23. Sobolev Spaces

Definition 23.1. For $p \in[1, \infty], k \in \mathbb{N}$ and Ω an open subset of \mathbb{R}^{d}, let

$$
\begin{aligned}
W_{l o c}^{k, p}(\Omega) & :=\left\{f \in L^{p}(\Omega): \partial^{\alpha} f \in L_{l o c}^{p}(\Omega) \text { (weakly) for all }|\alpha| \leq k\right\} \\
W^{k, p}(\Omega) & :=\left\{f \in L^{p}(\Omega): \partial^{\alpha} f \in L^{p}(\Omega) \text { (weakly) for all }|\alpha| \leq k\right\} \\
& \|f\|_{W^{k, p}(\Omega)}:=\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \text { if } p<\infty
\end{aligned}
$$

and

$$
\begin{equation*}
\|f\|_{W^{k, p}(\Omega)}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{L^{\infty}(\Omega)} \text { if } p=\infty \tag{23.2}
\end{equation*}
$$

In the special case of $p=2$, we write $W_{l o c}^{k, 2}(\Omega)=: H_{l o c}^{k}(\Omega)$ and $W^{k, 2}(\Omega)=: H^{k}(\Omega)$ in which case $\|\cdot\|_{W^{k, 2}(\Omega)}=\|\cdot\|_{H^{k}(\Omega)}$ is a Hilbertian norm associated to the inner product

$$
\begin{equation*}
(f, g)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} f \cdot \overline{\partial^{\alpha} g} d m \tag{23.3}
\end{equation*}
$$

Theorem 23.2. The function, $\|\cdot\|_{W^{k, p}(\Omega)}$, is a norm which makes $W^{k, p}(\Omega)$ into a Banach space.

Proof. Let $f, g \in W^{k, p}(\Omega)$, then the triangle inequality for the p - norms on $L^{p}(\Omega)$ and $l^{p}(\{\alpha:|\alpha| \leq k\})$ implies

$$
\begin{aligned}
\|f+g\|_{W^{k, p}(\Omega)} & =\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f+\partial^{\alpha} g\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \\
& \leq\left(\sum_{|\alpha| \leq k}\left[\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}+\left\|\partial^{\alpha} g\right\|_{L^{p}(\Omega)}\right]^{p}\right)^{1 / p} \\
& \leq\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p}+\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} g\right\|_{L^{p}(\Omega)}^{p}\right)^{1 / p} \\
& =\|f\|_{W^{k, p}(\Omega)}+\|g\|_{W^{k, p}(\Omega)}
\end{aligned}
$$

This shows $\|\cdot\|_{W^{k, p}(\Omega)}$ defined in Eq. (23.1) is a norm. We now show completeness.
If $\left\{f_{n}\right\}_{n=1}^{\infty} \subset W^{k, p}(\Omega)$ is a Cauchy sequence, then $\left\{\partial^{\alpha} f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}(\Omega)$ for all $|\alpha| \leq k$. By the completeness of $L^{p}(\Omega)$, there exists $g_{\alpha} \in L^{p}(\Omega)$ such that $g_{\alpha}=L^{p_{-}} \lim _{n \rightarrow \infty} \partial^{\alpha} f_{n}$ for all $|\alpha| \leq k$. Therefore, for all $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\left\langle f, \partial^{\alpha} \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle f_{n}, \partial^{\alpha} \phi\right\rangle=(-1)^{|\alpha|} \lim _{n \rightarrow \infty}\left\langle\partial^{\alpha} f_{n}, \phi\right\rangle=(-1)^{|\alpha|} \lim _{n \rightarrow \infty}\left\langle g_{\alpha}, \phi\right\rangle .
$$

This shows $\partial^{\alpha} f$ exists weakly and $g_{\alpha}=\partial^{\alpha} f$ a.e. This shows $f \in W^{k, p}(\Omega)$ and that $f_{n} \rightarrow f \in W^{k, p}(\Omega)$ as $n \rightarrow \infty$.

Example 23.3. Let $u(x):=|x|^{-\alpha}$ for $x \in \mathbb{R}^{d}$ and $\alpha \in \mathbb{R}$. Then

$$
\begin{align*}
\int_{B(0, R)}|u(x)|^{p} d x & =\sigma\left(S^{d-1}\right) \int_{0}^{R} \frac{1}{r^{\alpha p}} r^{d-1} d r=\sigma\left(S^{d-1}\right) \int_{0}^{R} r^{d-\alpha p-1} d r \\
& =\sigma\left(S^{d-1}\right) \cdot\left\{\begin{array}{ccc}
\frac{R^{d-\alpha p}}{d-\alpha p} & \text { if } & d-\alpha p>0 \\
\infty & \text { otherwise }
\end{array}\right. \tag{23.4}
\end{align*}
$$

and hence $u \in L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ iff $\alpha<d / p$. Now $\nabla u(x)=-\alpha|x|^{-\alpha-1} \hat{x}$ where $\hat{x}:=x /|x|$. Hence if $\nabla u(x)$ is to exist in $L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ it is given by $-\alpha|x|^{-\alpha-1} \hat{x}$ which is in $L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ iff $\alpha+1<d / p$, i.e. if $\alpha<d / p-1=\frac{d-p}{p}$. Let us not check that $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{d}\right)$ provided $\alpha<d / p-1$. To do this suppose $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $\epsilon>0$, then

$$
\begin{aligned}
-\left\langle u, \partial_{i} \phi\right\rangle & =-\lim _{\epsilon \downarrow 0} \int_{|x|>\epsilon} u(x) \partial_{i} \phi(x) d x \\
& =\lim _{\epsilon \downarrow 0}\left\{\int_{|x|>\epsilon} \partial_{i} u(x) \phi(x) d x+\int_{|x|=\epsilon} u(x) \phi(x) \frac{x_{i}}{\epsilon} d \sigma(x)\right\} .
\end{aligned}
$$

Since

$$
\left|\int_{|x|=\epsilon} u(x) \phi(x) \frac{x_{i}}{\epsilon} d \sigma(x)\right| \leq\|\phi\|_{\infty} \sigma\left(S^{d-1}\right) \epsilon^{d-1-\alpha} \rightarrow 0 \text { as } \epsilon \downarrow 0
$$

and $\partial_{i} u(x)=-\alpha|x|^{-\alpha-1} \hat{x} \cdot e_{i}$ is locally integrable we conclude that

$$
-\left\langle u, \partial_{i} \phi\right\rangle=\int_{\mathbb{R}^{d}} \partial_{i} u(x) \phi(x) d x
$$

showing that the weak derivative $\partial_{i} u$ exists and is given by the usual pointwise derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let Ω be an open subset of $\mathbb{R}^{d}, k \in \mathbb{N}_{0}:=$ $\mathbb{N} \cup\{0\}, p \in[1, \infty)$ and $u \in W_{l o c}^{k, p}(\Omega)$. Then there exists $u_{n} \in C_{c}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ in $W_{l o c}^{k, p}(\Omega)$.

Proof. Apply Proposition 19.12 with polynomials, $p_{\alpha}(\xi)=\xi^{\alpha}$, for $|\alpha| \leq k$.
Proposition 23.5. $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{d}\right)$ for all $1 \leq p<\infty$.
Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2 in place of Proposition 19.12.
Proposition 23.6. Let Ω be an open subset of $\mathbb{R}^{d}, k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ and $p \geq 1$, then
(1) for any α with $|\alpha| \leq k, \partial^{\alpha}: W^{k, p}(\Omega) \rightarrow W^{k-|\alpha|, p}(\Omega)$ is a contraction.
(2) For any open subset $V \subset \Omega$, the restriction map $\left.u \rightarrow u\right|_{V}$ is bounded from $W^{k, p}(\Omega) \rightarrow W^{k, p}(V)$.
(3) For any $f \in C^{k}(\Omega)$ and $u \in W_{l o c}^{k, p}(\Omega)$, the $f u \in W_{l o c}^{k, p}(\Omega)$ and for $|\alpha| \leq k$,

$$
\begin{equation*}
\partial^{\alpha}(f u)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} f \cdot \partial^{\alpha-\beta} u \tag{23.5}
\end{equation*}
$$

where $\binom{\alpha}{\beta}:=\frac{\alpha!}{\beta!(\alpha-\beta)!}$.
(4) For any $f \in B C^{k}(\Omega)$ and $u \in W_{l o c}^{k, p}(\Omega)$, the $f u \in W_{l o c}^{k, p}(\Omega)$ and for $|\alpha| \leq k$ Eq. (23.5) still holds. Moreover, the linear map $u \in W^{k, p}(\Omega) \rightarrow f u \in$ $W^{k, p}(\Omega)$ is a bounded operator.

Proof. 1. Let $\phi \in C_{c}^{\infty}(\Omega)$ and $u \in W^{k, p}(\Omega)$, then for β with $|\beta| \leq k-|\alpha|$,

$$
\left\langle\partial^{\alpha} u, \partial^{\beta} \phi\right\rangle=(-1)^{|\alpha|}\left\langle u, \partial^{\alpha} \partial^{\beta} \phi\right\rangle=(-1)^{|\alpha|}\left\langle u, \partial^{\alpha+\beta} \phi\right\rangle=(-1)^{|\beta|}\left\langle\partial^{\alpha+\beta} u, \phi\right\rangle
$$

from which it follows that $\partial^{\beta}\left(\partial^{\alpha} u\right)$ exists weakly and $\partial^{\beta}\left(\partial^{\alpha} u\right)=\partial^{\alpha+\beta} u$. This shows that $\partial^{\alpha} u \in W^{k-|\alpha|, p}(\Omega)$ and it should be clear that $\left\|\partial^{\alpha} u\right\|_{W^{k-|\alpha|, p}(\Omega)} \leq\|u\|_{W^{k, p}(\Omega)}$.

Item 2. is trivial.
3-4. Given $u \in W_{l o c}^{k, p}(\Omega)$, by Proposition 23.4 there exists $u_{n} \in C_{c}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ in $W_{l o c}^{k, p}(\Omega)$. From the results in Appendix A.1, $f u_{n} \in C_{c}^{k}(\Omega) \subset$ $W^{k, p}(\Omega)$ and

$$
\begin{equation*}
\partial^{\alpha}\left(f u_{n}\right)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} f \cdot \partial^{\alpha-\beta} u_{n} \tag{23.6}
\end{equation*}
$$

holds. Given $V \subset_{o} \Omega$ such that \bar{V} is compactly contained in Ω, we may use the above equation to find the estimate

$$
\begin{aligned}
\left\|\partial^{\alpha}\left(f u_{n}\right)\right\|_{L^{p}(V)} & \leq \sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left\|\partial^{\beta} f\right\|_{L^{\infty}(V)}\left\|\partial^{\alpha-\beta} u_{n}\right\|_{L^{p}(V)} \\
& \leq C_{\alpha}(f, V) \sum_{\beta \leq \alpha}\left\|\partial^{\alpha-\beta} u_{n}\right\|_{L^{p}(V)} \leq C_{\alpha}(f, V)\left\|u_{n}\right\|_{W^{k, p}(V)}
\end{aligned}
$$

wherein the last equality we have used Exercise 23.1 below. Summing this equation on $|\alpha| \leq k$ shows

$$
\begin{equation*}
\left\|f u_{n}\right\|_{W^{k, p}(V)} \leq C(f, V)\left\|u_{n}\right\|_{W^{k, p}(V)} \text { for all } n \tag{23.7}
\end{equation*}
$$

where $C(f, V):=\sum_{|\alpha| \leq k} C_{\alpha}(f, V)$. By replacing u_{n} by $u_{n}-u_{m}$ in the above inequality it follows that $\left\{f u_{n}\right\}_{n=1}^{\infty}$ is convergent in $W^{k, p}(V)$ and since V was arbitrary $f u_{n} \rightarrow f u$ in $W_{l o c}^{k, p}(\Omega)$. Moreover, we may pass to the limit in Eq. (23.6) and in Eq. (23.7) to see that Eq. (23.5) holds and that

$$
\|f u\|_{W^{k, p}(V)} \leq C(f, V)\|u\|_{W^{k, p}(V)} \leq C(f, V)\|u\|_{W^{k, p}(\Omega)}
$$

Moreover if $f \in B C(\Omega)$ then constant $C(f, V)$ may be chosen to be independent of V and therefore, if $u \in W^{k, p}(\Omega)$ then $f u \in W^{k, p}(\Omega)$.

Alternative direct proof of 4 . We will prove this by induction on $|\alpha|$. If $\alpha=e_{i}$ then, using Lemma 19.9,

$$
\begin{aligned}
-\left\langle f u, \partial_{i} \phi\right\rangle & =-\left\langle u, f \partial_{i} \phi\right\rangle=-\left\langle u, \partial_{i}[f \phi]-\partial_{i} f \cdot \phi\right\rangle \\
& =\left\langle\partial_{i} u, f \phi\right\rangle+\left\langle u, \partial_{i} f \cdot \phi\right\rangle=\left\langle f \partial_{i} u+\partial_{i} f \cdot u, \phi\right\rangle
\end{aligned}
$$

showing $\partial_{i}(f u)$ exists weakly and is equal to $\partial_{i}(f u)=f \partial_{i} u+\partial_{i} f \cdot u \in L^{p}(\Omega)$. Supposing the result has been proved for all α such that $|\alpha| \leq m$ with $m \in[1, k)$. Let $\gamma=\alpha+e_{i}$ with $|\alpha|=m$, then by what we have just proved each summand in Eq. (23.5) satisfies $\partial_{i}\left[\partial^{\beta} f \cdot \partial^{\alpha-\beta} u\right]$ exists weakly and

$$
\partial_{i}\left[\partial^{\beta} f \cdot \partial^{\alpha-\beta} u\right]=\partial^{\beta+e_{i}} f \cdot \partial^{\alpha-\beta} u+\partial^{\beta_{i}} f \cdot \partial^{\alpha-\beta+e} u \in L^{p}(\Omega)
$$

Therefore $\partial^{\gamma}(f u)=\partial_{i} \partial^{\alpha}(f u)$ exists weakly in $L^{p}(\Omega)$ and

$$
\partial^{\gamma}(f u)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left[\partial^{\beta+e_{i}} f \cdot \partial^{\alpha-\beta} u+\partial^{\beta} f \cdot \partial^{\alpha-\beta+e_{i}} u\right]=\sum_{\beta \leq \gamma}\binom{\gamma}{\beta}\left[\partial^{\beta} f \cdot \partial^{\gamma-\beta} u\right]
$$

For the last equality see the combinatorics in Appendix A.1.
Theorem 23.7. Let Ω be an open subset of $\mathbb{R}^{d}, k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ and $p \in[1, \infty)$. Then $C^{\infty}(\Omega) \cap W^{k, p}(\Omega)$ is dense in $W^{k, p}(\Omega)$.

Proof. Let $\Omega_{n}:=\{x \in \Omega: \operatorname{dist}(x, \Omega)>1 / n\} \cap B(0, n)$, then

$$
\bar{\Omega}_{n} \subset\{x \in \Omega: \operatorname{dist}(x, \Omega) \geq 1 / n\} \cap \overline{B(0, n)} \subset \Omega_{n+1}
$$

$\bar{\Omega}_{n}$ is compact for every n and $\Omega_{n} \uparrow \Omega$ as $n \rightarrow \infty$. Let $V_{0}=\Omega_{3}, V_{j}:=\Omega_{j+3} \backslash \bar{\Omega}_{j}$ for $j \geq 1, K_{0}:=\bar{\Omega}_{2}$ and $K_{j}:=\bar{\Omega}_{j+2} \backslash \Omega_{j+1}$ for $j \geq 1$ as in figure 41. Then $K_{n} \sqsubset \sqsubset V_{n}$

Figure 41. Decomposing Ω into compact pieces. The compact sets K_{0}, K_{1} and K_{2} are the shaded annular regions while V_{0}, V_{1} and V_{2} are the indicated open annular regions.
for all n and $\cup K_{n}=\Omega$. Choose $\phi_{n} \in C_{c}^{\infty}\left(V_{n},[0,1]\right)$ such that $\phi_{n}=1$ on K_{n} and set $\psi_{0}=\phi_{0}$ and

$$
\psi_{j}=\left(1-\psi_{1}-\cdots-\psi_{j-1}\right) \phi_{j}=\phi_{j} \prod_{k=1}^{j-1}\left(1-\phi_{k}\right)
$$

for $j \geq 1$. Then $\psi_{j} \in C_{c}^{\infty}\left(V_{n},[0,1]\right)$,

$$
1-\sum_{k=0}^{n} \psi_{k}=\prod_{k=1}^{n}\left(1-\phi_{k}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

so that $\sum_{k=0}^{\infty} \psi_{k}=1$ on Ω with the sum being locally finite.
Let $\epsilon>0$ be given. By Proposition 23.6, $u_{n}:=\psi_{n} u \in W^{k, p}(\Omega)$ with $\operatorname{supp}\left(u_{n}\right) \sqsubset \sqsubset V_{n}$. By Proposition 23.4 , we may find $v_{n} \in C_{c}^{\infty}\left(V_{n}\right)$ such that
$\left\|u_{n}-v_{n}\right\|_{W^{k, p}(\Omega)} \leq \epsilon / 2^{n+1}$ for all n. Let $v:=\sum_{n=1}^{\infty} v_{n}$, then $v \in C^{\infty}(\Omega)$ because the sum is locally finite. Since

$$
\sum_{n=0}^{\infty}\left\|u_{n}-v_{n}\right\|_{W^{k, p}(\Omega)} \leq \sum_{n=0}^{\infty} \epsilon / 2^{n+1}=\epsilon<\infty
$$

the sum $\sum_{n=0}^{\infty}\left(u_{n}-v_{n}\right)$ converges in $W^{k, p}(\Omega)$. The sum, $\sum_{n=0}^{\infty}\left(u_{n}-v_{n}\right)$, also converges pointwise to $u-v$ and hence $u-v=\sum_{n=0}^{\infty}\left(u_{n}-v_{n}\right)$ is in $W^{k, p}(\Omega)$. Therefore $v \in W^{k, p}(\Omega) \cap C^{\infty}(\Omega)$ and

$$
\|u-v\| \leq \sum_{n=0}^{\infty}\left\|u_{n}-v_{n}\right\|_{W^{k, p}(\Omega)} \leq \epsilon
$$

Notation 23.8. Given a closed subset $F \subset \mathbb{R}^{d}$, let $C^{\infty}(F)$ denote those $u \in C(F)$ that extend to a C^{∞} - function on an open neighborhood of F.

Remark 23.9. It is easy to prove that $u \in C^{\infty}(F)$ iff there exists $U \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that $u=\left.U\right|_{F}$. Indeed, suppose Ω is an open neighborhood of $F, f \in C^{\infty}(\Omega)$ and $u=\left.f\right|_{F} \in C^{\infty}(F)$. Using a partition of unity argument (making use of the open sets V_{i} constructed in the proof of Theorem 23.7), one may show there exists $\phi \in C^{\infty}(\Omega,[0,1])$ such that $\operatorname{supp}(\phi) \sqsubset \Omega$ and $\phi=1$ on a neighborhood of F. Then $U:=\phi f$ is the desired function.

Theorem 23.10 (Density of $W^{k, p}(\Omega) \cap C^{\infty}(\bar{\Omega})$ in $W^{k, p}(\Omega)$). Let $\Omega \subset \mathbb{R}^{d}$ be a manifold with C^{0} - boundary, then for $k \in \mathbb{N}_{0}$ and $p \in[1, \infty)$, $W^{k, p}\left(\Omega^{o}\right) \cap C^{\infty}(\bar{\Omega})$ is dense in $W^{k, p}\left(\Omega^{0}\right)$. This may alternatively be stated by assuming $\Omega \subset \mathbb{R}^{d}$ is an open set such that $\bar{\Omega}^{o}=\Omega$ and $\bar{\Omega}$ is a manifold with C^{0} - boundary, then $W^{k, p}(\Omega) \cap C^{\infty}(\bar{\Omega})$ is dense in $W^{k, p}(\Omega)$.

Before going into the proof, let us point out that some restriction on the boundary of Ω is needed for assertion in Theorem 23.10 to be valid. For example, suppose

$$
\Omega_{0}:=\left\{x \in \mathbb{R}^{2}: 1<|x|<2\right\} \text { and } \Omega:=\Omega_{0} \backslash\{(1,2) \times\{0\}\}
$$

and $\theta: \Omega \rightarrow(0,2 \pi)$ is defined so that $x_{1}=|x| \cos \theta(x)$ and $x_{2}=|x| \sin \theta(x)$, see Figure 42. Then $\theta \in B C^{\infty}(\Omega) \subset W^{k, \infty}(\Omega)$ for all $k \in \mathbb{N}_{0}$ yet θ can not be

Figure 42. The region Ω_{0} along with a vertical in Ω.
approximated by functions from $C^{\infty}(\bar{\Omega}) \subset B C^{\infty}\left(\Omega_{0}\right)$ in $W^{1, p}(\Omega)$. Indeed, if this were possible, it would follows that $\theta \in W^{1, p}\left(\Omega_{0}\right)$. However, θ is not continuous (and hence not absolutely continuous) on the lines $\left\{x_{1}=\rho\right\} \cap \Omega$ for all $\rho \in(1,2)$ and so by Theorem 19.30, $\theta \notin W^{1, p}\left(\Omega_{0}\right)$.

The following is a warm-up to the proof of Theorem 23.10.
Proposition 23.11 (Warm-up). Let $f: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$ be a continuous function and $\Omega:=\left\{x \in \mathbb{R}^{d}: x_{d}>f\left(x_{1}, \ldots, x_{d-1}\right)\right\}$ and $C^{\infty}(\bar{\Omega})$ denote those $u \in C(\bar{\Omega})$ which are restrictions of C^{∞} - functions defined on an open neighborhood of $\bar{\Omega}$. Then for $p \in[1, \infty), C^{\infty}(\bar{\Omega}) \cap W^{k, p}(\Omega)$ is dense in $W^{k, p}(\Omega)$.

Proof. By Theorem 23.7, it suffices to show than any $u \in C^{\infty}(\Omega) \cap W^{k, p}(\Omega)$ may be approximated by elements of $C^{\infty}(\bar{\Omega}) \cap W^{k, p}(\Omega)$. For $s>0$ let $u_{s}(x):=$ $u\left(x+s e_{d}\right)$. Then it is easily seen that $\partial^{\alpha} u_{s}=\left(\partial^{\alpha} u\right)_{s}$ for all α and hence

$$
u_{s} \in W^{k, p}\left(\Omega-s e_{d}\right) \cap C^{\infty}\left(\Omega-s e_{d}\right) \subset C^{\infty}(\bar{\Omega}) \cap W^{k, p}(\Omega)
$$

These observations along with the strong continuity of translations in L^{p} (see Proposition 11.13), implies $\lim _{s \downarrow 0}\left\|u-u_{s}\right\|_{W^{k, p}(\Omega)}=0$.
23.1.1. Proof of Theorem 23.10. Proof. By Theorem 23.7, it suffices to show than any $u \in C^{\infty}(\Omega) \cap W^{k, p}(\Omega)$ may be approximated by elements of $C^{\infty}(\bar{\Omega}) \cap W^{k, p}(\Omega)$. To understand the main ideas of the proof, suppose that Ω is the triangular region in Figure 43 and suppose that we have used a partition of unity relative to the cover shown so that $u=u_{1}+u_{2}+u_{3}$ with $\operatorname{supp}\left(u_{i}\right) \subset B_{i}$. Now concentrating on

Figure 43. Splitting and moving a function in $C^{\infty}(\Omega)$ so that the result is in $C^{\infty}(\bar{\Omega})$.
u_{1} whose support is depicted as the grey shaded area in Figure 43 . We now simply translate u_{1} in the direction v shown in Figure 43. That is for any small $s>0$, let $w_{s}(x):=u_{1}(x+s v)$, then v_{s} lives on the translated grey area as seen in Figure 43. The function w_{s} extended to be zero off its domain of definition is an element of $C^{\infty}(\bar{\Omega})$ moreover it is easily seen, using the same methods as in the proof of Proposition 23.11, that $w_{s} \rightarrow u_{1}$ in $W^{k, p}(\Omega)$.

The formal proof follows along these same lines. To do this choose an at most countable locally finite cover $\left\{V_{i}\right\}_{i=0}^{\infty}$ of $\bar{\Omega}$ such that $\bar{V}_{0} \subset \Omega$ and for each $i \geq 1$,
after making an affine change of coordinates, $V_{i}=(-\epsilon, \epsilon)^{d}$ for some $\epsilon>0$ and

$$
V_{i} \cap \bar{\Omega}=\left\{(y, z) \in V_{i}: \epsilon>z>f_{i}(y)\right\}
$$

where $f_{i}:(-\epsilon, \epsilon)^{d-1} \rightarrow(-\epsilon, \epsilon)$, see Figure 44 below. Let $\left\{\eta_{i}\right\}_{i=0}^{\infty}$ be a partition of

Figure 44. The shaded area depicts the support of $u_{i}=u \eta_{i}$.
unity subordinated to $\left\{V_{i}\right\}$ and let $u_{i}:=u \eta_{i} \in C^{\infty}\left(V_{i} \cap \Omega\right)$. Given $\delta>0$, we choose s so small that $w_{i}(x):=u_{i}\left(x+s e_{d}\right)$ (extended to be zero off its domain of definition) may be viewed as an element of $C^{\infty}(\bar{\Omega})$ and such that $\left\|u_{i}-w_{i}\right\|_{W^{k, p}(\Omega)}<\delta / 2^{i}$. For $i=0$ we set $w_{0}:=u_{0}=u \eta_{0}$. Then, since $\left\{V_{i}\right\}_{i=1}^{\infty}$ is a locally finite cover of $\bar{\Omega}$, it follows that $w:=\sum_{i=0}^{\infty} w_{i} \in C^{\infty}(\bar{\Omega})$ and further we have

$$
\sum_{i=0}^{\infty}\left\|u_{i}-w_{i}\right\|_{W^{k, p}(\Omega)} \leq \sum_{i=1}^{\infty} \delta / 2^{i}=\delta
$$

This shows

$$
u-w=\sum_{i=0}^{\infty}\left(u_{i}-w_{i}\right) \in W^{k, p}(\Omega)
$$

and $\|u-w\|_{W^{k, p}(\Omega)}<\delta$. Hence $w \in C^{\infty}(\bar{\Omega}) \cap W^{k, p}(\Omega)$ is a δ - approximation of u and since $\delta>0$ arbitrary the proof is complete.
23.2. Difference quotients. Recall from Notation 19.14 that for $h \neq 0$

$$
\partial_{i}^{h} u(x):=\frac{u\left(x+h e^{i}\right)-u(x)}{h} .
$$

Remark 23.12 (Adjoints of Finite Differences). For $u \in L^{p}$ and $g \in L^{q}$,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \partial_{i}^{h} u(x) g(x) d x & =\int_{\mathbb{R}^{d}} \frac{u\left(x+h e_{i}\right)-u(x)}{h} g(x) d x=-\int_{\mathbb{R}^{d}} u(x) \frac{g\left(x-h e_{i}\right)-g(x)}{-h} d x \\
& =-\int_{\mathbb{R}^{d}} u(x) \partial_{i}^{-h} g(x) d x
\end{aligned}
$$

We summarize this identity by $\left(\partial_{i}^{h}\right)^{*}=-\partial_{i}^{-h}$.
Theorem 23.13. Suppose $k \in \mathbb{N}_{0}, \Omega$ is an open subset of \mathbb{R}^{d} and V is an open precompact subset of Ω.
(1) If $1 \leq p<\infty, u \in W^{k, p}(\Omega)$ and $\partial_{i} u \in W^{k, p}(\Omega)$, then

$$
\begin{equation*}
\left\|\partial_{i}^{h} u\right\|_{W^{k, p}(V)} \leq\left\|\partial_{i} u\right\|_{W^{k, p}(\Omega)} \tag{23.8}
\end{equation*}
$$

for all $0<|h|<\frac{1}{2} \operatorname{dist}\left(V, \Omega^{c}\right)$.
(2) Suppose that $1<p \leq \infty, u \in W^{k, p}(\Omega)$ and assume there exists a constant $C(V)<\infty$ such that

$$
\left\|\partial_{i}^{h} u\right\|_{W^{k, p}(V)} \leq C(V) \text { for all } 0<|h|<\frac{1}{2} \operatorname{dist}\left(V, \Omega^{c}\right)
$$

Then $\partial_{i} u \in W^{k, p}(V)$ and $\left\|\partial_{i} u\right\|_{W^{k, p}(V)} \leq C(V)$. Moreover if $C:=$ $\sup _{V \subset \subset \Omega} C(V)<\infty$ then in fact $\partial_{i} u \in W^{k, p}(\Omega)$ and there is a constant $c<\infty$ such that

$$
\left\|\partial_{i} u\right\|_{W^{k, p}(\Omega)} \leq c\left(C+\|u\|_{L^{p}(\Omega)}\right)
$$

Proof. 1. Let $|\alpha| \leq k$, then

$$
\left\|\partial^{\alpha} \partial_{i}^{h} u\right\|_{L^{p}(V)}=\left\|\partial_{i}^{h} \partial^{\alpha} u\right\|_{L^{p}(V)} \leq\left\|\partial_{i} \partial^{\alpha} u\right\|_{L^{p}(\Omega)}
$$

wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily follows.
2. If $\left\|\partial_{i}^{h} u\right\|_{W^{k, p}(V)} \leq C(V)$ then for all $|\alpha| \leq k$,

$$
\left\|\partial_{i}^{h} \partial^{\alpha} u\right\|_{L^{p}(V)}=\left\|\partial^{\alpha} \partial_{i}^{h} u\right\|_{L^{p}(V)} \leq C(V)
$$

So by Theorem 19.22, $\partial_{i} \partial^{\alpha} u \in L^{p}(V)$ and $\left\|\partial_{i} \partial^{\alpha} u\right\|_{L^{p}(V)} \leq C(V)$. From this we conclude that $\left\|\partial^{\beta} u\right\|_{L^{p}(V)} \leq C(V)$ for all $0<|\beta| \leq k+1$ and hence $\|u\|_{W^{k+1, p}(V)} \leq$ $c\left[C(V)+\|u\|_{L^{p}(V)}\right]$ for some constant c.
Notation 23.14. Given a multi-index α and $h \neq 0$, let

$$
\partial_{h}^{\alpha}:=\prod_{i=1}^{d}\left(\partial_{i}^{h}\right)^{\alpha_{i}}
$$

The following theorem is a generalization of Theorem 23.13.
Theorem 23.15. Suppose $k \in \mathbb{N}_{0}, \Omega$ is an open subset of \mathbb{R}^{d}, V is an open precompact subset of Ω and $u \in W^{k, p}(\Omega)$.
(1) If $1 \leq p<\infty$ and $|\alpha| \leq k$, then $\left\|\partial_{h}^{\alpha} u\right\|_{W^{k-|\alpha|}(V)} \leq\|u\|_{W^{k, p}(\Omega)}$ for h small.
(2) If $1<p \leq \infty$ and $\left\|\partial_{h}^{\alpha} u\right\|_{W^{k, p}(V)} \leq C$ for all $|\alpha| \leq j$ and h near 0 , then $u \in W^{k+j, p}(V)$ and $\left\|\partial^{\alpha} u\right\|_{W^{k, p}(V)} \leq C$ for all $|\alpha| \leq j$.
Proof. Since $\partial_{h}^{\alpha}=\prod_{i} \partial_{h}^{\alpha_{i}}$, item 1. follows from Item 1. of Theorem 23.13 and induction on $|\alpha|$.

For Item 2., suppose first that $k=0$ so that $u \in L^{p}(\Omega)$ and $\left\|\partial_{h}^{\alpha} u\right\|_{L^{p}(V)} \leq C$ for $|\alpha| \leq j$. Then by Proposition 19.16, there exists $\left\{h_{l}\right\}_{l=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ and $v \in L^{p}(V)$ such that $h_{l} \rightarrow 0$ and $\lim _{l \rightarrow \infty}\left\langle\partial_{h_{e}}^{\alpha} u, \phi\right\rangle=\langle v, \phi\rangle$ for all $\phi \in C_{c}^{\infty}(V)$. Using Remark 23.12,

$$
\langle v, \phi\rangle=\lim _{l \rightarrow \infty}\left\langle\partial_{h_{\ell}}^{\alpha} u, \phi\right\rangle=(-1)^{|\alpha|} \lim _{l \rightarrow \infty}\left\langle u, \partial_{-h_{\ell}}^{\alpha} \phi\right\rangle=(-1)^{|\alpha|}\left\langle u, \partial^{\alpha} \phi\right\rangle
$$

which shows $\partial^{\alpha} u=v \in L^{p}(V)$. Moreover, since weak convergence decreases norms,

$$
\left\|\partial^{\alpha} u\right\|_{L^{p}(V)}=\|v\|_{L^{p}(V)} \leq C
$$

For the general case if $k \in \mathbb{N}, u \in W^{k, p}(\Omega)$ such that $\left\|\partial_{h}^{\alpha} u\right\|_{W^{k, p}(V)} \leq C$, then (for $p \in(1, \infty)$, the case $p=\infty$ is similar and left to the reader)

$$
\sum_{|\beta| \leq k}\left\|\partial_{h}^{\alpha} \partial^{\beta} u\right\|_{L^{p}(V)}^{p}=\sum_{|\beta| \leq k}\left\|\partial^{\beta} \partial_{h}^{\alpha} u\right\|_{L^{p}(V)}^{p}=\left\|\partial_{h}^{\alpha} u\right\|_{W^{k, p}(V)}^{p} \leq C^{p}
$$

As above this implies $\partial^{\alpha} \partial^{\beta} u \in L^{p}(V)$ for all $|\alpha| \leq j$ and $|\beta| \leq k$ and that

$$
\left\|\partial^{\alpha} u\right\|_{W^{k, p}(V)}^{p}=\sum_{|\beta| \leq k}\left\|\partial^{\alpha} \partial^{\beta} u\right\|_{L^{p}(V)}^{p} \leq C^{p}
$$

23.3. Sobolev Spaces on Compact Manifolds.

Theorem 23.16 (Change of Variables). Suppose that U and V are open subsets of $\mathbb{R}^{d}, T \in C^{k}(U, V)$ be a C^{k} - diffeomorphism such that $\left\|\partial^{\alpha} T\right\|_{B C(U)}<\infty$ for all $1 \leq|\alpha| \leq k$ and $\epsilon:=\inf _{U}\left|\operatorname{det} T^{\prime}\right|>0$. Then the map $T^{*}: W^{k, p}(V) \rightarrow W^{k, p}(U)$ defined by $u \in W^{k, p}(V) \rightarrow T^{*} u:=u \circ T \in W^{k, p}(U)$ is well defined and is bounded.

Proof. For $u \in W^{k, p}(V) \cap C^{\infty}(V)$, repeated use of the chain and product rule implies,

$$
\begin{align*}
&(u \circ T)^{\prime}=\left(u^{\prime} \circ T\right) T^{\prime} \\
&(u \circ T)^{\prime \prime}=\left(u^{\prime} \circ T\right)^{\prime} T^{\prime}+\left(u^{\prime} \circ T\right) T^{\prime \prime}=\left(u^{\prime \prime} \circ T\right) T^{\prime} \otimes T^{\prime}+\left(u^{\prime} \circ T\right) T^{\prime \prime} \\
&(u \circ T)^{(3)}=\left(u^{(3)} \circ T\right) T^{\prime} \otimes T^{\prime} \otimes T^{\prime}+\left(u^{\prime \prime} \circ T\right)\left(T^{\prime} \otimes T^{\prime}\right)^{\prime} \\
&+\left(u^{\prime \prime} \circ T\right) T^{\prime} \otimes T^{\prime \prime}+\left(u^{\prime} \circ T\right) T^{(3)} \\
& \vdots \tag{23.9}\\
&3.9)
\end{align*}
$$

This equation and the boundedness assumptions on $T^{(j)}$ for $1 \leq j \leq k$ implies there is a finite constant K such that

$$
\left|(u \circ T)^{(l)}\right| \leq K \sum_{j=1}^{l}\left|u^{(j)} \circ T\right| \text { for all } 1 \leq l \leq k
$$

By Hölder's inequality for sums we conclude there is a constant K_{p} such that

$$
\sum_{|\alpha| \leq k}\left|\partial^{\alpha}(u \circ T)\right|^{p} \leq K_{p} \sum_{|\alpha| \leq k}\left|\partial^{\alpha} u\right|^{p} \circ T
$$

and therefore

$$
\|u \circ T\|_{W^{k, p}(U)}^{p} \leq K_{p} \sum_{|\alpha| \leq k} \int_{U}\left|\partial^{\alpha} u\right|^{p}(T(x)) d x
$$

Making the change of variables, $y=T(x)$ and using

$$
d y=\left|\operatorname{det} T^{\prime}(x)\right| d x \geq \epsilon d x
$$

we find

$$
\begin{align*}
\|u \circ T\|_{W^{k, p}(U)}^{p} & \leq K_{p} \sum_{|\alpha| \leq k} \int_{U}\left|\partial^{\alpha} u\right|^{p}(T(x)) d x \\
& \leq \frac{K_{p}}{\epsilon} \sum_{|\alpha| \leq k} \int_{V}\left|\partial^{\alpha} u\right|^{p}(y) d y=\frac{K_{p}}{\epsilon}\|u\|_{W^{k, p}(V)}^{p} \tag{23.10}
\end{align*}
$$

This shows that $T^{*}: W^{k, p}(V) \cap C^{\infty}(V) \rightarrow W^{k, p}(U) \cap C^{\infty}(U)$ is a bounded operator. For general $u \in W^{k, p}(V)$, we may choose $u_{n} \in W^{k, p}(V) \cap C^{\infty}(V)$ such that $u_{n} \rightarrow u$ in $W^{k, p}(V)$. Since T^{*} is bounded, it follows that $T^{*} u_{n}$ is Cauchy in $W^{k, p}(U)$ and hence convergent. Finally, using the change of variables theorem again we know,

$$
\left\|T^{*} u-T^{*} u_{n}\right\|_{L^{p}(V)}^{p} \leq \epsilon^{-1}\left\|u-u_{n}\right\|_{L^{p}(U)}^{p} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and therefore $T^{*} u=\lim _{n \rightarrow \infty} T^{*} u_{n}$ and by continuity Eq. (23.10) still holds for $u \in W^{k, p}(V)$.

Let M be a compact C^{k} - manifolds without boundary, i.e. M is a compact Hausdorff space with a collection of charts x in an "atlas" \mathcal{A} such that $x: D(x) \subset_{o}$ $M \rightarrow R(x) \subset_{o} \mathbb{R}^{d}$ is a homeomorphism such that

$$
\left.x \circ y^{-1} \in C^{k}(y(D(x) \cap D(y))), x(D(x) \cap D(y))\right) \text { for all } x, y \in \mathcal{A} .
$$

Definition 23.17. Let $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{A}$ such that $M=\cup_{i=1}^{N} D\left(x_{i}\right)$ and let $\left\{\phi_{i}\right\}_{i=1}^{N}$ be a partition of unity subordinate do the cover $\left\{D\left(x_{i}\right)\right\}_{i=1}^{N}$. We now define $u \in$ $W^{k, p}(M)$ if $u: M \rightarrow \mathbb{C}$ is a function such that

$$
\begin{equation*}
\|u\|_{W^{k, p}(M)}:=\sum_{i=1}^{N}\left\|\left(\phi_{i} u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)}<\infty . \tag{23.11}
\end{equation*}
$$

Since $\|\cdot\|_{W^{k, p}\left(R\left(x_{i}\right)\right)}$ is a norm for all i, it easily verified that $\|\cdot\|_{W^{k, p}(M)}$ is a norm on $W^{k, p}(M)$.

Proposition 23.18. If $f \in C^{k}(M)$ and $u \in W^{k, p}(M)$ then $f u \in W^{k, p}(M)$ and

$$
\begin{equation*}
\|f u\|_{W^{k, p}(M)} \leq C\|u\|_{W^{k, p}(M)} \tag{23.12}
\end{equation*}
$$

where C is a finite constant not depending on u. Recall that $f: M \rightarrow \mathbb{R}$ is said to be C^{j} with $j \leq k$ if $f \circ x^{-1} \in C^{j}(R(x), \mathbb{R})$ for all $x \in \mathcal{A}$.

Proof. Since $\left[f \circ x_{i}^{-1}\right]$ has bounded derivatives on $\operatorname{supp}\left(\phi_{i} \circ x_{i}^{-1}\right)$, it follows from Proposition 23.6 that there is a constant $C_{i}<\infty$ such that

$$
\left\|\left(\phi_{i} f u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)}=\left\|\left[f \circ x_{i}^{-1}\right]\left(\phi_{i} u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)} \leq C_{i}\left\|\left(\phi_{i} u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)}
$$

and summing this equation on i shows Eq. (23.12) holds with $C:=\max _{i} C_{i}$.
Theorem 23.19. If $\left\{y_{j}\right\}_{j=1}^{K} \subset \mathcal{A}$ such that $M=\cup_{j=1}^{K} D\left(y_{j}\right)$ and $\left\{\psi_{j}\right\}_{j=1}^{K}$ is a partition of unity subordinate to the cover $\left\{D\left(y_{j}\right)\right\}_{j=1}^{K}$, then the norm

$$
\begin{equation*}
|u|_{W^{k, p}(M)}:=\sum_{j=1}^{K}\left\|\left(\psi_{j} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \tag{23.13}
\end{equation*}
$$

is equivalent to the norm in Eq. (23.11). That is to say the space $W^{k, p}(M)$ along with its topology is well defined independent of the choice of charts and partitions of unity used in defining the norm on $W^{k, p}(M)$.

Proof. Since $|\cdot|_{W^{k, p}(M)}$ is a norm,

$$
\begin{align*}
|u|_{W^{k, p}(M)} & =\left|\sum_{i=1}^{N} \phi_{i} u\right|_{W^{k, p}(M)} \leq \sum_{i=1}^{N}\left|\phi_{i} u\right|_{W^{k, p}(M)} \\
& =\sum_{j=1}^{K}\left\|\sum_{i=1}^{N}\left(\psi_{j} \phi_{i} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \\
& \leq \sum_{j=1}^{K} \sum_{i=1}^{N}\left\|\left(\psi_{j} \phi_{i} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \tag{23.14}
\end{align*}
$$

and since $x_{i} \circ y_{j}^{-1}$ and $y_{j} \circ x_{i}^{-1}$ are C^{k} diffeomorphism and the sets $y_{j}\left(\operatorname{supp}\left(\phi_{i}\right) \cap \operatorname{supp}\left(\psi_{j}\right)\right)$ and $x_{i}\left(\operatorname{supp}\left(\phi_{i}\right) \cap \operatorname{supp}\left(\psi_{j}\right)\right)$ are compact, an application of Theorem 23.16 and Proposition 23.6 shows there are finite constants $C_{i j}$ such that

$$
\left\|\left(\psi_{j} \phi_{i} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \leq C_{i j}\left\|\left(\psi_{j} \phi_{i} u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)} \leq C_{i j}\left\|\phi_{i} u \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)}
$$

which combined with Eq. (23.14) implies

$$
|u|_{W^{k, p}(M)} \leq \sum_{j=1}^{K} \sum_{i=1}^{N} C_{i j}\left\|\phi_{i} u \circ x_{i}^{-1}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)} \leq C\|u\|_{W^{k, p}(M)}
$$

where $C:=\max _{i} \sum_{j=1}^{K} C_{i j}<\infty$. Analogously, one shows there is a constant $K<\infty$ such that $\|u\|_{W^{k, p}(M)} \leq K|u|_{W^{k, p}(M)}$.

Lemma 23.20. Suppose $x \in \mathcal{A}(M)$ and $U \subset_{o} M$ such that $U \subset \bar{U} \subset D(x)$, then there is a constant $C<\infty$ such that

$$
\begin{equation*}
\left\|u \circ x^{-1}\right\|_{W^{k, p}(x(U))} \leq C\|u\|_{W^{k, p}(M)} \text { for all } u \in W^{k, p}(M) \tag{23.15}
\end{equation*}
$$

Conversely a function $u: M \rightarrow \mathbb{C}$ with $\operatorname{supp}(u) \subset U$ is in $W^{k, p}(M)$ iff $\left\|u \circ x^{-1}\right\|_{W^{k, p}(x(U))}<\infty$ and in any case there is a finite constant such that

$$
\begin{equation*}
\|u\|_{W^{k, p}(M)} \leq C\left\|u \circ x^{-1}\right\|_{W^{k, p}(x(U))} \tag{23.16}
\end{equation*}
$$

Proof. Choose charts $y_{1}:=x, y_{2}, \ldots, y_{K} \in \mathcal{A}$ such that $\left\{D\left(y_{i}\right)\right\}_{j=1}^{K}$ is an open cover of M and choose a partition of unity $\left\{\psi_{j}\right\}_{j=1}^{K}$ subordinate to the cover $\left\{D\left(y_{j}\right)\right\}_{j=1}^{K}$ such that $\psi_{1}=1$ on a neighborhood of \bar{U}. To construct such a partition of unity choose $U_{j} \subset_{o} M$ such that $U_{j} \subset \bar{U}_{j} \subset D\left(y_{j}\right), \bar{U} \subset U_{1}$ and $\cup_{j=1}^{K} U_{j}=M$ and for each j let $\eta_{j} \in C_{c}^{k}\left(D\left(y_{j}\right),[0,1]\right)$ such that $\eta_{j}=1$ on a neighborhood of \bar{U}_{j}. Then define $\psi_{j}:=\eta_{j}\left(1-\eta_{0}\right) \cdots\left(1-\eta_{j-1}\right)$ where by convention $\eta_{0} \equiv 0$. Then $\left\{\psi_{j}\right\}_{j=1}^{K}$ is the desired partition, indeed by induction one shows

$$
1-\sum_{j=1}^{l} \psi_{j}=\left(1-\eta_{1}\right) \cdots\left(1-\eta_{l}\right)
$$

and in particular

$$
1-\sum_{j=1}^{K} \psi_{j}=\left(1-\eta_{1}\right) \cdots\left(1-\eta_{K}\right)=0
$$

Using Theorem 23.19, it follows that

$$
\begin{aligned}
\left\|u \circ x^{-1}\right\|_{W^{k, p}(x(U))} & =\left\|\left(\psi_{1} u\right) \circ x^{-1}\right\|_{W^{k, p}(x(U))} \\
& \leq\left\|\left(\psi_{1} u\right) \circ x^{-1}\right\|_{W^{k, p}\left(R\left(y_{1}\right)\right)} \leq \sum_{j=1}^{K}\left\|\left(\psi_{j} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \\
& =|u|_{W^{k, p}(M)} \leq C\|u\|_{W^{k, p}(M)}
\end{aligned}
$$

which proves Eq. (23.15).
Using Theorems 23.19 and 23.16 there are constants C_{j} for $j=0,1,2 \ldots, N$ such that

$$
\begin{aligned}
\|u\|_{W^{k, p}(M)} & \leq C_{0} \sum_{j=1}^{K}\left\|\left(\psi_{j} u\right) \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)}=C_{0} \sum_{j=1}^{K}\left\|\left(\psi_{j} u\right) \circ y_{1}^{-1} \circ y_{1} \circ y_{j}^{-1}\right\|_{W^{k, p}\left(R\left(y_{j}\right)\right)} \\
& \leq C_{0} \sum_{j=1}^{K} C_{j}\left\|\left(\psi_{j} u\right) \circ x^{-1}\right\|_{W^{k, p}\left(R\left(y_{1}\right)\right)}=C_{0} \sum_{j=1}^{K} C_{j}\left\|\psi_{j} \circ x^{-1} \cdot u \circ x^{-1}\right\|_{W^{k, p}\left(R\left(y_{1}\right)\right)}
\end{aligned}
$$

This inequality along with K - applications of Proposition 23.6 proves Eq. (23.16).

Theorem 23.21. The space $\left(W^{k, p}(M),\|\cdot\|_{W^{k, p}(M)}\right)$ is a Banach space.
Proof. Let $\left\{x_{i}\right\}_{i=1}^{N} \subset \mathcal{A}$ and $\left\{\phi_{i}\right\}_{i=1}^{N}$ be as in Definition 23.17 and choose $U_{i} \subset_{o}$ M such that $\operatorname{supp}\left(\phi_{i}\right) \subset U_{i} \subset \bar{U}_{i} \subset D\left(x_{i}\right)$. If $\left\{u_{n}\right\}_{n=1}^{\infty} \subset W^{k, p}(M)$ is a Cauchy sequence, then by Lemma 23.20, $\left\{u_{n} \circ x_{i}^{-1}\right\}_{n=1}^{\infty} \subset W^{k, p}\left(x_{i}\left(U_{i}\right)\right)$ is a Cauchy sequence for all i. Since $W^{k, p}\left(x_{i}\left(U_{i}\right)\right)$ is complete, there exists $v_{i} \in W^{k, p}\left(x_{i}\left(U_{i}\right)\right)$ such that $u_{n} \circ x_{i}^{-1} \rightarrow \tilde{v}_{i}$ in $W^{k, p}\left(x_{i}\left(U_{i}\right)\right)$. For each i let $v_{i}:=\phi_{i}\left(\tilde{v}_{i} \circ x_{i}\right)$ and notice by Lemma 23.20 that

$$
\left\|v_{i}\right\|_{W^{k, p}(M)} \leq C\left\|v_{i} \circ x_{i}^{-1}\right\|_{W^{k, p}\left(x_{i}\left(U_{i}\right)\right)}=C\left\|\tilde{v}_{i}\right\|_{W^{k, p}\left(x_{i}\left(U_{i}\right)\right)}<\infty
$$

so that $u:=\sum_{i=1}^{N} v_{i} \in W^{k, p}(M)$. Since $\operatorname{supp}\left(v_{i}-\phi_{i} u_{n}\right) \subset U_{i}$, it follows that

$$
\begin{aligned}
\left\|u-u_{n}\right\|_{W^{k, p}(M)} & =\left\|\sum_{i=1}^{N} v_{i}-\sum_{i=1}^{N} \phi_{i} u_{n}\right\|_{W^{k, p}(M)} \\
& \leq \sum_{i=1}^{N}\left\|v_{i}-\phi_{i} u_{n}\right\|_{W^{k, p}(M)} \leq C \sum_{i=1}^{N}\left\|\left[\phi_{i}\left(\tilde{v}_{i} \circ x_{i}-u_{n}\right)\right] \circ x_{i}^{-1}\right\|_{W^{k, p}\left(x_{i}\left(U_{i}\right)\right)} \\
& =C \sum_{i=1}^{N}\left\|\left[\phi_{i} \circ x_{i}^{-1}\left(\tilde{v}_{i}-u_{n} \circ x_{i}^{-1}\right)\right]\right\|_{W^{k, p}\left(x_{i}\left(U_{i}\right)\right)} \\
& \leq C \sum_{i=1}^{N} C_{i}\left\|\tilde{v}_{i}-u_{n} \circ x_{i}^{-1}\right\|_{W^{k, p}\left(x_{i}\left(U_{i}\right)\right)} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

wherein the last inequality we have used Proposition 23.6 again.
23.4. Trace Theorems. For many more general results on this subject matter, see E. Stein [7, Chapter VI].

Lemma 23.22. Suppose $k \geq 1, \mathbb{H}^{d}:=\left\{x \in \mathbb{R}^{d}: x_{d}>0\right\} \subset_{o} \mathbb{R}^{d}, u \in C_{c}^{k}\left(\overline{\mathbb{H}^{d}}\right)$ and D is the smallest constant so that $\operatorname{supp}(u) \subset \mathbb{R}^{d-1} \times[0, D]$. Then there is a constant $C=C(p, k, D, d)$ such that

$$
\begin{equation*}
\|u\|_{W^{k-1, p}\left(\partial \mathbb{H}^{d}\right)} \leq C(p, D, k, d)\|u\|_{W^{k, p}\left(\mathbb{H}^{d}\right)} . \tag{23.17}
\end{equation*}
$$

Proof. Write $x \in \overline{\mathbb{H}^{d}}$ as $x=(y, z) \in \mathbb{R}^{d-1} \times[0, \infty)$, then by the fundamental theorem of calculus we have for any $\alpha \in \mathbb{N}_{0}^{d-1}$ with $|\alpha| \leq k-1$ that

$$
\begin{equation*}
\partial_{y}^{\alpha} u(y, 0)=\partial_{y}^{\alpha} u(y, z)-\int_{0}^{z} \partial_{y}^{\alpha} u_{t}(y, t) d t . \tag{23.18}
\end{equation*}
$$

Therefore, for $p \in[1, \infty)$

$$
\begin{aligned}
\left|\partial_{y}^{\alpha} u(y, 0)\right|^{p} & \leq 2^{p / q} \cdot\left[\left|\partial_{y}^{\alpha} u(y, z)\right|^{p}+\left|\int_{0}^{z} \partial_{y}^{\alpha} u_{t}(y, t) d t\right|^{p}\right] \\
& \leq 2^{p / q} \cdot\left[\left|\partial_{y}^{\alpha} u(y, z)\right|^{p}+\int_{0}^{z}\left|\partial_{y}^{\alpha} u_{t}(y, t)\right|^{p} d t \cdot|z|^{q / p}\right] \\
& \leq 2^{p-1} \cdot\left[\left|\partial_{y}^{\alpha} u(y, z)\right|^{p}+\int_{0}^{D}\left|\partial_{y}^{\alpha} u_{t}(y, t)\right|^{p} d t \cdot z^{p-1}\right]
\end{aligned}
$$

where $q:=\frac{p}{p-1}$ is the conjugate exponent to p. Integrating this inequality over $\mathbb{R}^{d-1} \times[0, D]$ implies

$$
D\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\partial \mathbb{H}^{d}\right)}^{p} \leq 2^{p-1}\left[\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}^{p}+\left\|\partial^{\alpha+e_{d}} u\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}^{p} \frac{D^{p}}{p}\right]
$$

or equivalently that

$$
\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\partial \mathbb{H}^{d}\right)}^{p} \leq 2^{p-1} D^{-1}\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}^{p}+2^{p-1} \frac{D^{p-1}}{p}\left\|\partial^{\alpha+e_{d}} u\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}^{p}
$$

from which implies Eq. (23.17).
Similarly, if $p=\infty$, then from Eq. (23.18) we find

$$
\left\|\partial^{\alpha} u\right\|_{L^{\infty}\left(\partial \mathbb{H}^{d}\right)}=\left\|\partial^{\alpha} u\right\|_{L^{\infty}\left(\mathbb{H}^{d}\right)}+D\left\|\partial^{\alpha+e_{d}} u\right\|_{L^{\infty}\left(\mathbb{H}^{d}\right)}
$$

and again the result follows.
Theorem 23.23 (Trace Theorem). Suppose $k \geq 1$ and $\Omega \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega}$ is a compact manifold with C^{k} - boundary. Then there exists a unique linear map $T: W^{k, p}(\Omega) \rightarrow W^{k-1, p}(\partial \Omega)$ such that $T u=\left.u\right|_{\partial \Omega}$ for all $u \in C^{k}(\bar{\Omega})$.

Proof. Choose a covering $\left\{V_{i}\right\}_{i=0}^{N}$ of $\bar{\Omega}$ such that $\bar{V}_{0} \subset \Omega$ and for each $i \geq 1$, there is C^{k} - diffeomorphism $x_{i}: V_{i} \rightarrow R\left(x_{i}\right) \subset_{o} \mathbb{R}^{d}$ such that

$$
\begin{aligned}
x_{i}\left(\partial \Omega \cap V_{i}\right) & =R\left(x_{i}\right) \cap \mathrm{bd}\left(\mathbb{H}^{d}\right) \text { and } \\
x_{i}\left(\Omega \cap V_{i}\right) & =R\left(x_{i}\right) \cap \mathbb{H}^{d}
\end{aligned}
$$

as in Figure 45 . Further choose $\phi_{i} \in C_{c}^{\infty}\left(V_{i},[0,1]\right)$ such that $\sum_{i=0}^{N} \phi_{i}=1$ on a

Figure 45. Covering Ω (the shaded region) as described in the text.
neighborhood of $\bar{\Omega}$ and set $y_{i}:=\left.x_{i}\right|_{\partial \Omega \cap V_{i}}$ for $i \geq 1$. Given $u \in C^{k}(\bar{\Omega})$, we compute

$$
\begin{aligned}
\left\|\left.u\right|_{\partial \bar{\Omega}}\right\|_{W^{k-1, p}(\partial \bar{\Omega})} & =\sum_{i=1}^{N}\left\|\left.\left(\phi_{i} u\right)\right|_{\partial \bar{\Omega}} \circ y_{i}^{-1}\right\|_{W^{k-1, p}\left(R\left(x_{i}\right) \cap \mathrm{bd}\left(\mathbb{H}^{d}\right)\right)} \\
& =\sum_{i=1}^{N}\left\|\left.\left[\left(\phi_{i} u\right) \circ x_{i}^{-1}\right]\right|_{\mathrm{bd}\left(\mathbb{H}^{d}\right)}\right\|_{W^{k-1, p}\left(R\left(x_{i}\right) \cap \mathrm{bd}\left(\mathbb{H}^{d}\right)\right)} \\
& \leq \sum_{i=1}^{N} C_{i}\left\|\left[\left(\phi_{i} u\right) \circ x_{i}^{-1}\right]\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)} \\
& \leq \max C_{i} \cdot \sum_{i=1}^{N}\left\|\left[\left(\phi_{i} u\right) \circ x_{i}^{-1}\right]\right\|_{W^{k, p}\left(R\left(x_{i}\right) \cap \mathbb{H}^{d}\right)}+\left\|\left[\left(\phi_{0} u\right) \circ x_{0}^{-1}\right]\right\|_{W^{k, p}\left(R\left(x_{0}\right)\right)} \\
& \leq C\|u\|_{W^{k, p}(\Omega)}
\end{aligned}
$$

where $C=\max \left\{1, C_{1}, \ldots, C_{N}\right\}$. The result now follows by the B.L.T. Theorem 4.1 and the fact that $C^{k}(\bar{\Omega})$ is dense inside $W^{k, p}(\Omega)$.

Notation 23.24. In the sequel will often abuse notation and simply write $\left.u\right|_{\partial \bar{\Omega}}$ for the "function" $T u \in W^{k-1, p}(\partial \bar{\Omega})$.

Proposition 23.25 (Integration by parts). Suppose $\Omega \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega}$ is a compact manifold with C^{1} - boundary, $p \in[1, \infty]$ and $q=\frac{p}{p-1}$ is the conjugate exponent. Then for $u \in W^{k, p}(\Omega)$ and $v \in W^{k, q}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \partial_{i} u \cdot v d m=-\int_{\Omega} u \cdot \partial_{i} v d m+\left.\left.\int_{\partial \bar{\Omega}} u\right|_{\partial \bar{\Omega}} \cdot v\right|_{\partial \bar{\Omega}} n_{i} d \sigma \tag{23.19}
\end{equation*}
$$

where $n: \partial \bar{\Omega} \rightarrow \mathbb{R}^{d}$ is unit outward pointing norm to $\partial \bar{\Omega}$.

Proof. Equation 23.19 holds for $u, v \in C^{2}(\bar{\Omega})$ and therefore for $(u, v) \in$ $W^{k, p}(\Omega) \times W^{k, q}(\Omega)$ since both sides of the equality are continuous in $(u, v) \in$ $W^{k, p}(\Omega) \times W^{k, q}(\Omega)$ as the reader should verify.
Definition 23.26. Let $W_{0}^{k, p}(\Omega):=\overline{C_{c}^{\infty}(\Omega)} W^{k, p}(\Omega)$ be the closure of $C_{c}^{\infty}(\Omega)$ inside $W^{k, p}(\Omega)$.
Remark 23.27. Notice that if $T: W^{k, p}(\Omega) \rightarrow W^{k-1, p}(\partial \bar{\Omega})$ is the trace operator in Theorem 23.23, then $T\left(W_{0}^{k, p}(\Omega)\right)=\{0\} \subset W^{k-1, p}(\partial \bar{\Omega})$ since $T u=\left.u\right|_{\partial \bar{\Omega}}=0$ for all $u \in C_{c}^{\infty}(\Omega)$.

Corollary 23.28. Suppose $\Omega \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega}$ is a compact manifold with $C^{1}-$ boundary, $p \in[1, \infty]$ and $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ is the trace operator of Theorem 23.23. Then $W_{0}^{1, p}(\Omega)=\operatorname{Nul}(T)$.

Proof. It has already been observed in Remark 23.27 that $W_{0}^{1, p}(\Omega) \subset \operatorname{Nul}(T)$. Suppose $u \in \operatorname{Nul}(T)$ and $\operatorname{supp}(u)$ is compactly contained in Ω. The mollification $u_{\epsilon}(x)$ defined in Proposition 23.4 will be in $C_{c}^{\infty}(\Omega)$ for $\epsilon>0$ sufficiently small and by Proposition 23.4, $u_{\epsilon} \rightarrow u$ in $W^{1, p}(\Omega)$. Thus $u \in W_{0}^{1, p}(\Omega)$. We will now give two proofs for $\operatorname{Nul}(T) \subset W_{0}^{1, p}(\Omega)$.

Proof 1. For $u \in \operatorname{Nul}(T) \subset W^{1, p}(\Omega)$ define

$$
\tilde{u}(x)=\left\{\begin{array}{ccc}
u(x) & \text { for } & x \in \bar{\Omega} \\
0 & \text { for } & x \notin \bar{\Omega}
\end{array}\right.
$$

Then clearly $\tilde{u} \in L^{p}\left(\mathbb{R}^{d}\right)$ and moreover by Proposition 23.25 , for $v \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\int_{\mathbb{R}^{d}} \tilde{u} \cdot \partial_{i} v d m=\int_{\Omega} u \cdot \partial_{i} v d m=-\int_{\Omega} \partial_{i} u \cdot v d m
$$

from which it follows that $\partial_{i} \tilde{u}$ exists weakly in $L^{p}\left(\mathbb{R}^{d}\right)$ and $\partial_{i} \tilde{u}=1_{\Omega} \partial_{i} u$ a.e.. Thus $\tilde{u} \in W^{1, p}\left(\mathbb{R}^{d}\right)$ with $\|\tilde{u}\|_{W^{1, p}\left(\mathbb{R}^{d}\right)}=\|u\|_{W^{1, p}(\Omega)}$ and $\operatorname{supp}(\tilde{u}) \subset \Omega$.

Choose $V \in C_{c}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $V(x) \cdot n(x)>0$ for all $x \in \partial \bar{\Omega}$ and define

$$
\tilde{u}_{\epsilon}(x)=T_{\epsilon} \tilde{u}(x):=\tilde{u} \circ e^{\epsilon V}(x)
$$

Notice that $\operatorname{supp}\left(\tilde{u}_{\epsilon}\right) \subset e^{-\epsilon V}(\bar{\Omega}) \sqsubset \sqsubset \Omega$ for all ϵ sufficiently small. By the change of variables Theorem 23.16, we know that $\tilde{u}_{\epsilon} \in W^{1, p}(\Omega)$ and $\operatorname{since} \operatorname{supp}\left(\tilde{u}_{\epsilon}\right)$ is a compact subset of Ω, it follows from the first paragraph that $\tilde{u}_{\epsilon} \in W_{0}^{1, p}(\Omega)$.

To so finish this proof, it only remains to show $\tilde{u}_{\epsilon} \rightarrow u$ in $W^{1, p}(\Omega)$ as $\epsilon \downarrow 0$. Looking at the proof of Theorem 23.16, the reader may show there are constants $\delta>0$ and $C<\infty$ such that

$$
\begin{equation*}
\left\|T_{\epsilon} v\right\|_{W^{1, p}\left(\mathbb{R}^{d}\right)} \leq C\|v\|_{W^{1, p}\left(\mathbb{R}^{d}\right)} \text { for all } v \in W^{1, p}\left(\mathbb{R}^{d}\right) \tag{23.20}
\end{equation*}
$$

By direct computation along with the dominated convergence it may be shown that

$$
\begin{equation*}
T_{\epsilon} v \rightarrow v \text { in } W^{1, p}\left(\mathbb{R}^{d}\right) \text { for all } v \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \tag{23.21}
\end{equation*}
$$

As is now standard, Eqs. (23.20) and (23.21) along with the density of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ in $W^{1, p}\left(\mathbb{R}^{d}\right)$ allows us to conclude $T_{\epsilon} v \rightarrow v$ in $W^{1, p}\left(\mathbb{R}^{d}\right)$ for all $v \in W^{1, p}\left(\mathbb{R}^{d}\right)$ which completes the proof that $\tilde{u}_{\epsilon} \rightarrow u$ in $W^{1, p}(\Omega)$ as $\epsilon \rightarrow 0$.

Proof 2. As in the first proof it suffices to show that any $u \in W_{0}^{1, p}(\Omega)$ may be approximated by $v \in W^{1, p}(\Omega)$ with $\operatorname{supp}(v) \sqsubset \Omega$. As above extend u to Ω^{c}
by 0 so that $\tilde{u} \in W^{1, p}\left(\mathbb{R}^{d}\right)$. Using the notation in the proof of 23.23 , it suffices to show $u_{i}:=\phi_{i} \tilde{u} \in W^{1, p}\left(\mathbb{R}^{d}\right)$ may be approximated by $u_{i} \in W^{1, p}(\Omega)$ with $\operatorname{supp}\left(u_{i}\right) \sqsubset \Omega$. Using the change of variables Theorem 23.16 , the problem may be reduced to working with $w_{i}=u_{i} \circ x_{i}^{-1}$ on $B=R\left(x_{i}\right)$. But in this case we need only define $w_{i}^{\epsilon}(y):=w_{i}^{\epsilon}\left(y-\epsilon e_{d}\right)$ for $\epsilon>0$ sufficiently small. Then $\operatorname{supp}\left(w_{i}^{\epsilon}\right) \subset \mathbb{H}^{d} \cap B$ and as we have already seen $w_{i}^{\epsilon} \rightarrow w_{i}$ in $W^{1, p}\left(\mathbb{H}^{d}\right)$. Thus $u_{i}^{\epsilon}:=w_{i}^{\epsilon} \circ x_{i} \in W^{1, p}(\Omega)$, $u_{i}^{\epsilon} \rightarrow u_{i}$ as $\epsilon \downarrow 0$ with $\operatorname{supp}\left(u_{i}\right) \sqsubset \Omega$.

23.5. Extension Theorems.

Lemma 23.29. Let $R>0, B:=B(0, R) \subset \mathbb{R}^{d}, B^{ \pm}:=\left\{x \in B: \pm x_{d}>0\right\}$ and $\Gamma:=\left\{x \in B: x_{d}=0\right\}$. Suppose that $u \in C^{k}(B \backslash \Gamma) \cap C(B)$ and for each $|\alpha| \leq k$, $\partial^{\alpha} u$ extends to a continuous function v_{α} on B. Then $u \in C^{k}(B)$ and $\partial^{\alpha} u=v_{\alpha}$ for all $|\alpha| \leq k$.

Proof. For $x \in \Gamma$ and $i<d$, then by continuity, the fundamental theorem of calculus and the dominated convergence theorem,

$$
\begin{aligned}
u\left(x+\Delta e_{i}\right)-u(x) & =\lim _{\substack{y \rightarrow x \\
y \in B \backslash \Gamma}}\left[u\left(y+\Delta e_{i}\right)-u(y)\right]=\lim _{\substack{y \rightarrow x \\
y \in B \backslash \Gamma}} \int_{0}^{\Delta} \partial_{i} u\left(y+s e_{i}\right) d s \\
& =\lim _{\substack{y \rightarrow x \\
y \in B \backslash \Gamma}} \int_{0}^{\Delta} v_{e_{i}}\left(y+s e_{i}\right) d s=\int_{0}^{\Delta} v_{e_{i}}\left(x+s e_{i}\right) d s
\end{aligned}
$$

and similarly, for $i=d$,

$$
\begin{aligned}
u\left(x+\Delta e_{d}\right)-u(x) & =\lim _{\substack{y \rightarrow x \\
y \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}}\left[u\left(y+\Delta e_{d}\right)-u(y)\right]=\lim _{\substack{y \rightarrow x \\
y \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}} \int_{0}^{\Delta} \partial_{d} u\left(y+s e_{d}\right) d s \\
& =\lim _{\substack{y \rightarrow x \\
y \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}} \int_{0}^{\Delta} v_{e_{d}}\left(y+s e_{d}\right) d s=\int_{0}^{\Delta} v_{e_{d}}\left(x+s e_{d}\right) d s
\end{aligned}
$$

These two equations show, for each $i, \partial_{i} u(x)$ exits and $\partial_{i} u(x)=v_{e_{i}}(x)$. Hence we have shown $u \in C^{1}(B)$.

Suppose it has been proven for some $l \geq 1$ that $\partial^{\alpha} u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq l<k$. Then applying the results of the previous paragraph to $\partial^{\alpha} u(x)$ with $|\alpha|=l$ shows that $\partial_{i} \partial^{\alpha} u(x)$ exits and is given by $v_{\alpha+e_{i}}(x)$ for all i and $x \in B$ and from this we conclude that $\partial^{\alpha} u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq l+1$. So by induction we conclude $\partial^{\alpha} u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq k$, i.e. $u \in C^{k}(B)$.

Lemma 23.30. Given any $k+1$ distinct points, $\left\{c_{i}\right\}_{i=0}^{k}$, in $\mathbb{R} \backslash\{0\}$, the $(k+1) \times$ $(k+1)$ matrix C with entries $C_{i j}:=\left(c_{i}\right)^{j}$ is invertible.

Proof. Let $a \in \mathbb{R}^{k+1}$ and define $p(x):=\sum_{j=0}^{k} a_{j} x^{j}$. If $a \in \operatorname{Nul}(C)$, then

$$
0=\sum_{j=0}^{k}\left(c_{i}\right)^{j} a_{j}=p\left(c_{i}\right) \text { for } i=0,1, \ldots, k
$$

Since $\operatorname{deg}(p) \leq k$ and the above equation says that p has $k+1$ distinct roots, we conclude that $a \in \operatorname{Nul}(C)$ implies $p \equiv 0$ which implies $a=0$. Therefore $\operatorname{Nul}(C)=$ $\{0\}$ and C is invertible.

Lemma 23.31. Let $B, B^{ \pm}$and Γ be as in Lemma 23.29 and $\left\{c_{i}\right\}_{i=0}^{k}$, be $k+1$ distinct points in $(\infty,-1]$ for example $c_{i}=-(i+1)$ will work. Also let $a \in \mathbb{R}^{k+1}$ be the unique solution (see Lemma 23.30 to $C^{t r} a=\mathbf{1}$ where $\mathbf{1}$ denotes the vector of all ones in \mathbb{R}^{k+1}, i.e. a satisfies

$$
\begin{equation*}
1=\sum_{j=0}^{k}\left(c_{i}\right)^{j} a_{i} \text { for } j=0,1,2 \ldots, k \tag{23.22}
\end{equation*}
$$

For $u \in C^{k}\left(\mathbb{H}^{d}\right) \cap C_{c}\left(\overline{\mathbb{H}^{d}}\right)$ with $\operatorname{supp}(u) \subset B$ and $x=(y, z) \in \mathbb{R}^{d}$ define

$$
\tilde{u}(x)=\tilde{u}(y, z)=\left\{\begin{array}{cl}
u(y, z) & \text { if } z \geq 0 \tag{23.23}\\
\sum_{i=0}^{k} a_{i} u\left(y, c_{i} z\right) & \text { if } z \leq 0
\end{array}\right.
$$

Then $\tilde{u} \in C_{c}^{k}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp}(\tilde{u}) \subset B$ and moreover there exists a constant M independent of u such that

$$
\begin{equation*}
\|\tilde{u}\|_{W^{k, p}(B)} \leq M\|u\|_{W^{k, p}\left(B^{+}\right)} \tag{23.24}
\end{equation*}
$$

Proof. By Eq. (23.22) with $j=0$,

$$
\sum_{i=0}^{k} a_{i} u\left(y, c_{i} 0\right)=u(y, 0) \sum_{i=0}^{k} a_{i}=u(y, 0)
$$

This shows that \tilde{u} in Eq. (23.23) is well defined and that $\tilde{u} \in C\left(\mathbb{H}^{d}\right)$. Let $K^{-}:=$ $\{(y, z):(y,-z) \in \operatorname{supp}(u)\}$. Since $c_{i} \in(\infty,-1]$, if $x=(y, z) \notin K^{-}$and $z<0$ then $\left(y, c_{i} z\right) \notin \operatorname{supp}(u)$ and therefore $\tilde{u}(x)=0$ and therefore $\operatorname{supp}(\tilde{u})$ is compactly contained inside of B. Similarly if $\alpha \in \mathbb{N}_{0}^{d}$ with $|\alpha| \leq k$, Eq. (23.22) with $j=\alpha_{d}$ implies

$$
v_{\alpha}(x):=\left\{\begin{array}{cc}
\left(\partial^{\alpha} u\right)(y, z) & \text { if } \quad z \geq 0 \\
\sum_{i=0}^{k} a_{i} c_{i}^{\alpha_{d}}\left(\partial^{\alpha} u\right)\left(y, c_{i} z\right) & \text { if } \quad z \leq 0
\end{array}\right.
$$

is well defined and $v_{\alpha} \in C\left(\mathbb{R}^{d}\right)$. Differentiating Eq. (23.23) shows $\partial^{\alpha} \tilde{u}(x)=v_{\alpha}(x)$ for $x \in B \backslash \Gamma$ and therefore we may conclude from Lemma 23.29 that $u \in C_{c}^{k}(B) \subset$ $C^{k}\left(\mathbb{R}^{d}\right)$ and $\partial^{\alpha} u=v_{\alpha}$ for all $|\alpha| \leq k$.

We now verify Eq. (23.24) as follows. For $|\alpha| \leq k$,

$$
\begin{aligned}
\left\|\partial^{\alpha} \tilde{u}\right\|_{L^{p}\left(B^{-}\right)}^{p} & =\int_{\mathbb{R}^{d}} 1_{z<0}\left|\sum_{i=0}^{k} a_{i} c_{i}^{\alpha_{d}}\left(\partial^{\alpha} u\right)\left(y, c_{i} z\right)\right|^{p} d y d z \\
& \leq C \int_{\mathbb{R}^{d}} 1_{z<0} \sum_{i=0}^{k}\left|\left(\partial^{\alpha} u\right)\left(y, c_{i} z\right)\right|^{p} d y d z \\
& =C \int_{\mathbb{R}^{d}} 1_{z>0} \sum_{i=0}^{k} \frac{1}{\left|c_{i}\right|}\left|\left(\partial^{\alpha} u\right)(y, z)\right|^{p} d y d z \\
& =C\left(\sum_{i=0}^{k} \frac{1}{\left|c_{i}\right|}\right)\left\|\partial^{\alpha} u\right\|_{L^{p}\left(B^{+}\right)}^{p}
\end{aligned}
$$

where $C:=\left(\sum_{i=0}^{k}\left|a_{i} c_{i}^{\alpha_{d}}\right|^{q}\right)^{p / q}$. Summing this equation on $|\alpha| \leq k$ shows there exists a constant M^{\prime} such that $\|\tilde{u}\|_{W^{k, p}\left(B^{-}\right)} \leq M^{\prime}\|u\|_{W^{k, p}\left(B^{+}\right)}$and hence Eq. (23.24) holds with $M=M^{\prime}+1$.

Theorem 23.32 (Extension Theorem). Suppose $k \geq 1$ and $\Omega \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega}$ is a compact manifold with C^{k} - boundary. Given $U \subset_{o} \mathbb{R}^{d}$ such that $\bar{\Omega} \subset U$, there exists a bounded linear (extension) operator $E: W^{k, p}(\Omega) \rightarrow W^{k, p}\left(\mathbb{R}^{d}\right)$ such that
(1) $E u=u$ a.e. in Ω and
(2) $\operatorname{supp}(E u) \subset U$.

Proof. As in the proof of Theorem 23.23 , choose a covering $\left\{V_{i}\right\}_{i=0}^{N}$ of $\bar{\Omega}$ such that $\bar{V}_{0} \subset \Omega, \cup_{i=0}^{N} \bar{V}_{i} \subset U$ and for each $i \geq 1$, there is $C^{k}-\operatorname{diffeomorphism} x_{i}$: $V_{i} \rightarrow R\left(x_{i}\right) \subset_{o} \mathbb{R}^{d}$ such that

$$
x_{i}\left(\partial \Omega \cap V_{i}\right)=R\left(x_{i}\right) \cap \operatorname{bd}\left(\mathbb{H}^{d}\right) \text { and } x_{i}\left(\Omega \cap V_{i}\right)=R\left(x_{i}\right) \cap \mathbb{H}^{d}=B^{+}
$$

where B^{+}is as in Lemma 23.31, refer to Figure 45. Further choose $\phi_{i} \in$ $C_{c}^{\infty}\left(V_{i},[0,1]\right)$ such that $\sum_{i=0}^{N} \phi_{i}=1$ on a neighborhood of $\bar{\Omega}$ and set $y_{i}:=\left.x_{i}\right|_{\partial \Omega \cap V_{i}}$ for $i \geq 1$. Given $u \in C^{k}(\bar{\Omega})$ and $i \geq 1$, the function $v_{i}:=\left(\phi_{i} u\right) \circ x_{i}^{-1}$ may be viewed as a function in $C^{k}\left(\mathbb{H}^{d}\right) \cap C_{c}\left(\overline{\mathbb{H}^{d}}\right)$ with $\operatorname{supp}(u) \subset B$. Let $\tilde{v}_{i} \in C_{c}^{k}(B)$ be defined as in Eq. (23.23) above and define $\tilde{u}:=\phi_{0} u+\sum_{i=1}^{N} \tilde{v}_{i} \circ x_{i} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp}(u) \subset U$. Notice that $\tilde{u}=u$ on $\bar{\Omega}$ and making use of Lemma 23.20 we learn

$$
\begin{aligned}
\|\tilde{u}\|_{W^{k, p}\left(\mathbb{R}^{d}\right)} & \leq\left\|\phi_{0} u\right\|_{W^{k, p}\left(\mathbb{R}^{d}\right)}+\sum_{i=1}^{N}\left\|\tilde{v}_{i} \circ x_{i}\right\|_{W^{k, p}\left(\mathbb{R}^{d}\right)} \\
& \leq\left\|\phi_{0} u\right\|_{W^{k, p}(\Omega)}+\sum_{i=1}^{N}\left\|\tilde{v}_{i}\right\|_{W^{k, p}\left(R\left(x_{i}\right)\right)} \\
& \leq C\left(\phi_{0}\right)\|u\|_{W^{k, p}(\Omega)}+\sum_{i=1}^{N}\left\|v_{i}\right\|_{W^{k, p}\left(B^{+}\right)} \\
& =C\left(\phi_{0}\right)\|u\|_{W^{k, p}(\Omega)}+\sum_{i=1}^{N}\left\|\left(\phi_{i} u\right) \circ x_{i}^{-1}\right\|_{W^{k, p}\left(B^{+}\right)} \\
& \leq C\left(\phi_{0}\right)\|u\|_{W^{k, p}(\Omega)}+\sum_{i=1}^{N} C_{i}\|u\|_{W^{k, p}(\Omega)}
\end{aligned}
$$

This shows the map $u \in C^{k}(\bar{\Omega}) \rightarrow E u:=\tilde{u} \in C_{c}^{k}(U)$ is bounded as map from $W^{k, p}(\Omega)$ to $W^{k, p}(U)$. As usual, we now extend E using the B.L.T. Theorem 4.1 to a bounded linear map from $W^{k, p}(\Omega)$ to $W^{k, p}(U)$. So for general $u \in W^{k, p}(\Omega)$, $E u=W^{k, p}(U)-\lim _{n \rightarrow \infty} \tilde{u}_{n}$ where $u_{n} \in C^{k}(\bar{\Omega})$ and $u=W^{k, p}(\Omega)-\lim _{n \rightarrow \infty} u_{n}$. By passing to a subsequence if necessary, we may assume that \tilde{u}_{n} converges a.e. to $E u$ from which it follows that $E u=u$ a.e. on $\bar{\Omega}$ and $\operatorname{supp}(E u) \subset U$.

23.6. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

$$
|f|_{W^{k, p}(\Omega)}:=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}
$$

Solution. 23.1This is a consequence of the fact that all norms on $l^{p}(\{\alpha:|\alpha| \leq k\})$ are equivalent. To be more explicit, let $a_{\alpha}=\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}$, then

$$
\sum_{|\alpha| \leq k}\left|a_{\alpha}\right| \leq\left(\sum_{|\alpha| \leq k}\left|a_{\alpha}\right|^{p}\right)^{1 / p}\left(\sum_{|\alpha| \leq k} 1^{q}\right)^{1 / q}
$$

while

$$
\left(\sum_{|\alpha| \leq k}\left|a_{\alpha}\right|^{p}\right)^{1 / p} \leq\left(\sum_{|\alpha| \leq k}^{p}\left[\sum_{|\beta| \leq k}\left|a_{\beta}\right|\right]^{p}\right)^{1 / p} \leq[\#\{\alpha:|\alpha| \leq k\}]^{1 / p} \sum_{|\beta| \leq k}\left|a_{\beta}\right|
$$

