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20. Fourier Transform

The underlying space in this section is Rn with Lebesgue measure. The Fourier
inversion formula is going to state that

(20.1) f(x) =

µ
1

2π

¶n Z
Rn

dξeiξx
Z
Rn

dyf(y)e−iyξ.

If we let ξ = 2πη, this may be written as

f(x) =

Z
Rn

dηei2πηx
Z
Rn

dyf(y)e−iy2πη

and we have removed the multiplicative factor of
¡
1
2π

¢n
in Eq. (20.1) at the expense

of placing factors of 2π in the arguments of the exponential. Another way to avoid
writing the 2π’s altogether is to redefine dx and dξ and this is what we will do here.

Notation 20.1. Let m be Lebesgue measure on Rn and define:

dx =

µ
1√
2π

¶n
dm(x) and dξ ≡

µ
1√
2π

¶n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will redefine
kfkp and hf, gi as

kfkp =
µZ

Rn
|f(x)|p dx

¶1/p
=

Ãµ
1

2π

¶n/2 Z
Rn
|f(x)|p dm(x)

!1/p
and

hf, gi :=
Z
Rn

f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by fFg :=¡
1
2π

¢n/2
f ∗ g, i.e.

fFg(x) =

Z
Rn

f(x− y)g(y)dy =

Z
Rn

f(x− y)g(y)

µ
1

2π

¶n/2
dm(y).

The following notation will also be convenient; given a multi-index α ∈ Zn+, let
|α| = α1 + · · ·+ αn,

xα :=
nY

j=1

x
αj
j , ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
and

Dα
x =

µ
1

i

¶|α|µ
∂

∂x

¶α
=

µ
1

i

∂

∂x

¶α
.

Also let

hxi := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.
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20.1. Fourier Transform.

Definition 20.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
Z
Rn

e−ix·ξf(x)dx(20.2)

g∨(x) = F−1g(x) =
Z
Rn

eix·ξg(ξ)dξ = Fg(−x)(20.3)

The next theorem summarizes some more basic properties of the Fourier trans-
form.

Theorem 20.3. Suppose that f, g ∈ L1. Then

(1) f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ kfk1 .

(2) For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξ f̂(ξ) where, as usual, τyf(x) := f(x− y).

(3) The Fourier transform takes convolution to products, i.e. (fFg)ˆ = f̂ ĝ.

(4) For f, g ∈ L1, hf̂ , gi = hf, ĝi.
(5) If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )∧ (ξ) = |detT |−1 f̂(¡T−1¢∗ ξ) and
(f ◦ T )∨ (ξ) = |detT |−1 f∨(¡T−1¢∗ ξ)

(6) If (1+ |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k. Moreover,

(20.4) ∂αξ f̂(ξ) = F [(−ix)α f(x)] (ξ)
for all |α| ≤ k.

(7) If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(20.5) (∂αf)ˆ (ξ) = (iξ)αf̂(ξ)

for all |α| ≤ k.
(8) Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 11.27. Items 2. — 5. are
proved by the following straight forward computations:

(τyf) ˆ(ξ) =

Z
Rn

e−ix·ξf(x− y)dx =

Z
Rn

e−i(x+y)·ξf(x)dx = e−iy·ξ f̂(ξ),

hf̂ , gi =
Z
Rn

f̂(ξ)g(ξ)dξ =

Z
Rn
dξg(ξ)

Z
Rn
dxe−ix·ξf(x)

=

Z
Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =
Z
Rn×Rn

dxĝ(x)f(x) = hf, ĝi,

(fFg)
ˆ
(ξ) =

Z
Rn

e−ix·ξfFg(x)dx =

Z
Rn

e−ix·ξ
µZ

Rn
f(x− y)g(y)dy

¶
dx

=

Z
Rn
dy

Z
Rn
dxe−ix·ξf(x− y)g(y) =

Z
Rn
dy

Z
Rn
dxe−i(x+y)·ξf(x)g(y)

=

Z
Rn
dye−iy·ξg(y)

Z
Rn
dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)
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and letting y = Tx so that dx = |detT |−1 dy
(f ◦ T )ˆ (ξ) =

Z
Rn

e−ix·ξf(Tx)dx =
Z
Rn

e−iT
−1y·ξf(y) |detT |−1 dy

= |detT |−1 f̂(¡T−1¢∗ ξ).
Item 6. is simply a matter of differentiating under the integral sign which is easily
justified because (1 + |x|)kf(x) ∈ L1.
Item 7. follows by using Lemma 11.26 repeatedly (i.e. integration by parts) to

find

(∂αf)ˆ (ξ) =

Z
Rn

∂αx f(x)e
−ix·ξdx = (−1)|α|

Z
Rn

f(x)∂αx e
−ix·ξdx

= (−1)|α|
Z
Rn

f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).

Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)ˆ (ξ) ∈ C0 for all
|α| ≤ k. Since

(1 + |ξ|)k ≤
Ã
1 +

nX
i=1

|ξi|
!k

=
X
|α|≤k

cα |ξα|

where 0 < cα <∞,¯̄̄
(1 + |ξ|)k f̂(ξ)

¯̄̄
≤
X
|α|≤k

cα

¯̄̄
ξαf̂(ξ)

¯̄̄
→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 20.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

(20.6) Fe−|x|2/2 = e−|ξ|
2/2 and F−1e−|ξ|2/2 = e−|x|

2/2.

More generally, for t > 0 let

(20.7) pt(x) := t−n/2e−
1
2t |x|2

then

(20.8) bpt(ξ) = e−
t
2 |ξ|2 and (bpt)∨(x) = pt(x).

By Item 8. of Theorem 20.3, to prove Eq. (20.6) it suffices to consider the 1 —

dimensional case because e−|x|
2/2 =

Qn
i=1 e

−x2i/2. Let g(ξ) :=
³
Fe−x2/2

´
(ξ) , then

by Eq. (20.4) and Eq. (20.5),
(20.9)

g0(ξ) = F
h
(−ix) e−x2/2

i
(ξ) = iF

·
d

dx
e−x

2/2

¸
(ξ) = i(iξ)F

h
e−x

2/2
i
(ξ) = −ξg(ξ).

Lemma 8.36 implies

g(0) =

Z
R
e−x

2/2dx =
1√
2π

Z
R
e−x

2/2dm(x) = 1,

and so solving Eq. (20.9) with g(0) = 1 gives F
h
e−x

2/2
i
(ξ) = g(ξ) = e−ξ

2/2 as

desired. The assertion that F−1e−|ξ|2/2 = e−|x|
2/2 follows similarly or by using Eq.

(20.3) to conclude,

F−1
h
e−|ξ|

2/2
i
(x) = F

h
e−|−ξ|

2/2
i
(x) = F

h
e−|ξ|

2/2
i
(x) = e−|x|

2/2.
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The results in Eq. (20.8) now follow from Eq. (20.6) and item 5 of Theorem 20.3.
For example, since pt(x) = t−n/2p1(x/

√
t),

(bpt)(ξ) = t−n/2
³√

t
´n

p̂1(
√
tξ) = e−

t
2 |ξ|2 .

This may also be written as (bpt)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that pt

is an even function,

(bpt)∨(x) = Fbpt(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).

20.2. Schwartz Test Functions.

Definition 20.5. A function f ∈ C(Rn,C) is said to have rapid decay or rapid
decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at most)
polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C <∞ such that |f(x)| ≤ C(1 + |x|)N for all x ∈ Rn.
Definition 20.6 (Schwartz Test Functions). Let S denote the space of functions
f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid decay and let

kfkN,α = sup
x∈Rn

¯̄
(1 + |x|)N∂αf(x)¯̄

so that
S =

n
f ∈ C∞(Rn) : kfkN,α <∞ for all N and α

o
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its derivatives
have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-indices
α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)
Remark 20.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in L2(Rn).

Exercise 20.1. Let

(20.10) L =
X
|α|≤k

aα(x)∂
α

with aα ∈ P . Show L(S) ⊂ S and in particular ∂αf and xαf are back in S for all
multi-indices α.

Notation 20.8. Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function aα(x)
is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 20.9. Let p(x, ξ) be as above and assume each aα(x) is a polynomial
in x. Then for f ∈ S,
(20.11) (p(x,Dx)f)

∧
(ξ) = p(−Dξ, ξ)f̂ (ξ)

and

(20.12) p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ).
Proof. The identities (−Dξ)

α e−ix·ξ = xαe−ix·ξ and Dα
x e

ix·ξ = ξαeix·ξ imply,
for any polynomial function q on Rn,

(20.13) q(−Dξ)e
−ix·ξ = q(x)e−ix·ξ and q(Dx)e

ix·ξ = q(ξ)eix·ξ.

Therefore using Eq. (20.13) repeatedly,

(p(x,Dx)f)
∧
(ξ) =

Z
Rn

X
|α|≤N

aα(x)D
α
xf(x) · e−ix·ξdξ

=

Z
Rn

X
|α|≤N

Dα
xf(x) · aα(−Dξ)e

−ix·ξdξ

=

Z
Rn

f(x)
X
|α|≤N

(−Dx)
α £aα(−Dξ)e

−ix·ξ¤dξ
=

Z
Rn

f(x)
X
|α|≤N

aα(−Dξ)
£
ξαe−ix·ξ

¤
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 11.26 to do repeated integration
by parts, the fact that mixed partial derivatives commute in the fourth, and in the
last we have repeatedly used Corollary 7.43 to differentiate under the integral. The
proof of Eq. (20.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

Z
Rn

f(x)e−ix·ξdx =
Z
Rn

f(x)p(ξ,−x)e−ix·ξdx

=
X
|α|≤N

Z
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx =
X
|α|≤N

Z
Rn

f(x)(−x)αaα(−Dx)e
−ix·ξdx

=
X
|α|≤N

Z
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx = [p(Dx,−x)f(x)]∧(ξ).

Corollary 20.10. The Fourier transform preserves the space S, i.e. F(S) ⊂ S.
Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial func-

tion in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (20.12), p(ξ,Dξ)f̂(ξ)
is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |ξ|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and all of
its derivatives have rapid decay, i.e. f̂ is in S.
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20.3. Fourier Inversion Formula .

Theorem 20.11 (Fourier Inversion Theorem). Suppose that f ∈ L1 and f̂ ∈ L1,
then

(1) there exists f0 ∈ C0(Rn) such that f = f0 a.e.
(2) f0 = F−1F f and f0 = FF−1f,
(3) f and f̂ are in L1 ∩ L∞ and

(4) kfk2 =
°°°f̂°°°

2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption, so that
f̂ ∈ L1∩L∞. Let pt(x) ≡ t−n/2e−

1
2t |x|2 be as in Example 20.4 so that bpt(ξ) = e−

t
2 |ξ|2

and bp∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)
∨(x) =

Z
Rn

f̂(ξ)eiξ·xdξ = lim
t↓0

Z
Rn

f̂(ξ)eiξ·xbpt(ξ)dξ
= lim

t↓0

Z
Rn

Z
Rn

f(y)eiξ·(x−y)bpt(ξ)dξ dy
= lim

t↓0

Z
Rn

f(y)pt(y)dy = f(x) a.e.

wherein we have used Theorem 11.21 in the last equality along with the observations
that pt(y) = p1(y/

√
t) and

R
Rn p1(y)dy = 1. In particular this shows that f ∈

L1 ∩ L∞. A similar argument shows that F−1F f = f0 as well.
Let us now compute the L2 — norm of f̂ ,

kf̂k22 =
Z
Rn

f̂(ξ)f̂(ξ)dξ =

Z
Rn
dξf̂(ξ)

Z
Rn
dxf(x)eix·ξ

=

Z
Rn
dx f(x)

Z
Rn
dξf̂(ξ)eix·ξ

=

Z
Rn
dx f(x)f(x) = kfk22

because
R
Rn dξf̂(ξ)e

ix·ξ = F−1f̂(x) = f(x) a.e.

Corollary 20.12. By the B.L.T. Theorem 4.1, the maps F|S and F−1|S extend to
bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy the following
properties:

(1) F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.

(2) For f ∈ L2 we may compute F̄ and F̄−1 by
F̄f(ξ) = L2— lim

R→∞

Z
|x|≤R

f(x)e−ix·ξdx and(20.14)

F̄−1f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)eix·ξdx.(20.15)

(3) We may further extend F̄ to a map from L1 + L2 → C0 + L2 (still denote
by F̄) defined by F̄f = ĥ+ F̄g where f = h+g ∈ L1+L2. For f ∈ L1+L2,
F̄f may be characterized as the unique function F ∈ L1loc(Rn) such that

(20.16) hF, φi = hf, φ̂i for all φ ∈ C∞c (Rn).
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Moreover if Eq. (20.16) holds then F ∈ C0+L2 ⊂ L1loc(Rn) and Eq.(20.16)
is valid for all φ ∈ S.

Proof. Item 1., If f ∈ L2 and φn ∈ S such that φn → f in L2, then F̄f :=
limn→∞ φ̂n. Since φ̂n ∈ S ⊂ L1, we may concluded that

°°°φ̂n°°°
2
= kφnk2 for all n.

Thus °°F̄f°°
2
= lim

n→∞

°°°φ̂n°°°
2
= lim

n→∞ kφnk2 = kfk2
which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an isometry.
Since F̄−1F̄ = F−1F = id on the dense set S, it follows by continuity that F̄−1F̄ =
id on all of L2. Hence F̄F̄−1 = id, and thus F̄−1 is the inverse of F̄ . This proves
item 1.
Item 2. Let f ∈ L2 and R <∞ and set fR(x) := f(x)1|x|≤R. Then fR ∈ L1∩L2.

Let φ ∈ C∞c (Rn) be a function such that
R
Rn φ(x)dx = 1 and set φk(x) = knφ(kx).

Then fRFφk → fR ∈ L1 ∩ L2 with fRFφk ∈ C∞c (Rn) ⊂ S. Hence
F̄fR = L2— lim

k→∞
F (fRFφk) = FfR a.e.

where in the second equality we used the fact that F is continuous on L1. HenceR
|x|≤R f(x)e−ix·ξdx represents F̄fR(ξ) in L2. Since fR → f in L2, Eq. (20.14)

follows by the continuity of F̄ on L2.
Item 3. If f = h+ g ∈ L1 + L2 and φ ∈ S, then

hĥ+ F̄g, φi = hh, φi+ hF̄g, φi = hh, φ̂i+ lim
R→∞

hF ¡g1|·|≤R¢ , φi
= hh, φ̂i+ lim

R→∞
hg1|·|≤R, φ̂i = hh+ g, φ̂i.(20.17)

In particular if h + g = 0 a.e., then hĥ + F̄g, φi = 0 for all φ ∈ S and since
ĥ+ F̄g ∈ L1loc it follows from Corollary 11.28 that ĥ+ F̄g = 0 a.e. This shows that
F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into the sum
of an L1 and an L2 function. Moreover Eq. (20.17) shows Eq. (20.16) holds with
F = ĥ + F̄g ∈ C0 + L2 and φ ∈ S. Now suppose G ∈ L1loc and hG,φi = hf, φ̂i for
all φ ∈ C∞c (Rn). Then by what we just proved, hG,φi = hF, φi for all φ ∈ C∞c (Rn)
and so an application of Corollary 11.28 shows G = F ∈ C0 + L2.

Notation 20.13. Given the results of Corollary 20.12, there is little danger in
writing f̂ or Ff for F̄f when f ∈ L1 + L2.

Corollary 20.14. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism it
follows that S is closed under convolution as well.
Proof. By Theorem 20.11, f, g, f̂ , ĝ ∈ L1 ∩ L∞ and hence f · g ∈ L1 ∩ L∞ and

f̂Fĝ ∈ L1 ∩ L∞. Since
F−1

³
f̂Fĝ

´
= F−1

³
f̂
´
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 20.11 that

f̂Fĝ = FF−1
³
f̂Fĝ

´
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.
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Corollary 20.15. Let p(x, ξ) and p(x,Dx) be as in Notation 20.8 with each func-
tion aα(x) being a smooth function of x ∈ Rn. Then for f ∈ S,

(20.18) p(x,Dx)f(x) =

Z
Rn

p(x, ξ)f̂ (ξ) eix·ξdξ.

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
³
F−1f̂

´
(x) = p(x,Dx)

Z
Rn

f̂ (ξ) eix·ξdξ

=

Z
Rn

f̂ (ξ) p(x,Dx)e
ix·ξdξ =

Z
Rn

f̂ (ξ) p(x, ξ)eix·ξdξ.

If p(x, ξ) is a more general function of (x, ξ) then that given in Notation 20.8,
the right member of Eq. (20.18) may still make sense, in which case we may use it
as a definition of p(x,Dx). A linear operator defined this way is called a pseudo
differential operator and they turn out to be a useful class of operators to study
when working with partial differential equations.

Corollary 20.16. Suppose p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn and
f ∈ L2. Then p(∂)f exists in L2 (see Notation 19.16) iff ξ → p(iξ)f̂(ξ) ∈ L2 in
which case

(p(∂)f)
ˆ
(ξ) = p(iξ)f̂(ξ) for a.e. ξ.

In particular, if g ∈ L2 then f ∈ L2 solves the equation, p(∂)f = g iff p(iξ)f̂(ξ) =
ĝ(ξ) for a.e. ξ.

Proof. By definition p(∂)f = g in L2 iff

(20.19) hg, φi = hf, p(−∂)φi for all φ ∈ C∞c (Rn).

If follows from repeated use of Lemma 19.14 that the previous equation is equivalent
to

(20.20) hg, φi = hf, p(−∂)φi for all φ ∈ S(Rn).
This may also be easily proved directly as well as follows. Choose ψ ∈ C∞c (Rn)
such that ψ(x) = 1 for x ∈ B0(1) and for φ ∈ S(Rn) let φn(x) := ψ(x/n)φ(x). By
the chain rule and the product rule (Eq. A.5 of Appendix A),

∂αφn(x) =
X
β≤α

µ
α

β

¶
n−|β|

¡
∂βψ

¢
(x/n) · ∂α−βφ(x)

along with the dominated convergence theorem shows φn → φ and ∂αφn → ∂αφ in
L2 as n→∞. Therefore if Eq. (20.19) holds, we find Eq. (20.20) holds because

hg, φi = lim
n→∞hg, φni = lim

n→∞hf, p(−∂)φni = hf, p(−∂)φi.
To complete the proof simply observe that hg, φi = hĝ, φ∨i and

hf, p(−∂)φi = hf̂ , [p(−∂)φ]∨i = hf̂(ξ), p(iξ)φ∨(ξ)i
= hp(iξ)f̂(ξ), φ∨(ξ)i

for all φ ∈ S(Rn). From these two observations and the fact that F is bijective on
S, one sees that Eq. (20.20) holds iff ξ → p(iξ)f̂(ξ) ∈ L2 and ĝ(ξ) = p(iξ)f̂(ξ) for
a.e. ξ.
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20.4. Summary of Basic Properties of F and F−1. The following table sum-
marizes some of the basic properties of the Fourier transform and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution ←→ Products.

20.5. Fourier Transforms of Measures and Bochner’s Theorem. To moti-
vate the next definition suppose that µ is a finite measure on Rn which is absolutely
continuous relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then it is reasonable to
require

µ̂(ξ) := ρ̂(ξ) =

Z
Rn

e−iξ·xρ(x)dx =
Z
Rn

e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =

Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for example
assume g is bounded. These considerations lead to the following definitions.

Definition 20.17. The Fourier transform, µ̂, of a complex measure µ on BRn is
defined by

(20.21) µ̂(ξ) =

Z
Rn

e−iξ·xdµ(x)

and the convolution with a function g is defined by

(µFg) (x) =

Z
Rn

g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous. Also
by a variant of Exercise 11.11, if µ and ν are two complex measure on BRn such
that µ̂ = ν̂, then µ = ν. The reader is asked to give another proof of this fact in
Exercise 20.3 below.

Example 20.18. Let σt be the surface measure on the sphere St of radius t centered
at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .
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Definition 20.19. A function χ : Rn → C is said to be positive (semi) definite
iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all m ∈ N and
{ξj}mj=1 ⊂ Rn.
Lemma 20.20. If χ ∈ C(Rn,C) is a positive definite function, then

(1) χ(0) ≥ 0.
(2) χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
(3) |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
(4) For all f ∈ S(Rd),

(20.22)
Z
Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη ≥ 0.

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C which
proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=

·
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

¸
is positive definite from which we conclude χ(ξ − η) = χ(η − ξ) (since A = A∗ by
definition) and

0 ≤ det
·

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

¸
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (20.22) by Riemann sums,Z

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη = lim

mesh→0

X
χ(ξk − ξj)f(ξj)f(ξk) ≥ 0.

The details are left to the reader.

Lemma 20.21. If µ is a finite positive measure on BRn , then χ := µ̂ ∈ C(Rn,C)
is a positive definite function.

Proof. As has already been observed after Definition 20.17, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =
Z
Rn

eiξ·xdµ(x) =
Z
Rn

e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ Rn, the matrix A :=

{µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,
mX

k,j=1

µ̂(ξk − ξj)λkλ̄j =

Z
Rn

mX
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x) =
Z
Rn

mX
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

Z
Rn

¯̄̄̄
¯
mX
k=1

e−iξk·xλk

¯̄̄̄
¯
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 20.22 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive definite
function, then there exists a unique positive measure µ on BRn such that χ = µ̂.
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Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would haveZ
Rn

fdµ =

Z
Rn
(f∨)ˆ dµ =

Z
Rn

f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0. For
general f ∈ S we have

I(|f |2) =
Z
Rn

χ(ξ)
³
|f |2

´∨
(ξ)dξ =

Z
Rn

χ(ξ)
¡
f∨Ff̄∨

¢
(ξ)dξ

=

Z
Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
Z
Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

Z
Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0.

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

IFpt(x) := I(pt(x− ·)) = I(
¯̄̄p

pt(x− ·)
¯̄̄2
)

which is non-negative by above computation and because
p
pt(x− ·) ∈ S.

Using

[pt(x− ·)]∨ (ξ) =
Z
Rn

pt(x− y)eiy·ξdy =
Z
Rn

pt(y)e
i(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,

hIFpt, ψi =
Z
Rn

I(pt(x− ·))ψ(x)dx =
Z
Rn

Z
Rn

χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξdx

=

Z
Rn

χ(ξ)ψ∨(ξ)e−t|ξ|
2/2dξ

which coupled with the dominated convergence theorem shows

hIFpt, ψi→
Z
Rn

χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0hIFpt, ψi ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that

ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ kfk∞ ψ − f ∈ S and hence

0 ≤ hI, kfk∞ ψ − fi = kfk∞ hI, ψi− hI, fi
and therefore hI, fi ≤ kfk∞ hI, ψi. Replacing f by −f implies, −hI, fi ≤
kfk∞ hI, ψi and hence we have proved
(20.23) |hI, fi| ≤ C(supp(f)) kfk∞
for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (20.23), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (20.23) and
moreover this extension is still positive. So by the Riesz — Markov theorem, there
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exists a unique Radon — measure µ on Rn such that such that hI, fi = µ(f) for all
f ∈ Cc(Rn,R).
To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R).

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing as
|x| increases. Let f (x) := f( x), then by Theorem 20.3,

F−1 £e−iηxf (x)¤ (ξ) = −nf∨(
ξ − η

)

and therefore

(20.24)
Z
Rn

e−iηxf (x)dµ(x) =
Z
Rn

χ(ξ) −nf∨(
ξ − η

)dξ.

Because
R
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ —
function Theorem 11.21 to Eq. (20.24) to find

(20.25)
Z
Rn

e−iηxf (x)dµ(x)→ χ(η) as ↓ 0.

On the the other hand, when η = 0, the monotone convergence theorem implies
µ(f ) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing the
µ is a finite measure we may use the dominated convergence theorem to concluded

µ(e−iηxf (x))→ µ(e−iηx) = µ̂(η) as ↓ 0
for all η. Combining this equation with Eq. (20.25) shows µ̂(η) = χ(η) for all
η ∈ Rn.

20.6. Supplement: Heisenberg Uncertainty Principle. Suppose that H is a
Hilbert space and A,B are two densely defined symmetric operators on H. More
explicitly, A is a densely defined symmetric linear operator on H means there is
a dense subspace DA ⊂ H and a linear map A : DA → H such that (Aφ,ψ) =
(φ,Aψ) for all φ, ψ ∈ DA. Let DAB := {φ ∈ H : φ ∈ DB and Bφ ∈ DA} and for
φ ∈ DAB let (AB)φ = A(Bφ) with a similar definition of DBA and BA. Moreover,
let DC := DAB ∩DBA and for φ ∈ DC , let

Cφ =
1

i
[A,B]φ =

1

i
(AB −BA)φ.

Notice that for φ, ψ ∈ DC we have

(Cφ,ψ) =
1

i
{(ABφ,ψ)− (BAφ,ψ)} = 1

i
{(Bφ,Aψ)− (Aφ,Bψ)}

=
1

i
{(φ,BAψ)− (φ,ABψ)} = (φ,Cψ),

so that C is symmetric as well.

Theorem 20.23 (Heisenberg Uncertainty Principle). Continue the above notation
and assumptions,

(20.26)
1

2
|(ψ,Cψ)| ≤

q
kAψk2 − (ψ,Aψ) ·

q
kBψk2 − (ψ,Bψ)
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for all ψ ∈ DC . Moreover if kψk = 1 and equality holds in Eq. (20.26), then
(A− (ψ,Aψ))ψ = iλ(B − (ψ,Bψ))ψ or
(B − (ψ,Bψ)) = iλψ(A− (ψ,Aψ))ψ(20.27)

for some λ ∈ R.
Proof. By homogeneity (20.26) we may assume that kψk = 1. Let a := (ψ,Aψ),

b = (ψ,Bψ), Ã = A− aI, and B̃ = B − bI. Then we have still have

[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i(ψ,Cψ) = (ψ, iCψ) = (ψ, [Ã, B̃]ψ) = (ψ, ÃB̃ψ)− (ψ, B̃Ãψ)
= (Ãψ, B̃ψ)− (B̃ψ, Ãψ) = 2i Im(Ãψ, B̃ψ)

from which we learn

|(ψ,Cψ)| = 2
¯̄̄
Im(Ãψ, B̃ψ)

¯̄̄
≤ 2

¯̄̄
(Ãψ, B̃ψ)

¯̄̄
≤ 2

°°°Ãψ°°°°°°B̃ψ°°°
with equality iff Re(Ãψ, B̃ψ) = 0 and Ãψ and B̃ψ are linearly dependent, i.e. iff
Eq. (20.27) holds.
The result follows from this equality and the identities°°°Ãψ°°°2 = kAψ − aψk2 = kAψk2 + a2 kψk2 − 2aRe(Aψ,ψ)

= kAψk2 + a2 − 2a2 = kAψk2 − (Aψ,ψ)
and °°°B̃ψ°°° = kBψk2 − (Bψ,ψ).
Example 20.24. As an example, take H = L2(R), A = 1

i ∂x and B =
Mx with DA := {f ∈ H : f 0 ∈ H} (f 0 is the weak derivative) and DB :=n
f ∈ H :

R
R |xf(x)|2 dx <∞

o
. In this case,

DC = {f ∈ H : f 0, xf and xf 0 are in H}
and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1

2
≤
°°°°1i ψ0 − aψ

°°°°
2

· kxψ − bψk2

where a = i
R
R ψψ̄

0dm 41 and b =
R
R x |ψ(x)|2 dm(x). Thus we have

(20.28)
1

4
=
1

4

Z
R
|ψ|2 dm ≤

Z
R
(k − a)2

¯̄̄
ψ̂(k)

¯̄̄2
dk ·

Z
R
(x− b)2 |ψ(x)|2 dx.

41The constant a may also be described as

a = i

Z
R
ψψ̄0dm =

√
2πi

Z
R
ψ̂(ξ)

¡
ψ̄0
¢ˆ
(ξ)dξ

=

Z
R
ξ
¯̄̄
ψ̂(ξ)

¯̄̄2
dm(ξ).
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Equality occurs if there exists λ ∈ R such that
iλ (x− b)ψ(x) = (

1

i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak form),

(20.29) ψx = [−λ(x− b) + ia]ψ

which has solutions (see Exercise 20.4 below)

(20.30) ψ = C exp

µZ
R
[−λ(x− b) + ia] dx

¶
= C exp

µ
−λ
2
(x− b)2 + iax

¶
.

Let λ = 1
2t and choose C so that kψk2 = 1 to find

ψt,a,b(x) =

µ
1

2t

¶1/4
exp

µ
− 1
4t
(x− b)2 + iax

¶
are the functions which saturate the Heisenberg uncertainty principle in Eq. (20.28).

20.6.1. Exercises.

Exercise 20.2. Let f ∈ L2(Rn) and α be a multi-index. If ∂αf exists in L2(Rn)
then F(∂αf) = (iξ)α f̂(ξ) in L2(Rn) and conversely if

³
ξ → ξαf̂(ξ)

´
∈ L2(Rn) then

∂αf exists.

Exercise 20.3. Suppose µ is a complex measure on Rn and µ̂(ξ) is its Fourier
transform as defined in Definition 20.17. Show µ satisfies,

hµ̂, φi :=
Z
Rn

µ̂(ξ)φ(ξ)dξ = µ(φ̂) :=

Z
Rn

φ̂dµ for all φ ∈ S
and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.
Exercise 20.4. Show that ψ described in Eq. (20.30) is the general solution to
Eq. (20.29). Hint: Suppose that φ is any solution to Eq. (20.29) and ψ is given
as in Eq. (20.30) with C = 1. Consider the weak — differential equation solved by
φ/ψ.

20.6.2. More Proofs of the Fourier Inversion Theorem.

Exercise 20.5. Suppose that f ∈ L1(R) and assume that f continuously differen-
tiable in a neighborhood of 0, show

(20.31) lim
M→∞

Z ∞
−∞

sinMx

x
f(x)dx = πf(0)

using the following steps.
(1) Use Example 8.26 to deduce,

lim
M→∞

Z 1

−1

sinMx

x
dx = lim

M→∞

Z M

−M

sinx

x
dx = π.

(2) Explain why

0 = lim
M→∞

Z
|x|≥1

sinMx · f(x)
x

dx and

0 = lim
M→∞

Z
|x|≤1

sinMx · f(x)− f(0)

x
dx.
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(3) Add the previous two equations and use part (1) to prove Eq. (20.31).

Exercise 20.6 (Fourier Inversion Formula). Suppose that f ∈ L1(R) such that
f̂ ∈ L1(R).

(1) Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=

Z
R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
R
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 20.5.
(2) Apply part 1. of this exercise with f replace by τyf for some y ∈ R to

prove

(20.32) f(y) =

Z
R
f̂(ξ)eiy·ξdξ

provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier inversion
formula.

Notation 20.25. For L > 0, let Ck
L(R) denote the space of Ck — 2πL periodic

functions:

Ck
L(R) :=

©
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ Rª .

Also let h·, ·iL denote the inner product on the Hilbert space HL := L2([−πL, πL])
given by

(f, g)L :=
1

2πL

Z
[−πL,πL]

f(x)ḡ(x)dx.

Exercise 20.7. Recall that
©
χLk (x) := eikx/L : k ∈ Zª is an orthonormal basis for

HL and in particular for f ∈ HL,

(20.33) f =
X
k∈Z
hf, χLk iLχLk

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2L(R)42. Show (by two integration by parts)¯̄

(fL, χ
L
k )L

¯̄ ≤ L2

k2
kf 00ku

where kgku denote the uniform norm of a function g. Use this to conclude that the
sum in Eq. (20.33) is uniformly convergent and from this conclude that Eq. (20.33)
holds pointwise.

Exercise 20.8 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0 and

(20.34) fL(x) :=
X
k∈Z

f(x+ 2πkL).

Show:
(1) The sum defining fL is convergent and moreover that fL ∈ C∞L (R).
(2) Show (fL, χLk )L =

1√
2πL

f̂(k/L).

42We view C2L(R) as a subspace of HL by identifying f ∈ C2L(R) with f |[−πL,πL] ∈ HL.
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(3) Conclude from Exercise 20.7 that

(20.35) fL(x) =
1√
2πL

X
k∈Z

f̂(k/L)eikx/L for all x ∈ R.

(4) Show, by passing to the limit, L → ∞, in Eq. (20.35) that Eq. (20.32)
holds for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 20.9. Folland 8.13 on p. 254.

Exercise 20.10. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 20.11. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution F.20 below.)

Exercise 20.12. Folland 8.16 on p. 255.

Exercise 20.13. Folland 8.17 on p. 255.

Exercise 20.14. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 20.15. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 20.16. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 20.17. Folland 8.31 on p. 263. (Poisson Summation formula problem.)


