14. Wave Equation on \mathbb{R}^{n}

(Ref Courant \& Hilbert Vol II, Chap VI §12.)
We now consider the wave equation

$$
\begin{equation*}
u_{t t}-\triangle u=0 \text { with } u(0, x)=f(x) \text { and } u_{t}(0, x)=g(x) \text { for } x \in \mathbb{R}^{n} \tag{14.1}
\end{equation*}
$$

According to Section 13, the solution (in the $L^{2}-$ sense) is given by

$$
\begin{equation*}
u(t, \cdot)=\left(\cos (t \sqrt{-\triangle}) f+\frac{\sin (t \sqrt{-\triangle})}{\sqrt{-\triangle}} g\right. \tag{14.2}
\end{equation*}
$$

To work out the results in Eq. (14.2) we must diagonalize Δ. This is of course done using the Fourier transform. Let \mathcal{F} denote the Fourier transform in the $x-$ variables only. Then

$$
\begin{aligned}
& \ddot{\hat{u}}(t, k)+|k|^{2} \hat{u}(t, k)=0 \text { with } \\
& \hat{u}(0, k)=\hat{f}(k) \text { and } \dot{\hat{u}}(t, k)=\hat{g}(k) .
\end{aligned}
$$

Therefore

$$
\hat{u}(t, k)=\cos (t|k|) \hat{f}(k)+\frac{\sin (t|k|)}{|k|} \hat{g}(k) .
$$

and so

$$
u(t, x)=\mathcal{F}^{-1}\left[\cos (t|k|) \hat{f}(k)+\frac{\sin (t|k|)}{|k|} \hat{g}(k)\right](x)
$$

i.e.

$$
\begin{align*}
& \frac{\sin (t \sqrt{-\triangle})}{\sqrt{-\triangle}} g=\mathcal{F}^{-1}\left[\frac{\sin (t|k|)}{|k|} \hat{g}(k)\right] \text { and } \tag{14.3}\\
& \cos (t \sqrt{-\triangle}) f=\mathcal{F}^{-1}[\cos (t|k|) \hat{f}(k)]=\frac{d}{d t} \mathcal{F}^{-1}\left[\frac{\sin (t|k|)}{|k|} \hat{g}(k)\right] \tag{14.4}
\end{align*}
$$

Our next goal is to work out these expressions in x - space alone.
14.1. $n=1$ Case. As we see from Eq. (14.4) it suffices to compute:

$$
\begin{align*}
\frac{\sin (t \sqrt{-\triangle})}{\sqrt{-\triangle}} g & =\mathcal{F}^{-1}\left(\frac{\sin (t|\xi|)}{|\xi|} \hat{g}(\xi)\right)=\lim _{M \rightarrow \infty} \mathcal{F}^{-1}\left(1_{|\xi| \leq M} \frac{\sin (t|\xi|)}{|\xi|} \hat{g}(\xi)\right) \\
& =\lim _{M \rightarrow \infty} \mathcal{F}^{-1}\left(1_{|\xi| \leq M} \frac{\sin (t|\xi|)}{|\xi|}\right) \star g . \tag{14.5}
\end{align*}
$$

This inverse Fourier transform will be computed in Proposition 14.2 below using the following lemma.

Lemma 14.1. Let C_{M} denote the contour shown in Figure 38, then for $\lambda \neq 0$ we have

$$
\lim _{M \rightarrow \infty} \int_{C_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi=2 \pi i 1_{\lambda>0}
$$

Proof. First assume that $\lambda>0$ and let Γ_{M} denote the contour shown in Figure 38. Then

$$
\left|\int_{\Gamma_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi\right| \leq \int_{0}^{\pi}\left|e^{i \lambda M e^{i \theta}}\right| d \theta=2 \pi \int_{0}^{\pi} d \theta e^{-\lambda M \sin \theta} \rightarrow 0 \text { as } M \rightarrow \infty
$$

Therefore

$$
\lim _{M \rightarrow \infty} \int_{C_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi=\lim _{M \rightarrow \infty} \int_{C_{M}+\Gamma_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi=2 \pi i \operatorname{res}_{\xi=0}\left(\frac{e^{i \lambda \xi}}{\xi}\right)=2 \pi i
$$

Figure 38. A couple of contours in \mathbb{C}.

If $\lambda<0$, the same argument shows

$$
\lim _{M \rightarrow \infty} \int_{C_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi=\lim _{M \rightarrow \infty} \int_{C_{M}+\tilde{\Gamma}_{M}} \frac{e^{i \lambda \xi}}{\xi} d \xi
$$

and the later integral is 0 since the integrand is holomorphic inside the contour $C_{M}+\tilde{\Gamma}_{M}$.

Proposition 14.2. $\lim _{M \rightarrow \infty} \mathcal{F}^{-1}\left(1_{|\xi| \leq M} \frac{\sin (t|\xi|)}{|\xi|}\right)(x)=\operatorname{sgn}(t) \frac{\sqrt{\pi}}{\sqrt{2}} 1_{|x|<|t|}$.
Proof. Let

$$
I_{M}=\sqrt{2 \pi} \mathcal{F}^{-1}\left(1_{|\xi| \leq M} \frac{\sin (t|\xi|)}{|\xi|}\right)(x)=\int_{|\xi| \leq M} \frac{\sin (t \xi)}{\xi} e^{i \xi \cdot x} d \xi
$$

Then by deforming the contour we may write

$$
\begin{aligned}
I_{M} & =\int_{C_{M}} \frac{\sin t \xi}{\xi} e^{i \xi \cdot x} d \xi=\frac{1}{2 i} \int_{C_{M}} \frac{e^{i t \xi}-e^{-i t \xi}}{\xi} e^{i \xi \cdot x} d \xi \\
& =\frac{1}{2 i} \int_{C_{M}} \frac{e^{i(x+t) \xi}-e^{i(x-t) \xi}}{\xi} d \xi
\end{aligned}
$$

By Lemma 14.1 we conclude that

$$
\lim _{M \rightarrow \infty} I_{M}=\frac{1}{2 i} 2 \pi i\left(1_{(x+t)>0}-1_{(x-t)>0}\right)=\pi \operatorname{sgn}(t) 1_{|x|<|t|}
$$

(For the last equality, suppose $t>0$. Then $x-t>0$ implies $x+t>0$ so we get 0 and if $x<-t$, i.e. $x+t<0$ then $x-t<0$ and we get 0 again. If $|x|<t$ the first term is 1 while the second is zero. Similar arguments work when $t<0$ as well.)

Theorem 14.3. For $n=1$,

$$
\begin{align*}
& \frac{\sin (t \sqrt{-\triangle})}{\sqrt{-\triangle}} g(x)=\frac{1}{2} \int_{x-t}^{x+t} g(y) d \lambda(y) \text { and } \tag{14.6}\\
& \cos (t \sqrt{-\triangle}) g(x)=\frac{1}{2}[g(x+t)+g(x-t)] \tag{14.7}
\end{align*}
$$

In particular

$$
\begin{equation*}
u(t, x)=\frac{1}{2}(f(x+t)+f(x-t))+\frac{1}{2} \int_{x-t}^{x+t} g(y) d y \tag{14.8}
\end{equation*}
$$

is the solution to the wave equation (14.2).

Proof. From Eq. (14.5) and Proposition 14.2 we find

$$
\begin{aligned}
\frac{\sin (t \sqrt{-\triangle})}{\sqrt{-\triangle}} g(x) & =\operatorname{sgn}(t) \frac{1}{2} \int_{\mathbb{R}} 1_{|x-y|>|t|} g(y) d y \\
& =\operatorname{sgn}(t) \frac{1}{2} \int_{x-|t|}^{x+|t|} g(y) d y=\frac{1}{2} \int_{x-t}^{x+t} g(y) d y
\end{aligned}
$$

Differentiating this equation in t gives Eq. (14.7).
If we have a forcing term, so $\ddot{u}=u_{x} x_{x}+h$, with $u(0, \cdot)=0$ and $u_{t}(0, \cdot)=0$, then

$$
\begin{aligned}
u(t, x) & =\int_{0}^{t} \frac{\sin ((t-\tau) \sqrt{-\triangle})}{\sqrt{-\triangle}} h(\tau, x) d \tau=\frac{1}{2} \int_{0}^{t} d \tau \int_{x-t+\tau}^{x+t-\tau} d y h(\tau, y) \\
& =\frac{1}{2} \int_{0}^{t} d \tau \int_{-(t+\tau)}^{t-\tau} d r h(\tau, x+r)
\end{aligned}
$$

14.1.1. Factorization method for $n=1$. Writing the wave equation as

$$
0=\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u=\left(\partial_{t}+\partial_{x}\right)\left(\partial_{t}-\partial_{x}\right) u=\left(\partial_{t}+\partial_{x}\right) v
$$

with $v:=\left(\partial_{t}-\partial_{x}\right) u$ implies $v(t, x)=v(0, x-t)$ with

$$
v(0, x)=u_{t}(0, x)-u_{x}(0, x)=g(x)-f^{\prime}(x)
$$

Now u solves $\left(\partial_{t}-\partial_{x}\right) u=v$, i.e. $\partial_{t} u=\partial_{x} u+v$. Therefore

$$
\begin{aligned}
u(t, x) & =e^{t \partial_{x}} u(0, x)+\int_{0}^{t} e^{(t-\tau) \partial_{x}} v(\tau, x) d \tau \\
& =u(0, x+t)+\int_{0}^{t} v(\tau, x+t-\tau) d \tau \\
& =u(0, x+t)+\int_{0}^{t} v(0, x+\underbrace{t-2 \tau}_{s}) d \tau \\
& =u(0, x+t)+\frac{1}{2} \int_{-t}^{t} v(0, x+s) d s \\
& =f(x+t)+\frac{1}{2} \int_{-t}^{t}\left(g(x+s)-f^{\prime}(x+s)\right) d s \\
& =f(x+t)-\left.\frac{1}{2} f(x+s)\right|_{s=-t} ^{s=t}+\frac{1}{2} \int_{-t}^{t} g(x+s) d s \\
& =\frac{f(x+t)+f(x-t)}{2}+\frac{1}{2} \int_{-t}^{t} g(x+s) d s
\end{aligned}
$$

which is equivalent to Eq. (14.8).
14.2. Solution for $n=3$. Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $t \in \mathbb{R}$ let

$$
\bar{f}(x ; t):=\int_{S^{2}} f(x+t \omega) d \sigma(\omega)=f \int_{|y|=|t|} f(x+y) d \sigma(y)
$$

Theorem 14.4. For $f \in L^{2}\left(\mathbb{R}^{3}\right)$,

$$
\frac{\sin (\sqrt{-\Delta} t)}{\sqrt{-\Delta}} f=\mathcal{F}^{-1}\left[\frac{\sin |\xi| t}{|\xi|} \hat{f}(\xi)\right](x)=t \bar{f}(x ; t)
$$

and

$$
\cos (\sqrt{-\Delta} t) g=\frac{d}{d t}[t \bar{f}(x ; t)]
$$

In particular the solution to the wave equation (14.1) for $n=3$ is given by

$$
\begin{aligned}
u(t, x) & =\frac{\partial}{\partial t}(t \bar{f}(x ; t))+t \bar{g}(x ; t) \\
& =\frac{1}{4 \pi} \int_{|\omega|=1}(t g(x+t \omega)+f(x+t \omega)+t \nabla f(x+t \omega) \cdot \omega) d \sigma(\omega) .
\end{aligned}
$$

Proof. Let $g_{M}:=\mathcal{F}^{-1}\left[\frac{\sin |\xi| t}{|\xi|} 1_{|\xi| \leq M}\right]$, then by symmetry and passing to spherical coordinates,

$$
\begin{aligned}
(2 \pi)^{3 / 2} g_{M}(x) & =\int_{|\xi| \leq M} \frac{\sin |\xi| t}{|\xi|} e^{i \xi \cdot x} d \xi=\int_{|\xi| \leq M} \frac{\sin |\xi| t}{|\xi|} e^{i|x| \xi_{3}} d \xi \\
& =\int_{0}^{M} d \rho \rho^{2} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} d \phi \frac{\sin \rho t}{\rho} e^{i \rho|x| \cos \phi} \sin \phi \\
& =\left.2 \pi \int_{0}^{M} d \rho \sin \rho t \frac{e^{i \rho|x| \cos \phi}}{-i|x|}\right|_{0} ^{\pi} \\
& =2 \pi \int_{0}^{M} d \rho \sin \rho t \frac{e^{i \rho|x|}-e^{-i \rho|x|}}{i|x|}=\frac{4 \pi}{|x|} \int_{0}^{M} \sin \rho t \sin \rho|x| d \rho
\end{aligned}
$$

Using

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

in this last equality, shows

$$
\begin{aligned}
g_{M}(x) & =(2 \pi)^{-3 / 2} \frac{2 \pi}{|x|} \int_{0}^{M}[\cos ((t-|x|) \rho)-\cos ((t+|x|) \rho)] d \rho \\
& =(2 \pi)^{-3 / 2} \frac{\pi}{|x|} h_{M}(|x|)
\end{aligned}
$$

where

$$
h_{M}(r):=\int_{-M}^{M}[\cos ((t-r) \alpha)-\cos ((t+r) \alpha)] d \alpha
$$

an odd function in r. Since

$$
\mathcal{F}^{-1}\left[\frac{\sin |\xi| t}{|\xi|} \hat{f}(\xi)\right]=\lim _{M \rightarrow \infty} \mathcal{F}^{-1}\left(\hat{g}_{M}(\xi) \hat{f}(\xi)\right)=\lim _{M \rightarrow \infty}\left(g_{M} \star f\right)(x)
$$

we need to compute $g_{M} \star f$. To this end

$$
\begin{aligned}
& g_{M} \star f(x)=\left(\frac{1}{2 \pi}\right)^{3} \pi \int_{\mathbb{R}^{3}} \frac{1}{|y|} h_{M}(|y|) f(x-y) d y \\
& =\left(\frac{1}{2 \pi}\right)^{3} \pi \int_{0}^{\infty} d \rho \frac{h_{M}(\rho)}{\rho} \int_{|y|=\rho} f(x-y) d \sigma(y) \\
& =\left(\frac{1}{2 \pi}\right)^{3} \pi \int_{0}^{\infty} d \rho \frac{h_{M}(\rho)}{\rho} 4 \pi \rho^{2} f_{|y|=\rho} f(x-y) d \sigma(y) \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} d \rho h_{M}(\rho) \rho \bar{f}(x ; \rho)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} d \rho h_{M}(\rho) \rho \bar{f}(x ; \rho)
\end{aligned}
$$

where the last equality is a consequence of the fact that $h_{M}(\rho) \rho \bar{f}(x ; \rho)$ is an even function of ρ. Continuing to work on this expression suing $\rho \rightarrow \rho \bar{f}(x ; \rho)$ is odd
implies

$$
\begin{aligned}
g_{M} \star f(x) & =\frac{1}{4 \pi} \int_{-\infty}^{\infty} d \rho \int_{-M}^{M}[\cos ((t-\rho) \alpha)-\cos ((t+\rho) \alpha)] d \alpha \rho \bar{f}(x ; \rho) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \rho \int_{-M}^{M} \cos ((t-\rho) \alpha) \rho \bar{f}(x ; \rho) d \alpha \\
& =\frac{1}{2 \pi} \operatorname{Re} \int_{-M}^{M} d \rho \int_{-\infty}^{\infty} d \alpha e^{i(t-\rho) \alpha} \rho \bar{f}(x ; \rho) d \alpha \rightarrow t \bar{f}(x ; t) \text { as } M \rightarrow \infty
\end{aligned}
$$

using the 1 - dimensional Fourier inversion formula.
14.2.1. Alternate Proof of Theorem 14.4.

Lemma 14.5. $\lim _{M \rightarrow \infty} \int_{-M}^{M} \cos (\rho \lambda) d \rho=2 \pi \delta(\lambda)$.
Proof.

$$
\int_{-M}^{M} \cos (\rho \lambda) d \rho=\int_{-M}^{M} e^{i \rho \lambda} d \rho
$$

so that

$$
\int_{\mathbb{R}} \phi(\lambda)\left[\int_{-M}^{M} e^{i \rho \lambda} d \rho\right] d \lambda \rightarrow \int_{\mathbb{R}} d \rho \int_{\mathbb{R}} d \lambda \phi(\lambda) e^{i \lambda \rho}=2 \pi \varphi(0)
$$

by the Fourier inversion formula.
Proof. of Theorem 14.4 again.

$$
\begin{aligned}
& \int \frac{\sin t|\xi|}{|\xi|} e^{i \xi \cdot x} d \xi=\int \frac{\sin t \rho}{\rho} e^{i \rho|x| \cos \theta} \sin \theta d \theta d \varphi \rho^{2} d \rho \\
& =\left.2 \pi \int \frac{\sin t \rho}{\rho} \frac{e^{i \rho|x| \lambda}}{i \rho|x|}\right|_{\lambda=-1} ^{1} d \rho \\
& =\frac{4 \pi}{|x|} \int_{0}^{\infty} \sin t \rho \sin \rho|x| d \rho \\
& =\frac{2 \pi}{|x|} \int_{0}^{\infty}[\cos (\rho(t-|x|))-\cos (\rho(t+|x|))] d \rho \\
& =\frac{4 \pi}{|x|} \int_{-\infty}^{\infty}[\cos (\rho(t-|x|))-\cos (\rho(t+|x|))] d \rho \\
& =\frac{8 \pi^{2}}{|x|}(\delta(t-|x|)-\delta(t+|x|))
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mathcal{F}^{-1}\left(\frac{\sin t|\xi|}{|\xi|}\right) * g(x) \\
& =\left(\frac{1}{2 \pi}\right)^{3} 2 \pi^{2} \int_{\mathbb{R}^{3}} \frac{(\delta(t-|y|)-\delta(t+|y|))}{|y|} g(x-y) d \lambda(y) \\
& =\frac{1}{4 \pi} \int_{0}^{\infty}(\delta(t-\rho)-\delta(t+\rho)) g(x+\rho \omega) \frac{\rho^{2}}{\rho} d \rho d \sigma(\omega) \\
& =1_{t>0} t \bar{g}(x ; t)-1_{t<0}(-t) \bar{g}(x ;-t) \\
& =t \bar{g}(x ; t)
\end{aligned}
$$

14.3. Du Hamel's Principle. The solution to

$$
u_{t t}=\triangle u+f \text { with } u(0, x)=0 \text { and } u_{t}(0, x)=0
$$

is given by

$$
\begin{equation*}
u(t, x)=\frac{1}{4 \pi} \int_{B(x, t)} \frac{f(t-|y-x|, y)}{|y-x|} d y=\frac{1}{4 \pi} \int_{|z|<t} \frac{f(t-|z|, x+z)}{|z|} d z \tag{14.9}
\end{equation*}
$$

Indeed, by Du Hamel's principle,

$$
\begin{aligned}
u(t, x) & =\int_{0}^{t} \frac{\sin ((t-\tau) \sqrt{-\triangle})}{\sqrt{-\triangle}} f(\tau, x) d \tau=\int_{0}^{t} \frac{\sin (\tau \sqrt{-\triangle})}{\sqrt{-\triangle}} f(t-\tau, x) d \tau \\
& =\int_{0}^{t} \tau \bar{f}(t-\tau, x ; \tau) d \tau=\frac{1}{4 \pi} \int_{0}^{t} d \tau t^{2} \int_{|\omega|=1} \frac{f(t-\tau, x+\tau \omega)}{\tau} d \sigma(\omega) \\
& =\frac{1}{4 \pi} \int_{B(t, x)} \frac{f(t-|y-x|, y)}{|y-x|} d y(\text { let } y=x+z) \\
& =\frac{1}{4 \pi} \int_{|z|<t} \frac{f(t-|z|, x+z)}{|z|} d z .
\end{aligned}
$$

Thinking of $u(t, x)$ as pressure (14.9) says that the pressure at x at time t is the "average" of the disturbance at time $t-|y-x|$ at location y.
14.4. Spherical Means. Let $n \geq 2$ and suppose u solves $u_{t t}=\triangle u$. Since Δ is invariant under rotations, i.e. for $R \in O(n)$ we have $\triangle(u \circ R)=(\triangle u) \circ R$, it follows that $u \circ R$ is also a solution to the wave equation. Indeed,

$$
(u(t, \cdot) \circ R)_{t t}=u_{t t}(t, \cdot) \circ R=\Delta u(t, \cdot) \circ R=\triangle(u(t, \cdot) \circ R)
$$

By the linearity of the wave equation, this also implies, with $d R$ denoting normalized Haar measure on $O(n)$, that

$$
U(t,|x|):=\int_{O(n)}(u(t, R x) \circ R) d R
$$

must be a radial solution of the Wave equation. This implies
$U_{t t}=\triangle_{x} U(t,|x|)=\frac{1}{r^{n-1}} \partial_{r}\left(r^{n-1} \partial_{r} U(t, r)\right)_{r=|x|}=\left[\partial_{r}^{2} U(t, r)+\frac{n-1}{r} \partial_{r} U(t, r)\right]_{r=|x|}$.
Now

$$
U(t,|x|)=\int_{0(n)} u(t, R x) d R=\int_{B(0,|x|)} u(t, y) d \sigma(y) .
$$

Using the translation invariance of Δ the same argument as above gives the following theorem.

Theorem 14.6. Suppose $u_{t t}=\triangle u$ and $x \in \mathbb{R}^{n}$ and let

$$
U(t, r):=\bar{u}(t, x ; r):=\int_{\partial B(x, r)} u(t, y) d \sigma(y)=\int_{\partial B(0,1)} u(t, x+r \omega) d \sigma(\omega) .
$$

Then U solves

$$
U_{t t}=\frac{1}{r^{n-1}} \partial_{r}\left(r^{n-1} U_{r}\right)
$$

with

$$
\begin{aligned}
U(0, r) & =\int_{\partial B(0,1)} u(0, x+r \omega) d \sigma(\omega)=\bar{f}(x ; r) \\
U_{t}(0, r) & =\bar{g}(x ; r)
\end{aligned}
$$

Proof. This has already been proved, nevertheless, let us give another proof which does not rely on using integration over $O(n)$. To this hence we compute

$$
\begin{aligned}
\partial_{r} U(t, r) & =\partial_{r} f_{\partial B(0,1)} u(t, x+r \omega) d \sigma(\omega) \\
& =\int_{\partial B(0,1)} \nabla u(t, x+r \omega) \cdot \omega d \sigma(\omega) \\
& =\frac{1}{\sigma\left(S^{n-1}\right) r^{n-1}} \int_{|y|=r} \nabla u(t, x+y) \cdot \hat{y} d \sigma(y) \\
& =\frac{1}{\sigma\left(S^{n-1}\right) r^{n-1}} \int_{|y| \leq r} \Delta u(t, x+y) d y \\
& =\frac{1}{\sigma\left(S^{n-1}\right) r^{n-1}} \int_{0}^{r} d \rho \int_{|y|=\rho} \Delta u(t, x+y) d \sigma(y)
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{1}{r^{n-1}} \partial_{r}\left(r^{n-1} U_{r}\right) & =\frac{1}{r^{n-1}} \partial_{r}\left[\frac{1}{\sigma\left(S^{n-1}\right)} \int_{0}^{r} d \rho \int_{|y|=\rho} \Delta u(t, x+y) d \sigma(y)\right] \\
& =\frac{1}{\sigma\left(S^{n-1}\right) r^{n-1}} \int_{|y|=r} \Delta u(t, x+y) d \sigma(y) \\
& =\int_{|y|=r} \Delta u(t, x+y) d \sigma(y) \\
& =\int_{|y|=r} u_{t t}(t, x+y) d \sigma(y)=U_{t t}
\end{aligned}
$$

We can now use the above result to solve the wave equation. For simplicity, assume $n=3$ and let $V(t, r)=r \bar{u}(t, x ; r)=r U(t, r)$. Then for $r>0$ we have

$$
\begin{aligned}
V_{r r} & =2 U_{r}+r U_{r r}=r\left(U_{r r}+\frac{2}{r} U_{r}\right) \\
& =r U_{t t}=V_{t t}
\end{aligned}
$$

This is also valid for $r<0$ because $V(t, r)$ is odd in r. Indeed for $r<0$, let $v(t, r)=V(t,-r)$, then $V_{r r}(t, r)=V_{r r}(t,-r)=V_{t t}(t,-r)=V_{t t}(t, r)$. By our solution to the one dimensional wave equation we find

$$
V(t, r)=\frac{1}{2}(V(0, t+r)+V(0, r-t))+\frac{1}{2} \int_{r-t}^{r+t} V_{t}(0, y) d y
$$

Now suppose that $u(0, x)=0$ and $u_{t}(0, x)=g(x)$, in which case

$$
V(0, r)=0 \text { and } V_{t}(0, r)=r \bar{g}(x, r)
$$

and the previous equation becomes
Then

$$
V(t, r)=\frac{1}{2} \int_{r-t}^{r+t} y \bar{g}(x, y) d y
$$

and noting that

$$
\left.\frac{\partial}{\partial r}\right|_{0} V(t, r)=\bar{u}(t, x ; 0)=u(t, x)
$$

we learn

$$
u(t, x)=\frac{1}{2}[t \bar{g}(x ; t)-(-t) \bar{g}(x ;-t)]=t \bar{g}(x ; t)
$$

as before.

14.5. Energy methods.

Theorem 14.7 (Uniqueness on Bounded Domains). Let Ω be a bounded domain such that $\bar{\Omega}$ is a submanifold with C^{2} - boundary and consider the boundary value problem

$$
\begin{array}{ll}
u_{t t}-\triangle u=h & \text { on } \Omega_{T} \\
u=f & \text { on }(\partial \Omega \times[0, T]) \cup(\Omega \times\{t=0\}) \\
u_{t}=g & \text { on } \Omega \times\{t=0\}
\end{array}
$$

If $u \in C^{2}\left(\bar{\Omega}_{T}\right)$ then u is unique.
Proof. As usual, using the linearity of the equation, it suffices to consider the special case where $f=0, g=0$ and $h=0$ and to show this implies $u \equiv 0$. Let

$$
E_{\Omega}(t)=\frac{1}{2} \int_{\Omega}\left[\dot{u}(t, x)^{2}+|\nabla u(t, x)|^{2}\right] d x
$$

Clearly by assumption, $E_{\Omega}(0)=0$ while the usual computation shows

$$
\begin{aligned}
\dot{E}_{\Omega}(t) & =(\dot{u}, \ddot{u})_{L^{2}(\Omega)}+(\nabla u(t), \nabla \dot{u}(t))_{L^{2}(\Omega)} \\
& =(\dot{u}, \Delta u)_{L^{2}(\Omega)}+(\nabla u(t), \nabla \dot{u}(t))_{L^{2}(\Omega)} \\
& =-(\nabla \dot{u}(t), \nabla u(t))_{L^{2}(\Omega)}+\int_{\partial \Omega} \dot{u}(t, x) \frac{\partial u(t, x)}{\partial n} d \sigma(x) \\
& +(\nabla u(t), \nabla \dot{u}(t))_{L^{2}(\Omega)} \\
& =0
\end{aligned}
$$

wherein we have used $u(t, x)=0$ implies $\dot{u}(t, x)=0$ for $x \in \partial \Omega$.
From this we conclude that $E_{\Omega}(t)=0$ and therefore $\dot{u}(t, x)=0$ and hence $u \equiv 0$.
The following proposition is expected to hold given the finite speed of propagation we have seen exhibited above for solutions to the wave equation.

Proposition 14.8 (Local Energy). Let $x \in \mathbb{R}^{n}, T>0, u_{t t}=\Delta u$ and define

$$
e(t):=E_{B(x, T-t)}(u ; t):=\frac{1}{2} \int_{B(x, T-t)}\left[|\dot{u}(t, y)|^{2}+|\nabla u(t, y)|^{2}\right] d y
$$

Then $e(t)$ is decreasing for $0 \leq t \leq T$.

Proof. First recall that

$$
\frac{d}{d r} \int_{B(x, r)} f d x=\frac{d}{d r} \int_{0}^{r} d \rho \int_{|y-x|=\rho} f(y) d \sigma(y)=\int_{\partial B(x, r)} f d \sigma .
$$

Hence

$$
\begin{aligned}
\dot{e}(t) & =\frac{d}{d t} \int_{B(x, R-t)}\left\{|\dot{u}(t, y)|^{2}+|\nabla u(t, y)|^{2}\right\} d y \\
& =-\frac{1}{2} \int_{\partial B(x, R-t)}\left(|\dot{u}|^{2}+|\nabla u|^{2}\right) d \sigma+\int_{B(x, R-t)}[\dot{u} \ddot{u}+\nabla u \cdot \nabla \dot{u}] d m \\
& =-\frac{1}{2} \int_{\partial B(x, R-t)}\left(|\dot{u}|^{2}+|\nabla u|^{2}\right) d \sigma+\int_{B(x, R-t)}[\dot{u} \Delta u+\nabla u \cdot \nabla \dot{u}] d m \\
& =-\frac{1}{2} \int_{\partial B(x, R-t)}\left(|\dot{u}|^{2}+|\nabla u|^{2}\right) d \sigma+2 \int_{\partial B(x, R-t)} \dot{u} \frac{\partial u}{\partial n} d \sigma \\
& =\frac{1}{2} \int_{\partial B(x, R-t)}\left\{2 \dot{u}(\nabla u \cdot n)-\left(|\dot{u}|^{2}+|\nabla u|^{2}\right)\right\} d \sigma \leq 0
\end{aligned}
$$

wherein we have used the elementary estimate,

$$
2(\nabla u \cdot n) \dot{u} \leq 2|\nabla u||\dot{u}| \leq\left(|\dot{u}|^{2}+|\nabla u|^{2}\right) .
$$

Therefore $e(t) \leq e(0)=0$ for all t i.e. $e(t):=0$.
Corollary 14.9 (Uniqueness of Solutions). Suppose that u is a classical solution to the wave equation with $u(0, \cdot)=0=u_{t}(0, \cdot)$. Then $u \equiv 0$.

Proof. Proposition 14.8 shows

$$
\frac{1}{2} \int_{B(x, T-t)}\left[|\dot{u}(t, y)|^{2}+|\nabla u(t, y)|^{2}\right] d y=E_{B(x, T)}(0)=0
$$

for all $0 \leq t<T$ and $x \in \mathbb{R}^{n}$. This then implies that $\dot{u}(t, y)=0$ for all $y \in \mathbb{R}^{n}$ and $0 \leq t \leq T$ and hence $u \equiv 0$.
Remark 14.10. This result also applies to certain class of weak type solutions in x by first convolving u with an approximate (spatial) delta function, say $u_{\epsilon}(t, x)=$ $u(t, \cdot) * \delta_{\epsilon}(x)$. Then u_{ϵ} satisfies the hypothesis of Corollary 14.9 and hence is 0 . Now let $\epsilon \downarrow 0$ to find $u \equiv 0$.

Remark 14.11. Proposition 14.8 also exhibits the finite speed of propagation of the wave equation.

14.6. Wave Equation in Higher Dimensions.

14.6.1. Solution derived from the heat kernel. Let

$$
p_{t}^{n}(x):=\frac{1}{(2 \pi t)^{n / 2}} e^{-\frac{1}{2 t}|x|^{2}}
$$

and simply write p_{t} for p_{t}^{1}. Then

$$
2 \int_{0}^{\infty} \cos \omega t p_{\lambda}(t) d t=\int_{\mathbb{R}} e^{i t \omega} p_{\lambda}(t) d t=\left.e^{-\lambda \partial_{t}^{2} / 2} e^{i t \omega}\right|_{t=0}=e^{-\lambda \omega^{2} / 2}
$$

Taking $\omega=\sqrt{-\Delta}$ and writing $u(t, x):=\cos (\sqrt{-\Delta} t) g(x)$ the previous identity gives

$$
\begin{aligned}
2 \int_{0}^{\infty} u(t, x) \frac{1}{\sqrt{2 \pi \lambda}} e^{-\frac{1}{2 \lambda} t^{2}} d t & =2 \int_{0}^{\infty} u(t, x) p_{\lambda}(t) d t \\
& =e^{\lambda \Delta / 2} g(x)=\int_{\mathbb{R}^{n}} p_{\lambda}^{n}(y) g(x-y) d y \\
& =\int_{\mathbb{R}^{n}} \frac{1}{(2 \pi \lambda)^{n / 2}} e^{-\frac{1}{2 \lambda}|y|^{2}} g(x-y) d y \\
& =\frac{1}{(2 \pi \lambda)^{n / 2}} \int_{0}^{\infty} d \rho e^{-\frac{1}{2 \lambda} \rho^{2}} \int_{|y|=\rho} g(x-y) d \sigma(y) \\
& =\frac{\sigma\left(S^{n-1}\right)}{(2 \pi \lambda)^{n / 2}} \int_{0}^{\infty} d \rho e^{-\frac{1}{2 \lambda} \rho^{2}} \rho^{n-1} \bar{g}(x ; \rho),
\end{aligned}
$$

and so

$$
\begin{aligned}
\int_{0}^{\infty} u(t, x) e^{-\frac{1}{2 \lambda} t^{2}} d t & =\sqrt{\frac{\pi \lambda}{2}} \frac{\sigma\left(S^{n-1}\right)}{(2 \pi \lambda)^{n / 2}} \int_{0}^{\infty} d \rho e^{-\frac{1}{2 \lambda} \rho^{2}} \rho^{n-1} \bar{g}(x ; \rho) \\
& =\sqrt{\frac{\pi}{2}} \frac{\sigma\left(S^{n-1}\right)}{(2 \pi)^{n / 2}} \lambda^{-(n-1) / 2} \int_{0}^{\infty} e^{-\frac{1}{2 \lambda} t^{2}} t^{n-1} \bar{g}(x ; t) d t
\end{aligned}
$$

Suppose $n=2 k+1$ and let $c_{n}:=\sqrt{\frac{\pi}{2}} \frac{\sigma\left(S^{n-1}\right)}{(2 \pi)^{n / 2}}$, then the above equation reads

$$
\begin{aligned}
\int_{0}^{\infty} u(t, x) e^{-\frac{1}{2 \lambda} t^{2}} d t & =c_{n} \lambda^{-k} \int_{0}^{\infty} e^{-\frac{1}{2 \lambda} t^{2}} t^{2 k} \bar{g}(x ; t) d t \\
& =c_{n} \int_{0}^{\infty}\left(-\frac{1}{t} \partial_{t}\right)^{k} e^{-\frac{1}{2 \lambda} t^{2}} t^{2 k} \bar{g}(x ; t) d t \\
& \stackrel{\text { I.B.P. }}{=} c_{n} \int_{0}^{\infty} e^{-\frac{1}{2 \lambda} t^{2}}\left(\partial_{t} M_{t^{-1}}\right)^{k}\left[t^{2 k} \bar{g}(x ; t)\right] d t
\end{aligned}
$$

By the injectivity of the Laplace transform (after making the substitution $t \rightarrow \sqrt{t}$, this implies

$$
\begin{aligned}
\cos (\sqrt{-\Delta} t) g(x) & =u(t, x)=c_{n}\left(\partial_{t} M_{t^{-1}}\right)^{k}\left[t^{2 k} \bar{g}(x ; t)\right] \\
& =c_{n}\left(\partial_{t} M_{t^{-1}} \partial_{t} M_{t^{-1}} \ldots \partial_{t} M_{t^{-1}}\right)\left[t^{2 k} \bar{g}(x ; t)\right] \\
& =c_{n} \partial_{t}(\overbrace{M_{t^{-1}} \partial_{t} M_{t^{-1}} \ldots M_{t^{-1}} \partial_{t}}^{k-1 \text { times }})\left[t^{2 k-1} \bar{g}(x ; t)\right] \\
& =c_{n} \partial_{t}\left(\frac{1}{t} \partial_{t}\right)^{k-1}\left[t^{2 k-1} \bar{g}(x ; t)\right]
\end{aligned}
$$

Hence we have derived the following theorem.
Theorem 14.12. Suppose $n=2 k+1$ is odd and let $c_{n}:=\sqrt{\frac{\pi}{2}} \frac{\sigma\left(S^{n-1}\right)}{(2 \pi)^{n / 2}}$, then

$$
\cos (\sqrt{-\Delta} t) g(x)=c_{n} \partial_{t}\left(\frac{1}{t} \partial_{t}\right)^{k-1}\left[t^{2 k-1} \bar{g}(x ; t)\right]
$$

and

$$
\frac{\sin (\sqrt{-\Delta} t)}{\sqrt{-\Delta}} f(x)=\int_{0}^{t} \cos (\sqrt{-\Delta} \tau) f(x) d \tau=c_{n}\left(\frac{1}{t} \partial_{t}\right)^{k-1}\left[t^{2 k-1} \bar{g}(x ; t)\right]
$$

Proof. For the last equality we have used

$$
\left(\frac{1}{t} \partial_{t}\right)^{k-1} t^{2 k-1}=\text { const. } * t^{2 k-1-2(k-1)}=\text { const. } * t
$$

so that $\left(\frac{1}{t} \partial_{t}\right)^{k-1}\left[t^{2 k-1} \bar{g}(x ; t)\right]=O(t)$ and in particular is 0 at $t=0$.
14.6.2. Solution derived from the Poisson kernel. Suppose we want to write

$$
e^{-|x|}=\int_{0}^{\infty} \phi(s) p_{s}(x) d s
$$

Since

$$
\int_{\mathbb{R}} e^{-|x|} e^{i \lambda x} d x=2 \operatorname{Re} \int_{0}^{\infty} e^{-x} e^{i \lambda x} d x=2 \operatorname{Re}\left(\frac{1}{1-i \lambda}\right)=\frac{2}{1+\lambda^{2}}
$$

and

$$
\int_{\mathbb{R}} p_{s}(x) e^{i \lambda x} d x=\left.e^{s \partial_{x}^{2} / 2} e^{i \lambda x}\right|_{x=0}=e^{-s \lambda^{2} / 2}
$$

ϕ must satisfy

$$
\int_{0}^{\infty} \phi(s) e^{-s \lambda^{2} / 2} d s=\frac{2}{1+\lambda^{2}}=\int_{0}^{\infty} e^{-s\left(1+\lambda^{2}\right) / 2} d s=\int_{0}^{\infty} e^{-s / 2} e^{-s \lambda^{2} / 2} d s
$$

from which it follows that $\phi(s)=e^{-s / 2}$. Thus we have derived the formula

$$
\begin{equation*}
e^{-|x|}=\int_{0}^{\infty}(2 \pi s)^{-1 / 2} e^{-s / 2} e^{-\frac{1}{2 s} x^{2}} d s \tag{14.10}
\end{equation*}
$$

Let : $H \rightarrow H$ such that $A=A^{*}$ and $A \leq 0$. By the spectral theorem, we may "substitute" $x=t \sqrt{-A}$ into Eq. (14.10) to learn

$$
e^{-t \sqrt{-A}}=\int_{0}^{\infty}(2 \pi s)^{-1 / 2} e^{-s / 2} e^{\frac{t^{2}}{2 s} A} d s
$$

and in particular taking $A=\Delta$ one finds

$$
e^{-t \sqrt{-\Delta}}=\int_{0}^{\infty}(2 \pi s)^{-1 / 2} e^{-s / 2} e^{\frac{t^{2}}{2 s} \Delta} d s
$$

from which we conclude the convolution kernel $Q_{t}(x)$ for $e^{-t \sqrt{-\Delta}}$ is given by

$$
\begin{aligned}
Q_{t}(x) & =\int_{0}^{\infty}(2 \pi s)^{-1 / 2} e^{-s / 2} p_{t^{2} s^{-1}}^{n}(x) d s=\int_{0}^{\infty}(2 \pi s)^{-1 / 2} e^{-s / 2} \frac{e^{-\frac{s}{2 t^{2}}|x|^{2}}}{\left(2 \pi t^{2} s^{-1}\right)^{n / 2}} d s \\
& =(2 \pi)^{-1 / 2}\left(2 \pi t^{2}\right)^{-n / 2} \int_{0}^{\infty} s^{\frac{n-1}{2}} e^{-s \frac{1}{2}\left(1+\frac{|x|^{2}}{t^{2}}\right)} d s \\
& =(2 \pi)^{-1 / 2}\left(2 \pi t^{2}\right)^{-n / 2} \int_{0}^{\infty} s^{\frac{n+1}{2}} e^{-s \frac{1}{2}\left(1+\frac{\mid x x^{2}}{t^{2}}\right)} \frac{d s}{s} .
\end{aligned}
$$

Making the substitution, $u=s \frac{1}{2}\left(1+\frac{|x|^{2}}{t^{2}}\right)$ in the previous integral shows

$$
\begin{aligned}
Q_{t}(x) & =(2 \pi)^{-1 / 2}\left(2 \pi t^{2}\right)^{-n / 2}\left[\frac{1}{2}\left(1+\frac{|x|^{2}}{t^{2}}\right)\right]^{-\frac{n+1}{2}} \int_{0}^{\infty} s^{\frac{n+1}{2}} e^{-s} \frac{d s}{s} \\
& =(2 \pi)^{-1 / 2} 2^{\frac{n+1}{2}}(2 \pi)^{-n / 2} t\left(t^{2}\right)^{-\frac{n+1}{2}}\left(1+\frac{|x|^{2}}{t^{2}}\right)^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right) \\
& =2^{\frac{n+1}{2}}(2 \pi)^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right) \frac{t}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} \\
& =\Gamma\left(\frac{n+1}{2}\right) \frac{t}{\pi^{\frac{n+1}{2}}\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}}
\end{aligned}
$$

Theorem 14.13. Let

$$
\begin{gather*}
c_{n}:=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \\
Q_{t}(x)=c_{n} \frac{t}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} \tag{14.11}
\end{gather*}
$$

then

$$
\begin{equation*}
e^{-t \sqrt{-\Delta}} f(x)=\int_{\mathbb{R}^{n}} Q_{t}(x-y) f(y) d y \tag{14.12}
\end{equation*}
$$

Notice that if $u(t, x):=e^{-t \sqrt{-\Delta}} f(x)$, we have $\partial_{t}^{2} u(t, x)=(\sqrt{-\Delta})^{2} u(t, x)=$ $-\Delta u(t, x)$ with $u(0, x)=f(x)$. This explains why Q_{t} is the same Poisson kernel which we already saw in Eq. (9.36) of Theorem 9.31 above. To match the two results, observe Theorem 9.31 is for "spatial dimension" $n-1$ not n as in Theorem 14.13.

Integrating Eq. (14.12) from t to ∞ then implies

$$
\begin{aligned}
\frac{1}{\sqrt{-\Delta}} e^{-t \sqrt{-\Delta}} f(x) & =\left.\frac{-1}{\sqrt{-\Delta}} e^{-\tau \sqrt{-\Delta}} f(x)\right|_{\tau=t} ^{\infty} \\
& =\int_{t}^{\infty} e^{-\tau \sqrt{-\Delta}} f(x) d \tau \\
& =\int_{\mathbb{R}^{n}} \int_{t}^{\infty} d \tau Q_{\tau}(x-y) f(y) d y
\end{aligned}
$$

Now

$$
\begin{aligned}
\int_{t}^{\infty} Q_{\tau}(x-y) d \tau & =c_{n} \int_{t}^{\infty} \frac{\tau}{\left(\tau^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} d \tau=\left.\frac{c_{n}}{1-n}\left(\tau^{2}+|x|^{2}\right)^{\frac{1-n}{2}}\right|_{\tau=t} ^{\infty} \\
& =\frac{c_{n}}{n-1}\left(t^{2}+|x|^{2}\right)^{-\frac{n-1}{2}}
\end{aligned}
$$

and hence

$$
\frac{1}{\sqrt{-\Delta}} e^{-t \sqrt{-\Delta}} f(x)=\int_{\mathbb{R}^{n}} \frac{c_{n}}{n-1}\left(t^{2}+|y|^{2}\right)^{-\frac{n-1}{2}} f(x-y) d y
$$

and by analytic continuation,

$$
\begin{aligned}
\frac{1}{\sqrt{-\Delta}} e^{(i t-\epsilon) \sqrt{-\Delta}} f(x) & =\frac{1}{\sqrt{-\Delta}} e^{-(\epsilon-i t) \sqrt{-\Delta}} f(x) \\
& =\frac{c_{n}}{n-1} \int_{\mathbb{R}^{n}}\left((\epsilon-i t)^{2}+|y|^{2}\right)^{-\frac{n-1}{2}} f(x-y) d y \\
& =\frac{c_{n}}{n-1} \int_{\mathbb{R}^{n}}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}} f(x-y) d y
\end{aligned}
$$

and hence

$$
\frac{1}{\sqrt{-\Delta}} \sin (t \sqrt{-\Delta}) f(x)=c_{n}^{\prime} \lim _{\epsilon \downarrow 0} \int_{\mathbb{R}^{n}} \operatorname{Im}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}} f(x-y) d y .
$$

Now if $|y|>|t|$ then

$$
\lim _{\epsilon \downarrow 0}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}}=\left(|y|^{2}-t^{2}\right)^{-\frac{n-1}{2}}
$$

is real so

$$
\lim _{\epsilon \downarrow 0} \operatorname{Im}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}}=0 \text { if }|y|>|t|
$$

Similarly if n is odd $\lim _{\epsilon \downarrow 0}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}}=\left(|y|^{2}-t^{2}\right)^{-\frac{n-1}{2}} \in \mathbb{R}$ and so

$$
\lim _{\epsilon \downarrow 0} \operatorname{Im}\left(|y|^{2}-(t-i \epsilon)^{2}\right)^{-\frac{n-1}{2}}
$$

is a distribution concentrated on the sphere $|y|=|t|$ which is the sharp propagation again. See Taylor Vol. 1., p. 221-225 for more on this approach. Let us examine here the special case $n=3$,

$$
\operatorname{Im}\left(\frac{1}{|y|^{2}-(t-i \epsilon)^{2}}\right)=\operatorname{Im}\left(\frac{1}{|y|^{2}-t^{2}+\epsilon^{2}+2 i \epsilon t}\right)=\frac{-2 \epsilon t}{\left(|y|^{2}-t^{2}+\epsilon^{2}\right)^{2}+4 \epsilon^{2} t^{2}}
$$

so

$$
\begin{aligned}
I & :=\lim _{\epsilon \downarrow 0} \int_{\mathbb{R}^{n}} \operatorname{Im}\left(\frac{1}{|y|^{2}-(t-i \epsilon)^{2}}\right) f(x-y) d y \\
& =\lim _{\epsilon \downarrow 0} \int_{\mathbb{R}^{n}} \frac{-2 \epsilon t}{\left(|y|^{2}-t^{2}+\epsilon^{2}\right)^{2}+4 \epsilon^{2} t^{2}} f(x-y) d y \\
& =4 \pi \lim _{\epsilon \downarrow 0} \int_{0}^{\infty} \rho^{2} \frac{-2 \epsilon t}{\left(\rho^{2}-t^{2}+\epsilon^{2}\right)^{2}+4 \epsilon^{2} t^{2}} \bar{f}(x ; \rho) d \rho \\
& =c t \lim _{\epsilon \downarrow 0} \int_{0}^{\infty} \rho^{2} \frac{\epsilon}{\left(\rho^{2}-t^{2}+\epsilon^{2}\right)^{2}+4 \epsilon^{2} t^{2}} \bar{f}(x ; \rho) d \rho .
\end{aligned}
$$

Make the change of variables $\rho=t+\epsilon s$ above to find

$$
\begin{aligned}
I & =c t \lim _{\epsilon \downarrow 0} \int_{-t / \epsilon}^{\infty} \frac{(t+\epsilon s)^{2} \epsilon^{2}}{\left(2 \epsilon s t+\epsilon^{2} s^{2}+\epsilon^{2}\right)^{2}+4 \epsilon^{2} t^{2}} \bar{f}(x ; t+\epsilon s) d s \\
& =c t \lim _{\epsilon \downarrow 0} \int_{-t / \epsilon}^{\infty} \frac{(t+\epsilon s)^{2}}{\left(2 s t+\epsilon s^{2}+\epsilon\right)^{2}+4 t^{2}} \bar{f}(x ; t+\epsilon s) d s \\
& =c t \bar{f}(x ; t) \int_{-\infty}^{\infty} \frac{t^{2}}{4 t^{2} s^{2}+4 t^{2}} d s=\frac{c}{4} t \bar{f}(x ; t) \int_{-\infty}^{\infty} \frac{1}{s^{2}+1} d s \\
& =\frac{c}{4} \pi t \bar{f}(x ; t)
\end{aligned}
$$

which up to an overall constant is the result that we have seen before.
14.7. Explain Method of descent $n=2$.

$$
u(t, x)=\frac{1}{2} \int_{B(x, t)} \frac{t g(y)+t^{2} h(y)+t \nabla g(y) \cdot(y-x)}{\left(t^{2}-|y-x|^{2}\right)^{1 / 2}} d y
$$

See constant coefficient PDE notes for more details on this.

