5. Ordinary Differential Equations in a Banach Space

Let X be a Banach space, $U \subset_{o} X, J=(a, b) \ni 0$ and $Z \in C(J \times U, X)-Z$ is to be interpreted as a time dependent vector-field on $U \subset X$. In this section we will consider the ordinary differential equation (ODE for short)

$$
\begin{equation*}
\dot{y}(t)=Z(t, y(t)) \text { with } y(0)=x \in U \tag{5.1}
\end{equation*}
$$

The reader should check that any solution $y \in C^{1}(J, U)$ to Eq. (5.1) gives a solution $y \in C(J, U)$ to the integral equation:

$$
\begin{equation*}
y(t)=x+\int_{0}^{t} Z(\tau, y(\tau)) d \tau \tag{5.2}
\end{equation*}
$$

and conversely if $y \in C(J, U)$ solves Eq. (5.2) then $y \in C^{1}(J, U)$ and y solves Eq. (5.1).

Remark 5.1. For notational simplicity we have assumed that the initial condition for the ODE in Eq. (5.1) is taken at $t=0$. There is no loss in generality in doing this since if \tilde{y} solves

$$
\frac{d \tilde{y}}{d t}(t)=\tilde{Z}(t, \tilde{y}(t)) \text { with } \tilde{y}\left(t_{0}\right)=x \in U
$$

iff $y(t):=\tilde{y}\left(t+t_{0}\right)$ solves Eq. (5.1) with $Z(t, x)=\tilde{Z}\left(t+t_{0}, x\right)$.
5.1. Examples. Let $X=\mathbb{R}, Z(x)=x^{n}$ with $n \in \mathbb{N}$ and consider the ordinary differential equation

$$
\begin{equation*}
\dot{y}(t)=Z(y(t))=y^{n}(t) \text { with } y(0)=x \in \mathbb{R} \tag{5.3}
\end{equation*}
$$

If y solves Eq. (5.3) with $x \neq 0$, then $y(t)$ is not zero for t near 0 . Therefore up to the first time y possibly hits 0 , we must have

$$
t=\int_{0}^{t} \frac{\dot{y}(\tau)}{y(\tau)^{n}} d \tau=\int_{0}^{y(t)} u^{-n} d u=\left\{\begin{array}{cll}
\frac{[y(t)]^{1-n}-x^{1-n}}{1-n} & \text { if } & n>1 \\
\ln \left|\frac{y(t)}{x}\right| & \text { if } & n=1
\end{array}\right.
$$

and solving these equations for $y(t)$ implies

$$
y(t)=y(t, x)=\left\{\begin{array}{ccc}
\frac{x}{\sqrt[n-1]{1-(n-1) t x^{n-1}}} & \text { if } & n>1 \tag{5.4}\\
e^{t} x & \text { if } & n=1
\end{array}\right.
$$

The reader should verify by direct calculation that $y(t, x)$ defined above does indeed solve Eq. (5.3). The above argument shows that these are the only possible solutions to the Equations in (5.3).

Notice that when $n=1$, the solution exists for all time while for $n>1$, we must require

$$
1-(n-1) t x^{n-1}>0
$$

or equivalently that

$$
\begin{aligned}
& t<\frac{1}{(1-n) x^{n-1}} \text { if } x^{n-1}>0 \text { and } \\
& t>-\frac{1}{(1-n)|x|^{n-1}} \text { if } x^{n-1}<0
\end{aligned}
$$

Moreover for $n>1, y(t, x)$ blows up as t approaches the value for which $1-(n-$ 1) $t x^{n-1}=0$. The reader should also observe that, at least for s and t close to 0 ,

$$
\begin{equation*}
y(t, y(s, x))=y(t+s, x) \tag{5.5}
\end{equation*}
$$

for each of the solutions above. Indeed, if $n=1$ Eq. (5.5) is equivalent to the well know identity, $e^{t} e^{s}=e^{t+s}$ and for $n>1$,

$$
\begin{aligned}
y(t, y(s, x)) & =\frac{y(s, x)}{\sqrt[n-1]{1-(n-1) t y(s, x)^{n-1}}} \\
& =\frac{\frac{x}{\sqrt[n-1]{1-(n-1) s x^{n-1}}}}{\sqrt[n-1]{1-(n-1) t\left[\frac{n-1}{1-(n-1) s x^{n-1}}\right]^{n-1}}} \\
& =\frac{\frac{x}{\sqrt[n-1]{1-(n-1) s x^{n-1}}}}{\sqrt[n-1]{1-(n-1) t \frac{x^{n-1}}{1-(n-1) s x^{n-1}}}} \\
& =\frac{x}{\sqrt[n-1]{1-(n-1) s x^{n-1}-(n-1) t x^{n-1}}} \\
& =\frac{x}{\sqrt[n-1]{1-(n-1)(s+t) x^{n-1}}}=y(t+s, x)
\end{aligned}
$$

Now suppose $Z(x)=|x|^{\alpha}$ with $0<\alpha<1$ and we now consider the ordinary differential equation

$$
\begin{equation*}
\dot{y}(t)=Z(y(t))=|y(t)|^{\alpha} \text { with } y(0)=x \in \mathbb{R} \tag{5.6}
\end{equation*}
$$

Working as above we find, if $x \neq 0$ that

$$
t=\int_{0}^{t} \frac{\dot{y}(\tau)}{|y(t)|^{\alpha}} d \tau=\int_{0}^{y(t)}|u|^{-\alpha} d u=\frac{[y(t)]^{1-\alpha}-x^{1-\alpha}}{1-\alpha}
$$

where $u^{1-\alpha}:=|u|^{1-\alpha} \operatorname{sgn}(u)$. Since $\operatorname{sgn}(y(t))=\operatorname{sgn}(x)$ the previous equation implies

$$
\begin{aligned}
\operatorname{sgn}(x)(1-\alpha) t & =\operatorname{sgn}(x)\left[\operatorname{sgn}(y(t))|y(t)|^{1-\alpha}-\operatorname{sgn}(x)|x|^{1-\alpha}\right] \\
& =|y(t)|^{1-\alpha}-|x|^{1-\alpha}
\end{aligned}
$$

and therefore,

$$
\begin{equation*}
y(t, x)=\operatorname{sgn}(x)\left(|x|^{1-\alpha}+\operatorname{sgn}(x)(1-\alpha) t\right)^{\frac{1}{1-\alpha}} \tag{5.7}
\end{equation*}
$$

is uniquely determined by this formula until the first time t where $|x|^{1-\alpha}+\operatorname{sgn}(x)(1-$ $\alpha) t=0$. As before $y(t)=0$ is a solution to Eq. (5.6), however it is far from being the unique solution. For example letting $x \downarrow 0$ in Eq. (5.7) gives a function

$$
y(t, 0+)=((1-\alpha) t)^{\frac{1}{1-\alpha}}
$$

which solves Eq. (5.6) for $t>0$. Moreover if we define

$$
y(t):=\left\{\begin{array}{cl}
((1-\alpha) t)^{\frac{1}{1-\alpha}} & \text { if } \quad t>0 \\
0 & \text { if } t \leq 0
\end{array},\right.
$$

(for example if $\alpha=1 / 2$ then $y(t)=\frac{1}{4} t^{2} 1_{t \geq 0}$) then the reader may easily check y also solve Eq. (5.6). Furthermore, $y_{a}(t):=y(t-a)$ also solves Eq. (5.6) for all $a \geq 0$, see Figure 11 below.

Figure 11. Three different solutions to the ODE $\dot{y}(t)=|y(t)|^{1 / 2}$ with $y(0)=0$.

With these examples in mind, let us now go to the general theory starting with linear ODEs.
5.2. Linear Ordinary Differential Equations. Consider the linear differential equation

$$
\begin{equation*}
\dot{y}(t)=A(t) y(t) \text { where } y(0)=x \in X \tag{5.8}
\end{equation*}
$$

Here $A \in C(J \rightarrow L(X))$ and $y \in C^{1}(J \rightarrow X)$. This equation may be written in its equivalent (as the reader should verify) integral form, namely we are looking for $y \in C(J, X)$ such that

$$
\begin{equation*}
y(t)=x+\int_{0}^{t} A(\tau) y(\tau) d \tau \tag{5.9}
\end{equation*}
$$

In what follows, we will abuse notation and use $\|\cdot\|$ to denote the operator norm on $L(X)$ associated to $\|\cdot\|$ on X we will also fix $J=(a, b) \ni 0$ and let $\|\phi\|_{\infty}:=$ $\max _{t \in J}\|\phi(t)\|$ for $\phi \in B C(J, X)$ or $B C(J, L(X))$.

Notation 5.2. For $t \in \mathbb{R}$ and $n \in \mathbb{N}$, let

$$
\Delta_{n}(t)=\left\{\begin{array}{l}
\left\{\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n}: 0 \leq \tau_{1} \leq \cdots \leq \tau_{n} \leq t\right\} \quad \text { if } \quad t \geq 0 \\
\left\{\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n}: t \leq \tau_{n} \leq \cdots \leq \tau_{1} \leq 0\right\} \quad \text { if } \quad t \leq 0
\end{array}\right.
$$

and also write $d \tau=d \tau_{1} \ldots d \tau_{n}$ and

$$
\int_{\Delta_{n}(t)} f\left(\tau_{1}, \ldots \tau_{n}\right) d \tau:=(-1)^{n \cdot 1_{t<0}} \int_{0}^{t} d \tau_{n} \int_{0}^{\tau_{n}} d \tau_{n-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} f\left(\tau_{1}, \ldots \tau_{n}\right)
$$

Lemma 5.3. Suppose that $\psi \in C(\mathbb{R}, \mathbb{R})$, then

$$
\begin{equation*}
(-1)^{n \cdot 1_{t<0}} \int_{\Delta_{n}(t)} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau=\frac{1}{n!}\left(\int_{0}^{t} \psi(\tau) d \tau\right)^{n} \tag{5.10}
\end{equation*}
$$

Proof. Let $\Psi(t):=\int_{0}^{t} \psi(\tau) d \tau$. The proof will go by induction on n. The case $n=1$ is easily verified since

$$
(-1)^{1 \cdot 1_{t<0}} \int_{\Delta_{1}(t)} \psi\left(\tau_{1}\right) d \tau_{1}=\int_{0}^{t} \psi(\tau) d \tau=\Psi(t)
$$

Now assume the truth of Eq. (5.10) for $n-1$ for some $n \geq 2$, then

$$
\begin{aligned}
(-1)^{n \cdot 1_{t<0}} \int_{\Delta_{n}(t)} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau & =\int_{0}^{t} d \tau_{n} \int_{0}^{\tau_{n}} d \tau_{n-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) \\
& =\int_{0}^{t} d \tau_{n} \frac{\Psi^{n-1}\left(\tau_{n}\right)}{(n-1)!} \psi\left(\tau_{n}\right)=\int_{0}^{t} d \tau_{n} \frac{\Psi^{n-1}\left(\tau_{n}\right)}{(n-1)!} \dot{\Psi}\left(\tau_{n}\right) \\
& =\int_{0}^{\Psi(t)} \frac{u^{n-1}}{(n-1)!} d u=\frac{\Psi^{n}(t)}{n!}
\end{aligned}
$$

wherein we made the change of variables, $u=\Psi\left(\tau_{n}\right)$, in the second to last equality.

Remark 5.4. Eq. (5.10) is equivalent to

$$
\int_{\Delta_{n}(t)} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau=\frac{1}{n!}\left(\int_{\Delta_{1}(t)} \psi(\tau) d \tau\right)^{n}
$$

and another way to understand this equality is to view $\int_{\Delta_{n}(t)} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau$ as a multiple integral (see Section 8 below) rather than an iterated integral. Indeed, taking $t>0$ for simplicity and letting S_{n} be the permutation group on $\{1,2, \ldots, n\}$ we have

$$
[0, t]^{n}=\cup_{\sigma \in S_{n}}\left\{\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n}: 0 \leq \tau_{\sigma 1} \leq \cdots \leq \tau_{\sigma n} \leq t\right\}
$$

with the union being "essentially" disjoint. Therefore, making a change of variables and using the fact that $\psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right)$ is invariant under permutations, we find

$$
\begin{aligned}
\left(\int_{0}^{t} \psi(\tau) d \tau\right)^{n} & =\int_{[0, t]^{n}} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau \\
& =\sum_{\sigma \in S_{n}} \int_{\left\{\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathbb{R}^{n}: 0 \leq \tau_{\sigma 1} \leq \cdots \leq \tau_{\sigma n} \leq t\right\}} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau \\
& =\sum_{\sigma \in S_{n}} \int_{\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}: 0 \leq s_{1} \leq \cdots \leq s_{n} \leq t\right\}} \psi\left(s_{\sigma^{-1} 1}\right) \ldots \psi\left(s_{\sigma^{-1} n}\right) d \mathbf{s} \\
& =\sum_{\sigma \in S_{n}} \int_{\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n}: 0 \leq s_{1} \leq \cdots \leq s_{n} \leq t\right\}} \psi\left(s_{1}\right) \ldots \psi\left(s_{n}\right) d \mathbf{s} \\
& =n!\int_{\Delta_{n}(t)} \psi\left(\tau_{1}\right) \ldots \psi\left(\tau_{n}\right) d \tau .
\end{aligned}
$$

Theorem 5.5. Let $\phi \in B C(J, X)$, then the integral equation

$$
\begin{equation*}
y(t)=\phi(t)+\int_{0}^{t} A(\tau) y(\tau) d \tau \tag{5.11}
\end{equation*}
$$

has a unique solution given by

$$
\begin{equation*}
y(t)=\phi(t)+\sum_{n=1}^{\infty}(-1)^{n \cdot 1_{t<0}} \int_{\Delta_{n}(t)} A\left(\tau_{n}\right) \ldots A\left(\tau_{1}\right) \phi\left(\tau_{1}\right) d \tau \tag{5.12}
\end{equation*}
$$

and this solution satisfies the bound

$$
\|y\|_{\infty} \leq\|\phi\|_{\infty} e^{\int_{J}\|A(\tau)\| d \tau}
$$

Proof. Define $\Lambda: B C(J, X) \rightarrow B C(J, X)$ by

$$
(\Lambda y)(t)=\int_{0}^{t} A(\tau) y(\tau) d \tau
$$

Then y solves Eq. (5.9) iff $y=\phi+\Lambda y$ or equivalently iff $(I-\Lambda) y=\phi$.
An induction argument shows

$$
\begin{aligned}
\left(\Lambda^{n} \phi\right)(t) & =\int_{0}^{t} d \tau_{n} A\left(\tau_{n}\right)\left(\Lambda^{n-1} \phi\right)\left(\tau_{n}\right) \\
& =\int_{0}^{t} d \tau_{n} \int_{0}^{\tau_{n}} d \tau_{n-1} A\left(\tau_{n}\right) A\left(\tau_{n-1}\right)\left(\Lambda^{n-2} \phi\right)\left(\tau_{n-1}\right) \\
& \vdots \\
& =\int_{0}^{t} d \tau_{n} \int_{0}^{\tau_{n}} d \tau_{n-1} \ldots \int_{0}^{\tau_{2}} d \tau_{1} A\left(\tau_{n}\right) \ldots A\left(\tau_{1}\right) \phi\left(\tau_{1}\right) \\
& =(-1)^{n \cdot 1_{t<0}} \int_{\Delta_{n}(t)} A\left(\tau_{n}\right) \ldots A\left(\tau_{1}\right) \phi\left(\tau_{1}\right) d \tau
\end{aligned}
$$

Taking norms of this equation and using the triangle inequality along with Lemma 5.3 gives,

$$
\begin{aligned}
\left\|\left(\Lambda^{n} \phi\right)(t)\right\| & \leq\|\phi\|_{\infty} \cdot \int_{\Delta_{n}(t)}\left\|A\left(\tau_{n}\right)\right\| \ldots\left\|A\left(\tau_{1}\right)\right\| d \tau \\
& \leq\|\phi\|_{\infty} \cdot \frac{1}{n!}\left(\int_{\Delta_{1}(t)}\|A(\tau)\| d \tau\right)^{n} \\
& \leq\|\phi\|_{\infty} \cdot \frac{1}{n!}\left(\int_{J}\|A(\tau)\| d \tau\right)^{n}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|\Lambda^{n}\right\|_{o p} \leq \frac{1}{n!}\left(\int_{J}\|A(\tau)\| d \tau\right)^{n} \tag{5.13}
\end{equation*}
$$

and

$$
\sum_{n=0}^{\infty}\left\|\Lambda^{n}\right\|_{o p} \leq e^{\int_{J}\|A(\tau)\| d \tau}<\infty
$$

where $\|\cdot\|_{o p}$ denotes the operator norm on $L(B C(J, X))$. An application of Proposition 3.69 now shows $(I-\Lambda)^{-1}=\sum_{n=0}^{\infty} \Lambda^{n}$ exists and

$$
\left\|(I-\Lambda)^{-1}\right\|_{o p} \leq e^{\int_{J}\|A(\tau)\| d \tau}
$$

It is now only a matter of working through the notation to see that these assertions prove the theorem.

Corollary 5.6. Suppose that $A \in L(X)$ is independent of time, then the solution to

$$
\dot{y}(t)=A y(t) \text { with } y(0)=x
$$

is given by $y(t)=e^{t A} x$ where

$$
\begin{equation*}
e^{t A}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A^{n} \tag{5.14}
\end{equation*}
$$

Proof. This is a simple consequence of Eq. 5.12 and Lemma 5.3 with $\psi=1$. We also have the following converse to this corollary whose proof is outlined in Exercise 5.11 below.

Theorem 5.7. Suppose that $T_{t} \in L(X)$ for $t \geq 0$ satisfies
(1) (Semi-group property.) $T_{0}=I d_{X}$ and $T_{t} T_{s}=T_{t+s}$ for all $s, t \geq 0$.
(2) (Norm Continuity) $t \rightarrow T_{t}$ is continuous at 0 , i.e. $\left\|T_{t}-I\right\|_{L(X)} \rightarrow 0$ as $t \downarrow 0$.
Then there exists $A \in L(X)$ such that $T_{t}=e^{t A}$ where $e^{t A}$ is defined in Eq. (5.14).

5.3. Uniqueness Theorem and Continuous Dependence on Initial Data.

Lemma 5.8. Gronwall's Lemma. Suppose that f, ϵ, and k are non-negative functions of a real variable t such that

$$
\begin{equation*}
f(t) \leq \epsilon(t)+\left|\int_{0}^{t} k(\tau) f(\tau) d \tau\right| \tag{5.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(t) \leq \epsilon(t)+\left|\int_{0}^{t} k(\tau) \epsilon(\tau) e^{\left|\int_{\tau}^{t} k(s) d s\right|} d \tau\right| \tag{5.16}
\end{equation*}
$$

and in particular if ϵ and k are constants we find that

$$
\begin{equation*}
f(t) \leq \epsilon e^{k|t|} \tag{5.17}
\end{equation*}
$$

Proof. I will only prove the case $t \geq 0$. The case $t \leq 0$ can be derived by applying the $t \geq 0$ to $\tilde{f}(t)=f(-t), \tilde{k}(t)=k(-t)$ and $\tilde{\epsilon}(t)=\epsilon(-t)$.

Set $F(t)=\int_{0}^{t} k(\tau) f(\tau) d \tau$. Then by (5.15),

$$
\dot{F}=k f \leq k \epsilon+k F
$$

Hence,

$$
\frac{d}{d t}\left(e^{-\int_{0}^{t} k(s) d s} F\right)=e^{-\int_{0}^{t} k(s) d s}(\dot{F}-k F) \leq k \epsilon e^{-\int_{0}^{t} k(s) d s}
$$

Integrating this last inequality from 0 to t and then solving for F yields:

$$
F(t) \leq e^{\int_{0}^{t} k(s) d s} \cdot \int_{0}^{t} d \tau k(\tau) \epsilon(\tau) e^{-\int_{0}^{\tau} k(s) d s}=\int_{0}^{t} d \tau k(\tau) \epsilon(\tau) e^{\int_{\tau}^{t} k(s) d s}
$$

But by the definition of F we have that

$$
f \leq \epsilon+F
$$

and hence the last two displayed equations imply (5.16). Equation (5.17) follows from (5.16) by a simple integration.
Corollary 5.9 (Continuous Dependence on Initial Data). Let $U \subset_{o} X, 0 \in(a, b)$ and $Z:(a, b) \times U \rightarrow X$ be a continuous function which is $K-L i p s c h i t z ~ f u n c t i o n ~ o n ~ U, ~$
i.e. $\left\|Z(t, x)-Z\left(t, x^{\prime}\right)\right\| \leq K\left\|x-x^{\prime}\right\|$ for all x and x^{\prime} in U. Suppose $y_{1}, y_{2}:(a, b) \rightarrow U$ solve

$$
\begin{equation*}
\frac{d y_{i}(t)}{d t}=Z\left(t, y_{i}(t)\right) \text { with } y_{i}(0)=x_{i} \quad \text { for } i=1,2 \tag{5.18}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|y_{2}(t)-y_{1}(t)\right\| \leq\left\|x_{2}-x_{1}\right\| e^{K|t|} \text { for } t \in(a, b) \tag{5.19}
\end{equation*}
$$

and in particular, there is at most one solution to Eq. (5.1) under the above Lipschitz assumption on Z.

Proof. Let $f(t) \equiv\left\|y_{2}(t)-y_{1}(t)\right\|$. Then by the fundamental theorem of calculus,

$$
\begin{aligned}
f(t) & =\left\|y_{2}(0)-y_{1}(0)+\int_{0}^{t}\left(\dot{y}_{2}(\tau)-\dot{y}_{1}(\tau)\right) d \tau\right\| \\
& \leq f(0)+\left|\int_{0}^{t}\left\|Z\left(\tau, y_{2}(\tau)\right)-Z\left(\tau, y_{1}(\tau)\right)\right\| d \tau\right| \\
& =\left\|x_{2}-x_{1}\right\|+K\left|\int_{0}^{t} f(\tau) d \tau\right|
\end{aligned}
$$

Therefore by Gronwall's inequality we have,

$$
\left\|y_{2}(t)-y_{1}(t)\right\|=f(t) \leq\left\|x_{2}-x_{1}\right\| e^{K|t|}
$$

5.4. Local Existence (Non-Linear ODE).

Theorem 5.10 (Local Existence). Let $T>0, J=(-T, T), x_{0} \in X, r>0$ and

$$
C\left(x_{0}, r\right):=\left\{x \in X:\left\|x-x_{0}\right\| \leq r\right\}
$$

be the closed r - ball centered at $x_{0} \in X$. Assume

$$
\begin{equation*}
M=\sup \left\{\|Z(t, x)\|:(t, x) \in J \times C\left(x_{0}, r\right)\right\}<\infty \tag{5.20}
\end{equation*}
$$

and there exists $K<\infty$ such that

$$
\begin{equation*}
\|Z(t, x)-Z(t, y)\| \leq K\|x-y\| \text { for all } x, y \in C\left(x_{0}, r\right) \text { and } t \in J \tag{5.21}
\end{equation*}
$$

Let $T_{0}<\min \{r / M, T\}$ and $J_{0}:=\left(-T_{0}, T_{0}\right)$, then for each $x \in B\left(x_{0}, r-M T_{0}\right)$ there exists a unique solution $y(t)=y(t, x)$ to Eq. (5.2) in $C\left(J_{0}, C\left(x_{0}, r\right)\right)$. Moreover $y(t, x)$ is jointly continuous in $(t, x), y(t, x)$ is differentiable in $t, \dot{y}(t, x)$ is jointly continuous for all $(t, x) \in J_{0} \times B\left(x_{0}, r-M T_{0}\right)$ and satisfies Eq. (5.1).

Proof. The uniqueness assertion has already been proved in Corollary 5.9. To prove existence, let $C_{r}:=C\left(x_{0}, r\right), Y:=C\left(J_{0}, C\left(x_{0}, r\right)\right)$ and

$$
\begin{equation*}
S_{x}(y)(t):=x+\int_{0}^{t} Z(\tau, y(\tau)) d \tau \tag{5.22}
\end{equation*}
$$

With this notation, Eq. (5.2) becomes $y=S_{x}(y)$, i.e. we are looking for a fixed point of S_{x}. If $y \in Y$, then

$$
\begin{aligned}
\left\|S_{x}(y)(t)-x_{0}\right\| & \leq\left\|x-x_{0}\right\|+\left|\int_{0}^{t}\|Z(\tau, y(\tau))\| d \tau\right| \leq\left\|x-x_{0}\right\|+M|t| \\
& \leq\left\|x-x_{0}\right\|+M T_{0} \leq r-M T_{0}+M T_{0}=r
\end{aligned}
$$

showing $S_{x}(Y) \subset Y$ for all $x \in B\left(x_{0}, r-M T_{0}\right)$. Moreover if $y, z \in Y$,

$$
\begin{align*}
\left\|S_{x}(y)(t)-S_{x}(z)(t)\right\| & =\left\|\int_{0}^{t}[Z(\tau, y(\tau))-Z(\tau, z(\tau))] d \tau\right\| \\
& \leq\left|\int_{0}^{t}\|Z(\tau, y(\tau))-Z(\tau, z(\tau))\| d \tau\right| \\
& \leq K\left|\int_{0}^{t}\|y(\tau)-z(\tau)\| d \tau\right| \tag{5.23}
\end{align*}
$$

Let $y_{0}(t, x)=x$ and $y_{n}(\cdot, x) \in Y$ defined inductively by

$$
\begin{equation*}
y_{n}(\cdot, x):=S_{x}\left(y_{n-1}(\cdot, x)\right)=x+\int_{0}^{t} Z\left(\tau, y_{n-1}(\tau, x)\right) d \tau \tag{5.24}
\end{equation*}
$$

Using the estimate in Eq. (5.23) repeatedly we find

$$
\begin{align*}
\left\|y_{n+1}(t)-y_{n}(t)\right\| & \leq K\left|\int_{0}^{t}\left\|y_{n}(\tau)-y_{n-1}(\tau)\right\| d \tau\right| \\
& \leq K^{2}\left|\int_{0}^{t} d t_{1}\right| \int_{0}^{t_{1}} d t_{2}\left\|y_{n-1}\left(t_{2}\right)-y_{n-2}\left(t_{2}\right)\right\| \| \\
& \ldots \\
& \leq K^{n}\left|\int_{0}^{t} d t_{1}\right| \int_{0}^{t_{1}} d t_{2} \ldots\left|\int_{0}^{t_{n-1}} d t_{n}\left\|y_{1}\left(t_{n}\right)-y_{0}\left(t_{n}\right)\right\|\right| \cdots \mid \\
& \leq K^{n}\left\|y_{1}(\cdot, x)-y_{0}(\cdot, x)\right\|_{\infty} \int_{\Delta_{n}(t)} d \tau \tag{5.25}\\
& =\frac{K^{n}|t|^{n}}{n!}\left\|y_{1}(\cdot, x)-y_{0}(\cdot, x)\right\|_{\infty} \leq 2 r \frac{K^{n}|t|^{n}}{n!}
\end{align*}
$$

wherein we have also made use of Lemma 5.3. Combining this estimate with

$$
\left\|y_{1}(t, x)-y_{0}(t, x)\right\|=\left\|\int_{0}^{t} Z(\tau, x) d \tau\right\| \leq\left|\int_{0}^{t}\|Z(\tau, x)\| d \tau\right| \leq M_{0}
$$

where

$$
M_{0}=T_{0} \max \left\{\int_{0}^{T_{0}}\|Z(\tau, x)\| d \tau, \int_{-T_{0}}^{0}\|Z(\tau, x)\| d \tau\right\} \leq M T_{0}
$$

shows

$$
\left\|y_{n+1}(t, x)-y_{n}(t, x)\right\| \leq M_{0} \frac{K^{n}|t|^{n}}{n!} \leq M_{0} \frac{K^{n} T_{0}^{n}}{n!}
$$

and this implies

$$
\sum_{n=0}^{\infty} \sup \left\{\left\|y_{n+1}(\cdot, x)-y_{n}(\cdot, x)\right\|_{\infty, J_{0}}: t \in J_{0}\right\} \leq \sum_{n=0}^{\infty} M_{0} \frac{K^{n} T_{0}^{n}}{n!}=M_{0} e^{K T_{0}}<\infty
$$

where

$$
\left\|y_{n+1}(\cdot, x)-y_{n}(\cdot, x)\right\|_{\infty, J_{0}}:=\sup \left\{\left\|y_{n+1}(t, x)-y_{n}(t, x)\right\|: t \in J_{0}\right\}
$$

So $y(t, x):=\lim _{n \rightarrow \infty} y_{n}(t, x)$ exists uniformly for $t \in J$ and using Eq. (5.21) we also have
$\sup \left\{\left\|Z(t, y(t))-Z\left(t, y_{n-1}(t)\right)\right\|: t \in J_{0}\right\} \leq K\left\|y(\cdot, x)-y_{n-1}(\cdot, x)\right\|_{\infty, J_{0}} \rightarrow 0$ as $n \rightarrow \infty$.

Now passing to the limit in Eq. (5.24) shows y solves Eq. (5.2). From this equation it follows that $y(t, x)$ is differentiable in t and y satisfies Eq. (5.1).

The continuity of $y(t, x)$ follows from Corollary 5.9 and mean value inequality (Corollary 4.10):

$$
\begin{align*}
\left\|y(t, x)-y\left(t^{\prime}, x^{\prime}\right)\right\| & \leq\left\|y(t, x)-y\left(t, x^{\prime}\right)\right\|+\left\|y\left(t, x^{\prime}\right)-y\left(t^{\prime}, x^{\prime}\right)\right\| \\
& =\left\|y(t, x)-y\left(t, x^{\prime}\right)\right\|+\left\|\int_{t^{\prime}}^{t} Z\left(\tau, y\left(\tau, x^{\prime}\right)\right) d \tau\right\| \\
& \leq\left\|y(t, x)-y\left(t, x^{\prime}\right)\right\|+\left|\int_{t^{\prime}}^{t}\left\|Z\left(\tau, y\left(\tau, x^{\prime}\right)\right)\right\| d \tau\right| \\
& \leq\left\|x-x^{\prime}\right\| e^{K T}+\left|\int_{t^{\prime}}^{t}\left\|Z\left(\tau, y\left(\tau, x^{\prime}\right)\right)\right\| d \tau\right| \tag{5.26}\\
& \leq\left\|x-x^{\prime}\right\| e^{K T}+M\left|t-t^{\prime}\right|
\end{align*}
$$

The continuity of $\dot{y}(t, x)$ is now a consequence Eq. (5.1) and the continuity of y and Z.

Corollary 5.11. Let $J=(a, b) \ni 0$ and suppose $Z \in C(J \times X, X)$ satisfies

$$
\begin{equation*}
\|Z(t, x)-Z(t, y)\| \leq K\|x-y\| \text { for all } x, y \in X \text { and } t \in J \tag{5.27}
\end{equation*}
$$

Then for all $x \in X$, there is a unique solution $y(t, x)$ (for $t \in J$) to Eq. (5.1). Moreover $y(t, x)$ and $\dot{y}(t, x)$ are jointly continuous in (t, x).

Proof. Let $J_{0}=\left(a_{0}, b_{0}\right) \ni 0$ be a precompact subinterval of J and $Y:=$ $B C\left(J_{0}, X\right)$. By compactness, $M:=\sup _{t \in \bar{J}_{0}}\|Z(t, 0)\|<\infty$ which combined with Eq. (5.27) implies

$$
\sup _{t \in \bar{J}_{0}}\|Z(t, x)\| \leq M+K\|x\| \text { for all } x \in X
$$

Using this estimate and Lemma 4.4 one easily shows $S_{x}(Y) \subset Y$ for all $x \in X$. The proof of Theorem 5.10 now goes through without any further change.

5.5. Global Properties.

Definition 5.12 (Local Lipschitz Functions). Let $U \subset_{o} X, J$ be an open interval and $Z \in C(J \times U, X)$. The function Z is said to be locally Lipschitz in x if for all $x \in U$ and all compact intervals $I \subset J$ there exists $K=K(x, I)<\infty$ and $\epsilon=\epsilon(x, I)>0$ such that $B(x, \epsilon(x, I)) \subset U$ and
$\left\|Z\left(t, x_{1}\right)-Z\left(t, x_{0}\right)\right\| \leq K(x, I)\left\|x_{1}-x_{0}\right\|$ for all $x_{0}, x_{1} \in B(x, \epsilon(x, I))$ and $t \in I$.
For the rest of this section, we will assume J is an open interval containing $0, U$ is an open subset of X and $Z \in C(J \times U, X)$ is a locally Lipschitz function.

Lemma 5.13. Let $Z \in C(J \times U, X)$ be a locally Lipschitz function in X and E be a compact subset of U and I be a compact subset of J. Then there exists $\epsilon>0$ such that $Z(t, x)$ is bounded for $(t, x) \in I \times E_{\epsilon}$ and and $Z(t, x)$ is $K-L i p s c h i t z ~ o n ~ E \epsilon$ for all $t \in I$, where

$$
E_{\epsilon}:=\{x \in U: \operatorname{dist}(x, E)<\epsilon\} .
$$

Proof. Let $\epsilon(x, I)$ and $K(x, I)$ be as in Definition 5.12 above. Since E is compact, there exists a finite subset $\Lambda \subset E$ such that $E \subset V:=\cup_{x \in \Lambda} B(x, \epsilon(x, I) / 2)$. If $y \in V$, there exists $x \in \Lambda$ such that $\|y-x\|<\epsilon(x, I) / 2$ and therefore

$$
\begin{aligned}
\|Z(t, y)\| & \leq\|Z(t, x)\|+K(x, I)\|y-x\| \leq\|Z(t, x)\|+K(x, I) \epsilon(x, I) / 2 \\
& \leq \sup _{x \in \Lambda, t \in I}\{\|Z(t, x)\|+K(x, I) \epsilon(x, I) / 2\}=: M<\infty
\end{aligned}
$$

This shows Z is bounded on $I \times V$.
Let

$$
\epsilon:=d\left(E, V^{c}\right) \leq \frac{1}{2} \min _{x \in \Lambda} \epsilon(x, I)
$$

and notice that $\epsilon>0$ since E is compact, V^{c} is closed and $E \cap V^{c}=\emptyset$. If $y, z \in E_{\epsilon}$ and $\|y-z\|<\epsilon$, then as before there exists $x \in \Lambda$ such that $\|y-x\|<\epsilon(x, I) / 2$. Therefore

$$
\|z-x\| \leq\|z-y\|+\|y-x\|<\epsilon+\epsilon(x, I) / 2 \leq \epsilon(x, I)
$$

and since $y, z \in B(x, \epsilon(x, I))$, it follows that

$$
\|Z(t, y)-Z(t, z)\| \leq K(x, I)\|y-z\| \leq K_{0}\|y-z\|
$$

where $K_{0}:=\max _{x \in \Lambda} K(x, I)<\infty$. On the other hand if $y, z \in E_{\epsilon}$ and $\|y-z\| \geq \epsilon$, then

$$
\|Z(t, y)-Z(t, z)\| \leq 2 M \leq \frac{2 M}{\epsilon}\|y-z\|
$$

Thus if we let $K:=\max \left\{2 M / \epsilon, K_{0}\right\}$, we have shown

$$
\|Z(t, y)-Z(t, z)\| \leq K\|y-z\| \text { for all } y, z \in E_{\epsilon} \text { and } t \in I
$$

Proposition 5.14 (Maximal Solutions). Let $Z \in C(J \times U, X)$ be a locally Lipschitz function in x and let $x \in U$ be fixed. Then there is an interval $J_{x}=(a(x), b(x))$ with $a \in[-\infty, 0)$ and $b \in(0, \infty]$ and a C^{1}-function $y: J \rightarrow U$ with the following properties:
(1) y solves $O D E$ in Eq. (5.1).
(2) If $\tilde{y}: \tilde{J}=(\tilde{a}, \tilde{b}) \rightarrow U$ is another solution of $E q$. (5.1) (we assume that $0 \in \tilde{J})$ then $\tilde{J} \subset J$ and $\tilde{y}=\left.y\right|_{\tilde{J}}$.
The function $y: J \rightarrow U$ is called the maximal solution to Eq. (5.1).
Proof. Suppose that $y_{i}: J_{i}=\left(a_{i}, b_{i}\right) \rightarrow U, i=1,2$, are two solutions to Eq. (5.1). We will start by showing the $y_{1}=y_{2}$ on $J_{1} \cap J_{2}$. To do this ${ }^{9}$ let $J_{0}=\left(a_{0}, b_{0}\right)$ be chosen so that $0 \in J_{0} \subset J_{1} \cap J_{2}$, and let $E:=y_{1}\left(J_{0}\right) \cup y_{2}\left(J_{0}\right)$ - a compact subset of X. Choose $\epsilon>0$ as in Lemma 5.13 so that Z is Lipschitz on E_{ϵ}. Then $\left.y_{1}\right|_{J_{0}},\left.y_{2}\right|_{J_{0}}: J_{0} \rightarrow E_{\epsilon}$ both solve Eq. (5.1) and therefore are equal by Corollary 5.9.

[^0]Since $J_{0}=\left(a_{0}, b_{0}\right)$ was chosen arbitrarily so that $[a, b] \subset J_{1} \cap J_{2}$, we may conclude that $y_{1}=y_{2}$ on $J_{1} \cap J_{2}$.

Let $\left(y_{\alpha}, J_{\alpha}=\left(a_{\alpha}, b_{\alpha}\right)\right)_{\alpha \in A}$ denote the possible solutions to (5.1) such that $0 \in$ J_{α}. Define $J_{x}=\cup J_{\alpha}$ and set $y=y_{\alpha}$ on J_{α}. We have just checked that y is well defined and the reader may easily check that this function $y: J_{x} \rightarrow U$ satisfies all the conclusions of the theorem.

Notation 5.15. For each $x \in U$, let $J_{x}=(a(x), b(x))$ be the maximal interval on which Eq. (5.1) may be solved, see Proposition 5.14. Set $\mathcal{D}(Z) \equiv \cup_{x \in U}\left(J_{x} \times\{x\}\right) \subset$ $J \times U$ and let $\phi: \mathcal{D}(Z) \rightarrow U$ be defined by $\phi(t, x)=y(t)$ where y is the maximal solution to Eq. (5.1). (So for each $x \in U, \phi(\cdot, x)$ is the maximal solution to Eq. (5.1).)

Proposition 5.16. Let $Z \in C(J \times U, X)$ be a locally Lipschitz function in x and y : $J_{x}=(a(x), b(x)) \rightarrow U$ be the maximal solution to Eq. (5.1). If $b(x)<b$, then either $\lim \sup _{t \uparrow b(x)}\|Z(t, y(t))\|=\infty$ or $y(b(x)-) \equiv \lim _{t \uparrow b(x)} y(t)$ exists and $y(b(x)-) \notin$ U. Similarly, if $a>a(x)$, then either $\lim \sup _{t \downarrow a(x)}\|y(t)\|=\infty$ or $y(a(x)+) \equiv$ $\lim _{t \downarrow a} y(t)$ exists and $y(a(x)+) \notin U$.

Proof. Suppose that $b<b(x)$ and $M \equiv \lim \sup _{t \uparrow b(x)}\|Z(t, y(t))\|<\infty$. Then there is a $b_{0} \in(0, b(x))$ such that $\|Z(t, y(t))\| \leq 2 M$ for all $t \in\left(b_{0}, b(x)\right)$. Thus, by the usual fundamental theorem of calculus argument,

$$
\left\|y(t)-y\left(t^{\prime}\right)\right\| \leq\left|\int_{t}^{t^{\prime}}\|Z(t, y(\tau))\| d \tau\right| \leq 2 M\left|t-t^{\prime}\right|
$$

for all $t, t^{\prime} \in\left(b_{0}, b(x)\right)$. From this it is easy to conclude that $y(b(x)-)=\lim _{t \uparrow b(x)} y(t)$ exists. Now if $y(b(x)-) \in U$, by the local existence Theorem 5.10, there exists $\delta>0$ and $w \in C^{1}((b(x)-\delta, b(x)+\delta), U)$ such that

$$
\dot{w}(t)=Z(t, w(t)) \text { and } w(b(x))=y(b(x)-)
$$

Now define $\tilde{y}:(a, b(x)+\delta) \rightarrow U$ by

$$
\tilde{y}(t)= \begin{cases}y(t) & \text { if } t \in J_{x} \\ w(t) & \text { if } t \in(b(x)-\delta, b(x)+\delta)\end{cases}
$$

By uniqueness of solutions to ODE's \tilde{y} is well defined, $\tilde{y} \in C^{1}((a(x), b(x)+\delta), X)$ and \tilde{y} solves the ODE in Eq. 5.1. But this violates the maximality of y and hence we must have that $y(b(x)-) \notin U$. The assertions for t near $a(x)$ are proved similarly.

Remark 5.17. In general it is not true that the functions a and b are continuous. For example, let U be the region in \mathbb{R}^{2} described in polar coordinates by $r>0$ and $0<\theta<3 \pi / 4$ and $Z(x, y)=(0,-1)$ as in Figure 12 below. Then $b(x, y)=y$ for all $x, y>0$ while $b(x, y)=\infty$ for all $x<0$ and $y \in \mathbb{R}$ which shows b is discontinuous. On the other hand notice that

$$
\{b>t\}=\{x<0\} \cup\{(x, y): x \geq 0, y>t\}
$$

is an open set for all $t>0$.
Theorem 5.18 (Global Continuity). Let $Z \in C(J \times U, X)$ be a locally Lipschitz function in x. Then $\mathcal{D}(Z)$ is an open subset of $J \times U$ and the functions $\phi: \mathcal{D}(Z) \rightarrow$ U and $\dot{\phi}: \mathcal{D}(Z) \rightarrow U$ are continuous. More precisely, for all $x_{0} \in U$ and all

Figure 12. An example of a vector field for which $b(x)$ is discontinuous. This is given in the top left hand corner of the figure. The map ψ would allow the reader to find an example on \mathbb{R}^{2} if so desired. Some calculations shows that Z transfered to \mathbb{R}^{2} by the $\operatorname{map} \psi$ is given by

$$
\tilde{Z}(x, y)=-e^{-x}\left(\sin \left(\frac{3 \pi}{8}+\frac{3}{4} \tan ^{-1}(y)\right), \cos \left(\frac{3 \pi}{8}+\frac{3}{4} \tan ^{-1}(y)\right)\right) .
$$

open intervals J_{0} such that $0 \in J_{0} \sqsubset \sqsubset J_{x_{0}}$ there exists $\delta=\delta\left(x_{0}, J_{0}\right)>0$ and $C=C\left(x_{0}, J_{0}\right)<\infty$ such that $J_{0} \subset J_{y}$ and

$$
\begin{equation*}
\left\|\phi(\cdot, x)-\phi\left(\cdot, x_{0}\right)\right\|_{B C\left(J_{0}, U\right)} \leq C\left\|x-x_{0}\right\| \text { for all } x \in B\left(x_{0}, \delta\right) \tag{5.29}
\end{equation*}
$$

Proof. Let $\left|J_{0}\right|=b_{0}-a_{0}, I=\bar{J}_{0}$ and $E:=y\left(\bar{J}_{0}\right)$ - a compact subset of U and let $\epsilon>0$ and $K<\infty$ be given as in Lemma 5.13, i.e. K is the Lipschitz constant for Z on E_{ϵ}. Suppose that $x \in E_{\epsilon}$, then by Corollary 5.9,

$$
\begin{equation*}
\left\|\phi(t, x)-\phi\left(t, x_{0}\right)\right\| \leq\left\|x-x_{0}\right\| e^{K|t|} \leq\left\|x-x_{0}\right\| e^{K\left|J_{0}\right|} \tag{5.30}
\end{equation*}
$$

for all $t \in J_{0} \cap J_{x}$ such that $\phi(t, x) \in E_{\epsilon}$. Letting $\delta:=\epsilon e^{-K\left|J_{0}\right|} / 2$, and assuming $x \in B\left(x_{0}, \delta\right)$, the previous equation implies

$$
\left\|\phi(t, x)-\phi\left(t, x_{0}\right)\right\| \leq \epsilon / 2<\epsilon \text { for all } t \in J_{0} \cap J_{x}
$$

This estimate further shows that $\phi(t, x)$ remains bounded and strictly away from the boundary of U for all $t \in J_{0} \cap J_{x}$. Therefore, it follows from Proposition 5.14 that $J_{0} \subset J_{x}$ and Eq. (5.30) is valid for all $t \in J_{0}$. This proves Eq. (5.29) with $C:=e^{K\left|J_{0}\right|}$.

Suppose that $\left(t_{0}, x_{0}\right) \in \mathcal{D}(Z)$ and let $0 \in J_{0} \sqsubset \sqsubset J_{x_{0}}$ such that $t_{0} \in J_{0}$ and δ be as above. Then we have just shown $J_{0} \times B\left(x_{0}, \delta\right) \subset \mathcal{D}(Z)$ which proves $\mathcal{D}(Z)$ is open. Furthermore, since the evaluation map

$$
\left(t_{0}, y\right) \in J_{0} \times B C\left(J_{0}, U\right) \xrightarrow{e} y\left(t_{0}\right) \in X
$$

is continuous (as the reader should check) it follows that $\phi=e \circ(x \rightarrow \phi(\cdot, x))$: $J_{0} \times B\left(x_{0}, \delta\right) \rightarrow U$ is also continuous; being the composition of continuous maps. The continuity of $\dot{\phi}\left(t_{0}, x\right)$ is a consequences of the continuity of ϕ and the differential equation 5.1

Alternatively using Eq. (5.2),

$$
\begin{aligned}
\left\|\phi\left(t_{0}, x\right)-\phi\left(t, x_{0}\right)\right\| & \leq\left\|\phi\left(t_{0}, x\right)-\phi\left(t_{0}, x_{0}\right)\right\|+\left\|\phi\left(t_{0}, x_{0}\right)-\phi\left(t, x_{0}\right)\right\| \\
& \leq C\left\|x-x_{0}\right\|+\left|\int_{t}^{t_{0}}\left\|Z\left(\tau, \phi\left(\tau, x_{0}\right)\right)\right\| d \tau\right| \leq C\left\|x-x_{0}\right\|+M\left|t_{0}-t\right|
\end{aligned}
$$

where C is the constant in Eq. (5.29) and $M=\sup _{\tau \in J_{0}}\left\|Z\left(\tau, \phi\left(\tau, x_{0}\right)\right)\right\|<\infty$. This clearly shows ϕ is continuous.
5.6. Semi-Group Properties of time independent flows. To end this chapter we investigate the semi-group property of the flow associated to the vector-field Z. It will be convenient to introduce the following suggestive notation. For $(t, x) \in$ $\mathcal{D}(Z)$, set $e^{t Z}(x)=\phi(t, x)$. So the path $t \rightarrow e^{t Z}(x)$ is the maximal solution to

$$
\frac{d}{d t} e^{t Z}(x)=Z\left(e^{t Z}(x)\right) \text { with } e^{0 Z}(x)=x .
$$

This exponential notation will be justified shortly. It is convenient to have the following conventions.

Notation 5.19. We write $f: X \rightarrow X$ to mean a function defined on some open subset $D(f) \subset X$. The open set $D(f)$ will be called the domain of f. Given two functions $f: X \rightarrow X$ and $g: X \rightarrow X$ with domains $D(f)$ and $D(g)$ respectively, we define the composite function $f \circ g: X \rightarrow X$ to be the function with domain

$$
D(f \circ g)=\{x \in X: x \in D(g) \text { and } g(x) \in D(f)\}=g^{-1}(D(f))
$$

given by the rule $f \circ g(x)=f(g(x))$ for all $x \in D(f \circ g)$. We now write $f=g$ iff $D(f)=D(g)$ and $f(x)=g(x)$ for all $x \in D(f)=D(g)$. We will also write $f \subset g$ iff $D(f) \subset D(g)$ and $\left.g\right|_{D(f)}=f$.

Theorem 5.20. For fixed $t \in \mathbb{R}$ we consider $e^{t Z}$ as a function from X to X with domain $D\left(e^{t Z}\right)=\{x \in U:(t, x) \in \mathcal{D}(Z)\}$, where $D(\phi)=\mathcal{D}(Z) \subset \mathbb{R} \times U, \mathcal{D}(Z)$ and ϕ are defined in Notation 5.15. Conclusions:
(1) If $t, s \in \mathbb{R}$ and $t \cdot s \geq 0$, then $e^{t Z} \circ e^{s Z}=e^{(t+s) Z}$.
(2) If $t \in \mathbb{R}$, then $e^{t Z} \circ e^{-t Z}=I d_{D\left(e^{-t Z)}\right.}$.
(3) For arbitrary $t, s \in \mathbb{R}, e^{t Z} \circ e^{s Z} \subset e^{(t+s) Z}$.

Proof. Item 1. For simplicity assume that $t, s \geq 0$. The case $t, s \leq 0$ is left to the reader. Suppose that $x \in D\left(e^{t Z} \circ e^{s Z}\right)$. Then by assumption $x \in D\left(e^{s Z}\right)$ and $e^{s Z}(x) \in D\left(e^{t Z}\right)$. Define the path $y(\tau)$ via:

$$
y(\tau)=\left\{\begin{array}{ll}
e^{\tau Z}(x) & \text { if } \quad 0 \leq \tau \leq s \\
e^{(\tau-s) Z}(x) & \text { if } \quad s \leq \tau \leq t+s
\end{array} .\right.
$$

It is easy to check that y solves $\dot{y}(\tau)=Z(y(\tau))$ with $y(0)=x$. But since, $e^{\tau Z}(x)$ is the maximal solution we must have that $x \in D\left(e^{(t+s) Z}\right)$ and $y(t+s)=e^{(t+s) Z}(x)$. That is $e^{(t+s) Z}(x)=e^{t Z} \circ e^{s Z}(x)$. Hence we have shown that $e^{t Z} \circ e^{s Z} \subset e^{(t+s) Z}$.

To finish the proof of item 1. it suffices to show that $D\left(e^{(t+s) Z}\right) \subset D\left(e^{t Z} \circ e^{s Z}\right)$. Take $x \in D\left(e^{(t+s) Z}\right)$, then clearly $x \in D\left(e^{s Z}\right)$. Set $y(\tau)=e^{(\tau+s) Z}(x)$ defined for $0 \leq \tau \leq t$. Then y solves

$$
\dot{y}(\tau)=Z(y(\tau)) \quad \text { with } y(0)=e^{s Z}(x)
$$

But since $\tau \rightarrow e^{\tau Z}\left(e^{s Z}(x)\right)$ is the maximal solution to the above initial valued problem we must have that $y(\tau)=e^{\tau Z}\left(e^{s Z}(x)\right)$, and in particular at $\tau=t, e^{(t+s) Z}(x)=$ $e^{t Z}\left(e^{s Z}(x)\right)$. This shows that $x \in D\left(e^{t Z} \circ e^{s Z}\right)$ and in fact $e^{(t+s) Z} \subset e^{t Z} \circ e^{s Z}$.

Item 2. Let $x \in D\left(e^{-t Z}\right)$ - again assume for simplicity that $t \geq 0$. Set $y(\tau)=$ $e^{(\tau-t) Z}(x)$ defined for $0 \leq \tau \leq t$. Notice that $y(0)=e^{-t Z}(x)$ and $\dot{y}(\tau)=Z(y(\tau))$. This shows that $y(\tau)=e^{\tau Z}\left(e^{-t Z}(x)\right)$ and in particular that $x \in D\left(e^{t Z} \circ e^{-t Z}\right)$ and $e^{t Z} \circ e^{-t Z}(x)=x$. This proves item 2 .

Item 3. I will only consider the case that $s<0$ and $t+s \geq 0$, the other cases are handled similarly. Write u for $t+s$, so that $t=-s+u$. We know that $e^{t Z}=e^{u Z} \circ e^{-s Z}$ by item 1. Therefore

$$
e^{t Z} \circ e^{s Z}=\left(e^{u Z} \circ e^{-s Z}\right) \circ e^{s Z}
$$

Notice in general, one has $(f \circ g) \circ h=f \circ(g \circ h)$ (you prove). Hence, the above displayed equation and item 2. imply that

$$
e^{t Z} \circ e^{s Z}=e^{u Z} \circ\left(e^{-s Z} \circ e^{s Z}\right)=e^{(t+s) Z} \circ I_{D\left(e^{s Z}\right)} \subset e^{(t+s) Z}
$$

The following result is trivial but conceptually illuminating partial converse to Theorem 5.20.

Proposition 5.21 (Flows and Complete Vector Fields). Suppose $U \subset_{o} X, \phi \in$ $C(\mathbb{R} \times U, U)$ and $\phi_{t}(x)=\phi(t, x)$. Suppose ϕ satisfies:
(1) $\phi_{0}=I_{U}$,
(2) $\phi_{t} \circ \phi_{s}=\phi_{t+s}$ for all $t, s \in \mathbb{R}$, and
(3) $Z(x):=\dot{\phi}(0, x)$ exists for all $x \in U$ and $Z \in C(U, X)$ is locally Lipschitz.

Then $\phi_{t}=e^{t Z}$.
Proof. Let $x \in U$ and $y(t) \equiv \phi_{t}(x)$. Then using Item 2.,

$$
\dot{y}(t)=\left.\frac{d}{d s}\right|_{0} y(t+s)=\left.\frac{d}{d s}\right|_{0} \phi_{(t+s)}(x)=\left.\frac{d}{d s}\right|_{0} \phi_{s} \circ \phi_{t}(x)=Z(y(t)) .
$$

Since $y(0)=x$ by Item 1. and Z is locally Lipschitz by Item 3., we know by uniqueness of solutions to ODE's (Corollary 5.9) that $\phi_{t}(x)=y(t)=e^{t Z}(x)$.

5.7. Exercises.

Exercise 5.1. Find a vector field Z such that $e^{(t+s) Z}$ is not contained in $e^{t Z} \circ e^{s Z}$.
Definition 5.22. A locally Lipschitz function $Z: U \subset_{o} X \rightarrow X$ is said to be a complete vector field if $\mathcal{D}(Z)=\mathbb{R} \times U$. That is for any $x \in U, t \rightarrow e^{t Z}(x)$ is defined for all $t \in \mathbb{R}$.

Exercise 5.2. Suppose that $Z: X \rightarrow X$ is a locally Lipschitz function. Assume there is a constant $C>0$ such that

$$
\|Z(x)\| \leq C(1+\|x\|) \text { for all } x \in X
$$

Then Z is complete. Hint: use Gronwall's Lemma 5.8 and Proposition 5.16.

Exercise 5.3. Suppose y is a solution to $\dot{y}(t)=|y(t)|^{1 / 2}$ with $y(0)=0$. Show there exists $a, b \in[0, \infty]$ such that

$$
y(t)=\left\{\begin{array}{ccc}
\frac{1}{4}(t-b)^{2} & \text { if } & t \geq b \\
0 & \text { if } & -a<t<b \\
-\frac{1}{4}(t+a)^{2} & \text { if } & t \leq-a
\end{array}\right.
$$

Exercise 5.4. Using the fact that the solutions to Eq. (5.3) are never 0 if $x \neq 0$, show that $y(t)=0$ is the only solution to Eq. (5.3) with $y(0)=0$.
Exercise 5.5. Suppose that $A \in L(X)$. Show directly that:
(1) $e^{t A}$ define in Eq. (5.14) is convergent in $L(X)$ when equipped with the operator norm.
(2) $e^{t A}$ is differentiable in t and that $\frac{d}{d t} e^{t A}=A e^{t A}$.

Exercise 5.6. Suppose that $A \in L(X)$ and $v \in X$ is an eigenvector of A with eigenvalue λ, i.e. that $A v=\lambda v$. Show $e^{t A} v=e^{t \lambda} v$. Also show that $X=\mathbb{R}^{n}$ and A is a diagonalizable $n \times n$ matrix with

$$
A=S D S^{-1} \text { with } D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

then $e^{t A}=S e^{t D} S^{-1}$ where $e^{t D}=\operatorname{diag}\left(e^{t \lambda_{1}}, \ldots, e^{t \lambda_{n}}\right)$.
Exercise 5.7. Suppose that $A, B \in L(X)$ and $[A, B] \equiv A B-B A=0$. Show that $e^{(A+B)}=e^{A} e^{B}$.

Exercise 5.8. Suppose $A \in C(\mathbb{R}, L(X))$ satisfies $[A(t), A(s)]=0$ for all $s, t \in \mathbb{R}$. Show

$$
y(t):=e^{\left(\int_{0}^{t} A(\tau) d \tau\right)} x
$$

is the unique solution to $\dot{y}(t)=A(t) y(t)$ with $y(0)=x$.
Exercise 5.9. Compute $e^{t A}$ when

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and use the result to prove the formula

$$
\cos (s+t)=\cos s \cos t-\sin s \sin t
$$

Hint: Sum the series and use $e^{t A} e^{s A}=e^{(t+s) A}$.
Exercise 5.10. Compute $e^{t A}$ when

$$
A=\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

with $a, b, c \in \mathbb{R}$. Use your result to compute $e^{t(\lambda I+A)}$ where $\lambda \in \mathbb{R}$ and I is the 3×3 identity matrix. Hint: Sum the series.

Exercise 5.11. Prove Theorem 5.7 using the following outline.
(1) First show $t \in[0, \infty) \rightarrow T_{t} \in L(X)$ is continuos.
(2) For $\epsilon>0$, let $S_{\epsilon}:=\frac{1}{\epsilon} \int_{0}^{\epsilon} T_{\tau} d \tau \in L(X)$. Show $S_{\epsilon} \rightarrow I$ as $\epsilon \downarrow 0$ and conclude from this that S_{ϵ} is invertible when $\epsilon>0$ is sufficiently small. For the remainder of the proof fix such a small $\epsilon>0$.
(3) Show

$$
T_{t} S_{\epsilon}=\frac{1}{\epsilon} \int_{t}^{t+\epsilon} T_{\tau} d \tau
$$

and conclude from this that

$$
\lim _{t \downarrow 0} t^{-1}\left(T_{t}-I\right) S_{\epsilon}=\frac{1}{\epsilon}\left(T_{\epsilon}-I d_{X}\right)
$$

(4) Using the fact that S_{ϵ} is invertible, conclude $A=\lim _{t \downarrow 0} t^{-1}\left(T_{t}-I\right)$ exists in $L(X)$ and that

$$
A=\frac{1}{\epsilon}\left(T_{\epsilon}-I\right) S_{\epsilon}^{-1}
$$

(5) Now show using the semigroup property and step 4 . that $\frac{d}{d t} T_{t}=A T_{t}$ for all $t>0$.
(6) Using step 5, show $\frac{d}{d t} e^{-t A} T_{t}=0$ for all $t>0$ and therefore $e^{-t A} T_{t}=$ $e^{-0 A} T_{0}=I$.
Exercise 5.12 (Higher Order ODE). Let X be a Banach space, , $\mathcal{U} \subset_{o} X^{n}$ and $f \in C(J \times \mathcal{U}, X)$ be a Locally Lipschitz function in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Show the $n^{\text {th }}$ ordinary differential equation,

$$
\begin{equation*}
y^{(n)}(t)=f\left(t, y(t), \dot{y}(t), \ldots y^{(n-1)}(t)\right) \text { with } y^{(k)}(0)=y_{0}^{k} \text { for } k=0,1,2 \ldots, n-1 \tag{5.31}
\end{equation*}
$$

where $\left(y_{0}^{0}, \ldots, y_{0}^{n-1}\right)$ is given in \mathcal{U}, has a unique solution for small $t \in J$. Hint: let $\mathbf{y}(t)=\left(y(t), \dot{y}(t), \ldots y^{(n-1)}(t)\right)$ and rewrite Eq. (5.31) as a first order ODE of the form

$$
\dot{\mathbf{y}}(t)=Z(t, \mathbf{y}(t)) \text { with } \mathbf{y}(0)=\left(y_{0}^{0}, \ldots, y_{0}^{n-1}\right)
$$

Exercise 5.13. Use the results of Exercises 5.10 and 5.12 to solve

$$
\ddot{y}(t)-2 \dot{y}(t)+y(t)=0 \text { with } y(0)=a \text { and } \dot{y}(0)=b .
$$

Hint: The 2×2 matrix associated to this system, A, has only one eigenvalue 1 and may be written as $A=I+B$ where $B^{2}=0$.

Exercise 5.14. Suppose that $A: \mathbb{R} \rightarrow L(X)$ is a continuous function and $U, V:$ $\mathbb{R} \rightarrow L(X)$ are the unique solution to the linear differential equations

$$
\dot{V}(t)=A(t) V(t) \text { with } V(0)=I
$$

and

$$
\begin{equation*}
\dot{U}(t)=-U(t) A(t) \text { with } U(0)=I \tag{5.32}
\end{equation*}
$$

Prove that $V(t)$ is invertible and that $V^{-1}(t)=U(t)$. Hint: 1) show $\frac{d}{d t}[U(t) V(t)]=$ 0 (which is sufficient if $\operatorname{dim}(X)<\infty)$ and 2) show compute $y(t):=V(t) U(t)$ solves a linear differential ordinary differential equation that has $y \equiv 0$ as an obvious solution. Then use the uniqueness of solutions to ODEs. (The fact that $U(t)$ must be defined as in Eq. (5.32) is the content of Exercise 22.2 below.)

Exercise 5.15 (Duhamel's Principle I). Suppose that $A: \mathbb{R} \rightarrow L(X)$ is a continuous function and $V: \mathbb{R} \rightarrow L(X)$ is the unique solution to the linear differential equation in Eq. (22.28). Let $x \in X$ and $h \in C(\mathbb{R}, X)$ be given. Show that the unique solution to the differential equation:

$$
\begin{equation*}
\dot{y}(t)=A(t) y(t)+h(t) \text { with } y(0)=x \tag{5.33}
\end{equation*}
$$

is given by

$$
\begin{equation*}
y(t)=V(t) x+V(t) \int_{0}^{t} V(\tau)^{-1} h(\tau) d \tau \tag{5.34}
\end{equation*}
$$

Hint: compute $\frac{d}{d t}\left[V^{-1}(t) y(t)\right]$ when y solves Eq. (5.33).
Exercise 5.16 (Duhamel' s Principle II). Suppose that $A: \mathbb{R} \rightarrow L(X)$ is a continuous function and $V: \mathbb{R} \rightarrow L(X)$ is the unique solution to the linear differential equation in Eq. (22.28). Let $W_{0} \in L(X)$ and $H \in C(\mathbb{R}, L(X))$ be given. Show that the unique solution to the differential equation:

$$
\begin{equation*}
\dot{W}(t)=A(t) W(t)+H(t) \text { with } W(0)=W_{0} \tag{5.35}
\end{equation*}
$$

is given by

$$
\begin{equation*}
W(t)=V(t) W_{0}+V(t) \int_{0}^{t} V(\tau)^{-1} H(\tau) d \tau \tag{5.36}
\end{equation*}
$$

Exercise 5.17 (Non-Homogeneous ODE). Suppose that $U \subset_{o} X$ is open and $Z: \mathbb{R} \times U \rightarrow X$ is a continuous function. Let $J=(a, b)$ be an interval and $t_{0} \in J$. Suppose that $y \in C^{1}(J, U)$ is a solution to the "non-homogeneous" differential equation:

$$
\begin{equation*}
\dot{y}(t)=Z(t, y(t)) \text { with } y\left(t_{o}\right)=x \in U \tag{5.37}
\end{equation*}
$$

Define $Y \in C^{1}\left(J-t_{0}, \mathbb{R} \times U\right)$ by $Y(t) \equiv\left(t+t_{0}, y\left(t+t_{0}\right)\right)$. Show that Y solves the "homogeneous" differential equation

$$
\begin{equation*}
\dot{Y}(t)=\tilde{Z}(Y(t)) \text { with } Y(0)=\left(t_{0}, y_{0}\right) \tag{5.38}
\end{equation*}
$$

where $\tilde{Z}(t, x) \equiv(1, Z(x))$. Conversely, suppose that $Y \in C^{1}\left(J-t_{0}, \mathbb{R} \times U\right)$ is a solution to Eq. (5.38). Show that $Y(t)=\left(t+t_{0}, y\left(t+t_{0}\right)\right)$ for some $y \in C^{1}(J, U)$ satisfying Eq. (5.37). (In this way the theory of non-homogeneous ode's may be reduced to the theory of homogeneous ode's.)

Exercise 5.18 (Differential Equations with Parameters). Let W be another Banach space, $U \times V \subset_{o} X \times W$ and $Z \in C(U \times V, X)$ be a locally Lipschitz function on $U \times V$. For each $(x, w) \in U \times V$, let $t \in J_{x, w} \rightarrow \phi(t, x, w)$ denote the maximal solution to the ODE

$$
\begin{equation*}
\dot{y}(t)=Z(y(t), w) \text { with } y(0)=x . \tag{5.39}
\end{equation*}
$$

Prove

$$
\begin{equation*}
\mathcal{D}:=\left\{(t, x, w) \in \mathbb{R} \times U \times V: t \in J_{x, w}\right\} \tag{5.40}
\end{equation*}
$$

is open in $\mathbb{R} \times U \times V$ and ϕ and $\dot{\phi}$ are continuous functions on \mathcal{D}.
Hint: If $y(t)$ solves the differential equation in (5.39), then $v(t) \equiv(y(t), w)$ solves the differential equation,

$$
\begin{equation*}
\dot{v}(t)=\tilde{Z}(v(t)) \text { with } v(0)=(x, w) \tag{5.41}
\end{equation*}
$$

where $\tilde{Z}(x, w) \equiv(Z(x, w), 0) \in X \times W$ and let $\psi(t,(x, w)):=v(t)$. Now apply the Theorem 5.18 to the differential equation (5.41).

[^0]: ${ }^{9}$ Here is an alternate proof of the uniqueness. Let

 $$
 T \equiv \sup \left\{t \in\left[0, \min \left\{b_{1}, b_{2}\right\}\right): y_{1}=y_{2} \quad \text { on }[0, t]\right\}
 $$

 (T is the first positive time after which y_{1} and y_{2} disagree.
 Suppose, for sake of contradiction, that $T<\min \left\{b_{1}, b_{2}\right\}$. Notice that $y_{1}(T)=y_{2}(T)=: x^{\prime}$. Applying the local uniqueness theorem to $y_{1}(\cdot-T)$ and $y_{2}(\cdot-T)$ thought as function from $(-\delta, \delta) \rightarrow B\left(x^{\prime}, \epsilon\left(x^{\prime}\right)\right)$ for some δ sufficiently small, we learn that $y_{1}(\cdot-T)=y_{2}(\cdot-T)$ on $(-\delta, \delta)$. But this shows that $y_{1}=y_{2}$ on $[0, T+\delta)$ which contradicts the definition of T. Hence we must have the $T=\min \left\{b_{1}, b_{2}\right\}$, i.e. $y_{1}=y_{2}$ on $J_{1} \cap J_{2} \cap[0, \infty)$. A similar argument shows that $y_{1}=y_{2}$ on $J_{1} \cap J_{2} \cap(-\infty, 0]$ as well.

