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4. The Riemann Integral

In this short chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter. The
following simple “Bounded Linear Transformation” theorem will often be used here
and in the sequel to define linear transformations.

Theorem 4.1 (B. L. T. Theorem). Suppose that Z is a normed space, X is a
Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C < ∞ such that kTzk ≤ C kzk
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and this
extension still satisfies °°T̄ z°° ≤ C kzk for all z ∈ S̄.
Exercise 4.1. Prove Theorem 4.1.

For the remainder of the chapter, let [a, b] be a fixed compact interval and X be
a Banach space. The collection S = S([a, b],X) of step functions, f : [a, b]→ X,
consists of those functions f which may be written in the form

(4.1) f(t) = x01[a,t1](t) +
n−1X
i=1

xi1(ti,ti+1](t),

where π ≡ {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X. For f as
in Eq. (4.1), let

(4.2) I(f) ≡
n−1X
i=0

(ti+1 − ti)xi ∈ X.

Exercise 4.2. Show that I(f) is well defined, independent of how f is represented
as a step function. (Hint: show that adding a point to a partition π of [a, b] does
not change the right side of Eq. (4.2).) Also verify that I : S → X is a linear
operator.

Proposition 4.2 (Riemann Integral). The linear function I : S → X extends
uniquely to a continuous linear operator Ī from S̄ (the closure of the step functions
inside of ∞([a, b], X)) to X and this operator satisfies,

(4.3) kĪ(f)k ≤ (b− a) kfk∞ for all f ∈ S̄.
Furthermore, C([a, b], X) ⊂ S̄ ⊂ ∞([a, b], X) and for f ∈, Ī(f) may be computed
as

(4.4) Ī(f) = lim
|π|→0

n−1X
i=0

f(cπi )(ti+1 − ti)

where π ≡ {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b],
|π| = max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be chosen
arbitrarily inside [ti, ti+1].

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality shows,

(4.5) kI(f)k ≤
n−1X
i=0

(ti+1 − ti)kxik ≤
n−1X
i=0

(ti+1 − ti)kfk∞ ≤ (b− a)kfk∞.



ANALYSIS TOOLS WITH APPLICATIONS 49

The existence of Ī satisfying Eq. (4.3) is a consequence of Theorem 4.1.
For f ∈ C([a, b], X), π ≡ {a = t0 < t1 < · · · < tn = b} a partition of [a, b], and

cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let

fπ(t) ≡ f(c0)01[t0,t1](t) +
n−1X
i=1

f(cπi )1(ti,ti+1](t).

Then I(fπ) =
Pn−1

i=0 f(cπi )(ti+1 − ti) so to finish the proof of Eq. (4.4) and that
C([a, b], X) ⊂ S̄, it suffices to observe that lim|π|→0 kf − fπk∞ = 0 because f is
uniformly continuous on [a, b].
If fn ∈ S and f ∈ S̄ such that limn→∞ kf − fnk∞ = 0, then for a ≤ α < β ≤ b,

then 1[α,β]fn ∈ S and limn→∞
°°1[α,β]f − 1[α,β]fn°°∞ = 0. This shows 1[α,β]f ∈ S̄

whenever f ∈ S̄.
Notation 4.3. For f ∈ S̄ and a ≤ α ≤ β ≤ b we will write denote Ī(1[α,β]f) byR β
α
f(t) dt or

R
[α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤ α ≤ b, we
will let Z β

α

f(t) dt = −Ī(1[β,α]f) = −
Z α

β

f(t) dt.

The next Lemma, whose proof is left to the reader (Exercise 4.4) contains some
of the many familiar properties of the Riemann integral.

Lemma 4.4. For f ∈ S̄([a, b],X) and α, β, γ ∈ [a, b], the Riemann integral satisfies:
(1)

°°°R βα f(t) dt
°°°
∞
≤ (β − α) sup {kf(t)k : α ≤ t ≤ β} .

(2)
R γ
α
f(t) dt =

R β
α
f(t) dt+

R γ
β
f(t) dt.

(3) The function G(t) :=
R t
a
f(τ)dτ is continuous on [a, b].

(4) If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y ) and

T

ÃZ β

α

f(t)dt

!
=

Z β

α

Tf(t)dt.

(5) The function t→ kf(t)kX is in S̄([a, b],R) and°°°°°
Z b

a

f(t) dt

°°°°° ≤
Z b

a

kf(t)k dt.

(6) If f, g ∈ S̄([a, b],R) and f ≤ g, thenZ b

a

f(t)dt ≤
Z b

a

g(t)dt.

Theorem 4.5 (Baby Fubini Theorem). Let a, b, c, d ∈ R and f(s, t) ∈ X be a
continuous function of (s, t) for s between a and b and t between c and d. Then the
maps t→ R b

a
f(s, t)ds ∈ X and s→ R d

c
f(s, t)dt are continuous and

(4.6)
Z d

c

"Z b

a

f(s, t)ds

#
dt =

Z b

a

"Z d

c

f(s, t)dt

#
ds.
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Proof. With out loss of generality we may assume a < b and c < d. By uniform
continuity of f, Exercise 3.15,

sup
c≤t≤d

kf(s, t)− f(s0, t)k→ 0 as s→ s0

and so by Lemma 4.4 Z d

c

f(s, t)dt→
Z d

c

f(s0, t)dt as s→ s0

showing the continuity of s→ R d
c
f(s, t)dt. The other continuity assertion is proved

similarly.
Now let

π = {a ≤ s0 < s1 < · · · < sm = b} and π0 = {c ≤ t0 < t1 < · · · < tn = d}
be partitions of [a, b] and [c, d] respectively. For s ∈ [a, b] let sπ = si if s ∈ (si, si+1]
and i ≥ 1 and sπ = s0 = a if s ∈ [s0, s1]. Define tπ0 for t ∈ [c, d] analogously. ThenZ b

a

"Z d

c

f(s, t)dt

#
ds =

Z b

a

"Z d

c

f(s, tπ0)dt

#
ds+

Z b

a
π0(s)ds

=

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds+ δπ,π0 +

Z b

a
π0(s)ds

where

π0(s) =

Z d

c

f(s, t)dt−
Z d

c

f(s, tπ0)dt

and

δπ,π0 =

Z b

a

"Z d

c

{f(s, tπ0)− f(sπ, tπ0)} dt
#
ds.

The uniform continuity of f and the estimates

sup
s∈[a,b]

k π0(s)k ≤ sup
s∈[a,b]

Z d

c

kf(s, t)− f(s, tπ0)k dt

≤ (d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
and

kδπ,π0k ≤
Z b

a

"Z d

c

kf(s, tπ0)− f(sπ, tπ0)k dt
#
ds

≤ (b− a)(d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
allow us to conclude thatZ b

a

"Z d

c

f(s, t)dt

#
ds−

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds→ 0 as |π|+ |π0|→ 0.

By symmetry (or an analogous argument),Z d

c

"Z b

a

f(s, t)ds

#
dt−

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt→ 0 as |π|+ |π0|→ 0.
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This completes the proof sinceZ b

a

"Z d

c

f(sπ, tπ0)dt

#
ds =

X
0≤i<m,0≤j<n

f(si, tj)(si+1 − si)(tj+1 − tj)

=

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt.

4.1. The Fundamental Theorem of Calculus. Our next goal is to show that
our Riemann integral interacts well with differentiation, namely the fundamental
theorem of calculus holds. Before doing this we will need a couple of basic definitions
and results.

Definition 4.6. Let (a, b) ⊂ R. A function f : (a, b) → X is differentiable at
t ∈ (a, b) iff L := limh→0

f(t+h)−f(t)
h exists in X. The limit L, if it exists, will be

denoted by ḟ(t) or df
dt (t). We also say that f ∈ C1((a, b)→ X) if f is differentiable

at all points t ∈ (a, b) and ḟ ∈ C((a, b)→ X).

Proposition 4.7. Suppose that f : [a, b] → X is a continuous function such that
ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let > 0 and α ∈ (a, b) be given. (We will later let ↓ 0 and α ↓ a.) By
the definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0 such that
(4.7) kf(t)− f(τ)k =

°°°f(t)− f(τ)− ḟ(τ)(t− τ)
°°° ≤ |t− τ | if |t− τ | < δτ .

Let

(4.8) A = {t ∈ [α, b] : kf(t)− f(α)k ≤ (t− α)}
and t0 be the least upper bound for A. Eq. (4.7) with τ = α shows t0 > α and a
simple continuity argument shows t0 ∈ A, i.e.

(4.9) kf(t0)− f(α)k ≤ (t0 − α)

For the sake of contradiction, suppose that t0 < b. By Eqs. (4.7) and (4.9),

kf(t)− f(α)k ≤ kf(t)− f(t0)k+ kf(t0)− f(α)k ≤ (t0 − α) + (t− t0) = (t− α)

for 0 ≤ t− t0 < δt0 which violates the definition of t0 being an upper bound. Thus
we have shown Eq. (4.8) holds for all t ∈ [α, b]. Since > 0 and α > a were
arbitrary we may conclude, using the continuity of f, that kf(t)− f(a)k = 0 for all
t ∈ [a, b].
Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem is not
available to vector valued functions. However with the aid of the Hahn Banach
Theorem 18.16 and Lemma 4.4, it is possible to reduce the proof of Proposition 4.7
and the proof of the Fundamental Theorem of Calculus 4.9 to the real valued case,
see Exercise 18.12.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that f ∈ C([a, b], X),
Then

(1) d
dt

R t
a
f(τ) dτ = f(t) for all t ∈ (a, b).
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(2) Now assume that F ∈ C([a, b], X), F is continuously differentiable on (a, b),
and Ḟ extends to a continuous function on [a, b] which is still denoted by
Ḟ . Then Z b

a

Ḟ (t) dt = F (b)− F (a).

Proof. Let h > 0 be a small number and consider

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk = k
Z t+h

t

(f(τ)− f(t)) dτk

≤
Z t+h

t

k(f(τ)− f(t))k dτ
≤ h (h),

where (h) ≡ maxτ∈[t,t+h] k(f(τ)− f(t))k. Combining this with a similar computa-
tion when h < 0 shows, for all h ∈ R sufficiently small, that

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk ≤ |h| (h),

where now (h) ≡ maxτ∈[t−|h|,t+|h|] k(f(τ)−f(t))k. By continuity of f at t, (h)→ 0

and hence d
dt

R t
a
f(τ) dτ exists and is equal to f(t).

For the second item, set G(t) ≡ R t
a
Ḟ (τ) dτ − F (t). Then G is continuous by

Lemma 4.4 and Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of Proposition
4.7 shows G is a constant and in particular G(b) = G(a), i.e.

R b
a
Ḟ (τ) dτ − F (b) =

−F (a).
Corollary 4.10 (Mean Value Inequality). Suppose that f : [a, b] → X is a con-
tinuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a continuous
function on [a, b]. Then

(4.10) kf(b)− f(a)k ≤
Z b

a

kḟ(t)kdt ≤ (b− a) ·
°°°ḟ°°°

∞
.

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
R b
a
ḟ(t)dt and

then by Lemma 4.4,

kf(b)− f(a)k =
°°°°°
Z b

a

ḟ(t)dt

°°°°° ≤
Z b

a

kḟ(t)kdt ≤
Z b

a

°°°ḟ°°°
∞
dt = (b− a) ·

°°°ḟ°°°
∞
.

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let Q = (a, b)× (c, d)
be an open rectangle in R2 and f ∈ C(Q,X). Assume that ∂

∂tf(s, t),
∂
∂sf(s, t) and

∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q, then ∂

∂s
∂
∂tf(s, t) exists for

(s, t) ∈ Q and

(4.11)
∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q.
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Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 4.9,

f(s, t) = f(st0 , t) +

Z s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ)(4.12)

and then by Fubini’s Theorem 4.5 we learn

f(s, t) = f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z t

t0

dτ

Z s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more applications
of Theorem 4.9) shows Eq. (4.11) holds.

4.2. Exercises.

Exercise 4.3. Let ∞([a, b], X) ≡ {f : [a, b]→ X : kfk∞ ≡ supt∈[a,b] kf(t)k <∞}.
Show that ( ∞([a, b], X), k · k∞) is a complete Banach space.
Exercise 4.4. Prove Lemma 4.4.

Exercise 4.5. Using Lemma 4.4, show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff fi ∈
S̄([a, b],R) for i = 1, 2, . . . , n andZ b

a

f(t)dt =

ÃZ b

a

f1(t)dt, . . . ,

Z b

a

fn(t)dt

!
.

Exercise 4.6. Give another proof of Proposition 4.11 which does not use Fubini’s
Theorem 4.5 as follows.

(1) By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (4.11) holds at (s, t) = (0, 0).

(2) Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=

Z s

0

dσ

Z t

0

dτh(σ, τ)

so that Eq. (4.12) states

f(s, t) = f(0, t) +

Z s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows

(4.13)
∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0).

Now show using the definition of the derivative that

(4.14)
∂

∂t
G(s, 0) =

Z s

0

dσh(σ, 0).

Hint: Consider

G(s, t)− t

Z s

0

dσh(σ, 0) =

Z s

0

dσ

Z t

0

dτ [h(σ, τ)− h(σ, 0)] .

(3) Now differentiate Eq. (4.13) in s using Theorem 4.9 to finish the proof.
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Exercise 4.7. Give another proof of Eq. (4.6) in Theorem 4.5 based on Proposition
4.11. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=

Z t

t0

dτ

Z s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 4.11 which combined with two ap-
plications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with the
observation that G = 0 if t = t0 or s = s0 to conclude

(4.15) G(s, t) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ
f(σ, τ).

Finally let s = b and t = d in Eq. (4.15) and then let s0 ↓ a and t0 ↓ c to prove Eq.
(4.6).


