35. Compact and Fredholm Operators and the Spectral Theorem

In this section H and B will be Hilbert spaces. Typically H and B will be separable, but we will not assume this until it is needed later.

35.1. Compact Operators.

Proposition 35.1. Let M be a finite dimensional subspace of a Hilbert space H then
(1) M is complete (hence closed).
(2) Closed bounded subsets of M are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonormal basis $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ of M. Define $U: M \rightarrow \mathbb{C}^{n}$ to be the unique unitary map such that $U \phi_{i}=e_{i}$ where e_{i} is the $\mathrm{i}^{\text {th }}$ standard basis vector in \mathbb{C}^{n}. It now follows that M is complete and that closed bounded subsets of M are compact since the same is true for \mathbb{C}^{n}.

Definition 35.2. A bounded operator $K: H \rightarrow B$ is compact if K maps bounded sets into precompact sets, i.e. $\overline{K(U)}$ is compact in B, where $U:=\{x \in H:\|x\|<1\}$ is the unit ball in H. Equivalently, for all bounded sequences $\left\{x_{n}\right\}_{n=1}^{\infty} \subset H$, the sequence $\left\{K x_{n}\right\}_{n=1}^{\infty}$ has a convergent subsequence in B.

Notice that if $\operatorname{dim}(H)=\infty$ and $T: H \rightarrow B$ is invertible, then T is not compact.
Definition 35.3. $K: H \rightarrow B$ is said to have finite rank if $\operatorname{Ran}(K) \subset B$ is finite dimensional.

Corollary 35.4. If $K: H \rightarrow B$ is a finite rank operator, then K is compact. In particular if either $\operatorname{dim}(H)<\infty$ or $\operatorname{dim}(B)<\infty$ then any bounded operator $K: H \rightarrow B$ is finite rank and hence compact.

Example 35.5. Let (X, μ) be a measure space, $H=L^{2}(X, \mu)$ and

$$
k(x, y) \equiv \sum_{i=1}^{n} f_{i}(x) g_{i}(y)
$$

where

$$
f_{i}, g_{i} \in L^{2}(X, \mu) \text { for } i=1, \ldots, n
$$

Define $(K f)(x)=\int_{X} k(x, y) f(y) d \mu(y)$, then $K: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ is a finite rank operator and hence compact.

Lemma 35.6. Let $\mathcal{K}:=\mathcal{K}(H, B)$ denote the compact operators from H to B. Then $\mathcal{K}(H, B)$ is a norm closed subspace of $L(H, B)$.

Proof. The fact that \mathcal{K} is a vector subspace of $L(H, B)$ will be left to the reader. Now let $K_{n}: H \rightarrow B$ be compact operators and $K: H \rightarrow B$ be a bounded operator such that $\lim _{n \rightarrow \infty}\left\|K_{n}-K\right\|_{o p}=0$. We will now show K is compact.

First Proof. Given $\epsilon>0$, choose $N=N(\epsilon)$ such that $\left\|K_{N}-K\right\|<\epsilon$. Using the fact that $K_{N} U$ is precompact, choose a finite subset $\Lambda \subset U$ such that $\min _{x \in \Lambda}\left\|y-K_{N} x\right\|<\epsilon$ for all $y \in K_{N}(U)$. Then for $z=K x_{0} \in K(U)$ and $x \in \Lambda$,

$$
\begin{aligned}
\|z-K x\| & =\left\|\left(K-K_{N}\right) x_{0}+K_{N}\left(x_{0}-x\right)+\left(K_{N}-K\right) x\right\| \\
& \leq 2 \epsilon+\left\|K_{N} x_{0}-K_{N} x\right\| .
\end{aligned}
$$

Therefore $\min _{x \in \Lambda}\left\|z-K_{N} x\right\|<3 \epsilon$, which shows $K(U)$ is 3ϵ bounded for all $\epsilon>0$, $K(U)$ is totally bounded and hence precompact.

Second Proof. Suppose $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence in H. By compactness, there is a subsequence $\left\{x_{n}^{1}\right\}_{n=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\left\{K_{1} x_{n}^{1}\right\}_{n=1}^{\infty}$ is convergent in B. Working inductively, we may construct subsequences

$$
\left\{x_{n}\right\}_{n=1}^{\infty} \supset\left\{x_{n}^{1}\right\}_{n=1}^{\infty} \supset\left\{x_{n}^{2}\right\}_{n=1}^{\infty} \cdots \supset\left\{x_{n}^{m}\right\}_{n=1}^{\infty} \supset \ldots
$$

such that $\left\{K_{m} x_{n}^{m}\right\}_{n=1}^{\infty}$ is convergent in B for each m. By the usual Cantor's diagonalization procedure, let $y_{n}:=x_{n}^{n}$, then $\left\{y_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\left\{K_{m} y_{n}\right\}_{n=1}^{\infty}$ is convergent for all m. Since

$$
\begin{aligned}
&\left\|K y_{n}-K y_{l}\right\|\left.\leq\left\|\left(K-K_{m}\right) y_{n}\right\|+\left\|K_{m}\left(y_{n}-y_{l}\right)\right\|+\|\left(K_{m}-K\right) y_{l}\right) \| \\
& \leq 2\left\|K-K_{m}\right\|+\left\|K_{m}\left(y_{n}-y_{l}\right)\right\| \\
& \lim \sup _{n, l \rightarrow \infty}\left\|K y_{n}-K y_{l}\right\| \leq 2\left\|K-K_{m}\right\| \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

which shows $\left\{K y_{n}\right\}_{n=1}^{\infty}$ is Cauchy and hence convergent.
Proposition 35.7. A bounded operator $K: H \rightarrow B$ is compact iff there exists finite rank operators, $K_{n}: H \rightarrow B$, such that $\left\|K-K_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Since $\overline{K(U)}$ is compact it contains a countable dense subset and from this it follows that $\overline{K(H)}$ is a separable subspace of B. Let $\left\{\phi_{n}\right\}$ be an orthonormal basis for $\overline{K(H)} \subset B$ and $P_{N} y=\sum_{n=1}^{N}\left(y, \phi_{n}\right) \phi_{n}$ be the orthogonal projection of y onto $\operatorname{span}\left\{\phi_{n}\right\}_{n=1}^{N}$. Then $\lim _{N \rightarrow \infty}\left\|P_{N} y-y\right\|=0$ for all $y \in K(H)$.

Define $K_{n} \equiv P_{n} K-$ a finite rank operator on H. For sake of contradiction suppose that $\limsup _{n \rightarrow \infty}\left\|K-K_{n}\right\|=\epsilon>0$, in which case there exists $x_{n_{k}} \in U$ such that $\left\|\left(K-K_{n_{k}}\right) x_{n_{k}}\right\| \geq \epsilon$ for all n_{k}. Since K is compact, by passing to a subsequence if necessary, we may assume $\left\{K x_{n_{k}}\right\}_{n_{k}=1}^{\infty}$ is convergent in B. Letting $y \equiv \lim _{k \rightarrow \infty} K x_{n_{k}}$,

$$
\begin{aligned}
\left\|\left(K-K_{n_{k}}\right) x_{n_{k}}\right\| & =\left\|\left(1-P_{n_{k}}\right) K x_{n_{k}}\right\| \leq\left\|\left(1-P_{n_{k}}\right)\left(K x_{n_{k}}-y\right)\right\|+\left\|\left(1-P_{n_{k}}\right) y\right\| \\
& \leq\left\|K x_{n_{k}}-y\right\|+\left\|\left(1-P_{n_{k}}\right) y\right\| \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

But this contradicts the assumption that ϵ is positive and hence we must have $\lim _{n \rightarrow \infty}\left\|K-K_{n}\right\|=0$, i.e. K is an operator norm limit of finite rank operators. The converse direction follows from Corollary 35.4 and Lemma 35.6.

Corollary 35.8. If K is compact then so is K^{*}.
Proof. Let $K_{n}=P_{n} K$ be as in the proof of Proposition 35.7, then $K_{n}^{*}=K^{*} P_{n}$ is still finite rank. Furthermore, using Proposition 12.16,

$$
\left\|K^{*}-K_{n}^{*}\right\|=\left\|K-K_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

showing K^{*} is a limit of finite rank operators and hence compact.

35.2. Hilbert Schmidt Operators.

Proposition 35.9. Let H and B be a separable Hilbert spaces, $K: H \rightarrow B$ be a bounded linear operator, $\left\{e_{n}\right\}_{n=1}^{\infty}$ and $\left\{u_{m}\right\}_{m=1}^{\infty}$ be orthonormal basis for H and B respectively. Then:
(1) $\sum_{n=1}^{\infty}\left\|K e_{n}\right\|^{2}=\sum_{m=1}^{\infty}\left\|K^{*} u_{m}\right\|^{2}$ allowing for the possibility that the sums are infinite. In particular the Hilbert Schmidt norm of K,

$$
\|K\|_{H S}^{2}:=\sum_{n=1}^{\infty}\left\|K e_{n}\right\|^{2}
$$

is well defined independent of the choice of orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. We say $K: H \rightarrow B$ is a Hilbert Schmidt operator if $\|K\|_{H S}<\infty$ and let $H S(H, B)$ denote the space of Hilbert Schmidt operators from H to B.
(2) For all $K \in L(H, B),\|K\|_{H S}=\left\|K^{*}\right\|_{H S}$ and

$$
\|K\|_{H S} \geq\|K\|_{o p}:=\sup \{\|K h\|: h \in H \quad \forall h \|=1\}
$$

(3) The set $H S(H, B)$ is a subspace of $\mathcal{K}(H, B)$ and $\|\cdot\|_{H S}$ is a norm on $H S(H, B)$ for which $\left(H S(H, B),\|\cdot\|_{H S}\right)$ is a Hilbert space. The inner product on $H S(H, B)$ is given by

$$
\begin{equation*}
\left(K_{1}, K_{2}\right)_{H S}=\sum_{n=1}^{\infty}\left(K_{1} e_{n}, K_{2} e_{n}\right) \tag{35.1}
\end{equation*}
$$

(4) Let $P_{N} x:=\sum_{n=1}^{N}\left(x, e_{n}\right) e_{n}$ be orthogonal projection onto $\operatorname{span}\left\{e_{i}: i \leq N\right\} \subset$ H and for $K \in H S(H, B)$, let $K_{n}:=K P_{n}$. Then

$$
\left\|K-K_{N}\right\|_{o p}^{2} \leq\left\|K-K_{N}\right\|_{H S}^{2} \rightarrow 0 \text { as } N \rightarrow \infty
$$

which shows that finite rank operators are dense in $\left(H S(H, B),\|\cdot\|_{H S}\right)$.
(5) If L is another Hilbert space and $A: L \rightarrow H$ and $C: B \rightarrow L$ are bounded operators, then

$$
\|K A\|_{H S} \leq\|K\|_{H S}\|A\|_{o p} \text { and }\|C K\|_{H S} \leq\|K\|_{H S}\|C\|_{o p}
$$

Proof. Items 1. and 2. By Parsaval's equality and Fubini's theorem for sums,

$$
\sum_{n=1}^{\infty}\left\|K e_{n}\right\|^{2}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left|\left(K e_{n}, u_{m}\right)\right|^{2}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\left(e_{n}, K^{*} u_{m}\right)\right|^{2}=\sum_{m=1}^{\infty}\left\|K^{*} u_{m}\right\|^{2}
$$

This proves $\|K\|_{H S}$ is well defined independent of basis and that $\|K\|_{H S}=$ $\left\|K^{*}\right\|_{H S}$. For $x \in H \backslash\{0\}, x /\|x\|$ may be taken to be the first element in an orthonormal basis for H and hence

$$
\left\|K \frac{x}{\|x\|}\right\| \leq\|K\|_{H S}
$$

Multiplying this inequality by $\|x\|$ shows $\|K x\| \leq\|K\|_{H S}\|x\|$ and hence $\|K\|_{o p} \leq$ $\|K\|_{H S}$.

Item 3. For $K_{1}, K_{2} \in L(H, B)$,

$$
\begin{aligned}
\left\|K_{1}+K_{2}\right\|_{H S} & =\sqrt{\sum_{n=1}^{\infty}\left\|K_{1} e_{n}+K_{2} e_{n}\right\|^{2}} \\
& \leq \sqrt{\sum_{n=1}^{\infty}\left[\left\|K_{1} e_{n}\right\|+\left\|K_{2} e_{n}\right\|\right]^{2}}=\left\|\left\{\left\|K_{1} e_{n}\right\|+\left\|K_{2} e_{n}\right\|\right\}_{n=1}^{\infty}\right\|_{\ell_{2}} \\
& \leq\left\|\left\{\left\|K_{1} e_{n}\right\|\right\}_{n=1}^{\infty}\right\|_{\ell_{2}}+\left\|\left\{\left\|K_{2} e_{n}\right\|\right\}_{n=1}^{\infty}\right\|_{\ell_{2}}=\left\|K_{1}\right\|_{H S}+\left\|K_{2}\right\|_{H S}
\end{aligned}
$$

From this triangle inequality and the homogeneity properties of $\|\cdot\|_{H S}$, we now easily see that $H S(H, B)$ is a subspace of $\mathcal{K}(H, B)$ and $\|\cdot\|_{H S}$ is a norm on $H S(H, B)$. Since

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|\left(K_{1} e_{n}, K_{2} e_{n}\right)\right| & \leq \sum_{n=1}^{\infty}\left\|K_{1} e_{n}\right\|\left\|K_{2} e_{n}\right\| \\
& \leq \sqrt{\sum_{n=1}^{\infty}\left\|K_{1} e_{n}\right\|^{2}} \sqrt{\sum_{n=1}^{\infty}\left\|K_{2} e_{n}\right\|^{2}}=\left\|K_{1}\right\|_{H S}\left\|K_{2}\right\|_{H S}
\end{aligned}
$$

the sum in Eq. (35.1) is well defined and is easily checked to define an inner product on $H S(H, B)$ such that $\|K\|_{H S}^{2}=\left(K_{1}, K_{2}\right)_{H S}$. To see that $H S(H, B)$ is complete in this inner product suppose $\left\{K_{m}\right\}_{m=1}^{\infty}$ is a $\|\cdot\|_{H S}$ - Cauchy sequence in $H S(H, B)$. Because $L(H, B)$ is complete, there exists $K \in L(H, B)$ such that $\left\|K_{m}-K\right\|_{o p} \rightarrow 0$ as $m \rightarrow \infty$. Since

$$
\begin{aligned}
\sum_{n=1}^{N}\left\|\left(K-K_{m}\right) e_{n}\right\|^{2} & =\lim _{l \rightarrow \infty} \sum_{n=1}^{N}\left\|\left(K_{l}-K_{m}\right) e_{n}\right\|^{2} \leq \lim _{l \rightarrow \infty}\left\|K_{l}-K_{m}\right\|_{H S} \\
\left\|K_{m}-K\right\|_{H S}^{2} & =\sum_{n=1}^{\infty}\left\|\left(K-K_{m}\right) e_{n}\right\|^{2}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left\|\left(K-K_{m}\right) e_{n}\right\|^{2} \\
& \leq \lim _{l \rightarrow \infty}\left\|K_{l}-K_{m}\right\|_{H S} \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

Item 4. Simply observe,

$$
\left\|K-K_{N}\right\|_{o p}^{2} \leq\left\|K-K_{N}\right\|_{H S}^{2}=\sum_{n>N}\left\|K e_{n}\right\|^{2} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Item 5. For $C \in L(B, L)$ and $K \in L(H, B)$ then

$$
\|C K\|_{H S}^{2}=\sum_{n=1}^{\infty}\left\|C K e_{n}\right\|^{2} \leq\|C\|_{o p}^{2} \sum_{n=1}^{\infty}\left\|K e_{n}\right\|^{2}=\|C\|_{o p}^{2}\|K\|_{H S}^{2}
$$

and for $A \in L(L, H)$,

$$
\|K A\|_{H S}=\left\|A^{*} K^{*}\right\|_{H S} \leq\left\|A^{*}\right\|_{o p}\left\|K^{*}\right\|_{H S}=\|A\|_{o p}\|K\|_{H S}
$$

Remark 35.10. The separability assumptions made in Proposition 35.9 are unnecessary. In general, we define

$$
\|K\|_{H S}^{2}=\sum_{e \in \Gamma}\|K e\|^{2}
$$

where $\Gamma \subset H$ is an orthonormal basis. The same proof of Item 1. of Proposition 35.9 shows $\|K\|_{H S}$ is well defined and $\|K\|_{H S}=\left\|K^{*}\right\|_{H S}$. If $\|K\|_{H S}^{2}<\infty$, then there exists a countable subset $\Gamma_{0} \subset \Gamma$ such that $K e=0$ if $e \in \Gamma \backslash \Gamma_{0}$. Let $H_{0}:=\overline{\operatorname{span}\left(\Gamma_{0}\right)}$ and $B_{0}:=\overline{K\left(H_{0}\right)}$. Then $K(H) \subset B_{0},\left.K\right|_{H_{0}^{\perp}}=0$ and hence by applying the results of Proposition 35.9 to $\left.K\right|_{H_{0}}: H_{0} \rightarrow B_{0}$ one easily sees that the separability of H and B are unnecessary in Proposition 35.9.

Exercise 35.1. Suppose that (X, μ) is a σ-finite measure space such that $H=$ $L^{2}(X, \mu)$ is separable and $k: X \times X \rightarrow \mathbb{R}$ is a measurable function, such that

$$
\|k\|_{L^{2}(X \times X, \mu \otimes \mu)}^{2} \equiv \int_{X \times X}|k(x, y)|^{2} d \mu(x) d \mu(y)<\infty .
$$

Define, for $f \in H$,

$$
K f(x)=\int_{X} k(x, y) f(y) d \mu(y)
$$

when the integral makes sense. Show:
(1) $K f(x)$ is defined for μ-a.e. x in X.
(2) The resulting function $K f$ is in H and $K: H \rightarrow H$ is linear.
(3) $\|K\|_{H S}=\|k\|_{L^{2}(X \times X, \mu \otimes \mu)}<\infty$. (This implies $K \in H S(H, H)$.)
35.1. Since
$\int_{X} d \mu(x)\left(\int_{X}|k(x, y) f(y)| d \mu(y)\right)^{2} \leq \int_{X} d \mu(x)\left(\int_{X}|k(x, y)|^{2} d \mu(y)\right)\left(\int_{X}|f(y)|^{2} d \mu(y)\right)$

$$
\begin{equation*}
\leq\|k\|_{2}^{2}\|f\|_{2}^{2}<\infty \tag{35.2}
\end{equation*}
$$

we learn $K f$ is almost everywhere defined and that $K f \in H$. The linearity of K is a consequence of the linearity of the Lebesgue integral. Now suppose $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis for H. From the estimate in Eq. (35.2), $k(x, \cdot) \in H$ for μ a.e. $x \in X$ and therefore

$$
\begin{aligned}
\|K\|_{H S}^{2} & =\sum_{n=1}^{\infty} \int_{X} d \mu(x)\left|\int_{X} k(x, y) \phi_{n}(y) d \mu(y)\right|^{2} \\
& =\sum_{n=1}^{\infty} \int_{X} d \mu(x)\left|\left(\phi_{n}, \bar{k}(x, \cdot)\right)\right|^{2}=\int_{X} d \mu(x) \sum_{n=1}^{\infty}\left|\left(\phi_{n}, \bar{k}(x, \cdot)\right)\right|^{2} \\
& =\int_{X} d \mu(x)\|\bar{k}(x, \cdot)\|_{H}^{2}=\int_{X} d \mu(x) \int_{X} d \mu(y)|k(x, y)|^{2}=\|k\|_{2}^{2}
\end{aligned}
$$

Example 35.11. Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded set, $\alpha<n$, then the operator $K: L^{2}(\Omega, m) \rightarrow L^{2}(\Omega, m)$ defined by

$$
K f(x):=\int_{\Omega} \frac{1}{|x-y|^{\alpha}} f(y) d y
$$

is compact.
Proof. For $\epsilon \geq 0$, let

$$
K_{\epsilon} f(x):=\int_{\Omega} \frac{1}{|x-y|^{\alpha}+\epsilon} f(y) d y=\left[g_{\epsilon} *\left(1_{\Omega} f\right)\right](x)
$$

where $g_{\epsilon}(x)=\frac{1}{|x|^{\alpha}+\epsilon} 1_{C}(x)$ with $C \subset \mathbb{R}^{n}$ a sufficiently large ball such that $\Omega-\Omega \subset$ C. Since $\alpha<n$, it follows that

$$
g_{\epsilon} \leq g_{0}=|\cdot|^{-\alpha} 1_{C} \in L^{1}\left(\mathbb{R}^{n}, m\right)
$$

Hence it follows by Proposition 11.12 ?? that

$$
\begin{aligned}
\left\|\left(K-K_{\epsilon}\right) f\right\|_{L^{2}(\Omega)} & \leq\left\|\left(g_{0}-g_{\epsilon}\right) *\left(1_{\Omega} f\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \leq\left\|\left(g_{0}-g_{\epsilon}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\left\|1_{\Omega} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|\left(g_{0}-g_{\epsilon}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{2}(\nless)}
\end{aligned}
$$

which implies
(35.3)

$$
\left\|K-K_{\epsilon}\right\|_{B\left(L^{2}(\Omega)\right)} \leq\left\|g_{0}-g_{\epsilon}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}=\int_{C}\left|\frac{1}{|x|^{\alpha}+\epsilon}-\frac{1}{|x|^{\alpha}}\right| d x \rightarrow 0 \text { as } \epsilon \downarrow 0
$$

by the dominated convergence theorem. For any $\epsilon>0$,

$$
\int_{\Omega \times \Omega}\left[\frac{1}{|x-y|^{\alpha}+\epsilon}\right]^{2} d x d y<\infty
$$

and hence K_{ϵ} is Hilbert Schmidt and hence compact. By Eq. (35.3), $K_{\epsilon} \rightarrow K$ as $\epsilon \downarrow 0$ and hence it follows that K is compact as well.

35.3. The Spectral Theorem for Self Adjoint Compact Operators.

Lemma 35.12. Suppose $T: H \rightarrow B$ is a bounded operator, then $\operatorname{Nul}\left(T^{*}\right)=$ $\operatorname{Ran}(T)^{\perp}$ and $\overline{\operatorname{Ran}(T)}=\operatorname{Nul}\left(T^{*}\right)^{\perp}$.

Proof. An element $y \in B$ is in $\operatorname{Nul}\left(T^{*}\right)$ iff $0=\left(T^{*} y, x\right)=(y, A x)$ for all $x \in H$ which happens iff $y \in \operatorname{Ran}(T)^{\perp}$. Because $\overline{\operatorname{Ran}(T)}=\operatorname{Ran}(T)^{\perp \perp}, \overline{\operatorname{Ran}(T)}=$ $\operatorname{Nul}\left(T^{*}\right)^{\perp}$.

For the rest of this section, $T \in \mathcal{K}(H):=\mathcal{K}(H, H)$ will be a self-adjoint compact operator or S.A.C.O. for short.

Example 35.13 (Model S.A.C.O.). Let $H=\ell_{2}$ and T be the diagonal matrix

$$
T=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \cdots \\
0 & \lambda_{2} & 0 & \cdots \\
0 & 0 & \lambda_{3} & \cdots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

where $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$ and $\lambda_{n} \in \mathbb{R}$. Then T is a self-adjoint compact operator. (Prove!)

The main theorem of this subsection states that up to unitary equivalence, Example 35.13 is essentially the most general example of an S.A.C.O.

Theorem 35.14. Suppose $T \in L(H):=L(H, H)$ is a bounded self-adjoint operator, then

$$
\|T\|=\sup _{f \neq 0} \frac{|(f, T f)|}{\|f\|^{2}}
$$

Moreover if there exists a non-zero element $g \in H$ such that

$$
\frac{|(T g, g)|}{\|g\|^{2}}=\|T\|
$$

then g is an eigenvector of T with $T g=\lambda g$ and $\lambda \in\{ \pm\|T\|\}$.
Proof. Let

$$
M \equiv \sup _{f \neq 0} \frac{|(f, T f)|}{\|f\|^{2}}
$$

We wish to show $M=\|T\|$. Since $|(f, T f)| \leq\|f\|\|T f\| \leq\|T\|\|f\|^{2}$, we see $M \leq$ $\|T\|$.

Conversely let $f, g \in H$ and compute

$$
\begin{aligned}
(f+g, T(f+g)) & -(f-g, T(f-g)) \\
& =(f, T g)+(g, T f)+(f, T g)+(g, T f) \\
& =2[(f, T g)+(T g, f)]=2[(f, T g)+(\overline{f, T g})] \\
& =4 \operatorname{Re}(f, T g)
\end{aligned}
$$

Therefore, if $\|f\|=\|g\|=1$, it follows that

$$
|\operatorname{Re}(f, T g)| \leq \frac{M}{4}\left\{\|f+g\|^{2}+\|f-g\|^{2}\right\}=\frac{M}{4}\left\{2\|f\|^{2}+2\|g\|^{2}\right\}=M
$$

By replacing f be $e^{i \theta} f$ where θ is chosen so that $e^{i \theta}(f, T g)$ is real, we find

$$
|(f, T g)| \leq M \text { for all }\|f\|=\|g\|=1
$$

Hence

$$
\|T\|=\sup _{\|f\|=\|g\|=1}|(f, T g)| \leq M
$$

If $g \in H \backslash\{0\}$ and $\|T\|=|(T g, g)| /\|g\|^{2}$ then, using the Cauchy Schwarz inequality,

$$
\begin{equation*}
\|T\|=\frac{|(T g, g)|}{\|g\|^{2}} \leq \frac{\|T g\|}{\|g\|} \leq\|T\| \tag{35.4}
\end{equation*}
$$

This implies $|(T g, g)|=\|T g\|\|g\|$ and forces equality in the Cauchy Schwarz inequality. So by Theorem 12.2, $T g$ and g are linearly dependent, i.e. $T g=\lambda g$ for some $\lambda \in \mathbb{C}$. Substituting this into (35.4) shows that $|\lambda|=\|T\|$. Since T is self-adjoint,

$$
\lambda\|g\|^{2}=(\lambda g, g)=(T g, g)=(g, T g)=(g, \lambda g)=\bar{\lambda}(g, g),
$$

which implies that $\lambda \in \mathbb{R}$ and therefore, $\lambda \in\{ \pm\|T\|\}$.
Theorem 35.15. Let T be a S.A.C.O., then either $\lambda=\|T\|$ or $\lambda=-\|T\|$ is an eigenvalue of T.

Proof. Without loss of generality we may assume that T is non-zero since otherwise the result is trivial. By Theorem 35.14, there exists $f_{n} \in H$ such that $\left\|f_{n}\right\|=1$ and

$$
\begin{equation*}
\frac{\left|\left(f_{n}, T f_{n}\right)\right|}{\left\|f_{n}\right\|^{2}}=\left|\left(f_{n}, T f_{n}\right)\right| \longrightarrow\|T\| \text { as } n \rightarrow \infty \tag{35.5}
\end{equation*}
$$

By passing to a subsequence if necessary, we may assume that $\lambda:=\lim _{n \rightarrow \infty}\left(f_{n}, T f_{n}\right)$ exists and $\lambda \in\{ \pm\|T\|\}$. By passing to a further subsequence if necessary, we may assume, using the compactness of T, that $T f_{n}$ is convergent as well. We now compute:

$$
\begin{aligned}
0 \leq\left\|T f_{n}-\lambda f_{n}\right\|^{2} & =\left\|T f_{n}\right\|^{2}-2 \lambda\left(T f_{n}, f_{n}\right)+\lambda^{2} \\
& \leq \lambda^{2}-2 \lambda\left(T f_{n}, f_{n}\right)+\lambda^{2} \rightarrow \lambda^{2}-2 \lambda^{2}+\lambda^{2}=0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence

$$
\begin{equation*}
T f_{n}-\lambda f_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{35.6}
\end{equation*}
$$

and therefore

$$
f \equiv \lim _{n \rightarrow \infty} f_{n}=\frac{1}{\lambda} \lim _{n \rightarrow \infty} T f_{n}
$$

exists. By the continuity of the inner product, $\|f\|=1 \neq 0$. By passing to the limit in Eq. (35.6) we find that $T f=\lambda f$.

Lemma 35.16. Let $T: H \rightarrow H$ be a self-adjoint operator and M be a T - invariant subspace of H, i.e. $T(M) \subset M$. Then M^{\perp} is also a T - invariant subspace, i.e. $T\left(M^{\perp}\right) \subset M^{\perp}$.

Proof. Let $x \in M$ and $y \in M^{\perp}$, then $T x \in M$ and hence

$$
0=(T x, y)=(x, T y) \text { for all } x \in M
$$

Thus $T y \in M^{\perp}$.
Theorem 35.17 (Spectral Theorem). Suppose that $T: H \rightarrow H$ is a non-zero S.A.C.O., then
(1) there exists at least one eigenvalue $\lambda \in\{ \pm\|T\|\}$.
(2) There are at most countable many non-zero eigenvalues, $\left\{\lambda_{n}\right\}_{n=1}^{N}$, where $N=\infty$ is allowed. (Unless T is finite rank, N will be infinite.)
(3) The λ_{n} 's (including multiplicities) may be arranged so that $\left|\lambda_{n}\right| \geq\left|\lambda_{n+1}\right|$ for all n. If $N=\infty$ then $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|=0$. (In particular any eigenspace for T with non-zero eigenvalue is finite dimensional.)
(4) The eigenvectors $\left\{\phi_{n}\right\}_{n=1}^{N}$ can be chosen to be an O.N. set such that $H=$ $\overline{\operatorname{span}\left\{\phi_{n}\right\}} \oplus \operatorname{Nul}(T)$.
(5) Using the $\left\{\phi_{n}\right\}_{n=1}^{N}$ above,

$$
T \psi=\sum_{n=1}^{N} \lambda_{n}\left(\psi, \phi_{n}\right) \phi_{n} \text { for all } \psi \in H .
$$

(6) The spectrum of T is $\sigma(T)=\{0\} \cup \cup_{n=1}^{\infty}\left\{\lambda_{n}\right\}$.

Proof. We will find λ_{n} 's and ϕ_{n} 's recursively. Let $\lambda_{1} \in\{ \pm\|T\|\}$ and $\phi_{1} \in H$ such that $T \phi_{1}=\lambda_{1} \phi_{1}$ as in Theorem 35.15. Take $M_{1}=\operatorname{span}\left(\phi_{1}\right)$ so $T\left(M_{1}\right) \subset M_{1}$. By Lemma 35.16, $T M_{1}^{\perp} \subset M_{1}^{\perp}$. Define $T_{1}: M_{1}^{\perp} \rightarrow M_{1}^{\perp}$ via $T_{1}=\left.T\right|_{M_{1}^{\perp}}$. Then T_{1} is again a compact operator. If $T_{1}=0$, we are done.

If $T_{1} \neq 0$, by Theorem 35.15 there exists $\lambda_{2} \in \underline{\left\{ \pm\|T\|_{1}\right\}}$ and $\phi_{2} \in M_{1}^{\perp}$ such that $\left\|\phi_{2}\right\|=1$ and $T_{1} \phi_{2}=T \phi_{2}=\lambda_{2} \phi_{2}$. Let $M_{2} \equiv \overline{\operatorname{span}\left(\phi_{1}, \phi_{2}\right)}$. Again $T\left(M_{2}\right) \subset M_{2}$ and hence $\left.T_{2} \equiv T\right|_{M_{2}^{\perp}}: M_{2}^{\perp} \rightarrow M_{2}^{\perp}$ is compact. Again if $T_{2}=0$ we are done.

If $T_{2} \neq 0$. Then by Theorem 35.15 there exists $\lambda_{3} \in\left\{ \pm\|T\|_{2}\right\}$ and $\phi_{3} \in M_{2}^{\perp}$ such that $\left\|\phi_{3}\right\|=1$ and $T_{2} \phi_{3}=T \phi_{3}=\lambda_{3} \phi_{3}$. Continuing this way indefinitely or until we reach a point where $T_{n}=0$, we construct a sequence $\left\{\lambda_{n}\right\}_{n=1}^{N}$ of eigenvalues and orthonormal eigenvectors $\left\{\phi_{n}\right\}_{n=1}^{N}$ such that $\left|\lambda_{i}\right| \geq\left|\lambda_{i+1}\right|$ with the further property that

$$
\begin{equation*}
\left|\lambda_{i}\right|=\sup _{\phi \perp\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{i-1}\right\}} \frac{\|T \phi\|}{\|\phi\|} \tag{35.7}
\end{equation*}
$$

If $N=\infty$ then $\lim _{i \rightarrow \infty}\left|\lambda_{i}\right|=0$ for if not there would exist $\epsilon>0$ such that $\left|\lambda_{i}\right| \geq \epsilon>0$ for all i. In this case $\left\{\phi_{i} / \lambda_{i}\right\}_{i=1}^{\infty}$ is sequence in H bounded by ϵ^{-1}. By compactness of T, there exists a subsequence i_{k} such that $\phi_{i_{k}}=T \phi_{i_{k}} / \lambda_{i_{k}}$ is convergent. But this is impossible since $\left\{\phi_{i_{k}}\right\}$ is an orthonormal set. Hence we must have that $\epsilon=0$.

Let $M \equiv \operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{N}$ with $N=\infty$ possible. Then $T(M) \subset M$ and hence $T\left(M^{\perp}\right) \subset M^{\perp}$. Using Eq. (35.7),

$$
\left\|\left.T\right|_{M^{\perp}}\right\| \leq\left\|\left.T\right|_{M_{n}^{\perp}}\right\|=\left|\lambda_{n}\right| \longrightarrow 0 \text { as } n \rightarrow \infty
$$

showing $T \mid M^{\perp} \equiv 0$.
Define P_{0} to be orthogonal projection onto M^{\perp}. Then for $\psi \in H$,

$$
\psi=P_{0} \psi+\left(1-P_{0}\right) \psi=P_{0} \psi+\sum_{i=1}^{N}\left(\psi, \phi_{i}\right) \phi_{i}
$$

and

$$
T \psi=T P_{0} \psi+T \sum_{i=1}^{N}\left(\psi, \phi_{i}\right) \phi_{i}=\sum_{i=1}^{N} \lambda_{i}\left(\psi, \phi_{i}\right) \phi_{i}
$$

Since $\left\{\lambda_{n}\right\} \subset \sigma(T)$ and $\sigma(T)$ is closed, it follows that $0 \in \sigma(T)$ and hence $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \cup$ $\{0\} \subset \sigma(T)$. Suppose that $z \notin\left\{\lambda_{n}\right\}_{n=1}^{\infty} \cup\{0\}$ and let d be the distance between z and $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \cup\{0\}$. Notice that $d>0$ because $\lim _{n \rightarrow \infty} \lambda_{n}=0$. A few simple computations show that:

$$
(T-z I) \psi=\sum_{i=1}^{N}\left(\psi, \phi_{i}\right)\left(\lambda_{i}-z\right) \phi_{i}-z P_{0} \psi
$$

$(T-z)^{-1}$ exists,

$$
(T-z I)^{-1} \psi=\sum_{i=1}^{N}\left(\psi, \phi_{i}\right)\left(\lambda_{i}-z\right)^{-1} \phi_{i}-z^{-1} P_{0} \psi
$$

and

$$
\begin{aligned}
\left\|(T-z I)^{-1} \psi\right\|^{2} & =\sum_{i=1}^{N}\left|\left(\psi, \phi_{i}\right)\right|^{2} \frac{1}{\left|\lambda_{i}-z\right|^{2}}+\frac{1}{|z|^{2}}\left\|P_{0} \psi\right\|^{2} \\
& \leq\left(\frac{1}{d}\right)^{2}\left(\sum_{i=1}^{N}\left|\left(\psi, \phi_{i}\right)\right|^{2}+\left\|P_{0} \psi\right\|^{2}\right)=\frac{1}{d^{2}}\|\psi\|^{2}
\end{aligned}
$$

We have thus shown that $(T-z I)^{-1}$ exists, $\left\|(T-z I)^{-1}\right\| \leq d^{-1}<\infty$ and hence $z \notin \sigma(T)$.

35.4. Structure of Compact Operators.

Theorem 35.18. Let $K: H \rightarrow B$ be a compact operator. Then there exists $N \in$ $\mathbb{N} \cup\{\infty\}$, orthonormal subsets $\left\{\phi_{n}\right\}_{n=1}^{N} \subset H$ and $\left\{\psi_{n}\right\}_{n=1}^{N} \subset B$ and a sequences $\left\{\lambda_{n}\right\}_{n=1}^{N} \subset \mathbb{C}$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$ if $N=\infty$ and

$$
K f=\sum_{n=1}^{N} \lambda_{n}\left(f, \phi_{n}\right) \psi_{n} \text { for all } f \in H
$$

Proof. The operator $K^{*} K \in \mathcal{K}(H)$ is self-adjoint and hence by Theorem 35.17, there exists an orthonormal set $\left\{\phi_{n}\right\}_{n=1}^{N} \subset H$ and $\left\{\mu_{n}\right\}_{n=1}^{\infty} \subset(0, \infty)$ such that

$$
K^{*} K f=\sum_{n=1}^{N} \mu_{n}\left(f, \phi_{n}\right) \phi_{n} \text { for all } f \in H
$$

Let $\lambda_{n}:=\sqrt{\mu_{n}}$ and $\sqrt{K^{*} K} \in \mathcal{K}(H)$ be defined by

$$
\sqrt{K^{*} K} f=\sum_{n=1}^{N} \lambda_{n}\left(f, \phi_{n}\right) \phi_{n} \text { for all } f \in H
$$

Define $U \in L(H, B)$ so that $U=" K\left(K^{*} K\right)^{-1 / 2}$," or more precisely by

$$
\begin{equation*}
U f=\sum_{n=1}^{N} \lambda_{n}^{-1}\left(f, \phi_{n}\right) K \phi_{n} . \tag{35.8}
\end{equation*}
$$

The operator U is well defined because

$$
\left(\lambda_{n}^{-1} K \phi_{n}, \lambda_{m}^{-1} K \phi_{m}\right)=\lambda_{n}^{-1} \lambda_{m}^{-1}\left(\phi_{n}, K^{*} K \phi_{m}\right)=\lambda_{n}^{-1} \lambda_{m}^{-1} \lambda_{m}^{2} \delta_{m, n}=\delta_{m, n}
$$

which shows $\left\{\lambda_{n}^{-1} K \phi_{n}\right\}_{n=1}^{\infty}$ is an orthonormal subset of B. Moreover this also shows

$$
\|U f\|^{2}=\sum_{n=1}^{N}\left|\left(f, \phi_{n}\right)\right|^{2}=\|P f\|^{2}
$$

where $P=P_{\operatorname{Nul}(K)^{\perp}}$. Replacing f by $\left(K^{*} K\right)^{1 / 2} f$ in Eq. (35.8) shows

$$
\begin{equation*}
U\left(K^{*} K\right)^{1 / 2} f=\sum_{n=1}^{N} \lambda_{n}^{-1}\left(\left(K^{*} K\right)^{1 / 2} f, \phi_{n}\right) K \phi_{n}=\sum_{n=1}^{N}\left(f, \phi_{n}\right) K \phi_{n}=K f \tag{35.9}
\end{equation*}
$$

since $f=\sum_{n=1}^{N}\left(f, \phi_{n}\right) \phi_{n}+P f$.
From Eq. (35.9) it follows that

$$
K f=\sum_{n=1}^{N} \lambda_{n}\left(f, \phi_{n}\right) U \phi_{n}=\sum_{n=1}^{N} \lambda_{n}\left(f, \phi_{n}\right) \psi_{n}
$$

where $\left\{\psi_{n}\right\}_{n=1}^{N}$ is the orthonormal sequence in B defined by

$$
\psi_{n}:=U \phi_{n}=\lambda_{n}^{-1} K \phi_{n} .
$$

35.4.1. Trace Class Operators. We will say $K \in \mathcal{K}(H)$ is trace class if

$$
\operatorname{tr}\left(\sqrt{K^{*} K}\right):=\sum_{n=1}^{N} \lambda_{n}<\infty
$$

in which case we define

$$
\operatorname{tr}(K)=\sum_{n=1}^{N} \lambda_{n}\left(\psi_{n}, \phi_{n}\right)
$$

Notice that if $\left\{e_{m}\right\}_{m=1}^{\infty}$ is any orthonormal basis in H (or for the $\overline{\operatorname{Ran}(K)}$ if H is not separable) then

$$
\begin{aligned}
\sum_{m=1}^{M}\left(K e_{m}, e_{m}\right) & =\sum_{m=1}^{M}\left(\sum_{n=1}^{N} \lambda_{n}\left(e_{m}, \phi_{n}\right) \psi_{n}, e_{m}\right)=\sum_{n=1}^{N} \lambda_{n} \sum_{m=1}^{M}\left(e_{m}, \phi_{n}\right)\left(\psi_{n}, e_{m}\right) \\
& =\sum_{n=1}^{N} \lambda_{n}\left(P_{M} \psi_{n}, \phi_{n}\right)
\end{aligned}
$$

where P_{M} is orthogonal projection onto $\operatorname{Span}\left(e_{1}, \ldots, e_{M}\right)$. Therefore by dominated convergence theorem ,

$$
\begin{aligned}
\sum_{m=1}^{\infty}\left(K e_{m}, e_{m}\right) & =\lim _{M \rightarrow \infty} \sum_{n=1}^{N} \lambda_{n}\left(P_{M} \psi_{n}, \phi_{n}\right)=\sum_{n=1}^{N} \lambda_{n} \lim _{M \rightarrow \infty}\left(P_{M} \psi_{n}, \phi_{n}\right) \\
& =\sum_{n=1}^{N} \lambda_{n}\left(\psi_{n}, \phi_{n}\right)=\operatorname{tr}(K)
\end{aligned}
$$

35.5. Fredholm Operators.

Lemma 35.19. Let $M \subset H$ be a closed subspace and $V \subset H$ be a finite dimensional subspace. Then $M+V$ is closed as well. In particular if $\operatorname{codim}(M) \equiv \operatorname{dim}(H / M)<$ ∞ and $W \subset H$ is a subspace such that $M \subset W$, then W is closed and $\operatorname{codim}(W)<$ ∞.

Proof. Let $P: H \rightarrow M$ be orthogonal projection and let $V_{0}:=(I-P) V$. Since $\operatorname{dim}\left(V_{0}\right) \leq \operatorname{dim}(V)<\infty, V_{0}$ is still closed. Also it is easily seen that $M+V=M \stackrel{\perp}{\oplus} V_{0}$ from which it follows that $M+V$ is closed because $\left\{z_{n}=m_{n}+v_{n}\right\} \subset M \stackrel{\perp}{\oplus} V_{0}$ is convergent iff $\left\{m_{n}\right\} \subset M$ and $\left\{v_{n}\right\} \subset V_{0}$ are convergent.

If $\operatorname{codim}(M)<\infty$ and $M \subset W$, there is a finite dimensional subspace $V \subset H$ such that $W=M+V$ and so by what we have just proved, W is closed as well. It should also be clear that $\operatorname{codim}(W) \leq \operatorname{codim}(M)<\infty$.

Lemma 35.20. If $K: H \rightarrow B$ is a finite rank operator, then there exists $\left\{\phi_{n}\right\}_{n=1}^{k} \subset H$ and $\left\{\psi_{n}\right\}_{n=1}^{k} \subset B$ such that
(1) $K x=\sum_{n=1}^{k}\left(x, \phi_{n}\right) \psi_{n}$ for all $x \in H$.
(2) $K^{*} y=\sum_{n=1}^{k}\left(y, \psi_{n}\right) \phi_{n}$ for all $y \in B$, in particular K^{*} is still finite rank.

For the next two items, further assume $B=H$.
(3) $\operatorname{dim} \operatorname{Nul}(I+K)<\infty$.
(4) $\operatorname{dim} \operatorname{coker}(I+K)<\infty, \operatorname{Ran}(I+K)$ is closed and

$$
\operatorname{Ran}(I+K)=\operatorname{Nul}\left(I+K^{*}\right)^{\perp}
$$

Proof.

(1) Choose $\left\{\psi_{n}\right\}_{1}^{k}$ to be an orthonormal basis for $\operatorname{Ran}(K)$. Then for $x \in H$,

$$
K x=\sum_{n=1}^{k}\left(K x, \psi_{n}\right) \psi_{n}=\sum_{n=1}^{k}\left(x, K^{*} \psi_{n}\right) \psi_{n}=\sum_{n=1}^{k}\left(x, \phi_{n}\right) \psi_{n}
$$

where $\phi_{n} \equiv K^{*} \psi_{n}$.
(2) Item 2. is a simple computation left to the reader.
(3) Since $\operatorname{Nul}(I+K)=\{x \in H \mid x=-K x\} \subset \operatorname{Ran}(K)$ it is finite dimensional.
(4) Since $x=(I+K) x \in \operatorname{Ran}(I+K)$ for $x \in \operatorname{Nul}(K)$, $\operatorname{Nul}(K) \subset \operatorname{Ran}(I+K)$. Since $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right\}^{\perp} \subset \operatorname{Nul}(K), H=\operatorname{Nul}(K)+\operatorname{span}\left(\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right\}\right)$ and thus codim $(\operatorname{Nul}(K))<\infty$. From these comments and Lemma 35.19, $\operatorname{Ran}(I+K)$ is closed and $\operatorname{codim}(\operatorname{Ran}(I+K)) \leq \operatorname{codim}(\operatorname{Nul}(K))<\infty$. The assertion that $\operatorname{Ran}(I+K)=\operatorname{Nul}\left(I+K^{*}\right)^{\perp}$ is a consequence of Lemma 35.12 below.

Definition 35.21. A bounded operator $F: H \rightarrow B$ is Fredholm iff the $\operatorname{dim} \operatorname{Nul}(F)<\infty, \operatorname{dim} \operatorname{coker}(F)<\infty$ and $\operatorname{Ran}(F)$ is closed in B. (Recall: $\operatorname{coker}(F) \equiv B / \operatorname{Ran}(F)$.) The index of F is the integer,

$$
\begin{align*}
\operatorname{index}(F) & =\operatorname{dim} \operatorname{Nul}(F)-\operatorname{dim} \operatorname{coker}(F) \tag{35.10}\\
& =\operatorname{dim} \operatorname{Nul}(F)-\operatorname{dim} \operatorname{Nul}\left(F^{*}\right) \tag{35.11}
\end{align*}
$$

Notice that equations (35.10) and (35.11) are the same since, (using $\operatorname{Ran}(F)$ is closed)

$$
B=\operatorname{Ran}(F) \oplus \operatorname{Ran}(F)^{\perp}=\operatorname{Ran}(F) \oplus \operatorname{Nul}\left(F^{*}\right)
$$

so that $\operatorname{coker}(F)=B / \operatorname{Ran}(F) \cong \operatorname{Nul}\left(F^{*}\right)$.
Lemma 35.22. The requirement that $\operatorname{Ran}(F)$ is closed in Defintion 35.21 is redundant.

Proof. By restricting F to $\operatorname{Nul}(F)^{\perp}$, we may assume without loss of generality that $\operatorname{Nul}(F)=\{0\}$. Assuming dim $\operatorname{coker}(F)<\infty$, there exists a finite dimensional subspace $V \subset B$ such that $B=\operatorname{Ran}(F) \oplus V$. Since V is finite dimensional, V is closed and hence $B=V \oplus V^{\perp}$. Let $\pi: B \rightarrow V^{\perp}$ be the orthogonal projection operator onto V^{\perp} and let $G \equiv \pi F: H \rightarrow V^{\perp}$ which is continuous, being the composition of two bounded transformations. Since G is a linear isomorphism, as the reader should check, the open mapping theorem implies the inverse operator $G^{-1}: V^{\perp} \rightarrow H$ is bounded.

Suppose that $h_{n} \in H$ is a sequence such that $\lim _{n \rightarrow \infty} F\left(h_{n}\right)=: b$ exists in B. Then by composing this last equation with π, we find that $\lim _{n \rightarrow \infty} G\left(h_{n}\right)=\pi(b)$ exists in V^{\perp}. Composing this equation with G^{-1} shows that $h:=\lim _{n \rightarrow \infty} h_{n}=$ $G^{-1} \pi(b)$ exists in H. Therefore, $F\left(h_{n}\right) \rightarrow F(h) \in \operatorname{Ran}(F)$, which shows that $\operatorname{Ran}(F)$ is closed.
Remark 35.23. It is essential that the subspace $M \equiv \operatorname{Ran}(F)$ in Lemma 35.22 is the image of a bounded operator, for it is not true that every finite codimensional subspace M of a Banach space B is necessarily closed. To see this suppose that B is a separable infinite dimensional Banach space and let $A \subset B$ be an algebraic basis for B, which exists by a Zorn's lemma argument. Since $\operatorname{dim}(B)=\infty$ and B is complete, A must be uncountable. Indeed, if A were countable we could write $B=\cup_{n=1}^{\infty} B_{n}$ where B_{n} are finite dimensional (necessarily closed) subspaces of B. This shows that B is the countable union of nowhere dense closed subsets which violates the Baire Category theorem.

By separability of B, there exists a countable subset $A_{0} \subset A$ such that the closure of $M_{0} \equiv \operatorname{span}\left(A_{0}\right)$ is equal to B. Choose $x_{0} \in A \backslash A_{0}$, and let $M \equiv \operatorname{span}\left(A \backslash\left\{x_{0}\right\}\right)$. Then $M_{\mathbf{0}} \subset M$ so that $B=\bar{M}_{0}=\bar{M}$, while $\operatorname{codim}(M)=1$. Clearly this M can not be closed.

Example 35.24. Suppose that H and B are finite dimensional Hilbert spaces and $F: H \rightarrow B$ is Fredholm. Then

$$
\begin{equation*}
\operatorname{index}(F)=\operatorname{dim}(B)-\operatorname{dim}(H) \tag{35.12}
\end{equation*}
$$

The formula in Eq. (35.12) may be verified using the rank nullity theorem,

$$
\operatorname{dim}(H)=\operatorname{dim} \operatorname{Nul}(F)+\operatorname{dim} \operatorname{Ran}(F)
$$

and the fact that

$$
\operatorname{dim}(B / \operatorname{Ran}(F))=\operatorname{dim}(B)-\operatorname{dim} \operatorname{Ran}(F)
$$

Theorem 35.25. A bounded operator $F: H \rightarrow B$ is Fredholm iff there exists a bounded operator $A: B \rightarrow H$ such that $A F-I$ and $F A-I$ are both compact operators. (In fact we may choose A so that $A F-I$ and $F A-I$ are both finite rank operators.)

Proof. (\Rightarrow) Suppose F is Fredholm, then $F: \operatorname{Nul}(F)^{\perp} \rightarrow \operatorname{Ran}(F)$ is a bijective bounded linear map between Hilbert spaces. (Recall that $\operatorname{Ran}(F)$ is a closed subspace of B and hence a Hilbert space.) Let \tilde{F} be the inverse of this map-a bounded map by the open mapping theorem. Let $P: H \rightarrow \operatorname{Ran}(F)$ be orthogonal projection and set $A \equiv \tilde{F} P$. Then $A F-I=\tilde{F} P F-I=\tilde{F} F-I=-Q$ where Q is the orthogonal projection onto $\operatorname{Nul}(F)$. Similarly, $F A-I=F \tilde{F} P-I=-(I-P)$. Because $I-P$ and Q are finite rank projections and hence compact, both $A F-I$ and $F A-I$ are compact.
(\Leftarrow) We first show that the operator $A: B \rightarrow H$ may be modified so that $A F-I$ and $F A-I$ are both finite rank operators. To this end let $G \equiv A F-I(G$ is compact) and choose a finite rank approximation G_{1} to G such that $G=G_{1}+\mathcal{E}$ where $\|\mathcal{E}\|<1$. Define $A_{L}: B \rightarrow H$ to be the operator $A_{L} \equiv(I+\mathcal{E})^{-1} A$. Since $A F=(I+\mathcal{E})+G_{1}$,

$$
A_{L} F=(I+\mathcal{E})^{-1} A F=I+(I+\mathcal{E})^{-1} G_{1}=I+K_{L}
$$

where K_{L} is a finite rank operator. Similarly there exists a bounded operator $A_{R}: B \rightarrow H$ and a finite rank operator K_{R} such that $F A_{R}=I+K_{R}$. Notice that $A_{L} F A_{R}=A_{R}+K_{L} A_{R}$ on one hand and $A_{L} F A_{R}=A_{L}+A_{L} K_{R}$ on the other. Therefore, $A_{L}-A_{R}=A_{L} K_{R}-K_{L} A_{R}=: S$ is a finite rank operator. Therefore $F A_{L}=F\left(A_{R}+S\right)=I+K_{R}+F S$, so that $F A_{L}-I=K_{R}-F S$ is still a finite rank operator. Thus we have shown that there exists a bounded operator $\tilde{A}: B \rightarrow H$ such that $\tilde{A} F-I$ and $F \tilde{A}-I$ are both finite rank operators.

We now assume that A is chosen such that $A F-I=G_{1}, F A-I=G_{2}$ are finite rank. Clearly $\operatorname{Nul}(F) \subset \operatorname{Nul}(A F)=\operatorname{Nul}\left(I+G_{1}\right)$ and $\operatorname{Ran}(F) \supseteq \operatorname{Ran}(F A)=$ $\operatorname{Ran}\left(I+G_{2}\right)$. The theorem now follows from Lemma 35.19 and Lemma 35.20.

Corollary 35.26. If $F: H \rightarrow B$ is Fredholm then F^{*} is Fredholm and index $(F)=$ $-\operatorname{index}\left(F^{*}\right)$.

Proof. Choose $A: B \rightarrow H$ such that both $A F-I$ and $F A-I$ are compact. Then $F^{*} A^{*}-I$ and $A^{*} F^{*}-I$ are compact which implies that F^{*} is Fredholm. The assertion, $\operatorname{index}(F)=-\operatorname{index}\left(F^{*}\right)$, follows directly from Eq. (35.11).

Lemma 35.27. A bounded operator $F: H \rightarrow B$ is Fredholm if and only if there exists orthogonal decompositions $H=H_{1} \oplus H_{2}$ and $B=B_{1} \oplus B_{2}$ such that
(1) H_{1} and B_{1} are closed subspaces,
(2) H_{2} and B_{2} are finite dimensional subspaces, and
(3) F has the block diagonal form

$$
F=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{35.13}\\
F_{21} & F_{22}
\end{array}\right): \begin{gathered}
H_{1} \\
\oplus \\
H_{2}
\end{gathered} \longrightarrow \begin{gathered}
B_{1} \\
\oplus \\
B_{2}
\end{gathered}
$$

with $F_{11}: H_{1} \rightarrow B_{1}$ being a bounded invertible operator.
Furthermore, given this decomposition, index $(F)=\operatorname{dim}\left(H_{2}\right)-\operatorname{dim}\left(B_{2}\right)$.

Proof. If F is Fredholm, set $H_{1}=\operatorname{Nul}(F)^{\perp}, H_{2}=\operatorname{Nul}(F), B_{1}=\operatorname{Ran}(F)$, and $B_{2}=\operatorname{Ran}(F)^{\perp}$. Then $F=\left(\begin{array}{ll}F_{11} & 0 \\ 0 & 0\end{array}\right)$, where $\left.F_{11} \equiv F\right|_{H_{1}}: H_{1} \rightarrow B_{1}$ is invertible.

For the converse, assume that F is given as in Eq. (35.13). Let $A \equiv\left(\begin{array}{ll}F_{11}^{-1} & 0 \\ 0 & 0\end{array}\right)$ then

$$
A F=\left(\begin{array}{cc}
I & F_{11}^{-1} F_{12} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)+\left(\begin{array}{cc}
0 & F_{11}^{-1} F_{12} \\
0 & -I
\end{array}\right)
$$

so that $A F-I$ is finite rank. Similarly one shows that $F A-I$ is finite rank, which shows that F is Fredholm.

Now to compute the index of F, notice that $\binom{x_{1}}{x_{2}} \in \operatorname{Nul}(F)$ iff

$$
\begin{aligned}
& F_{11} x_{1}+F_{12} x_{2}=0 \\
& F_{21} x_{1}+F_{22} x_{2}=0
\end{aligned}
$$

which happens iff $x_{1}=-F_{11}^{-1} F_{12} x_{2}$ and $\left(-F_{21} F_{11}^{-1} F_{12}+F_{22}\right) x_{2}=0$. Let $D \equiv$ $\left(F_{22}-F_{21} F_{11}^{-1} F_{12}\right): H_{2} \rightarrow B_{2}$, then the mapping

$$
x_{2} \in \operatorname{Nul}(D) \rightarrow\binom{-F_{11}^{-1} F_{12} x_{2}}{x_{2}} \in \operatorname{Nul}(F)
$$

is a linear isomorphism of vector spaces so that $\operatorname{Nul}(F) \cong \operatorname{Nul}(D)$. Since

$$
F^{*}=\left(\begin{array}{cc}
F_{11}^{*} & F_{21}^{*} \\
F_{12}^{*} & F_{22}^{*}
\end{array}\right) \quad \begin{array}{ccc}
B_{1} & & H_{1} \\
\oplus & \longrightarrow & \oplus \\
B_{2} & & H_{2}
\end{array},
$$

similar reasoning implies $\operatorname{Nul}\left(F^{*}\right) \cong \operatorname{Nul}\left(D^{*}\right)$. This shows that index $(F)=$ index (D). But we have already seen in Example 35.24 that $\operatorname{index}(D)=\operatorname{dim} H_{2}-$ $\operatorname{dim} B_{2}$.

Proposition 35.28. Let F be a Fredholm operator and K be a compact operator from $H \rightarrow B$. Further assume $T: B \rightarrow X$ (where X is another Hilbert space) is also Fredholm. Then
(1) the Fredholm operators form an open subset of the bounded operators. Moreover if $\mathcal{E}: H \rightarrow B$ is a bounded operator with $\|\mathcal{E}\|$ sufficiently small we have $\operatorname{index}(F)=\operatorname{index}(F+\mathcal{E})$.
(2) $F+K$ is Fredholm and index $(F)=\operatorname{index}(F+K)$.
(3) $T F$ is Fredholm and index $(T F)=\operatorname{index}(T)+\operatorname{index}(F)$

Proof.

(1) We know F may be written in the block form given in Eq. (35.13) with $F_{11}: H_{1} \rightarrow B_{1}$ being a bounded invertible operator. Decompose \mathcal{E} into the block form as

$$
\mathcal{E}=\left(\begin{array}{ll}
\mathcal{E}_{11} & \mathcal{E}_{12} \\
\mathcal{E}_{21} & \mathcal{E}_{22}
\end{array}\right)
$$

and choose $\|\mathcal{E}\|$ sufficiently small such that $\left\|\mathcal{E}_{11}\right\|$ is sufficiently small to guarantee that $F_{11}+\mathcal{E}_{11}$ is still invertible. (Recall that the invertible operators form an open set.) Thus $F+\mathcal{E}=\left(\begin{array}{cc}F_{11}+\mathcal{E}_{11} & * \\ * & *\end{array}\right)$ has the block
form of a Fredholm operator and the index may be computed as:

$$
\operatorname{index}(F+\mathcal{E})=\operatorname{dim} H_{2}-\operatorname{dim} B_{2}=\operatorname{index}(F)
$$

(2) Given $K: H \rightarrow B$ compact, it is easily seen that $F+K$ is still Fredholm. Indeed if $A: B \rightarrow H$ is a bounded operator such that $G_{1} \equiv A F-I$ and $G_{2} \equiv F A-I$ are both compact, then $A(F+K)-I=G_{1}+A K$ and $(F+K) A-I=G_{2}+K A$ are both compact. Hence $F+K$ is Fredholm by Theorem 35.25. By item 1., the function $f(t) \equiv \operatorname{index}(F+t K)$ is a continuous locally constant function of $t \in \mathbb{R}$ and hence is constant. In particular, index $(F+K)=f(1)=f(0)=\operatorname{index}(F)$.
(3) It is easily seen, using Theorem 35.25 that the product of two Fredholm operators is again Fredholm. So it only remains to verify the index formula in item 3.

For this let $H_{1} \equiv \operatorname{Nul}(F)^{\perp}, H_{2} \equiv \operatorname{Nul}(F), B_{1} \equiv \operatorname{Ran}(T)=T\left(H_{1}\right)$, and $B_{2} \equiv \operatorname{Ran}(T)^{\perp}=\operatorname{Nul}\left(T^{*}\right)$. Then F decomposes into the block form:

$$
F=\left(\begin{array}{cc}
\tilde{F} & 0 \\
0 & 0
\end{array}\right): \begin{gathered}
H_{1} \\
\oplus \\
H_{2}
\end{gathered} \longrightarrow \begin{gathered}
B_{1} \\
\oplus \\
B_{2}
\end{gathered}
$$

where $\tilde{F}=\left.F\right|_{H_{1}}: H_{1} \rightarrow B_{1}$ is an invertible operator. Let $Y_{1} \equiv T\left(B_{1}\right)$ and $Y_{2} \equiv Y_{1}^{\perp}=T\left(B_{1}\right)^{\perp}$. Notice that $Y_{1}=T\left(B_{1}\right)=T Q\left(B_{1}\right)$, where $Q: B \rightarrow B_{1} \subset B$ is orthogonal projection onto B_{1}. Since B_{1} is closed and B_{2} is finite dimensional, Q is Fredholm. Hence $T Q$ is Fredholm and $Y_{1}=T Q\left(B_{1}\right)$ is closed in Y and is of finite codimension. Using the above decompositions, we may write T in the block form:

$$
T=\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right): \begin{array}{ccc}
B_{1} & & Y_{1} \\
\oplus & \longrightarrow & \oplus \\
B_{2} & & Y_{2}
\end{array}
$$

Since $R=\left(\begin{array}{cc}0 & T_{12} \\ T_{21} & T_{22}\end{array}\right): B \rightarrow Y$ is a finite rank operator and hence $R F: H \rightarrow Y$ is finite rank, index $(T-R)=\operatorname{index}(T)$ and $\operatorname{index}(T F-R F)=$ $\operatorname{index}(T F)$. Hence without loss of generality we may assume that T has the form $T=\left(\begin{array}{cc}\tilde{T} & 0 \\ 0 & 0\end{array}\right),\left(\tilde{T}=T_{11}\right)$ and hence

$$
T F=\left(\begin{array}{cc}
\tilde{T} \tilde{F} & 0 \\
0 & 0
\end{array}\right): \begin{gathered}
H_{1} \\
\oplus \\
H_{2}
\end{gathered} \longrightarrow \begin{gathered}
Y_{1} \\
\end{gathered}
$$

We now compute the index (T). Notice that $\operatorname{Nul}(T)=\operatorname{Nul}(\tilde{T}) \oplus B_{2}$ and $\operatorname{Ran}(T)=\tilde{T}\left(B_{1}\right)=Y_{1}$. So

$$
\operatorname{index}(T)=\operatorname{index}(\tilde{T})+\operatorname{dim}\left(B_{2}\right)-\operatorname{dim}\left(Y_{2}\right)
$$

Similarly,

$$
\operatorname{index}(T F)=\operatorname{index}(\tilde{T} \tilde{F})+\operatorname{dim}\left(H_{2}\right)-\operatorname{dim}\left(Y_{2}\right)
$$

and as we have already seen

$$
\operatorname{index}(F)=\operatorname{dim}\left(H_{2}\right)-\operatorname{dim}\left(B_{2}\right)
$$

Therefore,
$\operatorname{index}(T F)-\operatorname{index}(T)-\operatorname{index}(F)=\operatorname{index}(\tilde{T} \tilde{F})-\operatorname{index}(\tilde{T})$.
Since \tilde{F} is invertible, $\operatorname{Ran}(\tilde{T})=\operatorname{Ran}(\tilde{T} \tilde{F})$ and $\operatorname{Nul}(\tilde{T}) \cong \operatorname{Nul}(\tilde{T} \tilde{F})$. Thus $\operatorname{index}(\tilde{T} \tilde{F})-\operatorname{index}(\tilde{T})=0$ and the theorem is proved.
35.6. Tensor Product Spaces . References for this section are Reed and Simon [?] (Volume 1, Chapter VI.5), Simon [?], and Schatten [?]. See also Reed and Simon [?] (Volume 2 § IX. 4 and §XIII.17).

Let H and K be separable Hilbert spaces and $H \otimes K$ will denote the usual Hilbert completion of the algebraic tensors $H \otimes_{f} K$. Recall that the inner product on $H \otimes K$ is determined by $\left(h \otimes k, h^{\prime} \otimes k^{\prime}\right)=\left(h, h^{\prime}\right)\left(k, k^{\prime}\right)$. The following proposition is well known.

Proposition 35.29 (Structure of $H \otimes K)$. There is a bounded linear map T : $H \otimes K \rightarrow B(K, H)$ determined by

$$
T(h \otimes k) k^{\prime} \equiv\left(k, k^{\prime}\right) h \text { for all } k, k^{\prime} \in K \text { and } h \in H
$$

Moreover $T(H \otimes K)=H S(K, H)$ - the Hilbert Schmidt operators from K to H. The map $T: H \otimes K \rightarrow H S(K, H)$ is unitary equivalence of Hilbert spaces. Finally, any $A \in H \otimes K$ may be expressed as

$$
\begin{equation*}
A=\sum_{n=1}^{\infty} \lambda_{n} h_{n} \otimes k_{n} \tag{35.14}
\end{equation*}
$$

where $\left\{h_{n}\right\}$ and $\left\{k_{n}\right\}$ are orthonormal sets in H and K respectively and $\left\{\lambda_{n}\right\} \subset \mathbb{R}$ such that $\|A\|^{2}=\sum\left|\lambda_{n}\right|^{2}<\infty$.

Proof. Let $A \equiv \sum a_{j i} h_{j} \otimes k_{i}$, where $\left\{h_{i}\right\}$ and $\left\{k_{j}\right\}$ are orthonormal bases for H and K respectively and $\left\{a_{j i}\right\} \subset \mathbb{R}$ such that $\|A\|^{2}=\sum\left|a_{j i}\right|^{2}<\infty$. Then evidently, $T(A) k \equiv \sum a_{j i} h_{j}\left(k_{i}, k\right)$ and

$$
\|T(A) k\|^{2}=\sum_{j}\left|\sum_{i} a_{j i}\left(k_{i}, k\right)\right|^{2} \leq \sum_{j} \sum_{i}\left|a_{j i}\right|^{2}\left|\left(k_{i}, k\right)\right|^{2} \leq \sum_{j} \sum_{i}\left|a_{j i}\right|^{2}\|k\|^{2}
$$

Thus $T: H \otimes K \rightarrow B(K, H)$ is bounded. Moreover,

$$
\|T(A)\|_{H S}^{2} \equiv \sum\left\|T(A) k_{i}\right\|^{2}=\sum_{i j}\left|a_{j i}\right|^{2}=\|A\|^{2}
$$

which proves the T is an isometry.
We will now prove that T is surjective and at the same time prove Eq. (35.14). To motivate the construction, suppose that $Q=T(A)$ where A is given as in Eq. (35.14). Then

$$
Q^{*} Q=T\left(\sum_{n=1}^{\infty} \lambda_{n} k_{n} \otimes h_{n}\right) T\left(\sum_{n=1}^{\infty} \lambda_{n} h_{n} \otimes k_{n}\right)=T\left(\sum_{n=1}^{\infty} \lambda_{n}^{2} k_{n} \otimes k_{n}\right)
$$

That is $\left\{k_{n}\right\}$ is an orthonormal basis for $\left(\operatorname{nul} Q^{*} Q\right)^{\perp}$ with $Q^{*} Q k_{n}=\lambda_{n}^{2} k_{n}$. Also $Q k_{n}=\lambda_{n} h_{n}$, so that $h_{n}=\lambda_{n}^{-1} Q k_{n}$.

We will now reverse the above argument. Let $Q \in H S(K, H)$. Then $Q^{*} Q$ is a selfadjoint compact operator on K. Therefore there is an orthonormal basis $\left\{k_{n}\right\}_{n=1}^{\infty}$
for the $\left(\operatorname{nul} Q^{*} Q\right)^{\perp}$ which consists of eigenvectors of $Q^{*} Q$. Let $\lambda_{n} \in(0, \infty)$ such that $Q^{*} Q k_{n}=\lambda_{n}^{2} k_{n}$ and set $h_{n}=\lambda_{n}^{-1} Q k_{n}$. Notice that
$\left(h_{n}, h_{m}\right)=\left(\lambda_{n}^{-1} Q k_{n}, \lambda_{m}^{-1} Q k_{m}\right)=\left(\lambda_{n}^{-1} k_{n}, \lambda_{m}^{-1} Q^{*} Q k_{m}\right)=\left(\lambda_{n}^{-1} k_{n}, \lambda_{m}^{-1} \lambda_{m}^{2} k_{m}\right)=\delta_{m n}$, so that $\left\{h_{n}\right\}$ is an orthonormal set in H. Define

$$
A=\sum_{n=1}^{\infty} \lambda_{n} h_{n} \otimes k_{n}
$$

and notice that $T(A) k_{n}=\lambda_{n} h_{n}=Q k_{n}$ for all n and $T(A) k=0$ for all $k \in \operatorname{nul} Q=$ nul $Q^{*} Q$. That is $T(A)=Q$. Therefore T is surjective and Eq. (35.14) holds.

Recall that $\sqrt{1-z}=1-\sum_{i=1}^{\infty} c_{i} z^{i}$ for $|z|<1$, where $c^{i} \geq 0$ and $\sum_{i=1}^{\infty} c_{i}<\infty$. For an operator A on H such that $A \geq 0$ and $\|A\|_{B(H)} \leq 1$, the square root of A is given by

$$
\sqrt{A}=I-\sum_{i=1}^{\infty} c_{i}(A-I)^{i} .
$$

See Theorem VI. 9 on p. 196 of Reed and Simon [?]. The next proposition is problem 14 and 15 on p. 217 of [?]. Let $|A| \equiv \sqrt{A^{*} A}$.
Proposition 35.30 (Square Root). Suppose that A_{n} and A are positive operators on H and $\left\|A-A_{n}\right\|_{B(H)} \rightarrow 0$ as $n \rightarrow \infty$, then $\sqrt{A_{n}} \rightarrow \sqrt{A}$ in $B(H)$ also. Moreover, A_{n} and A are general bounded operators on H and $A_{n} \rightarrow A$ in the operator norm then $\left|A_{n}\right| \rightarrow|A|$.

Proof. With out loss of generality, assume that $\left\|A_{n}\right\| \leq 1$ for all n. This implies also that that $\|A\| \leq 1$. Then

$$
\sqrt{A}-\sqrt{A_{n}}=\sum_{i=1}^{\infty} c_{i}\left\{\left(A_{n}-I\right)^{i}-(A-I)^{i}\right\}
$$

and hence

$$
\begin{equation*}
\left\|\sqrt{A}-\sqrt{A_{n}}\right\| \leq \sum_{i=1}^{\infty} c_{i}\left\|\left(A_{n}-I\right)^{i}-(A-I)^{i}\right\| . \tag{35.15}
\end{equation*}
$$

For the moment we will make the additional assumption that $A_{n} \geq \epsilon I$, where $\epsilon \in(0,1)$. Then $0 \leq I-A_{n} \leq(1-\epsilon) I$ and in particular $\left\|I-A_{n}\right\|_{B(H)} \leq(1-\epsilon)$.

Now suppose that Q, R, S, T are operators on H, then $Q R-S T=(Q-S) R+$ $S(R-T)$ and hence

$$
\|Q R-S T\| \leq\|Q-S\|\|R\|+\|S\|\|R-T\| .
$$

Setting $Q=A_{n}-I, R \equiv\left(A_{n}-I\right)^{i-1}, S \equiv(A-I)$ and $T=(A-I)^{i-1}$ in this last inequality gives

$$
\begin{align*}
& \left\|\left(A_{n}-I\right)^{i}-(A-I)^{i}\right\| \leq\left\|A_{n}-A\right\|\left\|\left(A_{n}-I\right)^{i-1}\right\|+\|(A-I)\|\left\|\left(A_{n}-I\right)^{i-1}-(A-I)^{i-1}\right\| \\
& \begin{array}{l}
(35.16)
\end{array} \quad \leq\left\|A_{n}-A\right\|(1-\epsilon)^{i-1}+(1-\epsilon)\left\|\left(A_{n}-I\right)^{i-1}-(A-I)^{i-1}\right\| . \tag{35.16}
\end{align*}
$$

It now follows by induction that

$$
\left\|\left(A_{n}-I\right)^{i}-(A-I)^{i}\right\| \leq i(1-\epsilon)^{i-1}\left\|A_{n}-A\right\| .
$$

Inserting this estimate into (35.15) shows that

$$
\left\|\sqrt{A}-\sqrt{A_{n}}\right\| \leq \sum_{i=1}^{\infty} c_{i} i(1-\epsilon)^{i-1}\left\|A_{n}-A\right\|=\frac{1}{2} \frac{1}{\sqrt{1-(1-\epsilon)}}\left\|A-A_{n}\right\|=\frac{1}{2} \frac{1}{\sqrt{\epsilon}}\left\|A-A_{n}\right\| \rightarrow 0 .
$$

Therefore we have shown if $A_{n} \geq \epsilon I$ for all n and $A_{n} \rightarrow A$ in norm then $\sqrt{A_{n}} \rightarrow \sqrt{A}$ in norm.

For the general case where $A_{n} \geq 0$, we find that for all $\epsilon>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sqrt{A_{n}+\epsilon}=\sqrt{A+\epsilon} \tag{35.17}
\end{equation*}
$$

By the spectral theorem ${ }^{54}$

$$
\|\sqrt{A+\epsilon}-\sqrt{A}\| \leq \max _{x \in \sigma(A)}|\sqrt{x+\epsilon}-\sqrt{x}| \leq \max _{0 \leq x \leq\|A\|}|\sqrt{x+\epsilon}-\sqrt{x}| \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

Since the above estimates are uniform in $A \geq 0$ such that $\|A\|$ is bounded, it is now an easy matter to conclude that Eq. (35.17) holds even when $\epsilon=0$.

Now suppose that $A_{n} \rightarrow A$ in $B(H)$ and A_{n} and A are general operators. Then $A_{n}^{*} A_{n} \rightarrow A^{*} A$ in $B(H)$. So by what we have already proved,

$$
\left|A_{n}\right| \equiv \sqrt{A_{n}^{*} A_{n}} \rightarrow|A| \equiv \sqrt{A^{*} A} \text { in } B(H) \text { as } n \rightarrow \infty
$$

Notation 35.31. In the future we will identify $A \in H \otimes K$ with $T(A) \in H S(K, H)$ and drop T from the notation. So that with this notation we have $(h \otimes k) k^{\prime}=$ $\left(k, k^{\prime}\right) h$.

Let $A \in H \otimes H$, we set $\|A\|_{1} \equiv \operatorname{tr} \sqrt{A^{*} A} \equiv \operatorname{tr} \sqrt{T(A)^{*} T(A)}$ and we let

$$
H \otimes_{1} H \equiv\left\{A \in H \otimes H:\|A\|_{1}<\infty\right\}
$$

We will now compute $\|A\|_{1}$ for $A \in H \otimes H$ described as in Eq. (35.14). First notice that $A^{*}=\sum_{n=1}^{\infty} \lambda_{n} k_{n} \otimes h_{n}$ and

$$
A^{*} A=\sum_{n=1}^{\infty} \lambda_{n}^{2} k_{n} \otimes k_{n}
$$

Hence $\sqrt{A^{*} A}=\sum_{n=1}^{\infty}\left|\lambda_{n}\right| k_{n} \otimes k_{n}$ and hence $\|A\|_{1}=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|$. Also notice that $\|A\|^{2}=\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}$ and $\|A\|_{o p}=\max _{n}\left|\lambda_{n}\right|$. Since

$$
\|A\|_{1}^{2}=\left\{\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\right\}^{2} \geq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2}=\|A\|^{2}
$$

we have the following relations among the various norms,

$$
\begin{equation*}
\|A\|_{o p} \leq\|A\| \leq\|A\|_{1} \tag{35.18}
\end{equation*}
$$

Proposition 35.32. There is a continuous linear map $C: H \otimes_{1} H \rightarrow \mathbb{R}$ such that $C(h \otimes k)=(h, k)$ for all $h, k \in H$. If $A \in H \otimes_{1} H$, then

$$
\begin{equation*}
C A=\sum\left(e_{m} \otimes e_{m}, A\right) \tag{35.19}
\end{equation*}
$$

where $\left\{e_{m}\right\}$ is any orthonormal basis for H. Moreover, if $A \in H \otimes_{1} H$ is positive, i.e. $T(A)$ is a non-negative operator, then $\|A\|_{1}=C A$.

[^0]Proof. Let $A \in H \otimes_{1} H$ be given as in Eq. (35.14) with $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|=\|A\|_{1}<\infty$. Then define $C A \equiv \sum_{n=1}^{\infty} \lambda_{n}\left(h_{n}, k_{n}\right)$ and notice that $|C A| \leq \sum\left|\lambda_{n}\right|=\|A\|_{1}$, which shows that C is a contraction on $H \otimes_{1} H$. (Using the universal property of $H \otimes_{f} H$ it is easily seen that C is well defined.) Also notice that for $M \in \mathbb{Z}_{+}$that

$$
\begin{align*}
\sum_{m=1}^{M}\left(e_{m} \otimes e_{m}, A\right) & =\sum_{n=1}^{\infty} \sum_{m=1}^{M}\left(e_{m} \otimes e_{m}, \lambda_{n} h_{n} \otimes k_{n},\right) \tag{35.20}\\
& =\sum_{n=1}^{\infty} \lambda_{n}\left(P_{M} h_{n}, k_{n}\right) \tag{35.21}
\end{align*}
$$

where P_{M} denotes orthogonal projection onto span $\left\{e_{m}\right\}_{m=1}^{M}$. Since $\left|\lambda_{n}\left(P_{M} h_{n}, k_{n}\right)\right| \leq$ $\left|\lambda_{n}\right|$ and $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|=\|A\|_{1}<\infty$, we may let $M \rightarrow \infty$ in Eq. (35.21) to find that

$$
\sum_{m=1}^{\infty}\left(e_{m} \otimes e_{m}, A\right)=\sum_{n=1}^{\infty} \lambda_{n}\left(h_{n}, k_{n}\right)=C A
$$

This proves Eq. (35.19).
For the final assertion, suppose that $A \geq 0$. Then there is an orthonormal basis $\left\{k_{n}\right\}_{n=1}^{\infty}$ for the $(\operatorname{nul} A)^{\perp}$ which consists of eigenvectors of A. That is $A=\sum \lambda_{n} k_{n} \otimes$ k_{n} and $\lambda_{n} \geq 0$ for all n. Thus $C A=\sum \lambda_{n}$ and $\|A\|_{1}=\sum \lambda_{n}$.

Proposition 35.33 (Noncommutative Fatou's Lemma). Let A_{n} be a sequence of positive operators on a Hilbert space H and $A_{n} \rightarrow A$ weakly as $n \rightarrow \infty$, then

$$
\begin{equation*}
\operatorname{tr} A \leq \liminf _{n \rightarrow \infty} \operatorname{tr} A_{n} \tag{35.22}
\end{equation*}
$$

Also if $A_{n} \in H \otimes_{1} H$ and $A_{n} \rightarrow A$ in $B(H)$, then

$$
\begin{equation*}
\|A\|_{1} \leq \liminf _{n \rightarrow \infty}\left\|A_{n}\right\|_{1} \tag{35.23}
\end{equation*}
$$

Proof. Let A_{n} be a sequence of positive operators on a Hilbert space H and $A_{n} \rightarrow A$ weakly as $n \rightarrow \infty$ and $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis for H. Then by Fatou's lemma for sums,

$$
\begin{aligned}
\operatorname{tr} A & =\sum_{k=1}^{\infty}\left(A e_{k}, e_{k}\right)=\sum_{k=1}^{\infty} \lim _{n \rightarrow \infty}\left(A_{n} e_{k}, e_{k}\right) \\
& \leq \liminf _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left(A_{n} e_{k}, e_{k}\right)=\liminf _{n \rightarrow \infty} \operatorname{tr} A_{n}
\end{aligned}
$$

Now suppose that $A_{n} \in H \otimes_{1} H$ and $A_{n} \rightarrow A$ in $B(H)$. Then by Proposition 35.30, $\left|A_{n}\right| \rightarrow|A|$ in $B(H)$ as well. Hence by Eq. (35.22), $\|A\|_{1} \equiv \operatorname{tr}|A| \leq$ $\liminf _{n \rightarrow \infty} \operatorname{tr}\left|A_{n}\right| \leq \liminf _{n \rightarrow \infty}\left\|A_{n}\right\|_{1}$.

Proposition 35.34. Let X be a Banach space, $B: H \times K \rightarrow X$ be a bounded bi-linear form, and $\|B\| \equiv \sup \{|B(h, k)|:\|h\|\|k\| \leq 1\}$. Then there is a unique bounded linear map $\tilde{B}: H \otimes_{1} K \rightarrow X$ such that $\tilde{B}(h \otimes k)=B(h, k)$. Moreover $\|\tilde{B}\|_{o p}=\|\tilde{B}\|$.

Proof. Let $A=\sum_{n=1}^{\infty} \lambda_{n} h_{n} \otimes k_{n} \in H \otimes_{1} K$ as in Eq. (35.14). Clearly, if \tilde{B} is to exist we must have $\tilde{B}(A) \equiv \sum_{n=1}^{\infty} \lambda_{n} B\left(h_{n}, k_{n}\right)$. Notice that

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left|B\left(h_{n}, k_{n}\right)\right| \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\|B\|=\|A\|_{1} \cdot\|B\|
$$

This shows that $\tilde{B}(A)$ is well defined and that $\|\tilde{B}\|_{o p} \leq\|\tilde{B}\|$. The opposite inequality follows from the trivial computation:

$$
\|B\|=\sup \{|B(h, k)|:\|h\|\|k\|=1\}=\sup \left\{|\tilde{B}(h \otimes k)|:\left\|h \otimes_{1} k\right\|_{1}=1\right\} \leq\|\tilde{B}\|_{o p}
$$

Lemma 35.35. Suppose that $P \in B(H)$ and $Q \in B(K)$, then $P \otimes Q: H \otimes K \rightarrow$ $H \otimes K$ is a bounded operator. Moreover, $P \otimes Q\left(H \otimes_{1} K\right) \subset H \otimes_{1} K$ and we have the norm equalities

$$
\|P \otimes Q\|_{B(H \otimes K)}=\|P\|_{B(H)}\|Q\|_{B(K)}
$$

and

$$
\|P \otimes Q\|_{B\left(H \otimes_{1} K\right)}=\|P\|_{B(H)}\|Q\|_{B(K)}
$$

We will give essentially the same proof of $\|P \otimes Q\|_{B(H \otimes K)}=\|P\|_{B(H)}\|Q\|_{B(K)}$ as the proof on p. 299 of Reed and Simon [?]. Let $A \in H \otimes K$ as in Eq. (35.14). Then

$$
(P \otimes I) A=\sum_{n=1}^{\infty} \lambda_{n} P h_{n} \otimes k_{n}
$$

and hence

$$
(P \otimes I) A\{(P \otimes I) A\}^{*}=\sum_{n=1}^{\infty} \lambda_{n}^{2} P h_{n} \otimes P h_{n}
$$

Therefore,

$$
\begin{aligned}
\|(P \otimes I) A\|^{2} & =\operatorname{tr}(P \otimes I) A\{(P \otimes I) A\}^{*} \\
& =\sum_{n=1}^{\infty} \lambda_{n}^{2}\left(P h_{n}, P h_{n}\right) \leq\|P\|^{2} \sum_{n=1}^{\infty} \lambda_{n}^{2} \\
& =\|P\|^{2}\|A\|_{1}^{2}
\end{aligned}
$$

which shows that Thus $\|P \otimes I\|_{B(H \otimes K)} \leq\|P\|$. By symmetry, $\|I \otimes Q\|_{B(H \otimes K)} \leq$ $\|Q\|$. Since $P \otimes Q=(P \otimes I)(I \otimes Q)$, we have

$$
\|P \otimes Q\|_{B(H \otimes K)} \leq\|P\|_{B(H)}\|Q\|_{B(K)}
$$

The reverse inequality is easily proved by considering $P \otimes Q$ on elements of the form $h \otimes k \in H \otimes K$.

Proof. Now suppose that $A \in H \otimes_{1} K$ as in Eq. (35.14). Then

$$
\|(P \otimes Q) A\|_{1} \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|P h_{n} \otimes Q k_{n}\right\|_{1} \leq\|P\|\|Q\| \sum_{n=1}^{\infty}\left|\lambda_{n}\right|=\|P\|\|Q\|\|A\|
$$

which shows that

$$
\|P \otimes Q\|_{B\left(H \otimes_{1} K\right)} \leq\|P\|_{B(H)}\|Q\|_{B(K)}
$$

Again the reverse inequality is easily proved by considering $P \otimes Q$ on elements of the form $h \otimes k \in H \otimes_{1} K$.

Lemma 35.36. Suppose that P_{m} and Q_{m} are orthogonal projections on H and K respectively which are strongly convergent to the identity on H and K respectively. Then $P_{m} \otimes Q_{m}: H \otimes_{1} K \rightarrow H \otimes_{1} K$ also converges strongly to the identity in $H \otimes_{1} K$.

Proof. Let $A=\sum_{n=1}^{\infty} \lambda_{n} h_{n} \otimes k_{n} \in H \otimes_{1} K$ as in Eq. (35.14). Then

$$
\begin{aligned}
\left\|P_{m} \otimes Q_{m} A-A\right\|_{1} & \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|P_{m} h_{n} \otimes Q_{m} k_{n}-h_{n} \otimes k_{n}\right\|_{1} \\
& =\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|\left(P_{m} h_{n}-h_{n}\right) \otimes Q_{m} k_{n}+h_{n} \otimes\left(Q_{m} k_{n}-k_{n}\right)\right\|_{1} \\
& \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\{\left\|P_{m} h_{n}-h_{n}\right\|\left\|Q_{m} k_{n}\right\|+\left\|h_{n}\right\|\left\|Q_{m} k_{n}-k_{n}\right\|\right\} \\
& \leq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\{\left\|P_{m} h_{n}-h_{n}\right\|+\left\|Q_{m} k_{n}-k_{n}\right\|\right\} \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

by the dominated convergence theorem.

[^0]: ${ }^{54}$ It is possible to give a more elementary proof here. Indeed, assume further that $\|A\| \leq \alpha<1$, then for $\epsilon \in(0,1-\alpha),\|\sqrt{A+\epsilon}-\sqrt{A}\| \leq \sum_{i=1}^{\infty} c_{i}\left\|(A+\epsilon)^{i}-A^{i}\right\|$. But

 $$
 \left\|(A+\epsilon)^{i}-A^{i}\right\| \leq \sum_{k=1}^{i}\binom{i}{k} \epsilon^{k}\left\|A^{i-k}\right\| \leq \sum_{k=1}^{i}\binom{i}{k} \epsilon^{k}\|A\|^{i-k}=(\|A\|+\epsilon)^{i}-\|A\|^{i}
 $$

 so that $\|\sqrt{A+\epsilon}-\sqrt{A}\| \leq \sqrt{\|A\|+\epsilon}-\sqrt{\|A\|} \rightarrow 0$ as $\epsilon \rightarrow 0$ uniformly in $A \geq 0$ such that $\|A\| \leq \alpha<1$.

