))

= ( ( ))

and therefore

h

˜
( ·)

i

( ) = ( ( )) = ( ) +

Z

0

( ( ))

and so replacing by ( ) in this equation implies

( ) = ( ( )) +

Z

0

( ( ) ( ))
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Similarly if solves Eq. (37.9), we find with ( ) :=
h

˜
( ·)

i

( ) =

( ( )) that

˙( ) = ( ( )) =
³

˜
´

( ( ))

= ( ( )) ( ( )) = ( ( )) ( )

Solving this equation for ( ) then implies

( ( )) = ( ) =
R

0
( ( )) (0) =

R

0
( ( )) ( )

Replacing by ( ) in this equation implies

( ) =
R

0
( ( ) ( )) ( ( ))

Remark 37.8. It is interesting to observe the key point to getting the simple
expression in Eq. (37.11) is the fact that

˜
( ) = ( ) =

¡ ¢ · ¡ ¢

=
˜ · ˜

That is to say ˜ is an algebra homomorphism on functions. This property
does not happen for any other type of di erential operator. Indeed, if is some
operator on functions such that ( ) = · then di erentiating at
= 0 implies

( ) = · + ·
i.e. satisfies the product rule. One learns in di erential geometry that this
property implies must be a vector field.

Let us now use this result to find the solution to the wave equation

= with (0 ·) = and (0 ·) = (37.12)

To this end, let us notice the = may be written as

( ) ( + ) = 0

and therefore noting that

( + ) ( )| =0 = ( ) + 0( )

we have

( + ) ( ) = ( + 0) ( ) = ( + 0) ( + )

The solution to this equation is then a consequence of Duhamel’ s Principle
which gives
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( ) = ( ) +

Z

0

( ) ( + 0) ( + )

= ( ) +

Z

0

( + 0) ( + ( ))

= ( ) +

Z

0

( + 0) ( + 2 )

= ( ) +

Z

0

( + 2 ) +
1

2
( + 2 )| ==0

=
1

2
[ ( + ) + ( )] +

1

2

Z

( + )

The following theorem summarizes what we have proved.

Theorem 37.9. If 2(R R) and 1(R R) then Eq. (37.12) has a
unique solution given by

( ) =
1

2
[ ( + ) + ( )] +

1

2

Z

( + ) (37.13)

Proof.We have already proved uniqueness above. The proof that defined
in Eq. (37.13) solves the wave equation is a routine computation. Perhaps the
most instructive way to verify that solves = is to observe, letting
= + that

Z

( + ) =

Z +

( ) =

Z +

0

( ) +

Z 0

( )

=

Z +

0

( )

Z

0

( )

From this observation it follows that

( ) = ( + ) + ( )

where

( ) =
1

2

µ

( ) +

Z

0

( )

¶

and ( ) =
1

2

µ

( )

Z

0

( )

¶

Now clearly and are 2 — functions and

( ) ( + ) = 0 and ( + ) ( ) = 0

so that
¡

2 2
¢

( ) = ( ) ( + ) ( ( + ) + ( )) = 0
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Now let us formally apply Exercise 37.45 to the wave equation =
in which case we should let 2 = 2 and hence =

p

2 Evidently we
should take

cos
³

p

2
´

( ) =
1

2
[ ( + ) + ( )] and

sin
³

p

2
´

p

2
( ) =

1

2

Z

( + ) =
1

2

Z +

( )

Thus with these definitions, we can try to solve the equation

= + with (0 ·) = and (0 ·) = (37.14)

by a formal application of Exercise 37.43. According to Eq. (37.73) we should
have

( ·) = cos( ) +
sin( )

+

Z

0

sin(( ) )
( ·)

i.e.

( ) =
1

2
[ ( + ) + ( )]+

1

2

Z

( + ) +
1

2

Z

0

Z +

+

( )

(37.15)
An alternative way to get to this equation is to rewrite Eq. (37.14) in first

order (in time) form by introducing = to find
µ ¶

=

µ ¶

+

µ

0
¶

with
µ ¶

=

µ ¶

at = 0 (37.16)

where

:=

µ

0 1
2

2 0

¶

A restatement of Theorem 37.9 is simply
µ ¶

( ) =

µ

( )
( )

¶

=
1

2

µ

( + ) + ( ) +
R

( + )
0( + ) 0( ) + ( + ) + ( )

¶

According to Du hamel’s principle the solution to Eq. (37.16) is given by
µ

( ·)
( ·)

¶

=

µ ¶

+

Z

0

( )

µ

0
( ·)

¶

The first component of the last term is given by

1

2

Z

0

·
Z

( + )

¸

=
1

2

Z

0

·
Z +

+

( )

¸
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which reproduces Eq. (37.15).
To check Eq. (37.15), it su ces to assume = = 0 so that

( ) =
1

2

Z

0

Z +

+

( )

Now

=
1

2

Z

0

[ ( + ) + ( + )]

=
1

2

Z

0

[ ( + ) ( + )] + ( )

( ) =
1

2

Z

0

[ ( + ) ( + )] and

( ) =
1

2

Z

0

[ ( + ) ( + )]

so that = and (0 ) = (0 ) = 0 We have proved the following
theorem.

Theorem 37.10. If 2(R R) and 1(R R) and (R2 R) such
that exists and (R2 R) then Eq. (37.14) has a unique solution
( ) given by Eq. (37.14).

Proof. The only thing left to prove is the uniqueness assertion. For this
suppose that is another solution, then ( ) solves the wave equation
(37.12) with = = 0 and hence by the uniqueness assertion in Theorem
37.9, 0

37.1.1 A 1-dimensional wave equation with non-constant
coe cients

Theorem 37.11. Let ( ) 0 be a smooth function and ˜ = ( ) and
2(R) Then the unique solution to the wave equation

= ˜2 = + 0 with (0 ·) = and (0 ·) = (37.17)

is

( ) =
1

2

£

( ( )) + ( ( ))
¤

+
1

2

Z

( ( )) (37.18)

defined for ( ) D( ) D( )

Proof. (Uniqueness) If is a 2 — solution of Eq. (37.17), then
³

˜
´³

+ ˜
´

= 0
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and
³

+ ˜
´

( )| =0 = ( ) + ˜ ( )

Therefore
³

+ ˜
´

( ) =
˜
( + 0) ( ) = ( + 0) ( ( ))

which has solution given by Duhamel’ s Principle as

( ) =
`
( ) +

Z

0

( ) ˜
³

+ ˜
´

( ( ))

= ( ( )) +

Z

0

³

+ ˜
´

( (2 ) ( ))

= ( ( )) +
1

2

Z

³

+ ˜
´

( ( ))

= ( ( )) +
1

2

Z

( ( )) +
1

2

Z

( ( ))

=
1

2

£

( ( )) + ( ( ))
¤

+
1

2

Z

( ( ))

(Existence.) Let = ( ) so = ( ( )) = ( ) in the integral
in Eq. (37.18), then

Z

( ( )) =

Z ( )

( )

( )
( )

=

Z ( )

0

( )
( )

+

Z 0

( )

( )
( )

=

Z ( )

0

( )
( )

Z ( )

0

( )
( )

From this observation, it follows follows that

( ) = ( ( )) + ( ( ))

where

( ) =
1

2

µ

( ) +

Z

0

( )
( )

¶

and ( ) =
1

2

µ

( )

Z

0

( )
( )

¶

Now clearly and are 2 — functions and
³

˜
´

( ( )) = 0 and
³

+ ˜
´

( ( )) = 0

so that
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³

2 ˜2
´

( ) =
³

˜
´³

+ ˜
´

£

( ( )) + ( ( ))
¤

= 0

By Du hamel’s principle, we can similarly solve

= ˜2 + with (0 ·) = 0 and (0 ·) = 0 (37.19)

Corollary 37.12. The solution to Eq. (37.19) is

( ) =
1

2

Z

0

Solution to Eq. (37.17)
at time

with = 0 and = ( ·)

=
1

2

Z

0

Z

( ( ))

Proof. This is simply a matter of computing a number of derivatives:

=
1

2

Z

0

h

( ( ) ( )) + ( ( ) ( ))
i

= ( ) +
1

2

Z

0

h

˜ ( ( ) ( )) ˜ ( ( ) ( ))
i

˜ =
1

2

Z

0

Z

˜ ( ( )) =
1

2

Z

0

Z

( ( ))

=
1

2

Z

0

h

( ( ) ( )) ( ( ) ( ))
i

and

˜2 =
1

2

Z

0

h

˜ ( ( ) ( )) ˜ ( ( ) ( ))
i

Subtracting the second and last equation then shows = ˜2 + and it is
clear that (0 ·) = 0 and (0 ·) = 0

37.2 General Linear First Order PDE

In this section we consider the following PDE,

X

=1

( ) ( ) = ( ) ( ) (37.20)

where ( ) and ( ) are given functions. As above Eq. (37.20) may be written
simply as

˜ ( ) = ( ) ( ) (37.21)

The key observation to solving Eq. (37.21) is that the chain rule implies
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( ( )) = ˜ ( ( )) (37.22)

which we will write briefly as

= ˜

Combining Eqs. (37.21) and (37.22) implies

( ( )) = ( ( )) ( ( ))

which then gives
( ( )) =

R

0
( ( )) ( ) (37.23)

Equation (37.22) shows that the values of solving Eq. (37.21) along any
flow line of are completely determined by the value of at any point on
this flow line. Hence we can expect to construct solutions to Eq. (37.21) by
specifying arbitrarily on any surface which crosses the flow lines of
transversely, see Figure 37.1 below.

Fig. 37.1. The flow lines of through a non-characteristic surface

Example 37.13. Let us again consider the PDE in Eq. (37.6) above but now
with initial data being given on the line = i.e.
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= 2 with ( ) = ( )

for some 1 (R R) The characteristic equations are given by

0( ) = 1 and 0( ) = 2( ) (37.24)

and the flow lines of this equations must live on the solution curves to =
2 i.e. on curves of the form ( ) = 1 for R and = 0 see Figure

37.13.

52.50-2.5-5

10

5

0

-5

-10

t

x

t

x

Any solution to = 2 must be constant on these characteristic curves.
Notice the line = crosses each characteristic curve exactly once while the

line = 0 crosses some but not all of the characteristic curves.

Solving Eqs. (37.24) with (0) = = (0) gives

( ) = + and ( ) =
1 +

(37.25)

and hence

( +
1 +

) = ( ) for all and 1

(for a plot of some of the integral curves of Eq. (37.24).) Let

( ) = ( +
1 +

) (37.26)

and solve for :

=
1 + ( )

or 2 ( 1) = 0

which gives
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=
( 1)±

q

( 1)2 + 4 2

2
(37.27)

Now to determine the sign, notice that when = 0 in Eq. (37.26) we have
= = So taking = in the right side of Eq. (37.27) implies

¡

2 1
¢±

q

( 2 1)2 + 4 2

2
=

¡

2 1
¢± ¡ 2 + 1

¢

2

=

½

with +
2 with

Therefore, we must take the plus sing in Eq. (37.27) to find

=
( 1) +

q

( 1)2 + 4 2

2

and hence

( ) =
( 1) +

q

( 1)2 + 4 2

2
(37.28)

When is small,

=
( 1) + (1 )

q

1 + 4 2

( 1)2

2
=
(1 ) 2 2

( 1)2

2
=
1

so that

( ) =

µ

1

¶

when is small.

Thus we see that ( 0) = (0) and ( ) is 1 if is 1 Equation (37.28)
sets up a one to one correspondence between solution to = 2 and

1(R R)

Example 37.14. To solve

+ = with = on 1 (37.29)

let ( ) = ( ) = + The equations for ( ( ) ( )) := ( )
are

0( ) = ( ) and 0( ) = ( )

from which we learn
( ) = ( )

Then by Eq. (37.23),

( ( )) =
R

0
2

( ) = 2 (
2 1) ( )
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Letting ( ) ( ) in this equation gives

( ) = 2 (1
2 ) ( ( ))

and then choosing so that

1 =
°

° ( )
°

°

2
= 2 ( 2 + 2)

i.e. so that = 1
2 ln

¡

2 + 2
¢

We then find

( ) = exp

µ

2

µ

1
1

2 + 2

¶ ¶

(
( )

p

2 + 2
)

Notice that this solution always has a singularity at ( ) = (0 0) unless is
constant.

10.50-0.5-1

1

0.5

0

-0.5

-1

x

y

x

y

Characteristic curves for Eq. (37.29) along with the plot of 1

Example 37.15. The PDE,

+ = with ( 0) = ( ) (37.30)

has characteristic curves determined by 0 := and 0 := 1 and along these
curves solutions to Eq. (37.30) satisfy

( ) = ( ) (37.31)

Solving these “characteristic equations” gives

( ) + 0 =

Z

0

0 =

Z

0

1 = (37.32)

so that
( ) = ln( 0 ) and ( ) = 0 + (37.33)
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From Eqs. (37.32) and (37.33) one shows

( ) = 0 + 0 ( )

so the “characteristic curves” are contained in the graphs of the functions

= for some constant

53.752.51.250-1.25

5

2.5

0

-2.5

-5

-7.5

-10

x

y

x

y

Some characteristic curves for Eq. (37.30). Notice that the line = 0
intersects some but not all of the characteristic curves. Therefore Eq. (37.30)
does not uniquely determine a function defined on all of R2 On the
otherhand if the intial condition were (0 ) = ( ) the method would

produce an everywhere defined solution.

Since the initial condition is at = 0 set 0 = 0 in Eq. (37.33) and notice
from Eq.(37.31) that

( ln( 0 ) ) = ( ( ) ( )) = ( 0 0) = ( 0) (37.34)

Setting ( ) = ( ln( 0 ) ) and solving for ( 0 ) implies

= and 0 = ln( + )

and using this in Eq. (37.34) then implies

( ) =
¡

ln( + )
¢

This solution is only defined for

Example 37.16. In this example we will use the method of characteristics to
solve the following non-linear equation,

2 + 2 = 2 with := 1 on = 2 (37.35)

As usual let ( ) solve the characteristic equations, 0 = 2 and 0 = 2 so
that
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( ( ) ( )) =

µ

0

1 0

0

1 0

¶

Now let ( 0 0) = ( 2 ) be a point on line = 2 and supposing solves
Eq. (37.35). Then ( ) = ( ( ) ( )) solves

0 = ( ) = 2 + 2 = 2( ) = 2

with (0) = ( 2 ) = 1 and hence
µ

1

2

1 2

¶

= ( ( ) ( )) = ( ) =
1

1
(37.36)

Let

( ) =

µ

1

2

1 2

¶

=

µ

1
1

1
1 2

¶

(37.37)

and solve the resulting equations:

1 = 1 and 1 2 = 1

for gives = 1 2 1 and hence

1 = 1 + 2 1 1 = 1 1 ( + 2 ) (37.38)

Combining Eqs. (37.36) — (37.38) gives

( ) =
+ 2

Notice that the characteristic curves here lie on the trajectories determined
by 2 = 2 i.e. 1 = 1 + or equivalently

=
1 +

210-1-2
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5

0

-5

-10

x

y

x
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Some characteristic curves
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37.3 Quasi-Linear Equations

In this section we consider the following PDE,

( ) · ( ) =
X

=1

( ( )) ( ) = ( ( )) (37.39)

where ( ) and ( ) are given functions on ( ) R ×R and ( ) :=
( 1( ) 1( )) Assume is a solution to Eq. (37.39) and suppose ( )
solves 0( ) = ( ( ) ( ( )) Then from Eq. (37.39) we find

( ( )) =
X

=1

( ( ) ( ( ))) ( ( )) = ( ( ) ( ( )))

see Figure 37.2 below. We have proved the following Lemma.

Fig. 37.2. Determining the values of by solving ODE’s. Notice that potential
problem though where the projection of characteristics cross in — space.

Lemma 37.17. Let = ( ) 1( ) = 2( ) = and ( ) =
( ( ) ( )) If is a solution to Eq. (37.39), then

( 1 ( 0 ( 0)) = 2 ( 0 ( 0))
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Let be a surface in R ( — space), i.e. : R 1 R such that
(0) = 0 and ( ) is injective for all Now suppose 0 : R is

given we wish to solve for such that (37.39) holds and = 0 on . Let

( ) := 1 ( ( ) 0( ( ))) (37.40)

then

(0 0) = 1 ( 0 0( 0)) = ( 0 0( 0)) and

(0 0) = (0)

Assume is non-characteristic at 0, that is ( 0 0( 0)) Ran 0(0)
where 0(0) : R 1 R is defined by

0(0) = (0) = |0 ( ) for all R 1

Then
³

1 1

´

are all linearly independent vectors at (0 0)

R × R 1 So : R × R 1 R has an invertible di erential at (0 0)
and so the inverse function theorem gives the existence of open neighborhood
0 and 0 R such that

¯

¯

× is a homeomorphism onto an
open set := ( × ) R , see Figure 37.3. Because of Lemma 37.17, if

Fig. 37.3. Constructing a neighborhood of the surface near 0 where we can
solve the quasi-linear PDE.

we are going to have a 1 — solution to Eq. (37.39) with = 0 on it
would have to satisfy

( ) = 2 ( ( ) 0( ( ))) with ( ) := 1( ) (37.41)

i.e. = ( )

Proposition 37.18. The function in Eq. (37.41) solves Eq. (37.39) on
with = 0 on
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Proof. By definition of in Eq. (37.41) and in Eq. (37.40),

0( ) = 1 ( ( ) 0( ( ))) = ( ( )) ( ( ))

and

( ( )) = 2 ( ( ) ( ( ))) = ( ( ) ( ( ))) (37.42)

On the other hand by the chain rule,

( ( )) = ( ( )) · 0( )

= ( ( )) · ( ( )) ( ( )) (37.43)

Comparing Eqs. (37.42) and (37.43) implies

( ( )) · ( ( ) ( ( ))) = ( ( ) ( ( )))

Since ( × ) = solves Eq. (37.39) on Clearly ( (0 )) = 0( ( ))
so = 0 on

Example 37.19 (Conservation Laws). Let : R R be a smooth function,
we wish to consider the PDE for = ( )

0 = + ( ) = + 0( ) with (0 ) = ( ) (37.44)

The characteristic equations are given by

0( ) = 1 0( ) = 0( ( )) and ( ) = 0 (37.45)

The solution to Eqs. (37.45) with (0) = 0 (0) = and hence

(0) = ( (0) (0)) = (0 ) = ( )

are given by

( ) = ( ) = ( ) and ( ) = + 0( ( ))

So we conclude that any solution to Eq. (37.44) must satisfy,

( + 0( ( )) = ( )

This implies, letting ( ) := + 0( ( )) that

( ) = ( 1( ))

In order to find 1 we need to know is invertible, i.e. that is monotonic
in This becomes the condition

0 0( ) = 1 + 00( ( )) 0( )

If this holds then we will have a solution.
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Example 37.20 (Conservation Laws in Higher Dimensions). Let : R R
be a smooth function, we wish to consider the PDE for = ( )

0 = + · ( ) = + 0( ) · with (0 ) = ( ) (37.46)

The characteristic equations are given by

0( ) = 1 0( ) = 0( ( )) and ( ) = 0 (37.47)

The solution to Eqs. (37.47) with (0) = 0 (0) = and hence

(0) = ( (0) (0)) = (0 ) = ( )

are given by

( ) = ( ) = ( ) and ( ) = + 0( ( ))

So we conclude that any solution to Eq. (37.46) must satisfy,

( + 0( ( ))) = ( ) (37.48)

This implies, letting ( ) := + 0( ( )) that

( ) = ( 1( ))

In order to find 1 we need to know is invertible. Locally by the implicit
function theorem it su ces to know,

0( ) = + 00( ( )) ( ) = [ + 00( ( )) ( )·]
is invertible. Alternatively, let = + 0( ( )) (so = 0( ( ))) in Eq.
(37.48) to learn, using Eq. (37.48) which asserts ( ) = ( + 0( ( ))) =
( )

( ) = ( 0( ( ))) = ( 0( ( )))

This equation describes the solution implicitly.

Example 37.21 (Burger’s Equation). Recall Burger’s equation is the PDE,

+ = 0 with (0 ) = ( ) (37.49)

where is a given function. Also recall that if we view ( ) as a time
dependent vector field on R and let ( ) solve

˙ ( ) = ( ( ))

then
¨( ) = + ˙ = + = 0

Therefore has constant acceleration and
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( ) = (0) + ˙ (0) = (0) + ( (0))

This equation contains the same information as the characteristic equations.
Indeed, the characteristic equations are

0( ) = 1 0( ) = ( ) and 0( ) = 0 (37.50)

Taking initial condition (0) = 0 (0) = 0 and (0) = (0 0) = ( 0) we
find

( ) = ( ) = ( 0) and ( ) = 0 + ( 0)

According to Proposition 37.18, we must have

(( 0 + ( 0)) = ( ( )) = (0 (0)) = ( 0) (37.51)

Letting ( 0) := 0 + ( 0) “the” solution to ( ) = ( 0 + ( 0)) is
given by = and 0 =

1( ) Therefore, we find from Eq. (37.51) that

( ) =
¡

1( )
¢

(37.52)

This gives the desired solution provided 1 is well defined.

Example 37.22 (Burger’s Equation Continued). Continuing Example 37.21.
Suppose that 0 is an increasing function (i.e. the faster cars start to the
right), then is strictly increasing and for any 0 and therefore Eq. (37.52)
gives a solution for all 0 For a specific example take ( ) = max( 0)
then

( ) =

½

(1 + ) if 0
if 0

and therefore,
1( ) =

½

(1 + ) 1 if 0
if 0

( ) =
¡

1( )
¢

=

½

(1 + ) 1 if 0
0 if 0

Notice that ( ) 0 as since all the fast cars move o to the right
leaving only slower and slower cars passing R

Example 37.23. Now suppose 0 and that 0( 0) 0 at some point 0

R i.e. there are faster cars to the left of 0 then there are to the right of
0 see Figure 37.4. Without loss of generality we may assume that 0 =
0 The projection of a number of characteristics to the ( ) plane for this
velocity profile are given in Figure 37.5 below. Since any 2 — solution to
Eq.(37.49) must be constant on these lines with the value given by the slope,
it is impossible to get a 2 — solution on all of R2 with this initial condition.
Physically, there are collisions taking place which causes the formation of a
shock wave in the system.
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2.51.250-1.25-2.5
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Fig. 37.4. An intial velocity profile where collisions are going to occur. This is the
graph of ( ) = 1

¡

1 + ( + 1)2
¢

52.50-2.5-5
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Fig. 37.5. Crossing of projected characteristics for Burger’s equation.

37.4 Distribution Solutions for Conservation Laws

Let us again consider the conservation law in Example 37.19 above. We will
now restrict our attention to non-negative times. Suppose that is a 1 —
solution to

+ ( ( )) = 0 with (0 ) = ( ) (37.53)

and 2([0 )×R) Then by integration by parts,
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0 =

Z

R

Z

0

( + ( ) )

=

Z

R
[ ]

¯

¯

¯

=

=0
+

Z

R

Z

0

( + ( ) )

=

Z

R

( ) (0 ) +

Z

R

Z

0

( ( ) ( ) + ( ( )) ( ))

Definition 37.24. A bounded measurable function ( ) is a distributional
solution to Eq. (37.53) i

0 =

Z

R

( ) (0 ) +

Z

R

Z

0

( ( ) ( ) + ( ( )) ( ))

for all test functions 2( ) where = [0 )×R.
Proposition 37.25. If is a distributional solution of Eq. (37.53) and is
1 then is a solution in the classical sense. More generally if 1( )

where is an open region contained in 0 := (0 )×R and
Z

R

Z

0

( ( ) ( ) + ( ( )) ( )) = 0 (37.54)

for all 2( ) then + ( ( )) := 0 on

Proof. Undo the integration by parts argument to show Eq. (37.54) im-
plies

Z

( + ( ( )) ) = 0

for all 1( ) This then implies + ( ( )) = 0 on

Theorem 37.26 (Rankine-Hugoniot Condition). Let be a region in
0 and = ( ) for [ ] be a 1 curve in as pictured below in Figure

37.6.
Suppose 1( \ ([ ])) and is bounded and has limiting values +

and on = ( ) when approaching from above and below respectively. Then
is a distributional solution of + ( ( )) = 0 in if and only if

+ ( ) := 0 on \ ([ ]) (37.55)

and for all [ ]

˙( )
£

+( ( )) ( ( ))
¤

= ( +( ( ))) ( ( ( )) (37.56)
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Fig. 37.6. A curve of discontinuities of

Proof. The fact that Equation 37.55 holds has already been proved in the
previous proposition. For (37.56) let be a region as pictured in Figure 37.6
above and 1( ). Then

0 =

Z

( + ( ) )

=

Z

+

( + ( ) ) +

Z

( + ( ) ) (37.57)

where

± =
½

( ) :
( )
( )

¾

Now the outward normal to ± along is

( ) = ± ( ˙( ) 1)
p

1 + ˙( )2

and the “surface measure” along is given by ( ) =
p

1 + ˙( )2 Therefore

( ) ( ) = ±( ˙( ) 1)

where the sign is chosen according to the sign in ± Hence by the divergence
theorem,
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Z

±

( + ( ) )

=

Z

±

( ( )) · ( )

=

Z

±

( ( )) · ( ) ( )

= ±
Z

( ( ))( ±( ( )) ˙( ) ( ±( ( ))))

Putting these results into Eq. ( 37.57) gives

0 =

Z

{ ˙( ) £ +( ( )) ( ( ))
¤

( ( +( ( ))) ( ( ( )))} ( ( ))

for all which implies

˙( )
£

+( ( )) ( ( ))
¤

= ( +( ( ))) ( ( ( ))

Example 37.27. In this example we will find an integral solution to Burger’s
Equation, + = 0 with initial condition

(0 ) =
0 1
1 0 1
1 0

The characteristics are given from above by

( ) = (1 0) + 0 0 (0 1)

( ) = 0 + if 0 0 and

( ) = 0 if 0 1

52.50-2.5-5

4

2

0

-2

-4

t

x

t

x
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Projected characteristics

For the region bounded determined by 1 and 1 we have ( ) is
equal to the slope of the line through ( ) and (1 1) i.e.

( ) =
1

1

Notice that the solution is not well define in the region where characteris-
tics cross, i.e. in the shock zone,

2 := {( ) : 1 1 and }
see Figure 37.7. Let us now look for a distributional solution of the equation

Fig. 37.7. The schock zone and the values of away from the shock zone.

valid for all ( ) by looking for a curve ( ) in 2 such that above ( ) = 0
while below ( ) = 1
To this end we will employ the Rankine-Hugoniot Condition of Theorem

37.26. To do this observe that Burger’s Equation may be written as +

( ( )) = 0 where ( ) =
2

2 So the Jump condition is

˙( + ) = ( ( +) ( ))

that is

(0 1) ˙ =

µ

02

2

12

2

¶

=
1

2

Hence ˙( ) = 1
2 and therefore ( ) =

1
2 +1 for 0 So we find a distributional

solution given by the values in shown in Figure 37.8.
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Fig. 37.8. A distributional solution to Burger’s equation.

37.5 Exercises

Exercise 37.28. For ( ) let

:=
X

=0
!

(37.58)

Show directly that:

1. is convergent in ( ) when equipped with the operator norm.
2. is di erentiable in and that =

Exercise 37.29. Suppose that ( ) and is an eigenvector of
with eigenvalue i.e. that = Show = Also show that
= R and is a diagonalizable × matrix with

= 1 with = diag( 1 )

then = 1 where = diag( 1 )

Exercise 37.30. Suppose that ( ) and [ ] := = 0
Show that ( + ) =

Exercise 37.31. Suppose (R ( )) satisfies [ ( ) ( )] = 0 for all
R Show

( ) := (
R

0
( ) )

is the unique solution to ˙( ) = ( ) ( ) with (0) =

Exercise 37.32. Compute when

=

µ

0 1
1 0

¶
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and use the result to prove the formula

cos( + ) = cos cos sin sin

Hint: Sum the series and use = ( + )

Exercise 37.33. Compute when

=
0
0 0
0 0 0

with R Use your result to compute ( + ) where R and is
the 3× 3 identity matrix. Hint: Sum the series.

Theorem 37.34. Suppose that ( ) for 0 satisfies

1. (Semi-group property.) 0 = and = + for all 0
2. (Norm Continuity) is continuous at 0 i.e. k k ( ) 0 as

0

Then there exists ( ) such that = where is defined in Eq.
(37.58).

Exercise 37.35. Prove Theorem 37.34 using the following outline.

1. First show [0 ) ( ) is continuous.
2. For 0 let := 1

R

0
( ) Show as 0 and conclude

from this that is invertible when 0 is su ciently small. For the
remainder of the proof fix such a small 0

3. Show

=
1
Z +

and conclude from this that

lim
0

1 ( ) =
1
( )

4. Using the fact that is invertible, conclude = lim 0
1 ( ) exists

in ( ) and that

=
1
( ) 1

5. Now show using the semigroup property and step 4. that = for
all 0

6. Using step 5, show = 0 for all 0 and therefore =
0

0 =
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Exercise 37.36 (Higher Order ODE). Let be a Banach space, , U
and ( × U ) be a Locally Lipschitz function in x = ( 1 )

Show the th ordinary di erential equation,

( )( ) = ( ( ) ˙( ) ( 1)( ))

with ( )(0) = 0 for = 0 1 2 1 (37.59)

where ( 0
0

1
0 ) is given in U has a unique solution for small

Hint: let y( ) =
¡

( ) ˙( ) ( 1)( )
¢

and rewrite Eq. (37.59) as a first
order ODE of the form

ẏ( ) = ( y( )) with y(0) = ( 0
0

1
0 )

Exercise 37.37. Use the results of Exercises 37.33 and 37.36 to solve

¨( ) 2 ˙( ) + ( ) = 0 with (0) = and ˙(0) =

Hint: The 2× 2 matrix associated to this system, , has only one eigenvalue
1 and may be written as = + where 2 = 0

Exercise 37.38. Suppose that : R ( ) is a continuous function and
: R ( ) are the unique solution to the linear di erential equations

˙ ( ) = ( ) ( ) with (0) = (37.60)

and
˙ ( ) = ( ) ( ) with (0) = (37.61)

Prove that ( ) is invertible and that 1( ) = ( ) Hint: 1) show
[ ( ) ( )] = 0 (which is su cient if dim( ) ) and 2) show com-

pute ( ) := ( ) ( ) solves a linear di erential ordinary di erential equation
that has 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that ( ) must be defined as in Eq. (37.61) is the content
of Exercise 19.32 in the analysis notes.)

Exercise 37.39 (Duhamel’ s Principle I). Suppose that : R ( ) is
a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (37.60). Let and (R ) be given.
Show that the unique solution to the di erential equation:

˙( ) = ( ) ( ) + ( ) with (0) = (37.62)

is given by

( ) = ( ) + ( )

Z

0

( ) 1 ( ) (37.63)

Hint: compute [ 1( ) ( )] when solves Eq. (37.62).
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Exercise 37.40 (Duhamel’ s Principle II). Suppose that : R ( )
is a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (37.60). Let 0 ( ) and (R ( )) be
given. Show that the unique solution to the di erential equation:

˙ ( ) = ( ) ( ) + ( ) with (0) = 0 (37.64)

is given by

( ) = ( ) 0 + ( )

Z

0

( ) 1 ( ) (37.65)

Exercise 37.41 (Non-Homogeneous ODE). Suppose that is
open and : R × is a continuous function. Let = ( ) be an
interval and 0 Suppose that 1( ) is a solution to the “non-
homogeneous” di erential equation:

˙( ) = ( ( )) with ( ) = (37.66)

Define 1( 0 R× ) by ( ) := ( + 0 ( + 0)) Show that solves
the “homogeneous” di erential equation

˙ ( ) = ˜( ( )) with (0) = ( 0 0) (37.67)

where ˜( ) := (1 ( )) Conversely, suppose that 1( 0 R × )
is a solution to Eq. (37.67). Show that ( ) = ( + 0 ( + 0)) for some
1( ) satisfying Eq. (37.66). (In this way the theory of non-homogeneous

ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 37.42 (Di erential Equations with Parameters). Let be
another Banach space, × × and ( × ) be a locally
Lipschitz function on × For each ( ) × let ( )
denote the maximal solution to the ODE

˙( ) = ( ( ) ) with (0) = (37.68)

Prove
D := {( ) R× × : } (37.69)

is open in R× × and and ˙ are continuous functions on D
Hint: If ( ) solves the di erential equation in (37.68), then ( ) :=

( ( ) ) solves the di erential equation,

˙( ) = ˜( ( )) with (0) = ( ) (37.70)

where ˜( ) := ( ( ) 0) × and let ( ( )) := ( ) Now apply
the Theorem 6.21 to the di erential equation (37.70).
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Exercise 37.43 (Abstract Wave Equation). For ( ) and R let

cos( ) :=
X

=0

( 1)2

(2 )!
2 2 and

sin( )
:=
X

=0

( 1)2 +1

(2 + 1)!
2 +1 2

Show that the unique solution 2 (R ) to

¨( ) + 2 ( ) = 0 with (0) = 0 and ˙(0) = ˙0 (37.71)

is given by

( ) = cos( ) 0 +
sin( )

˙0

Remark 37.44. Exercise 37.43 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (37.71) as a first order ODE using Exercise
37.36. In doing so you will be lead to compute where ( × ) is
given by

=

µ

0
2 0

¶

where we are writing elements of × as column vectors,
µ

1

2

¶

You should

then show

=

µ

cos( ) sin( )

sin( ) cos( )

¶

where

sin( ) :=
X

=0

( 1)2 +1

(2 + 1)!
2 +1 2( +1)

Exercise 37.45 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 37.43, but now consider the ODE,

¨( ) + 2 ( ) = ( ) with (0) = 0 and ˙(0) = ˙0 (37.72)

where (R ) Show the unique solution to Eq. (37.72) is given by

( ) = cos( ) 0 +
sin( )

˙0 +

Z

0

sin(( ) )
( ) (37.73)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (37.73) from Exercise 37.39 and the comments in
Remark 37.44.

Exercise 37.46. Number 3 on p. 163 of Evans.
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Fully nonlinear first order PDE

In this section let U R be an open subset of R and ( ) Ū ×R ×
R ( ) R be a 2 — function. Actually to simplify notation let us
suppose U =R We are now looking for a solution : R R to the fully
non-linear PDE,

( ( ) ( )) = 0 (38.1)

As above, we “reduce” the problem to solving ODE’s. To see how this might
be done, suppose solves (38.1) and ( ) is a curve in R and let

( ) = ( ( )) and ( ) = ( ( ))

Then

0( ) = ( ( )) · 0( ) = ( ) · 0( ) and (38.2)
0( ) = 0( ) ( ( )) (38.3)

We would now like to find an equation for ( ) which along with the above
system of equations would form and ODE for ( ( ) ( ) ( )) The term,

0( ) ( ( )) which involves two derivative of is problematic and we would
like to replace it by something involving only and In order to get the
desired relation, di erentiate Eq. (38.1) in in the direction to find

0 = · + + · = · + + ·
= · + · + ( ) ·

wherein we have used the fact that mixed partial derivative commute. This
equation is equivalent to

|( ( ) ( )) = ( + )|( ( ) ( )) (38.4)

By requiring ( ) to solve 0( ) = ( ( ) ( ) ( )) we find, using Eq. (38.4)
and Eqs. (38.2) and (38.3) that ( ( ) ( ) ( )) solves the characteristic
equations,
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0( ) = ( ( ) ( ) ( ))
0( ) = ( ) · ( ( ) ( ) ( ))
0( ) = ( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )

We will in the future simply abbreviate these equations by

0 =
0 = · (38.5)
0 =

The above considerations have proved the following Lemma.

Lemma 38.1. Let

( ) := ( ( ) · ( ) ( ) ( ) )

1( ) = and 2( ) =

If solves Eq. (38.1) and 0 then

( 0 ( 0) ( 0)) = ( ( ) ( ( )) ( ( ))) and

( ( )) = 2 ( 0 ( 0) ( 0)) (38.6)

where ( ) = 1 ( 0 ( 0) ( 0))

We now want to use Eq. (38.6) to produce solutions to Eq. (38.1). As in
the quasi-linear case we will suppose : R 1 R is a surface,
(0) = 0 ( ) is injective for all and 0 : R is given. We wish

to solve Eq. (38.1) for with the added condition that ( ( )) = 0( ) In
order to make use of Eq. (38.6) to do this, we first need to be able to find
( ( )) The idea is to use Eq. (38.1) to determine ( ( )) as a function

of ( ) and 0( ) and for this we will invoke the implicit function theorem. If
is a function such that ( ( )) = 0( ) for near 0 and 0 = ( 0) then

0(0) = ( ( ))| =0 = ( 0) · 0(0) = 0 · 0(0)

Notation 38.2 Let 0( ) denote the unique vector in R which is tan-
gential to at ( ) and such that

0( ) = 0( ) · 0(0) for all R 1

Theorem 38.3. Let : R ×R×R R be a 2 function, 0 R 1

: R 1
2

R be an embedded submanifold, ( 0 0 0) ×R×R
such that ( 0 0 0) = 0 and 0 = (0) 0 :

1

R such that 0( 0) =

0 n( ) be a normal vector to at Further assume

1. 0(0) = 0 · 0(0) = 0 · (0) for all R 1
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2. ( 0 0 0) · n(0) 6= 0
Then there exists a neighborhood R of 0 and a 2-function :

R such that = 0 near 0 and Eq. (38.1) holds for all

Proof. Step 1. There exist a neighborhood 0 and a function 0 :

0 R such that

0( )
tan = 0( ) and ( ( ) ( (( )) 0( )) = 0 (38.7)

for all 0 where 0( )
tan is component of 0( ) tangential to This is

Fig. 38.1. Decomposing into its normal and tangential components.

an exercise in the implicit function theorem.
Choose 0 R such that 0(0) + 0n(0) = 0 and define

( ) := ( ( ) 0( ) 0( ) + n( ))

Then

( 0) = ( 0 0 0(0) + n(0)) · n(0) 6= 0
so by the implicit function theorem there exists 0 0 and : 0 R
such that ( ( ) ) = 0 for all 0 Now define

0( ) := 0( ) + ( )n( ) for 0

To simplify notation in the future we will from now on write for 0

Step 2. Suppose ( ) is a solution to (38.5) such that ( (0) (0) (0)) =
0 then

( ( ) ( ) ( )) = 0 for all (38.8)

because
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( ( ) ( ) ( )) = · 0 + 0 + · 0

= · + ( · ) · ( + ) = 0 (38.9)

Step 3. (Notation). For let

( ( ) ( ) ( )) = ( ( ) 0( ) 0( ))

ie. ( ) ( ) and ( ) solve the coupled system of O.D.E.’s:

0 = with (0 ) = ( )
0 = · with (0 ) = 0( )
0 = with (0 ) = 0( ) (38.10)

With this notation Eq. (38.8) becomes

( ( ) ( ) ( )) = 0 for all (38.11)

Step 4. There exists a neighborhood 0 0 and 0 R such that
: × 0 R is a 1 di eomorphism onto an open set := ( × 0)

R with 0 Indeed, (0 ) = ( ) so that (0 )| =0 = 0(0) and
hence

(0 0)( ) = (0 0) + 0(0) = ( 0 0 0) + 0(0)

By the assumptions, ( 0 0 0) Ran 0(0) and 0(0) is injective, it
follows that (0 0) is invertible So the assertion is a consequence of the
inverse function theorem.
Step 5. Define

( ) := ( 1( ))

then is the desired solution. To prove this first notice that is uniquely
characterized by

( ( )) = ( ) for all ( ) 0 × 0

Because of Step 2., to finish the proof it su ces to show ( ( )) = ( )
Step 6. ( ( )) = ( ) From Eq. (38.10),

· 0 = · = 0 = ( ) = ( ) · 0 (38.12)

which shows
[ ( )] · 0 = 0

So to finish the proof it su ces to show

[ ( )] · = 0



38 Fully nonlinear first order PDE 823

for all R 1 or equivalently that

( ) · = ( ) · = ( ) = (38.13)

for all R 1

To prove Eq. (38.13), fix a and let

( ) := ( ) · ( ) ( )

Then using Eq. (38.10),

0 = 0 · + · 0 0

= ( ) · + · ( · )

= ( ) · ( ) · (38.14)

Further, di erentiating Eq. (38.11) in implies for all R 1 that

· + + · = 0 (38.15)

Adding Eqs. (38.14) and (38.15) then shows

0 = · + =

which implies
( ) =

R

0
( )( ) (0)

This shows 0 because 0( ) = ( 0) ( ( )) and hence

(0) = 0( ) · ( ) 0( ( ))

= [ 0( ) 0( ( ))] · ( ) = 0

Example 38.4 (Quasi-Linear Case Revisited). Let us consider the quasi-linear
PDE in Eq. (37.39),

( ) · ( ) ( ( )) = 0 (38.16)

in light of Theorem 38.3. This may be written in the form of Eq. (38.1) by
setting

( ) = ( ) · ( )

The characteristic equations (38.5) for this are

0 = =
0 = · = ·
0 = = ( · ) ( · )
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Recalling that ( ) = ( ) the equation above may expressed, by using
Eq. (38.16) as

0 = · =

Therefore the equations for ( ( ) ( )) may be written as

0( ) = ( ) and 0 = ( )

and these equations may be solved without regard for the — equation. This
is what makes the quasi-linear PDE simpler than the fully non-linear PDE.

38.1 An Introduction to Hamilton Jacobi Equations

A Hamilton Jacobi Equation is a first order PDE of the form

( ) + ( ( )) = 0 with (0 ) = ( ) (38.17)

where : R × R R and : R R are given functions. In this section
we are going to study the connections of this equation to the Euler Lagrange
equations of classical mechanics.

38.1.1 Solving the Hamilton Jacobi Equation (38.17) by
characteristics

Now let us solve the Hamilton Jacobi Equation (38.17) using the method of
characteristics. In order to do this let

( 0 ) = ( ( )) and ( ) := 0 + ( )

Then Eq. (38.17) becomes

0 = ( )

Hence the characteristic equations are given by

( ( ) ( )) = ( 0 ) = (1 ( ( ) ( ))

( 0 )( ) = ( ) ( 0 ) = ( ) = (0 ( ( ) ( )))

and
0( ) = ( 0 ) · ( 0 ) = 0( ) + ( ) · ( ( ) ( ))

Solving the equation with (0) = 0 gives = and so we identify and
and our equations become
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˙ ( ) = ( ( ) ( )) (38.18)

˙( ) = x ( ( ) ( )) (38.19)
·

( ( ))

¸

= 0( ) = 0 and

[ ( ( ))] = ( ) = ( ( )) + ( ) · ( ( ) ( ))

= ( ( ) ( )) + ( ) · ( ( ) ( ))

Hence we have proved the following proposition.

Proposition 38.5. If solves the Hamilton Jacobi Equation Eq. 38.17 and
( ( ) ( )) are solutions to the Hamilton Equations (38.18) and (38.19) (see
also Eq. (38.29) below) with (0) = ( ) ( (0)) then

( ( )) = ( (0)) +

Z

0

[ ( ) · ( ( ) ( )) ( ( ) ( ))]

In particular if ( ) R×R then

( ) = ( (0)) +

Z

0

[ ( ) · ( ( ) ( )) ( ( ) ( ))] (38.20)

provided ( ) is a solution to Hamilton Equations (38.18) and (38.19) sat-
isfying the boundary condition ( ) = and (0) = ( ) ( (0))

Remark 38.6. Let ( 0 0) = ( ) and ( 0 0) = ( ) where ( ( ) ( ))
satisfies Hamilton Equations (38.18) and (38.19) with ( (0) (0)) = ( 0 0)
and let ( ) := ( ( ( )) Then (0 ) = (0 ) so

(0 0) = (0 ) and (0 0) = (1 ( ( )))

from which it follows that 0(0 0) is invertible. Therefore given R the
exists 0 such that 1( ) is well defined for | | and | |
Writing 1( ) = ( 0( )) we then have that

( ( ) ( )) := ( ( 0( ) ( 0( )) ( 0 ( 0( )))

solves Hamilton Equations (38.18) and (38.19) satisfies the boundary condi-
tion ( ) = and (0) = ( ) ( (0))

38.1.2 The connection with the Euler Lagrange Equations

Our next goal is to express the solution ( ) in Eq. (38.20) solely in terms
of the path ( ) For this we digress a bit to Lagrangian mechanics and the
notion of the “classical action.”
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Definition 38.7. Let 0 : R × R R be a smooth “Lagrangian”
and : R R be a smooth function. The — weighted action ( ) of a
function 2([0 ] R ) is defined to be

( ) = ( (0)) +

Z

0

( ( ) ˙( ))

When = 0 we will simply write for 0

We are now going to study the function ( ) of “least action,”

( ) := inf
©

( ) : 2([0 ]) with ( ) =
ª

(38.21)

= inf

(

( (0)) +

Z

0

( ( ) ˙( )) : 2([0 ]) with ( ) =

)

The next proposition records the di erential of ( )

Proposition 38.8. Let (R × R R) be a smooth Lagrangian, then
for 2([0 ] R ) and 1([0 ] R )

( ) = [( ( ) 2 ( ˙)) · ] =0 + [ 2 ( ˙) · ] =
+

Z

0

( 1 ( ˙) 2 ( ˙)) (38.22)

Proof. By di erentiating past the integral,

( ) = |0 ( + ) =

Z

0

|0 ( ( ) + ( ) ˙( ) + ˙ ( ))

=

Z

0

( 1 ( ˙) + 2 ( ˙) ˙ )

=

Z

0

( 1 ( ˙) 2 ( ˙)) + 2 ( ˙)
¯

¯

¯

0

This completes the proof since ( ) = ( (0)) + ( ) and [ ( (0))] =
( (0)) · (0)

Definition 38.9. A function 2([0 ] R ) is said to solve the Euler
Lagrange equation for if solves

1 ( ˙) [ 2 ( ˙)] = 0 (38.23)

This is equivalently to satisfying ( ) = 0 for all 1([0 ] R )
which vanish on [0 ] = {0 }
Let us note that the Euler Lagrange equations may be written as:

1 ( ˙) = 1 2 ( ˙) ˙ + 2
2 ( ˙)¨
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Corollary 38.10. Any minimizer (or more generally critical point) of (·)
must satisfy the Euler Lagrange Eq. (38.23) with the boundary conditions

( ) = and ( (0)) = ˙ ( (0) (0)) = 2 ( (0) (0)) (38.24)

Proof. The corollary is a consequence Proposition 38.8 and the first deriv-
ative test which implies ( ) = 0 for all 1([0 ] R ) such that
( ) = 0

Example 38.11. Let (R R) 0 and ( ) = 1
2 | |2 ( )

Then
1 ( ) = ( ) and 2 ( ) =

and the Euler Lagrange equations become

( ) = [ ˙] = ¨

which are Newton’s equations of motion for a particle of mass subject to a
force In particular if = 0 then ( ) = (0) + ˙(0)

The following assumption on will be assumed for the rest of this section.

Assumption 1 We assume
£

2
2 ( )

¤ 1
exists for all ( ) R ×R and

2 ( ) is invertible for all R

Notation 38.12 For R let

( ) := [ 2 ( ·)] 1
( ) (38.25)

Equivalently, ( ) is the unique element of R such that

2 ( ( )) = (38.26)

Remark 38.13. The function : R × R R is smooth in ( ) This
is a consequence of the implicit function theorem applied to ( ) :=
( 2 ( ))

Under Assumption 1, Eq. (38.23) may be written as

¨= ( ˙) (38.27)

where
( ˙) = 2

2 ( ˙) 1{ 1 ( ˙) ( 2 ( ˙) ˙}
Definition 38.14 (Legendre Transform). Let (R × R R) be a
function satisfying Assumption 1. The Legendre transform (R ×
R R) is defined by

( ) := · ( ) where = ( )

i.e.
( ) = · ( ) ( ( )) (38.28)
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Proposition 38.15. Let ( ) := ( ) 2([0 ] R ) and ( ) :=
( ( ) ˙( )) Then

1. (R ×R R) and

( ) = ( ( )) and ( ) = ( )

2. satisfies Assumption 1 and = i.e. ( ) =
3. The path 2([0 ] R ) solves the Euler Lagrange Eq. (38.23) then
( ( ) ( )) satisfies Hamilton’s Equations:

˙( ) = ( ( ) ( ))

˙( ) = ( ( ) ( )) (38.29)

4. Conversely if ( ) solves Hamilton’s equations (38.29) then solves the
Euler Lagrange Eq. (38.23) and

( ( ) ( )) = 0 (38.30)

Proof. The smoothness of follows by Remark 38.13.

1. Using Eq. (38.28) and Eq. (38.26)

( ) = · ( ) ( ( )) ( ( )) ( )

= · ( ) ( ( )) · ( )

= ( ( ))

and similarly,

( ) = ( ) + · ( ) ( ( )) ( )

= ( ) + · ( ) · ( ) = ( )

2. Since ( ) = ( ) = [ ( ·)] 1
( ) and by Remark 38.13,

( ) is smooth with a smooth inverse ( ·) it follows that satisfies
Assumption 1. Letting = ( ) in Eq. (38.28) shows

( ( )) = ( ) · ( ( )) ( ( ( )))

= ( ) · ( )

and using this and the definition of we find

( ) = · [ ( ·)] 1
( ) ( [ ( ·)] 1

( ))

= · ( ) ( ( )) = ( )
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3. Now suppose that solves the Euler Lagrange Eq. (38.23) and ( ) =
( ( ) ˙( )) then

˙ = ( ˙) = ( ˙) = ( ( )) = ( )

and
˙ = [ ( ·)] 1 ( ) = ( ) = ( )

4. Conversely if ( ) solves Eq. (38.29), then

˙ = ( ) = ( )

Therefore
( ˙) = ( ( )) =

and

( ˙) = ˙ = ( ) = ( ( )) = ( ˙)

Equation (38.30) is easily verified as well:

( ) = ( ) · ˙ + ( ) · ˙
= ( ) · ( ) ( ) · ( ) = 0

Example 38.16. Letting ( ) = 1
2 | |2 ( ) as in Example 38.11, sat-

isfies Assumption 1,

( ) = [ ( ·)] 1
( ) =

( ) = ( ) = · ( )) =
1

2
| |2 + ( )

which is the conserved energy for this classical mechanical system. Hamilton’s
equations for this system are,

˙ = and ˙ = ( )

Notation 38.17 Let ( ) = ( ) where is the unique maximal solution
to Eq. (38.27) (or equivalently 38.23)) with (0) = and ˙(0) =

Theorem 38.18. Suppose (R × R R) satisfies Assumption 1 and
let = denote the Legendre transform of Assume there exists an open
interval R with 0 and R such that there exists a smooth
function 0 : × R such that

( 0( ) ( 0( ) ( 0( ))) = (38.31)

Let
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( ) := ( 0( ) ( 0( ) ( 0( ))) (38.32)

so that solves the Euler Lagrange equations, ( ) = (0) =

0( ) and ˙ (0) = ( 0( ) ( 0( )) or equivalently

( (0) ˙ (0)) = ( 0( ))

Then the function

( ) := ( ) = ( (0)) +

Z

0

( ( ) ˙ ( )) (38.33)

solves the Hamilton Jacobi Equation (38.17).

Conjecture 38.19. For general and convex in the function

( ) = inf
2([0 ] R )

{ ( (0)) +
Z

0

( ( ) ˙( )) : ( ) = }

is a distributional solution to the Hamilton Jacobi Equation Eq. 38.17. See
Evans to learn more about this conjecture.

Proof. We will give two proofs of this Theorem.
First Proof. One need only observe that the theorem is a consequence of

Definition 38.14 and Proposition 38.15 and 38.5.
Second Direct Proof. By the fundamental theorem of calculus and dif-

ferentiating past the integral,

( )
= ( 0( )) · 0( ) + ( ( ) ˙ ( ))

+

Z

0

( ( ) ˙ ( )))

= ( 0( )) · 0( ) + ( ( ) ˙ ( ))

+ ( )

· ¸

= ( ( ) ˙ ( )) + ( )

· ¸

(38.34)

Using Proposition 38.8 and the fact that satisfies the Euler Lagrange
equations and the boundary conditions in Corollary 38.10 we find

( )

· ¸

=

µ

2 ( ( ) ˙ ( )) ( )

¶

¯

¯

¯

=
(38.35)

Furthermore di erentiating the identity, ( ) = in implies

0 = = ( ) = ˙ ( ) + ( )| = (38.36)
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Combining Eqs. (38.34) — (38.36) gives

( )
= ( ˙ ( ))) 2 ( ˙ ( )) ˙ ( ) (38.37)

Similarly for R

( ) = ( ) = (( )) [ ]

= 2 ( ( ) ˙ ( )) ( ) = 2 ( ˙ ( ))

wherein the last equality we have use ( ) = This last equation is
equivalent to

2 ( ˙ ( )) = ( )

from which it follows that

˙ ( ) = ( ( )) (38.38)

Combining Eqs. (38.37) and (38.38) and the definition of shows

( )
= ( ( ( ))) 2 ( ˙ ( )) ( ( ))

= ( ( ))

Remark 38.20. The hypothesis of Theorem 38.18 may always be satisfied lo-
cally, for let : R×R R×R be given by ( ) := ( ( ( ( ))
Then (0 ) := (0 ) and so

˙(0 ) = (1 ) and (0 ) = R

from which it follows that 0(0 ) 1 exists for all R So the inverse
function theorem guarantees for each R that there exists an open interval

R with 0 and R and a smooth function 0 : × R
such that

( 0( )) = ( 0( )) for and

i.e.
( 0( ) ( 0( ) ( 0( ))) =

38.2 Geometric meaning of the Legendre Transform

Let be a finite dimensional real vector space and : R be a strictly
convex function. Then the function : R defined by
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( ) = sup ( ( ) ( )) (38.39)

is called the Legendre transform of Now suppose the supremum on the
right side of Eq. (38.39) is obtained at a point see Figure 38.2 below.
Eq. (38.39) may be rewritten as ( ) (·) (·) with equality at or
equivalently that

( ) + (·) (·) with equality at some point

Geometrically, the graph of defines a hyperplane which if translate
by ( ) just touches the graph of at one point, say , see Figure 38.2.
At the point of contact, and must have the same tangent plane and

Fig. 38.2. Legendre Transform of

since is linear this means that 0( ) = Therefore the Legendre transform
: R of may be given explicitly by

( ) = ( ) ( ) with such that 0( ) =
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Cauchy — Kovalevskaya Theorem

As a warm up we will start with the corresponding result for ordinary di er-
ential equations.

Theorem 39.1 (ODE Version of Cauchy — Kovalevskaya, I.). Suppose
0 and : ( ) R is real analytic near 0 and ( ) is the unique solution

to the ODE
˙ ( ) = ( ( )) with (0) = 0 (39.1)

Then is also real analytic near 0

We will give four proofs. However it is the last proof that the reader should
focus on for understanding the PDE version of Theorem 39.1.
Proof. (First Proof.)If (0) = 0 then ( ) = 0 for all is the unique

solution to Eq. (39.1) which is clearly analytic. So we may now assume that
(0) 6= 0 Let ( ) :=

R

0
1
( ) another real analytic function near 0 Then

as usual we have

( ( )) =
1

( ( ))
˙ ( ) = 1

and hence ( ( )) = We then have ( ) = 1( ) which is real analytic
near = 0 since 0(0) = 1

(0) 6= 0
Proof. (Second Proof.) For C let ( ) denote the solution to the

ODE
˙ ( ) = ( ( )) with (0) = 0 (39.2)

Notice that if ( ) is analytic, then ( ) satisfies the same equation as
Since ( ) = ( ) is holomorphic in and it follows that in Eq.

(39.2) depends holomorphically on as can be seen by showing ¯ = 0 i.e.
showing satisfies the Cauchy Riemann equations. Therefore if 0 is
chosen small enough such that Eq. (39.2) has a solution for | | and | | 2
then

( ) = 1( ) =
X

=0

1

!
( )| =0 (39.3)
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Now when R ( ) = ( ) and therefore

( )| =0 = ( )| =0 = ( )(0)

Putting this back in Eq. (39.3) shows

( ) =
X

=0

1

!
( )(0)

which shows ( ) is analytic for near 0
Proof. (Third Proof.) Go back to the original proof of existence of so-

lutions, but now replace by C and
R

0
( ( )) by

R

0
( ( )) =

R 1

0
( ( )) Then the usual Picard iterates proof work in the class of holo-

morphic functions to give a holomorphic function ( ) solving Eq. (39.1).
Proof. (Fourth Proof: Method of Majorants) Suppose for the moment we

have an analytic solution to Eq. (39.1). Then by repeatedly di erentiating Eq.
(39.1) we learn

¨( ) = 0( ( )) ˙ ( ) = 0( ( )) ( ( ))
(3)( ) = 00( ( )) 2( ( )) + [ 0( ( ))]2 ( ( ))

...

( )( ) =
³

( ( )) ( 1)( ( ))
´

where is a polynomial in variables with all non-negative integer coe -
cients. The first few polynomials are 1( ) = 2( ) = 3( ) =
2 + 2 Notice that these polynomials are universal, i.e. are independent
of the function and

¯

¯

¯

( )(0)
¯

¯

¯
=
¯

¯

¯

³

(0) ( 1)(0)
´
¯

¯

¯

³

| (0)|
¯

¯

¯

( 1)(0)
¯

¯

¯

´ ³

(0) ( 1)(0)
´

where is any analytic function such that
¯

¯

( )(0)
¯

¯

( )(0) for all Z+
(We will abbreviate this last condition as ¿ ) Now suppose that ( ) is a
solution to

˙( ) = ( ( )) with (0) = 0 (39.4)

then we know from above that

( )(0) =
³

(0) ( 1)(0)
´

¯

¯

¯

( )(0)
¯

¯

¯
for all

Hence if knew that were analytic with radius of convergence larger that
some 0 then by comparison we would find
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X

=0

1

!

¯

¯

¯

( )(0)
¯

¯

¯

X

=0

1

!
( )(0)

and this would show

( ) :=
X

=0

1

!

³

(0) ( 1)(0)
´

is a well defined analytic function for | |
I now claim that ( ) solves Eq. (39.1). Indeed, both sides of Eq. (39.1) are

analytic in so it su ces to show the derivatives of each side of Eq. (39.1)
agree at = 0 For example ˙ (0) = (0) ¨(0) = |0 ( ( )) etc. However
this is the case by the very definition of ( )(0) for all
So to finish the proof, it su ces to find an analytic function such that

¯

¯

( )(0)
¯

¯

( )(0) for all Z+ and for which we know the solution to Eq.
(39.4) is analytic about = 0 To this end, suppose that the power series
expansion for ( ) at = 0 has radius of convergence larger than 0 then
P

=0
1
!
( )(0) is convergent and in particular,

:= max

¯

¯

¯

¯

1

!
( )(0)

¯

¯

¯

¯

from which we conclude

max

¯

¯

¯

¯

1

!
( )(0)

¯

¯

¯

¯

Let

( ) :=
X

=0

=
1

1
=

Then clearly ¿ To conclude the proof, we will explicitly solve Eq. (39.4)
with this function ( )

˙( ) =
( )

with (0) = 0

By the usual separation of variables methods we find ( ) 1
2
2( ) =

i.e.
2 2 ( ) + 2( ) = 0

which has solutions, ( ) = ± 2 2 We must take the negative sign
to get the correct initial condition, so that

( ) =
p

2 2 =
p

1 2 (39.5)

which is real analytic for | | :=
Let us now Jazz up this theorem to that case of a system of ordinary

di erential equations. For this we will need the following lemma.
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Lemma 39.2. Suppose : ( ) R is real analytic near 0 ( )
then

¿
1 · · ·

for some constants and

Proof. By definition, there exists 0 such that

( ) =
X

for | |

where = 1
! (0) Taking = (1 1 1) with implies there exists

such that | | | | for all i.e.

| | | | | |!
!

| |

This completes the proof since

X | |!
!

| | =
X

=0

X

| |=

| |!
!

³ ´

=
X

=0

µ

1 + · · ·+
¶

=
1

1
¡

1+···+ ¢ =
1 · · ·

all of which is valid provided | | := | 1|+ · · ·+ | |
Theorem 39.3 (ODE Version of Cauchy — Kovalevskaya, II.). Suppose

0 and : ( ) R be real analytic near 0 ( ) and ( ) is the
unique solution to the ODE

˙ ( ) = ( ( )) with (0) = 0 (39.6)

Then is also real analytic near 0

Proof. All but the first proof of Theorem 39.1 may be adapted to the
cover this case. The only proof which perhaps needs a little more comment is
the fourth proof. By Lemma 39.2, we can find 0 such that

( )¿ ( ) :=
1 · · ·

for all Let ( ) denote the solution to the ODE,

˙( ) = ( ( )) =
1( ) · · · ( )

(1 1 1) (39.7)

with (0) = 0 By symmetry, ( ) = 1( ) =: ( ) for each so Eq. (39.7)
implies
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˙ ( ) =
( )

=
( )

( ) ( )
with (0) = 0

We have already solved this equation (see Eq. (39.5) with replaced by )
to find

( ) =
p

2 2 2 =
³

1
p

1 2
´

(39.8)

Thus ( ) = ( )(1 1 1) is a real analytic function which is convergent
for | | (2 )
Now suppose that is a real analytic solution to Eq. (39.6). Then by

repeatedly di erentiating Eq. (39.6) we learn

¨ ( ) = ( ( )) ˙ ( ) = ( ( )) ( ( ))

(3)
( ) = ( ( )) ˙ ( ) ˙ ( ) + ( ( ))¨ ( )

...

( )
( ) =

µ

{ ( ( ))}| |
n

( )
( )
o

1

¶

(39.9)

where is a polynomial with all non-negative integer coe cients. We now
define ( )

(0) inductively so that

( )
(0) =

µ

{ ( (0))}| |
n

( )
(0)
o

1

¶

for all and and we will attempt to define

( ) =
X

=0

1

!
( )(0) (39.10)

To see this sum is convergent we make use of the fact that the polynomials
are universal i.e. are independent of the function ) and have non-negative

coe cients so that by induction
¯

¯

¯

( )
(0)
¯

¯

¯

µ

{| ( (0))|}| |
n
¯

¯

¯

( )
(0)
¯

¯

¯

o

1

¶

µ

{ ( (0))}| |
n

( )
(0)
o

1

¶

=
( )
(0)

Notice the when = 0 that | (0)| = 0 = (0) 1 Thus we have shown
¿ and so by comparison the sum in Eq. (39.10) is convergent for near

0 As before ( ) solves Eq. (39.6) since both functions ˙ ( ) and ( ( )) are
analytic functions of which have common values for all derivatives in at
= 0

1 The argument shows that ( )
(0) 0 for all This is also easily seen directly

by induction using Eq. (39.9) with replaced by and the fact that (0) 0
for all
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39.1 PDE Cauchy Kovalevskaya Theorem

In this section we will consider the following general quasi-linear system of
partial di erential equations

X

| |=
( 1 ) ( ) + ( 1 ) = 0 (39.11)

where
( ) = ( ( ) ( ) 2 ( ) ( ))

is the “ — jet” of Here : R R and ( 1 ) is an × matrix.
As usual we will want to give boundary data on some hypersurface R
Let denote a smooth vector field along such that ( ) ( is
the tangent space to at ) for For example we might take ( )
to be orthogonal to for all To hope to get a unique solution to
Eq. (39.11) we will further assume there are smooth functions on for
= 0 1 and we will require

( )( ( ) ( )) = ( ) for and = 0 1 (39.12)

Proposition 39.4. Given a smooth function on a neighborhood of satis-
fying Eq. (39.12), we may calculate ( ) for and in terms of
the functions and there tangential derivatives.

Proof. Let us begin by choosing a coordinate system on R such that
( ) = { = 0} and let us extend to a neighborhood of by requiring
= 0 To complete the proof, we are going to show by induction on that

we may compute
µ ¶

( ) for all and | |

from Eq. (39.12).
The claim is clear when = 1 since = 0 on Now suppose that = 2

and let = ( 1 1) such that

=
X

=1

in a neighborhood of

Then

1 = ( ) = =
X

=1

=
X

0
+

Since is not tangential to = { = 0} it follows that 6= 0 and hence

=
1
Ã

1

X

0

!

on (39.13)
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For = 3 first observe from the equality = 0 on and Eq. (39.13) we may
compute all derivatives of of the form on provided 1 From Eq.
(39.12) for = 2 we have

2 =
¡

2
¢

( ) = 2 + l o ts

=
X

µ ¶

+ l o ts = 2
2

2
+ l o ts

where l o ts denotes terms involving with 1 From this result, it

follows that we may compute
2

2 in terms of derivatives of 0 1 and 2 The
reader is asked to finish the full inductive argument of the proof.

Remark 39.5. The above argument shows that from Eq. (39.12) we may com-
pute for any such that

To study Eq. (39.11) in more detail, let us rewrite Eq. (39.11) in the —
coordinates. Using the product and the chain rule repeatedly Eq. (39.11) may
be written as

X

| |=
( 1 ) ( ) + ( 1 ) = 0 (39.14)

where
( ) = ( ( ) ( ) 2 ( ) ( ))

We will be especially concerned with the (0 0 0 ) coe cient which can be
determined as follows:

X

| |=

µ ¶

=
X

| |=

X

=1

=
X

| |=

µ ¶

+ l o ts

=
X

| |=

µ ¶ µ ¶

+ l o ts

where l o ts now denotes terms involving with From this equation
we learn that

(0 0 0 )(
1 ) =

X

| |=

µ ¶

=
X

| |=

µ µ ¶¶

Definition 39.6.We will say that boundary data ( 0 1) is non-
characteristic for Eq. (39.11) at if

(0 0 0 )(
1 ) =

X

| |=
( 1 ( ))

µ µ ¶¶

is invertible at
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Notice that this condition is independent of the choice of coordinate system
To see this, for (R ) let

( ) =
X

| |=
( 1 ( ))

µ µ ¶¶

which is — linear form on (R ) This form is coordinate independent since
if is a smooth function such that ( ) = 0 and = then

( ) =
1

!

X

| |=
( 1 ( ))

µ ¶

|

Noting that
(0 0 0 )(

1 ) = ( )

our non-characteristic condition becomes, ( ) is invertible. Finally is
the unique element of (R ) \ {0} up to scaling such that | 0 So the
non-characteristic condition may be written invariantly as ( ) is invertible
for all (or any) (R ) \ {0} such that | 0
Assuming the given boundary data is non-characteristic, Eq. (39.11) may

be put into “standard form,”
X

| |=
( 1 ) ( ) + ( 1 ) = 0 (39.15)

with

= on = 0 for

where (0 0 0 )(
1 ) = - matrix and

( ) = ( ( ) ( ) 2 ( ) ( ))

By adding new dependent variables and possible a new independent vari-
able for one may reduce the problem to solving the system in Eq. (39.20)
below. The resulting theorem may be stated as follows.

Theorem 39.7 (Cauchy Kovalevskaya). Suppose all the coe cients in Eq.
(39.11) are real analytic and the boundary data in Eq. (39.12) are also real
analytic and non-characteristic near some point Then there is a unique
real analytic solution to Eqs. (39.11) and (39.12). (The boundary data in Eq.
(39.12) is said to be real analytic if there exists coordinates as above which
are real analytic and the functions and for = 0 1 are real analytic
functions in the — coordinate system.)

Example 39.8. Suppose are positive constants. We wish to show the
solution to the quasi-linear PDE
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= [ + 1] with (0 ) = 0 (39.16)

is real analytic near ( ) = (0 0) To do this we will solve the equation using
the method of characteristics. Let ( ) := then the characteristic
equations are

0 = 0 with (0) = 0
0 = ( ) with (0) = 0 and
0 = ( ) with (0) = 0

From these equations we see that we may identify with and that + = 0

Thus ( ) = ( ( )) satisfies

˙ = ( 0 ) =
0 +

=
0 + ( )

with (0) = 0

Integrating this equation gives

=

Z

0

( 0 + ( ) ( )) ˙( ) = ( 0)
1

2
( ) 2

= ( )
1

2
( ) 2 = ( )

1

2
( + ) 2

i.e.
1

2
( + ) 2 ( ) + = 0

The quadratic formula gives

( ) =
1

+

h

( )±
p

( )2 2 ( + )
i

and using (0 ) = 0 we conclude

( ) =
1

+

h

( )
p

( )2 2 ( + )
i

(39.17)

Notice the is real analytic for ( ) near (0 0)

In general we could use the method of characteristics and ODE properties
(as in Example 39.8) to show

= ( ) + ( ) with (0 ) = ( )

has local real analytic solutions if and are real analytic. The method
would also work for the fully non-linear case as well. However, the method of
characteristics fails for systems while the method we will present here works
in this generality.
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Exercise 39.9. Verify in Eq. (39.17) solves Eq. (39.16).

Solution 39.10 (39.9). Let :=
p

( )2 2 ( + ) then

( ) =
1

+
[ ] =

+

1

+

= = ( + ) and

+ 1 =
+

[ 1 + ( ) ] + 1 =
1

+
[ + ( ) ]

Hence

+ 1
=

1

( + )
[ + ( )]

=
1

( + )
[( ( + ) ) + ( )]

=
1
[ ]

as desired.

Example 39.11. Now let us solve for

( ) =
¡

1
¢

( 1 )

where satisfies

=
1 · · · P

=1

"

1 +
X

=1

X

=1

#

with (0 ) = 0

By symmetry, = 1 =: ( ) for all where = 1 + · · · + Since
= the above equations all may be written as

= [ + 1] with (0 ) = 0

Therefore from Example 39.8 with = and = we find

( ) =
1

( + 1)

h

( )
p

( )2 2 ( + 1)
i

(39.18)

and hence that

( ) = ( 1 + · · ·+ ) (1 1 1 1) R (39.19)
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39.2 Proof of Theorem 39.7

As is outlined in Evans, Theorem 39.7 may be reduced to the following theo-
rem.

Theorem 39.12. Let ( ) = ( 1 1 ) R×R × R
and assume ( ) ( ) { × — matrices} (for = 1 )
and ( ) ( ) R are real analytic functions near (0 0 0)
R×R × R and ( ) R is real analytic near 0 R Then there
exists, in a neighborhood of ( ) = (0 0) R × R a unique real analytic
solution ( ) R to the quasi-linear system

( ) =
X

=1

( ( )) ( ) + ( ( )) with (0 ) = ( )

(39.20)

Proof. (Sketch.)
Step 0. By replacing ( ) by ( ) ( ) we may assume 0 By

letting +1( ) = if necessary, we may assume and do not depend
on With these reductions we are left to solve

( ) =
X

=1

( ( )) ( ) + ( ( )) with (0 ) = 0 (39.21)

Step 1. Let

( ) :=
1 · · · 1 · · ·

where and are positive constants such that

( ) ¿ and ¿
for all For this choice of and let denote the solution constructed
in Example 39.11 above.
Step 2. By repeatedly di erentiating Eq. (39.20), show that if solves

Eq. (39.20) then (0 0) is a universal polynomial in the derivatives
© ª

of the entries of and and with all coe cients being non-
negative. Use this fact and induction to conclude

¯

¯ (0 0)
¯

¯ (0 0) for all and

Step 3. Use the computation in Step 2. to define (0 0) for all
and and then defined

( ) :=
X (0 0)

! !
(39.22)
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Because of step 2. and Example 39.11, this series is convergent for ( ) suf-
ficiently close to zero.
Step 4. The function defined in Step 3. solves Eq. (39.20) because both

( ) and
X

=1

( ( )) ( ) + ( ( ))

are both real analytic functions in ( ) each having, by construction, the
same derivatives at (0 0)

39.3 Examples

Corollary 39.13 (Isothermal Coordinates). Suppose that we are given
a metric 2 = 2 + 2 + 2 on R2 such that and
are real analytic near (0 0) Then there exists a complex function and a
positive function such that (0 0) is invertible and 2 = | |2 where
= +

Proof. Working out | |2 gives

| |2 = | |2 2 + 2Re( ¯ ) + | |2 2

Writing = the previous equation becomes

| |2 = | |2
³

2 + 2Re( ) + | |2 2
´

Hence we must have

= | |2 = | |2Re and = | |2 | |2

or equivalently
= Re and = | |2

Writing = + we find = and 2 + 2 = so that

= ±
q

( )
2
=
1 ³ ±

p

2
´

We make a choice of the sign above, then we are looking for ( ) C such
that = Letting = + the equation = may be written as
the system of real equations

= Re [( + ) ( + )] = and

= Im [( + ) ( + )] = +

which is equivalent to
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µ ¶

=

µ ¶µ ¶

So we may apply the Cauchy Kovalevskaya theorem 39.12 with = to find a
real analytic solution to this equation with (say) ( 0) = i.e. ( 0) =
and ( 0) = 0 (We could take ( 0) = ( ) for any real analytic function
such that 0(0) 6= 0 ) The only thing that remains to check is that (0 0)

is invertible. But

(0 0) =

µ

Re Re
Im Im

¶

=

µ ¶

=

µ

+

¶

so that
det [ ] =

¡

2 + 2
¢

= Im | |2

Thus

det [ (0 0)] = Im (0 0) = ±
q

( )
2|(0 0) 6= 0

Example 39.14. Consider the linear PDE,

= with ( 0) = ( ) (39.23)

where ( ) =
P

=0 as real analytic function near = 0 with radius
of convergence (So for any | | ) Formally the solution to
Eq. (39.23) should be given by

( ) =
X

=0

1

!
( )| =0

Now using the PDE (39.23),

( )| =0 = ( 0) = ( )( )

Thus we get

( ) =
X

=0

1

!
( )( ) (39.24)

By the Cauchy estimates,
¯

¯

¯

( )( )
¯

¯

¯

!

( | |) +1

and so
X

=0

1

!

¯

¯

¯

( )( )
¯

¯

¯

X

=0

| |
( | |) +1
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which is finite provided | | | | i.e. | |+ | | This of course makes
sense because we know the solution to Eq. (39.23) is given by

( ) = ( + )

Now we can expand Eq. (39.24) out to find

( ) =
X

=0

1

!

X

( 1) ( + 1)

=
X

0

µ ¶

(39.25)

Since
X

0

µ ¶

¯

¯

¯

¯

X

0

µ ¶

¯

¯

¯

¯

=
X

0

(| |+ | |)

provided | |+ | | Since was arbitrary, it follows that Eq. (39.25) is
convergent for | |+ | |
Let us redo this example. By the PDE in Eq. (39.23), ( ) =
+ ( ) and hence

(0 0) = ( + )(0)

Written another way
(0 0) = (| |)(0)

and so the power series expansion for must be given by

( ) =
X

(| |)(0)
!

( ) (39.26)

Using ( )(0) ! we learn

X

¯

¯

¯

¯

(| |)(0)
!

( )

¯

¯

¯

¯

X

¯

¯

(| |)(0)
¯

¯

!
| | 1 | | 2 =

X

=0

¯

¯

(| |)(0)
¯

¯

!

X

| |=

!

!
|

X

=0

(| |+ | |) =
(| |+ | |)

if | | + | | Since was arbitrary, it follows that the series in Eq.
(39.26) converges for | |+ | |
Now it is easy to check directly that Eq. (39.26) solves the PDE. However

this is necessary since by construction (0 0) = (0 0) for all This
implies, because and are both real analytic, that =
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A very short introduction to generalized
functions

Let be an open subset of R and

( ) = @@ ( ) (40.1)

denote the set of smooth functions on with compact support in

Definition 40.1. A sequence { } =1 D( ) converges to D( ) i
there is a compact set @@ such that supp( ) for all and
in ( )

Definition 40.2 (Distributions on R ). A generalized function on
R is a continuous linear functional on D( ) i.e. : D( ) C is

linear and lim h i = 0 for all { } D( ) such that 0 in D( )
Here we have written h i for ( ) We denote the space of generalized
functions by D0( )

Example 40.3. Here are a couple of examples of distributions.

1. For 1 ( ) define D0( ) by h i = R for all D( )
This is called the distribution associated to

2. More generally let be a complex measure on then h i := R is
a distribution. For example if and = then h i = ( ) for
all D

Lemma 40.4. Let ( ) and =
P

| | — a th order linear
di erential operator on D( ) Then for ( ) and D( )

h i := h i = h † i

where
†
is the formal adjoint of defined by

†
=
X

| |
( 1)| | [ ]
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Proof. This is simply repeated integration by parts. No boundary terms
arise since has compact support.

Definition 40.5 (Multiplication by smooth functions). Suppose that
( ) and D0( ) then we define D0( ) by

h i = h i for all D( )

It is easily checked that is continuous.

Definition 40.6 (Di erentiation). For D0( ) and {1 2 } let
D0( ) be the distribution defined by

h i = h i for all D( )

Again it is easy to check that is a distribution.

Definition 40.7. More generally if is as in Lemma 40.4 and D0 we
define D0 by

h i = h † i
Example 40.8. Suppose that 1 and ( ) then = If
further 1( ) then = More generally if ( ) then, by
Lemma 40.4, =

Because of Definition 40.7 we may now talk about distributional or gener-
alized solutions to PDEs of the form = where D0

Example 40.9. For the moment let us also assume that = R h i =
R

Then we have

1. lim sin = 0
2. lim 1 sin = 0 where 0 is the point measure at 0
3. If 1(R ) with

R

R = 1 and ( ) = ( ) then
lim 0 = 0 Indeed,

lim
0
h i = lim

0

Z

R
( ) ( )

= lim
0

Z

R
( ) ( )

D.C.T.
=

Z

R
( ) lim

0
( )

= (0)

Z

R
( ) = (0) = h 0 i

As a concrete example we have

lim
0 ( 2 + 2)

= 0 on R

i.e.
lim
0 ( 2+ 2)

= 0
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Example 40.10. Suppose that then

h i = ( )

and more generally we have

h i =
³ † ´

( )

Lemma 40.11. Suppose 1([ ]) and 1([ ]) i.e.
1 ([ ] \ ) where is a finite subset of ( ) and ( +) ( ) exists

for Then

Z

0( ) ( ) = [ 0( ) ( )] |
Z

( ) 0( )
X

( ) ( ( +) ( )) (40.2)

In particular

= 0 +
X

( ( +) ( ))

Proof. Write { } as { = 0 1 · · · = } then

Z

0( ) ( ) =
1

X

=0

Z

+1 0( ) ( )

=
1

X

=0

·

[ ( ) ( )] | +1

+

Z

+1

( ) 0( )
¸

= [ 0( ) ( )] |
Z

( ) 0( )
1

X

=1

[ ( ) ( )] | +

which is the same as Eq. (40.2).
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Elliptic Ordinary Di erential Operators

Let R be a bounded connected open region. A function 2( ) is
said to satisfy Laplace’s equation if

4 = 0 in

More generally if ( ) is given we say solves the Poisson equation if

4 = in

In order to get a unique solution to either of these equations it is necessary
to impose “boundary" conditions on

Example 41.1. ForDirichlet boundary conditions we impose = on
and for Neumann boundary conditions we impose = on where
: R is a given function.

Lemma 41.2. Suppose :
0

R is 2 and : R is continuous.
Then if there exists a solution to 4 = with = on such that

2( ) 1( ) then the solution is unique.

Definition 41.3. Given an open set R we say 1( ) if
1( ) ( ) and extends to a continuous function on

Proof. If e is another solution then = e solves 4 = 0 = 0 on
By the divergence theorem,

0 =

Z

4 · =

Z

| |2 +

Z

· =

Z

| |2

where the boundary terms are zero since = 0 on This identity implies
R | |2 = 0 which then shows 0 and since is connected we learn

is constant on Because is zero on we conclude 0 that is = ˜

For the rest of this section we will now restrict to = 1 However we will
allow for more general operators than in this case.

854 41 Elliptic Ordinary Di erential Operators

41.1 Symmetric Elliptic ODE

Let 1 ([0 1] (0 )) and

= ( 0)0 = 00 0 0 for 2 ([0 1]) (41.1)

In the following theorem we will impose Dirichlet boundary conditions on
by restricting the domain of to

( ) := { 2([0 1] R) : (0) = (1) = 0}

Theorem 41.4. The linear operator : ( ) ([0 1] R) is invertible and
1 : ([0 1] R) ( ) 2([0 1] R) is a bounded operator.

Proof.

1. (Uniqueness) If ( ) then by integration by parts

( ) :=

Z 1

0

( )( ) ( ) =

Z 1

0

( ) 0( ) 0( ) (41.2)

Therefore if = 0 then

0 = ( ) =

Z 1

0

( ) 0( )2

and hence 0 0 and since (0) = 0 0 This shows is injective.
2. (Existence) Given ([0 1] R) we are looking for ( ) such that

= i.e. ( 0)0 = Integrating this equation implies

( ) 0( ) = +

Z

0

( )

Therefore
0( ) =

( )

Z

1
1

( )
( )

which upon integration and using (0) = 0 gives

( ) =

Z

0 ( )

Z

1
1

( )
( )

If we let

( ) :=

Z

0

1

( )
(41.3)

the last equation may be written as

( ) = ( )

Z

0

( ( ) ( )) ( ) (41.4)
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It is a simple matter to work backwards to show the function defined
in Eq. (41.4) satisfies = and (0) = 0 for any constant So it only
remains to choose so that

0 = (1) = (1)

Z 1

0

( (1) ( )) ( )

Solving for gives =
R 1

0

³

1 ( )
(1)

´

( ) and the resulting function

may be written as

( ) =

Z 1

0

·µ

1
( )

(1)

¶

( ) 1 ( ( ) ( ))

¸

( )

=

Z 1

0

( ) ( )

where

( ) =
( )

³

1 ( )
(1)

´

if

( )
³

1 ( )
(1)

´

if
(41.5)

For example when 1

( ) =

½

(1 ) if
(1 ) if

Definition 41.5. The function defined in Eq. (41.5) is called the Green’s
function for the operator : ( ) ([0 1] R)

Remarks 41.6 The proof of Theorem 41.4 shows

¡

1
¢

( ) :=

Z 1

0

( ) ( ) (41.6)

where is defined in Eq. (41.5). The Green’s function has the following
properties:

1. Since is invertible and is a right inverse, is also a left inverse, i.e.
= for all ( )

2. is continuous.
3. is symmetric, ( ) = ( ) (This reflects the symmetry in
( ) = ( ) for all ( ) which follows from Eq. (41.2).)

4. may be written as

( ) =

½

( ) ( ) if
( ) ( ) if

where and are — harmonic functions (i.e. and = = 0) with
(0) = 0 and (1) = 0 In particular ( ) = 0 = ( ) for all
6=
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5. The first order derivatives of the Green’s function have a jump disconti-
nuity on the diagonal. Explicitly,

( +) ( ) =
1

( )

which follows directly from

( ) =
1

( )

( ( )
(1) if

³

1 ( )
(1)

´

if
(41.7)

By symmetry we also have

( + ) ( ) =
1

( )

6. By Items 4. and 5. and Lemma 40.11 it follows that

( ) := ( ) = ( ( ) ( )) = ( )

and similarly that

( ) = ( ) = ( )

As a consequence of the above remarks we have the following representa-
tion theorem for function 2([0 1])

Theorem 41.7 (Representation Theorem). For any 2([0 1])

( ) = ( )( ) ( ) ( ) ( )
¯

¯

¯

=1

=0
(41.8)

Moreover if we are given : [0 1] R and ([0 1]) then the unique
solution to

= with = on [0 1]

is

( ) = ( )( ) ( ) ( ) ( )
¯

¯

¯

=1

=0
(41.9)

Proof. By repeated use of Lemma 40.11,

( )( ) =

Z 1

0

( ) ( ( ) 0( ))

=

Z 1

0

( ) ( ) 0( )

= ( ) ( ) ( )
¯

¯

¯

=1

=0
+

Z 1

0

( ) ( )

= ( ) ( ) ( )
¯

¯

¯

=1

=0
+

Z 1

0

( ) ( )

= ( ) ( ) ( )
¯

¯

¯

=1

=0
+ ( )
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which proves Eq. (41.8). There are no boundary terms in the second equality
above since ( 0) = ( 1) = 0
Now suppose that is defined as in Eq. (41.9). Observe from Eq. (41.7)

that
lim
1
(1) ( 1) = 1 and lim

0
(0) ( 0) = 1

and also notice that ( 1) and ( 0) are — harmonic functions. There-
fore by these remarks and Eq. (41.6), = on [0 1] and

( ) = ( ) ( ) ( ) ( )
¯

¯

¯

=1

=0
= ( )

as desired.

41.2 General Regular 2nd order elliptic ODE

Let = [ ] be a closed bounded interval in R

Definition 41.8. A second order linear operator of the form

= 00 + 0 + (41.10)

with 2 ( ) 1 ( ) and 2 ( ) is said to be elliptic if 0
(more generally if is invertible if we are allowing for vector valued functions).

For this section will denote an elliptic ordinary di erential operator. We
will now consider the Dirichlet boundary valued problem for 2 ([ ])

= 00 + 0 + = 0 with = 0 on (41.11)

Lemma 41.9. Let 2 ( ) be two — harmonic functions, i.e. =
0 = and let

:= det

·

0 0

¸

= 0 0

be the Wronskian of and Then satisfies

0 =
1
=

1
and

( ) = ( )
R

( )

Proof. By direct computation

0 = ( 00 00) = ( 0 + ) ( 0 + ) =
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Definition 41.10. Let ( ) denote those 1( ) such that ( 1) is
absolutely continuous and ( ) 2( ) We also let 2

0 ( ) =
©

2( ) : | =
We make ( ) into a Hilbert space using the following inner product

( ) :=
X

=0

¡ ¢

2

Theorem 41.11. As above, let ( ) =
©

2 ( ) : = 0 on
ª

If the
Nul( ) ( ) = {0} i.e. if the only solution ( ) to = 0 is = 0
then : ( ) ( ) is an invertible. Moreover there exists a continuous
function on × (called the Dirichlet Green’s function for ) such that

¡

1
¢

( ) =

Z

( ) ( ) for all ( ) (41.12)

Moreover if 2( ) then 2
0 ( ) and ( ) = a.e. and more

generally if ( ) then +2
0 ( )

Proof. To prove the surjectivity of : ( ) ( ) (i.e. existence of
solutions ( ) to = with ( )) we are going to construct the
Green’s function

1. Formal requirements on the Greens function. Assuming Eq. (41.12)
holds and working formally we should have

( ) =

Z

( ) ( ) =

Z

( ) ( ) (41.13)

for all ( ) Hence, again formally, this implies

( ) = ( ) with ( ) = ( ) = 0 (41.14)

This can be made more convincing by as follows. Let D := D( )
then multiplying

( ) =

Z

( ) ( )

by integrating the result and then using integration by parts and Fu-
bini’s theorem gives

Z

( ) ( ) =

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( ) for all ( )

From this we conclude
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Z

( ) ( ) = ( )

i.e. ( ) = ( )
2. Constructing In order to construct a solution to Eq. (41.14), let
be two non-zero — harmonic functions chosen so that ( ) = 0 = ( )
and 0( ) = 1 = 0( ) and let be the Wronskian of and By
Lemma 41.9, either is never zero or is identically zero. If = 0
then ( ( ) 0( )) = ( ( ) 0( )) for some R and by uniqueness of
solutions to ODE it would follow that In this case ( ) = 0
and ( ) = ( ) = 0 and hence ( ) with = 0 However by
assumption, this implies = 0 which is impossible since 0(0) = 1 Thus
is never 0

By Eq. (41.14) we should require ( ) = 0 for 6= and ( ) =
( ) = 0 which implies that

( ) =

½

( ) ( ) if
( ) ( ) if

for some functions and We now want to choose and so that is
continuous and ( ) = ( ) Using

( ) =

½ 0( ) ( ) if
0( ) ( ) if

Lemma 41.9, we are led to require

0 = ( + ) ( ) = ( ) ( ) ( ) ( )

1 = [ ( ) ( )] | = +
= = ( ) [ 0( ) ( ) 0( ) ( )]

Solving these equations for and gives
µ ¶

=
1
µ ¶

and hence

( ) =
1

( ) ( )

½

( ) ( ) if
( ) ( ) if

(41.15)

3. With this Eq. (41.12) holds. Given ( ) then in Eq. (41.12)
may be written as

( ) =

Z

( ) ( )

= ( )

Z

( )

( ) ( )
( ) ( )

Z

( )

( ) ( )
( ) (41.16)

Di erentiating this equation twice gives
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0( ) = 0( )
Z

( )

( ) ( )
( ) 0( )

Z

( )

( ) ( )
( ) (41.17)

and

00( ) = 00( )
Z

( )

( ) ( )
( ) 00( )

Z

( )

( ) ( )
( )

0( )
( )

( ) ( )
( ) + 0( )

( )

( ) ( )
( ) (41.18)

Using = 0 = the definition of and the last two equations we
find

( ) 00( ) = [ ( ) 0( ) + ( ) ( )]

Z

( )

( ) ( )
( )

+ [ ( ) 0( ) + ( ) ( )]

Z

( )

( ) ( )
( ) + ( )

= ( ) 0( ) ( ) ( ) + ( )

i.e. =

Hence we have proved : ( ) ( ) is surjective and 1 : ( )
( ) is given by Eq. (41.12).
Now suppose 2( ) we will show that 1( ) and Eq. (41.17) is

still valid. The di culty here is that it is clear that is di erentiable almost
everywhere and Eq. (41.17) holds for almost every However this is not
good enough, we need Eq. (41.17) to hold for all To remedy this, choose

( ) such that in 2( ) and let := Then by what we
have just proved,

0 ( ) =
Z

( ) ( )

Now by the Cauchy-Schwarz inequality,
¯

¯

¯

¯

Z

( ) [ ( ) ( )]

¯

¯

¯

¯

2

k k2 2( )

Z

| ( )|2

k k2 2( )

where := sup
R | ( )|2 From this inequality it follows

that 0 ( ) converges uniformly to
R

( ) ( ) as and hence
1( ) and

0( ) =
Z

( ) ( ) for all

i.e. Eq. (41.17) is valid for all It now follows from Eq. (41.17) that
2( ) and Eq. (41.18) holds for almost every Working as before we

may conclude = a.e. Finally if ( ) for 1 the reader may
easily show +2

0 ( ) by examining Eqs. (41.17) and (41.18).
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Remark 41.12.When is given as in Eq. (41.1), = 0 and by Lemma 41.9

( ) = (0)
R

0

0
( ) = (0) ln( ( ) (0)) =

(0) (0)

( )

So in this case

( ) =
1

(0) (0)

½

( ) ( ) if
( ) ( ) if

where we may take

( ) = ( ) :=

Z

0

1

( )
and ( ) =

µ

1
( )

(1)

¶

Finally for this choice of and we have

(0) = (0) 0(0) 0(0) (0) =
1

(0)

giving

( ) =

½

( ) ( ) if
( ) ( ) if

which agrees with Eq. (41.5) above.

Lemma 41.13. Let := ( )00 ( )0+ be the formal adjoint of
Then

( ) = ( ) for all ( ) (41.19)

where ( ) :=
R

( ) ( ) Moreover if nul( ) = {0} then nul( ) = {0}
and the Greens function for is defined by ( ) = ( ) where
is the Green’s function in Eq. (41.15). Consequently ( ) = ( )

Proof. First observe that has been defined so that ( ) = ( )
for all 2( ) Eq. (41.19) follows by two integration by parts after observ-
ing the boundary terms are zero because = = 0 on If nul( ) and

( ) we find

0 = ( ) = ( ) for all ( )

By Theorem 41.11, if nul( ) = {0} then : ( ) ( ) is invertible so the
above equation implies nul( ) = {0} Another application of Theorem 41.11
then shows : ( ) ( ) is invertible and has a Green’s function which
we call ˜( ) We will now complete the proof by showing ˜ = To do
this observe that

( ) = ( ˜ ) = ( ˜ ) = ( ˜ ) for all ( )
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and this then implies ˜ = ( ) = Cancelling the from this equa-
tion, show ˜ = or equivalently that ˜ = The remaining assertions of
the Lemma follows from this observation.
Here is an alternate proof that ( ) = ( ), also see Using
= ( ) we learn for ( ) and ( ) that

( ) = ( ) = ( )

which then implies = for all ( ) This implies

( ) =

Z

( ) ( ) = h ( ·) i = h ( ·) i for all ( )

from which it follows that ( ) = ( )

Definition 41.14. A Green’s function for is a function ( ) as de-
fined as in Eq. (41.15) where and are any two linearly independent —
harmonic functions.1

The following theorem in is a generalization of Theorem 41.7.

Theorem 41.15 (Representation Theorem). Suppose and is a Green’s
function for then

1. ( ) = ( ) and = on 2( ) (However and may
no longer satisfy the given Dirichlet boundary conditions.)

2. ( ) = ( ) More precisely we have the following representation
formula. For any 2( )

( ) = ( )( ) +
n

( ) ( ) 0( ) [ ( ) ( )] ( )
o
¯

¯

¯

=

=

(41.20)
3. Let us now assume nul( ) = {0} and is the Dirichlet Green’s function
for The Eq. (41.20) specializes to

( ) = ( )( ) [ ( ) ( )] ( )
¯

¯

¯

=

=

Moreover if we are given : R and 2 ( ) then the unique
solution 2( ) to

= a.e. with = on

is
( ) = ( )( ) + ( ) (41.21)

where, for 0

( ) := [ ( ) ( )] ( )
¯

¯

¯

=

=
(41.22)

and ( ) := ( +) and ( ) := ( )

1 For example choose so that = 0 = and ( ) = 0( ) = 0 and 0( ) =
( ) = 1
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Proof. 1. The first item follows from the proof of Theorem 41.11 with out
any modification.
2. Using Lemma 41.9,

³ ´

= ( )00 ( )0 +

= (
0 1

)0 ( )0 +

= (
0
)0 + = (

00 1
) +

=
1

= 0

Similarly ( ) = 0 and therefore ( ) = 0 for 6= Since

( ) =

µ

1

( ) ( )

¶½

( ) ( ) if
( ) ( ) if

1

( ) ( )

½

( ) 0( ) if
( ) 0( ) if (41.23)

we find

( +) ( ) =
1

( ) ( )
{ ( ) 0( ) ( ) 0( )}

=
1

( )

Finally since

=
2

2
+ lower order terms

we may conclude form Lemma 40.11 that ( ) = ( ) Using inte-
gration by parts for absolutely continuous functions and Lemma 41.13, for

2( )

( )( ) =

Z

( ) ( )

=

Z

( )

µ

( )
2

2
+ ( ) + ( )

¶

( )

=

Z

"

[ ( ) ( )] 0( )

+
³

[ ( ) ( )] + ( )
´

( )

#

( ) ( ) 0( )| ==
= ( ) ( ) 0( )| == + [ ( ) ( )] ( )| ==
+ h ( ) ( )i
= [ ( ) ( )] ( )| == ( ) ( ) 0( )| == + ( )
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This proves Eq. (41.20).
3. Now suppose is the Dirichlet Green’s function for By Eq. (41.15),

[ ( ) ( )] =

µ

1

( )

¶½

( ) ( ) if
( ) ( ) if

+
1

( )

½

( ) 0( ) if
( ) 0( ) if

and hence the function defined in Eq. (41.22) is more explicitly given by

( ) =
1

( )
( ( ) 0( )) ( )

1

( )
( ( ) 0( )) ( ) (41.24)

From this equation or the fact that ( ) = 0 = ( ) is is —
harmonic on 0 Moreover, from Eq. (41.24),

( ) =
1

( )
( ( ) 0( )) ( )

=
1

( )
( ( ) 0( ) ( ) 0( )) ( ) = ( )

and

( ) =
1

( )
( ( ) 0( )) ( )

=
1

( )
( ( ) 0( ) ( ) 0( )) ( ) = ( )

Therefore if is defined by Eq. (41.21),

= = a.e. on 0

because = on 2( ) and

| = ( ) | + | = | =

since 2
0 ( )

Corollary 41.16 (Elliptic Regularity I). Suppose 0 0

0 := ( 0 0) and is as in Eq. (41.11) with the further assumption that
(R) If 2 ( 0) is a function such that := ( 0) for

some 0 then +2 ( 0)

Proof. Let be chosen so that := [ ] is a bounded subinterval of 0

and let be a Green’s function as in Definition 41.14. Since are smooth,
it follows from our general theory of ODE that ( ) ( × \ )
where = {( ) : } is the diagonal in × Now by Theorem 41.15,
for 0
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( ) = ( )( ) +
n

( ) ( ) 0( ) [ ( ) ( )] ( )
o
¯

¯

¯

=

=

Since
n

( ) ( ) 0( ) [ ( ) ( )] ( )
o
¯

¯

¯

=

=
( 0)

it su ces to show +2( 0) But this follows by examining the formula
for ( )00 given on the right side of Eq. (41.18).
In fact we have the following rather striking version of this result.

Theorem 41.17 (Hypoellipticity). Suppose 0 0 0 :=
( 0 0) and is as in Eq. (41.11) with the further assumption that

(R) If D0 ( 0) is a generalized function such that := ( 0)
then ( 0)

Proof. As in the proof of Corollary 41.16 let be chosen so that
:= [ ] is a bounded subinterval of 0 and let be the Green’s function

constructed above.2 Further suppose 0 ( 0 [0 1]) such that
= 1 in a neighborhood of and ( [0 1]) such that = 1 in a

neighborhood of see Figure 41.1. Finally suppose that ( ) then

Fig. 41.1. Constructing the cuto functions, and

= = = ( + 1 )

= + 1

and hence
2 Actually we can simply define to be a Green’s function for It is not
necessary to know ( ) = ( ) where is a Green’s function for
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h i = h + 1 i
= h i+ h 1 i

Now
h i = h i = h i

and writing = for some continuous function (which is always pos-
sible locally) we find

h 1 i
= ( 1) h 1 i
= ( 1)

Z

×
( ) [ ( ) (1 ( )) ( )] ( )

=

Z

( ) ( )

where

( ) :=

Z

( ) [ ( ) (1 ( )) ( )]

which is smooth for because 1 ( ) = 0 on and so (1 ( )) ( )
is smooth for ( ) × Putting this altogether shows

h i = h + i for all ( )

That is to say = + on which proves the theorem since +
( )

Example 41.18. Let =
2

2

2

2 be the wave operator on R2 which is not
elliptic. Given 2(R) we have already seen that ( ) = 0 (R2)
Clearly since was arbitrary, it does not follow that ( ) := ( )

(R2) Moreover, if is merely continuous and ( ) := ( ) then
= 0 with 2(R2) To check = 0 we first observe

h( + ) i = h ( + ) i
=

Z

R2
( ) ( + ) ( )

=

Z

R2
( ) [ ( + ) + ( + )]

=

Z

R2
( ) [ ( + )] = 0

Therefore = ( ) ( + ) = 0 as well.

Corollary 41.19. Suppose are smooth and D0( 0) is an eigenvector
for i.e. = for some C Then ( )

Proof. Since is an elliptic ordinary di erential operator and
( ) = 0 ( 0) it follows by Theorem 41.17 that ( 0)
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41.3 Elementary Sobolev Inequalities

Notation 41.20 Let
R

:= 1
| |
R

denote the average of over =

[ ]

Proposition 41.21. For 1( )

| ( )|
¯

¯

¯

¯

Z

¯

¯

¯

¯

+ k 0k 1( )

¯

¯

¯

¯

Z

¯

¯

¯

¯

+
p

| |
µ
Z

| 0( )|2
¶1 2

(| |) k k 1( )

where (| |) = max
µ

1

| |
p| |

¶

Proof. By the fundamental theorem of calculus for absolutely continuous
functions

( ) = ( ) +

Z

0( )

for any Integrating this equation on and then dividing by | | :=
implies

( ) =

Z

+

Z Z

0( )

and hence

| ( )|
¯

¯

¯

¯

Z

¯

¯

¯

¯

+

Z

¯

¯

¯

¯

Z

| 0( )|
¯

¯

¯

¯

¯

¯

¯

¯

Z

¯

¯

¯

¯

+

Z

| 0( )|
¯

¯

¯

¯

Z

¯

¯

¯

¯

+
p

| |
µ
Z

| 0( )|2
¶1 2

1
p| |

µ
Z

| |2
¶1 2

+
p

| |
µ
Z

| 0( )|2
¶1 2

Notation 41.22 For the remainder of this section, suppose = 1 ( 0)+
is an elliptic ordinary di erential operator on = [ ] 2( (0 ))

is a positive weight and

( ) :=

Z

( ) ( ) ( )

We will also take ( ) = 2
0 ( ) so that we are imposing Dirichlet boundary

conditions on Finally let

868 41 Elliptic Ordinary Di erential Operators

E( ) :=

Z

[ 0 0 + ] for 1( )

Lemma 41.23. For ( )

( ) = E( ) = ( ) (41.25)

Moreover
E( ) 0 k 0k22 + 0 k k22 for all 1( )

where 0 := min and 0 = min If 0 R with 0 + 0 0 then

k k2 1( )

h

E( ) + 0 k k22
i

(41.26)

where = [min( 0 0 + 0)]
1

Proof. Eq. (41.25) is a simple consequence of integration by parts. By
elementary estimates

E( ) 0 k 0k22 + 0 k k22
and

E( ) + 0 k k22 0 k 0k22 + ( 0 + 0) k k22 min( 0 0 + 0) k k2 1( )

which proves Eq. (41.26).

Corollary 41.24. Suppose 0 + 0 0 then Nul( + 0) ( ) = 0 and
hence

( + 0) :
2
0 ( )

2( )

is invertible and the resolvent ( + 0)
1 has a continuous integral kernel

( ) i.e.

( + 0)
1
( ) =

Z

( ) ( )

Moreover if we define ( ) inductively by

( ) :=
©

( 1) : 1 ( )
ª

we have ( ) = 2
0 ( )

Proof. By Lemma 41.23, for all ( )

k k2 1( )

³

( ) + 0 k k22
´

= ((( + 0) ))

so that if ( + 0) = 0 then k k2 1( ) = 0 and hence = 0 The remaining
assertions except for ( ) = 0 ( ) now follow directly from Theorem 41.11
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applied with replaced by + 0 Finally if ( ) then ( + 0) =
+ 0

2( ) and therefore

= ( + 0)
1 ( + 0 )

2
0 ( )

Now suppose we have shown, ( ) = 2
0 ( ) and

¡

+1
¢

then

( + 0) = + 0 ( ) + ( +1) ( ) = 2
0 ( )

and so by Theorem 41.11, ( + 0)
1 2

0 ( )
2 +2
0 ( )

Corollary 41.25. There exists an orthonormal basis { } =0 for
2( )

of eigenfunctions of with eigenvalues R such that 0 0 1

2 .

Proof. Let 0 0 and let := ( + 0)
1
: 2( ) 2

0 ( ) = ( )
2( ) From the theory of compact operators to be developed later, is a
compact symmetric positive definite operator on 2( ) and hence there exists
an orthonormal basis { } =0 for

2( ) of eigenfunctions of with
eigenvalues 0 such that 0 1 2 0 3 Since

= = ( + 0)
1

it follows that ( + 0) = for all and therefore = with
= ( 1 0) Finally since is a second order ordinary di erential

equation there can be at most one linearly independent eigenvector for a given
eigenvalue and hence + 1 for all

Example 41.26. Let = [0 ] = 1 and = 2 on 2
0 ( ) Then =

implies 00 + = 0 Since is positive, we need only consider the case

where 0 in which case ( ) = cos
³ ´

+ sin
³ ´

The boundary

conditions for imply = 0 and 0 = sin
³ ´

i.e. N+ Therefore in

this example

( ) =

r

2
sin ( ) with = 2

The collection of functions { } =1 is an orthonormal basis for
2( )

Theorem 41.27. Let = [ ] and 2( (0 )) 2( ) and be
defined by

=
1

( 0) +

3 In fact is “Hilbert Schmidt” which then implies

X

=0

2
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and for R let

:=
©

2
0 ( ) : = for some

ª

Then there are constants 1 2 0 such that

dim( ) 1 + 2 (41.27)

Proof. For R let :=
©

2
0 ( ) : =

ª

By Corollary 41.24,
= {0} if 0 and since ( ) = ( ) for all 2

0 ( ) it follows
that for all 6= Indeed, if and then

( ) ( ) = ( ) ( ) = 0

Thus it follow that any finite dimensional subspace has an orthonor-
mal basis (relative to (· ·) — inner product) of eigenvectors { } =1 of
say = Let =

P

=1 where R By Proposition 41.21
and Lemma 41.23,

k k2 k k2 1( ) (( + 0) ) =

Ã

X

=1

( + 0)

!

(where is a constant varying from place to place but independent of ) and
hence for any

¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

2

k k2 ( + 0)
X

=1

| |2

Now choose = ( ) in this equation to find
¯

¯

¯

¯

¯

X

=1

| ( )|2
¯

¯

¯

¯

¯

2

( + 0)
X

=1

| ( )|2

or equivalently that
X

=1

| ( )|2 ( + 0)

Multiplying this equation by and then integrating shows

dim( ) = =
X

=1

( ) ( + 0)

Z

= 0 ( + 0)

Since is arbitrary, it follows that

dim( ) 0 ( + 0)
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Remarks 41.28 Notice that for all R dim( ) 1 because if
then by uniqueness of solutions to ODE, = [ 0( ) 0( )] Let { } =1
2
0 ( ) ( ) be the eigenvectors of ordered so that the corresponding

eigenvalues are increasing. With this ordering we have = dim( ) 1 +

2 and therefore,
1

1 ( 2) (41.28)

The estimates in Eqs. (41.27) and (41.28) are not particularly good as Exam-
ple 41.26 illustrates.

41.4 Associated Heat and Wave Equations

Lemma 41.29. is a closed operator, i.e. if ( ) and and
in 2 then ( ) and = In particular if ( ) and

P

=1 and
P

=1 exists in 2 then
P

=1 ( ) and

X

=1

=
X

=1

Proof. Let 0 + 0 0 and = ( + 0)
1 Then by assumption

( + 0) + 0 and so

= ( + 0) ( + 0 ) as

showing = ( + 0) = ( ) and

( + 0) = ( + 0) ( + 0 ) = + 0

and hence = as desired. The assertions about the sums follow by applying
the sequence results to =

P

=1

Theorem 41.30. Given 2 let

( ) = =
X

=0

( ) (41.29)

Then for 0 ( ) is smooth in ( ) and solves the heat equation

( ) = ( ) ( ) = 0 for (41.30)

and = 2 lim
0
( ) (41.31)

Moreover, ( ) =
R

( ) ( ) ( ) where

( ) :=
X

=0

( ) ( ) (41.32)

is a smooth function in 0 and The function is called the
Diurichlet Heat Kernel for
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Proof. (Sketch.) For any 0 and N sup
¡ ¢

and so
by Lemma 41.29, for 0 ( )

¡ ¢

= 2
0 ( )

4 (Corollary 41.24) and

( ) =
X

=0

( )

Also we have ( )( ) exists in 2 for all N and

( )( ) = ( 1)
X

=0

( ) +

By Sobolev inequalities and elliptic estimates such as Proposition 41.21 and
Lemma 41.23, one concludes that ((0 ) 0 ( )) for all and then
that ((0 ) × R) Eq. (41.30) is now relatively easy to prove and
Eq. (41.31) follows from the following computation

k ( )k22 =
X

=1

|( )|2 ¯¯1 ¯

¯

2

which goes to 0 as 0 by the D.C.T. for sums.
Finally from Eq. (41.29)

( ) =
X

=0

Z

( ) ( ) ( ) ( )

=

Z

X

=0

( ) ( ) ( ) ( )

where the interchange of the sum and the integral is permissible since

Z

X

=0

| ( ) ( ) ( )| ( )
Z

X

=0

( 0 + )
2 | ( )| ( )

since
P

=0 ( 0 + )2 because grows linearly in Moreover
one similarly shows

µ ¶

2 1 2 1 ( ) =
X

=0

( ) 2 1 ( ) 2 1 ( )

where the above operations are permissible since

4 Basically, if = 2( ) then = 2
0 ( )
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°

°

°

(2 1)
°

°

°
k k 2

0 ( )

°

°

°
( + 0)

°

°

°

2
= ( + 0)

and therefore

X

=0

¯

¯

¯
( ) 2 1 ( ) 2 1 ( )

¯

¯

¯

X

=0

| | ( + 0)
+

Again we use grows linearly with From this one may conclude that
( ) is smooth for 0 and (We will do this in more detail when

we work out the higher dimensional analogue.)

Remark 41.31 (Wave Equation). Suppose ( ) then

|( )| =
¯

¯

¯

¯

1
( )

¯

¯

¯

¯

=

¯

¯

¯

¯

1
( )

¯

¯

¯

¯

1

| |
°

°

°

°

2

and therefore

cos
³ ´

:=
X

=0

cos
³

p

´

( )

will be convergent in 2 but moreover

cos
³ ´

=
X

=0

cos
³

p

´

( )

=
X

=0

cos
³

p

´

( )

will also be convergent. Therefore if we let

( ) = cos
³ ´

+
sin
³ ´

where ( ) for all Then we will get a solution to the wave equation

( ) + ( ) = 0 with (0) = and ˙ (0) =

More on all of this later.

41.5 Extensions to Other Boundary Conditions

In this section, we will assume 2( (0 ))

= 1( 0)0 + 0 + (41.33)

is an elliptic ODE on 2( ) with smooth coe cients and

( ) = ( ) =

Z

( ) ( ) ( ) (41.34)
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Theorem 41.32. For 2( ) let

= 1( 0)0 0 +
£

1( )0
¤

(41.35)

Then for 2( )

( ) = ( ) + B( )| (41.36)

where

B( ) =

½

( 0 ) · ( 0 + )

¾

(41.37)

Proof. This is an exercise in integration by parts,

( ) =

Z

³

( 0)0 + 0 +
´

=

Z

¡ 0 0 ( )0 +
¢

+ [ 0 ] |

=

Z

³

( 0)0 ( )
0
+

´

+ [ + 0 0 ] |
=

Z

³

1 ( 0)0 1 ( )0 +
´

+

· µ

+ 0 0
¶¸

|

= ( ) +

·

( 0 ) · ( 0 + )

¸

|

Notation 41.33 Given ( ) : R2 \ {0} and 2( ) let

= 0 + = ( ) · ( 0 ) on

and

= 0 +
µ

+

¶

= 0 + ˜ on

where ˜ :=
¡

+
¢

Remarks 41.34 The function ( ˜) : R2 also takes values in R2 \{0}
because ( ˜) = 0 i ( ) = 0 Furthermore if = 0 then ˜ =

Proposition 41.35. Let and be as defined in Notation 41.33 and define

( ) =
©

2( ) : = 0 on
ª

( ) =
©

2( ) : = 0 on
ª
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Then 2( ) satisfies

( ) = ( ) for all ( ) (41.38)

i ( ) (This result will be substantially improved on in Theorem 41.41
below.)

Proof. We have to check that B( ) appearing in Eq. (41.36) is 0 (Ac-
tually we must check that B( )| = 0 which we might arrange by using
something like “periodic boundary conditions.” I am not considering this type
of condition at the moment. Since may be chosen to be zero near or we
must require B( ) = 0 on ) Now B( ) = 0 i

( 0 ) ·
µ

0 +
¶

= 0 (41.39)

which happens i ( 0 ) is parallel to
¡ 0 +

¢

The boundary condition
= 0 may be rewritten as saying ( 0 ) · ( ) = 0 or equivalently that

( 0 ) is parallel to ( ) on Therefore the condition in Eq. (41.39) is
equivalent to ( ) is parallel to

¡ 0 +
¢

or equivalently that

0 = ( ) ·
µ

0 +
¶

=

Corollary 41.36. The formulas for and agree i = 0 in which case

= 1 ( 0) +

= ( ) = ( ) and

( ) = ( ) for all ( ) (41.40)

(In fact is a “self-adjoint operator,” as we will see later by showing
( + 0)

1 exists for 0 su ciently large. Eq. (41.40) then may be used to
deduce ( + 0)

1 is a bounded self-adjoint operator with a symmetric Green’s
functions )

41.5.1 Dirichlet Forms Associated to (L,D(L))

For the rest of this section let 1 2 0
2( ) with 0 and 0 on

and for 1( ) let

E( ) :=

Z

( 0 0 + 1
0 + 2

0 + 0 ) and (41.41)

k k 1( ) :=
³

k 0k2 + k k2
´1 2

where k k2 = ( ) as defined in Eq. (41.34).
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Lemma 41.37 (A Coercive inequality for E). There is a constant
such that

|E( )| k k 1( ) k k 1( ) for
1( ) (41.42)

Let 0 = min ¯= min 0 and := max | 1 + 2| then for 1( )

E( )
0

2
k 0k2 +

µ

¯
2

2 0

¶

k k2 (41.43)

Proof. Let = max = max | | and 0 := max | 0| then

|E( )|
Z

( | 0| | 0|+ | 1| | | | 0|+ | 2| | 0| | |+ | 0| | | | |)
k 0k k 0k+ 1 k k k 0k+ 2 k 0k k k+ 0 k k k k
³

k 0k2 + k k2
´1 2 ³

k 0k2 + k k2
´1 2

Let 0 = min ¯= min and := max | 1 + 2| then for any 0

E( ) =

Z

³

| 0|2 + ( 1 + 2)
0 + 0 | |2

´

0 k 0k2 + ¯k k2
Z

| | | 0|

0 k 0k2 + ¯k k2
2

³

k 0k2 + 1 k k2
´

=

µ

0
2

¶

k 0k2 +
µ

¯
2

1

¶

k k2

Taking = 0 in this equation proves Eq. (41.43).

Theorem 41.38. Let

= ( 2 1) := 0
1 ( 1)

0 (41.44)

= 1 ( 0)0 + 0 + and

= ( 0 + 1 ) |

Then for 2( ) and 1( )

E( ) = ( ) + [( ) ]

and for 1( ) and 2( )

E( ) = ( ) + [( ) ]

Here (as in Eq. (41.35)
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= 1 ( 0)0 1 [ ]
0
+

and (as in Notation 41.33)

= 0 +
µ

1 +

¶

= 0 + 2

Proof. Let 2( ) and 1( ) and integrating Eq. (41.41) by parts
to find

E( ) =

Z

³

1 ( 0)0 1 ( 1 )
0 + 2

0 + 0

´

+ [ 0 + 1 ]

= ( ) + [ · ] (41.45)

where

= 1 ( 0)0 1 ( 1 )
0 + 2

0 + 0

= 1 ( 0)0 + ( 2 1)
0 +
£

0
1 ( 1)

0¤

= 1 ( 0)0 + 0 +

and
= 0 + 1

Similarly

E( ) =

Z

³

1 ( 0)0 + 1
0 1 ( 2 )

0
+ 0

´

+ [( 0 + 2 )]

= (
†
) +

£ † · ¤

where
† = 1 ( 0)0 + 1

0 1 ( 2 )
0
+ 0

= 1 ( 0)0 + ( 1 2)
0 +
£

0
1 ( 2)

0¤

= 1 ( 0)0 0 +
h

+ 1 ( ( 1 2))
1
i

= 1 ( 0)0 0 +
£

1 ( )
0¤

=

and
† = ( 0 + 2 ) =

Remark 41.39. As a consequence of Theorem 41.38, the mapping

( 1 2 0)

·

( )
E( ) =

R

( 0 0 + 1
0 + 2

0 + 0 )

¸

is highly non-injective. In fact E depends only on = 2 1 and :=

0
1 ( 1)

0 on and 1 on
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Corollary 41.40. As above let ( ) : R2 \ {0} and let
( ) =

©

2( ) : = 0 + = 0 on
ª

and

= 1 ( 0)0 + 0 +

Given 0 0 su ciently large, ( + 0) : ( ) 2( ) and ( + 0) :
( ) 2( ) are invertible and there is a continuous Green’s function
( ) such that

( + 0)
1 ( ) =

Z

( ) ( )

Proof. Let us normalize so that = whenever 6= 0 The boundary
term in Eq. (41.45) will be zero whenever

0 + 1 = 0 when 6= 0 on
This suggests that we define a subspace of 1( ) by

:=
©

1( ) : = 0 on where = 0 on
ª

Hence is either 1
0 ( )

1( )
©

1( ) : ( ) = 0
ª

or
©

1( ) : ( ) = 0
ª

Now choose a function 1
2( ) such that 1 = on then set 2 := + 1

and 0 = + 1 ( 1)
0 then

( ) =
©

2( ) : = 0 + 1 = 0 on
ª

and
( ) = E( ) for all ( ) and

Using this observation, it follows from Eq. (41.43) of Lemma 41.37, for 0

su ciently large and any ( ) that

(( + 0) ) = E( ) + 0( )

0

2
k 0k2 +

µ

¯
2

2 0
+ 0

¶

k k2 0

2
k k2 1( )

As usual this equation shows Nul( + 0) = {0} Similarly on shows

( ) = E( ) for all ( ) and

and working as above we conclude that Nul( + 0) = {0} The remaining
assertions are now proved as in the proof of Corollary 41.24.
With this result in hand we may now improve on Proposition 41.35.

Theorem 41.41. Let ( ) and ( ) be as in Proposition
41.35 and 2( ) Then there exists 2( ) such that

( ) = ( ) for all ( ) (41.46)

i ( ) and in which case =
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Proof. Choose 0 0 so that 0 := ( + 0 ) : ( ) 2( ) is invert-
ible. Then Eq. (41.46) is equivalent to

( 0 ) = ( + 0 ) for all ( ) (41.47)

Taking = 1
0 with 2( ) in this equation implies

( ) = ( 1
0 + 0 ) = (

¡

1
0

¢

( + 0 )) for all 2( )

which shows
=
¡

1
0

¢

( + 0 ) (41.48)

Since ( 0 ) = ( 0 ) for all ( ) and ( ) by replacing by
1

0 and by ( 0)
1 in this equation we learn

³

( 0)
1
´

= ( 1
0 ) for all 2( )

From this equation it follows that ( 0)
1
=
¡

1
0

¢

and hence from Eq.
(41.48) it follows that ( 0) = ( )
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Constant Coe cient Equations
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Convolutions, Test Functions and Partitions of
Unity

42.1 Convolution and Young’s Inequalities

Letting denote the “delta—function” at we wish to define a product ( )
on functions on R such that = + Now formally any function on
R is of the form

=

Z

R
( )

so we should have

=

Z

R ×R
( ) ( ) =

Z

R ×R
( ) ( ) +

=

Z

R ×R
( ) ( )

=

Z

R

·
Z

R
( ) ( )

¸

which suggests we make the following definition.

Definition 42.1. Let : R C be measurable functions. We define

( ) =

Z

R
( ) ( )

whenever the integral is defined, i.e. either ( ·) (·) 1(R ) or (
·) (·) 0 Notice that the condition that ( ·) (·) 1(R ) is equivalent
to writing | | | | ( )
Notation 42.2 Given a multi-index Z+ let | | = 1 + · · ·+

:=
Y

=1

and =

µ ¶

:=
Y

=1

µ ¶
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Remark 42.3 (The Significance of Convolution). Suppose that =
P

| |
is a constant coe cient di erential operator and suppose that we can solve
(uniquely) the equation = in the form

( ) = ( ) :=

Z

R
( ) ( )

where ( ) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the inverse
operation to di erentiation.) Since = for all R (this is another
way to characterize constant coe cient di erential operators) and 1 =
we should have = Writing out this equation then says
Z

R
( ) ( ) = ( ) ( ) = ( ) = ( ) ( )

=

Z

R
( ) ( ) =

Z

R
( + ) ( )

Since is arbitrary we conclude that ( ) = ( + ) Taking = 0
then gives

( ) = ( 0) =: ( )

We thus find that = Hence we expect the convolution operation to
appear naturally when solving constant coe cient partial di erential equa-
tions. More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality
for integrals.

Proposition 42.4. Suppose [1 ] 1 and then ( )
exists for almost every and

k k k k1 k k

For R and : R C let : R C be defined by ( ) =
( )

Proposition 42.5. Suppose that [1 ) then : is an isomet-
ric isomorphism and for R is continuous.

Proof. The assertion that : is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that

= For the continuity assertion, observe that

k k = k ( )k = k k

from which it follows that it is enough to show in as 0 R
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When (R ) uniformly and since the := | | 1supp( )
is compact, it follows by the dominated convergence theorem that in
as 0 R For general and (R )

k k k k + k k + k k
= k k + 2 k k

and thus

lim sup
0
k k lim sup

0
k k + 2 k k = 2 k k

Because (R ) is dense in the term k k may be made as small as
we please.

Definition 42.6. Suppose that ( ) is a topological space and is a measure
on B = ( ) For a measurable function : C we define the essential
support of by

supp ( ) = { : ({ : ( ) 6= 0}) 0 3 3 } (42.1)

Lemma 42.7. Suppose ( ) is second countable and : C is a mea-
surable function and is a measure on B Then := \ supp ( ) may
be described as the largest open set such that 1 ( ) = 0 for — a.e.
Equivalently put, := supp ( ) is the smallest closed subset of such that
= 1 a.e.

Proof. To verify that the two descriptions of supp ( ) are equivalent,
suppose supp ( ) is defined as in Eq. (42.1) and := \ supp ( ) Then

=

½

: ({ : ( ) 6= 0}) = 0
for some neighborhood of

¾

= { : ( 1 6= 0) = 0}
= { : 1 = 0 for — a.e.}

So to finish the argument it su ces to show ( 1 6= 0) = 0 To to this let
U be a countable base for and set

U := { U : 1 = 0 a.e.}
Then it is easily seen that = U and since U is countable ( 1 6= 0)
P

U ( 1 6= 0) = 0
Lemma 42.8. Suppose : R C are measurable functions and assume
that is a point in R such that | | | | ( ) and | | (| | | |) ( )
then

1. ( ) = ( )

886 42 Convolutions, Test Functions and Partitions of Unity

2. ( )( ) = ( ) ( )
3. If R and (| | | |)( ) = | | | | ( ) then

( )( ) = ( ) = ( )

4. If supp ( )+supp ( ) then ( ) = 0 and in particular, supp (
) supp ( ) + supp ( ) where in defining supp ( ) we will use the
convention that “ ( ) 6= 0” when | | | | ( ) =
Proof. For item 1.,

| | | | ( ) =
Z

R
| | ( ) | | ( ) =

Z

R
| | ( ) | | ( ) = | | | | ( )

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation Similar computations prove all
of the remaining assertions of the first three items of the lemma.
Item 4. Since ( ) = ˜ ˜( ) if = ˜and = ˜ a.e. we may, by replacing
by 1supp ( ) and by 1supp ( ) if necessary, assume that { 6= 0}

supp ( ) and { 6= 0} supp ( ) So if (supp ( ) + supp ( )) then
({ 6= 0}+ { 6= 0}) and for all R either { 6= 0} or

{ 6= 0} That is to say either { = 0} or { = 0} and hence
( ) ( ) = 0 for all and therefore ( ) = 0 This shows that = 0

on R \
³

supp ( ) + supp ( )
´

and therefore

R \
³

supp ( ) + supp ( )
´

R \ supp ( )

i.e. supp ( ) supp ( ) + supp ( )

Remark 42.9. Let be closed sets of R it is not necessarily true that
+ is still closed. For example, take

= {( ) : 0 and 1 } and = {( ) : 0 and 1 | |}
then every point of + has a positive - component and hence is not zero.
On the other hand, for 0 we have ( 1 )+( 1 ) = (0 2 ) +
for all and hence 0 + showing + is not closed. Nevertheless if
one of the sets or is compact, then + is closed again. Indeed, if is
compact and = + + and R then by passing to a
subsequence if necessary we may assume lim = exists. In this
case

lim = lim ( ) =

exists as well, showing = + +

Proposition 42.10. Suppose that [1 ] and and are conjugate
exponents, and then (R ) k k k k k k
and if (1 ) then 0(R )
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Proof. The existence of ( ) and the estimate | | ( ) k k k k for
all R is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows k k k k k k
By relabeling and if necessary we may assume that [1 ) Since

k ( ) k = k k
k k k k 0 as 0

it follows that is uniformly continuous. Finally if (1 ) we learn
from Lemma 42.8 and what we have just proved that (R ) where

= 1| | and = 1| | Moreover,

k k k k + k k
k k k k + k k k k
k k k k + k k k k 0 as

showing 0(R )

Theorem 42.11 (Young’s Inequality). Let [1 ] satisfy

1
+
1
= 1 +

1
(42.2)

If and then | | | | ( ) for — a.e. and

k k k k k k (42.3)

In particular 1 is closed under convolution. (The space ( 1 ) is an example
of a “Banach algebra” without unit.)

Remark 42.12. Before going to the formal proof, let us first understand Eq.
(42.2) by the following scaling argument. For 0 let ( ) := ( ) then
after a few simple change of variables we find

k k = 1 k k and ( ) =

Therefore if Eq. (42.3) holds for some [1 ] we would also have

k k = 1 k( ) k 1 k k k k
= (1+1 1 1 ) k k k k

for all 0 This is only possible if Eq. (42.2) holds.

Proof. Let [0 1] and 1 2 [0 ] satisfy 1
1 + 1

2 + 1 = 1
Then by Hölder’s inequality,
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| ( )| =
¯

¯

¯

¯

Z

( ) ( )

¯

¯

¯

¯

Z

| ( )|(1 ) | ( )|(1 ) | ( )| | ( )|
µ
Z

| ( )|(1 ) | ( )|(1 )

¶1 µ
Z

| ( )| 1

¶1 1

×
µ
Z

| ( )| 2

¶1 2

=

µ
Z

| ( )|(1 ) | ( )|(1 )

¶1

k k
1
k k

2

Taking the th power of this equation and integrating on gives

k k
Z
µ
Z

| ( )|(1 ) | ( )|(1 )

¶

· k k
1
k k

2

= k k(1 )
(1 ) k k(1 )

(1 ) k k 1
k k

2
(42.4)

Let us now suppose, (1 ) = 1 and (1 ) = 2 in which case Eq.
(42.4) becomes,

k k k k
1
k k

2

which is Eq. (42.3) with

:= (1 ) = 1 and := (1 ) = 2 (42.5)

So to finish the proof, it su ces to show and are arbitrary indices in [1 ]
satisfying 1 + 1 = 1 + 1

If 1 2 satisfy the relations above, then

=
+ 1

and =
+ 2

and
1
+
1
=
1

1

+ 1
+
1

2

+ 2
=
1

1
+
1

2
+
2
= 1 +

1

Conversely, if satisfy Eq. (42.2), then let and satisfy = (1 )
and = (1 ) i.e.

:= = 1 1 and = = 1 1

From Eq. (42.2), = (1 1) 0 and = (1 1 ) 0 so that [0 1]

We then define 1 := and 2 := then

1

1
+
1

2
+
1
=

1
+

1
+
1
=
1 1

+
1 1

+
1
= 1

as desired.
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Theorem 42.13 (Approximate — functions). Let [1 ]
1(R ) :=

R

R ( ) and for 0 let ( ) = ( ) Then

1. If with then in as 0
2. If (R ) and is uniformly continuous then k k 0 as

0
3. If and is continuous on R then uniformly
on compact subsets of as 0

See Theorem 8.15 if Folland for a statement about almost everywhere con-
vergence.

Proof. Making the change of variables = implies

( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

so that

( ) ( ) =

Z

R
[ ( ) ( )] ( )

=

Z

R
[ ( ) ( )] ( ) (42.6)

Hence by Minkowski’s inequality for integrals, Proposition 42.5 and the dom-
inated convergence theorem,

k k
Z

R
k k | ( )| 0 as 0

Item 2. is proved similarly. Indeed, form Eq. (42.6)

k k
Z

R
k k | ( )|

which again tends to zero by the dominated convergence theorem because
lim 0 k k = 0 uniformly in by the uniform continuity of
Item 3. Let = (0 ) be a large ball in R and @@ then
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sup | ( ) ( )|
¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

¯

Z

| ( )| · sup | ( ) ( )|

+ 2 k k
Z

| ( )|

k k1 · sup | ( ) ( )|

+ 2 k k
Z

| |
| ( )|

so that using the uniform continuity of on compact subsets of

lim sup
0
sup | ( ) ( )| 2 k k

Z

| |
| ( )| 0 as

Remark 42.14 (Another Proof of part of Theorem 42.13). By definition of the
convolution and Hölder’s or Jensen’s inequality we have

Z

R
| ( )|

Z

R

µ
Z

R
( ( ))| ( )|

¶

Z

R ×R
| ( )| ( ) = k k

Therefore k k k k which implies If (R ) by
di erentiating under the integral (see Theorem 42.18 below) it is easily seen
that Finally for (R )

k k k k + k k + k k
k k + 2k k

and hence
lim sup

0
k k 2k k

which may be made arbitrarily small since (R ) is dense in (R )

Exercise 42.15. Let

( ) =

½

1 if 0
0 if 0

Show (R [0 1])
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Lemma 42.16. There exists (R [0 )) such that (0) 0
supp( ) ¯(0 1) and

R

R ( ) = 1

Proof. Define ( ) = (1 ) ( + 1) where is as in Exercise 42.15.
Then (R [0 1]) supp( ) [ 1 1] and (0) = 2 0 Define =
R

R (| |2) Then ( ) = 1 (| |2) is the desired function.
Definition 42.17. Let R be an open set. A Radon measure on B is
a measure which is finite on compact subsets of For a Radon measure
we let 1 ( ) consists of those measurable functions : C such that

R | | for all compact subsets

Theorem 42.18 (Di erentiation under integral sign). Let R and
: R × R be given. Assume:

1. ( ) is di erentiable for all

2.
¯

¯

¯
( )

¯

¯

¯
( ) for some such that

R | ( )|
3.
R | ( )|
Then

R

( ) =
R

( ) and moreover if ( ) is

continuous then so is
R

( )

The reader asked to use Theorem 42.18 to verify the following proposition.

Proposition 42.19. Suppose that 1 (R ) and 1(R ) then
1(R ) and ( ) = Moreover if (R ) then
(R )

Corollary 42.20 ( — Uryhson’s Lemma). Given @@ R
there exists (R [0 1]) such that supp( ) and = 1 on

Proof. Let be as in Lemma 42.16, ( ) = ( ) be as in Theorem
42.13, be the standard metric on R and = ( ) Since is compact
and is closed, 0 Let = { R : ( ) } and = 3 1

3

then
supp( ) supp( 3) + 3 2̄ 3

Since 2̄ 3 is closed and bounded, ( ) and for

( ) =

Z

R
1 ( ) 3 · 3( ) =

Z

R
3( ) = 1

The proof will be finished after the reader (easily) verifies 0 1
Here is an application of this corollary whose proof is left to the reader.
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Lemma 42.21 (Integration by Parts). Suppose and are measur-
able functions on R such that ( 1 1 +1 ) and
( 1 1 +1 ) are continuously di erentiable functions on R
for each fixed = ( 1 ) R Moreover assume · · and

· are in 1(R ) Then
Z

R
· =

Z

R
·

Exercise 42.22 (Integration by Parts). Suppose that ( ) R×R 1

( ) C and ( ) R×R 1 ( ) C are measurable functions
such that for each fixed R 1 ( ) and ( ) are continu-
ously di erentiable. Also assume · · and · are integrable relative
to Lebesgue measure on R×R 1 where ( ) := ( + )| =0 Show
Z

R×R 1

( ) · ( ) =

Z

R×R 1

( ) · ( ) (42.7)

(Note: this result and Fubini’s theorem proves Lemma 42.21.)
Hints: Let (R) be a function which is 1 in a neighborhood of

0 R and set ( ) = ( ) First verify Eq. (42.7) with ( ) replaced by
( ) ( ) by doing the — integral first. Then use the dominated conver-

gence theorem to prove Eq. (42.7) by passing to the limit, 0

Solution 42.23 (42.22). By assumption, [ ( ) ( )] · ( ) and
( ) ( ) ( ) are in 1(R ) so we may use Fubini’s theorem and

follow the hint to learn
Z

R 1

Z

R
[ ( ) ( )] · ( )

=

Z

R 1

Z

R
[ ( ) ( )] · ( ) (42.8)

wherein we have done and integration by parts. (There are no boundary terms
because is compactly supported.) Now

[ ( ) ( )] = ( ) · ( ) + ( ) ( )

= 0( ) ( ) + ( ) ( )

and by the dominated convergence theorem and the given assumptions we
have, as 0 that

¯

¯

¯

¯

Z

R

0( ) ( ) · ( )

¯

¯

¯

¯

Z

R
| ( ) · ( )| 0

Z

R
( ) ( ) · ( )

Z

R
( ) · ( ) and

Z

R
( ) ( ) · ( )

Z

R
( ) · ( )



42.1 Convolution and Young’s Inequalities 893

where = sup R | 0( )| Combining the last three equations with Eq. (42.8)
shows

Z

R×R 1

( ) · ( ) =

Z

R×R 1

( ) · ( )

as desired.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 42.24. For 1(R ) let

(̂ ) := (2 ) 2

Z

R
( ) · ( )

be the Fourier transform of Then ˆ
0(R ) and

°

°

°

ˆ
°

°

°
(2 ) 2 k k1

(The choice of the normalization factor, (2 ) 2 in ˆ is for later conve-
nience.)

Proof. The fact that ˆ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,

¯

¯

¯
(̂ )
¯

¯

¯

Z

| ( )| ( ) (2 ) 2 k k1

so it only remains to see that (̂ ) 0 as | |
First suppose that (R ) and let =

P

=1

2

2 be the Laplacian

on R Notice that · = · and · = | |2 · Using
Lemma 42.21 repeatedly,
Z

( ) · ( ) =

Z

( ) · ( ) = | |2
Z

( ) · ( )

= (2 ) 2 | |2 (̂ )

for any N Hence (2 ) 2
¯

¯

¯
(̂ )
¯

¯

¯
| | 2 °

°

°

°

1
0 as | | and

ˆ
0(R ) Suppose that 1( ) and (R ) is a sequence such

that lim k k1 = 0 then lim
°

°

°

ˆ ˆ
°

°

°
= 0 and hence Hence

ˆ
0(R ) because 0(R ) is complete.

Corollary 42.25. Let R be an open set and be a Radon measure on
B
1. Then ( ) is dense in ( ) for all 1
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2. If 1 ( ) satisfies
Z

= 0 for all ( ) (42.9)

then ( ) = 0 for — a.e.

Proof. Let ( ) be as in Lemma 42.16, be as in Theorem
42.13 and set := ( 1 ) Then by Proposition 42.19 ( ) and
by Lemma 42.8 there exists a compact set such that supp( )
for all su ciently small. By Theorem 42.13, uniformly on as 0

1. The dominated convergence theorem (with dominating function being
k k 1 ) shows in ( ) as 0 This proves Item 1. because
of the measure theoretic fact that ( ) is dense in ( )

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being k k | | 1 ) implies

0 = lim
0

Z

=

Z

lim
0

=

Z

Since this is true for all ( ) it follows by measure theoretic argu-
ments that = 0 a.e.

42.2 Smooth Partitions of Unity

Theorem 42.26. Let 1 0 R and
¡

=1

¢

Then there

exists ( ) such that =
P

If 0 one can choose 0

Proof. The proof will be split into two steps.

1. There exists @@ such that supp Indeed, for all supp
there exists an open neighborhood of such that for some
and is compact. Now { } supp covers := supp and hence

there exists a finite set such that . Let :=
©

: and
ª

Then each is compact, and

supp =
S

=1

2. By Corollary 42.20 there exists ( [0 1]) such that := 1 in
the neighborhood of Now define
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1 = 1

2 = ( 1) 2 = (1 1) 2

3 = ( 1 2) 3 = {(1 1) (1 1) 2} 3

= (1 1)(1 2) 3

...

= ( 1 2 · · · 1)

= (1 1)(1 2) (1 1)

By the above computations one finds that (a) 0 if 0 and (b)

1 2 · · · = (1 1)(1 2) (1 ) = 0

since either ( ) = 0 or supp = and 1 ( ) = 0 for some .

Corollary 42.27. Let 1 0 R and be a compact subset of =1

Then there exists ( [0 1]) such
P

=1 1 with
P

=1 = 1 on
a neighborhood of

Proof. By Corollary 42.20 there exists ( =1 [0 1]) such that
= 1 on a neighborhood of Now let { } =1 be the functions constructed

in Theorem 42.26.



43

Poisson and Laplace’s Equation

For the majority of this section we will assume R is a compact manifold
with 2 — boundary. Let us record a few consequences of the divergence
theorem in Proposition 22.30 in this context. If 2( ) 1( ) and
R |4 | then

Z

4 · =

Z

· +

Z

(43.1)

and if further
R {|4 |+ |4 |} then

Z

(4 4 ) =

Z
µ ¶

(43.2)

Lemma 43.1. Suppose 2( ) 1( ) = 0 on and = 0 on
Then 0 Similarly if = 0 on and = 0 on then is

constant on each connected component of

Proof. Letting = in Eq. (43.1) shows in either case that

0 =

Z

· +

Z

=

Z

| |2

This then implies = 0 on and hence is constant on the connected
component of If = 0 on these constants must all be zero.

Proposition 43.2 (Laplacian on radial functions). Suppose ( ) =
(| |) then

4 ( ) =
1
1

( 1 0( ))
¯

¯

¯

¯

=| |
= 00(| |) + ( 1)

| |
0(| |) (43.3)
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In particular (| |) = 0 implies ( 1 0( )) = 0 and hence 0( ) =
˜ 1 That is to say

( ) =

½

2 + if 6= 2
ln + if = 2

Proof. Since ( )( ) = 0(| |) | | = 0(| |)ˆ · where ˆ = | |
( ) = 0(| |)ˆ. Hence for 1(R )

Z

R
4 ( ) ( ) =

Z

R
( ) · ( )

=

Z

R

0( )ˆ · ( ˆ)

=

Z

1×[0 )

0( ) ( ) 1 ( )

=

Z

1×[0 )

( 1 0( )) ( ) ( )

=

Z

1×[0 )

1
1

( 1 0( )) ( ) 1 ( )

=

Z

R

1
1

( 1 0( ))
¯

¯

¯

¯

=| |
( )

Since this is valid for all 1(R ) Eq. (43.3) is valid. Alternatively, we
may simply compute directly as follows:

4 ( ) = · [ 0(| |)ˆ] = 0(| |) · ˆ + 0(| |) · ˆ
= 00(| |)ˆ · ˆ + 0(| |) · | |
= 00(| |) + 0(| |)

½

| | | |2 · ˆ
¾

= 00(| |) + ( 1)

| |
0(| |)

Notation 43.3 For 0 let

( ) := ( ) :=

½

1
2 if 6= 2

ln if = 2
(43.4)

where =

½ 1
( 2) ( 1) if 6= 2

1
2 if = 2

Also let

( ) = ( ) := (| |) =
½ 1
| | 2 if 6= 2
ln | | if = 2

(43.5)
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An important feature of is that

0( ) =
½

( 2) 1
1 if 6= 2

1 if = 2
=

1

( 1)

1
1

(43.6)

for all This then implies, for all that

( ) = [ (| |)] = 0(| |)ˆ = 1

( 1)

1

| | 1 ˆ =
1

( 1)

1

| |
(43.7)

One more piece of notation will be useful in the sequel.

Notation 43.4 (Averaging operator) Suppose is a finite measure on
some space we will define

Z

:=
1

( )

Z

For example if is a compact manifold with 2 — boundary in R then
Z

( ) =
1

( )

Z

( ) =
1

Vol( )

Z

( )

and
Z

=
1

( )

Z

( ) =
1

Area( )

Z

( )

Theorem 43.5. Let be a compact manifold with 2- boundary,
2( ) 1( ) with

R | ( )| Then for

( ) =

Z
µ

( ) ( ) ( )
( )

¶
Z

( )4 ( )

(43.8)

Proof. Let ( ) := ( ) and 0 be small so that ( ) and
let := \ ( ) see Figure 43.1 below.
Let us begin by observing

Z

| |

( ) =

Z

| |

1

| | 2
= ( 1)

Z

0

1
2

1

= ( 1)

Z

0

= ( 1)
2

2

when 6= 2 and for = 2 that
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Fig. 43.1. Removing the region where is singular from

Z

| |

( ) =

Z

| |

ln | | = ( 1)

Z

0

ln

= 2

·

1

2
2 ln

1

4
2

¸

0

= 2 [ln 1 2]

This shows 1 ( ) and hence that 1( ) and by dominated
convergence theorem,

Z

( ) 4 ( ) = lim
0

Z

( )4 ( )

Using Green’s identity (Eq. (43.2) and Proposition 43.2) and = 0 on
we find

Z

4 ( ) ( ) =

Z

4 ( ) ( ) +

Z
µ ¶

=

Z
µ ¶

+

Z

\

µ ¶

(43.9)

Working on the last term in Eq. (43.9) we have, for 6= 2



43 Poisson and Laplace’s Equation 901
Z

( )

( )
n
( ) =

Z

| |=

( + )
n
( + ) ( )

=

Z

| |=1

( + )
n
( + ) 1 ( )

=

Z

| |=1

1
2 n

( + ) 1 ( )

=

Z

| |
n
( + ) ( ) 0 as 0

Similarly when = 2
Z

( )

( )
n
( ) = ln

Z

| |=1
n
( + ) ( ) 0 as 0

Using Eq. (43.7) and ( ) = \( ) as in Figure 43.2 we find

Fig. 43.2. The outward normal to is the inward normal to ( )

n
( ) = ( ) · ( ) = 1

( 1)

1

| | ( ) ·
³

\( )
´

=
1

( 1)

1
1

(43.10)

and therefore
Z

\
n

( ) =
1

( 1)

1
1

Z

( )

( ) ( )

=

Z

| |=1

( + ) ( ) ( ) as 0
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by the dominated convergence theorem. So we may pass to the limit in Eq.
(43.9) to find

Z

( ) 4 ( ) =

Z
µ

( )
n n

¶

( ) ( )

which is equivalent to Eq. (43.8).
The following Corollary gives an easy but useful extension of Theorem

43.5It will be us

Corollary 43.6. Keeping the same notation as in Theorem 43.5. Further as-
sume that 2( ) 1( ) and = 0 and set ( ) := ( ) + ( )
Then we still have the representation formula

( ) =

Z
µ

( )
n
( ) ( )

( )

n

¶
Z

( )4 ( ) (43.11)

Proof. By Green’s identity (Proposition 22.30) with =

Z

4 =

Z

(4 4 ) =

Z
µ ¶

i.e.

0 =

Z

4 +

Z
µ ¶

(43.12)

Eq. (43.11) now follows by adding Eqs. (43.8) and (43.12).

Corollary 43.7. For all 2(R ),
Z

R
4 ( ) ( ) = (0) (43.13)

Proof. Let = (0 ) where is chosen so large that supp( )
then by Theorem 43.5,

(0) =

Z
µ

( ) ( ) ( )
( )
¶

Z

( )4 ( )

=

Z

( )4 ( )

Remark 43.8.We summarize (43.13) by saying 4 =
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Formally we expect for reasonable functions that

( ) = = =

Theorem 43.9. Suppose R 2( ) 1( ) and

( ) :=

Z

( ) ( ) = ( 1 ) ( )

then
4 = on

Proof. First assume that 2( ) in which case we may set := 1
2(R ) Therefore

( ) =

Z

R
( )

1

| | 2
=

Z

R
( )

1

| | 2

and so we may di erentiate under the integral to find

4 ( ) =

Z

R

4 ( )
1

| | 2
= ( )

where the last equality follows from Corollary 43.7.
For 2( ) 1( ) and 0 choose ( [0 1]) such that =

1 in a neighborhood of 0 and let := 1 Then = ( )+ ( 1 )
and so

= ( ) + ( 1 ) (43.14)

By what we have just proved

( ) ( ) = ( ) ( ) = ( ) for near 0 (43.15)

Since = 0 near 0 and

( 1 ) ( ) =

Z

( ) ( ) ( )

we may di erentiate past the integral to learn

( 1 ) ( ) =

Z

( ) ( ) ( ) = 0 (43.16)

for near 0 and this completes the proof. The combination of Eqs. (43.14
— 43.16) completes the proof.
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43.1 Harmonic and Subharmonic Functions

Definition 43.10 (HarmonicFunctions). Let R A function
2( ) is said to be harmonic (subharmonic) on if = 0 ( 0)

on

Because of the Cauchy Riemann equations, the real and imaginary parts
of holomorphic functions are harmonic. For example 2 = ( 2 2) + 2
implies ( 2 2) and are harmonic functions on the plane. Similarly,

= cos + sin and

ln( ) = ln +

implies
cos sin ln and ( )

are harmonic functions on their domains of definition.

Remark 43.11. If we can choose in Corollary 43.6 so that = 0 on
then Eq. (43.11) gives

( ) =

Z

( )4 ( )

Z

( )
(43.17)

which shows how to recover ( ) from on and on The next
theorem is a consequence of this remark.

Theorem 43.12 (Mean Value Property). If 4 = 0 on and ( )
then

( ) =
1

( ( ))

Z

( )

( ) ( ) =:

Z

( )

(43.18)

More generally if 0 on then

( )

Z

( )

(43.19)

Proof. For ( )

( ) = ( ) ( ) = (| |) ( )

where is defined as in Eq. (43.4). Then ( ) = 0 for ( ) and
( ) 0 for all ( ) because is decreasing as is seen from Eq. (43.6).

From Eq. (43.10) (using now that is the outward normal to ( ))

n
( + ) =

1

( 1) 1
for | | = 1
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and so according to Eq. (43.17) we have

( ) =
1

1 ( 1)

Z

( )

Z

( )

( )4 ( )

=

Z

( )

Z

( )

( )4 ( ) (43.20)

This completes the proof since ( ) 0 for all ( )

Remark 43.13 (Mean value theorem). Assuming ( ) and multiplying
Eq. (43.18) (Eq. (43.19)) by

( ( )) = ( 1) 1

and then integrating on 0 implies

( ) ( ( )) = (or )

Z

0

Z

( )

( ) ( )

=

Z

0

1

Z

1

( + ) ( ) =

Z

( )

Therefore if = 0 or 0 then

( ) =

Z

( )

or ( )

Z

( )

respectively (43.21)

for all ( )

Proposition 43.14 (Converse of the mean value property). If
( ) (or more generally measurable and locally bounded) and

( ) =

Z

( )

( ) ( ) (43.22)

for all and 0 such that ( ) then ( ) and 4 = 0
Similarly, if 2( ) and and

( )

Z

( )

( ) ( ) (43.23)

for all su ciently small, then ( ) 0

906 43 Poisson and Laplace’s Equation

Proof. First assume ( ) and Eq. (43.22) hold which implies

( ) =

Z

( + ) ( ) (43.24)

for all and su ciently small, where = 1 denotes the unit sphere
in R Let (R [0 )) such that (0) 0 and

1 =

Z

R

(| |2) = ( )

Z

0

( 2) 1

and for 0 let ( ) =
³

| |2
2

´

(R ) and ( ) = ( )

Then for any 0 and 0 su ciently small, is a well defined smooth
function near 0 Moreover for near 0 we have

( ) =

Z

R
( ) ( ) =

Z

0

1

Z

| |=1

( ) ( + ) ( )

=

Z

0

1

Z

| |=1

µ

2

2

¶

( + ) ( )

= ( ) ( )

Z

0

1

µ

2

2

¶

= ( )

which shows is smooth near 0

Now suppose that 2 and satisfies Eq. (43.23), and | |
with su ciently small so that

( ) :=

Z

( )

=

Z

1

( + ) ( )

is well defined. Clearly 2 ( ) is an even function of so 0(0) = 0
(0) = ( ) and ( ) (0) From these conditions it follows that 00(0) 0
for otherwise we would find from Taylor’s theorem that ( ) (0) for 0
| | On the other hand

0 00(0) =
Z

1

¡

2
¢

( ) ( )

=

Z

1

( ) ( ) ( )

= ( ) ( )

Z

1

2 ( ) =
1

( ) (43.25)
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wherein we have used the symmetry of on 1 to conclude
Z

1

( ) = 0 if 6=

and
Z

1

2 ( ) =
1X

=1

Z

1

2 ( )

=
1
Z

1

| |2 ( ) =
1

Alternatively, by the divergence theorem,
Z

1

( ) =

Z

1

· ( ) ( )

=
1

( 1)

Z

(0 1)

· ( )

=
1

( 1)
( (0 1)) =

1

This completes the proof since if satisfies (43.22) then is constant and it
follows from Eq. (43.25) that ( ) = 0
Second proof of the last statement. Now that we know is 2 we

have by Eq. (43.20) that
Z

( )

( )4 ( ) =

Z

( )

( ) 0

and since with as in Eq. (43.4),
Z

( )

( )4 ( ) =

Z

(0 )

( + )4 ( + )

=

Z

0

1

Z

( + )4 ( + )

=

Z

0

1 ( ( ) ( ))

Z

4 ( + )

= ( ) ( 1)

Z

0

1 ( ( ) ( ))

= ( ) ( 1)

½

2

2 2

¾

= 2 ( )
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where is a positive constant. From this it follows that ( ) 0
Third proof of the last statement. If 2( ) satisfies expand

( + ) in a Taylor series

( + ) = ( ) + ( ) · +
2

2
2 ( ) + ( 3)

and integrate on to find
Z

( )

=

Z

1

( + ) ( )

=

Z

1

·

( ) + ( ) · + 2 1

2
2 ( ) +

¸

( )

= ( ) +
1

2
2 ( ) + ( 2)

Thus if satisfies Eq. (43.22) Eq. (43.23) we conclude

( ) = ( ) +
1

2
2 ( ) + ( 2) or

( ) ( ) +
1

2
2 ( ) + ( 2)

from which we conclude ( ) = 0 or ( ) 0 respectively.
Fourth proof of the statement: If satisfies Eq. (43.22) then = 0

Since we already know is smooth, it is permissible to di erentiate Eq. (43.24)
in to learn,

0 =

Z

1

( + ) · ( ) =

Z

1

n
( + ) ( )

=
1

( 1) 1

Z

( )

· n =
1

( 1) 1

Z

( )

4

Dividing this equation by and letting 0 shows ( ) = 0

Corollary 43.15 (Smoothness of Harmonic Functions). If 2( )
and 4 = 0 then ( ) (Soon we will show is real analytic, see
Theorem 43.16 of Corollary 43.34 below.)

Theorem 43.16 (Bounds on Harmonic functions). Suppose is a Har-
monic function on R 0 is a multi-index with := | | and
0 dist( ) Then

| ( 0)| +
k k 1( ( 0 ))

dist( ) +
k k 1( ) (43.26)

where = (2 +1 )
( ) In particular one shows that is real analytic in
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Proof. Let ( ) be constructed as in the proof of Proposition 43.14 so
that ( ) = ( ) Therefore, ( ) = ( ) and hence

| ( 0)| k k 1( ( 0 ))k k

Now
( ) =

1
| | ( )( )

so that

| ( )| = 1
| |

¯

¯

¯
( )( )

¯

¯

¯

1
| |+ =

1
| |+

where the last identity is gotten by taking comparable to Putting this all
together then implies that

| ( 0)| 1
+| | k k k k 1( ( 0 ))

which is an inequality of the form in Eq. (43.26). To get the desired constant
we will have to work harder. This is done in Theorem 7. on p. 29 of the book.
The idea is to use is harmonic for all and therefore,

( 0) =

Z

( 0 )

=

Z

( 0 )

=
( 1)

Z

( 0 )

=
( 1)

Z

( 0 )

so that
| ( 0)|

°

°

°

°

( ( 0 ))

and for = 0 and ( 0 2) we have

| ( )|
Z

( 2)

| | 1

| (0 1)|
µ

2
¶

k k 1( ( 0 )

Using this and similar inequalities along with a tricky induction argument one
gets the desired constants. The details are in Theorem 7. p. 29 and Theorem
10 p.31 of the book. (See also Corollary 43.34 below for another proof of
analyticity of )

Corollary 43.17 (Liouville’s Theorem). Suppose 2 (R ) = 0
on R and | ( )| (1 + | | ) for all R Then is a polynomial of
degree at most
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Proof. We have seen there are constants | | such that

| ( 0)| | |k k 1( ( 0 ))
1
+| |

e| | k k ( ( 0 )) · 1
+| |

=
(1 + )

| | 0 as

when if | | Therefore := 0 for all | | and the the result follows
by Taylor’s Theorem with remainder,

( ) =
X

| |

( 0)( 0)

!

Corollary 43.18 (Compactness of Harmonic Functions). Suppose
R and 2( ) is a sequence of harmonic functions such that for each
compact set

:= sup

½
Z

| | : N
¾

Then there is a subsequence { } { } which converges, along with all of
its derivatives, uniformly on compact subsets of to a harmonic function

Proof. An application of Theorem 43.16 shows that for each compact set
sup | | ( ) and hence by the locally compact form of the

Arzela-Ascolli theorem, there is a subsequence { } { } which converges
uniformly on compact subsets of to a continuous function ( ) Passing
to the limit in the mean value theorem for harmonic functions along with the
converse to the mean value theorem, Proposition 43.14, shows is harmonic
on Since uniformly on compacts it follows for any @@
that

R | | 0 Another application of Theorem 43.16 then shows
uniformly on compacts.

In light of Proposition 43.14, we will extend the notion of subharmonicity
as follows.

Definition 43.19 (Subharmonic Functions). A function ( ) is said
to be subharmonic if for all and all 0 su ciently small,

( )

Z

( )

The reason for the name subharmonic should become apparent from Corollary
43.26 below.
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Remark 43.20. Suppose that ( ) are subharmonic functions then so
is + Indeed,

( ) + ( )

Z

( )

+

Z

( )

=

Z

( )

( + )

Theorem 43.21 (Harnack’s Inequality). Let be a precompact open and
connected subset of Then there exists = ( ) such that

sup inf (43.27)

for all non-negative harmonic functions, on

Proof. Let = 1
4dist( ) and (as in Figure 43.3) and | |

Fig. 43.3. A pre-compact region

then by the mean value equality in Eq. (43.21) of Remark 43.13,

( ) =

Z

( 2 )

( ) =
1

( (0 1))(2 )

Z

( 2 )

( )

1

( (0 1))(2 )

Z

( )

( ) =
1

2

Z

( )

( ) =
1

2
( )

see Figure 43.4. Therefore

( )
1

2
( ) for all with | | (43.28)

Since ¯ is compact there exists a finite cover S := { } =1 of ¯ consisting of
balls with of radius with centers ¯
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Fig. 43.4. Nested balls.

Claim: For all there exists a chain { } =1 S of distinct balls
such that 1 and +1 6= for all = 1 1
Indeed, by connectedness of there exists ([0 1] ) such that

(0) = while (1) = For sake of contradiction, suppose

:= sup { [0 1] : a chain as above 3 ( ) } 1

Since there are only finitely many possible chains (at most
P

=1
!

( )! ) there

must be a chain { } =1 S such that ( ) ¯ Let +1 S such that
+1 3 ( ) If +1 = with then { } =1 S is a chain such that
( ) Otherwise, since ( ) +1

¯ it follows that +1 6=
and { } +1

=1 S is a chain such that ( ) +1 In either case we will
have violated the definition of and hence we must conclude = 1 This
proves the claim, since again using the fact that there are only a finite number
of possible chains, there must be at least one chain for which (1)
To complete the proof, for any use a chain as in the above claim

to find a sequence of points { } =1 with 2 1 = = and
| +1 | for all Then by repeated use of Eq. (43.28) we may conclude

( ) (2 )2 ( )

Since are arbitrary, this equation implies Eq. (43.27) with := 24

Remark 43.22. It is not su cient to assume is sub-harmonic in Theorem
43.21. For example if 0 then ( ) = 2 + 1 is sub-harmonic on R
inf( 1 1) = 1 while sup( 1 1) = + 1 Since is arbitrary, this would
force =
Also it is important that is connected. Indeed, if = 1 2 with 1

and 2 being disjoint open sets, then let 1 on 1 and on 2 for
any 0 This function is harmonic on and hence for all 0
i.e. =
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Theorem 43.23 (Strong Maximum Principle). Let R be connected
and open and ( ) be a subharmonic function (see Definition 43.19). If
= sup ( ) is attained in then := (Notice that 2( ) and

= 0 then is harmonic and hence in particular sub-harmonic.)

Proof. Suppose there exists such that = ( ) If 0 is chosen
so that ( ) as in Figure 43.1 and ( ) for some ( )
then by the mean value inequality,

= ( )

Z

( )

( ) ( )

which is nonsense. Therefore := on ( ) and since (0 dist( ))
we concluded that := on ( ) provided ( ) Therefore
{ : ( ) = } is both open and relatively closed in and hence
{ : ( ) = } = because is connected.

Corollary 43.24. If is bounded open set ( ) is subharmonic, then

:= max ( ) = max
bd( )

( )

Again this corollary applies to ( ) 2( ) such that = 0

Proof. By Theorem 43.23, if is an interior maximum of then
= on the connected component of which contains By continuity,
is constant on ¯ and in particular takes on the value on bd( )

Corollary 43.25. Given (bd( )) ( ) there exists at most one
function 2( ) ( ) such that 4 = on and = on bd( )

Proof. If 2( ) ( ) is another such function then :=
2( ) ( ) satisfies = 0 in and = 0 on bd( ) Therefore applying

Corollary 43.24 to and implies

max ( ) = max
bd( )

( ) = 0 and min ( ) = min
bd( )

( ) = 0

Corollary 43.26. Suppose (bd( )) and 2( ) ( ) such that
4 = 0 on Then for any subharmonic function ( ¯) such
that on bd( )

Proof. The function is subharmonic and so is = by Remark
43.20. Since = 0 on bd( ) it follows by Corollary 43.24 that 0
on i.e. on

914 43 Poisson and Laplace’s Equation

43.2 Green’s Functions

Notation 43.27 Unless otherwise stated, for the rest of this section assume
R is a compact manifold with 2 — boundary.

For suppose there exists 2( ) 1( ) which solves

4 = 0 on with ( ) = ( ) for (43.29)

Hence if we define
( ) = ( ) ( ) (43.30)

then by the representation formula (Eq. (43.11) also see Remark 43.11) implies

( ) =

Z

( )4 ( )

Z

n
( ) ( ) ( ) (43.31)

for all 2( ) 1( )
Throughout the rest of this subsection we will make the following assump-

tion.

Assumption 2 (Solvability of Dirichlet Problem) We assume that for
each ( ) there exists = 2( ) 1( ) such that

= 0 on with = on

In this case we define ( ) as in Eq. (43.30). We will (almost) verify that
this assumption holds in Section 43.5 below. The full verification will come
later when we study Hilbert space methods.

Theorem 43.28. Let ( ) be given as in Eq (43.30). Then

1. ( ) is smooth on ( × )\4 where 4 = {( ) : }
2. ( ) = ( ) for all In particular the function ( ) :=

( ) is symmetric in and ( ) is a smooth mapping.
3. If is connected, then ( ) 0 for all ( ) ( × )\4
Proof. Let 0 be small and := \ ( ( ) ( )) as in Figure

43.5, then by Green’s theorem and the fact that ( ) = 0 if 6=

0 =

Z

4 ( ) ( )

=

Z
µ

n
( ) ( ) ( )

n
( )

¶

+

Z

( )4 ( )

=

Z
µ

n
( ) ( ) ( )

n
( )

¶
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Fig. 43.5. Excising the singular region from

Since ( ) and ( ) = 0 for the previous equation implies,
Z

( ( ) ( ))

½

n
( ) ( ) ( )

n
( )

¾

= 0

We now let 0 in the above equations to find

lim
0

Z

( ( ))

( )

n
( ) ( ) = lim

0

Z

( )

( )
n

( )

(43.32)
Moreover as we have seen above,

lim
0

Z

( )

( )
n

( ) = ( ) and

lim
0

Z

( ( ))

( )

n
( ) ( ) = ( )

and hence ( ) = ( ) Since ( ) = ( ) ( ) and ( ) =
( ) it follows that ( ) = ( ) =: ( ) Therefore ( ) and

( ) are smooth functions. Now by the maximum principle (Theorem
43.23):

| ( ) ( )| max | ( ) ( )|
= max | ( ) ( )| 0 as

Therefore the map ( ) is continuous and in particular the
map ( ) ( ) is jointly continuous. Letting be as in the proof of
Proposition 43.14, we find
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( ) =

Z

(e ) ( e) e

=

Z

×
(e e) ( e) ( e) e e

from which it follows that in fact is smooth on ×
It only remains to show ( ) is smooth as well. Fix and

for R let 2( ) 1( ) denote the solution to

= 0 on with ( ) = · ( ) for

Notice that is linear and by the maximum principle,

k + k ( ) k + k ( )

= k ( + ·) ( ·) · ( ·)k ( )

Now,

( + ) ( ) · ( )

=

Z 1

0

[ ( + ) ( )] ·

so that, by the dominated convergence theorem,

|| ( + ·) ( ·) · ( ·)|| ( )

| |
Z 1

0

k ( + ·) ( ·)k ( ) = (| |)

This proves is di erentiable and that = Similarly one shows
that has higher derivatives as well.
For the last item, let and choose 0 su ciently small so that
( ) \ { } and ( ) 0 for all ( ) Then the function
( ) := ( ) is Harmonic on 0 \ ( ) ( \ ( )) = 0 on
and 0 on ( ) Hence by the maximum principle, 0 on \ ( )
and since is not constant we must also have 0 on 0\ ( ) Since 0
was any su ciently small number, it follows ( ) 0 for all \ { }

Corollary 43.29. Keeping the above hypothesis and assuming 2( )
1( ) and ( ) then there is (a necessarily unique) solution
2( ) ( ) to

= with = on (43.33)

which is given by Eq. (43.31).

Proof. According to the remarks just before Eq. (43.31), if a solution to
Eq. (43.33) exists it must be given by
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( ) =

Z

( ) ( )

Z

n
( ) ( ) ( ) (43.34)

From Assumption 2, there exists a solution 2( ) 1( ¯) such that
= 0 and = on So replacing by if necessary, it su ces to

prove there is a solution 2( ) ( ) such that Eq. (43.33) holds with
0 To produce this solution, let

( ) :=

Z

( ) ( ) =

Z

( ) ( ) ( )

where

( ) :=

Z

( ) ( )

Using the result in Theorem 43.28, one easily shows ( ) 1( )and
= 0 By Theorem 43.9,

Z

( ) ( ) = ( ) for

and therefore 2( ) and =

Remark 43.30. Because of the maximum principle, for any the map
( ) ( ) ( ¯) is a positive linear functional. So by the Riesz

representation theorem, there exists a unique positive probability measure
on such that

( ) =

Z

( ) ( ) for all ( )

Evidently this measure is given by

( ) =
n
( ) ( )

and in particular n ( ) 0 for all and It is in fact easy

to see that n ( ) 0 for all and

43.3 Explicit Green’s Functions and Poisson Kernels

In this section we will use the method of images to construct explicit formula
for the Green’s functions and Poisson Kernels for the half plane1, H̄ = {
1 We will do this again later using the Fourier transform.
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R : 0}and Balls (0 ) For = ( 0 ) R 1 × (0 ) = H let
:= ( 0 ) It is simple to verify | | = | | for all H and
H̄ Form this and the properties of one concluded, for H that

( ) := ( ) is Harmonic in H and ( ) = ( ) for all
H̄ These remarks give rise to the following theorem.

Theorem 43.31. For H̄ let

( ) := ( ) ( ) = ( ) ( )

Then is the Greens function for on H and

( ) :=
n
( ) =

2

( 1)

1

| | for H and H̄

is the Poisson kernel for H Furthermore if 2(H ) 1(H ) and
¡

H̄
¢

then

( ) =

Z

H
( ) ( ) +

Z

H̄
( ) ( ) ( )

solves the equation

= on H with = on H̄

Proof. First notice that

( ) = ( ) ( ) = ( ) ( ) = ( )

since is a function of |·| Therefore, if

( ) =

Z

H
( ) ( ) =

Z

H
( ) ( )

Z

H
( ) ( )

we have from Theorem 43.9 that

( ) = ( )

Z

H
( ) ( ) = ( )

Since ( ) = 0 for H̄ and so ( ) = 0 for H̄ It is left to the
reader to show is continuous on H
For H and H̄ we find form Eq. (43.7),

( ) :=
n
( ) = ( )

= [ ( ) ( )]

=
1

( 1)

1

| | ( ) ·

+
1

( 1)

1

| | ( ) ·

=
1

( 1)

2

| |
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Claim: For all H
Z

H̄
( ) = 1

It is possible to prove this by direct computation, since (writing = ( 0 )
as above)

Z

H̄
( ) =

2

( 1)

Z

R 1 (| 0 |2 + 2 )
2

=
2

( 1)

Z

R 1

1

(| |2 + 1) 2

=
2

( 1)
( 2)

Z

0

2 1

( 2 + 1) 2

where in the second equality we have made the change of variables
and in the last we passed to polar coordinates. When = 2 we find

Z

0

2 1

( 2 + 1) 2
=

Z

0

1
2 + 1

= 2

and for = 3 we may let = 2 to find
Z

0

2 1

( 2 + 1)
2

=

Z

0

1

( 2 + 1)
3 2

=
1

2

Z

0

1

( + 1)
3 2

= 1

These results along with
Z

0

2 1

( 2 + 1) 2
=

Z

0

¡

2 + 1
¢ 2

1

1

=
2

1

Z

0

¡

2 + 1
¢ 2 1

2 1

=
1

Z

0

1

( 2 + 1)
+2
2

allows one to compute
R

0
2 1
( 2+1) 2 inductively. I will not carry out

the details of this method here. Rather, it is more instructive to use Corollary
43.6 to prove the claim. In order to do this let ( (0 1) [0 1]) such
that (0) = 1 ( ) = (| |) and ( ) is decreasing as decreases. Then by
Corollary 43.6, with ( ) = ( ) := ( )

( ) =

Z

H̄

( ) ( ) ( ) 2

Z

H

( ) (4 ) ( ) (43.35)

By the monotone convergence theorem,
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lim

Z

H̄

( ) ( ) ( ) =

Z

H̄

( ) ( )

and therefore passing the limit in Eq. (43.35) gives

1 =

Z

H̄

( ) ( ) lim 2

Z

H

( )4 ( )

This latter limit is zero, since

2

Z

H

( )4 ( )

= 2

Z

H

"

1

| | 2

1

| | 2

#

(4 ) ( )

= 2

Z

H

"

1

| | 2

1

| | 2

#

4 ( )

=

Z

H

"

1

| | 2

1

| | 2

#

4 ( )

This latter expression tends to zero and by the dominated conver-
gence and this proves the claim. (Alternatively, for large,

1

| | 2

1

| | 2

=
1

| | 2

1
¯

¯

¯ | | ˆ
¯

¯

¯

2

1
¯

¯

¯ | | ˆ
¯

¯

¯

2

=
1

| | 2

·µ

1 + 2 | | · ˆ+
¶ µ

1 + 2 | | · ˆ+
¶¸

= (
1

| | 1 )

and therefore

2

Z

H

"

1

| | 2

1

| | 2

#

(4 ) ( )

=

µ

2 1
1

¶

= (1 ) 0
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as
Since ( ) is harmonic in it follows that ( ) = n ( ) is

still Harmonic in and therefore

( ) :=

Z

H̄
( ) ( ) ( ) =

2

( 1)

Z

H̄ | | ( ) ( )

is harmonic as well. Since

( ) =
2

( 1)

Z

H̄ (| 0 |2 + 2 )
2
( ) (43.36)

=
2

( 1)

1
1

Z

H̄

1
³

| 0 |2 + 1
´ 2

( )

it follows from Theorem 42.13 that (( 0 )) ( 0) as 0 uniformly
for 0 in compact subsets of H̄

43.4 Green’s function for Ball

Let 0 be fixed, we will construct the Green’s function for the ball (0 )
The idea for a given (0 ) we should find a mirror location, say ˆ and
a charge so that

( ) = ( ˆ ) for all | | =

Assuming for the moment that 3 and writing = (2 ) this leads to
the equations

| |2 = | ˆ |2 = 2 | ˆ |2

or equivalently squaring out both sides and using | | =

| |2 2 · + 2 = 2
¡

2 2 ˆ · + 2
¢

Choosing and = ˆ leads to the conditions

| |2 + 2 = 2
¡

2 + 2
¢

and

| |2 2 | |+ 2 = 2
¡

2 2 + 2
¢

Subtracting these two equations implies 2 | | = 2 2 or equivalently
that = | | 2 Putting this into the first equation above then implies

| |2 + 2 =
| |2
2
+ 2 2

or equivalently that
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0 = 2 4
³

| |2 + 2
´

2 + | |2

By the quadratic formula, this implies

2 =

³

| |2 + 2
´

±
r

³

| |2 + 2
´2

4 2 | |2

2 2

=

³

| |2 + 2
´

±
r

³

| |2 2
´2

2 2
=

³

| |2 + 2
´

±
³

2 | |2
´

2 2

= 1 or
| |2
2

Clearly the charge = 1 will not work so we must take = | | in which
case, = 2 | | and hence

( ˆ ) = (| | )(2 )

µ

2 ˆ

| |
¶

=

µ

ˆ
| | ¶

Let us now verify that our guess has worked. Let us begin by noting the
following identities for R

¯

¯ ˆ 1 | | ¯¯2 =
³

2 2 · + 2 | |2 | |2
´

(43.37)

and in particular when | | = this implies

|ˆ | | |̂2 = ¡ 2 2 · + | |2¢ = | |2

so that

| | = |ˆ | | |̂ =
¯

¯

¯

¯ | | | |
¯

¯

¯

¯

(43.38)

Now the function

( ) =

µ

ˆ
| | ¶

=

µ | | µ 2

| |2
¶¶

is harmonic in and by Eq. (43.38),

( ) =
³

ˆ | |
´

= (ˆ | | ˆ) = ( ) when | | =

Hence we should define the Green’s function for the ball to be given by

( ) = ( ) ( ) = ( )
³

ˆ | |
´

= ( )
¡

ˆ 1| | | | ˆ¢

= ( )

µ | | µ 2 ˆ

| |
¶¶
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From Eq. (43.37), it follows that ( ) = ( ) and therefore ( ) is again
symmetric under the interchange of and
For (0 ) using Eq. (43.7) we find

( ) =
n
( ) =

b

( ) = ( ) · ˆ

=

·

( )

µ | | µ 2 ˆ

| |
¶¶¸

· ˆ

=
1

( 1)

1

| | ( )
| | 1
³

| |
´
¯

¯

¯

2 ˆ
| |
¯

¯

¯

| | µ 2 ˆ

| |
¶

=
1

( 1)

1

| | ( )
| | 1
¯

¯

¯

| | ˆ
¯

¯

¯

µ | |
ˆ

¶

· ˆ

=
1

( 1)

·

1

| | ( )
| | 1

| | (| |ˆ ˆ)

¸

· ˆ

=
1

( 1) | |
·

( )

µ | |2
ˆ

¶¸

· ˆ

=
1

( 1) | |
· | |2

ˆ

¸

· ˆ

=
1

( 1) | |
£

2 | |2¤

These computations lead to the following theorem.

Theorem 43.32. For (0 ) let

( ) := ( )
³

ˆ | |
´

and if (0 ) let

( ) :=
n
( ) =

2 | |2
( 1)

| |

Then 2( (0 )) 1( (0 )) and
³

(0 )
´

then

( ) =

Z

(0 )

( ) ( ) +

Z

(0 )

( ) ( ) ( ) (43.39)

solves the equation

= on (0 ) with = on (0 )
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Remark 43.33. Letting = | | we may write ( ) as

( ) =
2 2

( 1)

1

( 2 + 2 2 ˆ · ˆ) 2
(43.40)

In particular when = 1 = 2 = and = this gives

( ) =
1 2

2 ( 2 + 1 2 cos ( ))

which agrees with the Poisson kernel ( ) of Eq. (22.40) which we derived
earlier by Fourier series methods.

Proof. The proof is essentially the same as Theorem 43.31 but a bit easier.
For these reasons, we will only prove here the assertion

lim
0

Z

(0 )

( ) ( ) ( ) = ( 0) for all 0 (0 ) (43.41)

From Theorem 43.5 with = 1 it follows again that
Z

(0 )

( ) ( ) = 1

For any (0 1) let

( ) := sup
©| ( ) ( )| : 1 with ˆ · ˆ ª

Then by uniform continuity of on (0 ) it follows that ( ) 0 as 1
and hence

|
Z

(0 )

( ) ( ) ( ) ( ˆ)|
Z

(0 )

( ) | ( ) ( ˆ)| ( )

=

Z

(0 )

1ˆ·ˆ ( ) | ( ) ( ˆ)| ( )

+

Z

(0 )

1ˆ·ˆ ( ) | ( ) ( ˆ)| ( )

2 k k
Z

(0 )

1ˆ·ˆ ( ) ( ) + ( )

( ) k k
³

2 | |2
´

+ ( )

where ( ) is some constant only depending on see Eq. (43.40). Therefore,

sup
| |=

¯

¯

¯

¯

¯

Z

(0 )

( ) ( ) ( ) ( ˆ)

¯

¯

¯

¯

¯

( ) k k ¡

2 2
¢

+ ( )
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and hence

lim sup sup
| |=

¯

¯

¯

¯

¯

Z

(0 )

( ) ( ) ( ) ( ˆ)

¯

¯

¯

¯

¯

( ) 0 as 0

which implies Eq. (43.41).

Corollary 43.34. Suppose that is a harmonic function on then is real
analytic on

Proof. The condition of being real analytic is local and invariant under
translations as is the notion of being harmonic. Hence we may assume 0
(0 ) for some 0 in which case we have, for | | and =
| (0 ) that

( ) =

Z

(0 )

( ) ( ) ( ) =
2 | |2
( 1)

Z

(0 )

| | ( ) ( )

=
2 | |2
( 1)

Z

(0 )

| ˆ | ( ) ( ) (43.42)

Now

| | = | ˆ | =
¯

¯ˆ 1
¯

¯

=

Ã

1 2 1ˆ · +
| |2
2

! 2

=: (1 ( ))
2

where

( ) := 2 1ˆ · | |2
2

Since

| ( )| 2 1 | |+ | |
2

2
2 0 +

2
0 1

if | | 0 and 0 2 1 we find that | | has a convergent power
series expansion,

| | =
X

=0

( ) for | | 0

Plugging this into Eq. (43.42) shows ( ) has a convergent power series ex-
pansion in for | | ¡

2 1
¢
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43.5 Perron’s Method for solving the Dirichlet Problem

For this section let R be a bounded open set and (bd( ) R) be
a given function. We are going to investigate the solvability of the Dirichlet
problem:

= 0 on with = on bd( ) (43.43)

Let S( ) denote those
¡

¯
¢

such that is subharmonic on and let
S ( ) denote those S( ) such that on bd( ) As we have seen in
Corollary 43.26, if there is a solution to 2( )

¡

¯
¢

then for
all S ( ) This suggests we try to define

( ) := ( ) := sup { ( ) : S ( )} for all ¯ (43.44)

Notation 43.35 Given S( ) and 0 such that ( )
let (see Figure 43.6)

( ) =

½

( ) for \ ( )

( ) for ( )

where
³

( )
´

is the unique solution to

= 0 on ( ) with = on ( )

The existence of is guaranteed by Theorem 43.32.

Fig. 43.6. The construction of in the one-dimensional case.

Proposition 43.36. Let S( ) and be as above. Then

1.
2. S( ) i.e. is subharmonic.
3. For any and 0 such that ( ) the mean value inequality
is valid,

( )

Z

( )
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Proof. 1. Since = on \ ( ) it su ces to show on
( ) But this follows from Corollary 43.26.
2. Since is harmonic on ( ) and subharmonic on \ ( ) we

need only show

( )

Z

( )

for all ( ) and su ciently small. This is easily checked, since is
subharmonic,

( ) = ( )

Z

( )

Z

( )

wherein the last equality we made use of Item 1.
3. By item 1. and the mean value property for the harmonic function,

we have

( ) ( ) =

Z

( )

=

Z

( )

Theorem 43.37. The function = defined in Eq. (43.44) is harmonic on
and on bd( )

Proof. Let us begin with a couple of observations. In what follows

:= min { ( ) : bd( )} and := min { ( ) : bd( )}

1. The function = on since S ( )
2. By the maximum principle on for all S ( ) and therefore

on
3. If 1 S ( ) then = max { 1 } S ( ) Indeed for

and small,
Z

( )

Z

( )

( )

for all
4. Now suppose and 0 be chosen so that ( ) and

( ) is a countable set. Then there is a harmonic function on
( ) such that = on

To prove this last item let := { } =1 and choose { } S ( )
such that ( ) ( ) as for each By replacing by
max

©

1
ª

if necessary we may assume for each that is in-
creasing in for each Letting
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:= max { 1 }

we find an increasing sequence { } S ( ) such that ( ) ( ) for
all Finally define a sequence { } S ( ) by := ( ) 2 By
the maximum principle, is still increasing and since and we still
have ( ) ( ) for all We now define := lim | ( )

which exists because is increasing and We have = on and
because { } is a bounded and convergent sequence of harmonic functions
on ( ) it follows from Corollary 43.18 that is harmonic on ( )
This completes the proof of item 4.
We now use item 4. to prove is continuous at To do this let

{ } =1 ( ) be any sequence such that as and let
= { } { } =1 ( ) Since is harmonic and hence continuous,

lim ( ) = lim ( ) = ( ) = ( )

showing is continuous.
To show is harmonic on ( ) let be a countable dense subset of
( ) Then the continuity of and the fact that = on it follows

that = on ( ) In particular is harmonic on ( ) Since is
arbitrary, we have shown is harmonic.
To complete our program, we want to show that extends to a function

in ( ¯) and that = on bd( ) For this we will need some assumption
on bd( )

Definition 43.38. A function
¡

¯
¢

is a barrier function for
bd( ) if is subharmonic on ( ) = 0 and ( ) 0 for all bd( ) \
{ }
Example 43.39. Suppose that bd( ) and there exists R such that
( )· 0 for all bd( )\{ } (see Figure 43.7 below), then the function
( ) := ( ) · is a barrier function of

Example 43.40. Suppose that bd( ) and there exists a ball ( ) ¯ =
{ } (see Figure 43.8), then ( ) := ( ) (| |) is a barrier function for
where is defined in Eq. 43.4.

Theorem 43.41. Suppose (bd( )) and = is the harmonic func-
tion defined by Eq. (43.44) and there exists a barrier function for bd( )
Then lim ( ) = ( ) In particular if every point bd( ) admits a
barrier function, then there is a unique solution

¡

¯
¢

2( ) to = 0
with = on bd( )

Proof. Given 0 and 0 let ( ) := ( ) ( ) for all
¯ For any 0 we may choose (using continuity of and compactness
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Fig. 43.7. Constructing a barrier function at point where where lies in a half
plane.

Fig. 43.8. Another for which there exists a barrier function.

of bd( )) su ciently large so that on bd( ) i.e. S ( )
Therefore and hence

( ) = ( ) = lim ( ) lim inf ( )

Since 0 is arbitrary, this shows

lim inf ( ) ( ) (43.45)

We now consider the function

( ) = sup { ( ) : S ( )} = inf { ( ) : S ( )}
= inf { ( ) : S ( )} (43.46)

930 43 Poisson and Laplace’s Equation

If S ( ) and S ( ) then is sub harmonic and
= 0 on bd( ) therefore by the maximum principle it follows that
on ¯ Coupling this fact with Eq. (43.46) shows ( ) ( ) for

all S ( ) and then taking the supremum over shows ( ) ( )
Therefore using Eq. (43.45) with replaced by shows

lim sup ( ) lim sup ( ( )) = lim inf ( ( )) ( ( )) = ( )

(43.47)
which combined with Eq. (43.45) shows

lim ( ) = ( )

Exercise 43.42. Suppose that is an × orthogonal matrix ( tr = =
tr) viewed as a linear transformation on R Show for 2 (R ) that
( ) = i.e. is invariant under rotations.

Exercise 43.43. Show that every point bd( ) has a barrier func-
tion when bd( ) is 2 Hint: By making a change of coordinated involv-
ing rotations and translations change of coordinates, it su ces to assume
= 0 bd( ) and that (0 ) bd( ) is the graph of a 2 — function
: (0 ) R 1 R such that (0) = 0 and (0) = 0 Show for 0

su ciently small that

( ) := | |2 for bd( )

has a unique global minimum at = 0 Use this fact and Example 43.40 to
complete the proof.

Remark 43.44. To make Barrier functions for cones let := 1 and
let ( ) for denote the Dirichlet eigenfunction on for the spherical
Laplacian with smallest eigenvalue 0 i.e. 1 = This function is
positive on and vanishes on the boundary. If has sperical symmetry, the
function should be describable explicitly. At any rate, we can now considier
the function ( ) = then

=
1
1

¡

1 [ ]
¢

+
2

1

= ( + 2) 2 2

which will be zero if = ( + 2) i.e.

2 + ( 2) = 0

where
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=
( 2)±

q

( 2)2 + 4

2

Hence taking

=

q

( 2)2 + 4 ( 2)

2

the function ( ) = ( ) is harmonic in and 0 on (Probably should
be doing these considerations for the exterior of )

43.6 Solving the Dirichlet Problem by Integral Equations

Another method for solving the Dirichlet problem to reduce it to a question
of solvability of a certain integral equation in bd( ) For a nice sketch of how
this goes the reader is referred to Reed and Simon [11], included below. For a
more detailed account the reader may consult Sobolev [16] or Guenther and
Lee [6].
The following text is taken from Reed and Simon Volume 1.



44

Introduction to the Spectral Theorem

The following spectral theorem is a minor variant of the usual spectral theorem
for matrices. This reformulation has the virtue of carrying over to general
(unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 44.1. Suppose is an × complex self adjoint matrix, i.e. =
or equivalently = ¯ and let be counting measure on {1 2 }

Then there exists a unitary map : C 2({1 2 } ) and a real
function : {1 2 } R such that = · for all C We
summarize this equation by writing 1 = where

: 2({1 2 } ) 2({1 2 } )

is the linear operator, 2({1 2 } ) · 2({1 2 } )

Proof. By the usual form of the spectral theorem for self-adjoint matrices,
there exists an orthonormal basis { } =1 of eigenvectors of say =
with R Define : C 2({1 2 } ) to be the unique (unitary)
map determined by = where

( ) =

½

1 if =
0 if 6=

and let : {1 2 } R be defined by ( ) :=

Definition 44.2. Let : be a possibly unbounded operator on We
let

( ) = { : 3 ( ) = ( ) ( )}
and for ( ) set = .

Definition 44.3. An operator on is symmetric if and is self-
adjoint i =

The reader should check that : is symmetric i ( ) = ( )
for all ( )
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Proposition 44.4. Let ( ) be — finite measure space, = 2( )
and : C be a measurable function. Set = = for all

( ) = { : }
Then ( ) is a dense subspace of and = ¯

Proof. For any = 2( ) and N let := 1| | Since
| | | | it follows that and hence ( ) By the
dominated convergence theorem, it follows that in as
hence ( ) is dense in
Suppose D( ) then there exists 2 such that ( ) = ( )

for all ( ) i.e.
Z

=

Z

for all ( )

or equivalently
Z

( ) = 0 for all ( ) (44.1)

Choose such that and ( ) for all It is easily
checked that

:= 1 ¯

¯

¯

¯

1| |

is in ( ) and putting this function into Eq. (44.1) shows
Z

¯

¯

¯

¯ 1| | = 0 for all

Using the monotone convergence theorem, we may let in this equation
to find

R
¯

¯

¯

¯ = 0 and hence that ¯ = 2 This shows
( ¯) and =

Theorem 44.5 (Spectral Theorem). Suppose = then there exists
( ) a — finite measure space, : R measurable, and :
2( ) unitary such that 1 = Note this is a statement about
domains as well, i.e. ( ) = ( )

I would like to give some examples of computing and Theorem 44.5 as
well. We will consider here the case of constant coe cient di erential operators
on 2(R ) First we need the following definition.

Definition 44.6. Let ( ) =
P

| | — a th order linear
di erential operator on D( ) and

†
=
X

| |
( 1)| | [ ]
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denote the formal adjoint of as in Lemma 40.4 above. For ( ) we
say ( ) or ( ) if the generalized function may be represented
by an element of ( ) or ( ) respectively, i.e. = ( ) i

Z

· † =

Z

for all ( ) (44.2)

In terms of the complex inner product,

( ) :=

Z

( )¯( ) ( )

Eq. (44.2) is equivalent to
¡ · ~ ¢

= ( ) for all ( )

where
~ :=

X

| |
( 1)| | [¯ ]

Notice that ~ satisfies ~ ¯ = † (We do not write here since ~ is to
be considered an operator on the space on D0 ( ) )

Remark 44.7. Recall that if 2 (R ) then the following are equivalent

1. ˆ=
2. ( ) =

¡ F 1
¢

for all (R )

3. ( ) =
¡ F 1

¢

for all S (R )

4. ( ) =
¡ F 1

¢

for all 2 (R )

Indeed if ˆ= and 2 (R ) the unitarity of F implies

( ) =
³

ˆ
´

= (F ) =
¡ F 1

¢

Hence 1 = 4 and it is clear that 4 = 3 = 2 If 2 holds, then again since
F is unitary we have

( ) =
¡ F 1

¢

=
³

ˆ
´

for all (R )

which implies = ˆ a.e., i.e. = ˆ in 2 (R )

Proposition 44.8. Let ( ) =
P

| | be a polynomial on C

:= ( ) :=
X

| |
(44.3)

and 2 (R ) Then 2 (R ) i ( ) (̂ ) 2 (R ) and in which
case
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( )
ˆ
( ) = ( ) (̂ ) (44.4)

Put more concisely, letting

( ) =
©

2 (R ) : 2 (R )
ª

with = for all ( ) we have

F F 1 = ( )

Proof. As above, let

† :=
X

| |
( ) and ~ :=

X

| |
¯ ( ) (44.5)

For (R )

~ ( ) = ~
Z

( ) · ( ) =
X

| |
¯ ( )

Z

( ) · ( )

=

Z

( ) ( ) · ( ) = F 1
h

( ) ( )
i

( )

So if 2 (R ) such that 2 (R ) Then by Remark 44.7,

(c ) = ( ) = h ~ i = h ( ) F 1
h

( ) ( )
i

( )i

= h (̂ )
h

( ) ( )
i

i = h ( ) (̂ ) ( )i for all (R )

from which it follows that Eq. (44.4) holds and that ( ) (̂ ) 2 (R )

Conversely, if 2 (R ) is such that ( ) (̂ ) 2 (R ) then for
(R )

¡ ~ ¢

=
³

ˆ F ~
´

(44.6)

Since

F ¡ ~ ¢

( ) =

Z

~ ( ) · ( ) =

Z

( ) · ( )

=

Z

( ) · ( ) =

Z

( ) ( ) · ( )

= ( )ˆ( )

Eq. (44.6) becomes

¡ ~ ¢

=
³

(̂ ) ( )ˆ( )
´

=
³

( ) (̂ ) ˆ( )
´

=
³

F 1
h

( ) (̂ )
i

( ) ( )
´

This shows = F 1
h

( ) (̂ )
i

2 (R )
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Lemma 44.9. Suppose ( ) =
P

| | is a polynomial on R and =

( ) is the constant coe cient di erential operator =
P

| | with
( ) := S (R ) 2 (R ) Then

F F 1 = ( )|S(R )

Proof. This is result of the fact that F (S (R )) = S (R ) and for
S (R ) we have

( ) =

Z

R
(̂ ) · ( )

so that

( ) =

Z

R
(̂ ) · ( ) =

Z

R
(̂ ) ( ) · ( )

so that
( )ˆ ( ) = ( ) (̂ ) for all S (R )

Lemma 44.10. Suppose : R C is a measurable function such that
| ( )|

³

1 + | |
´

for some constants and Let be the unbounded

operator on 2 (R ) defined by ( ) = S (R ) and for S (R ) =
Then = ¯

Proof. If ( ¯) and ( ) we have

( ) =

Z

R
¯ =

Z

R
= ( ¯ )

which shows ¯ i.e. ( ) and = ¯ Now suppose
( ) and = i.e.

Z

R
¯ = ( ) = ( ) =

Z

R
for all S (R )

or equivalently that
Z

R

¡

¯ ¯
¢

= 0 for all S (R )

Since the last equality (even just for (R )) implies ¯ ¯ = 0 a.e. we
may conclude that ( ¯) and = ¯ i.e. ¯

Theorem 44.11. Suppose ( ) =
P

| | is a polynomial on R and
= ( ) is the constant coe cient di erential operator with ( ) :=
(R ) 2 (R ) such that = = ( ) on ( ) see Eq. (44.3). Then
is the operator described by
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( ) =
©

2 (R ) : † 2 (R )
ª

=
n

2 (R ) : ( ) (̂ ) 2 (R )
o

and = † for ( ) where † is defined in Eq. (44.5) above.
Moreover we have F F 1 = ( )

Proof. Let ( ) = S (R ) and := on ( ) so that We are
first going to show = As is easily verified, in general if then

So we need only show Now by definition, if ( )
with = then

( ) = ( ) for all ( ) := (R )

Suppose that S (R ) and (R ) such that = 1 in a neighborhood
of 0 Then ( ) := ( ) ( ) is in S (R ) and hence

( ) = ( ) (44.7)

An exercise in the product rule and the dominated convergence theorem shows
and in 2 (R ) as Therefore we may pass to the

limit in Eq. (44.7) to learn

( ) = ( ) for all S (R )

which shows ( ) and =
By Lemma 44.10, we may conclude that = =

( )
and by Propo-

sition 44.8 we then conclude that

( ) =
n

2 (R ) : ( ) (̂ ) 2 (R )
o

=
©

2 (R ) : † 2 (R )
ª

and for ( ) we have = †

Example 44.12. If we take = with ( ) := (R ) then

= ¯ = F | |2F 1

where ( ¯) =
©

2 (R ) : 2 (R )
ª

and ¯ =

Theorem 44.13. Suppose = and 0 Then for all 0 ( ) there
exists a unique solution 1([0 )) such that ( ) ( ) for all and

˙ ( ) = ( ) with (0) = 0 (44.8)

Writing ( ) = 0 the map 0 0 is a linear contraction semi-group,
i.e.

k 0k k 0k for all 0 (44.9)

So extends uniquely to by continuity. This extension satisfies:
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1. Strong Continuity: the map [0 ) 0 is continuous for all
0

2. Smoothing property: 0

0

\

=0

( ) =: ( )

and

k k
µ ¶

for all N (44.10)

Proof. Uniqueness. Suppose solves Eq. (44.8), then

( ( ) ( )) = 2Re( ˙ ) = 2Re( ) 0

Hence k ( )k is decreasing so that k ( )k k 0k This implies the uniqueness
assertion in the theorem and the norm estimate in Eq. (44.9).
Existence: By the spectral theorem we may assume = acting

on 2( ) for some — finite measure space ( ) and some measurable
function : ( 0] We wish to show ( ) = 0

2 solves

˙ ( ) = ( ) with (0) = 0 ( ) 2

Let 0 and | | Then by the mean value inequality
¯

¯

¯

¯

( +4)

4 0

¯

¯

¯

¯

= max
n

| ( +4̃)
0| : ˜ between 0 and

o

| 0| 2

This estimated along with the fact that

( + ) ( )

4 =
( +4)

4 0
point wise

0 as 0

enables us to use the dominated convergence theorem to conclude

˙ ( ) = 2— lim
0

( +4) ( )

4 = 0 = ( )

as desired. i.e. ˙ ( ) = ( )
The extension of to is given by For 2

¯

¯

¯

¯ | | 2

and pointwise as so the Dominated convergence theorem
shows [0 ) is continuous. For the last two assertions, let

0 and ( ) = Then (ln )0( ) = + which is zero when =
and therefore

max
0

¯

¯

¯

¯ = | ( )| =
µ ¶

Hence

k k max
0

¯

¯

¯

¯

µ ¶
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Theorem 44.14. Take = F | |2F 1 so |S = then

( ) :=
\

=1

( )
¡

R
¢

i.e. for all ( ) there exists a version ˜ of such that ˜ (R )

Proof. By assumption | |2 (̂ ) 2 for all Therefore (̂ ) = ( )
1+| |2

for some 2 for all Therefore for chosen so that 2 + we
have

Z

R

| | | (̂ )| k k 2

°

°

°

°

| |
1 + | |2

°

°

°

°

2

which shows | | | (̂ )| 1 for all = 0 1 2 We may now di erentiate
the inversion formula, ( ) =

R

(̂ ) · to find

( ) =

Z

( ) (̂ ) · for any

and thus conclude

Exercise 44.15. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.

44.1 Du Hammel’s principle again

Lemma 44.16. Suppose is an operator on such that is densely de-
fined then is closed.

Proof. If ( ) and then for all ( )

( ) = lim ( )

while
lim ( ) = lim ( ) = ( )

i.e. ( ) = ( ) for all ( ) Thus ( ) and =

Corollary 44.17. If = then is closed.

Corollary 44.18. Suppose is closed and ( ) ( ) is a path such that
( ) and ( ) are continuous in Then

Z

0

( ) =

Z

0

( )
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Proof. Let be a sequence of partitions of [0 ] such that ( ) 0
as and set

=
X

( )( +1 ) ( )

Then
R

0
( ) and

=
X

( )( +1 )

Z

0

( )

Therefore
R

0
( ) ( ) and

R

0
( ) =

R

0
( )

Lemma 44.19. Suppose = 0 and : [0 ] is continuous.
Then

( ) [0 )× [0 ) ( )

( ) (0 )× [0 ) ( )

are continuous maps into

Proof. Let 0 then if

k ¡

( ) ( )
¢ k

=
°

°

°

³

( ) ( ) ( )
´
°

°

°

°

°

°

°

°

°

°

( ) [ ( ) ( )] + ( ) ( ) ( )
°

°

°

µ ¶

·
h

k ( ) ( )k+
°

°

°

( ) ( ) ( )
°

°

°

i

So
lim
and

°

°

¡

( ) ( )
¢
°

° = 0

and we may take = 0 if = 0 Similarly, if

k ¡

( ) ( )
¢ k

=
°

°

°

³

( ) ( ) ( )
´
°

°

°

°

°

°

°

h

k ( ) ( )k+
°

°

°
( ) ( ) ( )

°

°

°

i

µ ¶

h

k ( ) ( )k+
°

°

°
( ) ( ) ( )

°

°

°

i

and the latter expression tends to zero as and

Lemma 44.20. Let ([0 ) ) :=
©

( ) R2 : 0
ª

and
( ) :=

R

0
( ) ( ) for ( ) Then
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1. 1( ) (in fact ( ))

( ) = ( ) ( ) (44.11)

and
( )

=

Z

0

( ) ( ) (44.12)

2. Given 0 let

( ) := ( + ) =

Z

0

( + ) ( )

Then 1 (( ) ) ( ) ( ) for all and

˙ ( ) = ( ) + ( ) (44.13)

Proof. We claim the function

( ) ( ) :=

Z

0

( ) ( )

is continuous. Indeed if ( 0 0) and ( ) is su ciently close to ( 0 0)
so that 0 we have

( ) ( 0 0) =
Z

0

( ) ( )

Z
0

0

( 0 ) ( )

=

Z

0

( ) ( )

Z
0

0

( ) ( )

+

Z
0

0

h

( ) ( 0 )
i

( )

so that

k ( ) ( 0 0)k
¯

¯

¯

¯

Z

0

°

°

°

( ) ( )
°

°

°

¯

¯

¯

¯

+

Z
0

0

°

°

°

h

( ) ( 0 )
i

( )
°

°

°

¯

¯

¯

¯

Z

0
k ( )k

¯

¯

¯

¯

+

Z
0

0

°

°

°

h

( ) ( 0 )
i

( )
°

°

°
(44.14)

By the dominated convergence theorem,

lim
( ) ( 0 0)

¯

¯

¯

¯

Z

0
k ( )k

¯

¯

¯

¯

= 0
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and

lim
( ) ( 0 0)

Z
0

0

°

°

°

h

( ) ( 0 )
i

( )
°

°

°
= 0

which along with Eq. (44.14) shows is continuous.
By the fundamental theorem of calculus,

( ) = ( ) ( )

and as we have seen this expression is continuous on Moreover, since

( ) ( ) = ( ) ( )

is continuous and bounded for on we may di erentiate under the
integral to find

( )
=

Z

0

( ) ( ) for

A similar argument (making use of Eq. (44.10) with = 1) shows ( ) is
continuous for ( )
By the chain rule, ( ) := ( + ) is 1 for and

˙ ( ) =
( + )

+
( + )

= ( ) +

Z

0

( + ) ( ) = ( ) + ( )

Theorem 44.21. Suppose = 0 0 and : [0 ) is
continuous. Assume further that ( ) ( ) for all [0 ) and ( )
is continuous, then

( ) := 0 +

Z

0

( ) ( ) (44.15)

is the unique function 1((0 ) ) ([0 ) ) such that ( ) ( )
for all 0 satisfying the di erential equation

˙ ( ) = ( ) + ( ) for 0 and (0+) = 0

Proof. Uniqueness: If ( ) is another such solution then ( ) := ( )
( ) satisfies,

˙ ( ) = ( ) with (0+) = 0

which we have already seen implies = 0
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Existence: By linearity and Theorem 44.13 we may assume with out loss
of generality that 0 = 0 in which case

( ) =

Z

0

( ) ( )

By Lemma 44.19, we know [0 ] ( ) ( ) is continuous, so the
integral in Eq. (44.15) is well defined. Similarly by Lemma 44.19,

[0 ] ( ) ( ) = ( ) ( )

and so by Corollary 44.18, ( ) ( ) for all 0 and

( ) =

Z

0

( ) ( ) =

Z

0

( ) ( )

Let

( ) =

Z

0

( + ) ( )

be defined as in Lemma 44.20. Then using the dominated convergence theo-
rem,

sup k ( ) ( )k sup

Z

0

°

°

°

³

( + ) ( )
´

( )
°

°

°

Z

0

°

°

¡ ¢

( )
°

° 0 as 0

sup k ( ) ( )k
Z

0

°

°

¡ ¢

( )
°

° 0 as 0

and
°

°

°

°

Z

0

( )

Z

0

( )

°

°

°

°

Z

0

°

°

¡ ¢

( )
°

° 0 as 0

Integrating Eq. (44.13) shows

( ) =

Z

0

( ) +

Z

0

( ) (44.16)

and then passing to the limit as 0 in this equations shows

( ) =

Z

0

( ) +

Z

0

( )

This shows is di erentiable and ˙ ( ) = ( ) + ( ) for all 0
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Theorem 44.22. Let 0 : [0 ) be a locally — Holder continu-
ous function, = 0 and 0 The function

( ) := 0 +

Z

0

( ) ( )

is the unique function 1((0 ) ) ([0 ) ) such that ( ) ( )
for all 0 satisfying the di erential equation

˙ ( ) = ( ) + ( ) for 0 and (0+) = 0

(For more details see Pazy [9, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 44.21 and for
existence we may assume 0 = 0
With out loss of generality we may assume 0 = 0 so that

( ) =

Z

0

( ) ( )

By Lemma 44.19, we know [0 ] ( ) ( ) is continuous, so the
integral defining is well defined. For 0 let

( ) :=

Z

0

( + ) ( ) =

Z

0

( ) ( )

Notice that ( ) := ( ) ( ) for all and moreover since is
a bounded operator, it follows that ( ) is continuous. So by Lemma
44.19, it follows that [0 ] ( ) ( ) is continuous as well.
Hence we know ( ) ( ) and

( ) =

Z

0

( ) ( )

Now

( ) =

Z

0

( + ) ( ) +

Z

0

( + ) [ ( ) ( )]

Z

0

( + ) ( ) = ( + ) ( )| ==0 = ( + ) ( ) ( )

and
°

°

°

( + ) [ ( ) ( )]
°

°

°

1 1

( + )
k ( ) ( )k

1 1

( + )
| | 1 | | 1
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These results along with the dominated convergence theorem shows lim 0 ( )
exists and is given by

lim
0

( ) = lim
0

h

( + ) ( ) ( )
i

+ lim
0

Z

0

( + ) [ ( ) ( )]

= ( ) ( ) +

Z

0

( ) [ ( ) ( )]

Because is a closed operator, it follows that ( ) ( ) and

( ) = ( ) ( ) +

Z

0

( ) [ ( ) ( )]

Claim: ( ) is continuous. To prove this it su ces to show

( ) :=

Z

0

( ) ( ( ) ( ))

is continuous and for this we have

( +4) ( ) =

Z +4

0

( +4 ) ( ( ) ( +4))
Z

0

( ) ( ( ) ( ))

= +

where

=

Z +4
( +4 ) ( ( ) ( +4)) and

=

Z

0

h

( +4 ) ( ( ) ( +4)) ( ) ( ( ) ( ))
i

=

Z

0

h

( +4 ) ( ( ) ( )) ( ) ( ( ) ( ))
i

+

Z

0

h

( +4 ) ( ( ) ( +4))
i

= 1 + 2

and

1 =

Z

0

h

( +4 ) ( )
i

( ( ) ( )) and

2 =
h

( + )
i

( ( ) ( +4))
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We estimate as

k k
¯

¯

¯

¯

¯

Z +4 °
°

°

( +4 ) ( ( ) ( +4))
°

°

°

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

Z +4 1

+4 | +4 |
¯

¯

¯

¯

¯

=

Z | |

0

1 = 1 | | 0 as 0

It is easily seen that k 2k 2 | | 0 as 0 and
°

°

°

h

( +4 ) ( )
i

( ( ) ( ))
°

°

°
| | 1

which is integrable, so by the dominated convergence theorem,

k 1k
Z

0

°

°

°

h

( +4 ) ( )
i

( ( ) ( ))
°

°

°
0 as 0

This completes the proof of the claim.
Moreover,

( ) ( ) = ( + ) ( ) ( ) + ( ) ( )

+

Z

0

³

( + ) ( )
´

[ ( ) ( )]

so that

k ( ) ( )k 2
°

° ( ) ( )
°

°

+

Z

0

°

°

°

( )
¡ ¢

[ ( ) ( )]
°

°

°

2
°

° ( ) ( )
°

°

+ 1

Z

0

1

| |
°

°

¡ ¢

[ ( ) ( )]
°

°

from which it follows ( ) ( ) boundedly. We may now pass to the
limit in Eq. (44.16) to find

( ) = lim
0

( ) = lim
0

·
Z

0

( ) +

Z

0

( )

¸

=

Z

0

( ) +

Z

0

( )

from which it follows that 1((0 ) ) and ˙ ( ) = ( ) + ( )



45

Heat Equation

The heat equation for a function : R+ × R C is the partial di erential
equation

µ

1

2

¶

= 0 with (0 ) = ( ) (45.1)

where is a given function on R By Fourier transforming Eq. (45.1) in the
— variables only, one finds that (45.1) implies that

µ

+
1

2
| |2
¶

ˆ( ) = 0 with ˆ(0 ) = (̂ ) (45.2)

and hence that ˆ( ) = | |2 2 (̂ ) Inverting the Fourier transform then
shows that

( ) = F 1
³

| |2 2 (̂ )
´

( ) =
³

F 1
³

| |2 2
´

F
´

( ) =: 2 ( )

From Example 32.4,

F 1
³

| |2 2
´

( ) = ( ) = 2 1
2 | |2

and therefore,

( ) =

Z

R
( ) ( )d

This suggests the following theorem.

Theorem 45.1. Let

( ) := (2 ) 2 | |2 2 (45.3)

be the heat kernel on R Then
µ

1

2

¶

( ) = 0 and lim
0

( ) = ( ) (45.4)
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where is the — function at in R More precisely, if is a continuous
bounded function on R , then

( ) =

Z

R
( ) ( )

is a solution to Eq. (45.1) where (0 ) := lim 0 ( )

Proof. Direct computations show that
¡

1
2

¢

( ) = 0 and an
application of Theorem 11.21 shows lim 0 ( ) = ( ) or equivalently
that lim 0

R

R ( ) ( ) = ( ) uniformly on compact subsets of R
This shows that lim 0 ( ) = ( ) uniformly on compact subsets of R

Proposition 45.2 (Properties of 2).

1. For 2(R ) the function

³

2
´

( ) = ( )( ) =

Z

R
( )

1
2 | |2

(2 ) 2

is smooth in ( ) for 0 and R and is in fact real analytic.
2. 2 acts as a contraction on (R ) for all [0 ] and 0
Indeed,

3. Moreover, in as 0

Proof. Item 1. is fairly easy to check and is left the reader. One just
notices that ( ) analytically continues to Re 0 and C and then
shows that it is permissible to di erentiate under the integral.
Item 2.

|( )( )|
Z

R
| ( )| ( )

and hence with the aid of Jensen’s inequality we have,

k k
Z

R

Z

R
| ( )| ( ) = k k

So is a contraction 0.
Item 3. It su ces to show, because of the contractive properties of

that as 0 for (R ) Notice that if has support in the
ball of radius centered at zero, then

|( )( )|
Z

R
| ( )| ( ) k k

Z

| |
( )

= k k 1
2 (| | )2

and hence

k k =

Z

| |
| | + k k 1

2 (| | )2

Therefore in as 0 (R )
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Theorem 45.3 (Forced Heat Equation). Suppose (R ) and
1 2([0 )×R ) then

( ) := ( ) +

Z

0

( )

solves

=
1

2
4 + with (0 ·) =

Proof. Because of Theorem 45.1, we may with out loss of generality as-
sume = 0 in which case

( ) =

Z

0

( )

Therefore

( ) = (0 ) +

Z

0

( )

= 0( )

Z

0

( )

and
4
2
( ) =

Z

0

4
2
( )

Hence we find, using integration by parts and approximate — function argu-
ments, that

µ 4
2

¶

( ) = 0( ) +

Z

0

µ

1

2
4
¶

( )

= 0( )

+ lim
0

Z
µ

1

2
4
¶

( )

= 0( ) lim
0

( )
¯

¯

+ lim
0

Z
µ

1

2
4
¶

( )

= 0( ) 0( ) + lim
0

( )

= ( )
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45.1 Extensions of Theorem 45.1

Proposition 45.4. Suppose : R R is a measurable function and there
exists constants such that

| ( )| 2 | |2

Then ( ) := ( ) is smooth for ( ) (0 1)×R and for all N
and all multi-indices

µ ¶

( ) =

Ã

µ ¶

!

( ) (45.5)

In particular satisfies the heat equation = 2 on (0 1)×R
Proof. The reader may check that

µ ¶

( ) = ( 1 ) ( )

where is a polynomial in its variables. Let 0 R and 0 be small, then
for ( 0 ) and any 0

| |2 = | |2 2| || |+ | |2 | |2 + | |2
³

2 | |2 + 2 | |2
´

¡

1 2
¢ | |2 ¡

2 1
¢

³

| 0|2 +
´

Hence

( ) := sup

(
¯

¯

¯

¯

¯

µ ¶

( ) ( )

¯

¯

¯

¯

¯

: & ( 0 )

)

sup

(
¯

¯

¯

¯

¯

( 1 )

1
2 | |2

(2 )
2

2 | |2
¯

¯

¯

¯

¯

: & ( 0 )

)

( 0 ) sup

(
¯

¯

¯

¯

¯

( 1 )
[ 1

2 (1
2)+ 2 ]| |2

(2 ) 2

¯

¯

¯

¯

¯

:
and

( 0 )

)

By choosing close to 0 the reader should check using the above expression
that for any 0 (1 ) 2 there is a ˜ such that ( ) ˜ | |2

In particular 1 (R ) Hence one is justified in di erentiating past the
integrals in and this proves Eq. (45.5).

Lemma 45.5. There exists a polynomial ( ) such that for any 0 and
0

Z

R
1| | | |2

µ

1
2

¶

2
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Proof. Making the change of variables and then passing to polar
coordinates shows
Z

R
1| | | |2 =

Z

R
1| | 1

2| |2 =
¡

1
¢

Z

1

2 2 1

Letting = 2 and ( ) :=
R

=1

2

integration by parts shows

( ) =

Z

=1

1

Ã

2

2

!

=
1

2
+
1

2

Z

=1

( 1) ( 2)

2

=
1

2
+

1

2
2( )

Iterating this equation implies

( ) =
1

2
+

1

2

µ

1

2
+

3

2
4( )

¶

and continuing in this way shows

( ) = ( 1) +
( 1)!!

2
( )

where is the integer part of 2 = 0 if is even and = 1 if is odd and
is a polynomial. Since

0( ) =

Z

=1

2

1( ) =

Z

=1

2

=
2

it follows that
( ) ( 1)

for some polynomial

Proposition 45.6. Suppose (R R) such that | ( )| 2 | |2 then
uniformly on compact subsets as 0 In particular in view of

Proposition 45.4, ( ) := ( ) is a solution to the heat equation with
(0 ) = ( )

Proof. Let 0 be fixed and assume | | throughout. By uniform
continuity of on compact set, given 0 there exists = ( ) 0 such
that | ( ) ( )| if | | and | | Therefore, choosing 2
su ciently small,

| ( ) ( )| =
¯

¯

¯

¯

Z

( ) [ ( ) ( )]

¯

¯

¯

¯

Z

( ) | ( ) ( )|
Z

| |
( ) +

(2 ) 2

Z

| |
[ 2 | |2 + 2 | |2 ]

1
2 | |2

+ ˜ (2 ) 2
Z

| |
( 12 )| |2
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So by Lemma 45.5, it follows that

| ( ) ( )| + ˜ (2 )
2

Ã

1
¡

1
2

¢2

!

( 12 ) 2

and therefore

lim sup
0

sup
| |

| ( ) ( )| 0 as 0

Lemma 45.7. If ( ) is a polynomial on R then

Z

R
( ) ( ) =

X

=0
! 2

( )

Proof. Since

( ) :=

Z

R
( ) ( ) =

Z

R
( )
X

=
X

( )

( ) is a polynomial in of degree no larger than that of Moreover
( ) solves the heat equation and ( ) ( ) as 0 Since ( ) :=
P

=0 ! 2 ( ) has the same properties of and is a bounded operator
when acting on polynomials of a fixed degree we conclude ( ) = ( )

Example 45.8. Suppose ( ) = 1 2 +
4
3 then

2 ( ) = 1 2 +
4
3 + 2

¡

1 2 +
4
3

¢

+
2

2! · 4
2
¡

1 2 +
4
3

¢

= 1 2 +
4
3 + 2

12 2
3 +

2

2! · 44!
= 1 2 +

4
3 + 6

2
3 + 3

2

Proposition 45.9. Suppose (R ) and there exists a constant
such that

X

| |=2 +2

| ( )| | |2

then

( )( ) = “ 2 ( )” =
X

=0
!

( ) + ( +1) as 0

Proof. Fix R and let

( ) :=
X

| | 2 +1

1

!
( )
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Then by Taylor’s theorem with remainder

| ( + ) ( )| | |2 +2
sup
[0 1]

| + |2

| |2 +2 2 [| |2+| |2] ˜ | |2 +2 2 | |2

and thus
¯

¯

¯

¯

Z

R
( ) ( + )

Z

R
( ) ( )

¯

¯

¯

¯

˜
Z

R
( ) | |2 +2 2 | |2

= ˜ +1

Z

R
1( ) | |2 +2 2 2 | |2 = ( +1)

Since ( + ) and ( ) agree to order 2 +1 for near zero, it follows that

Z

R
( ) ( ) =

X

=0
!

(0) =
X

=0
!

( + )| =0

=
X

=0
!

( )

which completes the proof.

45.2 Representation Theorem and Regularity

In this section, suppose that is a bounded domain such that ¯ is a 2 —
submanifold with 2 boundary and for 0 let := (0 )× and

:= ([0 ]× ) ({0} × ) bd( ) = ([0 ]× ) ({0 } × )

as in Figure 45.1 below.

Theorem 45.10 (Representation Theorem). Suppose 2 1( ¯ )
( ¯ = ¯ = [0 ]× ) solves = 1

2 4 + on ¯ Then

( ) =

Z

( ) (0 ) +

Z

[0 ]×

( ) ( )

+
1

2

Z

[0 ]×

·

( ) ( ) ( ) ( )

¸

( )

(45.6)
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Fig. 45.1. A cylindrical region and the parabolic boundary

Proof. For 2 1([0 ]× ) integration by parts shows
Z

=

Z

(
1

2
4 )

=

Z

( +
1

2
· ) +

Z

¯

¯

¯

=

=0

+
1

2

Z

[0 ]×

=

Z

(
1

2
4 ) +

Z

¯

¯

¯

0

+
1

2

Z

[0 ]×

µ ¶

Given 0 taking ( ) := + ( ) (note that + 1
2 4 = 0 and

2 1([0 ]× )) implies
Z

[0 ]×

( ) + ( ) = 0 +

Z

( ) ( )

Z

+ ( ) ( )

+
1

2

Z

[0 ]×

"

+ ( ) ( )

+ ( ) ( )

#

( )

Let 0 above to complete the proof.

Corollary 45.11. Suppose := 0 so ( ) = 1
24 ( ) Then

((0 )× )
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Proof. Extend ( ) for 0 by setting ( ) := 0 if 0 It is not to
hard to check that this extension is on R× R \{0} Using this notation
we may write Eq. (45.6) as

( ) =

Z

( ) (0 )

+
1

2

Z

[0 )×

·

( ) ( ) ( ) ( )

¸

( )

The result follows since now it permissible to di erentiate under the integral
to show ((0 )× )

Remark 45.12. Since ( ) is analytic one may show that ( ) is
analytic for all

45.3 Weak Max Principles

Notation 45.13 Let
¡

¯
¢

satisfy = and for 2( ) let

( ) =
X

=1

( ) ( ) +
X

=1

( ) ( ) (45.7)

We say is elliptic if there exists 0 such that
X

( ) | |2 for all R and ( ) ¯

Assumption 3 In this section we assume is elliptic. As an example =
1
2 is elliptic.

Lemma 45.14. Let be an elliptic operator as above and suppose 2 ( )
and 0 is a point where ( ) has a local maximum. Then ( 0) 0
for all [0 ]

Proof. Fix [0 ] and set = ( 0) := ( 0) and let
{ } =1 be an orthonormal basis for R such that = Notice that

0 for all By the first derivative test, ( 0) = 0 for all and hence

( 0) =
X

=
X

= tr( )

=
X

· =
X

· =
X

·

=
X

2 ( 0) 0

The last inequality if a consequence of the second derivative test which asserts
2 ( 0) 0 for all R

958 45 Heat Equation

Theorem 45.15 (Elliptic weak maximum principle). Let be a bounded
domain and be an elliptic operator as in Eq. (45.7). We now assume that

and are functions of alone. For each
¡

¯
¢

2( ) such that
0 on (i.e. is — subharmonic) we have

max
¯

max
bd( )

(45.8)

Proof. Let us first assume 0 on If and had an interior local
maximum at 0 then by Lemma 45.14, ( 0) 0 which contradicts the
assumption that ( 0) 0 So if 0 on we conclude that Eq. (45.8)
holds.
Now suppose that 0 on Let ( ) := 1 with 0 then

( ) =
¡

2
11( ) + 1( )

¢

1 ( + 1( )) 1

By continuity of ( ) we may choose su ciently large so that + 1( ) 0
on ¯ in which case 0 on The results in the first paragraph may now
be applied to ( ) := ( ) + ( ) (for any 0) to learn

( ) + ( ) = ( ) max
bd( )

max
bd( )

+ max
bd( )

for all ¯

Letting 0 in this expression then implies

( ) max
bd( )

for all ¯

which is equivalent to Eq. (45.8).

Theorem 45.16 (Parabolic weak maximum principle). Assume
1 2( \ ) ( )

1. If 0 in then

max = max (45.9)

2. If 0 in then min = min

Proof. Item 1. follows from Item 2. by replacing so it su ces
to prove item 1. We begin by assuming 0 on ¯ and suppose for
the sake of contradiction that there exists a point ( 0 0) \ such that
( 0 0) = max

1. If ( 0 0) (i.e. 0 0 ) then by the first derivative test
( 0 0) = 0 and by Lemma 45.14 ( 0 0) 0 Therefore,

( ) ( 0 0) = ( 0 0) 0

which contradicts the assumption that 0 in
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2. If ( 0 0) \ with 0 = then by the first derivative test,
( 0) 0 and by Lemma 45.14 ( 0 0) 0 So again

( ) ( 0 0) 0

which contradicts the assumption that 0 in

Thus we have proved Eq. (45.9) holds if 0 on ¯ Finally if
0 on ¯ and 0 the function ( ) := ( ) satisfies

0 Therefore by what we have just proved

( ) max = max max for all ( ) ¯

Letting 0 in the last equation shows that Eq. (45.9) holds.

Corollary 45.17. There is at most one solution 1 2( \ ) ( )
to the partial di erential equation

= with = on

Proof. If there were another solution then := would solve
= with = 0 on So by the maximum principle in Theorem 45.16,
= 0 on ¯

We now restrict back to = 1
24 and we wish to see what can be said

when = R — an unbounded set.

Theorem 45.18. Suppose ([0 ]×R ) 2 1((0 )×R )

1

2
4 0 on [0 ]×R

and there exists constants such that

( ) | |2 for ( ) (0 )×R

Then
sup

( ) [0 ]×R
( ) := sup

R
(0 )

Proof. Recall that

( ) =

µ

1
¶ 2

1
2 | |2 =

µ

1
¶ 2

1
2 ·

solves the heat equation

( ) =
1

2
4 ( ) (45.10)
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Since both sides of Eq. (45.10) are analytic as functions in so1

( ) =
1

2
(4 )( ) =

1

2
4 ( )

and therefore for all 0 and

( ) = ˙ ( ) =
1

2
4 ( )

That is to say the function

( ) := ( ) =

µ

1
¶ 2

1
2( ) | |2 for 0

solves the heat equation. (This can be checked directly as well.)
Let 0 (to be chosen later) and set

( ) = ( ) ( ) for 0 2

Since ( ) is increasing in

( ) | |2
µ

1
¶ 2

1
2 | |2 for 0 2

Hence if we require 1
2 or 1

2 it will follows that

lim
| |

"

sup
0 2

( )

#

=

Therefore we may choose su ciently large so that

( ) := sup (0 ) for all | | and 0 2

Since
µ 4

2

¶

=

µ 4
2

¶

0

we may apply the maximum principle with = (0 ) and = 2 to
conclude for ( ) that

( ) ( ) = ( ) sup (0 ) if 0 2

1 Similarly since both sides of Eq. (45.10) are analytic functions in it follows that

( ) = ˙ ( ) =
1

2
4
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We may now let 0 in this equation to conclude that

( ) if 0 2 (45.11)

By applying Eq. (45.11) to ( + 2 ) we may also conclude

( ) if 0

Repeating this argument then enables us to show ( ) for all 0

Corollary 45.19. The heat equation

1

2
4 = 0 on [0 ]×R with (0 ·) = (·) (R )

has at most one solution in the class of functions ([0 ] × R )
2 1((0 )×R ) which satisfy

( ) | |2 for ( ) (0 )×R

for some constants and

Theorem 45.20 (Max Principle a la Hamilton). Suppose 1 2
¡

[0 ]×R

1. ( ) | |2 for some ( for all )
2. (0 ) 0 for all
3. 4 i.e. ( 4) 0

Then ( ) 0 for all ( ) [0 ]×R
Proof. Special Case. Assume 4 on [0 ]× R (0 ) 0 for

all R and there exists 0 such that ( ) 0 if | | and
[0 ] For the sake of contradiction suppose there is some point ( )

[0 ]×R such that ( ) 0
By the intermediate value theorem there exists [0 ] such that ( ) =

0 In particular the set { = 0} is a non-empty closed compact subset of
(0 ]× (0 ) Let

: (0 ]× (0 ) (0 ]

be projection onto the first factor, since { 6= 0} is a compact subset of (0 ]×
(0 ) if follows that

0 := min{ ({ = 0})} 0

Choose a point 0 (0 ) such that ( 0 0) { = 0} i.e. ( 0 0) = 0
see Figure 45.2 below. Since ( ) 0 for all 0 0 and R
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Fig. 45.2. Finding a point ( 0 0) such that 0 is as small as possible and ( 0 0) =
0

( 0 ) 0 for all R with ( 0 0) = 0 This information along with the
first and second derivative tests allows us to conclude

( 0 0) = 0 4 ( 0 0) 0 and ( 0 0) 0

This then implies that

0 ( 0 0) 4 ( 0 0) 0

which is absurd. Hence we conclude that 0 on [0 ]×R
General Case: Let ( ) = 1

2

1
4 | |2 be the fundamental solution to

the heat equation
= 4

Let 0 to be determined later. As in the proof of Theorem 45.18, the
function

( ) := ( ) =

µ

1
¶ 2

1
4( )

| |2 for 0

is still a solution to the heat equation. Given 0 define, for 2

( ) = ( ) ( )

Then

( 4) = ( 4) 0

(0 ) = (0 ) 0 0
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and for 2

( ) | |2 1
2

1
4 | |2

Hence if we choose such that 1
4 we will have ( ) 0 for | |

su ciently large. Hence by the special case already proved, ( ) 0 for
all 0 2 and 0 Letting 0 implies that ( ) 0 for all
0 2 As in the proof of Theorem 45.18 we may step our way up by
applying the previous argument to ( + 2 ) and then to ( + ) etc.
to learn ( ) 0 for all 0

45.4 Non-Uniqueness of solutions to the Heat Equation

Theorem 45.21 (See Fritz John §7). For any 1 let

( ) :=

½

0
0 0

(45.12)

and define

( ) =
X

=0

( )( ) 2

(2 )!

Then (R2) and

= and (0 ) := 0 (45.13)

In particular, the heat equation does not have unique solutions.

Proof. We are going to look for a solution to Eq. (45.13) of the form

( ) =
X

=0

( )

in which case we have (formally) that

0 = =
X

=0

( ˙ ( ) ( ) ( 1) 2)

=
X

=0

[ ˙ ( ) ( + 2)( + 1) +2( )]

This implies

+2 =
˙

( + 2)( + 1)
(45.14)

To simplify the final answer, we will now assume (0 ) = 0 i.e. 1 0 in
which case Eq. (45.14) implies 0 for all odd. We also have with := 0
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2 =
˙0
2 · 1 =

˙

2!
4 =

˙20

4 · 3 =
¨

4!
6 =

(3)

6!
2 =

( )

(2 )!

and hence

( ) =
X

=0

( )( ) 2

(2 )!
(45.15)

The function ( ) will solve = for ( ) R2 with (0 ) = 0
provided the convergence in the sum is adequate to justify the above compu-
tations.
Now let ( ) be given by Eq. (45.12) and extend to C\( 0] via ( ) =

where

= log( ) = (ln + ) for = with

In order to estimate ( )( ) we will use of the Cauchy estimates on the contour
| | = where is going to be chosen su ciently close to 0 Now

Re( ) = ln cos( ) = | | cos( )

and hence
| ( )| = Re( ) = | | cos( )

From Figure 45.3, we see

Fig. 45.3. Here is a picture of the maximum argument that a point on ( )
may attain. Notice that sin = = is independent of and 0 as 0

( ) := min
©

cos( ) : and | | = ª

is independent of and ( ) 1 as 0 Therefore for | | = we have

| ( )| | | ( ) ([ +1] ) ( ) =
( )
1+

1
2

provided is chosen so small that ( )
1+

1
2
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By for ( ) the Cauchy integral formula and its derivative give

( ) =
1

2

I

| |=
( )

and

( )( ) =
!

2

I

| |=
( )

( ) +1

and in particular

¯

¯

¯

( )( )
¯

¯

¯

!

2

I

| |=
| ( )|

| | +1
| |

!

2

1
2

2

| | +1
=

!

| |
1
2 (45.16)

We now use this to estimate the sum in Eq. (45.15) as

| ( )|
X

=0

¯

¯

¯

¯

( )( ) 2

(2 )!

¯

¯

¯

¯

1
2

X

=0

!

( )

| |2
(2 )!

1
2

X

=0

1

!

µ

2
¶

= exp

µ

2 1

2

¶

Therefore lim
0
( ) = 0 uniformly for in compact subsets of R Similarly

one may use the estimate in Eq. (45.16) to show is smooth and

=
X

=0

( )( )(2 )(2 1) 2 2

(2 )!
=
X

=1

( )( ) 2( 1)

(2( 1))!

=
X

=0

( +1)( ) 2

(2 )!
=

45.5 The Heat Equation on the Circle and R

In this subsection, let := { : } — be the circle of radius As usual
we will identify functions on with 2 — periodic functions on R. Given
two 2 periodic functions let

( ) :=
1

2

Z

( )¯( )

and denote := 2
2 to be the 2 — periodic functions on R such

that ( ) By Fourier’s theorem we know that the functions ( ) :=
with Z form an orthonormal basis for and this basis satisfies
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2

2
=

µ ¶2

Therefore the solution to the heat equation on

=
1

2
with (0 ·) =

is given by

( ) =
X

Z

( )
1
2( )

2

=
X

Z

Ã

1

2

Z

( )

!

1
2( )

2

=

Z

( ) ( )

where
( ) =

1

2

X

Z

1
2 ( )

2

If is periodic then it is — periodic for all N so we also would learn

( ) =

Z

( ) ( ) for all N

this suggest that we might pass to the limit as in this equation to
learn

( ) =

Z

R
( ) ( )

where

( ) := lim ( ) = lim
1

2

X

Z

1
2 ( )

2 ( )

=
1

2

Z

R

1
2

2

=
1

2

2

2

From this we conclude

( ) =

Z

R
( ) ( ) =

Z

X

Z

( + 2 ) ( )

and we arrive at the identity

X

Z

1

2

( +2 )2

2 =
X

Z

( + 2 ) =
1

2

X

Z

1
2( )

2

which is a special case of Poisson’s summation formula.



46

Abstract Wave Equation

In the next section we consider

4 = 0 with ( 0) = ( ) and ( 0) = ( ) for R (46.1)

Before working with this explicit equation we will work out an abstract Hilbert
space theory first.

Theorem 46.1 (Existence). Suppose : is a self-adjoint non-
positive operator, i.e. = and 0 and ( ) and
¡ ¢

are given. Then

( ) = cos( ) +
sin( )

(46.2)

satisfies:

1. ˙ ( ) = cos( ) + sin( ) exists and is continuous.
2. ¨( ) exists and is continuous

¨( ) = with (0) = and ˙ (0) = (46.3)

3. ( ) = cos( ) + sin( ) exists and is con-
tinuous.

Eq. (46.3) is Newton’s equation of motion for an infinite dimensional har-
monic oscillation. Given any solution to Eq. (46.3) it is natural to define its
energy by

( ) :=
1

2
[k ˙ ( )k2 + k ( )k2] = K.E + P.E.

where := Notice that Eq. (46.3) becomes ¨ + 2 = 0 with this
definition of
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Lemma 46.2 (Conservation of Energy). Suppose is a solution to Eq.
(46.3) such that ( ) exists and is continuous. Then ˙ ( ) = 0

Proof.

˙ ( ) = Re( ˙ ¨) + Re( ˙ ) = Re( ˙ 2 ) Re( 2 ˙ ) = 0

Theorem 46.3 (Uniqueness of Solutions). The only function
2(R ) satisfying 1) ( ) ( ) for all and 2)

¨ = with (0) = 0 = ˙ (0)

is the ( ) 0 for all

Proof. Let ( ) = 1| | and define = ( ) so that is
orthogonal projection onto the spectral subspace of where 0
Then for all ( ) we have = and for all we have

(( ) ) for any 0 Let ( ) := ( ) then 2(R )
( ) (( ) ) for all and ( ) is continuous and

¨ =
2

2
( ) = ¨ = = =

with (0) = 0 = ˙ (0) By Lemma 46.2,

1

2
[k ˙ ( )k2 + k ( )k2] = 1

2
[k ˙ (0)k2 + k (0)k2] = 0

for all In particular this implies ˙ ( ) = 0 and hence ( ) = ( ) 0
Letting then shows ( ) 0

Corollary 46.4. Any solution to ¨ = with (0) ( ) and ˙ (0)
( ) must satisfy ( ) is 1

46.1 Corresponding first order O.D.E.

Let ( ) = ˙( ), and

( ) =

µ

( )
( )

¶

=

µ

˙

¶

then

˙ =

µ

˙
¨

¶

=

µ ¶

=

µ

0
0

¶

= with

(0) =

µ ¶
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where

:=

µ

0
0

¶

=

µ

0
2 0

¶

Note formally that
µ ¶

=

µ

( )
˙ ( )

¶

=

µ

cos + sin

sin + cos

¶

=

µ

cos sin

sin cos

¶µ ¶

(46.4)

and this suggests that

=

µ

cos sin

sin cos

¶

which is formally correct since

=

µ

sin cos
2 cos sin

¶

=

µ

0
2 0

¶µ

cos sin

sin cos

¶

=

Since the energy form ( ) = k ˙k2 + k k2 is conserved, it is reasonable to
let

= ( ) :=

µ

( )
¶

with inner product
¿

¯

¯

¯

˜

˜

À

= ( ˜) + ( )̃

For simplicity we assumeNul( ) = Nul( ) = {0} in which case becomes
a Hilbert space and is a unitary evolution on Indeed,

k
µ ¶

k2 = k cos sin k2 + k (cos+ ) + sin k2

= k cos k2 + k sin k2 + k cos k2 + k sin k2
= k k2 + k k2

From Eq. (46.4), it easily follows that
¯

¯

¯

0

µ ¶

exists i ( )

and ( 2) = ( ) Therefore we define ( ) := ( ) ( ) =
( )

¡ ¢

and

=

µ

0
0

¶

: ( )
( )

=
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Since is the infinitesimal generator of a unitary semigroup, it follows that
= i.e. is skew adjoint. This may be checked directly as well as

follows.
Alternate Proof that = For

µ ¶ µ

˜
˜

¶

( ) = ( ) ( )

h
µ ¶ µ

˜
˜

¶

i = h
µ ¶ µ

˜
˜

¶

i = ( ˜) + ( ˜)

= ( ˜) ( ˜) = ( ˜) ( ˜)

and similarly

h
µ ¶ µ

˜
˜

¶

i = h
µ ¶ µ

˜
˜

¶

i = ( ˜) + ( ˜)

= ( ˜) + ( ˜) = h
µ ¶ µ

˜
˜

¶

i

which shows Conversely if
µ

˜
˜

¶

( ) and
µ

˜
˜

¶

=

µ ¶

,

then

h
µ ¶

¯

¯

¯

˜
˜
i = h

¯

¯

¯
i = ( ) + ( ) (46.5)

( ˜) + ( ˜) for all ( ) ( ). Take = 0 implies
( ˜) = ( ) for all ( ) which then implies ˜ ( ) = ( )
and hence ˜ = 2˜ = (Note ˜ ( ).) Taking = 0 in Eq. (46.5)
implies ( ˜) = ( ) = ( ) Since

Ran( ) = Nul( ) = {0} =

we find that = ˜ ( ) since ( ) Therefore ( ) ( ) and
for (˜ ˜) ( ) we have

µ

˜
˜

¶

=

µ

˜
˜

¶

=

µ

˜
˜

¶

46.2 Du Hamel’s Principle

Consider
¨ = + ( ) with (0) = and ˙ (0) = (46.6)

Eq. (46.6) implies, with = ˙ that
µ ¶

=

µ

¨

¶

=

µ

+

¶

=

µ

0
0

¶µ ¶

+

µ

0
¶
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Therefore

µ ¶

( ) =

0
0

µ ¶

+

Z

0

( )
0
0

µ

0
( )

¶

hence

( ) = cos( ) +
sin( )

+

Z

0

sin(( ) )
( )

Theorem 46.5. Suppose ( ) ( ) for all and that ( ) is continuous
relative to k k := k k+ k k. Then

( ) :=

Z

0

sin(( ) )
( )

solves ¨ = + with (0) = 0 ˙ (0) = 0.

Proof. ˙ ( ) =
R

0
cos(( ) ) ( ) .

¨( ) = ( )

Z

0

sin(( ) ) ( )

= ( )

Z

0

sin(( ) )
( )

So ˙ = + . Note (0) = 0 = ˙ (0).
Alternate. Let := then

( ) =

Z

0

sin(( ) )
( )

=

Z

0

sin cos sin cos
( )

and hence

˙ ( ) =
sin cos sin cos

( )

+

Z

0

(cos cos + sin sin ) ( )

=

Z

0

(cos cos + sin sin ) ( )

Similarly,
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¨( ) = (cos cos + sin sin ) ( )

+

Z

0

( sin cos + sin cos ) ( )

= ( )

Z

0

sin(( ) ) ( ) = ( ) 2 ( )

= ( ) + ( )



47

Wave Equation on Rn

(Ref Courant & Hilbert Vol II, Chap VI §12.)
We now consider the wave equation

4 = 0 with (0 ) = ( ) and (0 ) = ( ) for R (47.1)

According to Section 46, the solution (in the 2 — sense) is given by

( ·) = (cos(
p

4) +
sin( 4)

4 (47.2)

To work out the results in Eq. (47.2) we must diagonalize This is of course
done using the Fourier transform. Let F denote the Fourier transform in the
— variables only. Then

¨̂( ) + | |2ˆ( ) = 0 with

ˆ(0 ) = (̂ ) and ˙̂ ( ) = ˆ( )

Therefore

ˆ( ) = cos( | |) (̂ ) + sin( | |)| | ˆ( )

and so

( ) = F 1

·

cos( | |) (̂ ) + sin( | |)| | ˆ( )

¸

( )

i.e.

sin( 4)
4 = F 1

·

sin( | |)
| | ˆ( )

¸

and (47.3)

cos(
p

4) = F 1
h

cos( | |) (̂ )
i

= F 1

·

sin( | |)
| | ˆ( )

¸

(47.4)

Our next goal is to work out these expressions in — space alone.
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47.1 n = 1 Case

As we see from Eq. (47.4) it su ces to compute:

sin( 4)
4 = F 1

µ

sin( | |)
| | ˆ( )

¶

= lim F 1

µ

1| |
sin( | |)
| | ˆ( )

¶

= lim F 1

µ

1| |
sin( | |)
| |

¶

(47.5)

This inverse Fourier transform will be computed in Proposition 47.2 below
using the following lemma.

Lemma 47.1. Let denote the contour shown in Figure 47.1, then for
6= 0 we have

lim

Z

= 2 1 0

Proof. First assume that 0 and let denote the contour shown in
Figure 47.1. Then

¯

¯

¯

¯

¯

¯

Z

¯

¯

¯

¯

¯

¯

Z

0

¯

¯

¯

¯

¯

¯
= 2

Z

0

sin 0 as

Therefore

lim

Z

= lim

Z

+

= 2 res =0

µ ¶

= 2

Fig. 47.1. A couple of contours in C

If 0 the same argument shows
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lim

Z

= lim

Z

+ ˜

and the later integral is 0 since the integrand is holomorphic inside the contour
+ ˜

Proposition 47.2. lim F 1
³

1| |
sin( | |)
| |

´

( ) = sgn( )
2
1| | | |.

Proof. Let

= 2 F 1

µ

1| |
sin( | |)
| |

¶

( ) =

Z

| |

sin( ) ·

Then by deforming the contour we may write

=

Z

sin · =
1

2

Z

·

=
1

2

Z ( + ) ( )

By Lemma 47.1 we conclude that

lim =
1

2
2 (1( + ) 0 1( ) 0) = sgn( ) 1| | | |

(For the last equality, suppose 0 Then 0 implies + 0 so
we get 0 and if i.e. + 0 then 0 and we get 0 again. If
| | the first term is 1 while the second is zero. Similar arguments work
when 0 as well.)

Theorem 47.3. For = 1

sin( 4)
4 ( ) =

1

2

+
Z

( ) ( ) and (47.6)

cos(
p

4) ( ) = 1

2
[ ( + ) + ( )] (47.7)

In particular

( ) =
1

2
( ( + ) + ( )) +

1

2

+
Z

( ) (47.8)

is the solution to the wave equation (47.2).
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Proof. From Eq. (47.5) and Proposition 47.2 we find

sin( 4)
4 ( ) = sgn( )

1

2

Z

R

1| | | | ( )

= sgn( )
1

2

+| |
Z

| |

( ) =
1

2

+
Z

( )

Di erentiating this equation in gives Eq. (47.7).
If we have a forcing term, so ¨ = + with (0 ·) = 0 and (0 ·) = 0

then

( ) =

Z

0

sin(( ) 4)
4 ( ) =

1

2

Z

0

+
Z

+

( )

=
1

2

Z

0

Z

( + )

( + )

47.1.1 Factorization method for n = 1

Writing the wave equation as

0 =
¡

2 2
¢

= ( + )( ) = ( + )

with := ( ) implies ( ) = (0 ) with

(0 ) = (0 ) (0 ) = ( ) 0( )

Now solves ( ) = i.e. = + . Therefore

( ) = (0 ) +

Z

0

( ) ( )

= (0 + ) +

Z

0

( + )

= (0 + ) +

Z

0

(0 + 2
| {z }

)

= (0 + ) +
1

2

Z

(0 + )

= ( + ) +
1

2

Z

( ( + ) 0( + ))

= ( + )
1

2
( + )

¯

¯

¯

=

=
+
1

2

Z

( + )

=
( + ) + ( )

2
+
1

2

Z

( + )
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which is equivalent to Eq. (47.8).

47.2 Solution for n = 3

Given a function : R R and R let

(̄ ; ) :=

Z

2

( + ) ( ) =

Z Z

| |=| |
( + ) ( )

Theorem 47.4. For 2
¡

R3
¢

sin
¡ ¢

= F 1

·

sin | |
| | (̂ )

¸

( ) = (̄ ; )

and

cos
³ ´

=
£

(̄ ; )
¤

In particular the solution to the wave equation (47.1) for = 3 is given by

( ) = ( (̄ ; )) + ( ; )

=
1

4

Z

| |=1

( ( + ) + ( + ) + ( + ) · ) ( )

Proof. Let := F 1
h

sin | |
| | 1| |

i

then by symmetry and passing to

spherical coordinates,

(2 )
3 2

( ) =

Z

| |

sin | |
| |

· =

Z

| |

sin | |
| |

| | 3

=

Z

0

2

Z 2

0

Z

0

sin | | cos sin

= 2

Z

0

sin
| | cos

| |
¯

¯

¯

0

= 2

Z

0

sin
| | | |

| | =
4

| |
Z

0

sin sin | |

Using

sin sin =
1

2
[cos( ) cos( + )]

in this last equality, shows
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( ) = (2 ) 3 2 2

| |
Z

0

[cos(( | |) ) cos(( + | |) )]

= (2 ) 3 2

| | (| |)

where

( ) :=

Z

[cos(( ) ) cos(( + ) )]

an odd function in Since

F 1

·

sin | |
| | (̂ )

¸

= lim F 1(ˆ ( ) (̂ )) = lim ( )( )

we need to compute To this end

( ) =

µ

1

2

¶3 Z

R3

1

| | (| |) ( )

=

µ

1

2

¶3 Z

0

( )
Z

| |=
( ) ( )

=

µ

1

2

¶3 Z

0

( )
4 2

Z

| |=

( ) ( )

=
1

2

Z

0

( ) (̄ ; ) =
1

4

Z

( ) (̄ ; )

where the last equality is a consequence of the fact that ( ) (̄ ; ) is an
even function of Continuing to work on this expression suing (̄ ; )
is odd implies

( ) =
1

4

Z Z

[cos(( ) ) cos(( + ) )] (̄ ; )

=
1

2

Z Z

cos(( ) ) (̄ ; )

=
1

2
Re

Z Z

( ) (̄ ; ) (̄ ; ) as

using the 1 — dimensional Fourier inversion formula.

47.2.1 Alternate Proof of Theorem 47.4

Lemma 47.5. lim
R

cos( ) = 2 ( )

Proof.
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Z

cos( ) =

Z

so that

Z

R

( )

"

Z

#

Z

R

Z

R

( ) = 2 (0)

by the Fourier inversion formula.
Proof. of Theorem 47.4 again.

Z

sin | |
| |

· =

Z

sin ˙ | | cos sin 2

= 2

Z

sin | |

| |
¯

¯

¯

1

= 1

=
4

| |
Z

0

sin sin | |

=
2

| |
Z

0

[cos( ( | |)) cos( ( + | |))]

=
4

| |
Z

[cos( ( | |)) cos( ( + | |))]

=
8 2

| | ( ( | |) ( + | |))

Therefore

F 1

µ

sin | |
| |

¶

( )

=

µ

1

2

¶3

2 2

Z

R3

( ( | |) ( + | |))
| | ( ) ( )

=
1

4

Z

0

( ( ) ( + )) ( + )
2

( )

= 1 0 ( ; ) 1 0 ( ) ( ; )

= ( ; )

47.3 Du Hamel’s Principle

The solution to

= 4 + with (0 ) = 0 and (0 ) = 0
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is given by

( ) =
1

4

Z

( )

( | | )

| | =
1

4

Z

| |

( | | + )

| | (47.9)

Indeed, by Du Hamel’s principle,

( ) =

Z

0

sin(( ) 4)
4 ( ) =

Z

0

sin( 4)
4 ( )

=

Z

0

( ; ) =
1

4

Z

0

2

Z

| |=1

( + )
( )

=
1

4

Z

( )

( | | )

| | (let = + )

=
1

4

Z

| |

( | | + )

| |

Thinking of ( ) as pressure (47.9) says that the pressure at at time is
the “average" of the disturbance at time | | at location

47.4 Spherical Means

Let 2 and suppose solves = 4 Since is invariant under rotations,
i.e. for ( ) we have 4( ) = (4 ) it follows that is also a
solution to the wave equation. Indeed,

( ( ·) ) = ( ·) = ( ·) = 4( ( ·) )

By the linearity of the wave equation, this also implies, with denoting
normalized Haar measure on ( ) that

( | |) :=
Z

( )

( ( ) )

must be a radial solution of the Wave equation. This implies

= 4 ( | |) = 1
1

( 1 ( )) =| | =
·

2 ( ) +
1

( )

¸

Now

( | |) =
Z

0( )

( ) =

Z

(0 | |)

( ) ( )

Using the translation invariance of the same argument as above gives the
following theorem.
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Theorem 47.6. Suppose = 4 and R and let

( ) := ( ; ) :=

Z

( )

( ) ( )

=

Z

(0 1)

( + ) ( )

Then solves
=

1
1

( 1 )

with

(0 ) =

Z

(0 1)

(0 + ) ( ) = (̄ ; )

(0 ) = ( ; )

Proof. This has already been proved, nevertheless, let us give another
proof which does not rely on using integration over ( ) To this hence we
compute

( ) =

Z

(0 1)

( + ) ( )

=

Z

(0 1)

( + ) · ( )

=
1

( 1) 1

Z

| |=
( + ) · ˆ ( )

=
1

( 1) 1

Z

| |
( + )

=
1

( 1) 1

Z

0

Z

| |=
( + ) ( )

so that

1
1

( 1 ) =
1
1

"

1

( 1)

Z

0

Z

| |=
( + ) ( )

#

=
1

( 1) 1

Z

| |=
( + ) ( )

=

Z

| |=

( + ) ( )

=

Z

| |=

( + ) ( ) =
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We can now use the above result to solve the wave equation. For simplicity,
assume = 3 and let ( ) = ( ; ) = ( ) Then for 0 we have

= 2 + = ( +
2

)

= =

This is also valid for 0 because ( ) is odd in Indeed for 0 let
( ) = ( ) then ( ) = ( ) = ( ) = ( ) By our
solution to the one dimensional wave equation we find

( ) =
1

2
( (0 + ) + (0 )) +

1

2

+
Z

(0 )

Now suppose that (0 ) = 0 and (0 ) = ( ) in which case

(0 ) = 0 and (0 ) = ( )

and the previous equation becomes
Then

( ) =
1

2

+
Z

( )

and noting that
¯

¯

¯

0
( ) = ( ; 0) = ( )

we learn
( ) =

1

2
[ ( ; ) ( ) ( ; )] = ( ; )

as before.

47.5 Energy methods

Theorem 47.7 (Uniqueness on Bounded Domains). Let be a bounded
domain such that ¯ is a submanifold with 2 — boundary and consider the
boundary value problem

4 = on
= on ( × [0 ]) ( × { = 0})
= on × { = 0}

If 2( ) then is unique.
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Proof. As usual, using the linearity of the equation, it su ces to consider
the special case where = 0 = 0 and = 0 and to show this implies 0
Let

( ) =
1

2

Z

h

˙ ( )2 + | ( )|2
i

Clearly by assumption, (0) = 0 while the usual computation shows

˙ ( ) = ( ˙ ¨) 2( ) + ( ( ) ˙ ( )) 2( )

= ( ˙ ) 2( ) + ( ( ) ˙ ( )) 2( )

= ( ˙ ( ) ( )) 2( ) +

Z

˙ ( )
( )

( )

+ ( ( ) ˙ ( )) 2( )

= 0

wherein we have used ( ) = 0 implies ˙ ( ) = 0 for
From this we conclude that ( ) = 0 and therefore ˙ ( ) = 0 and hence
0
The following proposition is expected to hold given the finite speed of

propagation we have seen exhibited above for solutions to the wave equation.

Proposition 47.8 (Local Energy). Let R 0 = and define

( ) := ( )( ; ) :=
1

2

Z

( )

£| ˙ ( )|2 + | ( )|2¤

Then ( ) is decreasing for 0

Proof. First recall that
Z

( )

=

Z

0

Z

| |=
( ) ( ) =

Z

( )

Hence

˙( ) =

Z

( )

{| ˙ ( )|2 + | ( )|2}

=
1

2

Z

( )

(| ˙ |2 + | |2) +

Z

( )

[ ˙ ¨ + · ˙ ]

=
1

2

Z

( )

(| ˙ |2 + | |2) +

Z

( )

[ ˙ + · ˙ ]

=
1

2

Z

( )

(| ˙ |2 + | |2) + 2

Z

( )

˙

=
1

2

Z

( )

{2 ˙ ( · ) (| ˙ |2 + | |2)} 0
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wherein we have used the elementary estimate,

2 ( · ) ˙ 2| | | ˙ | (| ˙ |2 + | |2)

Therefore ( ) (0) = 0 for all i.e. ( ) := 0

Corollary 47.9 (Uniqueness of Solutions). Suppose that is a classical
solution to the wave equation with (0 ·) = 0 = (0 ·) Then 0

Proof. Proposition 47.8 shows

1

2

Z

( )

£| ˙ ( )|2 + | ( )|2¤ = ( )(0) = 0

for all 0 and R This then implies that ˙ ( ) = 0 for all R
and 0 and hence 0

Remark 47.10. This result also applies to certain class of weak type solutions
in by first convolving with an approximate (spatial) delta function, say
( ) = ( ·) ( ) Then satisfies the hypothesis of Corollary 47.9 and

hence is 0 Now let 0 to find 0

Remark 47.11. Proposition 47.8 also exhibits the finite speed of propagation
of the wave equation.

47.6 Wave Equation in Higher Dimensions

47.6.1 Solution derived from the heat kernel

Let
( ) :=

1

(2 ) 2

1
2 | |2

and simply write for 1 Then

2

Z

0

cos ( ) =

Z

R
( ) =

2 2 | =0 = 2 2

Taking = and writing ( ) := cos
¡ ¢

( ) the previous iden-
tity gives
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2

Z

0

( )
1

2

1
2

2

= 2

Z

0

( ) ( )

= 2 ( ) =

Z

R
( ) ( )

=

Z

R

1

(2 ) 2

1
2 | |2 ( )

=
1

(2 )
2

Z

0

1
2

2

Z

| |=
( ) ( )

=
( 1)

(2 )
2

Z

0

1
2

2 1¯( ; )

and so
Z

0

( )
1
2

2

=

r

2

( 1)

(2 ) 2

Z

0

1
2

2 1¯( ; )

=

r

2

( 1)

(2 )
2

( 1) 2

Z

0

1
2

2 1¯( ; )

Suppose = 2 + 1 and let :=
p

2
( 1)

(2 ) 2 then the above equation reads

Z

0

( )
1
2

2

=

Z

0

1
2

2 2 ¯( ; )

=

Z

0

µ

1
¶

1
2

2 2 ¯( ; )

I.B.P.
=

Z

0

1
2

2

( 1)
£

2 ¯( ; )
¤

By the injectivity of the Laplace transform (after making the substitution
, this implies

cos
³ ´

( ) = ( ) = ( 1)
£

2 ¯( ; )
¤

= ( 1 1 1)
£

2 ¯( ; )
¤

=

1 times
z }| {

1 1 1

£

2 1¯( ; )
¤

=

µ

1
¶ 1

£

2 1¯( ; )
¤

Hence we have derived the following theorem.

Theorem 47.12. Suppose = 2 + 1 is odd and let :=
p

2
( 1)

(2 ) 2 then
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cos
³ ´

( ) =

µ

1
¶ 1

£

2 1¯( ; )
¤

and

sin
¡ ¢

( ) =

Z

0

cos
³ ´

( ) =

µ

1
¶ 1

£

2 1¯( ; )
¤

Proof. For the last equality we have used

µ

1
¶ 1

2 1 = const. 2 1 2( 1) = const.

so that
¡

1
¢ 1 £ 2 1¯( ; )

¤

= ( ) and in particular is 0 at = 0

47.6.2 Solution derived from the Poisson kernel

Suppose we want to write

| | =
Z

0

( ) ( )

Since
Z

R

| | = 2Re

Z

0

= 2Re

µ

1

1

¶

=
2

1 + 2

and
Z

R
( ) =

2 2 | =0 = 2 2

must satisfy
Z

0

( )
2 2 =

2

1 + 2
=

Z

0

(1+ 2) 2 =

Z

0

2 2 2

from which it follows that ( ) = 2 Thus we have derived the formula

| | =
Z

0

(2 ) 1 2 2 1
2

2

(47.10)

Let : such that = and 0 By the spectral theorem, we
may “substitute” = into Eq. (47.10) to learn

=

Z

0

(2 ) 1 2 2
2

2

and in particular taking = one finds



47.6 Wave Equation in Higher Dimensions 987

=

Z

0

(2 ) 1 2 2
2

2

from which we conclude the convolution kernel ( ) for is given by

( ) =

Z

0

(2 ) 1 2 2
2 1( ) =

Z

0

(2 ) 1 2 2
2 2 | |2

(2 2 1)
2

= (2 ) 1 2
¡

2 2
¢ 2

Z

0

1
2

1
2

µ

1+ | |2
2

¶

= (2 ) 1 2
¡

2 2
¢ 2

Z

0

+1
2

1
2

µ

1+ | |2
2

¶

Making the substitution, = 1
2

³

1 + | |2
2

´

in the previous integral shows

( ) = (2 ) 1 2
¡

2 2
¢ 2

"

1

2

Ã

1 +
| |2
2

!#

+1
2 Z

0

+1
2

= (2 ) 1 22
+1
2 (2 ) 2 ¡

2
¢

+1
2

Ã

1 +
| |2
2

!

+1
2 µ

+ 1

2

¶

= 2
+1
2 (2 )

+1
2

µ

+ 1

2

¶

³

2 + | |2
´

+1
2

=

µ

+ 1

2

¶

+1
2

³

2 + | |2
´

+1
2

Theorem 47.13. Let

:=

¡

+1
2

¢

+1
2

( ) =
³

2 + | |2
´

+1
2

(47.11)

then

( ) =

Z

R
( ) ( ) (47.12)

Notice that if ( ) := ( ) we have 2 ( ) =
¡ ¢2

( ) =
( ) with (0 ) = ( ) This explains why is the same Poisson ker-

nel which we already saw in Eq. (43.36) of Theorem 43.31 above. To match
the two results, observe Theorem 43.31 is for “spatial dimension” 1 not
as in Theorem 47.13.
Integrating Eq. (47.12) from to then implies
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1
( ) =

1
( )| =

=

Z

( )

=

Z

R

Z

( ) ( )

Now
Z

( ) =

Z

³

2 + | |2
´

+1
2

=
1

³

2 + | |2
´

1
2 | =

=
1

³

2 + | |2
´

1
2

and hence

1
( ) =

Z

R 1

³

2 + | |2
´

1
2

( )

and by analytic continuation,

1 ( ) ( ) =
1 ( ) ( )

=
1

Z

R

³

( )2 + | |2
´

1
2

( )

=
1

Z

R

³

| |2 ( )
2
´

1
2

( )

and hence

1
sin
³ ´

( ) = 0 lim
0

Z

R
Im
³

| |2 ( )
2
´

1
2

( )

Now if | | | | then

lim
0

³

| |2 ( )2
´

1
2

=
³

| |2 2
´

1
2

is real so

lim
0
Im
³

| |2 ( )
2
´

1
2

= 0 if | | | |

Similarly if is odd lim 0

³

| |2 ( )
2
´

1
2

=
³

| |2 2
´

1
2 R and

so

lim
0
Im
³

| |2 ( )2
´

1
2
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is a distribution concentrated on the sphere | | = | | which is the sharp prop-
agation again. See Taylor Vol. 1., p. 221— 225 for more on this approach. Let
us examine here the special case = 3

Im

Ã

1

| |2 ( )
2

!

= Im

Ã

1

| |2 2 + 2 + 2

!

=
2

³

| |2 2 + 2
´2

+ 4 2 2

so

:= lim
0

Z

R
Im

Ã

1

| |2 ( )
2

!

( )

= lim
0

Z

R

2
³

| |2 2 + 2
´2

+ 4 2 2

( )

= 4 lim
0

Z

0

2 2

( 2 2 + 2)2 + 4 2 2
(̄ ; )

= lim
0

Z

0

2

( 2 2 + 2)2 + 4 2 2
(̄ ; )

Make the change of variables = + above to find

= lim
0

Z

( + )2 2

(2 + 2 2 + 2)
2
+ 4 2 2

(̄ ; + )

= lim
0

Z

( + )
2

(2 + 2 + )2 + 4 2
(̄ ; + )

= (̄ ; )

Z 2

4 2 2 + 4 2
=
4

(̄ ; )

Z

1
2 + 1

=
4

(̄ ; )

which up to an overall constant is the result that we have seen before.

47.7 Explain Method of descent n = 2

( ) =
1

2

Z

( )

( ) + 2 ( ) + ( ) · ( )

( 2 | |2)1 2

See constant coe cient PDE notes for more details on this.
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Sobolev Theory



48

Sobolev Spaces

Definition 48.1. For [1 ] N and an open subset of R let

( ) := { ( ) : ( ) (weakly) for all | | }

( ) := { ( ) : ( ) (weakly) for all | | }

k k ( ) :=
X

| |
k k ( )

1

if (48.1)

and
k k ( ) =

X

| |
k k ( ) if = (48.2)

In the special case of = 2 we write 2 ( ) =: ( ) and 2 ( ) =:
( ) in which case k·k 2( ) = k·k ( ) is a Hilbertian norm associated

to the inner product

( ) ( ) =
X

| |

Z

· (48.3)

Theorem 48.2. The function, k·k ( ) is a norm which makes ( )
into a Banach space.

Proof. Let ( ) then the triangle inequality for the — norms
on ( ) and ({ : | | }) implies

994 48 Sobolev Spaces

k + k ( ) =
X

| |
k + k ( )

1

X

| |

h

k k ( ) + k k ( )

i

1

X

| |
k k ( )

1

+
X

| |
k k ( )

1

= k k ( ) + k k ( )

This shows k·k ( ) defined in Eq. (48.1) is a norm. We now show com-
pleteness.
If { } =1 ( ) is a Cauchy sequence, then { } =1 is a Cauchy

sequence in ( ) for all | | By the completeness of ( ) there exists
( ) such that = — lim for all | | Therefore, for

all ( )

h i = lim h i = ( 1)| | lim h i = ( 1)| | lim h i

This shows exists weakly and = a.e. This shows ( )
and that ( ) as

Example 48.3. Let ( ) := | | for R and R Then

Z

(0 )

| ( )| =
¡

1
¢

Z

0

1 1 =
¡

1
¢

Z

0

1

=
¡

1
¢ ·
(

if 0

otherwise
(48.4)

and hence
¡

R
¢

i Now ( ) = | | 1 ˆ where
ˆ := | | Hence if ( ) is to exist in

¡

R
¢

it is given by | | 1 ˆ

which is in
¡

R
¢

i +1 i.e. if 1 = Let us not check

that 1 ¡

R
¢

provided 1 To do this suppose (R )
and 0 then

h i = lim
0

Z

| |
( ) ( )

= lim
0

(

Z

| |
( ) ( ) +

Z

| |=
( ) ( ) ( )

)

Since
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¯

¯

¯

¯

¯

Z

| |=
( ) ( ) ( )

¯

¯

¯

¯

¯

k k ¡

1
¢

1 0 as 0

and ( ) = | | 1
ˆ · is locally integrable we conclude that

h i =
Z

R
( ) ( )

showing that the weak derivative exists and is given by the usual pointwise
derivative.

48.1 Mollifications

Proposition 48.4 (Mollification). Let be an open subset of R
N0 := N {0} [1 ) and ( ) Then there exists ( )

such that in ( )

Proof.Apply Proposition 29.12 with polynomials, ( ) = for | |

Proposition 48.5. (R ) is dense in (R ) for all 1

Proof. The proof is similar to the proof of Proposition 48.4 using Exercise
29.32 in place of Proposition 29.12.

Proposition 48.6. Let be an open subset of R N0 := N {0} and
1 then

1. for any with | | : ( ) | | ( ) is a contraction.
2. For any open subset the restriction map | is bounded from

( ) ( )

3. For any ( ) and ( ) the ( ) and for | |

( ) =
X

µ ¶

· (48.5)

where
¡ ¢

:= !
!( )!

4. For any ( ) and ( ) the ( ) and for
| | Eq. (48.5) still holds. Moreover, the linear map ( )

( ) is a bounded operator.

Proof. 1. Let ( ) and ( ) then for with | | | |

h i = ( 1)| |h i = ( 1)| |h + i = ( 1)| |h + i

996 48 Sobolev Spaces

from which it follows that ( ) exists weakly and ( ) = + This
shows that | | ( ) and it should be clear that k k | | ( )

k k ( )

Item 2. is trivial.
3 - 4. Given ( ) by Proposition 48.4 there exists ( )

such that in ( ) From the results in Appendix A.1,
( ) ( ) and

( ) =
X

µ ¶

· (48.6)

holds. Given such that ¯ is compactly contained in we may use
the above equation to find the estimate

k ( )k ( )

X

µ ¶

°

°

°

°

( )

°

°

°

°

( )

( )
X

°

°

°

°

( )
( ) k k ( )

wherein the last equality we have used Exercise 48.36 below. Summing this
equation on | | shows

k k ( ) ( ) k k ( ) for all (48.7)

where ( ) :=
P

| | ( ) By replacing by in the above
inequality it follows that { } =1 is convergent in ( ) and since was
arbitrary in ( ) Moreover, we may pass to the limit in Eq.
(48.6) and in Eq. (48.7) to see that Eq. (48.5) holds and that

k k ( ) ( ) k k ( ) ( ) k k ( )

Moreover if ( ) then constant ( ) may be chosen to be indepen-
dent of and therefore, if ( ) then ( )
Alternative direct proof of 4. We will prove this by induction on | |

If = then, using Lemma 29.9,

h i = h i = h [ ] · i
= h i+ h · i = h + · i

showing ( ) exists weakly and is equal to ( ) = + · ( )
Supposing the result has been proved for all such that | | with
[1 ) Let = + with | | = then by what we have just proved each
summand in Eq. (48.5) satisfies

£ · ¤

exists weakly and

£ · ¤

= + · + · + ( )



48.1 Mollifications 997

Therefore ( ) = ( ) exists weakly in ( ) and

( ) =
X

µ ¶

£

+ · + · +
¤

=
X

µ ¶

£ · ¤

For the last equality see the combinatorics in Appendix A.1.

Theorem 48.7. Let be an open subset of R N0 := N {0} and
[1 ) Then ( ) ( ) is dense in ( )

Proof. Let := { : dist( ) 1 } (0 ) then

¯ { : dist( ) 1 } (0 ) +1

¯ is compact for every and as Let 0 = 3 := +3\ ¯
for 1 0 := ¯

2 and := ¯
+2 \ +1 for 1 as in figure 48.1. Then

Fig. 48.1. Decomposing into compact pieces. The compact sets 0 1 and 2

are the shaded annular regions while 0 1 and 2 are the indicated open annular
regions.

@@ for all and = Choose ( [0 1]) such that
= 1 on and set 0 = 0 and

= (1 1 · · · 1) =

1
Y

=1

(1 )

for 1 Then ( [0 1])
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1
X

=0

=
Y

=1

(1 ) 0 as

so that
P

=0 = 1 on with the sum being locally finite.
Let 0 be given. By Proposition 48.6, := ( ) with

supp( ) @@ By Proposition 48.4, we may find ( ) such that
k k ( ) 2 +1 for all Let :=

P

=1 , then ( )
because the sum is locally finite. Since

X

=0

k k ( )

X

=0

2 +1 =

the sum
P

=0 ( ) converges in ( ) The sum,
P

=0 ( )
also converges pointwise to and hence =

P

=0 ( ) is in
( ) Therefore ( ) ( ) and

k k
X

=0

k k ( )

Notation 48.8 Given a closed subset R let ( ) denote those
( ) that extend to a — function on an open neighborhood of

Remark 48.9. It is easy to prove that ( ) i there exists
¡

R
¢

such that = | Indeed, suppose is an open neighborhood of
( ) and = | ( ) Using a partition of unity argument (making

use of the open sets constructed in the proof of Theorem 48.7), one may
show there exists ( [0 1]) such that supp( ) @ and = 1 on a
neighborhood of Then := is the desired function.

Theorem 48.10 (Density of ( )
¡

¯
¢

in ( )). Let
R be a manifold with 0 — boundary, then for N0 and [1 )

( )
¡

¯
¢

is dense in
¡

0
¢

This may alternatively be stated
by assuming R is an open set such that ¯ = and ¯ is a manifold
with 0 — boundary, then ( )

¡

¯
¢

is dense in ( )

Before going into the proof, let us point out that some restriction on the
boundary of is needed for assertion in Theorem 48.10 to be valid. For
example, suppose

0 :=
©

R2 : 1 | | 2
ª

and := 0 \ {(1 2)× {0}}
and : (0 2 ) is defined so that 1 = | | cos ( ) and 2 = | | sin ( )
see Figure 48.2. Then ( ) ( ) for all N0 yet can
not be approximated by functions from

¡

¯
¢

( 0) in 1 ( )
Indeed, if this were possible, it would follows that 1 ( 0) However, is
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Fig. 48.2. The region 0 along with a vertical in

not continuous (and hence not absolutely continuous) on the lines { 1 = }
for all (1 2) and so by Theorem 29.30, 1 ( 0)
The following is a warm-up to the proof of Theorem 48.10.

Proposition 48.11 (Warm-up). Let : R 1 R be a continuous func-
tion and :=

©

R : ( 1 1)
ª

and ( ¯) denote those
¡

¯
¢

which are restrictions of — functions defined on an open neigh-
borhood of ¯ Then for [1 ) ( ¯) ( ) is dense in ( )

Proof. By Theorem 48.7, it su ces to show than any ( )
( ) may be approximated by elements of

¡

¯
¢

( ) For 0
let ( ) := ( + ) which is defined for Since

¯ =
©

R : ( 1 1)
ª

©

R : + ( 1 1)
ª

=

and = ( ) for all

( ) ( )
¡

¯
¢

( )

These observations along with the strong continuity of translations in (see
Proposition 11.13), implies lim 0 k k ( ) = 0

48.1.1 Proof of Theorem 48.10

Proof. By Theorem 48.7, it su ces to show than any ( ) ( )
may be approximated by elements of

¡

¯
¢

( ) To understand the
main ideas of the proof, suppose that is the triangular region in Figure
48.3 and suppose that we have used a partition of unity relative to the cover
shown so that = 1 + 2 + 3 with supp( ) Now concentrating on

1000 48 Sobolev Spaces

Fig. 48.3. Splitting and moving a function in ( ) so that the result is in
¡

¯
¢

1 whose support is depicted as the grey shaded area in Figure 48.3. We now
simply translate 1 in the direction shown in Figure 48.3. That is for any
small 0 let ( ) := 1( + ) then lives on the translated grey area
as seen in Figure 48.3. The function extended to be zero o its domain of
definition is an element of

¡

¯
¢

moreover it is easily seen, using the same
methods as in the proof of Proposition 48.11, that 1 in ( )
The formal proof follows along these same lines. To do this choose an at

most countable locally finite cover { } =0 of ¯ such that 0̄ and for
each 1 after making an a ne change of coordinates, = ( ) for
some 0 and

¯ = {( ) : ( )}
where : ( ) 1 ( ) see Figure 48.4 below. Let { } =0 be a par-

Fig. 48.4. The shaded area depicts the support of =

tition of unity subordinated to { } and let := ( ) Given
0 we choose so small that ( ) := ( + ) (extended to be zero

o its domain of definition) may be viewed as an element of ( ¯) and such
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that k k ( ) 2 For = 0 we set 0 := 0 = 0 Then, since
{ } =1 is a locally finite cover of ¯ it follows that :=

P

=0

¡

¯
¢

and further we have

X

=0

k k ( )

X

=1

2 =

This shows

=
X

=0

( ) ( )

and k k ( ) Hence
¡

¯
¢

( ) is a — approximation
of and since 0 arbitrary the proof is complete.

48.2 Di erence quotients

Recall from Notation 29.14 that for 6= 0

( ) :=
( + ) ( )

Remark 48.12 (Adjoints of Finite Di erences). For and
Z

R
( ) ( ) =

Z

R

( + ) ( )
( )

=

Z

R
( )

( ) ( )

=

Z

R
( ) ( )

We summarize this identity by ( ) =

Theorem 48.13. Suppose N0 is an open subset of R and is an
open precompact subset of

1. If 1 ( ) and ( ) then

k k ( ) k k ( ) (48.8)

for all 0 | | 1
2dist( )

2. Suppose that 1 ( ) and assume there exists a constant
( ) such that

k k ( ) ( ) for all 0 | | 1

2
dist( )
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Then ( ) and k k ( ) ( ) Moreover if :=

sup ( ) then in fact ( ) and there is a constant
such that

k k ( )

³

+ k k ( )

´

Proof. 1. Let | | then

k k ( ) = k k ( ) k k ( )

wherein we have used Theorem 29.22 for the last inequality. Eq. (48.8) now
easily follows.
2. If k k ( ) ( ) then for all | |

k k ( ) = k k ( ) ( )

So by Theorem 29.22, ( ) and k k ( ) ( ) From this
we conclude that k k ( ) ( ) for all 0 | | + 1 and hence
k k +1 ( )

£

( ) + k k ( )

¤

for some constant

Notation 48.14 Given a multi-index and 6= 0 let

:=
Y

=1

¡ ¢

The following theorem is a generalization of Theorem 48.13.

Theorem 48.15. Suppose N0 is an open subset of R is an open
precompact subset of and ( )

1. If 1 and | | then k k | |( ) k k ( ) for small.
2. If 1 and k k ( ) for all | | and near 0 then

+ ( ) and k k ( ) for all | |
Proof. Since =

Q

item 1. follows from Item 1. of Theorem 48.13

and induction on | |
For Item 2., suppose first that = 0 so that ( ) and k k ( )

for | | Then by Proposition 29.16, there exists { } =1 R \ {0} and
( ) such that 0 and lim h i = h i for all ( )

Using Remark 48.12,

h i = lim h i = ( 1)
| |
lim h i = ( 1)

| | h i

which shows = ( ) Moreover, since weak convergence decreases
norms,

k k ( ) = k k ( )
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For the general case if N ( ) such that k k ( )

then (for (1 ) the case = is similar and left to the reader)

X

| |
k k ( ) =

X

| |
k k ( ) = k k

( )

As above this implies ( ) for all | | and | | and that

k k
( )

=
X

| |
k k ( )

48.3 Sobolev Spaces on Compact Manifolds

Theorem 48.16 (Change of Variables). Suppose that and are
open subsets of R ( ) be a — di eomorphism such that
k k ( ) for all 1 | | and := inf |det 0| 0 Then the
map : ( ) ( ) defined by ( ) :=

( ) is well defined and is bounded.

Proof. For ( ) ( ) repeated use of the chain and product
rule implies,

( )
0
= ( 0 ) 0

( )
00
= ( 0 )

0 0 + ( 0 ) 00 = ( 00 ) 0 0 + ( 0 ) 00

( )
(3)
=
³

(3)
´

0 0 0 + ( 00 ) ( 0 0)0

+ ( 00 ) 0 00 + ( 0 ) (3)

...

( )
( )
=
³

( )
´

times
z }| {

· · · +
1

X

=1

³

( )
´ ³

0 00 ( +1 )
´

(48.9)

This equation and the boundedness assumptions on ( ) for 1 implies
there is a finite constant such that

¯

¯

¯
( )( )

¯

¯

¯

X

=1

¯

¯

¯

( )
¯

¯

¯
for all 1

By Hölder’s inequality for sums we conclude there is a constant such that
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X

| |
| ( )|

X

| |
| |

and therefore

k k ( )

X

| |

Z

| | ( ( ))

Making the change of variables, = ( ) and using

= |det 0( )|

we find

k k ( )

X

| |

Z

| | ( ( ))

X

| |

Z

| | ( ) = k k ( ) (48.10)

This shows that : ( ) ( ) ( ) ( ) is a bounded
operator. For general ( ) we may choose ( ) ( )
such that in ( ) Since is bounded, it follows that
is Cauchy in ( ) and hence convergent. Finally, using the change of
variables theorem again we know,

k k ( )
1 k k ( ) 0 as

and therefore = lim and by continuity Eq. (48.10) still holds
for ( )
Let be a compact — manifolds without boundary, i.e. is a compact

Hausdor space with a collection of charts in an “atlas” A such that :
( ) ( ) R is a homeomorphism such that

1 ( ( ( ) ( ))) ( ( ) ( ))) for all A

Definition 48.17. Let { } =1 A such that = =1 ( ) and let
{ } =1 be a partition of unity subordinate do the cover { ( )} =1 We now
define ( ) if : C is a function such that

k k ( ) :=
X

=1

°

°( ) 1
°

°

( ( ))
(48.11)

Since k·k ( ( )) is a norm for all it easily verified that k·k ( ) is a
norm on ( )
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Proposition 48.18. If ( ) and ( ) then ( )
and

k k ( ) k k ( ) (48.12)

where is a finite constant not depending on Recall that : R is
said to be with if 1 ( ( ) R) for all A
Proof. Since

£

1
¤

has bounded derivatives on supp( 1) it fol-
lows from Proposition 48.6 that there is a constant such that

°

°( ) 1
°

°

( ( ))
=
°

°

£

1
¤

( ) 1
°

°

( ( ))
°

°( ) 1
°

°

( ( ))

and summing this equation on shows Eq. (48.12) holds with := max

Theorem 48.19. If { } =1 A such that = =1 ( ) and { } =1 is

a partition of unity subordinate to the cover { ( )} =1 then the norm

| | ( ) :=
X

=1

°

°( ) 1
°

°

( ( ))
(48.13)

is equivalent to the norm in Eq. (48.11). That is to say the space ( )
along with its topology is well defined independent of the choice of charts and
partitions of unity used in defining the norm on ( )

Proof. Since |·| ( ) is a norm,

| | ( ) =

¯

¯

¯

¯

¯

X

=1

¯

¯

¯

¯

¯

( )

X

=1

| | ( )

=
X

=1

°

°

°

°

°

X

=1

( ) 1

°

°

°

°

°

( ( ))

X

=1

X

=1

°

°( ) 1
°

°

( ( ))
(48.14)

and since 1 and 1 are di eomorphism and the sets
(supp( ) supp( )) and (supp( ) supp( )) are compact, an appli-

cation of Theorem 48.16 and Proposition 48.6 shows there are finite constants
such that

°

°( ) 1
°

°

( ( ))

°

°( ) 1
°

°

( ( ))
°

°

1
°

°

( ( ))
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which combined with Eq. (48.14) implies

| | ( )

X

=1

X

=1

°

°

1
°

°

( ( ))
k k ( )

where := max
P

=1 Analogously, one shows there is a constant
such that k k ( ) | | ( )

Lemma 48.20. Suppose A( ) and such that ¯ ( )
then there is a constant such that

°

°

1
°

°

( ( ))
k k ( ) for all ( ) (48.15)

Conversely a function : C with supp( ) is in ( ) i
°

°

1
°

°

( ( ))
and in any case there is a finite constant such that

k k ( )

°

°

1
°

°

( ( ))
(48.16)

Proof. Choose charts 1 := 2 A such that { ( )} =1 is

an open cover of and choose a partition of unity { } =1 subordinate to

the cover { ( )} =1 such that 1 = 1 on a neighborhood of ¯ To construct
such a partition of unity choose such that ¯ ( ) ¯ 1

and =1 = and for each let ( ( ) [0 1]) such that = 1 on
a neighborhood of ¯ Then define := (1 0) · · · (1 1) where by
convention 0 0 Then { } =1 is the desired partition, indeed by induction
one shows

1
X

=1

= (1 1) · · · (1 )

and in particular

1
X

=1

= (1 1) · · · (1 ) = 0

Using Theorem 48.19, it follows that
°

°

1
°

°

( ( ))
=
°

°( 1 )
1
°

°

( ( ))
°

°( 1 )
1
°

°

( ( 1))

X

=1

°

°( ) 1
°

°

( ( ))

= | | ( ) k k ( )
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which proves Eq. (48.15).
Using Theorems 48.19 and 48.16 there are constants for =

0 1 2 such that

k k ( ) 0

X

=1

°

°( ) 1
°

°

( ( ))

= 0

X

=1

°

°( ) 1
1 1

1
°

°

( ( ))

0

X

=1

°

°( ) 1
°

°

( ( 1))

= 0

X

=1

°

°

1 · 1
°

°

( ( 1))

This inequality along with — applications of Proposition 48.6 proves Eq.
(48.16).

Theorem 48.21. The space ( ( ) k·k ( )) is a Banach space.

Proof. Let { } =1 A and { } =1 be as in Definition 48.17 and choose
such that supp( ) ¯ ( ) If { } =1 ( )

is a Cauchy sequence, then by Lemma 48.20,
©

1
ª

=1
( ( ))

is a Cauchy sequence for all Since ( ( )) is complete, there exists
( ( )) such that 1 ˜ in ( ( )) For each let

:= (˜ ) and notice by Lemma 48.20 that

k k ( )

°

°

1
°

°

( ( ))
= k˜ k ( ( ))

so that :=
P

=1 ( ) Since supp( ) it follows that

k k ( ) =

°

°

°

°

°

X

=1

X

=1

°

°

°

°

°

( )

X

=1

k k ( )

X

=1

°

°[ (˜ )] 1
°

°

( ( ))

=
X

=1

°

°

£

1
¡

˜ 1
¢¤
°

°

( ( ))

X

=1

°

°˜ 1
°

°

( ( ))
0 as
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wherein the last inequality we have used Proposition 48.6 again.

48.4 Trace Theorems

For many more general results on this subject matter, see E. Stein [17, Chapter
VI].

Notation 48.22 Let H :=
©

R : 0
ª

be the open upper half space
inside of R and if 0 let

H :=
©

H : 0
ª

Lemma 48.23. Suppose 1 and 0

1. If [1 ) and
³

H
´

then for all N 1
0 × {0} N0 with | |

1

k k ( H )
1 k k (H ) +

1

1

°

°

+
°

°

(H )
(48.17)

In particular there there is a constant = ( ) such that

k k 1 ( H ) ( ) k k (H ) (48.18)

2. For = and
¡

H
¢

there is a continuous version ˜ of The
function ˜ is in 1

¡

H
¢

and has the property that ˜ extends to a
continuous function

¡

H̄
¢

for all | | and the function ˜| H
is in 1

¡

H̄
¢

and

k˜k 1( H ) k k (H ) for any 0

Proof. 1. Write H as = ( ) R 1 × [0 ) and suppose
N 1
0 × {0} N0 with | | 1 Then by the fundamental theorem of

calculus,

( 0) = ( )

Z

0

( ) (48.19)

which implies

| ( 0)| 1[0 ]( ) | ( )| 1[0 ]( ) + 1[0 ]( )

Z

0

| ( )|

Taking the (H ) — norm of this last equation implies

k k ( H ) · 1 k k (H ) +
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where

=

Z

H

µ

1[0 ]( )

Z

0

| ( )|
¶

Z

H

µ

1[0 ]( ) ·
Z

0

| ( )|
¶

Z

H

Ã

1[0 ]( ) ·
Z

0

| ( )|
!

=
°

°

+
°

°

(H )

+1

+ 1
=

°

°

+
°

°

(H )

Putting these two equations together shows

k k ( H )
1

·

k k (H ) + 1

°

°

+
°

°

(H )

¸

which is the same as Eq. (48.17).
Suppose that = and

¡

H
¢

By Proposition 29.29, we know
that has a Lipschitz continuous version on H for each | | Being
Lipschitz, each has a unique extension to a continuous function H Let

( (0 1)
¡

H
¢

[0 ))

be chosen so that
R

R ( ) = 1 and ( ) = ( ) and let :=

= Since supp( )
¡

H
¢

as in Figure 48.5,
³

H
´

Fig. 48.5. The support of

= = for all | | and

k k 1(H (0 ))
0 as

Therefore uniformly on compact subsets of H for all | |
Hence 0

1
¡

H
¢

and 0 = extends to H for all | | and

0| H 1
¡

H̄
¢

1010 48 Sobolev Spaces

Theorem 48.24 (Trace Theorem). Suppose 1 and R such that
¯ is a compact manifold with — boundary. Then there exists a unique linear
map : ( ) 1 ( ) such that = | for all

¡

¯
¢

Proof. Choose a covering { } =0 of ¯ such that 0̄ and for each
1 there is — di eomorphism : ( ) R such that

( ) = ( ) bd(H ) and

( ) = ( ) H

as in Figure 48.6. Further choose ( [0 1]) such that
P

=0 = 1

Fig. 48.6. Covering (the shaded region) as described in the text.

on a neighborhood of ¯ and set := | for 1 Given
¡

¯
¢

if
and ( ) if = we compute
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k | ¯k 1 ( ¯) =
X

=1

°

°( ) | ¯
1
°

°

1 ( ( ) bd(H ))

=
X

=1

°

°

£

( ) 1
¤ |bd(H )

°

°

1 ( ( ) bd(H ))

X

=1

°

°

£

( ) 1
¤
°

°

( ( ))

max ·
X

=1

°

°

£

( ) 1
¤
°

°

( ( ) H )

+
°

°

£

( 0 )
1

0

¤
°

°

( ( 0))

k k ( )

where = max {1 1 } The proof is complete if = and follows
by the B.L.T. Theorem 2.68 and the fact that

¡

¯
¢

is dense inside ( )
if

Notation 48.25 In the sequel will often abuse notation and simply write | ¯

for the “function” 1 ( ¯)

Proposition 48.26 (Integration by parts). Suppose R such that
¯ is a compact manifold with 1 — boundary, [1 ] and = 1 is the
conjugate exponent. Then for 1 ( ) and 1 ( )

Z

· =

Z

· +

Z

¯
| ¯ · | ¯ (48.20)

where : ¯ R is unit outward pointing norm to ¯

Proof. Equation 48.20 holds for 2
¡

¯
¢

and therefore for ( )
( )× ( ) since both sides of the equality are continuous in ( )
( )× ( ) as the reader should verify.

Warning BRUCE: We might need (1 ) here. To fix this, I think if
= 1 one should replace by := ( ) where ( ) =

R

0
( )

and (R [0 1) such that = 1 on [ 1 1] Then 1 ( ) and
in 1 1 ( ) and hence the argument given above goes through. We

need only approximate 1 ( ) with now. We should then pass
to the limit as

Definition 48.27. Let 0 ( ) := ( )
( )

be the closure of ( )
inside ( )

Remark 48.28. Notice that if : ( ) 1
¡

¯
¢

is the trace op-

erator in Theorem 48.24, then
³

0 ( )
´

= {0} 1
¡

¯
¢

since

= | ¯ = 0 for all ( )

1012 48 Sobolev Spaces

Corollary 48.29. Suppose R such that ¯ is a compact manifold with
1 — boundary, [1 ) and : 1 ( ) ( ) is the trace operator

of Theorem 48.24. Then 1
0 ( ) = Nul( )

Proof. It has already been observed in Remark 48.28 that 1
0 ( )

Nul( ) Suppose Nul( ) and supp( ) is compactly contained in The
mollification ( ) defined in Proposition 48.4 will be in ( ) for 0
su ciently small and by Proposition 48.4, in 1 ( ) Thus

1
0 ( ) So to finish the proof that Nul( ) 1

0 ( ) it su ces to show
every 1

0 ( ) may be approximated by 1
0 ( ) such that supp( )

is compactly contained in Two proofs of this last assertion will now be
given.
Proof 1. For Nul( ) 1 ( ) define

˜( ) =

½

( ) for ¯

0 for ¯

Then clearly ˜
¡

R
¢

and moreover by Proposition 48.26, for (R )

Z

R
˜ · =

Z

· =

Z

·

from which it follows that ˜ exists weakly in
¡

R
¢

and ˜ = 1 a.e..
Thus ˜ 1

¡

R
¢

with k˜k 1 (R ) = k k 1 ( ) and supp(˜) ¯ (The
reader should compare this result with Proposition 48.30 below.)
Choose 1

¡

R R
¢

such that ( ) · ( ) 0 for all ¯ and
define

˜ ( ) = ˜( ) := ˜ ( )

Notice that supp(˜ )
¡

¯
¢

@@ for all su ciently small. By the
change of variables Theorem 48.16, we know that ˜ 1 ( ) and since
supp(˜ ) is a compact subset of it follows from the first paragraph that
˜ 1

0 ( )
To so finish this proof, it only remains to show ˜ in 1 ( ) as
0 Looking at the proof of Theorem 48.16, the reader may show there are

constants 0 and such that

k k 1 (R ) k k 1 (R ) for all
1
¡

R
¢

(48.21)

By direct computation along with the dominated convergence it may be
shown that

in 1
¡

R
¢

for all (R ) (48.22)

As is now standard, Eqs. (48.21) and (48.22) along with the density of (R )
in 1

¡

R
¢

allows us to conclude in 1
¡

R
¢

for all 1
¡

R
¢

which completes the proof that ˜ in 1 ( ) as 0
Proof 2. As in the first proof it su ces to show that any 1

0 ( )
may be approximated by 1 ( ) with supp( ) @ As above extend
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to by 0 so that ˜ 1
¡

R
¢

Using the notation in the proof of 48.24, it
su ces to show := ˜ 1

¡

R
¢

may be approximated by 1 ( )
with supp( ) @ Using the change of variables Theorem 48.16, the problem
may be reduced to working with = 1 on = ( ) But in this case
we need only define ( ) := ( ) for 0 su ciently small. Then
supp( ) H and as we have already seen in 1

¡

H
¢

Thus
:= 1 ( ) as 0 with supp( ) @

48.5 Extension Theorems

Proposition 48.30. Let N0 [1 ] and suppose is any open subset
of R Then the extension by zero map,

0 ( ) 1 (R )

is a contraction. Recall 0 ( ) was defined in Definition 48.27) above.

Proof. The result holds for ( ) and hence for all 0 ( )

Lemma 48.31. Let 0 := (0 ) R ± := { : ± 0}
and := { : = 0} Suppose that ( \ ) ( ) and for each
| | extends to a continuous function on Then ( ) and

= for all | |
Proof. For and then by continuity, the fundamental theorem

of calculus and the dominated convergence theorem,

( + ) ( ) = lim

\
[ ( + ) ( )] = lim

\

Z

0

( + )

= lim

\

Z

0

( + ) =

Z

0

( + )

and similarly, for =

( + ) ( ) = lim

sgn( )\

[ ( + ) ( )]

= lim

sgn( )\

Z

0

( + )

= lim

sgn( )\

Z

0

( + ) =

Z

0

( + )

1014 48 Sobolev Spaces

These two equations show, for each ( ) exits and ( ) = ( ) Hence
we have shown 1 ( )
Suppose it has been proven for some 1 that ( ) exists and is

given by ( ) for all | | Then applying the results of the previous
paragraph to ( ) with | | = shows that ( ) exits and is given by
+ ( ) for all and and from this we conclude that ( ) exists

and is given by ( ) for all | | + 1 So by induction we conclude ( )
exists and is given by ( ) for all | | i.e. ( )

Lemma 48.32. Given any + 1 distinct points, { } =0 in R\ {0} the
( + 1)× ( + 1) matrix with entries := ( ) is invertible.

Proof. Let R +1 and define ( ) :=
P

=0 If Nul( ) then

0 =
X

=0

( ) = ( ) for = 0 1

Since deg ( ) and the above equation says that has +1 distinct roots,
we conclude that Nul( ) implies 0 which implies = 0 Therefore
Nul( ) = {0} and is invertible.

Lemma 48.33. Let ± and be as in Lemma 48.31 and { } =0 be
+ 1 distinct points in ( 1] for example = ( + 1) will work. Also

let R +1 be the unique solution (see Lemma 48.32 to = 1 where 1
denotes the vector of all ones in R +1 i.e. satisfies

1 =
X

=0

( ) for = 0 1 2 (48.23)

For (H )1 with supp( ) H and = ( ) R define

˜( ) = ˜( ) =

½

( ) if 0
P

=0 ( ) if 0
(48.24)

Then ˜ (R ) with supp(˜) and moreover there exists a constant
independent of such that

k˜k ( ) k k ( +) (48.25)

Proof. By Eq. (48.23) with = 0

X

=0

( 0) = ( 0)
X

=0

= ( 0)

1 Or more generally, one may assume (H )
³

H
´

such that each

for | | extends to a continuous function on H
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This shows that ˜ in Eq. (48.24) is well defined and that ˜
¡

H
¢

Let
:= {( ) : ( ) supp( )} Since ( 1] if = ( )

and 0 then ( ) supp( ) and therefore ˜( ) = 0 and therefore
supp(˜) is compactly contained inside of Similarly if N0 with | |
Eq. (48.23) with = implies

( ) :=

½

( ) ( ) if 0
P

=0 ( ) ( ) if 0

is well defined and
¡

R
¢

Di erentiating Eq. (48.24) shows ˜( ) =
( ) for \ and therefore we may conclude from Lemma 48.31 that

˜ ( )
¡

R
¢

and ˜ = for all | |
We now verify Eq. (48.25) as follows. For | |

k ˜k ( ) =

Z

R
1 0

¯

¯

¯

¯

¯

X

=0

( ) ( )

¯

¯

¯

¯

¯

Z

R
1 0

X

=0

|( ) ( )|

=

Z

R
1 0

X

=0

1

| | |( ) ( )|

=

Ã

X

=0

1

| |

!

k k ( +)

where :=
³

P

=0 | |
´

Summing this equation on | | shows

there exists a constant 0 such that k˜k ( )
0 k k ( +) and

hence Eq. (48.25) holds with = 0 + 1

Corollary 48.34. Let 1 ± { } =0 be as in Lemma 48.33 and
suppose that (H ) with supp( ) H By item 2. of Lemma
48.23, by modifying on a null set we may assume that 1

¡

H
¢

with
³

H
´

for all | | Then the function ˜ defined in Eq. (48.24) in

(R ) with supp(˜) and Eq. (48.25) is still valid.

Proof. By Lemma 48.33, ˜ 1(R ) Let
¡

R
¢

and | | = 1
and {1 2 } then by standard integration by parts

h˜ i = ( 1)| | h ˜ i
= ( 1)

| | h1 + ˜ i+ ( 1)
| | h1 ˜ i

Making use of Proposition 48.26 and the change of variables theorem,
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h˜ i = ( 1)| | h1 + ˜ i ( 1)| | h1 ˜ i
= ( 1)| | h ˜ i

wherein we have used the fact that ˜| + = ˜| for all | | to see
that the boundary terms from the integrals cancel. Hence it follows that ˜
exists weakly and is given by the expected formula, namely by di erentiating
Eq. (48.24) away from and piecing the results together. The verification of
Eq. (48.25) is as before.

Theorem 48.35 (Extension Theorem). Suppose 1 and R such
that ¯ is a compact manifold with — boundary. Given R such that
¯ there exists a bounded linear (extension) operator : ( )

¡

R
¢

such that

1. = a.e. in and
2. supp( )

Proof. As in the proof of Theorem 48.24, choose a covering { } =0 of ¯
such that 0̄ =0

¯ and for each 1 there is — di eomorphism
: ( ) R such that

( ) = ( ) bd(H ) and ( ) = ( ) H = +

where + is as in Lemma 48.33 and Corollary 48.34, refer to Figure 48.6.
Further choose ( [0 1]) such that

P

=0 = 1 on a neighborhood
of ¯ and set := | for 1 Given

¡

¯
¢

if (

( ) if = ) and 1 the function := ( ) 1 may be
viewed as a function in (H ) (H ) ( (H )) with supp( )
Let ˜ ( )

¡

( )
¢

be defined as in Eq. (48.24) above and define
˜ := 0 +

P

=1 ˜
¡

R
¢ ¡ ¡

R
¢¢

Notice that ˜ = on ¯

supp( ) and by Lemma 48.20,

k˜k (R ) k 0 k (R ) +
X

=1

k˜ k (R )

k 0 k ( ) +
X

=1

k˜ k ( ( ))

( 0) k k ( ) +
X

=1

k k ( +)

= ( 0) k k ( ) +
X

=1

°

°( ) 1
°

°

( +)

( 0) k k ( ) +
X

=1

k k ( )
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This completes the proof for = and shows for that the map
( ¯) := ˜ ( ) is bounded as map from ( ) to ( )

As usual, we now extend using the B.L.T. Theorem 2.68 to a bounded linear
map from ( ) to ( ) So for general ( ) = ( )
— lim ˜ where ( ¯) and = ( ) — lim By passing
to a subsequence if necessary, we may assume that ˜ converges a.e. to
from which it follows that = a.e. on ¯ and supp( )

48.6 Exercises

Exercise 48.36. Show the norm in Eq. (48.1) is equivalent to the norm

| | ( ) :=
X

| |
k k ( )

Solution 48.37. 48.36This is a consequence of the fact that all norms on
({ : | | }) are equivalent. To be more explicit, let = k k ( )

then

X

| |
| |

X

| |
| |

1
X

| |
1

1

while

X

| |
| |

1
X

| |

X

| |
| |

1

[# { : | | }]1
X

| |
| |
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Sobolev Inequalities

49.1 Morrey’s Inequality

Notation 49.1 Let 1 be the sphere of radius one centered at zero inside
R For a set 1 R and (0 ) let

{ + : such that 0 }

So = + 0 where 0 is a cone based on see Figure 49.1 below.

Fig. 49.1. The cone 0 .

Notation 49.2 If 1 is a measurable set let | | = ( ) be the surface
“area” of

1020 49 Sobolev Inequalities

Notation 49.3 If R is a measurable set and : R C is a measurable
function let

:=

Z

( ) :=
1

( )

Z

( )

By Theorem 9.35,
Z

( ) =

Z

0

( + ) =

Z

0

1

Z

( + ) ( ) (49.1)

and letting = 1 in this equation implies

( ) = | | (49.2)

Lemma 49.4. Let 1 be a measurable set such that | | 0 For
1( )

Z

| ( ) ( )| 1

| |
Z | ( )|

| | 1
(49.3)

Proof.Write = + with 1 then by the fundamental theorem
of calculus,

( + ) ( ) =

Z

0

( + ) ·

and therefore,
Z

| ( + ) ( )| ( )

Z

0

Z

| ( + )| ( )

=

Z

0

1

Z | ( + )|
| + | 1

( )

=

Z | ( )|
| | 1

Z | ( )|
| | 1

wherein the second equality we have used Eq. (49.1). Multiplying this inequal-
ity by 1 and integrating on [0 ] gives

Z

| ( ) ( )|
Z | ( )|

| | 1
=

( )

| |
Z | ( )|

| | 1

which proves Eq. (49.3).

Corollary 49.5. Suppose B 1 such that | | 0
(0 ) and 1( ) Then



49.1 Morrey’s Inequality 1021

| ( )| (| | ) k k 1 ( ) (49.4)

where

(| | ) :=
1

| |1 max

Ã

1
µ

1
¶1 1

!

· 1

Proof. For

| ( )| | ( )|+ | ( ) ( )|
and hence using Eq. (49.3) and Hölder’s inequality,

| ( )|
Z

| ( )| +
1

| |
Z | ( )|

| | 1

1

( )
k k ( ) k1k ( )

+
1

| | k k ( )k 1

| ·| 1
k ( ) (49.5)

where = 1 as before. Now

k 1

| · | 1
k ( 0 ) =

Z

0

1

Z

¡

1
¢

( )

= | |
Z

0

¡

1
¢1 1 = | |

Z

0

1

1

and since

1
1

1
=

1

we find

k 1

| · | 1
k ( 0 ) =

µ

1 | | 1

¶1

=

µ

1 | |
¶

1

1 (49.6)

Combining Eqs. (49.5), Eq. (49.6) along with the identity,

1

( )
k1k ( ) =

1

( )
( )1 =

¡| | ¢ 1
(49.7)

shows

| ( )| k k ( )

¡| | ¢ 1
+

1

| | k k ( )

µ

1 | |
¶1 1

1

=
1

| |1
"

k k ( )

1

+ k k ( )

µ

1
¶1 1

#

1

1

| |1 max

Ã

1
µ

1
¶1 1

!

k k 1 ( ) · 1
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Corollary 49.6. For N and ( ] there are constants = and
= such that if 1(R ) then for all R

| ( ) ( )| 2 1

µ

1
¶

1

k k ( ( ) ( )) ·| |(1 ) (49.8)

where := | |
Proof. Let := | | := ( ) ( ) and 1 be chosen

so that + = ( ) ( ) and + = ( ) ( ) i.e.

=
1
( ( ) ( ) ) and =

1
( ( ) ( ) ) =

Also let = see Figure 49.2 below. By a scaling,

Fig. 49.2. The geometry of two intersecting balls of radius := | | Here
= and = ( ) ( )

:=
| |
| | =

| 1 1|
| 1| (0 1)

is a constant only depending on i.e. we have | | = | | = | | Inte-
grating the inequality

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|
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over gives

| ( ) ( )|
Z

| ( ) ( )| +

Z

| ( ) ( )|

= | |
Z

| ( ) ( )| +

Z

| ( ) ( )|

| |
Z

| ( ) ( )| +

Z

| ( ) ( )|

Hence by Lemma 49.4, Hölder’s inequality and translation and rotation in-
variance of Lebesgue measure,

| ( ) ( )| | |
Z | ( )|

| | 1
+

Z | ( )|
| | 1

| |

Ã

k k ( )k 1
| ·| 1 k ( )

+k k ( )k 1
| ·| 1 k ( )

!

2

| | k k ( )k 1

| · | 1
k ( 0 ) (49.9)

where = 1 is the conjugate exponent to Combining Eqs. (49.9) and
(49.6) gives Eq. (49.8) with := | | 1

Theorem 49.7 (Morrey’s Inequality). If 1 (R )
then there exists a unique version of (i.e. = a.e.) such that is
continuous. Moreover 0 1 (R ) and

k k 0 1
(R )

k k 1 (R ) (49.10)

where = ( ) is a universal constant. Moreover, the estimates in Eqs.
(49.3), (49.4) and (49.8) still hold when is replaced by

Proof. For and 1(R ) Corollaries 49.5 and 49.6 imply

k k (R ) k k 1 (R ) and
| ( ) ( )|
| |1

k k (R )

which implies [ ]1 k k (R ) k k 1 (R )and hence

k k 0 1
(R )

k k 1 (R ) (49.11)
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Now suppose 1 (R ), choose (using Exercise 29.32) 1(R )
such that in 1 (R ) Then by Eq. (49.11), k k 0 1

(R )
0

as and therefore there exists 0 1 (R ) such that
in 0 1 (R ) Clearly = a.e. and Eq. (49.10) holds.
If = and 1

¡

R
¢

then by Proposition 29.29 there is a version
of which is Lipschitz continuous. Now in both cases, and =

the sequence := =
¡

R
¢

and uniformly on
compact subsets of R Using Eq. (49.3) with replaced by along with a
(by now) standard limiting argument shows that Eq. (49.3) still holds with
replaced by The proofs of Eqs. (49.4) and (49.8) only relied on Eq. (49.3)
and hence go through without change. Similarly the argument in the first
paragraph only relied on Eqs. (49.4) and (49.8) and hence Eq. (49.10) is also
valid for =

Corollary 49.8 (Morrey’s Inequality). Suppose R such that is
compact 1-manifold with boundary and Then for 1 ( )

there exists a unique version of such that 0 1 (R ) and we further
have

k k 0 1
( )

k k 1 ( ) (49.12)

where = ( )

Proof. Let be a precompact open subset of R and : 1 ( )
1 (R ) be an extension operator as in Theorem 48.35. For 1 ( )

with Theorem 49.7 implies there is a version 0 1 (R ) of
Letting := | we have and moreover,

k k 0 1
( )

k k 0 1
(R )

k k 1 (R ) k k 1 ( )

The following example shows that (R ) 6 1 (R ) i.e. 1 (R )
contains unbounded elements. Therefore Theorem 49.7 and Corollary 49.8
are not valid for = It turns out that for = 1

¡

R
¢

embeds into
(R ) — the space of functions with “bounded mean oscillation.”

Example 49.9. Let ( ) = ( ) log log
³

1 + 1
| |
´

where (R ) is chosen

so that ( ) = 1 for | | 1 Then (R ) while 1 (R ) Let us
check this claim. Using Theorem 9.35, one easily shows (R ) A short
computation shows, for | | 1 that

( ) =
1

log
³

1 + 1
| |
´

1

1 + 1
| |

1

| |

=
1

1 + 1
| |

1

log
³

1 + 1
| |
´

µ

1

| | ˆ
¶
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where ˆ = | | and so again by Theorem 9.35,

Z

R

| ( )|
Z

| | 1

1

| |2 + | |
1

log
³

1 + 1
| |
´

( 1)

Z 1

0

Ã

2

log
¡

1 + 1
¢

!

1 =

49.2 Rademacher’s Theorem

Theorem 49.10. Suppose that 1 ( ) for some Then is
di erentiable almost everywhere and - = a.e. on

Proof.We clearly may assume that For 1 ( ) and
such that ( ) ( ) where := | | the estimate in Corollary
49.6, gives

| ( ) ( )| k k ( ( ) ( )) · | |(1 )

= k k ( ( ) ( )) · (1 ) (49.13)

Let now denote the unique continuous version of 1 ( ) The by
the Lebesgue di erentiation Theorem 20.12, there exists an exceptional set

such that ( ) = 0 and

lim
0

Z

( )

| ( ) ( )| = 0 for \

Fix a point \ and let ( ) := ( ) ( ) ( ) · ( ) and notice
that ( ) = ( ) ( ) Applying Eq. (49.13) to then implies

| ( ) ( ) ( ) · ( )|
k (·) ( )k ( ( ) ( )) · (1 )

Ã

Z

( )

| ( ) ( )|
!1

· (1 )

=
¡

1
¢1

Z

( )

| ( ) ( )|
1

· (1 )

=
¡

1
¢1

Z

( )

| ( ) ( )|
1

· | |

which shows is di erentiable at and ( ) = - ( )

1026 49 Sobolev Inequalities

Theorem 49.11 (Rademacher’s Theorem). Let be locally Lipschitz con-
tinuous on R Then is di erentiable almost everywhere and -

= a.e. on

Proof. By Proposition 29.29 ( ) exists weakly and is in (R )
for = 1 2 The result now follows from Theorem 49.10.

49.3 Gagliardo-Nirenberg-Sobolev Inequality

In this section our goal is to prove an inequality of the form:

k k k k (R ) for
1(R ) (49.14)

For 0 let ( ) = ( ) Then

k k =

Z

R
| ( )| =

Z

R
| ( )|

and hence k k = k k Moreover, ( ) = ( )( ) and thus

k k = k( ) k = k k

If (49.14) is to hold for all 1(R ) then we must have

k k = k k k k (R ) =
1 k k for all 0

which is only possible if

1 + = 0 i.e. 1 = 1 + 1 (49.15)

Notation 49.12 For [1 ] let := with the convention that =

if = That is = where solves Eq. (49.15).

Theorem 49.13. Let = 1 so 1 = 1 then

k k1 = k k
1

Y

=1

µ
Z

R
| ( )|

¶
1

1
2 k k1 (49.16)

for all 1 1(R )

Proof. Since there exists 1(R ) such that in 1 1(R )
a simple limiting argument shows that it su ces to prove Eq. (49.16) for

1(R ) To help the reader understand the proof, let us give the proof for
3 first and with the constant 1 2 being replaced by 1 After that the

general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (49.17).
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( = 1 = ) By the fundamental theorem of calculus,

| ( )| =
¯

¯

¯

¯

Z

0( )
¯

¯

¯

¯

Z

| 0( )|
Z

R
| 0( )|

Therefore k k k 0k 1
1 proving the = 1 case.

( = 2 = 2) Applying the same argument as above to 1 ( 1 2)
and 2 ( 1 2) ,

| ( 1 2)|
Z

| 1 ( 1 2)| 1

Z

| ( 1 2)| 1 and

| ( 1 2)|
Z

| 2 ( 1 2)| 2

Z

| ( 1 2)| 2

and therefore

| ( 1 2)|2
Z

| 1 ( 1 2)| 1 ·
Z

| 2 ( 1 2)| 2

Integrating this equation relative to 1 and 2 gives

k k2 2 =
Z

R2
| ( )|2

µ
Z

| 1 ( )|
¶µ

Z

| 2 ( )|
¶

µ
Z

| ( )|
¶2

which proves the = 2 case.
( = 3 = 3 2) Let 1 = ( 1 2 3)

2 = ( 1 2 3) and 3 =
( 1 2 3) Then as above,

| ( )|
Z

| ( )| for = 1 2 3

1 Actually we may do better here by observing

| ( )| = 1

2

¯

¯

¯

¯

Z

0( )
Z

0( )
¯

¯

¯

¯

1

2

Z

R

¯

¯

0( )
¯

¯

and this leads to an improvement in Eq. (49.17) to

k k1 1

2

Y

=1

µ
Z

R
| ( )|

¶ 1

1

2

1
2 k k1
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and hence

| ( )| 32
3
Y

=1

µ
Z

| ( )|
¶

1
2

Integrating this equation on 1 gives,

Z

R
| ( )| 32 1

µ
Z

| 1 ( 1)| 1

¶
1
2
Z 3
Y

=2

µ
Z

| ( )|
¶

1
2

1

µ
Z

| 1 ( )| 1

¶
1
2

3
Y

=2

µ
Z

| ( )| 1

¶
1
2

wherein the second equality we have used the Hölder’s inequality with =
= 2 Integrating this result on 2 and using Hölder’s inequality gives
Z

R2
| ( )| 32 1 2

µ
Z

R2
| 2 ( )| 1 2

¶
1
2
Z

R
2

µ
Z

| 1 ( )| 1

¶
1
2

×
µ
Z

R2
| 3 ( 3)| 1 3

¶
1
2

µ
Z

R2
| 2 ( )| 1 2

¶
1
2
µ
Z

R2
| 1 ( )| 1 2

¶
1
2
µ
Z

R3
| 3 ( )|

¶
1
2

One more integration of 3 and application of Hölder’s inequality, implies

Z

R3
| ( )| 32

3
Y

=1

µ
Z

R3
| ( )|

¶
1
2

µ
Z

R3
| ( )|

¶
3
2

proving the = 3 case.
For general ( = 1 ) as above let = ( 1 1 +1 )

Then

| ( )|
Z

| ( )|

and

| ( )| 1

Y

=1

µ
Z

| ( )|
¶

1
1

(49.17)

Integrating this equation relative to 1 and making use of Hölder’s inequality
in the form

°

°

°

°

°

Y

=2

°

°

°

°

°

1

Y

=2

k k 1 (49.18)

(see Corollary 10.3) we find
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Z

R
| ( )| 1 1

µ
Z

R
1 ( ) 1

¶
1
1
Z

R
1

Y

=2

µ
Z

R
| ( )|

¶
1
1

µ
Z

R
1 ( ) 1

¶
1
1 Y

=2

µ
Z

R2
| ( )| 1

¶
1
1

=

µ
Z

R
1 ( ) 1

¶
1
1
µ
Z

R2
| 2 ( )| 1 2

¶
1
1

×

Y

=3

µ
Z

R2
| ( )| 1

¶
1
1

Integrating this equation on 2 and using Eq. (49.18) once again implies,
Z

R2
| ( )| 1 1 2

µ
Z

R2
| 2 ( )| 1 2

¶
1
1
Z

R
2

µ
Z

R
1 ( ) 1

¶
1
1

×
Y

=3

µ
Z

R2
| ( )| 1

¶
1
1

µ
Z

R2
| 2 ( )| 1 2

¶
1
1
µ
Z

R2
| 1 ( )| 1 2

¶
1
1

×
Y

=3

µ
Z

R3
| ( )| 1 2

¶
1
1

Continuing this way inductively, one shows
Z

R
| ( )| 1 1 2

Y

=1

µ
Z

R
| ( )| 1 2

¶
1
1

×
Y

= +1

µ
Z

R3
| ( )| 1 2 +1

¶
1
1

and in particular when =

Z

R
| ( )| 1

µ

1

2

¶

1 Y

=1

µ
Z

R
| ( )| 1 2

¶
1
1

(49.19)

Y

=1

µ
Z

R
| ( )|

¶
1
1

=

µ
Z

R
| ( )|

¶

1
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This estimate may now be improved on by using Young’s inequality (see

Exercise 49.33) in the form
Q

=1

1
P

=1 Indeed by Eq. (49.19) and

Young’s inequality,

k k
1

Y

=1

µ
Z

R
| ( )|

¶
1

1X

=1

µ
Z

R
| ( )|

¶

=
1
Z

R

X

=1

| ( )| 1
Z

R
| ( )|

wherein the last inequality we have used Hölder’s inequality for sums,

X

=1

| |
Ã

X

=1

1

!1 2Ã
X

=1

| |2
!1 2

= | |

The next theorem generalizes Theorem 49.13 to an inequality of the form
in Eq. (49.14).

Theorem 49.14. If [1 ) then,

k k 1 2 ( 1)k k for all 1 (R ) (49.20)

Proof. As usual since 1(R ) is dense in 1
¡

R
¢

it su ces to prove
Eq. (49.20) for 1(R ) For 1(R ) and 1 | | 1(R ) and
| | = | | 1sgn( ) Applying Eq. (49.16) with replaced by | | and

then using Holder’s inequality gives

k| | k1 1
2 k | | k1 =

1
2 k| | 1 k 1

k k · k| | 1k (49.21)

where = 1 We will now choose so that 1 = ( 1) i.e.

=
1
=

1

1 1 1 =
1

1 1

³

1 1
´

=
( 1)

( 1) ( 1)
=

( 1)
=

1

For this choice of 1 = = ( 1) and Eq. (49.21) becomes

·
Z

R
| |

¸1 1

k k ·
·
Z

R
| |

¸1

(49.22)
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Since

1

1

1
=

1 1
=

( 1) ( 1)

= =
1

Eq. (49.22) implies Eq. (49.20).

Corollary 49.15. Suppose R is bounded open set with 1-boundary,
then for all [1 ) and 1 there exists = ( ) such that

k k ( ) k k 1 ( )

Proof. Let be a precompact open subset of R such that ¯ and
: 1 ( ) 1

¡

R
¢

be an extension operator as in Theorem 48.35.
Then for 1( ) 1 ( )

k k ( ) k k (R ) k ( )k (R ) k k 1 ( )

i.e.
k k ( ) k k 1 ( ) (49.23)

Since 1( ) is dense in 1 ( ) Eq. (49.23) holds for all 1 ( )
Finally for all 1

k k ( ) k k ( ) · k1k ( ) = k k ( ( ))
1

( ( ))
1 k k 1 ( )

where 1 + 1 = 1

49.4 Sobolev Embedding Theorems Summary

Let us summarize what we have proved up to this point in the following
theorem.

Theorem 49.16. Let [1 ] and 1
¡

R
¢

Then

1.Morrey’s Inequality. If then 1 0 1 and

k k 0 1
(R )

k k 1 (R )

2. When = there is an — like space called (which is not defined
in these notes) such that 1

1032 49 Sobolev Inequalities

3. GNS Inequality. If 1 then 1

k k 1 2 ( 1)k k

where = or equivalently 1 = 1 1

Our next goal is write out the embedding theorems for ( ) for general
and

Notation 49.17 Given a number 0 let

+ =

½

if N0
+ if N0

where 0 is some arbitrarily small number. When = + with N0
and 0 1 we will write ( ) simply as ( ) Warning, although

1( ) +1( ) it is not true that 1( ) = +1( )

Theorem 49.18 (Sobolev Embedding Theorems). Suppose = R or
R is bounded open set with 1-boundary, [1 ) N with

1. If then ( ) ( ) provided := i.e. solves

1
=
1

0

and there is a constant such that

k k ( ) k k ( ) for all ( )

2. If then ( ) ( )+ ( ) and there is a constant
such that

k k ( )+( )
k k ( ) for all ( )

Proof. 1. ( ) If ( ) then 1 ( ) for all | |
1 Hence by Corollary 49.15, ( ) for all | | 1 and therefore
( ) 1 ( ) and there exists a constant 1 such that

k k 1 1 ( ) k k ( ) for all ( ) (49.24)

Define inductively by, 1 := and := 1 Since 1 = 1
1

1 it is

easily checked that 1 = 1 0 since Hence using Eq. (49.24)
repeatedly we learn that the following inclusion maps are all bounded:

( ) 1 1 ( ) 2 2 ( ) ( )

This proves the first item of the theorem. The following lemmas will be used
in the proof of item 2.
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Lemma 49.19. Suppose N and and (i.e. 1 if
and 2 if = ) then

( ) ( )+ ( )

and there is a constant such that

k k ( )+( )
k k ( ) (49.25)

Proof. By the usual methods, it su ces to show that the estimate in Eq.
(49.25) holds for all

¡

¯
¢

For and | | 1

k k 0 1 ( ) k k 1 ( ) k k ( )

and hence

k k ( ) := k k 1 1 ( ) k k ( )

which is Eq. (49.25).
When = (so now 2) choose (1 ) be close to so that

and = Then

( ) ( ) 1 ( ) 2 1 ( )

Since 0 as we conclude that ( ) 2 ( ) for any
(0 1) which we summarizes by writing

( ) ( ) ( )

Proof. Continuation of the proof of Theorem 49.18. Item 2.,
( ) If the result follows from Lemma 49.19. So nos suppose
that and choose the largest such that 1 and
and let = i.e. solves and

1
=
1

or =

Then

( ) ( ) ( )+ ( ) =
( )

+ ( ) =
( )

+ ( )

as desired.

Remark 49.20 (Rule of thumb.). Assign the “degrees of regularity” ( )+
to the space and + to the space If

©

: N0 [1 ]
ª ©

: N0 [0 1]
ª

with degreg( ) degreg( ) then
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Example 49.21. 1. i i i
1 1

2. 0 i
³ ´

+

49.5 Compactness Theorems

Lemma 49.22. Suppose : are compact operators and k
k ( ) 0 as then is compact.

Proof. Let { } =1 be given such that k k 1 By Cantor’s diago-
nalization scheme we may choose { 0 } { } such that := lim 0

exists for all Hence

k 0 0k = k ( 0 0 )k k ( 0 0 )k
k k k 0 0 k+ k ( 0 0 )k
k k+ k ( 0 0 )k

and therefore,

lim sup k 0 0k k k 0 as

Lemma 49.23. Let (R ) = R be a bounded open set
with 1-boundary, be an open precompact subset of R such that ¯

and : 1 1( ) 1 1(R ) be an extension operator as in Theorem 48.35.
Then to every bounded sequence {˜ } =1

1 1 ( ) there has a subsequence
{ 0 } =1 such that

0 is uniformly convergent to a function in
¡

R
¢

Proof. Let := ˜ and := sup k k 1 1(R ) which is finite by
assumption. So { } =1

1 1(R ) is a bounded sequence such that
supp( ) ¯ @@ R for all Since is compactly supported there
exists a precompact open set such that ¯ and := ( )

¡

R
¢

for all Since,

k k k k k k 1 k k k k 1 k k and

k k = k k k k k k 1 k k
it follows by the Arzela-Ascoli theorem that { } =1 has a uniformly conver-
gent subsequence.

Lemma 49.24. Let ( (0 1) [0 )) such that
R

R = 1 ( ) =
( ) and = ( )| Then for all [1 ) and [1 )

lim k k ( 1 ( ) ( )) = 0

where : 1 ( ) ( ) is the inclusion map.
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Proof. For 1( ) let := then

| ( )| | ( ) ( )| =
¯

¯

¯

¯

Z

R
( )( ( ) ( ))

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( )
h

( ) ( )
i

¯

¯

¯

¯

1
Z

R
| | ( )

Z 1

0

¯

¯

¯
( )

¯

¯

¯

and so by Minikowski’s inequality for integrals,

k k 1
Z

R
| | ( )

Z 1

0

°

°

°
(· )

°

°

°

1
µ
Z

R
| | ( )

¶

k k 1 k k 1 (R ) (49.26)

By the interpolation inequality in Corollary 10.25, Theorem 49.14 and Eq.
(49.26) with = 1

k k k k 1 k k1

1 k k 1 1(R )

·

1 2 ( 1)k k
¸1

k k 1 1(R ) k k1 1 (R )

k k 1 1(R ) k k1 1 (R )

( | |) k k 1 (R ) k k1 1 (R )

where (0 1) is determined by

1
=
1
+
1

=

µ

1
1
¶

+
1

Now using Proposition 11.12,

k k 1 (R ) = k k 1 (R )

k k 1 (R ) + k k 1 (R ) 2 k k 1 (R )

Putting this all together shows

k k ( ) k k = k k
( | |) k k 1 (R )

³

2 k k 1 (R )

´1

( | |) k k 1 (R )

( | |) k k 1 ( )
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from which it follows that

k k ( 1 ( ) ( )) 0 as

Theorem 49.25 (Rellich - Kondrachov Compactness Theorem). Sup-
pose R is a precompact open subset with 1-boundary, [1 ) and
1 then 1 ( ) is compactly embedded in ( )

Proof. If { } =1 is contained in the unit ball in
1 ( ) then by

Lemma 49.23 { } =1 has a uniformly convergent subsequence and hence
is convergent in ( ) This shows : 1 ( ) ( ) is compact for
every By Lemma 49.24, in the

¡

1 ( ) ( )
¢

— norm and
so by Lemma 49.22 : 1 ( ) ( ) is compact.

Corollary 49.26. The inclusion of ( ) into ( ) is compact pro-
vided 1 and 1 1 = 0 i.e.

Proof. Case (i) Suppose = 1 [1 ) and { } =1 ( ) is
bounded. Then { } =1

1 ( ) is bounded for all | | 1 and
therefore there exist a subsequence {˜ } =1 { } =1 such that ˜ is
convergent in ( ) for all | | 1 This shows that {˜ } is 1 ( )
— convergent and so proves this case.
Case (ii) 1 Let ˜ be defined so that 1

˜ =
1 1 Then

( ) +1 ˜( ) ( )

and therefore ( ) ( )

Example 49.27. It is necessary to assume that The inclusion of 2([0 1])
1([0 1]) is continuous (in fact a contraction) but not compact. To see this,
take { } =1 to be the Haar basis for

2. Then 0 weakly in both 2

and 1 so if { } =1 were to have a convergent subsequence the limit would
have to be 0 1 On the other hand, since | | = 1 k k2 = k k1 = 1 and
any subsequential limit would have to have norm one and in particular not be
0

Lemma 49.28. Let be a precompact open set such that ¯ is a manifold
with 1 — boundary. Then for all [1 ) 1 ( ) is compactly embedded
in ( ) Moreover if and 0 1 then 1 ( ) is compactly
embedded in 0 ( ) In particular, 1 ( ) ( ) for all .

Proof. Case 1, [1 ) By Theorem 49.25, 1 ( ) ( ) for all
1 Since we may choose = to learn 1 ( ) ( )
Case 2, [ ) For any 0 [1 ) we have

1 ( ) 1 0( ) 0 ( )
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Since 0 =
0 as 0 we see that 1 ( ) ( ) for all

Moreover by Morrey’s inequality (Corollary 49.8) and Proposition5.13 we have
1 ( ) 0 1 ( ) 0 ( ) which completes the proof.

Remark 49.29. Similar proofs may be given to show for all
0 provided 0 and 0.

Lemma 49.30 (Poincaré Lemma). Assume 1 is a precompact
open connected subset of R such that is a manifold with 1-boundary.
Then exist = ( ) such that

k k ( ) k k ( ) for all
1 ( ) (49.27)

where :=
R

is the average of on as in Notation 49.3.

Proof. For sake of contradiction suppose there is no such that Eq.
(49.27) holds. Then there exists a sequence { } =1

1 ( ) such that

k ( ) k ( ) k k ( ) for all

Let

:=
( )

k ( ) k ( )

Then 1 ( ) ( ) = 0 k k ( ) = 1 and 1 = k k ( )

k k ( ) for all Therefore k k ( )
1 and in particular

sup k k 1 ( ) and hence by passing to a subsequence if necessary

there exists ( ) such that in ( ) Since 0 in
( ) it follows that is convergent in 1 ( ) and hence 1 ( )

and = lim = 0 in ( ) Since = 0 ( ) for all
N and hence ( ) and = 0 and is connected implies is

constant. Since 0 = lim ( ) = we must have 0 which is clearly
impossible since k k ( ) = lim k k ( ) = 1

Theorem 49.31 (Poincaré Lemma). Let be a precompact open subset
of R and [1 ) Then

k k diam( )k k for all 1
0 ( ) (49.28)

Proof. Let diam( ) = By translating if necessary we may assume
[ ] For 1 we may assume ( ) since ( ) is

dense in 1
0 ( ) Then by the fundamental theorem of calculus,

| ( )| = 1

2

¯

¯

¯

¯

¯

Z

1

1 ( 2 )

Z

1

1 ( 2 )

¯

¯

¯

¯

¯

1

2

Z

| 1 ( 2 )| =

Z

| 1 ( 2 )|
2
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and hence by Jensen’s inequality,

| ( )|
Z

| 1 ( 2 )|
2

Integrating this equation over implies,

k k
Z

| 1 ( )|
Z

| ( )|

which gives Eq. (49.28).

49.6 Fourier Transform Method

See 2 — Sobolev spaces for another proof of the following theorem.

Theorem 49.32. Suppose 0 { } =1 is a bounded sequence (say
by 1) in (R ) such that = supp( ) @@ R Then there exist a
subsequence { } =1 { } =1 which is convergent in (R )

Proof. Since

¯

¯ ˆ ( )
¯

¯ =

¯

¯

¯

¯

Z

R

· ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( ) · ( )

¯

¯

¯

¯

k k 2( )k k 2 k k (R )

ˆ and all of it’s derivatives are uniformly bounded. By the Arzela-Ascoli
theorem and Cantor’s Diagonalization argument, there exists a subsequence
{ } =1 { } =1 such that ˆ and all of its derivatives converge uniformly
on compact subsets in —space. If ˆ( ) := lim ˆ ( ) then by the domi-
nated convergence theorem,

Z

| |
(1 + | |2) |ˆ( )|2 = lim

Z

| |
(1 + | |2) |ˆ ( )|2

lim sup k k2 (R ) 1

Since is arbitrary this implies ˆ 2((1 + | |2) ) and k k (R ) 1 Set
:= while = F 1ˆ Then { } =1 (R ) and we wish to show
0 in (R ) Let ( ) = (1 + | |2) then for any

k k2 =

Z

|ˆ( ) ˆ ( )|2 ( )

=

Z

| |
|ˆ( ) ˆ ( )|2 ( ) +

Z

| |
|ˆ( ) ˆ ( )|2 ( )
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The first term goes to zero by the dominated convergence theorem, hence

lim sup k k2 lim sup

Z

| |
|ˆ( ) ˆ ( )|2 ( )

= lim sup

Z

| |
|ˆ ˆ ( )|2 (1 + | |

2)

(1 + | |2)
lim sup

1

(1 + 2)

Z

| |
|ˆ ˆ ( )|2 ( )

lim sup
1

(1 + 2)
k k2

4

µ

1

1 + 2

¶

0 as

49.7 Other theorems along these lines

Another theorem of this form is derived as follows. Let 0 be fixed and
((0 1) [0 1]) such that ( ) = 1 for | | 1 2 and set ( ) := ( )

Then for R and we have
Z

0

[ ( ) ( + )] = ( )

and then by integration by parts repeatedly we learn that

( ) =

Z

0

2 [ ( ) ( + )] =

Z

0

2 [ ( ) ( + )]
2

2

=

Z

0

3 [ ( ) ( + )]
3

3!
=

= ( 1)

Z

0

[ ( ) ( + )]
!

= ( 1)

Z

0

[ ( ) ( + )]
1

( 1)!

Integrating this equation on then implies
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| | ( ) = ( 1)

Z Z

0

[ ( ) ( + )]
1

( 1)!

=
( 1)

( 1)!

Z Z

0

[ ( ) ( + )] 1

=
( 1)

( 1)!

Z Z

0

X

=0

µ ¶

h

( )( )
¡ ¢

( + )
i

1

=
( 1)

( 1)!

Z Z

0

X

=0

µ ¶

h

( )( )
¡ ¢

( + )
i

1

=
( 1)

( 1)!

X

=0

µ ¶
Z

| |
h

( )(| |)
³

[

´

( )
i

and hence

( ) =
( 1)

| | ( 1)!

X

=0

µ ¶
Z

| |
h

( )(| |)
³

[

´

( )
i

and hence by the Hölder’s inequality,

| ( )| ( )
( 1)

| | ( 1)!

X

=0

µ ¶

"

Z

| | ( )

#1 "

Z

¯

¯

¯

³

[

From the same computation as in Eq. (48.4) we find
Z

| | ( ) = ( )

Z

0

( ) 1 = ( )
( )+

( ) +

= ( )
1

( 1)

provided that 0 (i.e. ) wherein we have used

( ) + =
1
( ) + =

( ) + ( 1)

1
=

1

This gives the estimate
"

Z

| | ( )

#1
·

( ) ( 1)
¸

1

=

·

( ) ( 1)
¸

1

Thus we have obtained the estimate that

| ( )| ( )

| | ( 1)!

·

( ) ( 1)
¸

1

×
X

=0

µ ¶

°

°

° [

°

°

°

( )
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49.8 Exercises

Exercise 49.33. Let 0 and [1 ) for = 1 2 satisfy
P

=1
1 = 1 then

Y

=1

X

=1

1

Hint: This may be proved by induction on making use of Lemma 1.27.
Alternatively see Example 10.11, where this is already proved using Jensen’s
inequality.

Solution 49.34 (49.33). We may assume that 0 in which case

Y

=1

=
P

=1 ln =
P

=1
1 ln

X

=1

1 ln =
X

=1

1

This was already done in Example 10.11.
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2nd order di erential operators

Notations 50.1 Let be a precompact open subset of R = 0

( ) for = 1

( ) :=
X

=1

+
X

=1

+ 0

and

= ( ) =
X

=1

+
X

=1

+ 0

We also let

† =
X

=1

X

=1

+ 0

Remark 50.2. The operators and † have the following properties.

1. The operator † is the formal adjoint of i.e.

( ) = ( † ) for all D( ) = ( )

2. We may view as an operator on D0( ) via the formula D0( )
D0( ) where

h i := h † i for all ( )

3. The restriction of to +2( ) gives a bounded linear transformation

: +2( ) ( ) for N0

Indeed, may be written as

=
X

=1

+
X

=1

+ 0

1046 50 2nd order di erential operators

Now : ( ) +1( ) is bounded and : ( ) ( ) is
bounded where ( ). Therefore, for N0 : +2( )
( ) is bounded.

Definition 50.3. For D0( ) let

k k 1( ) := sup
06= D( )

|h i|
k k 1

0 ( )

and
1( ) :=

© D0( ) : k k 1( )

ª

Example 50.4. Let = R and be the unit sphere in R Then define
D0 ( ) by

h i :=
Z

Let us shows that 1 ( ) For this let : 1( ) 2( ) denote
the trace operator, i.e. the unique bounded linear operator such that = |
for all

¡

R
¢

Since is bounded,

|h i| ( )1 2 k k 2( ) ( )1 2 k k ( 1( ) 2( )) k k 1( )

This shows 1 ( ) and k k 1( ) ( )1 2 k k ( 1( ) 2( ))

Lemma 50.5. Suppose is an open subset of R such that ¯ is a manifold
with 0 — boundary and = ¯ then the map

£

1
0 ( )

¤ |D( )
1( ) is a unitary map of Hilbert spaces.

Proof. By definition ( ) is dense in 1
0 ( ) and hence it follows

that the map
£

1
0 ( )

¤ |D( )
1( ) is isometric. If 1( )

it has a unique extension to 1
0 ( ) = ( )

1( )
and this provides the

inverse map.
If we identify 2( ) = 0( ) with elements of D0( ) via ( ·) 2( )

then

D0( ) 1( ) 0( ) = 2( ) 1( ) 2( )

Proposition 50.6. The following mapping properties hold:

1. If 1( ). Then : 1( ) 1( ) is a bounded operator.
2. If =

P

=1 +
0
with 0

1( ¯) then : 2( )
1( ) is a bounded operator.

3. The map : D0( ) D0( ) restricts to a bounded linear map from
1( ) to 1( ) Also
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Proof. Let us begin by showing : 1
0 ( ) 1

0 ( ) is a bounded
linear map. In order to do this choose

¡

R
¢

such that in
1( ) Then for ( ) ( ) 1

0 ( ) and there is a
constant such that

k k2 1
0 ( ) k k 1( ) k k2 1

0 ( )

By density this estimate holds for all 1
0 ( ) and by replacing by

we also learn that

k( ) k2 1
0 ( ) k k 1( ) k k2 1

0 ( ) 0 as

By completeness of 1
0 ( ) it follows that 1

0 ( ) for all 1
0 ( ) and

k k2 1
0 ( ) k k 1( ) k k2 1

0 ( )

1. If 1 ( ) and 1
0 ( ) then by definition, h i = h i

and therefore,

|h i| = |h i| k k 1( )k k 1
0 ( )

k k 1( ) k k 1( )k k 1
0 ( )

which implies 1 ( ) and

k k 1( ) k k 1( ) k k 1( )

2. For 2 ( ) and ( )

|h i| = |h i| k k 2( ) · k k 2( )

k k 2( ) k k 1
0 ( )

and therefore k k 1( ) k k 2( ) For general =
P

=1 +

0 we have

k k 1( )

X

=1

k k 1( ) k k 1( ) + k 0k k k 2( )

"

X

=1

k k 1( ) + k 0k
#

k k 2( )

3. Since : 1( ) 2( ) and : 2( ) 1( ) are both bounded
maps, to prove =

P

=1 + is bounded from 1( )
1( ) it su ces to show : 1( ) 1( ) is a bounded.

But : 1( ) 1( ) is bounded since it is the composition
of the following bounded maps:

1( ) 2( ) 1( ) 1( )
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Lemma 50.7. Suppose ( ) then

1. [ ] = is a first order di erential operator acting on D0( ) which
necessarily satisfies : ( ) 1( ) for = 0 1 2 etc.

2. If ( ) then

[ ] 1( ) for = 0 1 2

and
k[ ] k 1( ) ( )k k ( )

Proof. On smooth functions ( )

( ) = 2
X

=1

· +
X

=1

X

=1

·

and therefore

[ ] = 2
X

=1

· +
X

=1

X

=1

·

=:

Similarly,

† ( ) =
X

=1

[ ]
X

=1

( ) + 0

= † 2
X

=1

· [ ]

X

=1

·
X

=1

(50.1)

Noting that

† = 2
X

=1

[ · ] +
X

=1

X

=1

·

= 2
X

=1

· [ ] +
X

=1

+
X

=1

·

Eq. (50.1) may be written as
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[ † ] = †

Now suppose = 0 then in this case for D ( )

|h[ ] i| = ¯¯h [ †] i¯¯ = ¯¯h † i¯¯
k k 2( )k † k 2( ) k k 2( )k k 1

0 ( )

This implies k[ ] k 1( ) k k 2 and in particular [ ]
1( ) For 0 [ ] = with as above and therefore by

Proposition48.6, there exists such that k k 1( ) k k ( )

Definition 50.8. The operator is uniformly elliptic on if there exists
0 such that ( ( )) for all i.e. ( ) | |2 for all
and R

Suppose now that is uniformly elliptic. Let us outline the results to be
proved below.

50.1 Outline of future results

1. We consider with Dirichlet boundary conditions meaning we will view
as a mapping from 1

0 ( ) 1( ) =
£

1
0 ( )

¤

Proposition 51.13
below states there exists = ( ) such that ( + ) : 1

0 ( )
1( ) is an isomorphism of Hilbert spaces. The proof uses the Dirichlet

form
E( ) := h i for 1

0 ( )

Notice for D( ) and 1
0 ( )

E( ) = h i = h † i
=

Z

( ( ) ( ) + 0 )

=

Z

[ · ( ) ( ) + 0 ]

=

Z

[ · + ( + ) · + 0 ]

Since the last expression is continuous for ( ) 1
0 ( ) × 1

0 ( ) we
have shown

E( ) =

Z

[ · + ( + ) · + 0 ]

for all 1
0 ( )

1050 50 2nd order di erential operators

2. To implement other boundary conditions, we will need to consider acting
on subspaces of 2( ) which are determined by the boundary conditions.
Rather than describe the general case here, let us consider an example
where = and the boundary condition is = on where

= · is the outward normal on and : R is a smooth
function. In this case, let

:=

½

2( ) : = on
¾

We will eventually see that is a dense subspace of 1( ) For
and 1 ( )

( ) =

Z

·
Z

=

Z

·
Z

=: E( ) (50.2)

The latter expression extends by continuity to all 1( ) Given E
as in Eq. (50.2) let E : 1 ( )

£

1( )
¤

be defined by E :=
E( ·) so that E is an extension of as a linear functional on
1
0 ( ) to one on 1( ) 1

0 ( ) It will be shown below that there exists
such that ( E + ) : 1( )

£

1( )
¤

is an isomorphism of
Hilbert spaces.

3. The Dirichlet form E in Eq. (50.2) may be rewritten in a way as to avoid
the surface integral term. To do this, extend the normal vector field
along to a smooth vector field on ¯ Then by integration by parts,

Z

=

Z

2 =

Z

[ ]

=

·
Z

· ( ) + · + ·
¸

In this way we see that the Dirichlet form E in Eq. (50.2) may be written
as

E( ) =

Z

[ · + 0 · + 0 + 00 ] (50.3)

with 00 = · ( ) 0 = = 0 This should motivate the next
section where we consider generalizations of the form E in Eq. (50.3).
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Dirichlet Forms

In this section will be an open subset of R

51.1 Basics

Notation 51.1 (Dirichlet Forms) For N0 with | | | | 1 suppose
¡

¯
¢

and
¡

¯
¢

with 0 let

E( ) =
X

| | | | 1

Z

· (51.1)

where := We will also write ( ) :=
R

and 2 for 2( )
In the sequel we will often write for for and for

Proposition 51.2. Let E be as in Notation 51.1 then
|E( )| k k 1k k 1 for all 1

where is a constant depending on and upper bounds for
n

k k ( ¯) : | | | |

Proof. To simplify notation in the proof, let k·k denote the 2( ) —
norm. Then

|E( )|
X

{k k k k+ k k k k+ k k k k+ k k k k}

k k 1 · k k 1

Notation 51.3 Given E as in Notation 51.1, let LE and L†E be the bounded
linear operators from 1( ) to

£

1( )
¤

defined by

LE := E ( ·) and L†E := E (· )
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It follows directly from the definitions that hLE i = h L†E i for all
1( ) The Einstein summation convention will be used below when

convenient.

Proposition 51.4. Suppose is a precompact open subset of R such that ¯

is a manifold with 2 — boundary, Then for all 2( ) and 1 ( )

hLE i = E( ) = ( ) +

Z

· (51.2)

and for all 1( ) and 2 ( )

h L†E i = E( ) = ( † ) +
Z

· † (51.3)

where

= + 0 = · + · 0 · (51.4)
† = [ + 0] = · + · · 0 (51.5)

:= 1
X

| | | | 1

( 1)
| |

[ ] (51.6)

and
† := 1

X

| | | | 1

( 1)| |
£ ¤

(51.7)

We may also write † as

= +
¡

0 0
1 [ ]

¢

+
¡

00
1 [ 0 ]

¢

(51.8)
† = +

¡

0 0
1 [ ]

¢

+
¡

00
1 [ 0]

¢

(51.9)

Proof. Suppose 2( ) and 1 ( ) then by integration by parts,

E( ) =
X

| | | | 1

Z

( 1)| | 1 [ ] · +
X

| | 1

X

=1

Z

[ ] ·

= ( ) +

Z

·

where
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= 1
X

| | | | 1

( 1)| | [ ] = 1
X

| | 1

X

=1

( ) +
X

| | 1

0

= 1
X

=1

( ) 1
X

=1

( 0 ) +
X

=1

0 + 00

=
X

=1

1
X

=1

( [ ])
X

=1

0

1
X

=1

( [ 0 ]) +
X

=1

0 + 00

and

=
X

| | 1

X

=1

( ) =
X

=1

+
X

=1

0

Similarly for 1( ) and 2 ( )

E( ) =
X

| | | | 1

Z

· ( 1)| | 1
£ ¤

+
X

=1

X

| | 1

Z

· £ ¤

= ( † ) +
Z

· †

where † = [ + 0] and

† = 1 ( ) + 0
1 ( 0 ) + 00

= 1 ( [ ])

+ 0 0
1 ( [ 0]) + 00

=
£

+
¡

0 0
1 [ ]

¢

+ 00
1 [ 0]

¤

Proposition 51.4 shows that to the Dirichlet form E there is an associated
second order elliptic operator along with boundary conditions as in Eqs.
(51.6) and (51.4). The next proposition shows how to reverse this procedure
and associate a Dirichlet form E to a second order elliptic operator with
boundary conditions.

Proposition 51.5 (Following Folland p. 240.). Let 0 ( )
and = ( ) with ( ) 0 and 0 and let

= + + 0 (51.10)

and ( ) :=
R

Also suppose : R and : R are
smooth functions such that ( ) · ( ) 0 for all and let 0 :=
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· + Then there exists a Dirichlet form E as in Notation 51.1 and
( (0 )) such that Eq. (51.2) holds with = 0 In particular

if 2( ) then = 0 i 0 = 0 on

Proof. Since mixed partial derivatives commute on 2( ) the term
in Eq. (51.8) may be written as

1

2
( + )

With this in mind we must find coe cients { : | | | | 1} as in Notation
51.1, such that

=
1

2
( + ) (51.11)

=
¡

0 0
1 [ ]

¢

(51.12)

0 = 00
1 [ 0 ] (51.13)

tr = and (51.14)

0 = (51.15)

Eq. (51.11) will be satisfied if

= +

where = are any functions in ( ) Dotting Eq. (51.14) with
shows that

=
tr ·
· =

·
· =

·
· (51.16)

and Eq. (51.14) may now be written as

:=
·
· = (51.17)

which means we have to choose = ( ) so that Eq. (51.17) holds. This is
easily done, since · = 0 by construction we may define := ( · ) ( · )
for R Then is skew symmetric and = as desired. Since are
smooth functions on a partition of unity argument shows that =
may be extended to element of ( ¯) (These extensions are highly non-
unique but it does not matter.) With these choices, Eq. (51.11) and Eq. (51.14)
now hold with as in Eq. (51.16). We now choose 0 ( ¯) such that
0 = on Once these choices are made, it should be clear that Eqs.
(51.13) and (51.14) may be solved uniquely for the functions 0 and 00

51.2 Weak Solutions for Elliptic Operators

For the rest of this subsection we will assume = 1 This can be done here
by absorbing into the coe cient
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Definition 51.6. The Dirichlet for E is uniformly elliptic on if there
exists 0 such that ( ( )) for all i.e. ( ) | |2 for
all and R

Assumption 4 For the remainder of this chapter, it will be assumed that E
is uniformly elliptic on

Lemma 51.7. If 2 + then 2 2 + 2 .

Proof. 2 1
2

2 + 1
2
2 + . Therefore 1

2
2 1

2
2 + or 2 2 + 2 .

Theorem 51.8. Keeping the notation and assumptions of Proposition 51.2
along with Assumption 4, then

E( ) + k k 2( )
2
k k 1( ) (51.18)

where = 2 2

+ + 2

Proof. To simplify notation in the proof, let k·k denote the 2( ) — norm.
Since

Z

·
Z

| |2 = k k2 2

E( ) k k2 2 (k k k k+ k k2)
and so

k k2 k kk k+
µ

1E( ) + k k2
¶

Therefore by Lemma 51.7 with = k k =
¡

1E( ) + k k2¢ and
= k k

k k2
2

2
k k2 + 2(E( ) + k k2)

=
2E( ) +

µ

2

2
+
2
¶

k k2

Hence

2
k k2 E( ) +

µ

2 2

+

¶

k k2

which, after adding 2 k k2 to both sides of this equation, gives Eq. (51.18).
The following theorem is an immediate consequence of Theorem 51.8 and

the Lax-Milgram Theorem 53.9.

Corollary 51.9. The quadratic form

( ) := E( ) + ( )

satisfies the assumptions of the Lax Milgram Theorem 53.9 on 1( ) or any
closed subspace of 1( )
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Theorem 51.10 (Weak Solutions). Let E be as in Notation 51.1 and
be as in Theorem 51.8,

( ) := E( ) + ( ) for 1( )

and be a closed subspace of 1( ) Then the maps L : and
L† : defined by

L := ( ·) = (LE + ) and

L† := (· ) =
³

L†E +
´

are linear isomorphisms of Hilbert spaces satisfying

°

°L 1
°

°

( )

2
and

°

°(L†) 1
°

°

( )

2

In particular for there exist a unique solution to L = and
this solution satisfies the estimate

k k 1( )
2k k

Remark 51.11. If 1
0 ( ) and then for ( )

hL i = ( ) = (
¡ † +

¢

) = h( + ) i
That is to say L | ( ) = ( + ) In particular any solution to
L = solves

( + ) = | ( ) D0 ( )

Remark 51.12. Suppose that is a measurable set such that ( ) 0
and :=

©

1( ) : 1 | = 0
ª

If 2 ( ) solves L = for some
2( ) then by Proposition 51.4,

( ) := hL i = E( ) + ( ) = (( + ) ) +

Z

· (51.19)

for all 1( ) Taking D ( ) in Eq. (51.19) shows
( + ) = a.e. and

Z

· = 0 for all

Therefore we may conclude, solves

( + ) = a.e. with

( ) = 0 for — a.e. \ and

( ) = 0 for — a.e.
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The following proposition records the important special case of Theorem
51.10 when = 1

0 ( ) and hence = 1( ) The point to note here is
that L = ( + ) when = 1

0 ( ) i.e. L equals [( + ) ] extended
by continuity to a linear functional on =

£

1
0 (

¤

Proposition 51.13. Assume is elliptic as above. Then there exist 0
su ciently large such that ( + ) : 1

0 ( ) 1( ) is bijective with
bounded inverse. Moreover

k( + ) 1k ( 1
0 ( ) 1( )) 2

or equivalently

k k 1
0 ( )

2k( + ) k 1( ) for all
1
0 ( )

Our next goal, see Theorem 52.15, is to prove the elliptic regularity result,
namely if = 1

0 ( ) or = 1( ) and satisfies L ( ) then
+2( )
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Elliptic Regularity

Assume that ¯ is a compact manifold with 2 — boundary and satisfying
¯ = and let E be the Dirichlet form defined in Notation 51.1 and
be as in Eq. (51.6) or Eq. (51.8). We will assume E or equivalently that
is uniformly elliptic on This section is devoted to proving the following
elliptic regularity theorem.

Theorem 52.1 (Elliptic Regularity Theorem). Suppose = 1
0 ( ) or

1( ) and E is as above. If such that LE ( ) for some
N0 { 1} then +2( ) and

k k +2( ) (kLE k ( ) + k k 2( )) (52.1)

52.1 Interior Regularity

Theorem 52.2 (Elliptic Interior Regularity). To each ( ) there
exist a constant = ( ) such that

k k 1( ) {k k 1( ) + k k 2( )} for all 1( ) (52.2)

In particular, if is a precompact open subset of then

k k 1( ) {k k 1( ) + k k 2( )} (52.3)

Proof. For 1( ) 1
0 ( ) and hence by Proposition 51.13,

Proposition 50.6 and Lemma 50.7,

k k 1( )
2k( + ) ( ) k 1( )

=
2k ( + ) + [ ] k 1( )

2
( )

©k( + ) k 1( ) + k k 2( )

ª

2
( )

©k k 1( ) + k k 1( ) + k k 2( )

ª
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from which Eq. (52.2) follows. To prove Eq. (52.3), choose ( [0 1])
such that = 1 on a neighborhood of ¯ in which case

k k 1( ) = k k 1( ) k k 1( ) {k k 1( ) + k k 2( )}

Exercise 52.3. Let R with | | = 1 2 ( ) and be an open set
such that ¯ @@ For all 6= 0 su ciently show

°

°

°

°

1( )
k k 2( )

Notice that 2( ) 1( )

Solution 52.4 (52.3). Let 1 be a precompact open subset of such that
¯

1
¯
1 Then for D ( ) and close to zero,
¯

¯h i¯¯ = ¯¯h i¯¯ k k 2( 1)

°

°

°

°

2( 1)

k k 2( 1)
k k 2( ) (Theorem 48.13)

k k 2( ) k k 1( )

Hence
°

°

°

°

1( )
= sup

n

¯

¯h i¯¯ : D ( ) with k k 1( ) = 1
o

k k 2( )

Theorem 52.5 (Interior Regularity). Suppose is 2nd order uniformly
elliptic operator on and 1( ) satisfies ( )1 for some =
1 0 1 2 then +2( ) Moreover, if then there exists
= ( ) such that

k k +2( ) (k k ( ) + k k 2( )) (52.4)

Proof. The proof is by induction on with Theorem 52.2 being the case
= 1 Suppose that the interior regularity theorem holds for 1 0

We will now complete the induction proof by showing it holds for = 0+1
So suppose that 1( ) such that 0+1( ) and = 0

is fixed. Choose open sets 1 2 and 3 such that ¯
0 1

¯
1

2
¯
2 3

¯
3 as in Figure 52.1. The idea now is to apply the

induction hypothesis to the function where R and is the finite
di erence operator in Definition 29.14. For the remainder of the proof 6= 0
will be assumed to be su ciently small so that the following computations
make sense. To simplify notation let =

1 A priori, 1( ) D0 ( ))
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Fig. 52.1. The sets for = 0 1 2

For small, 1( 3) and 0+1( 3) and by Exercise
52.3 for 0 = 1 and Theorem 48.13 for 0 0

k k 0 ( 1) k k 0+1( 2) (52.5)

We now compute as

= + [ ] (52.6)

where

[ ] =

= ( ) ( ) ( ) ( )

= ( )

µ

( + ) ( )
¶

( + ) ( + ) ( ) ( )

=
( ) ( + )

( + ) = ( )

( ) = ( + )

and

:=
X

| | 2

( ) ( + )

The meaning of Eq. (52.6) and the above computations require a bit more
explanation in the case 0 = 1 in which case 2( ) What is being
claimed is that

= +

as elements of 1( 3) By definition this means that
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h † i = h i = h + i
= h † i+ h ¡ ¢† i

So the real identity which needs to be proved here is that
£ †¤ =

¡ ¢†
for all D ( 3) This can be done as above or it can be in-

ferred (making use of the properties † is the formal adjoint of and is
the formal adjoint of ) from the computations already done in the previous
paragraph with being a smooth function.
Since is a second order di erential operator with coe cients which

have bounded derivatives to all orders with bounds independent of small,
[ ] = 0( 1) and there is a constant such that

k[ ] k 0 ( 1) = k k 0 ( 1)

k k 0+2( 2) k k 0+2( 3) (52.7)

Combining Eqs. (52.5 — 52.7) implies that 0( 2) and

k k 0 ( 1) . k k 0+1( 2) + k k 0+2( 3)

Therefore by the induction hypothesis, 0+2( 0) and
°

°

°

°

0+2( 0)
. k k 0 ( 1) + k k 2( 1)

. k k 0+1( 2) + k k 0+2( 3) + k k 1( 2)

. k k 0+1( 2) + k k 0+2( 3)

. k k 0+1( ) + k k 0 ( ) + k k 2( ) (by induction)

. k k 0+1( ) + k k 2( )

So by Theorem 48.13, 0+2( 0) for all = with = 1 2 and

k k 0+2( ) = k k 0+2( 0)
. k k 0+1( ) + k k 2( )

Thus 0+3( 0) and Eq. (52.4) holds.

Corollary 52.6. Suppose is as above and 1( ) such that
( ) then ( ).

Proof. Choose 0 so ( 0). Therefore ( 0)
for all = 0 1 2 . Hence +2( 0) for all = 0 1 2 . Then by
Sobolev embedding Theorem 49.18, ( 0) Since 0 is an arbitrary
precompact open subset of ( )
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52.2 Boundary Regularity Theorem

Example 52.7. Let = (0 1) and ( ) = (1 + ) log(1 + ) Since ( ) is
holomorphic on it is also harmonic, i.e. = 0 ( ) for all However
we will now show that while 1( ) it is not in 2( ) Because is
holomorphic,

= = 1 + log(1 + ) and = = + log(1 + )

from which it is easily shown 1( ) On the other hand,

=
2

2
=

1

1 +

and
Z

¯

¯

¯

¯

1

1 +

¯

¯

¯

¯

2

=

Z

+1

¯

¯

¯

¯

1
¯

¯

¯

¯

2

Z

¯

¯

¯

¯

1
¯

¯

¯

¯

2

=
2

Z 1

0

1
2

=

where is the cone in Figure 52.2. This shows 2( ) and the problems
come from the bad behavior of near 1

Fig. 52.2. The cone used in showing not in 2( )

This example shows that in order to get an elliptic regularity result which
is valid all the way up to the boundary, it is necessary to impose some sort of
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boundary conditions on the solution which will rule out the bad behavior of
the example. Since the Dirichlet form contains boundary information, we will
do this by working with E rather than the operator on D0 ( ) associated to
E Having to work with the quadratic form makes life a bit more di cult.

Notations 52.8 Let

1. := { H : | | }
2. = 1

0 ( ) or be the closed subspace 1( ) given by

=
©

1( ) : | H ¯ = 0
ª

(52.8)

3. For let = { : = 0 on H \ for some }

Fig. 52.3. Nested half balls.

Remark 52.9. 1. If (H ) and vanishes on H \ for some
then for all

2. If then for all such that = 0 and | | su ciently
small.

Lemma 52.10 (Commutator). If ( ) then for N 1
0 × {0}

there exists ( ) such that

k[ ] k 2( ) ( )
X

k k 2( ) (52.9)

for all 2( ) with 2( ) for

Proof. The proof will be by induction on | | If = for some
then

( ) ( ) :=
( + ) ( + ) ( ) ( )

=
[ ( + ) ( )] ( + ) + ( ) [ ( + ) ( )]

= ( ) ( + ) + ( ) ( )
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which gives
[ ] = ( ) (52.10)

This then implies that

k[ ] k 2( ) ( )k k 2( )

Now suppose | | 1 with = + 0 so that =
0

with| 0| = | | 1
Then

[ ] = [
0
] +

0
[ ]

and therefore by the induction hypothesis and Theorems 48.13 and 48.15,

k[ ] k 2 0( )
X

0
k k 2 + k 0

[ ] k 2

0( )
X

0
k + k 2 + k 0 £

( )
¤ k 2 (52.11)

But
0 £
( )

¤

=
X

1+ 2= 0

0!
1! 2!

( 1 ) 2

and hence
k 0 £

( )
¤ k

X

0
k k 2 (52.12)

Combining Eqs. (52.11) and (52.12) gives the desired result,

k[ ] k 2 ( )
X

k k 2

Lemma 52.11 (Warmup for Proposition 52.12). Let
¡

H
¢

with ( ) for some 0

hL i = E( ) =

Z

H

X

| | | | 1

· (52.13)

= 1
0 (H ) or 1(H ) There exists such that if such that

L =: 2(H ) then 2
¡

R
¢

and

k k 2(H ) (k k 2(H ) + k k ) (52.14)

Proof. If L = then (L+ ) = + so by the Lax-Milgram
method,

k k . k + k k k + k k . kL k + k k
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We wish to prove 1(H ) for all and

k k 1(H ) . kL k 2(H ) + k k

To do this consider

hL i =
Z

H

X

| | | | 1

·

=

Z

H

X

| | | | 1

©

( ) +
£ ¤ ª ·

=: hL i
Z

H

X

| | | | 1

( ) ·

= hL i E ( = ( ) E ( )

= ( ) E ( )

wherein we have made use of Eq. (52.10) in the third equality. From this it
follows that

L = L E ( ·)
and

°

°L °

°

°

° L °

° +
°

°

°
E ( ·)

°

°

°
. kL k 2 + k k

. kL k 2 + kL k + k k . kL k 2 + k k

Therefore,
°

°

°

° .
°

°L °

° +
°

°

°

° . kL k 2 + k k + k k 2

. kL k 2 + k k

Since is small but arbitrary we conclude that and

k k . kL k 2 + k k for all

Finally if = we have that = L =
P

6=2 + 2 which implies
(writing for 2 )

2 = 1
X

6=2

2

because we have shown that 2 if { } 6= { } Moreover we have the
estimate that
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°

°

2
°

°

2 .

°

°

°

°

°

°

X

6=2

°

°

°

°

°

°

2

. k k 2 +
X

6=2
k k 2

. k k 2 +
X

°

°

°

° . kL k 2(H ) + k k

Thus we have shown that 2(H ) and

k k 2(H ) . kL k 2(H ) + k k

If we try to use the above proof inductively to get higher regularity we run
into a snag. To see this suppose now that 1 Then as above

L = L E ( ·) = E ( ·)

Let = and = and consider

E ( ) =

Z

H
·

Since 2 we may integrate by parts to find

E ( ) =

Z

H
( 1)

| |
( ) ·

Z

H
·

This shows that E ( ·) is representable by ( 1)
| |

( ) 2 plus
the boundary term

Z

H
·

To continue on by this method, we would have to show that the boundary
term is representable by an element of 2 This should be the case since
| H 1 2

¡

H
¢

while 1 2
¡

H
¢

with bounds. However we have
not proven such statements so we will proceed by a di erent but closely related
approach.

Proposition 52.12 (Local Tangential Boundary Regularity). Let
¡

¯
¢

with 2 | |2

( ) =

Z

X

| | | | 1

· (52.15)

= 1( ) or be the closed subspace of 1 ( ) defined in Eq. (52.8) of
Notation 52.8. Suppose N0 and ( ) satisfy,

( ) =

Z

for all (52.16)
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Given there exists such that for all N 1
0 × {0} with

| | + 1 1( ) and

k k 1( ) (k k ( ) + k k 1( )) (52.17)

Proof. Let and consider the half nested balls as in Figure
52.4 below. The proof will be by induction on = | | When = 0 the

Fig. 52.4. A collection of nested half balls along with the cuto function

assertion is trivial. Assume now there exists [1 + 1] N such that
1( ) for all | | with = 0 and

k k 1( ) (k k ( ) + k k 1( ))

Fix ( ) such that = 0 on ¯ \ ¯ and = 1 in a neighborhood
of Suppose is a multi-index such that | | = and = 0 Then ( )

for su ciently small.
With out loss of generality we may assume 1 0 and write = 1 +

0

and = 1
0
For
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( ( ) ) =

Z

X

| | | | 1

( ) · =

Z

X

| | | | 1

( ) ·

=
X

| | | | 1

Z

( ( )) ·

+

1
z }| {

X

| | | | 1

Z

[ ] ( ) ·

=
X

| | | | 1

Z

( ) ·

+

2
z }| {

X

| | | | 1

Z

( [ ] ) · + 1

=
X

| | | | 1

( 1)| |
Z

· + 1 + 2

=
X

| | | | 1

( 1)| |
Z

· £ ¤

+ 1 + 2

+

3
z }| {

X

| | | | 1

( 1)| |
Z

· £ ¤

= ( 1)| | ( ) + 1 + 2 + 3

= ( 1)| |
Z

+ 1 + 2 + 3

= 1 + 2 + 3

4
z }| {

Z

0
[ ] · 1

= 1 + 2 + 3 + 4

To summarize,
( ( ) ) = 1 + 2 + 3 + 4

where

1070 52 Elliptic Regularity

1 :=
X

| | | | 1

Z

[ ] ( ) ·

2 :=
X

| | | | 1

Z

( [ ] ) ·

3 :=
X

| | | | 1

( 1)| |
Z

· £ ¤

and

4 :=

Z

0
[ ] · 1

To finish the proof we will estimate each of the terms for = 1 4
Using Lemma 52.10,

| 1|
X

| | | | 1

Z

¯

¯[ ] ( ) · ¯

¯

k k 1( )

X

| | | | 1

k[ ] ( )k 2( )

k k 1( )

X

| | | | 1

X

( )k ( )k 2( )

. k k 1( )

X

k k 1( )

. k k 1( )

³

k k ( ) + k k 1( )

´

(by induction).

For 2

| 2| =
¯

¯

¯

¯

¯

¯

X

| | 1 | |=1

Z

( ( ) ) ·
¯

¯

¯

¯

¯

¯

k k 1( )

X

| | 1 | |=1
k [ ( ) ]k 2( )

k k 1( )

X

| | 1 | |=1
k [ ( ) ]k 2( )

k k 1( )

X

k k 2( )

k k 1( )

X

| | 1 =0

k k 1( )

k k 1( )(k k ( ) + k k 1( )) (by induction).

For 3
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| 3|
X

| | 1 | |=1

¯

¯

¯

¯

Z

· ¡ ¢

¯

¯

¯

¯

=
X

| | 1 | |=1

¯

¯

¯

¯

Z

0 £ · ¡ ¢¤ ·
¯

¯

¯

¯

X

| | 1 | |=1
k k 1( )k

0 £ · ¡ ¢¤ k 2( )

k k 1( )

X

| | 1

X

0
k + k 2( )

k k 1( )

X

0
k k 1( )

k k 1( )(k k ( ) + k k 1( )) (by the induction hypothesis).

Finally for 4

| 4| =
¯

¯

¯

¯

Z

0
[ ] · 1

¯

¯

¯

¯

k 1 k 2( ) k
0
( )k 2( )

k k 1( ) k
0
( )k 2( )

k k 1( ) k k 1( ) k k 1( )k k ( )

Putting all of these estimates together proves, whenever | | =

| ( ( ) )| k k 1( )(k k ( ) + k k 1( )) (52.18)

for all In particular we may take = ( ) in the above
inequality to learn

( ( ) ( )) k ( )k 1( )(k k ( ) + k k 1( )) (52.19)

But by coercivity of

k ( )k2 1( )

h

( ( ) ( )) + k ( )k2 2( )

i

. k ( )k 1( )(k k ( ) + k k 1( ))

+ k ( )k 1( )k ( )k 2( )

. k ( )k 1( )

µk k ( ) + k k 1( )

+k ( )k 2( )

¶

(52.20)

and hence

k ( )k 1( ) . k k ( ) + k k 1( ) + k ( )k 2( ) (52.21)

Now
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k ( )k 2( ) = k
0
( )k 2( )

k 0
( )k 1( ) k 0

( )k 1( )
X

0
k k 1( ) by the chain rule

(k k ( ) + k k 1( )) by induction.

This last estimated combined with Eq. (52.21) shows

k ( )k 1( ) . k k ( ) + k k 1( )

and therefore ( ) 1 ( ) and

k ( )k 1( ) . k k ( ) + k k 1( )

This proves the proposition since 1 on so

k k 1( ) = k ( )k 1( ) k ( )k 1( )

. k k ( ) + k k 1( )

Theorem 52.13 (Local Boundary Regularly). As in Proposition 52.12,
let

¡

¯
¢

with 2 | |2

( ) =
X

| | | | 1

Z

·

and = 1
0 ( ) or 1( ) as in Eq. (52.8) . If ( ) for some

0 and solves

( ) = ( ) for all

then for all +2( ) and there exists such that

k k +2( ) (k k ( ) + k k 1( )
)

Proof. The theorem will be proved by showing 2( ) for all
| | + 2 and

k k 2( ) . k k ( ) + k k 1( ) (52.22)

The proof of Eq. (52.22) will be by induction on = The case = 0 1
follows from Proposition 52.12. Suppose = 2 and 0 = 2 so
=

0 2 Now letting

=
X

| | | | 1

( 1)| | =
X

| | 2
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then = in the distributional sense. Writing ˜ for (0 0 0 2)

= ˜ 2 +
X

| | 2 2

so that
2 =

1
˜
(

X

| | 2 2

)

and

=
0 2 =

0 1
˜

X

| | 2 2
˜

(52.23)

Now by the product rule

X

| | 2 2

0
µ

˜

¶

:=
X

| | 2 2 0

µ 0¶
( 0 + )

µ

˜

¶

· ( + )

(52.24)
Since ( 0 + ) the induction hypothesis (i.e. Eq. (52.22) is valid for
| | ) shows the right member of Eq. (52.24) is in 2( ) and gives the
estimate

°

°

°

°

°

°

X

| | 2 2

0
µ

˜

¶

°

°

°

°

°

°

2( )

.
X

| | 2 2 0

°

°

°

( + )
°

°

°

2( )

. k k ( ) + k k 1( )

Combining this with Eq. (52.23) gives 2( ) and

k k 2( ) . k k | 0|( )
+

°

°

°

°

°

°

X

| | 2 2

0
µ

˜

¶

°

°

°

°

°

°

2( )

. k k ( ) + k k ( ) + k k 1( )
. k k ( ) + k k 1( )

(52.25)

The following assumptions an notation will be in force for the remainder
of this chapter.

Assumption 5 Let be a bounded open subset such that ¯ = and ¯ is
a — manifold with boundary, be either 1

0 ( ) or 1( ) and E be a
Dirichlet form as in Notation 51.1 which is assumed to be elliptic. Also if
is an open subset of R let

:= { : supp( ) @@ ¯}
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Lemma 52.14. For each there exists precompact open neighborhoods
and in R such that ¯ for each N there is a constant

such that if and ( ) satisfies

E( ) =

Z

for all (52.26)

then +2( ) and

k k +2( ) (k k ( ) + k k 1( )) (52.27)

Proof. Let be an open neighborhood of such that there exists a chart
: (0 ) with inverse := 1 : (0 ) satisfying:

1. The maps and has bounded derivatives to all orders.
2. ( ) = (0 ) H = and ( bd( )) = (0 ) bd(H ))

Now let and define := ( (0 )) see Figure 52.5.

Fig. 52.5. Flattening out the boundary of in a neighborhood of

Suppose that satisfies Eq. (52.26) and Then making the
change of variables = ( )

Z

=

Z

( ( )) ( ( )) ( ) =

Z

(̃ )˜( )
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where ( ) := |det 0( )| (̃ ) := ( ) ( ( )) and ˜( ) = ( ( )) By the
change of variables theorem, := is the generic element of ( )
and ˜ ( ) We also define a quadratic form on ( ) by

(˜ ˜) :=
X

| | | | 1

Z

(˜ ) · (˜ )

Again by making change of variables (using Theorem 48.16 along with the
change of variables theorem for integrals) this quadratic form may be written
in the standard form,

(˜ ˜) =
X

| | | | 1

Z

˜ ˜ · ˜

This new form is still elliptic. To see this let denote the matrix ( ) then

X

=1

(˜ ) · (˜ ) = (˜ ) · (˜ )

= [ 0] ˜ · [ 0] ˜

which shows
˜ = [ 0] · [ 0]

and
X

=1

˜ = [ 0] · [ 0]
¯

¯

¯
[ 0]

¯

¯

¯

2

| |2

where

= inf

½

¯

¯

¯
[ 0( )]

¯

¯

¯

2

: | | = 1 &
¾

0

Then Eq. (52.26) implies

(˜ ˜) =

Z

(̃ )˜( ) for all ˜

Therefore by local boundary regularity Theorem 52.13, ˜ +2( ) and
there exists such that

k˜k +2( ) (k k̃ ( ) + k˜k 1( )
) (52.28)

Invoking the change of variables Theorem 48.16 again shows ( ) and
the estimate in Eq. (52.28) implies the estimated in Eq. (52.27).

Theorem 52.15 (Elliptic Regularity). Let be a bounded open subset
such that ¯ = and ¯ is a — manifold with boundary, be either
1
0 ( ) or 1( ) and E be a Dirichlet form as in Notation 51.1. If N and

such that LE ( ) then +2( ) and

k k +2( ) (k k ( ) + k k ) (k k ( ) + k k 2( )) (52.29)
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Proof. Cover with { } =1 and { } =1 as in the above Lemma 52.14
such that ¯ @@ Also choose a precompact open subset 0 contained in
such that { } =0 covers Choose 0 such that 0 0 and ¯

0

If LE =: ( ) then by Lemma 52.14 for 1 and Theorem 52.5 for
= 0 +2( ) and there exist such that

k k +2( ) (k k ( ) + k k 1( )) (52.30)

Summing Eq. (52.30) on implies +2( ) and

k k +2( ) (k k ( ) + k k ) (52.31)

Finally

k k2 (E( ) + k ||2 1( ))

= (( ) 2( ) + k ||2 1( ))

(k k 2( )k k 2( ) + k ||2 1( ))

(
1

2
k k2 2( ) + 2

k k2 + k ||2 1( ))

for any 0 Choosing so that = 1 we find

1

2
k k2 (

1

2
k k2 2( ) + k ||2 1( ))

which implies with a new constant that

k k ¡k k 2( ) + k || 1( )

¢

(52.32)

Combining Eqs. (52.31) and (52.32) implies Eq. (52.29).
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Unbounded operators and quadratic forms

53.1 Unbounded operator basics

Definition 53.1. If and are Banach spaces and is a subspace of ,
then a linear transformation from into is called a linear transformation
(or operator) from to with domain We will sometimes wr If is dense
in is said to be densely defined.

Notation 53.2 If and are operators from to with domains ( )
and ( ) and if ( ) ( ) and = for ( ), then we say is
an extension of and write

We note that × is a Banach space in the norm

kh ik =
p

k k2 + k k2

If and are Hilbert spaces, then × and × become Hilbert spaces
by defining

(h i h 0 0i) × := ( 0) + ( 0)

and
(h i h 0 0i) × := ( 0) + ( 0)

Definition 53.3. If is an operator from to with domain , the graphof
is

( ) := {h i : ( )} ×
Note that ( ) is a subspace of × .

Definition 53.4. An operator : is closedif ( ) is closed in ×
Remark 53.5. It is easy to see that is closed i for all sequences
such that there exists and such that and
implies that D and =
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Let be a Hilbert space with inner product (· ·) and norm k k :=p( )
As usual we will write for the continuous dual of and for the
continuous conjugate linear functionals on Our convention will be that
(· ) is linear while ( ·) is conjugate linear for all

Lemma 53.6. Suppose that : is a densely defined operator between
two Hilbert spaces and Then

1. is always a closed but not necessarily densely defined operator.
2. If is closable, then ¯ =
3. is closable i : is densely defined.
4. If is closable then ¯ =

Proof. Suppose { } ( ) is a sequence such that 0 in and
in as Then for ( ) by passing to the limit in

the equality, ( ) = ( ) we learn ( ) = (0 ) = 0 Hence if is
densely defined, this implies = 0 and hence is closable. This proves one
direction in item 3. To prove the other direction and the remaining items of
the Lemma it will be useful to express the graph of in terms of the graph
of We do this now.
Recall that ( ) and = i ( ) = ( ) for all
( ) This last condition may be written as ( ) ( ) = 0 for all

h i ( )
Let : × × be the unitary map defined by h i = h i

With this notation, we have h i ( ) i h i ( ) i.e.

( ) = ( ( )) = ( ( ) ) (53.1)

where the last equality is a consequence of being unitary. As a consequence
of Eq. (53.1), ( ) is always closed and hence is always a closed operator,
and this proves item 1. Moreover if is closable, then

( ) = ( ) = ( ) = ( ¯) = ( ¯ )

which proves item 2.
Now suppose is closable and D( ) Then

h 0i ( ) = ( ) = ( ) = ( ¯)

where ¯ denotes the closure of This implies that h0 i ( ¯) But ¯

is a well defined operator (by the assumption that is closable) and hence
= ¯0 = 0 Hence we have shown D( ) = {0} which implies D( ) is

dense in This completes the proof of item 3.
4. Now assume is closable so that is densely defined. Using the

obvious analogue of Eq. (53.1) for we learn ( ) = ( ) where
h i = h i = 1h i Therefore,

( ) = ( ( ) ) = ( ) = ( ) = ( ¯)

and hence ¯ =
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Lemma 53.7. Suppose that and are Hilbert spaces, : is
a densely defined operator which has a densely defined adjoint Then
Nul( ) = Ran( ) and Nul( ¯) = Ran( ) where ¯ denotes the closure
of

Proof. Suppose that Nul( ) and D( ) then ( ) =
( ) = 0 Since D( ) is arbitrary, this proves that Nul( )
Ran( ) Now suppose that Ran( ) Then 0 = ( ) for all ( )
This shows that D( ) and that = 0 The assertion Nul( ¯) =
Ran( ) follows by replacing by in the equality, Nul( ) = Ran( )

Definition 53.8. A quadratic form on is a dense subspace D( )
called the domain of and a sesquilinear form : D( ) × D( ) C
(Sesquilinear means that (· ) is linear while ( ·) is conjugate linear
on D( ) for all D( ) ) The form is symmetric if ( ) = ( )
for all D( ) is positive if ( ) 0 (here ( ) = ( )) for all

D( ) and is semi-bounded if there exists 0 (0 ) such that
( ) 0k k2 for all D( )

53.2 Lax-Milgram Methods

For the rest of this section will be a sesquilinear form on and to simplify
notation we will write for D( )
Theorem 53.9 (Lax-Milgram). Let : × C be a sesquilinear form
and suppose the following added assumptions hold.

1. is equipped with a Hilbertian inner product (· ·)
2. The form is bounded on i.e. there exists a constant such
that | ( )| k k · k k for all

3. The form is coercive, i.e. there exists 0 such that | ( )| k k2
for all

Then the maps L : and L† : defined by L := ( ·)
and L† := (· ) are linear and (respectively) conjugate linear isomorphisms
of Hilbert spaces. Moreover

kL 1k 1 and k(L†) 1k 1

Proof. The operator L is bounded because

kL k = sup
6=0
| ( )|
k k k k (53.2)

Similarly L† is bounded with °°L†°°
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Let : denote the linear Riesz isomorphism defined by ( ) =
( ·) for Define := 1L : so that L = i.e.

L = ( ·) = ( ·) for all

Notice that is a bounded linear map with operator bound less than by
Eq. (53.2). Since

¡L† ¢ ( ) = ( ) = ( ) = ( ) for all

we see that L† = (· ) i.e. = ¯ 1L† where ¯( ) := ( ·) = (· )
Since and ¯ are linear and conjugate linear isometric isomorphisms, to finish
the proof it su ces to show is invertible and that k 1k 1

Since
|( ) | = |( ) | = | ( )| k k2 (53.3)

one easily concludes that Nul( ) = {0} = Nul( ) By Lemma 53.7,
Ran( ) = Nul( ) = {0} = and so we have shown : is
injective and has a dense range. From Eq. (53.3) and the Schwarz inequality,
k k2 k k k k i.e.

k k k k for all (53.4)

This inequality proves the range of is closed. Indeed if { } is a sequence
in such that as then Eq. (53.4) implies

k k k k 0 as

Thus := lim exists in and hence = Ran( ) and so

Ran( ) = Ran( ) = So : is a bijective map and hence
invertible. By replacing by 1 in Eq. (53.4) we learn 1 is bounded
with operator norm no larger than 1

Theorem 53.10. Let be a bounded coercive sesquilinear form on as in
Theorem 53.9. Further assume that the inclusion map : is bounded
and let and † be the unbounded linear operators on defined by:

D( ) := { : ( ) is - continuous}
D( †) := { : ( ) is - continuous}

and for D( ) and D( †) define and † by requiring

( ·) = ( ·) and (· ) = (· † )

Then D( ) and D( †) are dense subspaces of and hence of The oper-
ators 1 : D( ) and ( †) 1 : D( †) are bounded
when viewed as operators from to with norms less than or equal to
1 k k2 ( ) Furthermore, = † and ( †) = and in particular both

and † = are closed operators.
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Proof. Let : be defined by ( ) = ( ·)| If ( ·) is perpen-
dicular to ( ) = ( ) then

0 = (( ·) ( )) = (( ·) ( ·)) = ( ) for all

Taking = in this equation shows = 0 and hence the orthogonal comple-
ment of ( ) in is {0} which implies ( ) = ( ) is dense in
Using the notation in Theorem 53.9, we have D( ) i L ( ) =

( ) i L 1 ( ( )) and for D( ) L = ( ·)| = ( ) This and
a similar computation shows

D( ) = L 1( ( )) = L 1 ( ( )) and D( †) := (L†) 1( ( )) = (L†) 1(¯(

and for D( ) and D( †) we have L = ( ·)| = ( ) and L† =
(· † )| = ¯( † ) The following commutative diagrams summarizes the
relationships of and L and † and L†

L

( )

and

L†

¯

( †)
†

where in each diagram denotes an inclusion map. Because L and L† are
invertible, : ( ) and † : ( †) are invertible as well. Because
both L and L† are isomorphisms of onto and respectively and ( )
is dense in and ¯( ) is dense in the spaces D( ) and D( †) are dense
subspaces of and hence also of
For the norm bound assertions let D( ) and use the coercivity

estimate on to find

k k2 k k2 ( ) k k2 k k2 ( ) | ( )| = k k2 ( ) |( ) |
k k2 ( ) k k k k

Hence k k k k2 ( ) k k for all D( ) By replacing by 1

(for ) in this last inequality, we find

k 1 k k k2 ( ) k k i..e k 1k ( )
1 k k2 ( )

Similarly one shows that k( †) 1k ( )
1 k k2 ( ) as well.

For D( ) and D( †)

( ) = ( ) = ( † ) (53.5)

which shows † Now suppose that D( ) then

( ) = ( ) = ( ) for all D( )
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By continuity if follows that

( ) = ( ) for all

and therefore by the definition of † D( †) and † = i.e. †

Since we have shown † and † † = A similar argument
shows that

¡ †¢ = Because the adjoints of operators are always closed,
both =

¡ †¢ and † = are closed operators.

Corollary 53.11. If in Theorem 53.10 is further assumed to be symmetric
then is self-adjoint, i.e. =

Proof. This simply follows from Theorem 53.10 upon observing that =
† when is symmetric.

53.3 Close, symmetric, semi-bounded quadratic forms
and self-adjoint operators

Definition 53.12. A symmetric, sesquilinear quadratic form : × C
is closed if whenever { } =1 is a sequence such that in and

( ) := ( ) 0 as

implies that and lim ( ) = 0 The form is said to be
closable i for all { } such that 0 and ( ) 0 as

implies that ( ) 0 as

Example 53.13. Let and be Hilbert spaces and : be a densely
defined operator. Set ( ) := ( ) for := D( ) := D( )
Then is a positive symmetric quadratic form on which is closed i is
closed and is closable i is closable.

For the remainder of this section let : × C be a symmet-
ric, sesquilinear quadratic form which is semi-bounded and satisfies ( )

0 k k2 for all and some 0

Notation 53.14 For and 0 let ( ) := ( ) +
( ) Notice that

k k2 = ( ) + k k2 = ( ) + 0k k2 + ( 0) k k2
( 0) k k2 (53.6)

from which it follows that (· ·) is an inner product on and :

is bounded by ( 0)
1 2 Let denote the Hilbert space completion of

( (· ·) )
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Formally, = C where C denotes the collection of k · k —
Cauchy sequences in and is the equivalence relation, { } { } i
lim k k = 0 For let ( ) be the equivalence class of the
constant sequence with elements Notice that if { } and { } are in C then
lim ( ) exists. Indeed, let be a finite upper bound for k k
and k k (Why does this bound exist?) Then

|( ) ( ) | = |( ) + ( ) |
{k k + k k } (53.7)

and this last expression tends to zero as Therefore, if ¯ and ¯
denote the equivalence class of { } and { } in C respectively, we may define
(¯ ¯) := lim ( ) It is easily checked that with this inner
product is a Hilbert space and that : is an isometry.

Remark 53.15. The reader should verify that all of the norms, {k · k : 0}
on are equivalent so that is independent of 0

Lemma 53.16. The inclusion map : extends by continuity to a
continuous linear map ˆ from into Similarly, the quadratic form : ×

C extends by continuity to a continuous quadratic form ˆ : ×
C Explicitly, if ¯ and ¯ denote the equivalence class of { } and { } in C
respectively, then (̂¯) = lim and (̂¯ ¯) = lim ( )

Proof. This routine verification is left to the reader.

Lemma 53.17. Let be as above and 0 be given.

1. The quadratic form is closed i ( (· ·) ) is a Hilbert space.
2. The quadratic form is closable i the map ˆ : is injective. In
this case we identify with (̂ ) and therefore we may view ˆ
as a quadratic form on The form ˆ is called the closure of and as
the notation suggests is a closed quadratic form on

A more explicit description of ˆ is as follows. The domain D( )̂ consists
of those such that there exists { } such that in and
( ) 0 as If D( )̂ and and as
just described, then (̂ ) := lim ( )
Proof. 1. Suppose is closed and { } =1 is a k·k — Cauchy

sequence. By the inequality in Eq. (53.6), { } =1 is k·k — Cauchy and
hence := lim exists in Moreover,

( ) = k k2 k k2 0

and therefore, because is closed, D( ) = and lim ( ) = 0

and hence lim k k2 = 0 The converse direction is simpler and will
be left to the reader.
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2. The proof that is closable i the map ˆ : is injective will be
complete once the reader verifies that the following assertions are equivalent.
1) ˆ : 1 is injective, 2) (̂¯) = 0 implies ¯ = 0 3) if 0 and
( ) 0 as implies that ( ) 0 as
By construction equipped with the inner product (· ·) := (̂· ·) +
(· ·) is complete. So by item 1. it follows that ˆ is a closed quadratic form

on if is closable.

Example 53.18. Suppose = 2([ 1 1]) D( ) = ([ 1 1]) and ( ) :=
(0)¯(0) for all D( ) The form is not closable. Indeed, let ( ) =
(1+ 2) then 0 2 as and ( ) = 0 for all while
( 0) = ( ) = 19 0 as This example also shows the operator
: C defined by D( ) = ([ 1 1]) with = (0) is not closable.
Let us also compute for this example. By definition ( ) and
= i ( ) = = (0) for all ([ 1 1]) In particular this

implies ( ) = 0 for all ([ 1 1]) such that (0) = 0 However these
functions are dense in and therefore we conclude that = 0 and hence
D( ) = {0}!!
Exercise 53.19. Keeping the notation in Example 53.18, show ( ) = ×C
which is clearly not the graph of a linear operator : C

Proposition 53.20. Suppose that : is a densely defined positive
symmetric operator, i.e. ( ) = ( ) for all D( ) and ( )
0 for all D( ) Define ( ) := ( ) for D( ) Then
is closable and the closure ˆ is a non-negative, symmetric closed quadratic
form on

Proof. Let (· ·)1 = (· ·) + (· ·) on D( )×D( ) D( ) such that
-lim = 0 and

( ) = ( ( ) ( )) 0 as

Then

lim sup ( ) lim k k21 = lim ( )1 = lim {( )+( )} =

where the last equality follows by first letting and then
Notice that the above limits exist because of Eq. (53.7).

Lemma 53.21. Let be a positive self-adjoint operator on and define
( ) := ( ) for D( ) = D( ) Then is closable and the

closure of is

ˆ ( ) = ( ) for := D(ˆ ) = D( )
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Proof. Let (̂ ) = ( ) for = D( ) Since is
self-adjoint and hence closed, it follows from Example 53.13 that ˆ is closed.
Moreover, ˆ extends because if D( ) then D( ) = D(( )2)
and (̂ ) = ( ) = ( ) = ( ) Thus to show ˆ is the
closure of it su ces to show D( ) is dense in = D( ) when equipped
with the Hilbertian norm, k k21 = k k2 + (̂ )
Let D( ) and define := 1[0 ]( ) Then using the spectral

theorem along with the dominated convergence theorem one easily shows that
= D( ) lim = and lim = But this is

equivalent to showing that lim k k1 = 0
Theorem 53.22. Suppose : × C is a symmetric, closed, semi-
bounded (say ( ) 0k k2) sesquilinear form. Let : be the
possibly unbounded operator defined by

( ) := { : ( ·) is — continuous}
and for ( ) let be the unique element such that ( ·) =
( ·)| Then

1. is a densely defined self-adjoint operator on and 0

2. ( ) is a form core for i.e. the closure of ( ) is a dense subspace
in ( k·k ) More explicitly, for all there exists ( ) such
that in and ( ) 0 as

3. For and 0 ( ) =
¡

+
¢

4. Letting ( ) := ( ) for all ( ) we have is closable
and ˆ =

Proof. 1. From Lemma 53.17, ( (· ·) := (· ·) ) is a Hilbert space for
any 0 Applying Theorem 53.10 and Corollary 53.11 with being
(· ·) gives a self-adjoint operator : such that

( ) := { : ( ·) is — continuous}
and for ( )

( ) = ( ) = ( ) + ( ) for all (53.8)

Since ( ·) is — continuous i ( ·) is — continuous it follows that
( ) = ( ) and moreover Eq. (53.8) is equivalent to

(( ) ) = ( ) for all

Hence it follows that := and so is self-adjoint. Since ( ) =

( ) 0 k k2 we see that 0

2. The density of D( ) = D( ) in ( (· ·) ) is a direct consequence of
Theorem 53.10.
3. For
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D( ) := D
³

p

´

= D
³

+
´

= D
³

p

+ 0

´

let ( ) :=
¡ ¢

For ( ) we have

( ) = ( ) = ( ) + ( ) = ( ) + ( ) = ( )

By Lemma 53.21, is a closed, non-negative symmetric form on and
D( ) = D ( ) is dense in (D( ) ) Hence if D( ) there exists

D( ) such that ( ) 0 and this implies ( ) 0 as
Since is closed, this implies D( ) and furthermore that

( ) = ( ) for all D( )
Conversely, by item 2., if = D( ) there exists D( ) such that

k k 0 From this it follows that ( ) 0 as
and therefore since is closed, D( ) and again ( ) = ( ) for all

D( ) This proves item 3. and also shows that

( ) =
³

+ +
´

( ) for all

where := D ¡ ¢

4. Since is closable and the closure of is still contained in
Since = (· ·) on ( ) and the closure of | ( ) = (· ·) it is easy
to conclude that the closure of is as well.

Notation 53.23 Let P denote the collection of positive self-adjoint operators
on and Q denote the collection of positive and closed symmetric forms on

Theorem 53.24. The map P ˆ Q is bijective, where ˆ ( ) :=
( ) with D(ˆ ) = D( ) is the closure of the quadratic form
( ) := ( ) for D ( ) := D( ) The inverse map is given

by Q P where is uniquely determined by

D( ) = { D( ) : ( ·) is - continuous} and
( ) = ( ) for D( ) and D( )

Proof. From Lemma 53.21, ˆ Q and ˆ is the closure of From
Theorem 53.22 P and

(· ·) =
³

p · p ·
´

= ˆ

So to finish the proof it su ces to show P ˆ Q is injective.
However, again by Theorem 53.22, if Q and P such that = ˆ then

D( ) and = i

( ·) = ( ·) = ( ·)|

But this implies D
³ ´

and = = But by the

spectral theorem,
³ ´

= ( ) and so we have proved =
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53.4 Construction of positive self-adjoint operators

The main theorem concerning closed symmetric semi-bounded quadratic
forms is Friederich’s extension theorem.

Corollary 53.25 (The Friederich’s extension). Suppose that :
is a densely defined positive symmetric operator. Then has a positive self-
adjoint extension ˆ Moreover, ˆ is the only self-adjoint extension of such
that D( ˆ) D(ˆ )
Proof. By Proposition 53.20, := ˆ exists in Q By Theorem 53.24,

there exists a unique positive self-adjoint operator on such that ˆ =
Since for D( ) ( ) = ( ) for all it follows from Eq. (??)
and (??) that D( ) and = Therefore ˆ := is a self-adjoint
extension of
Suppose that is another self-adjoint extension of such that D( )

Then ˆ is a closed extension of Thus = ˆ ˆ i.e. D(ˆ ) D(ˆ )
and ˆ = ˆ on D(ˆ )×D(ˆ ) For D( ) and D( ) we have that

ˆ ( ) = ( ) = ( ) = ( ) = ( ) = ( )

By continuity it follows that

ˆ ( ) = ( ) = ( ) = ( )

for all D( ) Therefore, D( ) = D( ) and = = That
is Taking adjoints of this equation shows that = =
Thus =

Corollary 53.26 (von Neumann). Suppose that : is a closed
operator, then = is a positive self-adjoint operator on

Proof. The operator is densely defined by Lemma 53.6. The quadratic
form ( ) := ( ) for := D( ) is closed (Example 53.13)
and positive. Hence by Theorem 53.24 there exists an P such that = ˆ
i.e.

( ) =
³ ´

for all = D( ) = D( ) (53.9)

Recalling that ( ) and = happens i

( ) = ( ) = ( ) for all

and this happens i ( ) and = Thus we have shown
= which is self-adjoint and positive.
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53.5 Applications to partial di erential equations

Let R be an open set, 1( (0 )) and for = 1 2 let
1( R) Take = 2( ) and define

( ) :=

Z

X

=1

( ) ( ) ( ) ( )

for = 2( )

Proposition 53.27. Suppose that = and that
P

=1 ( ) 0
for all R Then is a symmetric closable quadratic form on Hence
there exists a unique self-adjoint operator ˆ on such that ˆ= ˆˆ Moreover
ˆ is an extension of the operator

( ) =
1

( )

X

=1

( ( ) ( ) ( ))

for D( ) = 2( )

Proof. A simple integration by parts argument shows that ( ) =
( ) = ( ) for all D( ) = 2( ) Thus by Proposition 53.20,
is closable. The existence of ˆ is a result of Theorem 53.24. In fact ˆ is the

Friederich’s extension of as in Corollary 53.25.
Given the above proposition and the spectral theorem, we now know that

(at least in some weak sense) we may solve the general heat and wave equa-
tions: = for 0 and = for R Namely, we will take

( ·) := ˆ
(0 ·)

and

( ·) = cos(
p

ˆ) (0 ·) + sin(
p

ˆ)
p

ˆ
(0 ·)

respectively. In order to get classical solutions to the equations we would have
to better understand the operator ˆ and in particular its domain and the
domains of the powers of ˆ This will be one of the topics of the next part of
the course dealing with Sobolev spaces.

Remark 53.28. By choosing D( ) = 2( ) we are essentially using Dirichlet
boundary conditions for and ˆ If is a bounded region with 2—boundary,
we could have chosen (for example VERIFY THIS EXAMPLE)

D( ) = { 2( ) 1( ¯) : with = 0 on }
This would correspond to Neumann boundary conditions. Proposition 53.27
would be valid with this domain as well provided we assume that and
are in 1( ¯)
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For a second application let = 2( ;R ) and for = 1 2
let : M × (the × matrices) be a 1 function. Set D( ) :=
1( R ) and for D( ) let ( ) =

P

=1 ( ) ( )

Proposition 53.29 (“Dirac Like Operators”). The operator on de-
fined above is closable. Hence := ¯ is a self-adjoint operator on where
¯ is the closure of

Proof. Again a simple integration by parts argument shows that D( )
D( ) and that for D( )

( ) =
1

( )

X

=1

( ( ) ( ) ( ))

In particular is a densely defined operator and hence is closable. The
result now follows from Corollary 53.26.
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L2 — operators associated to E

Let ¯ be a 2 — manifold with boundary such that = ¯ ( ) with
0 on

¡

¯
¢

such that ( ) for some 0 and E be
the elliptic Dirichlet form given by

E( ) =

Z

X

where := Let = 2( ) = 2( ) and = 1( ) or 1
0 ( )

Definition 54.1. Let

( E) = { : LE := E( ·) 2( )}
( †

E) = { : L†E := E(· ) 2( )}

and for ( E) ( ( †
E)) define E ( †

E ) to be the unique element
in 2( ) such that

E( ) = ( E ) 2( ) =
R

E ·
E( ) = ( E ) 2( ) =

R · †
E

for all

Theorem 54.2. If = 1
0 ( ) let = † 0 and if = 1( ) let and

† be given (as in Proposition 51.4) by

:=
P

= · + ( · 0 ·)
† :=

P

= · + ( · · 0)

Then
( E) = { 2( ) :

¯

¯ = 0}
( †

E) = { 2( ) : † ¯
¯ = 0}
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and
E = 1

P

(( ) ) =:
†
E = 1

P

( ) ) =: †

Moreover E = (
†
E) and E =

†
E

Proof. By replacing E( ) by E( )+ ( ) E E + and †
E†

E+ for a su ciently large constant we may assume that E( ) satisfies

k k2 1 E( ) for all 1

Then by Theorem 53.10, E =
†
E ( †

E) = E and

E : ( E) 2 ( ) and †
E : ( †

E)
2 ( )

are linear isomorphisms. By the elliptic regularity Theorem 52.15, both ( E)
and ( †

E) are subspaces of
2( ) and moreover there is a constant

such that
k k 2( ) k E k 2( ) (54.1)

From Proposition 51.4 (integration by parts), for 2( ) and

E( ) = ( ) 2( ) +

Z

¯

¯

¯
·
¯

¯

¯
(54.2)

while, by definition, if ( E) then

E( ) = ( E ) 2( ) for all (54.3)

Choosing 1
0 ( ) comparing Eqs. (54.2) and (54.3) shows that =

E So for ( E) E = and moreover we must have
¯

¯

¯
= 0 as

well. Therefore
( E) 2( ) { :

¯

¯

¯
= 0}

Conversely if 2( ) with
¯

¯

¯
= 0 E( ) = ( ) 2( ) for all

and therefore by definition of LE ( E) and E = The assertions
involving †

E are proved in the same way.

54.1 Compact perturbations of the identity and the
Fredholm Alternative

Definition 54.3. A bounded operator : is Fredholm i the
dimNul( ) dim coker( ) and Ran( ) is closed in . (Recall:
coker( ) := ÁRan( ).) The index of is the integer,

index( ) = dimNul( ) dim coker( ) (54.4)

= dimNul( ) dimNul( ) (54.5)
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Example 54.4. Suppose that and are finite dimensional Hilbert spaces
and : is a linear operator. In this case, the rank nullity theorem
implies

index( ) = dimNul( ) dim coker( )

= dimNul( ) [dim dimRan( )]

= dimNul( ) + dimRan( ) dim

= dim dim

Theorem 54.5. If : is finite rank, then = + is Fredholm
and index( ) = 0

Proof. Let 1 = Nul( ) 2 = Ran( ) : be orthogonal
projection, { } =1 be an orthonormal basis for Ran( ) and := for
= 1 2 Then for

=
X

=1

( ) =
X

=1

( ) =
X

=1

( )

and hence { 1 } Nul( ) Therefore 2 = Nul( ) span { 1 }
is finite dimensional. For = 1 + 2 1 2

= ( 1 + 2) ( 1 + 2 + 2) = ( 1 + 1 2) + ( 2 + 2 2 2)

= ( 1 + 1 2) + ( 2 + 2 2) 2 (54.6)

From Eq. (54.6) we see that = 1+ 2 Nul( ) i 2 Nul( 2 + 2 2)
and 1 = 1 2 and hence

Nul( ) = Nul( 2 + 2 2) (54.7)

It is also easily seen from Eq. (54.6) that

Ran( ) = 1 Ran(
2
+ 2 2) (54.8)

Since 2 is finite dimensional, Ran( 2 + 2 2) is a closed subspace of 2

and so Ran( ) is closed. Moreover

coker( ) = ÁRan( ) = [ 1 2]Á [ 1 Ran( 2 + 2 2)]

= 2ÁRan( 2 + 2 2) = coker( 2 + 2 2) (54.9)

So by Eqs. (54.7), (54.9) and Example 54.4,

index( ) = dimNul( ) dim coker( )

= dimNul( 2
+ 2 2) dim coker(

2
+ 2 2)

= index(
2 + 2 2) = 0
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Corollary 54.6. If : compact then = + is Fredholm and
index ( ) = 0

Proof. Choose 1 : finite rank such that := 1 is a bounded
operator with operator norm less than one. Then

= + = + + 1 = ( + )( + ( + ) 1
1) = ( + )

where := ( + ) : is invertible and := ( + ) 1
1 : is

finite rank. Therefore, Ran ( ) = (Ran ( + )) is closed,

dim coker( ) = dim coker( + ) (54.10)

Nul( ) = Nul( + ) and

dimNul( ) = dimNul( + ) (54.11)

From this it follows that is Fredholm and index ( ) = index ( + ) = 0

54.2 Solvability of Lu = f and properties of the solution

Theorem 54.7. Let ¯ R be a — manifold with boundary such that
= ¯ Let E be an elliptic Dirichlet form, := E be the associated opera-

tor.

1. For 0 su ciently large, ( + ) : ( ) 2( ) is a linear isomor-
phism and

( + ) 1 : 2( ) ( ) 2( )

is a bounded operator and ( ) is a closed subspace of 2 ( )
2. ( + ) 1 as viewed as an operator from 2( ) to 2( ) is compact.
3. If ( ) and ( ) then +2( )

4. If ( ) and ( ) then ( ) :=
T

=0

( )

5. If ( ) is an eigenfunction of i.e. = for some C then
( )

Proof. 1. It was already shown in the proof of Theorem 54.2 that ( + ) :
( ) 2( ) is bijective. Moreover the bound in Eq. (54.1) shows that

( + ) 1 : 2( ) 2( ) is bounded. If { } =1 ( ) 2( ) is
a sequence such that 2( ) then {( + ) } =1 is convergent
in 2( ) since ( + ) : 2( ) 2( ) is bounded. Because is a closed
operator, it follows that ( ) and so ( ) is a closed subspace of 2 ( )
2. This follows from item 1. and the Rellich - Kondrachov Compactness

Theorem 49.25 which implies the embedding 2( ) 2( ) is compact.
3. If ( ) and ( ) such that = ( ) then LE =

and hence the elliptic regularity Theorem 53.10 gives the result.
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4. Since ( ) ( ) for all it follows by item 1. that
T

=0

( ) But
T

=0

( ) ( ) by the Sobolev embedding Theorem

49.18.
5. If ( ) 2( ) and = 2( ) for some C then by

item 3., 4( ) and then reapplying item 3. we learn 6( ) This

process may be repeated and so by induction,
T

=0

( ) ( )

Theorem 54.8 (Fredholm Alternative). Let ¯ R be a — manifold
with boundary such that = ¯ Let E be an elliptic Dirichlet form, := E
be the associated operator. Then

1. : ( ) 2 ( ) and : ( ) 2 ( ) are Fredholm operators.
2. index ( ) = index ( ) = 0.
3. dimNul( ) = dimNul( ).
4. Ran ( ) = Nul( ) .
5. Ran ( ) = 2 ( ) i Nul( ) = {0}.
Proof. Choose 0 such that ( + ) : ( ) 2 ( ) is a invertible

map and let
:= ( + ) 1 : 2( ) ( )

which by Theorem 54.7 is compact when viewed as an operator from 2( )
to 2( ) With this notation we have

( + ) 1 = ( + ) 1( + ) = ( )

and

( + ) 1 = ( + )( + ) 1 ( + ) 1 = 2( )

By Corollary 54.6 orProposition 16.35, 2( ) is a Fredholm operator with
index ( 2( ) ) = 0 Since Ran ( ) = Ran ( ( + ) 1) = Ran ( )
it follows that Ran ( ) is a closed and finite codimension subspace of 2 ( )
and

dim coker( ) = dim coker( )

Since

Nul( ) ( + ) Nul( ( + ) 1) = Nul( )

is an isomorphism of vector spaces

dimNul( ) = dimNul( )

Combining the above assertions shows that is a Fredholm operator and
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index ( ) = dimcoker( ) dimNul( )

= dimcoker( ) dimNul( )

= index ( ) = 0

The same argument applies to to show is Fredholm and index ( ) = 0
Because Ran ( ) is closed and Ran ( ) = Nul( ) Ran ( ) = Nul( ) and

2( ) = Nul( ) Nul( ) = Ran ( ) Nul( )

Thus dim coker( ) = dimNul( ) and so

0 = index ( ) = dimNul( ) dim coker( )

= dimNul( ) dimNul( )

This proves items 1-4 and finishes the proof of the theorem since item 5. is a
direct consequence of items 3 and 4.

Example 54.9 (Dirichlet Boundary Conditions). Let denote the Laplacian
with Dirichlet boundary conditions, i.e. ( ) = 1

0 ( ) 2( ) If ( )
then

Z

· = ( ) for all 1
0 ( ) (54.12)

and in particular for Nul( ) we have
Z

| |2 = ( ) = 0

By the Poincaré inequality in Theorem 49.31 (or by more direct means) this
implies = 0 and therefore Nul( ) = {0} It now follows by the Fredholm
alternative in Theorem 54.8 that there exists a unique solution ( ) to

= for any 2( )

Example 54.10 (Neuwmann Boundary Conditions). Suppose is the Lapla-
cian on with Neuwmann boundary conditions, i.e.

( ) = { 2( ) : = 0}

If ( ) then
Z

· = ( ) for all 1( ) (54.13)

so that the Dirichlet form associated to is symmetric and hence =
Moreover if Nul( ) then

0 = ( ) =

Z

| |2
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i.e. = 0 As in the proof of the Poincaré Lemma 49.30 (or using the
Poincaré Lemma itself), is constant on each connected component of
Assuming, for simplicity, that is connected, we have shown

Nul( ) = span {1}

The Fredholm alternative in Theorem 54.8 implies that there exists a (non
unique solution) ( ) to = for precisely those 2( ) such that

1 i.e.
R

1 = 0

Remark 54.11. Suppose E is an elliptic Dirichlet form and = E is the
associated operator on 2( ) If E has the property that the only solution to
E( ) = 0 is = 0 then the equation = always has a unique solution
for any 2( )

Example 54.12. Let = and 0 be in
¡

¯
¢

with 0 0 and
( ) for some 0 For 1

0 ( ) let

E( ) =

Z

(
X

+ 0 ) (54.14)

and = E then
= + 0 (54.15)

with ( ) := 2( ) 1
0 ( ) If Nul( ) then 0 = ( ) = E( ) = 0

implies = 0 a.e. and hence is constant on each connected component of

Since 1
0 ( )

¯

¯

¯
= 0 from which we learn that 0 Therefore

= has a (unique) solution for all 2( )

Example 54.13. Keeping the same notation as Example 54.12, except now we
view E as a Dirichlet form on 1( ) Now = E is the operator given in
Eq. (54.15) but now

( ) = { 2( ) : = 0 on }

where = Again if Nul( ) it follows that is constant on
each connected component of If we further assume that 0 0 at some
point in each connected component of we could then conclude from

0 = E( ) =

Z

0
2

that = 0 So again Nul( ) = {0} and Ran ( ) = 2 ( )
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54.3 Interior Regularity Revisited

Theorem 54.14 (Jazzed up interior regularity). Let be a second order
elliptic di erential operator on If 2 ( ) such that ( )
then +2( ) and for any open precompact open sets 0 and 1 con-
tained in such that ¯0 1

¯
1 there is a constant

independent of such that

k k +2( 0) (k k ( 1) + k k 2( 1))

Proof.When 0 the theorem follows from Theorem 52.5. So it su ces
to consider the case, = 0 i.e. 2 ( ) such that 2 ( ) To finish
the proof, again because of Theorem 52.5, it su ces to show 1 ( ) By
replacing by a precompact open subset of which contains 1 we may
further assume that 2( ) and 2( ) Further, by replacing by
+ for some constant 0 the Lax-Milgram method implies we may

assume : 1
0 ( ) 1( ) is an isomorphism of Banach spaces. We will

now finish the proof by showing 1 ( ) under the above assumptions.
If ( ) then by Lemma 50.7 [ ] is a first order operator so,

( ) = + [ ] =: 2( ) + 1( ) = 1( )

Let 0 =
1 1

0 ( ) ( ) such that = 1 on a neighborhood of
supp( ) and

:= ( 0) = 0
2( )

Then, because supp( ) supp( ) we have = and

= [ 0] = 0 [ ] 0 = [ ] 0

= [ ] 0 =:
2( )

Let ( ) := 2( ) 1
0 ( ) and = for all ( ) so

that is with Dirichlet boundary conditions on I now claim that
( ) 1

0 ( ) To prove this suppose

( † ) =
n

1
0 ( ) : † 2( )

o

= 1
0 ( ) 2( )

and let := where is an approximate — sequence so that
in 2 ( ) Choose ( ) such that = 1 on a neighborhood of

supp( ) supp( ) then

( ) = lim ( ) = lim ( ) = lim ( † ( ))

= lim ( † ) = ( † ) = ( † )

Since this holds for all ( † ) we see that
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³³

†
´ ´

= ( ) = 1
0 ( ) 2( ) 1( )

where the first equality is a consequence of Theorem 54.2 which states =
³

†
´

Therefore, = 0 +
1( ) and since ( ) was

arbitrary we learn that 1 ( )

54.4 Classical Dirichlet Problem

Let ¯ be a — manifold with boundary such that = ¯ and let =
with Dirichlet boundary conditions, so ( ) := 1( ) 2( )

Theorem 54.15. To each ( ) there exists a unique solution
( ) ( ¯) to the equation

= 0 with = on

Proof. Choose ( ) such that lim k | k ( ) = 0

We will now show that there exists ( ) such that

= 0 with = on (54.16)

To prove this let us write the desired solution as = + in which case
= 0 on and 0 = = + Hence if solves =

on with = 0 on then = + solves the Dirichlet problem in
Eq. (54.16).
By the maximum principle,

k k ( ¯) k k ( ) 0 as

and so { } =1 ( ) is uniformly convergent sequence. Let :=
lim ( ) The proof will be completed by showing ( )
and = 0 This can be done in one stroke by showing satisfies the mean
value property. This it the case since each function satisfies the mean value
property and this property is preserved under uniform limits.

Remark 54.16. Theorem 54.15 is more generally valid in the case is re-
placed by an elliptic operator of the form =

P

1 ( ) with

( (0 )) and ( ) such that
P

=1 ( ) | |2
for all R Then again for all ( ) there exist a solution

( ) ( ) such that

= 0 with = on

The proof is the same as that of Theorem 54.15 except the last step needs
to be changed as follows. As above, we construct solution to = 0 with
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= on and we then still have ( ) via the maximum
principle. To finish the proof, because of Theorem 54.14, it su ces to show

= 0 in the sense of distributions. This is valid becasue if D ( ) then

0 = lim h i = lim h † i = h † i = h i

i.e. = 0 in the sense of distribution.

54.5 Some Non-Compact Considerations

In this section we will make use of the results from Section 53.3. Let
(R (0 )) (R ) such that

P

0 for all | | 6= 0 and
define

( ) =

Z

R

X

for
¡

R
¢

Then as we have seen has a closed extension ˆ and unique self adjoint
operator on 2( ) such that ( ) i ( ) is 2( )
continuous on D( ˆ) and in which case ( ) = ( ) 2( ). Standard
integration by parts shows

2(R ) D( ) and =
1X

( )

Proposition 54.17. Let ¯( ) :=
R

R

P · then

D( ˆ) { 2( ) 1 (R ) : ¯( ) }
Proof. By definition of the closure of (R ) is dense in (D( ˆ) ˆ1)

Since for all R there exists an = ( ) such that
P | |2

on , we learn

( ) k k2 1( ) for all (R ) (54.17)

Therefore if D( ˆ) and ¡

R
¢

such that ˆ1( ) 0 as
then k k 1( ) 0 i.e. = lim in 1( ) Hence a simple limiting

argument shows Eq. (54.17) holds for all D( ˆ) :
1( ) k k2 1( ) for all D( ˆ)

This shows D( ˆ) 1 (R ). Moreover

ˆ( )
R

ˆ( )
R
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Since R is arbitrary this implies that

ˆ( )

Z

Proposition 54.18. Suppose ( ) then 2 (R ) and for all
1 R there exist = ( ) such that

k k 2 ( ) (k k 2( ) + k k 2( )) (54.18)

Proof. Suppose ( ) and = Then for all
¡

R
¢

( ) = ( ) 2( ) Therefore
Z

X

=

Z

so ( ) = in the sense if distributions and hence
X

+ =

in the distributional sense. Since ( ) ( ˆ) 1
¡

R
¢

by local elliptic
regularity it follows that ( ) 2 (R ) and for all 1 0

k k 2( 0) (k k 2( 1) + k k 2( 1))

Now suppose ( 2), then ( ) 2
¡

R
¢

and ( )
2
¡

R
¢

implies 4
¡

R
¢

and

k k 4( ) (k k 2( 1) + k k 2( 1))

( 2 k 2( 2) + k k 2( 2) + k k 2( 1))

(k 2 k 2( 2) + k k 2( 2) + k k 2( 2))

If ( 3) then 4
¡

R
¢

and 4
¡

R
¢

implies 6
¡

R
¢

and

k k 6( 0) (k k 4( 1) + k k 2( 1))

(k 3 k 2( 2) + k 2 k 2( 2) + k k 2( 2) + k k 2)

( ) implies 2
¡

R
¢

and

k k 2( 0)

X

=0

k k 2( e )

X

=0

k k 2( )

(k k 2( ) + k k 2( ))

by the spectral theorem.

1102 54 2 — operators associated to E

54.5.1 Heat Equation

Let ( ) = 0 where 0
2 ( ) Then ( ) ( ) for all when 0

and hence ( ) 2
¡

R
¢

for all But this implies for each 0 that
( ) has a continuous in fact - version because 2 ( ) 2 2 ( ¯) for

1 Moreover
°

°

°

°

·

( + ) ( )
( )

¸
°

°

°

°

2( )

0 as 0

for all = 0 1 2 and therefore,
°

°

°

°

( + ) ( )
( )

°

°

°

°

2 2 ( ¯)

0 as 0

when 1 This shows ( ) is di erentiable and in 2 2 ( ) for all
1 Thus we conclude that ( ) is in 1 ((0 )× R ) and ( ) =
( ) i.e. is a classical solution to the heat equation.

54.5.2 Wave Equation

Now consider the generalized solution to the wave equation

( ) = cos( ) +
sin( )

where 2( ) If
¡

R
¢

then ( ) for all and hence
( ) ( ) for all It now follows that ( ) is -di erentiable in relative
to the norm k k := k k 2( )+ k k 2( ) for all N So by the above
ideas ( ) (R×R ) and

¨( ) + ( ) = 0 with

(0 ) = 0( ) and

˙ (0 ) = 0( )
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Spectral Considerations

For this section, let be a bounded open subset of R such that ¯ = and
¯ is — manifold with boundary. Also let E be a symmetric Dirichlet form
with domain being either = 1( ) or = 1

0 ( ) and let := E be the
corresponding self adjoint operator.

Theorem 55.1. There exist { } =1 R such that 1 2 3 · · ·
and { } ( ) 2( ) such that { } is an orthonormal basis for 2( )
and = for all

Proof. Choose 0 such that ( + ) : ( ) 2 ( ) is invertible
and let := ( + ) 1 which is a compact operator (see Theorem 54.7) when
viewed as an operator from 2( ) to 2( ) Since =

(( + ) ) = ( ( + ) ) for all ( )

and using this equation with being replaced by respectively shows
( ) = ( ) for all 2 Moreover if 2( ) and = ( )

( ) = ( ( + ) ( + ) ) = (( + ) ) 0

and so we have shown = and 0 By the spectral Theorem 16.17 for
self-adjoint compact operators, there exist { } =1 R+ and an orthonormal
basis { } =1 of

2( ) such that = and 1 2 3

and lim = 0 Since = i ( + ) 1 = ( ) i
( + ) = i

=
1
(1 ) =

where :=
³

1
´

as

Corollary 55.2. Let be as above, then
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( ) = { 2( ) :
X

=1

2 ( )2 }

Moreover =
P

=1
( ) for all ( ) i.e. is unitarily equivalent

to the operator : 2 2 defined by ( ) = for all N

Proof. Suppose ( ), then

=
X

( ) =
X

( ) =
X

( )

with the above sums being 2 convergent and hence
X

2 ( )2 = k k2 2

Conversely if
P

2 ( )2 let

:=
X

=1

( ) ( )

Then in 2( ) and

=
X

1

( )
X

1

( ) in 2( )

Since is a closed operator, ( ) and =
P

1
( )

55.1 Growth of Eigenvalues I

Example 55.3. Let = (0 )

1. Suppose =
2

2 with ( ) = 2( ) 1
0 ( ) i.e. we impose Dirichlet

boundary conditions. Because = and 0 (in fact for some
0 by the by the Poincaré Lemma in Theorem 49.31) if = then
0 Let = 2 0 then the general solution to = 2 is given by

( ) = cos( ) + sin( )

where C Because we want (0) = 0 = ( ) we must require = 0

and = Hence we have =
2 2

2 and ( ) =
q

2 sin
¡ ¢

for
N is an orthonormal basis of eigenvectors for
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2. The reader is invited to show that if =
2

2 with Neuwmann boundary

conditions then 0( ) :=
1 and ( ) =

q

2 cos
¡ ¢

for N forms
an orthonormal basis of eigenfunctions of with eigenvalues given by
=

2 2

2 for N0
3. Suppose that = on with Dirichlet boundary conditions and for

N let
( ) =

1
( 1) ( )

where each is given as in Item 1. Then
©

: N
ª

is an orthonormal
basis of eigenfunctions of with eigenvalues given

=
2

2

X

=1

2 =
2

2
| |2R for all N

Remark 55.4. Keeping the notation of item 3. of Example 55.3, for 0 let

= span { : }
Then

dim( ) = #
©

N :
ª

= #

½

N : | |2R
2

2

¾

from which it follows that

dim( ) ³
Ã Ã

0

r

2

2

!!

=

µ

2

2

¶ 2

=
¡ ¢

2

Lemma 55.5. Let E and be as described at the beginning of this section.
Given N there exists = such that

k k 2 ( ) (k k 2( ) +
°

°

°

°

2( )
) for all ( ) (55.1)

Proof. We first claim that for ( ).

k k 2 ( ) (k k 2( ) + k k 2( ) + · · ·+ k k 2( )) (55.2)

We prove Eq. (55.2) by induction. When = 0 Eq. (55.2) is trivial. Consider
( ( +1)) ( ). By elliptic regularity (Theorem 52.15) and then

using the induction hypothesis,

k k 2( +1)( ) (k k 2( ) + k k ( )) +1

+1
X

=0

k k 2( )

This proves Eq. (55.2). Because sup
n

2

(1+ 2 ) : 0
o

for any it follows

by the spectral theorem that

k k2 2( )

³

k k2 2( ) + k k2 2( )

´

for all

Combining this fact with Eq. (55.2) implies Eq. (55.1).
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Theorem 55.6. Continue the notation in Lemma 55.5 and let { } =1 be
the orthonormal basis described in Theorem 55.1 and for R let

:= span { : }
If is the smallest integer such that 4 there exist such that

dim( ) (1 + 2 ) (55.3)

for all inf ( )

Proof. By the Sobolev embedding Theorem 49.18, 2 ( ) 2 2 ( )
¡

¯
¢

Combining this with Lemma 55.5 implies
¡ ¢ ¡

¯
¢

and for
( )

k k 0( ) k k 2
2 ( )

k k 2 ( ) (k k 2( )+k k 2( )) (55.4)

Let inf ( ) and ( ) Since

=
X

:

( ) and =
X

( )

k k2 2( ) =
X

| |2 |( )|2 | |2 k k2 2( ) (55.5)

Combining Eqs. (55.4) and (55.5) implies

k k 0 (1 + )k k 2( ) = (1 + )

s

X

|( )|2 (55.6)

Let = dim( ) and take ( ) :=
P

=1
( ) ( ) in Eq. (55.6)

to find

X

=1

| ( )|2 sup

¯

¯

¯

¯

¯

X

=1

( ) ( )

¯

¯

¯

¯

¯

(1 + )
q

X

| ( )|2

from which it follows that

X

=1

| ( )|2 2(1 + )2

Integrating this estimate over then shows

dim( ) =
X

1

1 =
X

1

Z

| ( )|2 2(1 + )2| |

which implies Eq. (55.3).
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Corollary 55.7. Let be the smallest integer larger than 4 Then there
exists 0 such that 1 2 for su ciently large. Noting that 4
this says roughly that 2 which is the correct result.

Proof. Since1

dim( ) (1 + 2 )

1 2 or
¡

1
¢

1
2

1 If = has multiplicity larger than one, then dim otherwise =
dim
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Construction of Heat Kernels by Spectral
Methods

A couple of references for this and later sections are Davies [3, 4] and L.
Salo -Coste [12].
For this section, again let be a bounded open subset of R such that

¯ = and ¯ is — manifold with boundary. Also let E be a symmetric
Dirichlet form with domain being either = 1( ) or = 1

0 ( ) and
let := E be the corresponding self adjoint operator. Let { } =1 be the
orthonormal basis of eigenvectors of as described in Theorem 55.1 and
{ } =1 denote the corresponding eigenvalues, i.e. =
As we have seen abstractly before,

( ) = cos( ) +
sin( )

:=
X

=1

{cos(
p

)( ) +
sin( )

( )}

solves the wave equation

2

2
+ = 0 with (0 ) = ( ) and ˙ (0 ) = ( )

and

( ) = 0 :=
X

=1

( 0 )

solves the heat equation,

= with (0 ) = 0( ) (56.1)

Here we will concentrate on some of the properties of the solutions to the heat
equation (56.1). Let us begin by writing out ( ) more explicitly as
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( ) =
X

=1

Z

0( ) ( ) ( ) = lim

Z

0( )
X

=1

( ) ( )

(56.2)

Theorem 56.1. Let ( ) denote the heat kernel associated to defined
by

( ) :=
X

1

( ) ( ) (56.3)

Then

1. the sum in Eq. (56.3) is uniformly convergent for all 0
2. ( ) ( ) (R+ × × )
3. ( ) =

R

( ) 0( ) solves Eq. (56.1).

Proof. Let

( ) =
X

=1

( ) ( )

then ( ) ( ) (R × × ) Since ( ) = by the
Elliptic regularity Theorem 52.15,

k k 2 ( ) (k k 2( ) + k k 2( )) (1 + )

Taking 4 the Sobolev embedding Theorem 49.18 implies

k k 0( ¯) k k 2 2( ¯) k k 2 ( ) (1 + )

Therefore sup | ( ) ( )| 2(1+ )2 while by Corollary 55.7, 2

and therefore while
P

=1 (1 + )2 More generally if | | = 2
k k 0 k k 2 k k 2( + ) (1 + + )

and hence
k k 2 ( ¯× )

2(1 + + )2

from which it follows that

X

=1

sup k k 2 ( ¯× ) =
X

=1

k k 2 ( ¯× )

2
X

=1

(1 + + )2

So ( ) and all of its derivatives converge uniformly in and ¯

as Therefore ( ) := lim ( ) exists and ( ) ( )
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is
¡

¯
¢

for 0 and ¯ It is now easy to justify passing the limit
under the integral sign in Equation (56.2) to find ( ) =

R

( ) 0( ) .

Remark 56.2. ( ) solves the following problem = (· ) sat-
isfies the boundary conditions and lim

0
(· ) =

Definition 56.3. A bounded operator : 2( ) 2( ) is positivity pre-
serving if for every 2( ) with 0 a.e. on has the property that

0 a.e. on

Proposition 56.4 (Positivity of heat kernel’s). Suppose ( ) = 1
0 ( )

2( ) i.e. has Dirichlet boundary conditions, then the operator is
positivity preserving for all 0 and the associated heat kernel ( ) is
non-negative for all (0 ) and

Proof. Since ( + ) = is positivity preserving i is pos-
itivity preserving, we may assume

=
X

+
X

+

with 0 Let
¡

¯ (0 )
¢

and ( ) := ( ) in which case
solves

= with (0 ) = ( ) 0 for ( ) [0 ]×
with ( ) = 0 for

If there exist ( 0 0) (0 ]× such that

( 0 0) = min
©

( ) : 0 ¯
ª

0

then ( 0 0) 0 ( 0 0) = 0 for all and by ellipticity,

( 0) ( 0 0) 0

Therefore at ( 0 0)

0 = + = + +

= + = ( 0) ( 0) + ( 0) 0

which is a contradiction. Hence we have shown

0 ( ) =

Z

( ) ( ) for all ( ) [0 ]× ¯ (56.4)
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By a simple limiting argument, Eq. (56.4) also holds for all non-negative
bounded measurable functions on Indeed, let :=

¡

1 + 1
¢

where (R (0 )) is a spherically symmetric approximate -
sequence. Then

¡

¯ (0 )
¢

and hence

0

Z

( ) ( )

Z

( ) ( )

From this equation it follows that ( ) 0 and that is positivity
preserving.

Lemma 56.5. Suppose 0 on and as then
lim

R

2( ) =

Proof. For sake of contradiction assume lim
R

2( ) 6= By passing

to a subsequence if necessary we may then assmume =: sup
R

2( )
and that converges weakly to some 2 ( ) In which case we would

have

( ) = lim

Z

( ) ( ) =

Z

( ) ( ) for all ( )

But this would imply that = which is incomensurate with being an
2( ) function and we have reached the desired contradiction.

Theorem 56.6. Let be a Dirichlet heat kernel, then lim 0 ( ) =
and ( ) 0 for all and 0

Proof. We have seen ( ·) for all . Therefore by lemma

lim
0

Z

( )2 =

Now
Z

( )2 =

Z

( ) ( ) = 2 ( )

Therefore lim
0

2 ( ) = for all

Sketch of the rest: Choose a compact set in then by continuity
there exists 0 0 and 0 such that ( ) 1 for all | |
and 0 0 (Note tanh ( ) is continuous on [0 1] × , where

tanh 0( ) = 1 ) Now if and and | | 2 we have for
0 that

( ) =

Z

2( ) 2( )

Z

( ) ( )
2( ) 2( )

( ( ) ( ) ) 0
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Working inductively, we may use this same idea to prove that ( ) 0 for
all 0 and Moreover the same semi-group argument allows one
to show ( ) 0 for all 0 as well.
Second Proof using the strong maximum principle.
Now for fixed 0 ( ) = ( ) solves =
( ) ( ) = ( ). With out loss of generality, assume

=
X

+ with 0

For if is not greater than 0 replace by + and observe that ( + ) =
Therefore ( ) = ( ) so ( ) 0 i ( ) 0.

Then = ( ) for all and . By the strong maximum
principle of Theorem 12 on page 340 if there exist ( 0 0) × ( ] such
that 0( 0 ) = 0 then ( ) is a constant on (0 0)× which is false
because the constant would have to be 0 but

R

0( ) 0 for small.

56.1 Positivity of Dirichlet Heat Kernel by Beurling
Deny Methods

Assumption 6 Suppose = + where = and
( ) and ( ) = 1

0 ( ) 2( )

Theorem 56.7. Let 0 = max( ) i.e. 0 = min( ) Then for all 0

:= + : ( ) 2 ( ) invertible and if 2 ( ) 0 a.e then
1 0 a.e., i.e. 1 is positivity preserving.

Proof. If 0 then + 0 and hence if = 0 then

( ) =

Z

( + ( + ) 2) = 0

This implies = 0 a.e. and so is constant and hence = 0 because 1
0

Therefore Nul( ) = {0} and so is invertible by the Fredholm alternative.
Now suppose ( ) such that 0 then = 1 ( ) with

= 0 and = 0 on We may now use the maximum principle idea
in Theorem 45.16 to conclude that 0 Indeed if there exists 0 such
that ( 0) = min 0 at 0 then

0 ( 0) = ( )( 0) = ( )( 0)
| {z }

+

0

( ) ( 0)
| {z }

=0

+ ( + ) ( 0)
| {z }

0

0
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which is a contradiction. Thus we have shown = 1 0 if
( (0 )) Given 2 ( ) such that 0 a.e. on choose

( ) such that 1 and in 2( ) and a.e.
on (For example, take =

¡

1 + 1
¢

say.) Then = 1 0

for all and = 1 in 2( ) By passing to a subsequence if nec-
essary we may assume that a.e. from which it follows that 0 a.e.
on

Theorem 56.8. Keeping as above, : 2( ) 2( ) is positivity
preserving for all 0.

Proof. By the spectral theorem and the fact that
¡

1 +
¢ 1

boundedly for and 0

= lim

µ

1 +

¶

= lim

µ ¶ ·

³

+
´ 1

¸

Now
¡

+
¢ 1

is positivity preserving operator on 2 ( ). Where 0

and hence so is the — fold product. Thus if

:=

µ ¶ ·

³

+
´ 1

¸

then 0 a.e. and in 2 ( ) implies 0 a.e.

Theorem 56.9. ( ) 0 for all .

Proof. 2( ) with 0 a.e. on ( ) and 0
a.e. by above. Thus 0 everywhere. Now

Z

( ) ( ) = ( )( ) 0

for all 0 Since ( ) is smooth this implies ( ) 0 for all ¯

and since ¯ was arbitrary we learn ( ) 0 for all
???? BRUCE for ( ) ( ) = ( ) we have k( )

k 0 as 0 for all . By Sobolev embedding this implies that ( )
( ) as 0 for all i.e.

R

( ) ( ) ( )
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Nash Type Inequalities and Their
Consequences

Corollary 57.1. Suppose 2 then there is a constant such that

k k2+42 k k22 k k41 (57.1)

for all 1
¡

R
¢

Proof. By Corollary 49.15, k k2 k k2 where 2 = 2
2 and by

interpolation
k k2 k k k k1

where + 1 = 1
2 Taking = 2 and = 1 implies 2 + 1 = 1

2 i.e.
¡

1
2 1

¢

= 1
2 and hence

=
1
2

1 1
2

=
2

2(2 1)
=
( 2)

· 1
2
2 1

=
2

2

+ 2
=

+ 2

and 1 = 2
+2 Hence

k k2 k k +2

2 k k
2
+2

1
+2 k k =2

2 k k
2
+2

1

and therefore
k k

+2

2 k k2 k k
2

1

and squaring this equation then gives the estimate in Eq. (57.1).

Proposition 57.2 (Nash). Corollary 57.1 holds for all .

Proof. Since the Fourier transform is unitary, for any 0 and kˆk
k k 1
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k k22 =
Z

R
|ˆ( )|2 =

Z

| |

|ˆ|2 +

Z

| |

|ˆ|2

¡

1
¢ k k2 1 + 1

2

Z

| |

| |2|ˆ|2

¡

1
¢ k k2 1 + 1

2
k k22 = ( )

where ( ) = + 2 and =
¡

1
¢ k k2 1 and = k k22 To minimize

we set 0( ) = 0 to find 1 2 3 = 0 i.e. +2 = 2 and hence

=
¡

2
¢

1
+2 With this value of we find

( ) =
1
2

¡

+ +2
¢

=

µ

2

¶
2
+2
µ

+
2
¶

=

µ

+ 2
¶ µ

2

¶
2
+2

=
2
+2 1 2

+2 =
2
+2 +2

which gives the estimate

k k22 k k
2
+2

2 k k
4
+2

1

which is equivalent to

k k2+42 = k k2(
+2 )

2 k k22 k k41

Proposition 57.3. Suppose ( ) = { ( )} =1 such that there exists 0

and such that ( ) for all R Define D(E) =
1 2(R ) and

E( ) =
X

Z

R

Then E is a closed symmetric quadratic form. Moreover (R ) is a core
for E.
Proof. Clearly k k 1 2

1(k k2 2( ) + E( )) and

E( ) k k2 k k 1 2

and hence
k · k22 + E(· ·) ³ k · k 1 2

so that
³

D(E) pk · k22 + E(· ·)
´

is complete.
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Theorem 57.4. Let denote the positive self-adjoint operator on 2(R )
such that E( ) = ( ) 2(R ) and define := : 2 2

(Notice that k k2 k k2 for all 2 and 0 ) Then

1. 0 a. e. if 0 a.e.
2. 1 for all 1

3. 0 1 if 0 1 a.e.
4. k k k k for all 1 .

Proof. (Fake proof but the spirit is correct.) Let ( ) = ( ) so that

= with (0 ) = ( )

where =
P

( )( ) — a second order elliptic operator. Therefore by
the “maximum principle,”

k k inf ( ) ( ) sup ( ) k k

and hence k k k k This implies items 1. and 3. of the theorem.
For 1

|( )| = |( )| k k1k k k k1k k

Taking sup over 1 such that k k = 1 implies k k 1 k k1
and we have verified that

k k k k for {1 2 }

Hence by the Riesz Thorin interpolation theorem, k k k k for all
[1 )

Theorem 57.5 (Beurling - Deny). Items 1. — 4. of Theorem 57.4 hold if
for all 1 2 | | 1 2 and 0 ( 1) 1 2 and

E(| |) E( ) and E(0 ( 1)) E( ) (57.2)

Proposition 57.6. Suppose 1 ( ) then 1{ =0} = 0 a.e.

Proof. Let ( ) such that (0) = 1 For small set ( ) = ( )
and

( ) =

Z

( ) =

Z

³ ´

=

Z

( ) = 1( )

Then
[ ( )] = 0 ( ) = ( )

1120 57 Nash Type Inequalities and Their Consequences

and hence for all ( )

h ( ) i = h [ ( )] i = h ( ) i = 0( ) 0

Combining this with the observation that

( ) 1{ =0} as 0

implies
Z

1{ =0} · = 0 for all ( )

which proves 1{ =0} = 0 a.e.

Exercise 57.7. Let 1 Show

1. If 1 (R) (0) = 0 and | 0| then ( ) 1 and
( ) = 0( ) a.e.

2. | | 1 and | | = sgn( )
3. Eq. (57.2) holds.

Solution 57.8. Let
¡

R
¢

1 such that in 1 By
passing to a subsequence if necessary we may further assuem that ( )
( ) for a.e. R Since | ( )| | |

| ( ) ( )| | |
it follows that | ( )| | ( )| and ( ) ( ) in Since 0( ) is
bounded, 0( ) 0( ) a.e. and in it follows that

k ( ) ( )k
= k 0( ) 0( ) k
k 0( ) [ ]k + k[ 0( ) 0( )] k
k k + k[ 0( ) 0( )] k 0

where the second term is handled by the dominated convergence theorem.
Therefore ( ) 1 and ( ) = 0( )
Let ( ) := 2 + 2 then 0 ( ) = 2+ 2 | 0 ( )| 1 for all and

lim
0

0 ( ) =
½

0 if = 0
sgn( ) if 6= 0

From part 1., ( ) 1 and ( ) = 0 ( ) Since ( ) | | in
and

( ) = 0 ( ) 1 6=0sgn( ) = sgn( ) a.e.

where the last equality is a consequence of Proposition 57.6. Hence we see
that | | 1 and | | = sgn( )
Remark: (BRUCE) I think using the absolute continuity of along lines

could be used to simplify and generalize the above exercise to the case where
(R) with | 0( )| for — a.e. R



57 Nash Type Inequalities and Their Consequences 1121

Remark 57.9. extends by continuity to for all 1 , denote the
extension by and then = if for some In this way we
view as a linear operator on

S

1

Theorem 57.10. There is a constant such that

k k
4
k k 2 (57.3)

for all 2

Proof. Ignoring certain technical details. Set ( ) = and ( ) :=
k ( )k22 and recall that solves

˙ = with (0) =

Then

˙( ) = k ( )k22 = 2( ˙ ) = 2( )

= 2E( )
2k k2 2

Combining this with the Nash inequality from Eq. (57.1),

k k2+ 4
2 k k2 2k k41

implies

˙( )
2 k ( )k2+42

k ( )k41
2 k ( )k2+42

k k41
=
2 ( )1+2

k k41
(57.4)

Since
R

˙ ( 1 2 ) = 2
2 it Eq. (57.4) is equivalent to
µ

2
2

¶

2

k k41
and integrating this inequality gives

k k 4
2 = 2 ( ) 2 ( ) 2 (0)

4

k k41
Some algebra then implies

k k42
k k41
4

and hence

k k2 4
k k1

and by duality, Lemma 57.12 below, this implies Eq. (57.3).
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Remark 57.11. From Eq. (57.3),

k 2 k2 = k k2
2
k k2 2 = 2

|( 2 )|
2

2
k 2 k k k 1

and hence Eq. (57.3) implies the inequality,

k 2 k
2

2
k k 1 (57.5)

Lemma 57.12 (Duality Lemma). Let be a linear operator on [1 ]

such that ( 1 ) = ( 1 ) and : 2 2 is self adjoint. If

k k k k for all 1

then
k k k k 0 for all 1

where 1
0 +

1 = 1 and 1 + 1
0 = 1.

Proof.

k k 0 = sup
k k =1

|( )| = sup
k k =1

|( )| sup
k k =1

k k 0k k

k k 0 sup
k k =1

k k = k k 0

Proposition 57.13 (Converse of Theorem 57.10. ). If
°

°

°

°

4 k k2 for all 2 (57.6)

then

k k2+42

4 E( )k k1

Proof. By the duality, Lemma 57.12, (57.6) implies
°

°

°

°

2
4 k k1 for all 2

and therefore

2 2k k21 k k22 = ( 2 ) = ( ) +

Z

0

2( 2 )

Since 2 for 0 it follows from the spectral theorem that 2

for 0 Using this in the above equation gives the estimate
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2 2k k21 k k22 + 2
Z

0

( ) = k k22 + 2 ( )

k k22 2 E( )

Optimizing this inequality over 0 by taking = E( ) 2 +2k k4 +2
1

implies

k k22 2
³

E( ) 2 +2k k4 +2
1

´ 2

k k21 + 2E( ) 2 +2k k4 +2
1 E( )

=

k ||2+42 E( )k k41
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Notes from coulhon.tex.

Theorem 58.1. Let ( ) be a measure space and be a positive measurable
function. Then for 1

k k =

Z

0

( ) 1

Proof. We have

k k =

Z

=

Z

Ã

Z

0

1

!

=

Z

×R+
1 1

=

Z

0

( ) 1

In these notes we are going to work in either one of the two following
settings.

58.1 Weighted Riemannian Manifolds

Here we assume that is a non-compact, connected Riemannian manifold
with Riemannian metric which is also equipped with a smooth measure
We let | |2 = ( ) and

E( ) :=

Z

| |2 = ( ) on 2( )

Here ( ) :=
R

¯ We have the following general important facts. The
heat kernel is the smooth integral kernel for the heat operator,

1126 58 T. Coulhon Lecture Notes

Definition 58.2. Given a smooth hypersurface let | | denote the
surface measure, i.e.

| | =
Z

| ( —)|

where is a normal vector to

Theorem 58.3 (k 1 k1 = | | ). Let be a precompact domain
with smooth boundary and let ( ) = ( ( )) where ( ) =

¡ ¢

1 Here
( ) denotes the Riemannian distance of to Then

lim
0
k k1 = | |

which we write heuristically as

k 1 k1 = | |

Proof. We have

( ) = 0 ( ( )) ( ) for a.e.

and hence
| ( )| = 1

1 ( ) for a.e.

and therefore,

lim
0
k k1 = lim

0

1
( ) = | |

Theorem 58.4 (Coarea Formula). Let ( ) be a Riemannian manifold,
: [0 ) be a reasonable function and be a smooth volume form on
Then

k k 1( ) =

Z

0

| { }|

Proof. See [5, 1, 2] for a complete Rigorous proof. We will only give the
idea here. Locally choose coordinates = ( 1 ) on such that 1 =
This is possible in neighborhood of points where is non-zero. Then is
tangential to the level surface { = } for = 2 and therefore

(
1 2

) = (

µ

1 | |
¶

| | 2
)

=

µ

1 | |
¶

(
2

)

Now
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µ

1 | |
¶

= | | 1

µ

1

¶

= | | 1

1
= | | 1

1
1 = | | 1

and therefore,
¯

¯

¯

¯

(
2

)

¯

¯

¯

¯

= | |
¯

¯

¯

¯

(
1 2

)

¯

¯

¯

¯

Integrating this equation with respect to 1 then gives
Z

¯

¯

¯

¯

(
2

)

¯

¯

¯

¯

1 = k k 1( )

on one hand, on the other
Z

¯

¯

¯

¯

(
2

)

¯

¯

¯

¯

1

=

Z

R

·
Z

R 1

¯

¯

¯

¯

(
2

)

¯

¯

¯

¯

2

¸

1

=

Z

R

"

Z

{ = 1}
| ( —)|

#

1 =

Z

0

| { }|

58.2 Graph Setting

Let = ( ) be a non-oriented graph with vertices and edges We
assume the graph is connected and locally finite, in fact I think he assumes
the graph is finitely ramified, i.e. there is a bound on the number of
edges that are attached to any vertex. Let denote the graph distance and

:= { = 0 : 3 }

be a measure on Extend to all pairs of points with by setting
= 0 if Using this notation we let
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:=
X

=
X

:

( ) := (the Markov Kernel),

( ) :=
X

when

:= { : and }
| | :=

X

and

| ( )| :=
X

| ( ) ( )| ( )

In this setting ( ) :=
P

( ) ( ) corresponds to and is a self-
adjoint operator on 2( ) Also recall that corresponds to 1 As in
the manifold case we still have

k 1 k1 = 2 | | and (58.1)
Z

0

| { }| =
1

2
k k 1( ) (58.2)

as we will now verify. Using the definitions,

k 1 k1 =
X X

|1 ( ) 1 ( )| ( ) =
X

|1 ( ) 1 ( )|

=
X

+
X

= 2 | |

verifying Eq. (58.1). For the graph co-area formula (58.2):

k k 1( ) =
X X

| ( ) ( )| ( ) =
X

| ( ) ( )|

while

| { }| =
X

{ } { }
=

X

( ) and ( )

=
X

1 ( ) ( )

so that
Z

0

| { }| =

Z

0

X

1 ( ) ( ) =
X

Z

0

1 ( ) ( )

=
X

1 ( ) ( ) ( ( ) ( ))

=
1

2

X

| ( ) ( )| =
1

2
k k 1( )
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58.3 Basic Inequalities

We begin with a couple of very simple Sobolev inequalities. Suppose that
(R) then

( ) =
1

2

µ
Z

0( )
Z

0( )
¶

from which it follows that

| ( )| 1

2

Z

R
| 0( )|

By the Mean value inequality we have the oscillation inequality,

| ( ) ( )| | | k 0k
The first inequality is dimension dependent and probes the global structure
of R while the second inequality works in arbitrary generality and hence does
not probe the global structure of R in any way. Let us now list a number of
inequalities which are true in R for all (R )

k k 2
2

k k2 (Sobolev Inequality) (58.3)

k k1+22 k k21 k k2 (Nash Inequality) (58.4)

k k(1+2 )
2(1+2 ) k k22 · k k2 (Moser Inequality) (58.5)

| ( ) ( )| | |1 k k for (oscillation inequality).
(58.6)

The last inequality is valid for all (R ) as well.
Let ( ) = k k and for a positive let

:= ( 2 )+ 2 =
2 if 2 +1

2 if 2 2 +1

0 if 2

Then
= 12 2 +1

and therefore

k k =

Z

| | =

Z

X

| | 12 2 +1 =
X

Z

| |

This shows that

k k =

Ã

X

k k
!1

This is a key truncation property for positive Lipschitz functions As an
application we have the following theorem.
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Theorem 58.5. The Nash and Sobolev inequalities are equivalent.

Proof. Sobolev = Nash. Recall the Hölder interpolation inequality,

k k k k1
0
k k

1

where
1
=
1

0
+

1

Taking = 2 0 = 1 and 1 =
2
2 we solve for to find

1

2
=
1

1
+

2

2
= 1 +

µ

2

2
1

¶

= 1

µ

+ 2

2

¶

and hence
=

+ 2
and 1 =

2

+ 2

and therefore,

k k2 k k
2
+2

1 k k +2
2
2

This inequality along with the Sobolev inequality (58.3) shows,

k k1+22 = k k
+2

2 k k 2

1 k k 2
2

k k 2

1 k k2
which is the Nash inequality (58.4) with the same constant.
Nash = Sobolev. Conversely suppose the Nash inequality (58.4) is

valid. Applying Nash to we find

µ
Z

2

¶1+2

=
³

k k1+22

´2

2 k k41 k k22 = 2 k k41
Z

| |2

where :=
©

2 2 +1
ª

Combining this inequality with the following
two elementary inequalities;

Z

2

Z

{ 2 +1}
2 = 22

¡©

2 +1
ª¢

and

k k1 2
¡

2
¢

gives

¡

22
¡©

2 +1
ª¢¢1+2 2

¡

2
¡

2
¢¢4

Z

| |2

Let = 2
2 be the exponent in the Sobolev inequality and = +2 1

:= 2
¡

2
¢

and :=
R | |2 Then the above inequality says,
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+1
0 2(1 )

and summing this equation of Z then gives

X

=
X

+1
0X 2(1 ) 0

Ã

X

! Ã

X

2

!(1 )

wherein we have used Holder’s inequalities with the conjugate indices 1 and
1 (1 ) in the last inequality. Since we are using counting measure, we also
have

k k22
X

k k1 k k21

which combined with the previous inequality gives

X 0
Ã

X

! Ã

X

!2(1 )

= 0
µ
Z

| |2
¶

Ã

X

!2(1 )

which then shows
Ã

X

!2 1

0
µ
Z

| |2
¶

and hence
X 0

µ
Z

| |2
¶

2 1

We also have

k k =
X

Z

2 2 +1

X

2 ( +1)
¡

2
¢

= 2
X

and it then follows that

k k 2 0
µ
Z

| |2
¶

2 1

which proves the Sobolev inequality (58.3).

58.4 A Scale of Inequalities

In this section let : R+ R+ be an increasing function, for example ( ) =
1 and ( ) = log( ) for 2
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Definition 58.6 ( ). Given [1 ] and as above, we say holds
provided

k k (| |) k k for all 3 | | and ( ) (58.7)

where ( ) denotes those functions on or such that is Lipschitz
and supp( ) ¯ and = 0 on

Proposition 58.7. Suppose 1 and holds then holds.

Proof. Apply to the function to find

k k =
°

°

°

°

°

°
(| |)

°

°

°

°

°

°
= (| |)

°

°

°

( 1)
°

°

°

where we should check that the approximate chain rule holds in the graph
case here. Now apply Hölder’s inequality with

1
=
1
+

1

( )

to the last expression to find

°

°

°

( 1)
°

°

°
k k

°

°

°

( 1)
°

°

°

( )
= k k

µ
Z

³

( )
´ ( )

¶

= k k
µ
Z

¶

= k k k k

This gives

k k (| |) k k k k

that is to say
k k (| |) k k

We now give some equivalent inequalities to in the following theorem.

Theorem 58.8. We have

(| ( )|) | ( )| 1( )

1 | | (| |) | | (i.e. | |
| |

1

(| |) ) for all reasonable
2 to the — Nash inequality

(up to constants) where the — Nash inequality is the inequality,
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k k2
Ã

k k21
k k22

!

k k2 for all ( ) ( — Nash) (58.8)

The — Nash inequality is clearly equivalent to

³

k k22
´

:=
k k22

2
³

1
k k22

´ k k22 for all ( ) 3 k k1 = 1

where ( ) := 2(1 )

Proof.
³ ´

Let ( ) := ( ( 0 ))+ = ( ( 0 )) where ( ) =

max (( ) 0) Then

43210

3.5

3

2.5

2

1.5

1

0.5

0

x

y

x

y

Fig. 58.1. Plot of when = 3

| ( )| = | 0 ( ( 0 ))| | ( 0 )| = 1 ( 0 )

and k k = So putting this function into
³ ´

then implies

= k k (| ( 0 )|) k k = (| ( 0 )|)
For the converse, if supp( ) then by the mean value theorem,

k k ( ) k k (58.9)

where ( ) := (in radius of ) is the radius of the largest ball contained in
To prove this last equation, let 0 and then by the mean

value theorem and the definition of ( )

| ( 0)| = | ( ) ( 0)| ( 0 ) k k ( ) k k
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This proves Eq. (58.9). Now suppose (| ( )|) holds for all and
and let ( ) Then since is increasing,

(| ( )|) (| |)

and taking sups over all ( ) we learn that ( ) (| |) Using this
inequality in the estimate in Eq. (58.9) shows

k k (| |) k k

as desired.
³

1
´

Applying
³

1
´

to the function 1 shows

| | = k1 k1 (| |) k 1 k1 = (| |) | |1
as desired. For the converse, we have by the co-area formula, the above in-
equality and the fact that is increasing for any with supp( ) and
positive that

k k 1( ) =

Z

0

| { }|
Z

0

| |
(| |)

1

(| |)
Z

0

( ) =
1

(| |) k k1
³

2
´

Clearly
³

2
´

i.e.

k k2 (| |) k k2 for all supp( )

is equivalent to

1( ) = sup
:supp( )

( )

k k22
= sup

:supp( )

k k22
k k22

1
2 (| |)

Now suppose that — Nash of Eq. (58.8) holds. Since

k k21 = ( 1 )2 k k22 k1 k22 = | | k k22

so that | | k k21
k k22

Since is increasing (| |)
³k k21
k k22

´

so that — Nash

implies

k k2
Ã

k k21
k k22

!

k k2 (| |) k k2

which is
³

2
´

Conversely suppose ( 2) holds and let ( [0 )) and 0 ( to
be chosen later). Then using 2( ) on 2 we find
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Z

2 =

Z

2

2 +

Z

2

2 4

Z

2

( )2 + 2

Z

2

4

Z

( )2+ + 2 k k1

Now applying
³

2
´

to ( )+ gives

Z

( )2+ (| |) k ( )+k22
Z

( )2+ (| |) k k22
¡

1 k k1
¢ k k22

and combining this with the last inequality implies
Z

2 4
¡

1 k k1
¢ k k22 + 2 k k1

Letting 0 and taking = k k22 k k1 in this equation shows

k k22 4

Ã

k k21
k k22

!

k k22 + 2 k k22

or equivalently that

k k22
4

1 2

Ã

k k21
k k22

!

k k22

Taking = 1 4 for example, in this equation shows

k k22 8

Ã

4
k k21
k k22

!

k k22

which is — Nash up to constants.

58.5 Semi-Group Theory

Definition 58.9. A one parameter semi group on a Banach space is
equicontinuos if k k for all 0

Theorem 58.10. Let ( ) measure space, a semigroup of operators on
( ) for 1 and := |0 so that = Assume that

k k1 1 and k k for all Also that there exists
: R+ R+ such that

R

( ) and
R

0 ( ) = for all (0 ) such
that
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³

k k22
´

Re ( ) for all D( ) 3 k k1 (58.10)

Then is ultracontractive, i.e. k k1 for all 0 and moreover we
have

k k1 ( ) for all 0

where satisfies

=

Z

( ) ( )

Remark 58.11. This type of result appears implicitly in Nash 1958. Also see
Carlen, Kusuoka and Stroock 1986 and Tmisoki in 1990.

Proof. Let 1 with k k1 = 1 and so by assumption k k1 for
all 0 Letting ( ) := k k22 we have using Eq. (58.10) to find

0( ) = 2Re ( ) 2
³

k k22
´

= 2 ( ( ))

Thus
0( )
( ( )) 2 and upon integration gives

Z

( ) ( ))

Z (0)

( ) ( ))
=

Z

0

0( )
( ( ))

Z

0

2 = 2 =

Z

(2 ) ( )

and therefore we have ( ) (2 ) for all From this we conclude that

k k22 = ( ) (2 ) k k21
showing k k21 2 (2 )
We will now apply this same result to using the following comments:

1. = |0 and Re ( ) = Re ( ) = Re ( ) we have

³

k k22
´

Re ( ) = Re ( ) for all D( ) 3 k k1

(Actually I am little worried about domain issues here but I do not pause
to worry about them now.)

2. We also have

k k1 1 = sup
k k1=1

k k1 = sup
k k1=1

sup
k k =1

|( )|

= sup
k k =1

sup
k k1=1

|( )| = sup
k k =1

k k
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Using these comments we have k k21 2 (2 ) and hence by duality
again,

k k2 = sup
k k2=1

k k = sup
k k2=1

sup
k k1=1

|( )|

= sup
k k1=1

sup
k k2=1

|( )|

= sup
k k1=1

k k2 = k k1 2

p

(2 )

Hence

k k1 =
°

°

2 2

°

°

1

°

°

2

°

°

2
k k1 2

p

( )
p

( ) = ( )

as desired.



Part XVII

Heat Kernels on Vector Bundles



1141

These notes are on the construction and the asymptotic expansion for heat
kernels on vector bundles over compact manifolds using Levi’s method. The
construction described here follows closely the presentation given in Berline,
Getzler, and Vergne, “Heat Kernels and Dirac Operators.”
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Heat Equation on Rn

Let =
P

=1
2 2 be the usual Laplacian on R and consider the Heat

Equation
µ

1

2

¶

= 0 with (0 ) = ( ) (59.1)

where is a given function on R By Fourier transforming the equation in
the — variables one finds that (59.1) implies that

µ

+
1

2
| |2
¶

ˆ( ) = 0 with ˆ(0 ) = (̂ ) (59.2)

and hence that ˆ( ) = | |2 2 (̂ ) Inverting the Fourier transform then
shows that

( ) = F 1
³

| |2 2 (̂ )
´

( ) =
³

F 1
³

| |2 2
´ ´

( )

Now by well known Gaussian integral formulas one shows that

F 1
³

| |2 2
´

( ) = (2 )

Z

R

| |2 2 · = (2 )
2 | |2 2

Let us summarize the above computations in the following Theorem.

Theorem 59.1. Let

( ) := (2 ) 2 | |2 2 (59.3)

be the heat kernel on R Then
µ

1

2

¶

( ) = 0 and lim
0
( ) = ( ) (59.4)

where is the — function at in R More precisely, if is a contin-
uous bounded (can be relaxed considerably) function on R , then ( ) =
R

R ( ) ( ) is a solution to Eq. (59.1) where (0 ) := lim 0 ( )
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Proof. Direct computations show that
¡

1
2

¢

( ) = 0 see
Proposition 63.1 and Remark 63.2 below. The main issue is to prove that
lim 0 ( ) = ( ) or equivalently that lim 0

R

R ( ) ( ) = ( )

To show this let ( ) := (2 ) 2 | |2 2 and notice
¯

¯

¯

¯

Z

R
( ) ( ) ( )

¯

¯

¯

¯

Z

R
( ) | ( ) ( )|

=

Z

R
( ) | ( + ) ( )| (59.5)

Now for a bounded function on R we have that
Z

R
| ( )| ( ) =

Z

( )

| ( )| ( ) +

Z

( )

| ( )| ( )

sup
( )

| ( )|+ k k0
Z

( )

( )

sup
( )

| ( )|+ k k0
2 4 (59.6)

where k k0 denotes the supremum norm of Applying this estimate to Eq.
(59.5) implies,
¯

¯

¯

¯

Z

R
( ) ( ) ( )

¯

¯

¯

¯

sup
( )

| ( + ) ( )|+ k k0
2 4

Therefore if is a compact subset of R then

lim 0 sup

¯

¯

¯

¯

Z

R
( ) ( ) ( )

¯

¯

¯

¯

sup
( )

sup | ( + ) ( )| 0 as 0

by uniform continuity. This shows that lim 0 ( ) = ( ) uniformly on
compact subsets of R

Notation 59.2 We will write
¡

2
¢

( ) for
R

R ( ) ( )
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An Abstract Version of E. Levi’s Argument

The idea for the construction of the heat kernel for more general heat equations
will be based on a method due to E. Levi. Let us illustrate the method with
the following finite dimensional analogue. Suppose that is a linear operator
on a finite dimensional vector space and let := i.e. is the unique
solution to the ordinary di erential equation

= with 0 = (60.1)

In this finite dimensional setting it is very easy to solve Eq. (60.1), namely
one may take

=
X

=0
!

Such a series solution will in general not converge when is an unbounded
operator on an infinite dimensional space as are di erential operators. On the
other hand for the heat equation we can find quite good parametrix (approx-
imate solution) to Eq. (60.1). Let us model this by a map R+

( ) such that 0 = and

= (60.2)

where k k = ( ) for some 1 Using du Hamell’s principle (or varia-
tion of parameters if you like) we see that is given by

=

Z

0

= ( ) (60.3)

where

( ) :=

Z

0

=

Z

0

(60.4)

We may rewrite Eq. (60.3) as = ( ) and hence we should have that
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= ( )
1

=
X

=0

(60.5)

Now a simple change of variables shows that ( ) =
R

and
by induction one shows that

( ) =

Z

1 2 1 1 s (60.6)

where

:= {s = ( 1 2 ) : 0 1 2 · · · } (60.7)

and s = 1 2 Alternatively one also shows that

( ) =

Z

1 2 1 3 2 1
s (60.8)

Equation (60.6) implies that

( ) =

Z

0

¡

1
¢

(60.9)

Using this result, we may write Eq. (60.5) as

= +

Z

0

= +

Z

0

(60.10)

where

=
X

=0

( ) = +
X

=1

Z

1 2 1 1
s

(60.11)
Let us summarize these results in the following proposition.

Proposition 60.1. Let 0 = ˙ and be as above.
Then the series in Eq. (60.5) and Eq. (60.11) are convergent and Eq. (60.10)
holds, where = is the unique solution to Eq. (60.1). Moreover,

k k
+ 1

+1 k k +1 = ( 1+ ) (60.12)

where k k := max0 | |.
Remark 60.2. In the finite dimensional case or where is a bounded operator,
we may take = in the previous proposition. Then = is constant
independent of and

=
X

=0
!

+1
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which used in Eq. (60.10) gives the standard formula:

= +

Z

0

X

=0

( )

!
+1 = +

X

=0

+1

( + 1)!
+1 =

Proof. From Eq. (60.6),

|( ) | =
¯

¯

¯

¯

Z

1 2 1 1
s

¯

¯

¯

¯

( )
( +1)

Z

s =( ) +1

!

Therefore the series in Eq. (60.11) is absolutely convergent and

| |
X

=0

1

!
( +1) =

+1

Using this bound on and the uniform boundedness of

Z

0

| | +1 k k
Z

0

( ) =
+ 1

+1 k k +1

(60.13)
and hence defined in Eq. (60.10) is well defined and is continuous in
Moreover, (60.13) implies Eq. (60.12) once we shows that = This is
checked as follows,

Z

0

= +

Z

0

˙ = +

Z

0

( )

= +

Z

0

( ) =

Z

0

+

Thus we have,

= ˙ +

Z

0

+

= +

Z

0

=
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Statement of the Main Results

Let be a compact Riemannian Manifold of dimension and denote the
Laplacian on ( ) We again wish to solve the heat equation (59.1). It is
natural to define a kernel ( ) in analogy with the formula for ( )
in Eq. (59.3), namely let

( ) := (2 ) 2 2( ) 2 (61.1)

where ( ) is the Riemannian distance between two point We
may then define the operator on ( ) by

( ) =

Z

( ) ( ) ( ) (61.2)

where is the volume measure on Although, lim 0 = it is not the
case that ( ) = ( ) is a solution to the heat equation on This is
because does not satisfy the Heat equation. Nevertheless, is an approximate
solution as will be seen Proposition 63.1 below. Moreover, will play a crucial
role in constructing the true heat kernel ( ) for Let us now summarize
the main theorems to be proved.

61.1 The General Setup: the Heat Eq. for a Vector
Bundle

Let : be a Vector bundle with connection We will usually
denote the covariant derivatives on and all by For a section
( ) let ¤ := tr

¡ ¢

be the rough or Bochner Laplacian on
and let

:=
1

2
¤+R

where R is a section of End( ) We are interested in solving

( ) = 0 with (0 ) = ( ) (61.3)

where ( ·) and (·) are section of ( )
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61.2 The Jacobian (J — function)

Definition 61.1. Let : R be defined so that for each
exp = where = is the volume form on and is the volume
form on More explicitly, if { } =1 is an oriented orthonormal basis for

then and then

( ) = (exp ( 1) exp ( 2) exp ( ) )

=
q

det
©¡

exp ( ) exp ( )
¢ª

=1
(61.4)

where exp = |0 exp( + ) Further define ( ) = (exp 1( ))

Notice that (· ) satisfies

exp

µ

1

(· )

¶

=

Alternatively we have that ( ) = det
¡

exp (·) ¢ where = exp 1( ) To
be more explicit, let { } =1 be an orthonormal basis for then

( ) =
q

det
©¡

exp ( ) exp ( )
¢ª

=1

Remark 61.2 (Symmetry of ). It is interesting to notice that is a symmetric
function. We will not need this fact below so the proof may be skipped. We
will also be able to deduce the symmetry of using the asymptotic expansion
of the heat kernel along with the symmetry of the heat kernel.

Proof. Let then
2( ·) = 2 ( ( ) ) = 2

¡

exp 1( )
¢

where ( ) := | =1 exp( exp 1( )) = exp 1( ) Thus if
then

2( ) = 2
³

¡

exp 1
¢

´

Now

( ) = det
h

¡

exp 1
¢

i

= det

"

½

1

2
2( )

¾

=1

#

where { } and { } is an orthonormal basis of and respectively.
From this last formula it is clear from the fact that ( ) = ( ) that
( ) = ( )

Lemma 61.3 (Expansion of ). The function is symmetric, ( ) =
( ) Moreover

( ) = 1
1

6
(Ric ) + ( 3)

and hence

( ) =
¡

Ric exp 1( ) exp 1( )
¢

+ ( 3( ))
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The proof of this result will be given in the Appendix below since the
result is not really needed for our purposes.

61.3 The Approximate Heat Kernels

Theorem 61.4 (Approximate Heat Kernel). For let

( ) := exp ( exp 1( ))

so that is the geodesic connecting to Also let ( ) denote parallel
translation along (Read as ) Define, for ( ) near the diagonal

× and = 0 1 2 ( ) : inductively by

+1( ) = 0( )

Z 1

0
0( ( ) ) 1 ( ) ( ( ) ) for = 0 1 2

(61.5)
and

0( ) =
1

p

( )
1( ) (61.6)

For = 0 1 2 let

( ) := ( )
X

=0

( ) (61.7)

where
( ) := (2 ) 2 2( ) 2 (61.8)

Then
( ) ( ) = ( ) ( ) (61.9)

Definition 61.5 (Cut o function). Let 0 be less than the injectivity
radius of and choose ( 2 2) such that 0 1 and is 1 in
a neighborhood of 0 Set ( ) = ( 2( )) a cuto function which is one
in a neighborhood of the diagonal and such that ( ) = 0 if ( )

Corollary 61.6 (Approximate Heat Kernel). Let ( ) := ( ) (
Define

( ) := ( ) ( )

then
°

° ( · ·)°° 2 2 (61.10)

where k k denotes the supremum norm of and all of its derivatives up to
order
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61.4 The Heat Kernel and its Asymptotic Expansion

Theorem 61.7 (Existence of Heat Kernels). There exists a heat kernel
( ) : for i.e. is a 1 —function in and 2 in ( ) such
that

( ) ( ) = 0 with lim
0
( ) = ( ) (61.11)

Remark 61.8. The explicit formula for ( ) is derived by a formal appli-
cation of equations (60.10) and (60.11) above. The results are:

( ) = ( ) +

Z

0

Z

( ) ( ) ( ) (61.12)

where

( ) =
X

=1

( ) (61.13)

and the kernels are defined inductively by where 1 = and for 2

( ) =

Z

0

Z

( ) 1( ) ( ) (61.14)

Corollary 61.9 (Uniqueness of Heat Kernels). The heat equation (61.3)
has a unique solution. Moreover, there is exactly one solution to (61.11).

Proof. Let ( ) :=
R

( ) ( ) ( ) then solves the heat equa-
tion (61.3). We will prove uniqueness of using the existence of the adjoint
problem. In order to carry this out we will need to know that = 1

2¤ +R :
( ) ( ) is the formal transpose of in the sense that

Z

h i =

Z

h i (61.15)

for all sections ( ) and ( ). Here ¤ is the rough Laplacian on
Indeed, let be the vector field on such that ( ) = h i for all

Then

( ·) = h · i = h ( · ) i+ h · i
so that in particular

( ) = h 2 i+ h i
Let = where { } an orthonormal frame, and sum this equation on to
find that

÷( ) = h¤ i+ h i (61.16)

Using the Riemannian metric on to identify one forms with vector fields,
we may write this equality as:



61.4 The Heat Kernel and its Asymptotic Expansion 1153

÷h · i = h¤ i+ h i
Similarly one shows that

÷h · i = h ¤ i+ h i
which subtracted from the previous equation gives “Green’s identity,”

h ¤ i h¤ i = ÷ (h · i h · i) (61.17)

Integrating equations (61.16) and (61.17) over we find, using the divergence
theorem, that

Z

h¤ i =

Z

h ¤ i =

Z

h i

Thus
Z

h i =
1

2

Z

h¤ i +

Z

hR i

=
1

2

Z

h ¤ i +

Z

h R i =

Z

h i

proving Eq. (61.15).
Suppose that is a solution to Eq. (61.3) with (0 ) = 0 for all

By applying Theorem 61.7, we can construct a heat kernel for Given
( ) let

( ) :=

Z

( ) ( ) ( )

for Now consider
Z

h ( ) ( )i ( )

=

Z

h ( ) ( )i ( )

Z

h ( ) ( )i ( ) = 0

and therefore,
R h ( ) ( )i ( ) is constant in Considering this ex-

pression in the limit that tends to 0 and implies that

0 =

Z

h0 (0 )i ( ) =

Z

h ( ) ( )i ( )

Since is arbitrary, this implies that ( ) = 0 for all Hence the solution
to equation (61.3) is unique. It is now easy to use this result to show that
( ) must be unique as well.

Theorem 61.10 (Assymptotics of the Heat Kernel). Let ( ) be the
heat kernel described by Eq. (61.11), then is smooth in ( ) for 0
Moreover if is as in Corollary 61.6, then

°

° ( ( · ·) ( · ·))°° = ( 2 2 ) (61.18)

provided that 2 + 2 +
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Proof of Theorems 61.7 and 61.10

In this section we will give the proof of Theorems 61.7 and 61.10 assuming
Theorem 61.4 and Corollary 61.6.

62.1 Proof of Theorem 61.7

Let and be given and fix 2+ 2+ Let ( ) = ( ) and
( ) = ( ) as in Corollary 61.6. Let

( ) :=

Z

( ) ( ) ( ) and ( ) :=

Z

( ) ( ) ( )

Following the strategy described in Section 60, we will let ( ) be the
kernel of the operator

P

=0 where is as in Eq. (60.4). That is

( ) =
X

=1

( ) (62.1)

where 1 = and for 2

( )

=

Z

1

Z

1

( 1 1) ( 1 2 1 2) ( 1

=

Z

0

Z

( ) 1( ) ( ) (62.2)

and y = ( 1) ( ) The kernel is easy to estimate using (61.10) to
find that
°

° ( · ·)°°
³

2
´

2 ( ) 1 1 ( 1)!

= ( 2) 2 ( ) 1 1 ( 1)! (62.3)
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and from this it follows that
P

=1

°

° ( · ·)°° = ( ( 2) 2 )

Therefore, is well defined with ( ) in
Proof. Let ( ) be the kernel of the operator defined in Eq. (60.10)

i.e.

( ) = ( ) +

Z

0

Z

( ) ( ) ( ) (62.4)

= ( ) +

Z

0

Z

( ) ( ) ( ) (62.5)

Using Eq. (62.5), we find (since (0 ) = 0) that

( ) = ( ) +

Z

0

Z

( ) ( ) ( )

= ( ) ( )

+

Z

0

Z

( ) ( ) ( ) (62.6)

More generally,

( ) = ( ) +

Z

0

Z

( ) ( ) ( )

from which it follows that is continuous in for all Furthermore,

°

° ( · ·) ( · ·)°°
Z

0

°

° ( · ·)°°
Z

0

( ) 2 2

= ( 2 2 +1) (62.7)

To finish the proof of Theorem 61.7, we need only verify Eq. (61.11). The
assertion that lim 0 ( ) = ( ) follows from the previous estimate
and the analogous property of ( ) Fubini’s theorem and integration by
parts shows that
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Z Z

( ) ( ) ( )

=

Z

( ) ( ) ( )
¯

¯

=
=

+

Z Z

( ) ( ) ( )

=

Z

( ) ( ) ( )

+

Z Z

( ( ) ( )) ( ) ( )

=

Z

( ) ( ) ( )

+

Z Z

( ) ( ) ( )

Z Z

( ) ( ) ( )

Making use of the fact that is uniformly bounded on and that the strong—
lim 0 = we may pass to the limit, 0 in this last equality to find
that

Z

0

Z

( ) ( ) ( )

= ( ) +

Z

0

Z

( ) ( ) ( )

Z

0

Z

( ) ( ) ( )

= ( ) +

Z

0

Z

( ) ( ) ( )

(62.8)

wherein the last equality we have made use of equations (62.1) and (62.2) to
conclude that

( )

Z

0

Z

( ) ( ) ( ) = ( )

Combining (62.6) and (62.8) implies that ( ) ( ) = 0

62.2 Proof of Theorem 61.10

Because in the above proof was arbitrary, we may construct a kernel ( )
as in the previous section which is for any we desire. By the uniqueness
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of Corollary 61.9, the kernel ( ) constructed in the proof of Theorem
61.7 is independent of the parameter Therefore, by choosing as large, we
see that is in fact infinitely di erentiable in ( ) with 0 Finally the
estimate in Eq. (61.18) has already been proved in Eq. (62.7).
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Properties of

For the time being let be a fixed point and ( ) := ( ) Also let
( ) := exp 1( ) ( ) := exp( ( )) and be the “radial” vector field,

( ) = ( ) := |1 exp( ( )) = 1( ) ( ) (63.1)

where ( ) is used to denote parallel translation along up to time
Notice that is a smooth vector field on a neighborhood of To simplify
notation we will write ( ) for ( ) i.e.

( ) = (2 ) 2 2( ) 2 (63.2)

The main proposition of this section is as follows.

Proposition 63.1. Fix let ( ) = ( ) (see Definition 61.1 above)
and ( ) be as in Eq. (63.2), then

µ

1

2

¶

=
1

2
ln =

1

2
( ln )

=
1

2
( · ) (63.3)

Remark 63.2. If = R with the standard metric, then ( ) = · =
(and 1) so that

( ) = (2 )
2 2 2

is an exact solution to the heat equation as is seen from Eq. (63.3). Moreover,
the constants have been chosen such that

R

R ( ) = 1 for all 0 From

this fact and the fact that (2 ) 2 2 2 has most of its mass within a
radius of size order it follows that lim 0 ( ) = ( ) Similar statements
hold for ( ) given in Eq. (63.2).
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In order to prove the Proposition we will need to introduce some more
notation which will allow us to compute the Laplacian on radial functions
( ) see Lemma 65.3 below.

Notation 63.3 (Geodesic Polar Coordinates) Let be fixed,
( ) := ( ) and ( ) := exp 1( ) ( ) So that ( ) : R+ ×
where = is the unit sphere in We also write = ( )
when = ( ) Alternatively,where

=
1

=
1 |1 (exp ( exp 1(·))) (63.4)

= |0 (exp (( + ) ) (63.5)

and is the vector field given in Eq. (63.2) above.

Notice that with this notation exp 1( ) = ( ) ( ) and ( ) =
( ( ) ( ) )

63.0.1 Proof of Proposition 63.1

We begin with the logaritheoremic derivatives of

ln ( ) =
2
+

2

2 2

and

ln ( ) =
2

2
=

1

Therefore,

= · ( ln ( )) =
1 · ( )

=
1
2
| |2 1 · =

µ

2

2

1

2
2

¶

and hence
µ

1

2

¶

=

µ

2
+

2

2 2

2

2 2
+
1

4
2

¶

=
1

2

µ

1

2
2

¶

=
1

2
( · ) =

1

2
( ln )
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63.0.2 On the Operator Associated to the Kernel

We now modify the definition of in Eq. (61.2) by inserting the cuto func-
tion as in Definition 61.5, that is let

( ) :=

Z

( ) ( ) ( ) ( ) (63.6)

We will end this section with some basic properties of

Theorem 63.4. Let be as in Eq. (63.6). Then for 0 : ( )
( ) for each there is a constant such that k k k k for all

0 1 and ( ) and moreover lim 0 k k = 0 Here, k k
denotes the sup—norm of and all of its derivatives up to order

Proof. First o , since ( ) ( ) is a smooth function in ( ) it
is clear that ( ) is smooth. To prove the remaining two assertions, let us
make the change of variables, = exp ( ) in the definition of This gives,

( ) =

Z

( )

( exp ( )) ( exp ( )) (exp ( )) ( )

=

Z

(| |2) (2 )
2 | |2 2 (exp ( )) ( )

where ( ) be the ball of radius centered at 0 Now let ( ) be
a local orthonormal frame on , so that ( ) : R is a smoothly
varying orthogonal isomorphism for in some neighborhood of We now
make the change of variables ( ) and ( ) with R in the
above displayed equation to find,

( ) =

Z

R
(| |2) (exp ( ( ) )) ( ( ) ) ( ) (63.7)

=

Z

R
( | |2) (exp ( ( ) )) ( ( ) ) 1( ) (63.8)

where ( ) := (2 ) 2 | |2 2

Suppose that is a ’th order di erential operator on then from Eq.
(63.7) we find that

( ) ( ) =

Z

R
(| |2) [ (exp ( ( ) )) ( ( ) )] ( )

from which we see that

|( ) ( )| ( ) k k
Z

R
( ) = ( ) k k

This shows that k k k k
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Using the product and the chain rule,

[ (exp ( ( ) )) ( ( ) )] =
X

( ) (L ) (exp ( ( ) ))

where ( ) are smooth functions of ( ) with | | and L are di er-
ential operators of degree at most Noting that

( ) =
X

( 0) (L ) ( )

we find that

| ( ) ( ) ( )|
X

Z

R

¯

¯

¯

¯

( ) (L ) (exp ( ( ) ))
( 0) (L ) ( )

¯

¯

¯

¯

(| |2) ( )

Applying the estimate in Eq. (59.6) to the previous equation implies that

|| ||0
k k 2 4 +

X

sup
( )

sup

¯

¯

¯

¯

( ) (L ) (exp ( ( ) ))
( 0) (L ) ( )

¯

¯

¯

¯

and therefore

lim 0|| ||0
X

sup
( )

sup

¯

¯

¯

¯

( ) (L ) (exp ( ( ) ))
( 0) (L ) ( )

¯

¯

¯

¯

which tends to zero as 0 by uniform continuity. From this we conclude
that lim 0 || || = 0
To conclude this section we wish to consider lim 0(

1
2 )

Theorem 63.5. Let be as above and be the scalar curvature on Then
= ( 12

1
6 ) + ( ) So if we used for in the construction in

Proposition 60.1, we would construct ( 2 6) rather than 2

Proof. We will start by computing,

(
1

2
) ( )

=

Z

(
1

2
) ( ) ( ) ( ) ( )

=

Z

( )(
1

2
) ( ) ( ) ( ) + ( )

=

Z

( )
1

2
( ( ) ln (· )) ( ) ( ) ( ) + ( ) (63.9)
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Using Lemma 61.3, we find when = exp ( ) that

( ( ) ln (· )) = ln ( ) = ln(1
1

6
(Ric ) + ( 3))

= (
1

6
(Ric ) + ( 3))

=
1

3

¡

Ric exp 1( ) exp 1( )
¢

+ ( 3( ))

Using the symmetry of or by direct means one may conclude that
¡

Ric exp 1( ) exp 1( )
¢

=
¡

Ric exp 1( ) exp 1( )
¢

+ ( 3( )) (63.10)

so that

( ( ) ln (· )) =
1

3

¡

Ric exp 1( ) exp 1( )
¢

+ ( 3( ))

To check Eq. (63.10) directly, let ( ) = exp( ) and notice that

(Ric ˙ ( ) ˙ ( )) =
¡

( ˙ ( )Ric ˙ ( )) ˙ ( )
¢

= ( 3)

Integrating this expression implies that (Ric ˙ (1) ˙ (1)) = (Ric ) + ( 3)
Taking = exp 1( ) implies Eq. (63.10).
Using this result in (63.9) and making the change of variables = exp

as above we find that

(
1

2
) ( )

=
1

3

1

2

Z

(| |2)
| |2 2

(2 )
2

©

(Ric ) + ( 3)
ª

(exp ( )) ( )

+ ( )

=
1

6

n

( ) ( ) + ( 3 2)
o

=
1

6
( ) ( ) + ( 1 2)

Therefore, = (12
1
6 ) + ( )
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Proof of Theorem 61.4 and Corollary 61.6

64.1 Proof of Corollary 61.6

We will begin with a Proof of Corollary 61.6 assuming Theorem 61.4. Using
Eq. (61.9) and the product rule,

( ) = ( ) ( )

= ( ) ( ) ( )

1

2
( ) ( ) ( ) ( )

= ( ) ( ) ( )

1

2
( ) ( ) ( ) ( )

Let 0 be chosen such that ( ) = 1 if ( ) It is easy to see for
any that

°

°

°

°

µ

1

2
( ) ( ) + ( ) ( )

¶
°

°

°

°

= ( 3 )

where k k denotes the supremum norm of along with all of its derivatives
in ( ) up to order We also have that

k ( ) ( ) ( )k 2

Furthermore, if is a vector field on then by Lemma 65.4,

¯

¯

¯

2 2
¯

¯

¯
=

¯

¯

¯

¯

( ) 2 2

¯

¯

¯

¯

| | 2 2

=
1 | | 2 2

1 2

| |
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Similarly we have the same estimate for
¯

¯

¯

2 2
¯

¯

¯
Let us now consider

higher order spatial derivatives, for example

2 2 =

µ

( ) 2 2

¶

=

µ

( ) 2 2 +
( ) 2 2

from which we find that
¯

¯

¯

2 2
¯

¯

¯

2 2 +
2

2

2 2

Continuing in this way we learn that
°

°

°

2 2
°

°

°

2

Let us consider the —derivatives of ( )

| | = | (
2
+

2

2 2
)| 2 1

Similarly,

| 2 | = | (
2 2

+
2

3
) + (

2
+

2

2 2
)2| 2 2

Continuing this way, one learns that | | ( 2+ ) Putting this all
together gives Eq. (61.10).

64.2 Proof of Theorem 61.4

Proposition 64.1. Let be fixed, ( ) = ( ) ( ) = ( ) and
( ) be as above. Suppose that ( ) : is a time dependent section
of hom( ) and ( ) = ( ) ( ) Then

( ) =

µ

+
1
µ

+
1

2
ln

¶¶

=

µ

+
1
¶

(64.1)

where
= +

1

2
ln (64.2)

Proof. First let us recall that

¤( ) = tr 2( ) = tr
¡

2 + 2 + 2
¢

= + 2 + ¤
= + 2 ln + ¤
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and that

ln =

µ

1

2
2

¶

=

Hence

( ) =

µ

1

2
¤
¶

( ) R

=

µ

1

2

¶

ln + ( )

=
1

2
( ln ) +

1
+ ( )

=

µ

+
1
µ

+
1

2
ln

¶¶

Now let

( ) =
X

=0

( ) and ( ) = ( ) ( ) (64.3)

where ( ) : are to be determined. Then

µ

+
1

¶

=
X

=0

©

1 ( + )
ª

=
1

0 +

1
X

=0

(( + 1) +1 + +1 )

Thus if we choose 0 such that

0( ) =

µ

+
1

2
ln

¶

0( ) = 0 (64.4)

and such that
( + + 1) +1 = 0 (64.5)

then
¡

+ 1
¢

= or equivalently by Eq. (64.1),

( ) = ( ) ( ) = (64.6)

Let us begin by solving (64.4) for 0 For let ( ) = ( ) :=
exp ( exp 1( )) so that is the geodesic connecting to Notice that
( ( )) = ˙ ( ) and therefore = ˙ ( ) Therefore, the equation 0 = 0

is implies that

0( ( )) +
1

2

·

ln ( ( ))

¸

0( ( )) = 0
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or equivalently that
µ

+
1

2
ln ( ( ))

¶

©

( ) 1
0( ( ))

ª

= 0 (64.7)

We may solve this last equation to find that

( ) 1
0( ( )) =

1
p

( ( ))
0( )

and hence that

0( ) = 1( )
1

p

( )
0( )

Since we are going to want to be a fundamental solution, it is natural to
require the 0( ) = This gives a first order parametrix,

0( ) :=
1

p

( )
( ) ( ) :

where

( ) := 1( ) and ( ) := ( ) = (2 ) 2 2( ) 2

This kernel satisfies,

( ) 0( ) = ( )

Ã

1
p

( )
( )

!

Proposition 64.2. Let be fixed and set, for near

0( ) = 1( )
1

p

( )
(64.8)

Then 0( ) is smooth for ( ) near the diagonal in × and
0( ) = 0

Proof. Because of smooth dependence of di erential equations on initial
conditions and parameters, it follows that 0( ) is smooth for ( ) near the
diagonal in × To simplify notation, let 0( ) := 0( ) ( ) = ( )
and ( ) = ( ) We must verify that 0 = 0 This is seen as follows:

0( ) =

Ã

1
p

( )
( )

!

=
1

2

1
p

( )
( ln ) ( ) ( ) +

1
p

( )
( )

=
1

p

( )

½

( )
1

2
( ln ) ( ) ( )

¾

=
1

2
( ln ) ( ) 0( )
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since

( ) = ( ) |1 ( ( )) = ( ) |1 ( ) = 0

Hence

0( ) = 0( ) +
1

2
( ln ) ( ) 0( ) = 0

We now consider solving Eq. (64.5). Fixing and and letting ( ) :=
( ) Eq. (64.5) may be written as

µ

+
1

2
ln ( ( )) + + 1

¶

+1( ( )) ( ( )) = 0

or equivalently that
µ

+
1

2
ln ( ( )) +

+ 1
¶

( ) 1
+1( ( ))

1
( ) 1 ( ( )) = 0

(64.9)
Letting be a solution to

µ

1

2
ln ( ( ))

+ 1
¶

( ) = 0

it follows that Eq. (64.9) may be written as

£

( ) ( ) 1
+1( ( ))

¤ ( )
( ) 1 ( ( )) = 0 (64.10)

We now let be given by

( ) = exp

µ
Z
·

1

2
ln ( ( )) +

+ 1
¸ ¶

= exp

µ

1

2
ln ( ( )) + ( + 1) ln

¶

=
p

( ( )) ( +1)

Integrating (64.10) over [0 ] implies that

( ) ( ) 1
+1( ( )) =

Z

0

( )
( ) 1 ( ( ))

Evaluating this equation at = 1 and solving for +1( ) gives:

+1( ) =
1

p

( )
( )

Z 1

0

p

( ( )) ( +1)

( ) 1 ( ( ))

=
1

p

( )
( )

Z 1

0

q

( ( ) ) ( ) 1 ( ( ))

(64.11)
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Theorem 64.3. Let 0( ) be given as in Equation (64.8), and define the
smooth sections ( ) inductively by

+1( ) = 0( )

Z 1

0
0( ( ) ) 1 ( ( ) ) (64.12)

for = 0 1 2 Then solves Eq.(64.5).

Proof. Let us begin by noting that Eq. (64.11) and (64.12) are the same
equation because

0( ( ) ) =
1

p

( ( ) )
( )

Let be fixed and set ( ) = ( ) Since ( )( ) = ( ) and
( ( )) = ( ) it follows that

+1( ( ) ) = 0( ( ) )

Z 1

0

1
p

( ( ) ) ( ) 1 ( ( ) )

= ( +1)
0( ( ) )

Z

0

p

( ( ) ) ( ) 1 ( ( ) )

From this equation we learn that

( 0( ) +
1

2
( ln ) ( ) + + 1) +1( )

=

µ

+
1

2
ln ( ( )) + + 1

¶

| =1 +1( ( ))

= 0( ) |1
Z

0

p

( ( ) ) ( ) 1 ( ( ) )

= 0( )
p

( ( ) ) 1( )
1 ( ) = ( )

wherein the second equality we have used the product rule and the fact that
µ

+
1

2
ln ( ( )) + + 1

¶

( +1)
0( ( ) ) = 0

which is verified using Eq. (64.7).
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Appendix: Gauss’ Lemma & Polar Coordinates

Lemma 65.1 (Gauss’ Lemma). Let then
¡

exp exp
¢

exp( )
= ( )

Proof. Let ( ) := exp( ( + )) then

( ˙ ( 0) 0( 0)) = ( ˙ ( 0) 0( )) + ( ˙ ( 0) 0( 0))

= ( ˙ ( 0) |0 ˙ ( )) =
1

2
|0( ˙ ( ) ˙ ( ))

=
1

2
|0 | + |2 = ( )

Combining this equation with the observation that ( ˙ ( 0) 0( 0))| =0 = 0
implies that

( ˙ (1 0) 0(1 0)) = ( )0

Corollary 65.2. Suppose that and choose 0 such that exp is
a di eomorphism on (0 ) Then ( ) =

¯

¯exp 1( )
¯

¯ for all :=
exp ( (0 ))

Proof. Let ( ) be a curve in such that (0) = and (1) = Suppose
for the moment that ( ) is contained in and write ( ) = exp ( ( )). Set
= (1) | (1)| and decompose ( ) = ( ( ) ) + ( ) where ( ( ) ) =

0 Then

| ˙ ( )|2 = ¯¯exp ˙( ) ( )
¯

¯

2
=
¯

¯

¯
exp

³

( ˙( ) ) ( ) + ˙( ) ( )

´
¯

¯

¯

2

=
¯

¯exp ( ˙( ) ) ( )

¯

¯

2
+
¯

¯

¯
exp

³

˙( ) ( )

´
¯

¯

¯

2

= |( ˙( ) )|2 +
¯

¯

¯
exp

³

˙( ) ( )

´
¯

¯

¯

2

|( ˙( ) )|2
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From this we learn that

Length( ) =
Z 1

0

| ˙ ( )|
Z 1

0

|( ˙( ) )|
Z 1

0

( ˙( ) ) = | (1)|

That is Length( )
¯

¯exp 1( )
¯

¯ It is easily to use the same argument to
show that if leaves the open set then Length( )

¯

¯exp 1( )
¯

¯ and
hence Length( )

¯

¯exp 1( )
¯

¯ for all path such that (0) = and (1) =
Moreover we have equality if ( ) is the geodesic joining to This shows
that

( ) = inf Length( ) =
¯

¯exp 1( )
¯

¯

For more on geodesic coordinates, see Appendix 67.

65.1 The Laplacian of Radial Functions

Lemma 65.3. Let ( ) := ( ) and ( ) = ( ) as in Definition 61.1.
Then

( ) =

¡

1 0( )
¢

1
= 00( ) +

µ

1
+

ln
¶

0( ) (65.1)

We also have that

( ) = 00( ) +
· 1 0( ) (65.2)

and that
2 = 2 · = 2

µ

+
ln

¶

Proof.We will give two proofs of this result. For the first proof recall that
if
© ª

is a chart on then

=
1

µ ¶

(65.3)

where 2 = , is the inverse of ( ) and =
p

det( ) We
now choose the coordinate system to be := and := where
© ª 1

=1
is a chart on = We now need to compute in this

case. Let us begin by noting that = exp
¡ | ¢ for = 1 2 1

and = = exp
¡ |0( + )

¢

By Gauss’ lemma, it follows that

2 = 2 + ( ) i.e. =

·

0
0 1

¸

. Therefore 1 =

·

1 0
0 1

¸

and

= So if = ( ) = ( ) it follows from Eq. (65.3) that
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( ) =
1

µ ¶

=
1

µ ¶

= 00( ) +
ln( ) 0( ) (65.4)

So to finish the proof we need to describe = in terms of In order to
do this, let us notice that in Eq. (61.4) may also be expressed as

( ) =
(exp ( 1) exp ( 2) exp ( ) )

( 1 2 )

=

v

u

u

t

det
©¡

exp ( ) exp ( )
¢ª

=1

det {( )} =1

(65.5)

where now { } is any oriented basis for From this expression it follows
that

= ( )

s

det

½µ

| |
¶¾ 1

=1

= (· ) 1 ( )

where

( ) :=

s

det

½µ

| |
¶¾ 1

=1

Using these expression in Eq. (65.4) along with the observation that
( ) = 0 proves Eq. (65.1).
(Second more direct Proof.) Let ( ) denote a generic point in R+ ×

and denote the volume form on = Then
Z

( ) =

Z

˜

=

Z

R+×
( ) ( ) 1

where (̃ ) := ( ) Therefore,
Z

( ) ( ) =

Z

( ( ) ( ))

=

Z

0( ) ( )

=

Z

R+×
0( ) ( ) ( ) 1

=

Z

R+×

¡ 0( ) ( ) 1
¢

( ) 1
( ) ( ) 1

=

Z

¡ 0( ) 1
¢

1
( )
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which proves Eq. (65.1).
To prove Eq. (65.2), we compute more directly:

( ) = · ( ) = · ( 0( ) ) = ·
µ 0( )

¶

=

µ 0( )
¶µ ¶

+
0( ) ·

= 00( )
0( )

+
0( ) ·

which proves Eq. (65.2).
In particular we have that 2 = 2 · and

2 = 2 +

µ

1
+

ln
¶

2 = 2

µ

+
ln

¶

Lemma 65.4. Let ( ) := ( ) as above, then

2( ) = 2 2( )

2 = 2

and
· ( ) =

Proof. We first claim that | | = Moreover,

2( ) = |1 2( ( )) = |1 2 2( ) = 2 2( )

That is to say 2 = 2 2 Moreover, if is perpendicular to ( )
then 2 = 0 so that 2 is proportional to One way to argue this is
that ( ) points in the direction of maximum increase of 2 by the triangle
inequality. Hence

2 =

¡

2
¢

( )
=
2 2

2
= 2

If we do not like this explanation, then use Gauss’s lemma I guess. Come back
to this point.
Now we wish to compute 2 = 2 · We would like to at least do this at
= To this end, let us work out for Setting ( ) = exp( ),

we find that

= |0 1( ) ( ( )) = |0 1( ) ( ) =

Therefore · ( ) =
P

=1( ) = and hence 2( ) = 2
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The Dirac Equation a la Roe’s Book

In this section, we consider the Dirac equation:

= with =0 = 0 given. (66.1)

Here = is the Dirac operator on some spinor bundle over The
most interesting statement made by Roe about the Dirac equation is it’s finite
speed of propagation property. Given a compact region with smooth
boundary and a solution to Eq. (66.1), let

( ) :=

Z

| ( )|2 ( )

be the energy of in the region Let us begin by computing the derivative
of

Lemma 66.1. Let be a compact region with smooth boundary, and
be a solution to Eq. (66.1). Then

( ) =

Z

· =

Z

( ) (66.2)

where is the smooth vector field on such that ( ) = ( ) for
all vector fields on and is the outward pointing normal to and is
surface measure on

Proof. Di erentiating under the integral sign implies that

( ) =

Z

n³

˙
´

+
³

˙
´o

=

Z

{( ) + ( )}

=

Z

{( ) ( )} (66.3)

=

Z

Im ( ) (66.4)
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We also have,

( ·) = ( ·) = ( · )

= (( )· ) + ( · ) + ( · )

= ( · ) ( · )

where we have made use of the fact that = 0 and = Taking
= and · = and summing on in the above equation implies that

· = ( ) ( ) (66.5)

Combining Eq. (66.3) and (66.5) along with the divergence (Stoke’s) theorem
proves Eq. (66.2).

Corollary 66.2. The total energy ( ) = ( ) remains constant and solu-
tions to Eq. (66.1) are unique if they exist.

We now want to examine how ( ) depends on

Lemma 66.3. Suppose that is as above and : is a one
parameter family of smooth injective local di eomorphisms depending smoothly
on and let := ( ) Also define a vector field on by ˙ =
i.e. := ˙ 1 If : R is a smooth function, then

Z

=

Z

· ( ) =

Z

( ) (66.6)

where again is the outward pointing normal to and is surface measure
on

Proof. Since
Z

=

Z

( )

=

Z

( ) =

Z

=

Z

= and

= (( + ) ) = ( · )

it follows that
Z

=

Z

+

Z

( · )

=

Z

+

Z

·

=

Z

· ( )
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from which Eq. (66.6) follows.
Fix a point and let ( ) be the geodesic ball centered at

with radius If we believe that the speed of propagation of the
Dirac equation is 1 then we should have

( ) :=

Z

( )

| |2 (66.7)

is non-increasing as increases to The reason is that, we are shrinking the
ball at a rate equal to the speed of propagation, so no energy which was in the
wave at time outside the ball ( ) can enter the region ( )
for We will now verify that ( ) is non-increasing.

Proposition 66.4. For smaller than the injectivity radius of the func-
tion ( ) in Eq. (66.7) is non-increasing as increases to

Proof. Let : be given by ( ) = exp( ) and be
the locally defined vector field on such that ˙ ( ) = ( ) for all
small. Since ( ) = ( ) where is the unit disc in we have that
( ) = 1 by Gauss’s lemma. So By Lemmas 66.1 and 66.3,

( ) =

Z

( )

( )

Z

( )

| |2( )

=

Z

( )

( )

Z

( )

| |2

Now
|( )| = |( )| | | | | | |2

since is a unit vector and is an isometry. (Recall that is skew adjoint
and 2 = ) This shows that

( ) = Im

Z

( )

( )

Z

( )

| |2
Z

( )

| |2
Z

( )

| |2 = 0

Corollary 66.5. Suppose that the support of 0 is contained in Then the
support of is contained in

:= { : ( ) for all }
Proof. By repeating the argument and using the semi-group property of
we may and do assume that is positive and less than the injectivity

radius of Let ¯ so that there exists such that ( ) =

By the previous proposition, ( ) :=
R

( )
| |2 is decreasing and hence
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Z

( )

| |2 = ( ) (0) =

Z

( )

| 0|2 = 0

This shows that 0 on ( ) and in particular at

66.1 Kernel Construction

Lemma 66.6. Suppose that R is a open set and : 2( ) +1( )
is bounded linear map. For each let 2( ) such that ( ) =
( ) for all 2( ) Then the map 2( ) is —

smooth. Moreover, we have estimates of the derivatives of in terms of
the operator norm k k of as an operator from : 2( ) +1( )

Remark 66.7. The above Lemma may has well been formulated with 2( )
replaced by an abstract Hilbert space The proof given below would still
go through without any change.

Proof. First notice that

|( )| = | ( ) ( )| | | | |
| | 1( )| | | | 2( )| |

which shows that | | 2( ) | | so the · is continuous. Let us
now consider the directional derivatives of For and R let
( ) := ( ) As above there exists 2( ) such ( ) =
( ) = ( ) for all 2( ) and moreover ( ) is locally

Lipschitz continuous and linear in Indeed,

|( )| = | ( ) ( )| | | 2( ) | || |
k k | | 2( )| || |

That is to say, · (R 2( )) is a Lipschitz continuous map.
Now let and R then

( + ) = ( + ) ( ) =

Z 1

0

( + )

=

Z 1

0

( + )

which shows that

| + |
Z 1

0

| + | | |
Z 1

0

| |
= k k | |2 2

This shows that is di erentiable and that 0 = We have already
seen that 0 is continuous. This shows that is 1 We may continue this
way inductively to finish the proof of the lemma.
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Proposition 66.8. Suppose that : 2( ) +1( ) is a bounded oper-
ator, then has an integral kernel which is — smooth. Moreover the

— norm of the kernel is bounded by the square of the operator norm for
: 2( ) +1( )

Proof. Let the map 2( ) ( ) is a bounded linear
map and hence there is a unique element ( ·) 2( ( )) such that

( ) =

Z

( ) ( )

Notice that if ( ) then

( ( ) ( )) =

Z

( ( ) ( ) ( ))

=

Z

( ( ) ( ) ( ))

which by the previous lemma shows that ( ·) ( ) 2( ) is a —
map with bounds determined by k k
(Surely one can show that there is a version of ( ) such that ( )

( ) is jointly measurable. We will avoid this issue here however.) Ignoring
measurability issues, we know that

( ) =

Z

( ) ( )

so the

( ) =

Z

×
( ) ( ) ( )

=

Z

( ) ( )

where

( ) :=

Z

( ) ( )

Even though the derivation of above was suspect because of measurability
questions, the formula make perfect sense. Indeed suppose that and are
in ( ) then

( ( ) ( ) ( )) =

Z

( ( ) ( ) ( ) ( ))

=

Z

( ( ) ( ) ( ) ( ))

= ( ( ·) ( ) ( ·) ( )) 2( )
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Furthermore this shows that ( ) ( ( ) ( ) ( )) is in ( ) with

a norm which is controlled by the — norms of and k k2 Since
and are arbitrary, we find that ( ) is as well and the — norm is

bounded by a constant times k k2
So the only thing left to check is that

( ) =

Z

( ) ( ) ( )

Letting ( ) as before, then

( ( ) ( ) ( )) =

Z

( ( ) ( ) ( ) ( ))

= ( ( ) ( ( ·) ( )) ( ))

so that
Z

( ( ) ( ) ( )) =

Z

( ( ) ( ( ·) ( )) ( ))

=

Z

( ( ) ( ) ( ))

=

Z

( ( ) ( ) ( ))

Integrating this last expression over shows that
Z

×
( ( ) ( ) ( )) = ( ) 2( ) = ( ) 2( )

Since is arbitrary we conclude that

( ) =

Z

( ) ( )

Using the above results, one can show that ( ) has a smooth kernel for
any function : R C which has rapid decrease. To see this, by writing in
its real and imaginary parts, we may assume that is real valued. Further-
more, by decomposing into its positive and negative parts we may assume
that 0 Let = 1 2 a function with rapid decrease still, we see that ( )
is a self-adjoint smoothing operator. Therefore ( ) = 2( ) has a smooth
integral kernel. In this way we find that

2 2 has a smooth integral kernel.
Let ( ) =

2 2( ) denote the smooth kernel.

Proposition 66.9. The function ( ) 0 in as 0 o of any
neighborhood of the diagonal = in ×
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Proof. Let 0 be given, and let and be smooth functions on R such
that + = 1 the support of is contained in ( ) and is supported in
{ : | | 2} Also let ( ) = (2 ) 1 2 2 2 Then

2 2 =

Z

R
( ) =

Z

R
( ) ( ) +

Z

R
( ) ( )

This can be written as
2 2 = ( ) + ( ) where ( ) :=

R

R ( ) ( ) and ( ) =
R

R ( ) ( ) Now we notice that

| ( )| =
¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( ( ) ( ))

¯

¯

¯

¯

( )

where lim 0 ( ) = 0 for each From this it follows for any that
( ) : 2( ) 2( ) tends to zero in the operator norm as 0

This fact, elliptic regularity, and the Sobolev embedding theorems implies
that ( ) : 2( ) ( ) tends to zero in operator norm for any 0
Using the previous proposition, this shows that the integral kernel of ( )
goes to 0 in (Note, Roe proves some of this by appealing to the closed
graph theorem for Frechet spaces.) Finally, ( ) =

R

R ( ) ( ) is an
operator which does not increase the support of a section by more than size
This implies that the support of the integral kernel of ( ) is contained

{( ) : ( ) 3 } Since is arbitrary, we are done.

66.2 Asymptotics by Sobolev Theory

Let me end this section by explaining how Roe shows that the formal asymp-
totic expansions of the heat kernel are close to the heat kernel.
Let and let ( ) := ( ) then

¡

+ 2
¢

= 0 and lim
0

= (66.8)

Conversely, if solves Eq. (66.8), then for all smooth sections of
( ( ) 2

) = 0 Therefore

( ) = lim
0
( ( ) 2

) =
³³

2
´

( )
´

=

Z

³

( )
h

2

( )
i ´

=

Z

³

( )
2

( )
´

which shows that ( ) :=
2

( ) since is arbitrary.
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Now suppose that is an approximate fundamental solution at ,
so that

¡

+ 2
¢

= and lim
0

=

where is a smooth section of ( ) Let denote the solution to
¡

+ 2
¢

= with 0 = 0

which can be written by du Hamel’s principle as =
R

0
( ) 2

Since := satisfies
¡

+ 2
¢

= 0 with lim
0

=

we find the =
2

( ·) Therefore, for any 2

| 2

( ·) | = | | =
¯

¯

¯

¯

Z

0

( ) 2

¯

¯

¯

¯

°

°

°

°

Z

0

( ) 2

°

°

°

°

2( )
°

°

°

°

Z

0

( ) 2

°

°

°

°

2( )

+

°

°

°

°

Z

0

( ) 2

wherein the second to last inequality we have used the Sobolev embedding
theorem and in the last we use elliptic regularity. Since

2

is a bounded
operator, we find that

| 2

( ·) |
°

°

°

°

Z

0

( ) 2

°

°

°

°

2( )

+

°

°

°

°

Z

0

( ) 2

+1 sup
0

n

°

°

°

°

2( )
+ k k 2( )

o

= +1
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Appendix: VanVleck Determinant Properties

67.1 Proof of Lemma 61.3

The first step is to get a more explicit expression for To this end, fix
and for any let

( ) := |0 exp( ( + )) = exp ( ) (67.1)

and ( ) = exp( ) Then solves Jacobi’s equation:

2

2
( ) =

2

2
|0 exp( ( + ))

= |0 exp( ( + )) (No Torsion)

=

·

|0
¸

exp( ( + )) ( exp( ( + )) = 0)

= ( ˙ ( ) ( )) ˙ ( ) (Definition of )

obeys the initial conditions

(0) = |0 exp(0 ( + )) = 0

and

|0 (0) = |0 |0 exp( ( + ))

= |0 ( + ) =

Notice that ( ) ( ) for each so by using parallel translation ( ) :=
( ) along we may pull this back to Set

( ) = 1( ) ( )
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Using the fact that ( ) = 0 the previous equations imply that satisfies:

¨ ( ) = ( ) ( ) with (0) = 0 and ˙ (0) = (67.2)

where

( ) = 1( ) ( ˙ ( ) ( ) ) ˙ ( )

= 1( ) ( ( ) ( ) ) ( ) (67.3)

Since ( ) is orthogonal for all we may now compute ( ) as

( ) = ( 1(1) (1)) ( 1 ) = det (1) (67.4)

where is the matrix solution to the di erential equation

¨ ( ) = ( ) ( ) with (0) = 0 and ˙ (0) = (67.5)

By Taylor’s theorem,

(1) = +
1

2
¨ (0) +

1

6
(3)(0) +

Z 1

0

(4)( ) ( ) (67.6)

where is a positive measure such that ([0 1]) = 1 4! Now from the di er-
ential equation ¨ (0) = 0

(3)( ) = ˙ ( ) ( ) + ( ) ˙ ( ) and
(4)( ) = ¨ ( ) ( ) + 2 ˙ ( ) ˙ ( ) + ( ) ¨ ( )

In particular (3)
(0) = (0) = ( ·) and

(4)( ) = ¨ ( ) ( ) + 2 ˙ ( ) ˙ ( ) + ( ) ( ) ( )

Now ( ) = ( 2)

˙ ( ) = 1( )
¡

( )

¢

( ( ) ( ) ) ( ) = ( 3)

¨ ( ) = 1( )
³

2
( ) ( )

´

( ( ) ( ) ) ( ) = ( 4)

and hence (4)
( ) = ( 3) Using these estimates in Eq. (67.6) shows that

(1) = +
1

6
( ·) +

¡

3
¢

(67.7)

Taking the determinant of this equation shows that

( ) = 1 +
1

6
tr ( ( ) ) + ( 3)

= 1
1

6
(Ric ) + ( 3)

Before finishing this section, let us write out Eq. (67.7) in detail.
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Lemma 67.1. Let then

1
1 ( ) exp ( ) = +

1

6
( ) +

¡

3
¢

(67.8)

In particular we have for that

(exp ( ) exp ( ))

= ( +
1

6
( ) +

¡

3
¢

+
1

6
( ) +

¡

3
¢

)

= ( ) +
1

6
( ( ) ) +

1

6
( ( ) ) +

¡

3
¢

( )

= ( )
1

3
( ( ) ) +

¡

3
¢

( ) (67.9)

67.2 Another Proof of Remark 61.2: The Symmetry of
J(x, y).

Recall that denotes the Riemannian volume form on and

( ) = (exp )

where exp ( ) = Also recall that ( ) := (exp ) where = ( )
and : is the canonical projection map. The precise meaning of
this equation is, given any basis { } =1 for then

( ) = (exp ( 1) exp ( ) ) ( 1 ) = det( (1))

where = |0 ( + ) and is defined in Eq. (67.2) above. In
particular,

exp := |0 exp( + )

Notice that
( ) = (exp 1( ))

Let : denote the involution given by ( ) = ˙ (1) where
( ) = exp( ) is the geodesic determined by Alternatively we may describe
( ) = 1( ) Now if = exp 1( ) i.e. = exp ( ) = exp( ) then
exp( ( )) = That is to say, ( ) = exp 1( ) Hence to show ( ) = ( )
if and only if ( ) = ( ( )) This is what is proved in A. L. Bess, “Manifolds
all of whose Geodesics are Closed,” see Lemma 6.12 on p. 156.
Now let us work out ( ( )) Let ( ) = (1 ) = exp( ( )) Since
( ) = 1 ( ) 1( )

1 it follows after a short calculation that ( ) =
(1) (1 ) (1) 1 Let ( ) := (1) 1 (1 ) (1) then (1) = 0
˙ (1) = and

¨ ( ) = (1) 1 (1 ) (1 ) (1) = ( ) = ( ) ( )
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Notice that

( ( )) = det (1) = det
£

(1) 1 (1) (1)
¤

= det (0)

So to finish the proof, we must show that det (0) = det (1) For this
observe that ( ) is a symmetric operator (by symmetry properties of the
curvature tensor) and hence

n

˙ ( ) ( ) ( ) ˙ ( )
o

= ¨ ( ) ( ) ( ) ¨ ( )

= ( ) ( ) ( ) ( ) ( ) ( ) = 0

and hence
n

˙ ( ) ( ) ( ) ˙ ( )
o

|10 = 0
This implies that

(0) = ˙ (0) (0) (0) ˙ (0) = ˙ (1) (1) (1) ˙ (1) = (1)

Therefore det (0) = det (1) = det (1) as desired.

67.3 Normal Coordinates

Notation 67.2 Suppose that is given and let ( ) := exp 1( )
for in a neighborhood of The chart is called a geodesic normal

coordinate system near

In geodesic coordinates, is a geodesic, therefore if is the Christofel
symbols in the this coordinate system, we have

0 = ( ) =

µ

+ ( )h i
¶

( ) = ( )h i

for all near 0 Since has zero Torsion we also have that

( )h i = ( )h i
for all From the previous two equations it follows that

0 = (0)h i for all

i.e. that (0) = 0 and that

(0)h i = 0

Let ( ) := (0)h i then we have shown that

( ) = ( ) and ( ) = 0 for all (67.10)
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Thus

0 = |0 ( + + + ) = ( ) + 2 ( )

and therefore,

0 = |0 { ( + + ) + 2 ( + + )}
= 2 ( ) + 2 ( ) + 2 ( )

= 2 ( ( ) + ( ) + ( ))

wherin the last equality we use Eq. (67.10). Hence we have shown that

(0)h i + cyclic = 0 (67.11)

So at = 0 the curvature tensor is given by = and hence

( ) = (0)h i (0)h i
= (0)h i + (0)h i + (0)h i
= 3 (0)h i = 3 (0)h i

and hence

(0)h i =
1

3
( ) or

( )h i =
1

3
( ) + ( 2)h i

Therefore, if

2( )| =0 = ( h i )| =0 + ( h i )| =0
=
1

3
( ( ) ) +

1

3
( ( ) )

=
2

3
( ( ) )

and therefore by Taylor’s theorem we learn that

( ) = ( ) +
1

2!

2

3
( ( ) ) + ( 3)

= ( )
1

3
( ( ) ) + ( 3)

and hence we have reproved Lemma 67.1.
We now change notation a bit. Let be a vector bundle with

connection
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Notation 67.3 Let be a chart on such that ( ) = 0 and let ( ) =
1( ) for all Rdim( ) =: Let : D( ) ( ) be the local

orthonormal frame given by

( ) = 1( ( )) i.e. ( 1( )) = ( ) : (67.12)

for all su ciently small. Also let = = 1 be the associated
connection one form.

From Eq. (67.12) it follows that

( 1( )) = ( ) = 0

and in particular at = 0 this shows that

0 = | ( ) = ( ( )) ( | ( )) = ( ( )) ( | ( ))

That is to say
( | ( )) = 0 for all

In particular at = 0 we learn that ( | ) = 0 and

0 = |0 ( | ( )) = ( )| for all

This shows that ( )| = ( )| Since

( )| = 1 2 |
= 1( ) { ( ) ( ) + [ ( ) ( )]} |
= 2 ( )|

from which it follows that

( )| = 1

2
( )|

From Taylor’s theorem we find

( )| =
1

2
( ) ( )| + (| ( )|2) = 1

2
( ( ) )| + (| ( )|2)

This result is summarized as follows.

Proposition 67.4. Keeping the notation as above and let Rdim( ) then

( ) =
1

2
( | | ) + ( 2)( ) (67.13)

near In particular if ( ) = exp 1( ) are normal coordinates on
then
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| = |0 1( ( ) + ) = |0 exp( ( ) + )

= exp ( ( ))

Therefore, Eq. (67.13) may be written as

(exp ( ( ))) =
1

2
( ( )) + ( 2( ))( )

Proof. The quick proof of these results is as follows. We work in the local
frame Write ( ) = ( ( )) ( ) and recall the formula

|0 ( ) = ( )

Z

0
( )(

˙ ( ) 0 ( )) ( 0 ( )) ( )

Apply this to ( ) = 1( ( ( ) + )) and use that fact that in the frame
defined by ( ) = so that

0 =

Z

0
( 0)

( ˙ 0( )
0
0( )) ( 0

0( ))

Therefore, at = 1

( | ) =
Z 1

0
( 0)

( ˙ 0( )
0
0( ))

=

Z 1

0
( 0)

( | 1( ( )) ( ) | 1( ( )))

=

Z 1

0
( 0)

( | 1( ( )) ( ) | 1( ( )))

=
1

2
( | ( ) | ) + ( 2( ))

=
1

2
( | ( )) + ( 2( ))( )
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Miscellaneous

68.1 Jazzed up version of Proposition 68.1

Proposition 68.1. Let 1 and be as above. Then the
series in Eq. (60.5) and Eq. (60.11) is convergent and is equal to = —
the unique solution to Eq. (60.1). Moreover,

k k ( ) k k +1 = ( 1+ ) (68.1)

where k k := max0 | | and ( ) is an increasing function of , see Eq.
(68.4).

Proof. By making the change of variables = + ( ) we find that

Z

( ) ( ) = ( )( ) + +1 (68.2)

where

( ) :=

Z 1

0

(1 ) = ( + 1 + 1)

and is the beta function. From Eq. (1.5.5) of Lebedev, “Special Functions
and Their Applications”, p.13,

( ) = ( + 1 + 1) =
( + 1) ( + 1)

( + + 2)
(68.3)

(See below for a proof of Eq. (68.3).)
By repeated use of Eq. (68.2),
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|( ) | =
¯

¯

¯

¯

Z

1 2 1 1
s

¯

¯

¯

¯

Z

( ) ( 1) ( 2 1) 1 s

= ( )

Z

1

·

( 1)
2 +1 ( 1 2) ×
( 2 1) 1

¸

s

= ( ) ( 2 + 1) ( 3 + 2)

( ( 1) + 2)

Z

0

( 1)
+ 1

1

= ( ) ( 2 + 1) ( 3 + 2)

( ( 1) + 2) ( + 1) ( +1) +

Now from Eq. (68.3) we find that

( ) ( 2 + 1) ( 3 + 2) ( + 1)

=
( + 1) ( + 1)

(2 + 2)

( + 1) (2 + 2)

(3 + 3)
×

( + 1) (3 + 3)

(4 + 4)

( + 1) ( + 1)

(( + 1) + + 1)

=
( + 1)

(( + 1) + + 1)

Therefore,

|( ) | ( + 1)

(( + 1) + + 1)
( +1)

and thus the series in Eq. (60.11) is absolutely convergent and | | ( +
1) ( ) where

( ) = ( + 1) 1
X

=0

( + 1)

(( + 1) + + 1)
( +1) (68.4)

which is seen to be finite by Stirlings formula,

( ( + 1) + 1) v (2 )1 2 ( ( +1)+1) ( ( + 1) + 1)( ( +1)+1 2)

see Eq. (1.4.12) of Lebedev.
Using the bound on and the uniform boundedness of
Z

0

| | ( ) k k ( + 1)

Z

0

( ) = ( ) k k +1 (68.5)

and hence defined in Eq. (60.10) is well defined and is continuous in
Moreover, (68.5) implies Eq. (68.1) once we shows that = This is
checked as follows,



68.1 Jazzed up version of Proposition 68.1 1193

Z

0

= +

Z

0

˙ = +

Z

0

( )

= +

Z

0

( ) =

Z

0

+

Thus we have,

= ˙ +

Z

0

+

= +

Z

0

=

68.1.1 Proof of Eq. (68.3)

Let us recall that ( ) :=
R

0
and hence let = + and then

= we derive,

( + 1) ( + 1) =

Z

[0 )2

( + )

=

Z

0

Z

( )

=

Z

10 ( )

=

Z

0

Z 1

0

(1 ) + +1

= ( ) ( + + 2)

i.e.

( ) =
( + 1) ( + 1)

( + + 2)

68.1.2 Old proof of Proposition 60.1

Proof. Taking norms of Eq. (60.8) shows that

k k = k k
Z

( 2 1) ( 3 2) ( 1) ( ) s

where s = 1 2 To evaluate this last integral, we will make use
Eq. (68.2) to find of Repeated use of Eq. (68.2) gives,
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Z

( 2 1) ( 3 2) ( 1) ( ) s

= ( )

Z

1

·

( 2 1) ( 3 2) ×
( 1 2) ( 1)

2 +1

¸

s

= ( ) ( 2 + 1)

Z

2

·

( 2 1) ( 3 2) ×
( 2 3) ( 2)

3 +2

¸

s

= ( ) ( 2 + 1) ( 3 + 2)×

( ( 1) + 2)

Z

0

( 1)
+ 1

1

= ( ) ( 2 + 1) ( 3 + 2)×

( ( 1) + 2)
+

+

Now from Eq. (68.3) we find that

( ) ( 2 + 1) ( 3 + 2) ( ( 1) + 2)

=
( + 1)2

(2 + 2)

( + 1) (2 + 2)

(3 + 3)
×

( + 1) (( 1) + 1)

( + )

=
( + 1)

( + )

Combining these results gives the estimate,

k k k k ( ( + 1))

( + )

+

+

= k k
¡

( + 1) +1
¢

( ( + 1) + 1)

v k k ¡ ( + 1) +1
¢

( +1)+1

(2 )1 2 ( ( + 1) + 1)
( ( +1)+1 2)

= k k
³

( + 1) ( )
+1
´

(2 )1 2 ( ( + 1) + 1)
( ( +1)+1 2)

where the second to last expression is a result of Stirlings formula, Eq. (1.4.12)
of Lebdev.
From this estimate we learn that

P

=0 is uniformly convergent on
compact subsets of [0 ) and that
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°

°

°

°

°

X

=0

°

°

°

°

°

X

=1

k k

k k
X

=1

¡

( + 1) +1
¢

( ( + 1) + 1)
= ( 1+ )

So it only remains to prove that :=
P

=0 solves (60.1).
Now by the chain rule and the fundamental theorem of calculus, ( ) =

R

0
˙ + 0 or equivalently

( ) = ˙+ 0

Applying this formula inductively using the fact that ( )0 = 0 if 1
implies that

( ) = 1 ( ) = ˙ + 1 ( 0 )

= ( ) + 1

= + 1

wherein the last equality we have used the fact that commutes with
Setting :=

P

=0 we find using the previous equation that

=
¡ ¢

or equivalently that

= +

Z

0

Z

0

¡ ¢

(68.6)

Since,
°

°

°

° k k
¡

( + 1) +1
¢

( ( + 1) + 1)
0 as

we may pass to the limit, in Eq. (68.6) to conclude that

= +

Z

0

This completes the proof.
For later purposes, let us rework the above derivative aspects of the proof.

Let

( ) :=

Z

0 1 2 ··· 1

1 1 2 2 1 1 s

=
¡

1
¢
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then by Eq. (60.6)

( ) =

Z

0

( )

Hence

( ) = ( ) +

Z

0

( )

= ( ) +

Z

0

( ) ( )

= ( ) + ( ) +1( )

= ( ) +
¡

1
¢

( )

as before.
Taking norms of this equation implies that

|( ) |
Z

| 1 | ( 2 1) ( 3 2) ( 1) ( ) s

Z

| 1 | s =

Z

0

| 1 |
( 1)

1

( 1)!
1

¡

1+
¢

!

Z

0

| | ( )

¡

1+
¢

!
max
0

| | (68.7)

where ( ) := ( )
1 a probability measure on [0 ] This

shows that k k ¡

1+
¢ k k ! From this estimate we learn that

P

=0 is uniformly convergent on compact subsets of [0 ) and that
°

°

°

°

°

X

=0

°

°

°

°

°

X

=0

k k 1+

1 = ( 1+ ))

Z

0

= lim
0

1
Ã

Z +

0
+

Z

0

!

= lim
0

1
Ã

Z +

+ +

Z

0

( + )

!

= lim
0

Ã

1
Z +

+
1
Z +

( + )

!

+

Z

0
+

= +

Z

0

˙ = +

Z

0

( )

= +

Z

0

( ) =

Z

0

+
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68.1.3 Old Stu related to Theorem 61.7

Proof. Let

( ) =

Z

0

Z

( ) ( ) ( )

so that ( ) = ( ) + ( ) For 0 set

( ) =

Z

0

Z

( + ) ( ) ( )

then

( ) =

Z

( ) ( ) ( )

+

Z

0

Z

( + ) ( ) ( )

=

Z

( ) ( ) ( )

+

Z

0

Z

( + ) ( ) ( )

Z

0

Z

( + ) ( ) ( )

=

Z

( ) ( ) ( ) + ( )

Z

0

Z

( + ) ( ) ( )

We may let 0 in this last expression using the fact that is uniformly
bounded on to find that

lim
0

( ) = ( )

and

lim
0

( ) = ( ) + ( )

Z

0

Z

( ) ( ) ( )

with the limits being uniform in Also by equation (62.1) and (62.2),

( )

Z

0

Z

( ) ( ) ( ) = ( )

and therefore exists and
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( ) = ( ) + ( )

Hence

( ) = ( ) + ( )

= ( ) ( ) + ( ) + ( )

= ( ( ) + ( )) = ( )

For let

( ) :=

Z

( ) ( ) ( )

It is clear the is smooth in and and is in ( ) moreover

lim
0
k ( ) ( )k ( ) = 0

Hence we set ( ) := ( ) so that ( · ·) is continuous for [0 ]
in the space of sections Similarly, for

( ) =

Z

˙ ( ) ( ) ( )

=

Z

( ( ) ( )) ( ) ( )

= ( )

Z

( ) ( ) ( )

From this last expression and our previous comments, lim 0 ( ) =
( ) in 2 and hence

lim
0

( ) = ( ) in 2

More precisely, we will construct ( ) as

( ) =
X

=0

Z Z

( ) ( 1 1) (68.8)

( 1 2 1 2) ( 1 1 ) s y

Consider,

( ) = ( ) +

Z

0

Z

( ) ( ) ( )

is a bounded operator and its derivatives in up to order is a convergent
sum in converge.
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Remarks on Covariant Derivatives on Vector
Bundles

Let : be a vector bundle with fiber A local frame on is a
local section of the bundle ( ) i.e. for D( ) (the domain
of ) ( ) : = 1( ) is a linear isomorphism of vector spaces.
Notice that any local section of may be written as ( ) = ( ) ( )
where ( ) Suppose that is a covariant derivative on define
for , a linear transformation : by

( ) := ( (·) ) for each

With this notation and the basic properties of given ( ) we
have that

( ) = ( ) ( ) + ( )

where := |0 ( ( )) provided that ˙ (0) = In particular this shows that

( ) 1 ( ) = + ( ) ( )

where ( ) = ( ) := ( ) 1 ( ) So the local representation of is
= + where is a one form with values in ( )
Given a path ( ) let ( ) = ( ( )) and ( ) = ( ( )) 1 ( ) Then

define
( ) := ( ( )) ( ˙( ) + ( ˙ ( )) ( )) (69.1)

i.e. the local version of = + ( ˙ ( )) Notice that if = is a local
section of then

( ( ))) = ( ( ))

µ

( ( )) + ( ˙ ( )) ( ( ))

¶

= ( ( ))
¡

˙ ( ) + ( ˙ ( )) ( ( ))
¢

= ˙ ( )

This explains why is independent of the local frame used in Eq. (69.1),
a property which follows by direct computation as well.

1200 69 Remarks on Covariant Derivatives on Vector Bundles

We say that a path ( ) is parallel provided that ( ) = 0 for
all Given a curve ( ) in and a point 0 (0) there is a unique path
( ) such that ( ( )) = ( ) and ( ) = 0 This path is constructed
by solving (locally) the linear equation

˙( ) + ( ˙ ( )) ( ) = 0 with (0) = ( (0)) 1
0

and then setting ( ) = ( ( )) ( ) It is easy to check that the map 0

(0) ( ) ( ) is linear. In fact ( ) = ( ) 0 where ( ) =
( ( )) ( ) ( (0)) 1 and ( ) ( ) is the unique solution to the linear
di erential equation,

˙( ) + ( ˙ ( )) ( ) = 0 with (0) = ( )

We will call ( ) parallel translation along It is uniquely characterized as
the solution to the di erential equation

( ) = 0 with 0( ) = ( (0))

(If ( ) ( (0) ( )) for each then ( ) is by definition the
linear transformation from (0) to ( ) determined by ( ( ) ) :=
( ( ) ) for all 0 ) We have the following properties of parallel

translation which follow from the uniqueness theorem for ordinary di eren-
tial equations and the chain rule for covariant derivatives. Namely if ( ) is a
smooth path in and = ( ) then

( ( )) = 0( ) ( ) | = ( )

This property is easily verified from Eq. (69.1).

Proposition 69.1. Let ( ) be a smooth curve for [0 ] and
let : [0 ] [0 ] be a smooth function such that (0) = 0 Then
( ) = ( )( ) i.e. parallel translation does not depend on how

the underlying curve is parametrized. Secondly, let ˜( ) := ( ) then
(˜) = ( ) ( ) 1 In particular ( ) 1 = (˜)

Proof. We have that

( ) = 0 with 0( ) = ( (0))

and

( )( ) = ( ) | = ( )
0( ) = 0 with

( )( )| =0 = ( (0))

and hence by uniqueness of solutions to O.D.E.’s we must have that (
) = ( )( ) Similarly,
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(˜) = 0 with 0(˜) = ( )

and

( ) ( ) 1 = ( ) ( ) 1 | = = 0 with

( ) ( ) 1| =0 = ( )

Hence again by uniqueness of solutions to O.D.E.’s we must have that (˜) =
( ) ( ) 1
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Spin Bundle Stu

Let be a Riemannian manifold, = R ( ) be the Cli ord algebra
over such that 2 = ( )1 Let Spin( ) ( ) be the spin group,
:Spin( ) ( ) be the spin representation and be a left ( )module.

The following compatibility condition is need below in the construction of
Spinor bundles over such that ( ) acts on

Assumption 7 For Spin( ), and ( ) = ( ( ) ) ( ).

Now for the construction of spinor bundles. Let { } be an open cover
of such that there exists : (R ) which are isometries.
For let ( ) := ( ) 1 ( ) ( ) Notice that the for

( ) ( ) = ( ) 1 ( ) ( ) 1 ( ) = ( ) 1 ( ) = ( )

We now assume that is orientable which means that we may choose
such that ( ) ( ). Now if is spin as well, we may choose

˜ ( ) Spin( ) such that

1. ( ) = (˜ ( )) for all and all and
2. ˜ ( )˜ ( ) = ˜ ( )

Given this data, it is now possible to build a spin bundle over as follows.
For let

:= {( ) : and s.t. } v

where ( ) v ( 0 0) if and only if 0 = ˜ 0 ( ) Let :=
and : be the projection map which takes to for all
Given let ˜ : := 1( ) = be given by
˜ ( ) is the equivalence class containing ( ) Notice that ˜ ( ) :

is a bijective map and that ˜ ( ) 1˜ ( ) = ˜ ( ) . One may
now easily check that we may make in a well defined way into a linear
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space by defining ˜ ( ) + ˜ ( ) 0 := ˜ ( ) ( + 0) i.e. by requiring
each ˜ ( ) : to be linear.
Let us now show that we can make into a ( ) module. For

and choose such that and choose R
and such that = ( ) and = ˜ ( ) We then define :=
˜ ( )( ) To see this is well defined choose 0 such that 0 and
choose 0 R and 0 such that 0 = 0( ) 0 and 0 = ˜ 0( ) 0

Then = ˜ 0( ) 0 and = 0( ) 0 = (˜ 0( )) 0 and hence

= ( 0( ) 0) (˜ 0( ) 0) = ( (˜ 0( )) 0) (˜ 0( ) 0) = ˜ 0 ( 0 0)

From this it follows that ˜ ( )( ) = ˜ 0( )( 0 0) so that is well defined

independent of the choice of Since ( ) (
denotes left multiplication by ) satisfies ( )2 = ( ) it follows that
the action of on extends uniquely to an action of ( ) on
Hence if is a spin manifold, we have produced a vector bundle

such that each fiber of of is a ( ) Cli ord module.
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The Case where M = Rn

71.1 Formula involving p

Let := 1
2 + + 0 :=

1
2 + and ( ) := ( ) · where and =

· =
P

=1 and with ( ) and ( ) in R × Let be an R × —
valued function of ( ) with 0 and R and set

( ) = ( ) ( )

Then

( ) = ( )

= ( 0) · + ( ) ·
= · + ( ) ·
= { ln + ln · }

Now
ln =

¡

2 2
¢

=

so the above equation may be written as:

( ) =

µ

1 · + +
1 ·

¶

=

µ

+
1
¶

where

= + ·
= +

and
( ) = ( ) ·
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71.2 Asymptotics of a perturbed Heat Eq. on Rn

Let := 1
2 + + 0 :=

1
2 + and ( ) := ( ) · where and =

· =
P

=1 and with ( ) and ( ) in R × As above let

( ) = (2 )
2 2 2

be the heat kernel with pole at 0 for R

Lemma 71.1. Let 0 R × be given, then there is a unique solution to the
O.D.E

˙ ( ) =
1
( ) ( ) with (0 ) = 0 R × (71.1)

Moreover, ( ) is smooth in ( ) and

( ) = ( ) (71.2)

for all R and R

Proof. Since (0) = 0

1
( ) =

1
Z

0

( ) =

Z 1

0

( )

and hence the matrix function ( ) 1 ( ) is smooth even for near 0
By basic O.D.E. theory this shows that exists and is smooth. Since

( ) = ˙ ( ) =
1
( ) ( )

=
1
( ) ( )

it follows that ( ) satisfies the same O.D.E. as ( ) Hence by unique-
ness of solutions to O.D.E.’s we find that Eq. (71.2) holds.

Remark 71.2. If [ ( ) ( )] = 0 for all and , then the solution to Eq.
(71.1) is given by

(1 ) = exp

µ
Z 1

0

1
( )

¶

(71.3)

The rest of this section is devoted to the proof of the following Theorem.

Theorem 71.3. Let be defined as in Lemma 71.1 and defined

0( ) = (1 ) (71.4)

and inductively by
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+1( ) = 0( )

Z 1

0
0( ) 1 ( ) (71.5)

for all = 0 1 2 If

( ) := ( )
X

=0

( ) (71.6)

then
( ) ( ) = ( ) ( ) (71.7)

The proof of this theorem could be given by direct computation. However,
we will take a longer route however and derive the formulas in the Theorem.
Let be an R × — valued function of ( ) with 0 and R and

set
( ) = ( ) ( )

Then

( ) = ( )

= ( 0) · + ( ) ·
=
³

2
ln

´

· + ( ) ·

=
n

2
ln ln + ln ·

o

Now
ln =

¡

2 2
¢

=

so the above equation may be written as:

( ) =
³

· + + ·
´

=

µ

+
1
¶

(71.8)

where
:= · + ( ) · = + ( ) (71.9)

and ( ) := ( ) · as above.
Now let

( ) = ( ) =
X

=0

( ) (71.10)

and consider
µ

+
1

¶

=
X

=0

©

1 ( + )
ª

=
1

0 +

1
X

=0

(( + 1) +1 + +1 )
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Thus if we choose 0 such that

0( ) = ( · + ( )) 0( ) = 0 (71.11)

and such that
( + 1) +1 + +1 = 0 (71.12)

then
¡

+ 1
¢

= or equivalently by Eq. (71.8),

( ) = ( ) ( ) =

which then proves Theorem 71.3 show that defined in the theorem solve
Equations (71.11) and (71.12).
Suppose that 0 is a solution to Eq. (71.11). If ( ) := 0( ) then

˙ ( ) = · 0( ) =
1 · 0( )

=
1

0( ) =
1
( ) 0( )

=
1
( ) ( )

and hence 0( ) must be given by (1 ) as in Eq. (71.4). Conversely if 0

is defined by Eq. (71.4) then from Lemma 71.1, 0( ) = ( ) and hence

0( ) = |1 0( ) = |1 ( )

= ( ) ˙ (1 ) = ( ) 0( )

Thus we have shown that 0 solves Eq. (71.11).
We now turn our attention to solving Eq. (71.12). Assuming +1 is a

solution to Eq. (71.12), then +1( ) := +1( ) satisfies

˙
+1( )( ) = · +1( )

=

µ

1
( ) + + 1

¶

+1( ) + ( )

or equivalently

˙
+1( ) =

µ

1
( ) +

+ 1
¶

+1( ) +
1

( ) (71.13)

This equation may be solved by introducing an integrating factor, i.e. let

+1( ) := +1
0( ) 1

+1( )

Then +1 solves
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˙
+1( ) = +1

0( ) 1 ˙
+1( ) + ( + 1) 0( ) 1

+1( )

+ +1
0( ) 1 ( )

+1( )

= 0( ) 1 ( )

Hence

+1( ) = +1(0 ) +

Z

0
0( ) 1 ( )

=

Z

0
0( ) 1 ( )

Therefore if +1 exists it must be given by Eq. (71.5).
Conversely if +1 is defined by Eq. (71.5) then

+1( ) = 0( )

Z 1

0
0( ) 1 ( )

= 0( )

Z

0

( +1)
0( ) 1 ( )

and hence

+1( ) = |1 +1( )

= ( ) +1( ) + 0( ) |1
Z

0

( +1)
0( ) 1 ( )

= ( ) +1( ) + ( ) ( + 1) 0( )

Z 1

0
0( ) 1 ( )

= ( ( ) + + 1)) +1( ) + ( )

which is shows that +1 solves Eq. (71.12). This finishes the proof of Theorem
71.3.
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Higher Order Elliptic Equations

Definition 72.1. (R C ) := { S 0(R C ) : |ˆ| 2((1 + | |2) )}.
Note For = 0 1 2 this agrees with our previous Notations of Sobolev

spaces.

Lemma 72.2. (A) (R C ) is dense in (R C ).
(B) If 0 then k k = k k = sup | |

k k .

Proof. (A) We first rate that S(R C ) is dense in (R C ) because
FS = S and S is dense in 2(1 + | |2) ) for all R. It is easily seen that

is dense in S for all = 0 1 2 relative to -norm. But this enough
to prove (A) since for all Rk · k k · k for some N.
(B)

k k2 = kˆk 2((1+| |2) 2 ) = sup
S
|(ˆ ) |
k k

= sup
S

| R ˆ( ) ( )(1 + | |2) |
p | ( )|2(1 + | |2)

Let ˆ( ) = ˆ ( )( + | |2) , the arbitrary element of S still to find

k k = sup
S

| R ˆ( ) ˆ( ) |
q

R | ˆ( )|2(1 + | |2)

= sup
S
| |
k k = sup

| |
k k

Since is dense as well.

Definition 72.3. (R C ) := { S 0(R C ) : |ˆ| 2((1 + | |2) )}.

1214 72 Higher Order Elliptic Equations

Proposition 72.4. Suppose = 0 has constant coe cients then k k
(k k + k k 1) for all R.

Proof.

c ( )“ = ”
\Z
( ) =

\Z

( 0)( ) ( )

=

Z

( ) ( ) · = ( )ˆ( )

Therefore

kˆ( )k = k ( ) 1 ( )ˆ( )k k ( ) 1k k ( )ˆ( )k

| | k ( )ˆ( )k

Therefore

k ( )ˆ( )k | |
1
kˆ( )k

Notice there exist 0 such that

1

Ã

| |2
µ

1

1 + | |2
¶

+
1

1 + | |2
!

Then

|ˆ|2(1 + | |2)2 (| |2 (1 + | |2) |ˆ|2 + (1 + | |2) 1|ˆ|2)
e

¡

(1 + | |2) | ( )ˆ|2 + (1 + | |2) 1(ˆ( )2
¢

e

³

(1 + | |2) |c ( )|2 + (1 + | |2) 1(ˆ( )2
´

Integrate this on to get the desired inequality.

Notation 72.5 Suppose R is an open set and ( C ) for
some and | | Set : ( C ) ( C ) to be the operator
=

P

| |
and 0 :=

P

| |=

( 0)( ) =
X

| |=
( ) = | | X

| |=

for R Notice that 0
· = ( 0)( ) ·

Definition 72.6. is elliptic at if ( 0)( ) 1 exists for all 6= 0
and is elliptic on if ( 0)( ) 1 exist for all 6= 0, .

Remark 72.7. If is elliptic on then there exist 0 and 0 such that
k ( 0)( )k | | for all R . Also k ( 0)( ) 1k | | for
all R \ {0}.
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Indeed for | | = 1 ( ) k ( 0)( ) 1k is a continuous function of
( ) on × 1. Therefore it has a global maximum say . Then for
| | = 6= 0.
k ( 0)

³ ´ 1

k implies

°

°

°

°

h

¡

1
¢

( 0 )
i 1

°

°

°

°

or

°

° ( 0)( ) 1
°

° = | |
Given as above let

0( C ) := ( C ) (R C )

Theorem 72.8 (A priori Estimates). For all R there exist 0 such
that 0( )

k k (k k + k k 1) (72.1)

Reference Theorem (6.28) of Folland p. 210 chapter 6.

Proof. I will only prove the inequality (72.1) for = 0 (However, negative
are needed to prove desired elliptic regularity results. This could also be done
using the Theory of pseudo di erential operators.) With out loss of generality
we may assume ( C ).
Step (1) The inequality holds if = 0 with constant coe cients by

above proposition.
Step (2) Suppose now = 0 but does not have constant coe cients.

Define
0
=

P

| |=
( 0) for all 0 . Then there exist 0 independent

of 0 such that
k k0 0(k 0

k + k k 1)

for all 0 . Suppose supp ( ) ( 0 ) with small. Consider

k( 0) k = sup
|(( 0) )|

k k
Now

(( 0
) ) = ( 1)

X

( ( + ( 0)) )

= ( 1) (
X

( + ( 0) + )

Where =
P

| |=
[ +] is a 1 order di erential operator. Therefore

|(( = 0) )| |( + )|+
X

|( ( + ( 0)) )|

k + k k k
+
X

sup
| 0|

| ( ) ( 0)|
| {z }

( )

k k0k k

k k 1k k + ( )k k0k k
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Therefore
k( 0) k ( )k k0 + k k 1

Choose small such that 0 ( ) 1
2 by unit continuous. Therefore

k( 0) k
1

2
k k0 + k k 1

Hence

k k0 0(k 0 k + k k 1)

0(k 0 k + k k + k k 1)

0( ( )k k0 + k k + (1 + )k k 1)

1

2
k k0 + 0(1 + )(k k + k k 1)

Therefore
k k0 2 0(1 + )(k k + k k 1)

provided supp ( 0 ) for some 0 . Now cover by finite collection
of balls with radius and choose a partition of unity subordinate to this cover.
{ }. Therefore if ( ), then

P

= and

k k0 (k k + k k + k k 1)

e(k k + k k 1)
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Abstract Evolution Equations

73.1 Basic Definitions and Examples

Let ( k · k) be a normed vector space. A linear operator on consists of
a subspace D( ) of and a linear map : ( )

Notation 73.1 Given a function : [0 ) we write ( ) = (0)
provided that ([0 ) ) 1((0 ) ) ( ) D( ) for all

0 and ˙( ) = ( )

Example 73.2. Suppose that is an × matrix (thought of as a linear
transformation on C ) and 0 C Let ( ) :=

P

=0 ! 0 then the sum
converges and ( ) = 0

The following proposition generalizes the above example.

Proposition 73.3 (Evolution). Suppose that ( k · k) is a Banach space
and ( )—the Banach space of bounded operators on with the operator
norm. Then

=
X

=0
!

(73.1)

is convergent in the norm topology on ( ) Moreover, if 0 and
( ) := 0 then is the unique function in 1(R ) solving the di erential
equation:

˙( ) = ( ) with (0) = 0 (73.2)

Proof. First notice that
P

=0
| |
! k k = | |k k so that the sum

in (73.1) exists in ( ) and k k | |k k Let us now check that =
= Using the mean value theorem we have,
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( + ) =
X

=0

1

!
{( + ) }

=
X

=1
!

1( ) =
X

=0

1

! +1( )

where ( ) is some number between and + for each Hence

( + )

=
X

=0

1

!
[ +1( ) ]

and thus

k
( + )

k k k
X

=1

1

!
| +1( ) |k k 0

as by the dominated convergence theorem.
Before continuing, let us prove the basic group property of namely:

= ( + ) (73.3)

To prove this equation, notice that

( + ) = ( + ) ( + ) = 0

Thus ( + ) is independent of and hence

( + ) = (73.4)

By choosing = 0 we find that = and by replacing by we
can conclude that = ( ) 1 This last observation combined with (73.4)
proves (73.3).
Alternate Proof of Eq. (73.3).

( + ) =
X

=0

( + )

!
=
X

=0

X

=0
!( )!

=
X

=0

X

+ =
0

! !
=

where the above manipulations are justified since,

X

=0

X

+ =
0

| | | | k k k k
! !

= (| |+| |)k k

Now clearly if
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( ) := 0 :=
X

=0
!

0

we have that 1(R ) and ˙ = Therefore does solve Eq. (73.2).
To see that this solution is unique, suppose that ( ) is any solution to (73.2).
Then

( ) = ( + ) ( ) = 0

so that ( ) is constant and thus ( ) = 0 Therefore ( ) = 0

Theorem 73.4 (The Diagonal Case). Consider 0 only now. Let
[1 ) ( F ) be a measure space and : R be a measurable function
such that is bounded above by a constant . Define ( ) = {
( ) : } and for ( ) set = = (In general is

an unbounded operator.) Define = (Note that | | so
is a bounded operator.) by D.C.T. So one has strongly as 0.

1. is a strongly continuous semi-group of bounded operators.
2. If ( ) then = in ( )

3. For all and 0 = in ( )

Proof. By the dominated convergence theorem,

°

°

°

° =

Z

¯

¯

¡

1
¢
¯

¯ 0 as 0

which proves item 1. For item 2 we see using the fundamental theorem of
calculus that
°

°

°

°

µ

( + )
¶
°

°

°

°

=

°

°

°

°

°

1
Z

0

( ( + ) ) ·
°

°

°

°

°

=

°

°

°

°

°

1
Z

0

( ( + ) ) ·
°

°

°

°

°

(73.5)

Since
¯

¯

¯

¯

¯

1
Z

0

( ( + ) )

¯

¯

¯

¯

¯

2 ( +| |)

and
1
Z

0

( ( + ) ) 0 as 0

the Dominated convergence shows that the last term in Eq. (73.5) tends to
zero as 0 The above computations also work at = 0 provided is
restricted to be positive.
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Item 3 follows by the same techniques as item 2. We need only notice that
by basic calculus if 0 and ( 2 3 2) then

¯

¯

¯

( + )
¯

¯

¯
max{( 2) 1 3 2}

Example 73.5 (Nilpotent Operators). Let : be a nilpotent operator,
i.e., ( ) there exists = ( ) such that = 0 Then

˙( ) = ( ) with (0) = ( )

has a solution (in ( )) given by

( ) = :=
X

=0
!

A special case of the last example would be to take = D( ) to be the
space of polynomial functions on R and =

Example 73.6 (Eigenvector Case). Let : be a linear operator and
suppose that ( ) =span 0 where 0 is a subset of consisting of eigen-
vectors for i.e., 0 there exists ( ) C such the = ( )
Then

˙( ) = ( ) with (0) = ( )

has a solution in ( ) given by

( ) = :=
X

=0
!

More explicitly, if =
P

=1 with 0 then

=
X

=1

( )

The following examples will be covered in more detail in the exercises.

Example 73.7 (Translation Semi-group). Let := 2(R ) R and

( ( ) )( ) := ( + )

Then ( ) is a strongly continuous contraction semi-group. In fact ( ) is
unitary for all R

Example 73.8 (Rotation Semi-group). Suppose that := 2(R ) and
: R ( ) is a one parameter semi-group of orthogonal operators. Set

( ( ) )( ) := ( ( ) ) for all and R Then is also a strongly
continuous unitary semi-group.
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73.2 General Theory of Contraction Semigroups

For this section, let ( k·k) be a Banach space with norm k · k Also let
:= { ( )} 0 be a collection of bounded operators on

Definition 73.9. Let and be as above.

1. is a semi-group if ( + ) = ( ) ( ) for all 0
2. A semi-group is strongly continuous if lim 0 ( ) = for all

By convention if is strongly continuous, set (0) —the identity
operator on

3. A semi-group is a contraction semi-group if k ( )k 1 for 0

Definition 73.10. Suppose that is a contraction semi group. Set

D( ) := { : |0+ ( ) exists in }

and for D( ) set := |0+ ( ) is called the infinitesimal gen-
erator of

Proposition 73.11. Let be a strongly continuous contraction semi-group,
then

1. For all [0 ) ( ) is continuous.
2. ( ) is dense linear subspace of
3. Suppose that : [0 ) is a continuous, then ( ) := ( ) ( ) is
also continuous on [0 )

Proof. By assumption ( ) := ( ) is continuous at = 0 For 0 and
0

k ( + ) ( )k = k ( )( ( ) ) k k ( ) k 0 as 0

Similarly if (0 )

k ( ) ( )k = k ( )( ( )) k k ( )k 0 as 0

This proves the first item.
Let set :=

R

0
( ) where, since ( ) is continuous,

the integral may be interpreted as —valued Riemann integral. Note

k1 k = k1
Z

0

( ( ) ) k 1

| |
¯

¯

¯

¯

Z

0

k ( ) k
¯

¯

¯

¯

0

as 0 so that D := { : 0 and } is dense in Moreover,
¯

¯

¯

¯

0+

( ) =

¯

¯

¯

¯

0+

Z

0

( + )

=

¯

¯

¯

¯

0+

Z +

( ) = ( )

1222 73 Abstract Evolution Equations

Therefore D( ) and = ( ) In particular, D D( ) and hence
D( ) is dense in It is easily checked that D( ) is a linear subspace of
Finally if : [0 ) is a continuous function and ( ) := ( ) ( )

then for 0 and ( )

( + ) ( ) = ( ( + ) ( )) ( ) + ( + )( ( + ) ( ))

The first term goes to zero as 0 by item 1 and the second term goes to
zero since is continuous and k ( + )k 1 The above argument also works
with = 0 and 0

Definition 73.12 (Closed Operators). A linear operator on is said
to be closed if ( ) := {( ) × : D( )} is closed in the Banach
space × Equivalently, is closed i for all sequences { } =1 D( )
such that lim =: exists and lim =: exists implies that

D( ) and =

Roughly speaking, a closed operator is the next best thing to a bounded
(i.e. continuous) operator. Indeed, the definition states that is closed i

lim = lim (73.6)

provided both limits in (73.6) exist. While is continuous i Eq. (73.6) holds
whenever lim exists: part of the assertion being that the limit on the
left side of Eq. (73.6) should exist.

Proposition 73.13 ( is Closed). Let be the infinitesimal generator of a
contraction semi-group, then is closed.

Proof. Suppose that ( ) and in as
Then, using the fundamental theorem of calculus,

( )
= lim

( )
= lim

1
Z

0

( )

1
Z

0

( )

Therefore ( ) and = .

Theorem 73.14 (Solution Operator).

1. For any 0 and D( ) ( ) D( ) and ( ) = ( )

2. Moreover if D( ) then ( ) = ( )

Proof. ( ) : ( ) ( ) and ( ) = ( ) = ( ) . Suppose
that D( ) then

( + ) ( )
=
( ( ) )

( ) =
( )( ( ) )
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Letting 0 in the last set of equalities show that ( ) D( ) and

|0+ ( + ) = ( ) = ( )

For the derivative from below we will use,

( ) ( )
=
( ( ))

( ) =
( )( ( ))

(73.7)

which is valid for 0 and [0 ) Set ( ) := 1( ( )) if 0
and (0) := Then : [0 ) is continuous. Hence by same argument
as in the proof of item 3 of Proposition 73.11), ( ) ( ) is continuous
at = 0 and hence

( )( ( ))
= ( ) ( ) ( 0) (0) = ( ) as 0

Thus it follows from Eq. (73.7) that, for all 0

|0 ( + ) = ( ) = ( )

Definition 73.15 (Evolution Equation). Let be a strongly continuous
contraction semi-group with infinitesimal generator A function : [0 )
is said to solve the di erential equation

˙( ) = ( ) (73.8)

if

1. ( ) D( ) for all 0
2. ([0 ) ) 1((0 ) ) and
3. Eq. (73.8) holds for all 0

Theorem 73.16 (Evolution Equation). Let be a strongly continuous
contraction semi-group with infinitesimal generator The for all 0 D( )
there is a unique solution to (73.8) such that (0) = 0

Proof. We have already shown existence. Namely by Theorem 73.14 and
Proposition 73.11, ( ) := ( ) 0 solves (73.8.
For uniqueness let be any solution of (73.8). Fix 0 and set ( ) :=

( ) ( ) By item 3 of Proposition 73.11, is continuous for [0 ] We
will now show that is also di erentiable on (0 ) and that ˙ := 0
To simplify notation let ( ) := ( ) and for fixed (0 ) and 0

su ciently small let ( ) := 1( ( + ) ( )) ˙( ) Since is di erentiable,
( ) 0 as 0 Therefore,
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( + ) ( )
=
1
[ ( + ) ( + ) ( ) ( )]

=
( ( + ) ( ))

( ) + ( + )
( ( + ) ( ))

=
( ( + ) ( ))

( ) + ( + )( ˙( ) + ( ))

( ) ( ) + ( ) ˙( ) as 0

wherein we have used k ( + ) ( )k k ( )k 0 as 0 Hence we have
shown that

˙ ( ) = ( ) ( ) + ( ) ˙( ) = ( ) ( ) + ( ) ( ) = 0

Therefore ( ) = ( ) ( ) is constant or (0 ) and hence by continuity of
( ) = (0) i.e.

( ) = ( ) = (0) = ( ) (0) = ( ) 0

This proves uniqueness.

Corollary 73.17. Suppose that and ˆ are two strongly continuous con-
traction semi-groups on a Banach space which have the same infinitesimal
generators Then = ˆ

Proof. Let 0 ( ) then ( ) = ( ) and ˆ( ) = ˆ( )ˆ both solve Eq.
(73.8 with initial condition 0 By Theorem 73.16, = ˆ which implies that
( ) 0 = ˆ( ) 0 i.e., = ˆ

Because of the last corollary the following notion is justified.

Notation 73.18 If is a strongly continuous contraction semi-group with
infinitesimal generator we will write ( ) as

Remark 73.19. Since is a contraction, should be “negative.” Thus, work-
ing informally,

Z

0

=
1 ( )| =0 =

1
= ( ) 1

Theorem 73.20. Suppose = is a strongly continuous contraction semi-
group with infinitesimal generator For any 0 the integral

Z

0

=: (73.9)

exists as a ( )—valued improper Riemann integral.1 Moreover, ( ) :
D( ) is an invertible operator, ( ) 1 = and k k 1

1 This may also be interpreted as a Bochner integral, since ( ) is continuous and
thus has separable range in ( )
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Proof. First notice that
Z

0

k k
Z

0

= 1

Therefore the integral in Eq. (73.9) exists and the result, satisfies k k
1 So we now must show that = ( ) 1

Let and 0 then

=

Z

0

( + ) =

Z

( ) =

Z

(73.10)
Therefore

¯

¯

¯

¯

0+
= +

Z

0

= +

which shows that D( ) and that = + . So ( ) =
Similarly,

=

Z

(73.11)

and hence if D( ) then

=

¯

¯

¯

¯

0+
= +

Hence ( ) = D( )

Before continuing it will be useful to record some properties of the resolvent
operators := ( ) 1 Again working formally for the moment, if
(0 ) then we expect

=
1 1

=
( )

( )( )
= ( )

For each 0 define := Working again formally we have that

= =
( + )

= + 2

and

=
( )

( )2
=

2

( )2
=

These equations will be verified in the following lemma.

Lemma 73.21. Let : be an operator on such that for all 0
is invertible with a bounded inverse or ( ) 1 Set :=

Then
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1. for (0 )
= ( ) (73.12)

and in particular and commute,
2. = + 2 and
3. =

Proof. Since is invertible, is injective. So in order to verify
Eq. (73.12 it su ces to verify:

( )( ) = ( )( ) (73.13)

Now

( )( ) = ( + ) = ( ) = ( )

while
( )( ) = ( )

Clearly the last two equations show that Eq. (73.13) holds. The second item
is easily verified since, = ( + ) = + 2

For the third item, first recall that is continuous in the operator
norm topology (in fact analytic). To see this let us first work informally,

+ =
1

+
=

1

( + )
=

1

( )( + ( ) 1)
= ( + ) 1

(73.14)
To verify this last equation, first notice that for su ciently small k k
1 so that

P

=0 k k and hence ( + ) is invertible and

( + ) 1 =
X

=0

( )

To verify the ends of Eq. (73.14) are equal it su ces to verify that + ( +
) = i.e., + = + But this last equation follows

directly form (73.12). Therefore, we have shown that for su ciently close
to zero,

+ =
X

=0

( )

Di erentiating this last equation at = 0 shows that

= |0 + = 2 (73.15)

We now may easily compute:

= ( + 2 ) = + 2 2 2 = ( )2
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This finishes the proof since,

= ( ) =

We now show that is a good approximation to when

Proposition 73.22. Let be an operator on such that for each (0 )
:= ( ) 1 exists as a bounded operator and k( ) 1k 1 Then

strongly as and for all D( )
lim = (73.16)

Proof. First notice, informally, that

= =
+

= +

So we expect that
|D( ) = + (73.17)

(This last equation is easily verified by applying ( ) to both sides of the
equation.) Hence, for D( )

= +

and k k k k Thus lim = for all D( ) Using
the fact that k k 1 and a standard 3 —argument, it follows that
converges strongly to as Finally, for D( )

= = as

See Dynkin,

Lemma 73.23. Suppose that and are commuting bounded operators on
a Banach space, such that k k and k k are bounded by 1 for all 0
then

k( ) k k( ) k for all (73.18)

Proof. The fundamental theorem of calculus implies that

=

Z

0

=

Z

0

( + )

and hence, by multiplying on the left by

=

Z

0

( ) ( + )

=

Z

0

( ) ( + )

wherein the last line we have used the fact that and commute. Eq. (73.18)
is an easy consequence of this equation.
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Theorem 73.24 (Hile-Yosida). A closed linear operator or a Banach
space generates a contraction semi-group i for all (0 )

1. ( ) 1 exists as a bounded operator and
2. k( ) 1k 1 for all 0

Proof.

( ) := = :=
X

=0

( ) !

The outline of the proof is: i) show that ( ) is a contraction for all 0
ii) show for 0 that ( ) converges strongly to an operator ( ) iii) show
( ) is a strongly continuous contraction semi-group, and iv) show that is
the generator of
Step i) Using = + 2 we find that =

2

Hence

k ( )k = k k 2k k 2 1

= 1

Step ii) Let 0 and D( ) then by Lemma 73.23 and Proposition
73.22,

k( ( ) ( )) k k k 0 as

This shows, for all D( ) that lim ( ) exists uniformly for in
compact subsets of [0 ) For general D( ) 0 and 0
we have

k( ( ) ( )) k k( ( ) ( )) k+ k( ( ) ( ))( )k
k( ( ) ( )) k+ 2k k
k k+ 2k k

Thus

lim sup sup
[0 ]

k( ( ) ( )) k 2k k 0 as

Hence for each ( ) := lim ( ) exists uniformly for in
compact sets of [0 )
Step iii) It is now easily follows that k ( )k 1 and that ( ) is

strongly continuous. Moreover,

( + ) = lim ( + ) = lim ( ) ( )

Letting ( ) := ( ) ( ) it follows that

( + ) = lim ( )( ( ) + ( )) = ( ) ( ) + lim ( ) ( )

This shows that is also satisfies the semi-group property, since k ( ) ( )k
k ( )k and lim ( ) = 0
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Step iv) Let ˜ denote the infinitesimal generator of We wish to show
that ˜ = To this end, let D( ) then

( ) = +

Z

0

Letting in this last equation shows that

( ) = +

Z

0

( )

and hence |0+ ( ) exists and is equal to That is D( ) D(˜) and
= ˜ on D( )
To finish the proof we must show that D(˜) D( ) Suppose that ˜

D(˜) and 0 and let := ( ) 1( ˜)˜ Since D( ) D(˜) ( ˜)˜ =
( ) = ( ˜) and because ˜ is invertible, ˜ = D( )
Theorem 73.25. Let be a closed operator or Hilbert space Then
generates a contraction semi-group ( ) i there exits 0 0 such that
Ran( + 0) = and Re( ) 0 for all ( )

Proof. ( ) If ( ) = is a contraction semigroup, then, for all
( ) k k2 k k2 with equality at = 0 So it is permissible to

di erentiate the inequality at = 0 to find 2Re( ) 0 The remaining
assertions in this direction follows from Theorem 73.24. ( =) If Re( ) 0
and 0 then

k( ) k2 = 2k k2 2 Re( ) + k k2 2k k2

which implies is 1-1 on ( ) and Ran( ) is closed.

Theorem 73.26. Let : be a contraction semi-group. ( ) =
© | = |0

ª

exists Then for all ( ) ( ) = is the unique
solution to

˙( ) = ( ) (0) =

Lemma 73.27. ( ) is dense in .

Proof. Let ((0 )) set

:=

Z

0

( )

then

=

Z

0

( ) + =

Z

0

( ) = (0 )

1230 73 Abstract Evolution Equations

=

Z

0

( ) ( )

Z

0

0( ) |0 = 0

so ( ) and = 0 Now 0.
Proof of Theorem Key point is to prove uniqueness. Let = transpose

semi group. Let = |0+ denote the adjoint generator.
Claim = .

( ) |0h i = h i

|0h i = h i (

( ) and = so that . Suppose ( )
3 = . For example h i = h i ( ) for example

h i = h i
h i = h i

So h i h i = R
0
h i ( ). So = +

R

0
.

So |0+ = ( ) and = .
Uniqueness: Let ˙ = (0) = 0. Let ( ) 0.

h ( )i = h ( )i+ h i = 0

h ( )i = construction therefore h 0i = h ( )i
( )h 00

0i. Since ( ) is dense ( ) = 0.
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A

Multinomial Theorems and Calculus Results

Given a multi-index Z+ let | | = 1 + · · ·+ ! := 1! · · · !

:=
Y

=1

and =

µ ¶

:=
Y

=1

µ ¶

We also write

( ) := ( + )| =0

A.1 Multinomial Theorems and Product Rules

For = ( 1 2 ) C N and ( 1 ) {1 2 } let
ˆ ( 1 ) = # { : = } Then

Ã

X

=1

!

=
X

1 =1

1 =
X

| |=
( )

where

( ) = # {( 1 ) : ˆ ( 1 ) = for = 1 2 }

I claim that ( ) = !
! Indeed, one possibility for such a sequence

( 1 ) for a given is gotten by choosing

(

1
z }| {

1 1

2
z }| {

2 2
z }| {

)

Now there are ! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these ! permuta-
tions we must divide by the number of permutation which just rearrange the

1234 A Multinomial Theorems and Calculus Results

groups of ’s among themselves for each There are ! := 1! · · · ! such
permutations. Therefore, ( ) = ! ! as advertised. So we have proved

Ã

X

=1

!

=
X

| |=

!

!
(A.1)

Now suppose that R and is a multi-index, we have

( + ) =
X !

!( )!
=

X

+ =

!

! !
(A.2)

Indeed, by the standard Binomial formula,

( + ) =
X !

!( )!

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

( 1 + · · ·+ ) =
X

1+···+ =

!

1! · · · !
1

1 (A.3)

where 1 2 R and Z+
Now let us consider the product rule for derivatives. Let us begin with the

one variable case (write for ( ) = ) where we will show by induction
that

( ) =
X

=0

µ ¶

· (A.4)

Indeed assuming Eq. (A.4) we find

+1( ) =
X

=0

µ ¶

+1 · +
X

=0

µ ¶

· +1

=
+1
X

=1

µ

1

¶

· +1 +
X

=0

µ ¶

· +1

=
+1
X

=1

·µ

1

¶

+

µ ¶¸

· +1 + +1 · + · +1

Since
µ

1

¶

+

µ ¶

=
!

( + 1)!( 1)!
+

!

( )! !

=
!

( 1)! ( )!

·

1

( + 1)
+
1
¸

=
!

( 1)! ( )!

+ 1

( + 1)
=

µ

+ 1
¶
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the result follows.
Now consider the multi-variable case

( ) =

Ã

Y

=1

!

( ) =
Y

=1

"

X

=0

µ ¶

·
#

=
1

X

1=0

· · ·
X

=0

Y

=1

µ ¶

· =
X

µ ¶

·

where = ( 1 2 ) and

µ ¶

:=
Y

=1

µ ¶

=
!

!( )!

So we have proved

( ) =
X

µ ¶

· (A.5)

A.2 Taylor’s Theorem

Theorem A.1. Suppose R is an open set, : [0 1] is a 1 —
path, and ( C) Let := (1) ( ) and = 1 = (1) (0) then

( (1)) =
1

X

=0

1

!
( ) ( (0)) + (A.6)

where

=
1

( 1)!

Z 1

0

¡

˙( )
1
¢

( ( )) =
1

!

Z 1

0

µ ¶

( ( ))

(A.7)
and 0! := 1

Proof. By the fundamental theorem of calculus and the chain rule,

( ( )) = ( (0)) +

Z

0

( ( )) = ( (0)) +

Z

0

¡

˙( )

¢

( ( )) (A.8)

and in particular,

( (1)) = ( (0)) +

Z 1

0

¡

˙( )

¢

( ( ))

This proves Eq. (A.6) when = 1 We will now complete the proof using
induciton on
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Applying Eq. (A.8) with replaced by 1
( 1)!

¡

˙( )
1
¢

gives

1

( 1)!

¡

˙( )
1
¢

( ( )) =
1

( 1)!

¡

˙( )
1
¢

( (0))

+
1

( 1)!

Z

0

¡

˙( )
1

˙( )

¢

( ( ))

=
1

!

µ ¶

( (0))
1

!

Z

0

µ

˙( )

¶

(

wherein we have used the fact that mixed partial derivatives commute to show
= ˙( )

1 Integrating this equation on [0 1] shows, using
the fundamental theorem of calculus,

=
1

!

¡ ¢

( (0))
1

!

Z

0 1

µ

˙( )

¶

( ( ))

=
1

!

¡ ¢

( (0)) +
1

( + 1)!

Z

0 1

¡

˙( )

¢

( ( ))

=
1

!

¡ ¢

( (0)) + +1

which completes the inductive proof.

Remark A.2. Using Eq. (A.1) with replaced by (although { } =1 are
not complex numbers they are commuting symbols), we find

=

Ã

X

=1

!

=
X

| |=

!

!

Using this fact we may write Eqs. (A.6) and (A.7) as

( (1)) =
X

| | 1

1

!
( (0)) +

and

=
X

| |=

1

!

Z 1

0

µ ¶

( ( ))

Corollary A.3. Suppose R is an open set which contains ( ) = (1
) 0 + 1 for 0 1 and ( C) Then

( 1) =
1

X

=0

1

!
( ) ( 0) +

1

!

Z 1

0

¡ ¢

( ( )) ( ) (A.9)

=
X

| |

1

!
( (0))( 1 0) +

X

:| |=

1

!

·
Z 1

0

( ( )) ( )

¸

( 1

(A.10)
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where := 1 0 and is the probability measure on [0 1] given by

( ) := (1 ) 1 (A.11)

If we let = 0 and = 1 0 (so + = 1) Eq. (A.10) may be written
as

( + ) =
X

| |

( )

!
+

X

:| |=

1

!

µ
Z 1

0

( + ) ( )

¶

(A.12)

Proof. This is a special case of Theorem A.1. Notice that

= (1) ( ) = (1 )( 1 0) = (1 )

and hence

=
1

!

Z 1

0

µ

(1 )

¶

( ( )) =
1

!

Z 1

0

¡ ¢

( ( )) (1 ) 1

Example A.4. Let = ( 1 1) R R and ( ) = (1 ) The reader
should verify

( )( ) = ( 1) ( 1) ( + 1)(1 )

and therefore by Taylor’s theorem (Eq. (??) with = 0 and = )

(1 ) = 1 +
1

X

=1

1

!
( 1) ( 1) ( + 1) + ( ) (A.13)

where

( ) =
!

Z 1

0

( 1) ( 1) ( + 1)(1 ) ( )

=
!
( 1) ( 1) ( + 1)

Z 1

0

(1 ) 1

(1 )

Now for ( 1 1) and

0

Z 1

0

(1 ) 1

(1 )

Z 1

0

(1 ) 1

(1 )
=

Z 1

0

(1 ) 1 =

and therefore,

| ( )| | |
( 1)!

|( 1) ( + 1)| =:
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Since

lim sup
+1
= | | · lim sup = | | 1

and so by the Ratio test, | ( )| 0 (exponentially fast) as
Therefore by passing to the limit in Eq. (A.13) we have proved

(1 ) = 1 +
X

=1

( 1)

!
( 1) ( + 1) (A.14)

which is valid for | | 1 and R An important special cases is = 1
in which case, Eq. (A.14) becomes 1

1 =
P

=0 the standard geometric
series formula. Another another useful special case is = 1 2 in which case
Eq. (A.14) becomes

1 = 1 +
X

=1

( 1)

!

1

2
(
1

2
1) (

1

2
+ 1)

= 1
X

=1

(2 3)!!

2 !
for all | | 1 (A.15)
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Zorn’s Lemma and the Hausdor Maximal
Principle

Definition B.1. A partial order on is a relation with following properties

(i) If and then .
(ii)If and then = .
(iii) for all .

Example B.2. Let be a set and = P( ) There are two natural partial
orders on

1. Ordered by inclusion, is and
2. Ordered by reverse inclusion, if

Definition B.3. Let ( ) be a partially ordered set we say is linearly a
totally ordered if for all either or The real numbers R
with the usual order is a typical example.

Definition B.4. Let ( ) be a partial ordered set. We say is a
maximal element if for all such that implies = i.e. there is
no element larger than An upper bound for a subset of is an element

such that for all

Example B.5. Let

=
©

= {1} = {1 2} = {3} = {2 4} = {2}ª

ordered by set inclusion. Then and are maximal elements despite that fact
that £ and £ We also have

• If = { } then has no upper bound.

Definition B.6. • If = { } then is an upper bound.
• = { } then and are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, { } of non-empty sets
there exists a “choice function,” :

`

such that ( ) for

all i.e.
Q 6=

2. The Hausdor Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If is partially ordered set such that every linearly
ordered subset of has an upper bound, then has a maximal element.1

Proof. (2 3) Let be a partially ordered subset as in 3 and let F =
{ : is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element F By assumption, the
linearly ordered set has an upper bound The element is maximal,
for if and then { } is still an linearly ordered set containing
So by maximality of = { } i.e. and therefore

showing which combined with implies that = 2

(3 1) Let { } be a collection of non-empty sets, we must show
Q

is not empty. Let G denote the collection of functions : ( )
`

such that ( ) is a subset of and for all ( ) ( )
Notice that G is not empty, for we may let 0 and 0 and then
set ( ) = { 0} and ( 0) = 0 to construct an element of G We now put
a partial order on G as follows. We say that for G provided
that ( ) ( ) and = | ( ) If G is a linearly ordered set, let
( ) = ( ) and for ( ) let ( ) = ( ) Then G is an upper

bound for So by Zorn’s Lemma there exists a maximal element G To
finish the proof we need only show that ( ) = If this were not the case,
then let 0 \ ( ) and 0 0 We may now define (˜) = ( ) { 0}
and

˜( ) =

½

( ) if ( )

0 if = 0

1 If is a countable set we may prove Zorn’s Lemma by induction. Let { } =1

be an enumeration of and define inductively as follows. For = 1
let 1 = { 1} and if have been chosen, let +1 = { +1} if +1

is an upper bound for otherwise let +1 = The set = =1 is a
linearly ordered (you check) subset of and hence by assumption has an upper
bound, I claim that his element is maximal, for if there exists =
such that then would be an upper bound for 1 and therefore
= That is to say if then and hence so
= (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similalry one may show that 3 2 Let F = { : is linearly ordered}
and order F by inclusion. IfM F is linearly ordered, let = M =

S

M
If then and for some M. NowM is linearly ordered
by set inclusion so or i.e. or Sinse and are
linearly order we must have either or that is to say is linearly
ordered. Hence by 3. there exists a maximal element F which is the assertion
in 2.
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Then ˜ while 6= ˜ violating the fact that was a maximal element.
(1 2) Let ( ) be a partially ordered set. Let F be the collection of

linearly ordered subsets of which we order by set inclusion. Given 0

{ 0} F is linearly ordered set so that F 6=
Fix an element 0 F If 0 is not maximal there exists 1 F such

that 0 Ã 1 In particular we may choose 0 such that 0 { } F
The idea now is to keep repeating this process of adding points until
we construct a maximal element of F We now have to take care of some
details.
We may assume with out loss of generality that F̃ = { F : is not maxima

is a non-empty set. For F̃ let = { : { } F} As the above
argument shows, 6= for all F̃ Using the axiom of choice, there exists

Q

F̃ We now define : F F by

( ) =

½

if is maximal
{ ( )} if is not maximal.

(B.1)

The proof is completed by Lemma B.8 below which shows that must have
a fixed point F This fixed point is maximal by construction of

Lemma B.8. The function : F F defined in Eq. (B.1) has a fixed point.3

Proof. The idea of the proof is as follows. Let 0 F be chosen
arbitrarily. Notice that =

©

( )( 0)
ª

=0
F is a linearly ordered set and it

is therefore easily verified that 1 =
S

=0

( )( 0) F Similarly we may repeat

the process to construct 2 =
S

=0

( )( 1) F and 3 =
S

=0

( )( 2) F
etc. etc. Then take = =0 and start again with 0 replaced by
Then keep going this way until eventually the sets stop increasing in size, in
which case we have found our fixed point. The problem with this strategy is
that we may never win. (This is very reminiscent of constructing measurable
sets and the way out is to use measure theoretic like arguments.)
Let us now start the formal proof. Again let 0 F and let F1 = {

F : 0 } Notice that F1 has the following properties:
1. 0 F1
2. If F1 is a totally ordered (by set inclusion) subset then F1
3. If F1 then ( ) F1
Let us call a general subset F 0 F satisfying these three conditions a

tower and let
3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set F with a maximal number of elements. In this case the
condition that ( ) would imply that = ( ) otherwise ( ) would have
more elements than
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F0 = {F 0 : F 0 is a tower}
Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing 0 (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.)
We now claim that F0 is a linearly ordered subset of F To prove this let
F0 be the linearly ordered set

= { F0 : for all F0 either or }

Shortly we will show that F0 is a tower and hence that F0 = That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof. Let F0 which is in F0 by property 2 and is clearly the largest
element in F0 By 3. it now follows that ( ) F0 and by maximality of
we have ( ) = the desired fixed point. So to finish the proof, we must

show that is a tower.
First o it is clear that 0 so in particular is not empty. For each

let
:= { F0 : either or ( ) }

We will begin by showing that F0 is a tower and therefore that = F0
1. 0 since 0 for all F0 2. If F0 is totally

ordered by set inclusion, then := F0 We must show that
is that or Now if for all then and
hence On the other hand if there is some such that ( )
then clearly ( ) and again
3. Given we must show ( ) i.e. that

( ) or ( ) ( ) (B.2)

There are three cases to consider: either Ã = or ( ) In the
case = ( ) = ( ) ( ) and if ( ) then ( ) ( ) and
Eq. (B.2) holds in either of these cases. So assume that Ã Since
either ( ) (in which case we are done) or ( ) Hence we may
assume that

Ã ( )

Now if were a proper subset of ( ) it would then follow that ( )\ would
consist of at least two points which contradicts the definition of Hence we
must have ( ) = and again Eq. (B.2) holds, so is a tower.
It is now easy to show is a tower. It is again clear that 0 and

Property 2. may be checked for in the same way as it was done for
above. For Property 3., if we may use = F0 to conclude for all

F0 either ( ) or ( ) i.e. ( ) Thus is a tower
and we are done.
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