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12. Heat Equation

The heat equation for a function u : R+ × Rn → C is the partial differential
equation

(12.1)
µ
∂t − 1

2
∆

¶
u = 0 with u(0, x) = f(x),

where f is a given function on Rn. By Fourier transforming Eq. (12.1) in the x —
variables only, one finds that (12.1) implies that

(12.2)
µ
∂t +

1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ).

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then shows

that

u(t, x) = F−1
³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
Ff

´
(x) =: et∆/2f(x).

From Example ??,

F−1
³
e−t|ξ|

2/2
´
(x) = pt(x) = t−n/2e−

1
2t |x|2

and therefore,

u(t, x) =

Z
Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 12.1. Let

(12.3) pt(x− y) := (2πt)−n/2 e−|x−y|
2/2t

be the heat kernel on Rn. Then

(12.4)
µ
∂t − 1

2
∆x

¶
pt(x− y) = 0 and lim

t↓0
pt(x− y) = δx(y),

where δx is the δ — function at x in Rn. More precisely, if f is a continuous bounded
function on Rn, then

u(t, x) =

Z
Rn

pt(x− y)f(y)dy

is a solution to Eq. (12.1) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
pt(x − y) = 0 and an

application of Theorem ?? shows limt↓0 pt(x − y) = δx(y) or equivalently that
limt↓0

R
Rn pt(x− y)f(y)dy = f(x) uniformly on compact subsets of Rn. This shows

that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.

Proposition 12.2 (Properties of et∆/2). (1) For f ∈ L2(Rn, dx), the function³
et∆/2f

´
(x) = (Ptf)(x) =

Z
Rn

f(y)
e−

1
2t |x−y|2

(2πt)n/2
dy

is smooth in (t, x) for t > 0 and x ∈ Rn and is in fact real analytic.
(2) et∆/2 acts as a contraction on Lp(Rn, dx) for all p ∈ [0,∞] and t > 0.

Indeed,
(3) Moreover, pt ∗ f → f in Lp as t→ 0.
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Proof. Item 1. is fairly easy to check and is left the reader. One just notices
that pt(x− y) analytically continues to Re t > 0 and x ∈ Cn and then shows that
it is permissible to differentiate under the integral.
Item 2.

|(pt ∗ f)(x)| ≤
Z
Rn
|f(y)|pt(x− y)dy

and hence with the aid of Jensen’s inequality we have,

kpt ∗ fkpLp ≤
Z
Rn

Z
Rn
|f(y)|ppt(x− y)dydx = kfkpLp

So Pt is a contraction ∀t > 0.
Item 3. It suffices to show, because of the contractive properties of pt∗, that

pt ∗ f → f as t ↓ 0 for f ∈ Cc(Rn). Notice that if f has support in the ball of
radius R centered at zero, then

|(pt ∗ f)(x)| ≤
Z
Rn
|f(y)|Pt(x− y)dy ≤ kfk∞

Z
|y|≤R

Pt(x− y)dy

= kfk∞CRne−
1
2t (|x|−R)2

and hence

kpt ∗ f − fkpLp =
Z
|y|≤R

|pt ∗ f − f |pdy + kfk∞CRne−
1
2t (|x|−R)2 .

Therefore pt ∗ f → f in Lp as t ↓ 0 ∀f ∈ Cc(Rn).

Theorem 12.3 (Forced Heat Equation). Suppose g ∈ Cb(Rd) and f ∈
C1,2b ([0,∞)×Rd) then

u(t, x) := pt ∗ g(x) +
Z t

0

pt−τ ∗ f(τ, x)dτ

solves
∂u

∂t
=
1

2
4u+ f with u(0, ·) = g.

Proof. Because of Theorem 12.1, we may with out loss of generality assume
g = 0 in which case

u(t, x) =

Z t

0

pt ∗ f(t− τ, x)dτ.

Therefore

∂u

∂t
(t, x) = pt ∗ f(0, x) +

Z t

0

pτ ∗ ∂

∂t
f(t− τ, x)dτ

= pt ∗ f0(x)−
Z t

0

pτ ∗ ∂

∂τ
f(t− τ, x)dτ

and
4
2
u(t, x) =

Z t

0

pt ∗ 4
2
f(t− τ, x)dτ.
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Hence we find, using integration by parts and approximate δ — function arguments,
thatµ

∂

∂t
− 4
2

¶
u(t, x) = pt ∗ f0(x) +

Z t

0

pτ ∗
µ
− ∂

∂τ
− 1
2
4
¶
f(t− τ, x)dτ

= pt ∗ f0(x) + lim↓0
Z t

pτ ∗
µ
− ∂

∂τ
− 1
2
4
¶
f(t− τ, x)dτ

= pt ∗ f0(x)− lim↓0 pτ ∗ f(t− τ, x)
¯̄t

+ lim
↓0

Z tµ ∂

∂τ
− 1
2
4
¶
pτ ∗ f(t− τ, x)dτ

= pt ∗ f0(x)− pt ∗ f0(x) + lim↓0 p ∗ f(t− , x) = f(t, x).

12.1. Extensions of Theorem 12.1.

Proposition 12.4. Suppose f : Rn → R is a measurable function and there exists
constants c, C <∞ such that

|f(x)| ≤ Ce
c
2 |x|2 .

Then u(t, x) := pt ∗ f(x) is smooth for (t, x) ∈ (0, c−1)× Rn and for all k ∈ N and
all multi-indices α,

(12.5) Dα

µ
∂

∂t

¶k
u(t, x) =

Ã
Dα

µ
∂

∂t

¶k
pt

!
∗ f(x).

In particular u satisfies the heat equation ut = ∆u/2 on (0, c−1)×Rn.
Proof. The reader may check that

Dα

µ
∂

∂t

¶k
pt(x) = q(t−1, x)pt(x)

where q is a polynomial in its variables. Let x0 ∈ Rn and > 0 be small, then for
x ∈ B(x0, ) and any β > 0,

|x− y|2 = |x|2 − 2|x||y|+ |y|2 ≥ |y|2 + |x|2 −
³
β−2 |x|2 + β2 |y|2

´
≥ ¡1− β2

¢ |y|2 − ¡β−2 − 1¢ ³|x0|2 + ´
.

Hence

g(y) := sup

(¯̄̄̄
¯Dα

µ
∂

∂t

¶k
pt(x− y)f(y)

¯̄̄̄
¯ : ≤ t ≤ c− and x ∈ B(x0, )

)

≤ sup
(¯̄̄̄
¯q(t−1, x− y)

e−
1
2t |x−y|2

(2πt)n/2
Ce

c
2 |y|2

¯̄̄̄
¯ : ≤ t ≤ c− and x ∈ B(x0, )

)
≤ C(β, x0, ) sup

n¯̄̄
(2πt)

−n/2
q(t−1, x− y)e[−

1
2t (1−β2)+ c

2 ]|y|2
¯̄̄
: ≤ t ≤ c− and x ∈ B(x0, )

o
.

By choosing β close to 0, the reader should check using the above expression that for
any 0 < δ < (1/t− c) /2 there is a C̃ <∞ such that g(y) ≤ C̃e−δ|y|

2

. In particular
g ∈ L1 (Rn) . Hence one is justified in differentiating past the integrals in pt ∗ f and
this proves Eq. (12.5).
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Lemma 12.5. There exists a polynomial qn(x) such that for any β > 0 and δ > 0,Z
Rn
1|y|≥δe−β|y|

2

dy ≤ δnqn

µ
1

βδ2

¶
e−βδ

2

Proof. Making the change of variables y → δy and then passing to polar
coordinates showsZ

Rn
1|y|≥δe−β|y|

2

dy = δn
Z
Rn
1|y|≥1e−βδ

2|y|2dy = σ
¡
Sn−1

¢
δn
Z ∞
1

e−βδ
2r2rn−1dr.

Letting λ = βδ2 and φn(λ) :=
R∞
r=1

e−λr
2

rndr, integration by parts shows

φn(λ) =

Z ∞
r=1

rn−1d

Ã
e−λr

2

−2λ

!
=
1

2λ
e−λ +

1

2

Z ∞
r=1

(n− 1)r(n−2) e
−λr2

λ
dr

=
1

2λ
e−λ +

n− 1
2λ

φn−2(λ).

Iterating this equation implies

φn(λ) =
1

2λ
e−λ +

n− 1
2λ

µ
1

2λ
e−λ +

n− 3
2λ

φn−4(λ)
¶

and continuing in this way shows

φn(λ) = e−λrn(λ−1) +
(n− 1)!!
2δλδ

φi(λ)

where δ is the integer part of n/2, i = 0 if n is even and i = 1 if n is odd and rn is
a polynomial. Since

φ0(λ) =

Z ∞
r=1

e−λr
2

dr ≤ φ1(λ) =

Z ∞
r=1

re−λr
2

dr =
e−λ

2λ
,

it follows that
φn(λ) ≤ e−λqn(λ−1)

for some polynomial qn.

Proposition 12.6. Suppose f ∈ C(Rn,R) such that |f(x)| ≤ Ce
c
2 |x|2 then pt ∗f →

f uniformly on compact subsets as t ↓ 0. In particular in view of Proposition 12.4,
u(t, x) := pt ∗ f(x) is a solution to the heat equation with u(0, x) = f(x).

Proof. Let M > 0 be fixed and assume |x| ≤ M throughout. By uniform
continuity of f on compact set, given > 0 there exists δ = δ(t) > 0 such that
|f(x)−f(y)| ≤ if |x−y| ≤ δ and |x| ≤M. Therefore, choosing a > c/2 sufficiently
small,

|pt ∗ f(x)− f(x)| =
¯̄̄̄Z

pt(y) [f(x− y)− f(x)] dy

¯̄̄̄
≤
Z

pt(y) |f(x− y)− f(x)| dy

≤
Z
|y|≤δ

pt(y)dy + C (2πt)−n/2
Z
|y|≥δ

[e
c
2 |x−y|2 + e

c
2 |x|2 ]e−

1
2t |y|2dy

≤ + C̃ (2πt)−n/2
Z
|y|≥δ

e−(
1
2t−a)|y|2dy.

So by Lemma 12.5, it follows that

|pt ∗ f(x)− f(x)| ≤ + C̃ (2πt)
−n/2

δnqn

Ã
1

β
¡
1
2t − a

¢2
!
e−(

1
2t−a)δ2
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and therefore

lim sup
t↓0

sup
|x|≤M

|pt ∗ f(x)− f(x)| ≤ → 0 as ↓ 0.

Lemma 12.7. If q(x) is a polynomial on Rn, thenZ
Rn

pt(x− y)q(y)dy =
∞X
n=0

tn

n!

∆n

2n
q(x).

Proof. Since

f(t, x) :=

Z
Rn

pt(x− y)q(y)dy =

Z
Rn

pt(y)
X

aαβx
αyβdy =

X
Cα(t)x

α,

f(t, x) is a polynomial in x of degree no larger than that of q.Moreover f(t, x) solves
the heat equation and f(t, x)→ q(x) as t ↓ 0. Since g(t, x) :=P∞n=0 tn

n!
∆n

2n q(x) has
the same properties of f and ∆ is a bounded operator when acting on polynomials
of a fixed degree we conclude f(t, x) = g(t, x).

Example 12.8. Suppose q(x) = x1x2 + x43, then

et∆/2q(x) = x1x2 + x43 +
t

2
∆
¡
x1x2 + x43

¢
+

t2

2! · 4∆
2
¡
x1x2 + x43

¢
= x1x2 + x43 +

t

2
12x23 +

t2

2! · 44!
= x1x2 + x43 + 6tx

2
3 + 3t

2.

Proposition 12.9. Suppose f ∈ C∞(Rn) and there exists a constant C <∞ such
that X

|α|=2N+2
|Dαf(x)| ≤ CeC|x|

2

,

then

(pt ∗ f)(x) = “et∆/2f(x)” =
NX
k=0

tk

k!
∆kf(x) +O(tN+1) as t ↓ 0

Proof. Fix x ∈ Rn and let
fN (y) :=

X
|α|≤2N+1

1

α!
Dαf(x)yα.

Then by Taylor’s theorem with remainder

|f(x+ y)− fN (y)| ≤ C |y|2N+2 sup
t∈[0,1]

eC|x+ty|
2 ≤ C |y|2N+2 e2C[|x|2+|y|2] ≤ C̃ |y|2N+2 e2C|y|2

and thus¯̄̄̄Z
Rn

pt(y)f(x+ y)dy −
Z
Rn

pt(y)fN (y)dy

¯̄̄̄
≤ C̃

Z
Rn

pt(y) |y|2N+2 e2C|y|2dy

= C̃tN+1
Z
Rn

p1(y) |y|2N+2 e2t2C|y|2dy

= O(tN+1).
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Since f(x+ y) and fN (y) agree to order 2N + 1 for y near zero, it follows thatZ
Rn

pt(y)fN (y)dy =
NX
k=0

tk

k!
∆kfN (0) =

NX
k=0

tk

k!
∆k
yf(x+ y)|y=0 =

NX
k=0

tk

k!
∆kf(x)

which completes the proof.

12.2. Representation Theorem and Regularity. In this section, suppose that
Ω is a bounded domain such that Ω̄ is a C2 — submanifold with C2 boundary and
for T > 0 let ΩT := (0, T )×Ω, and

ΓT := ([0, T ]× ∂Ω) ∪ ({0} ×Ω) ⊂ bd(ΩT ) = ([0, T ]× ∂Ω) ∪ ({0, T} ×Ω)
as in Figure 36 below.

Figure 36. A cylindrical region ΩT and the parabolic boundary ΓT .

Theorem 12.10 (Representation Theorem). Suppose u ∈ C2,1(Ω̄T ) (Ω̄T = Ω̄T =
[0, T ]×Ω) solves ut = 1

2 4u+ f on Ω̄T . Then

u(T, x) =

Z
Ω

pT (x− y)u(0, y)dy +

Z
[0,T ]×Ω

pT−t(x− y)f(t, y)dydt

+
1

2

Z
[0,T ]×∂Ω

·
∂pT−t
∂ny

(x− y)u(t, y)− pT−t(x− y)
∂u

∂n
(y)

¸
dσ(y)dt(12.6)

Proof. For v ∈ C2,1([0, T ]× Ω), integration by parts showsZ
ΩT

fvdydt =

Z
ΩT

v(ut − 1
2
4v)dydt

=

Z
ΩT

(−vt + 1
2
∇v ·∇u)dydt+

Z
Ω

vu
¯̄̄t=T
t=0

dy +
1

2

Z
[0,T ]×∂Ω

v
∂v

∂n
dtdσ

=

Z
ΩT

(−vt − 1
2
4v)udydt+

Z
Ω

vu
¯̄̄T
0
dy +

1

2

Z
[0,T ]×∂Ω

µ
∂u

∂n
u− v

∂u

∂n

¶
dσ dt.



PDE LECTURE NOTES, MATH 237A-B 175

Given > 0, taking v(t, y) := pT+ −t(x − y) (note that vt + 1
2 4v = 0 and v ∈

C2,1([0, T ]×Ω)) impliesZ
[0,T ]×Ω

f(t, y)pT+ −t(x− y)dydt = 0 +

Z
Ω

p (x− y)u(t, y)dy −
Z
Ω

pT+ (x− y)u(t, y)dy

+
1

2

Z
[0,T ]×∂Ω

·
∂pT+ −t(x− y)

∂ny
u(t, y)− pT+ −t(x− y)

∂u

∂n
(y)

¸
dσ(y)dt

Let ↓ 0 above to complete the proof.
Corollary 12.11. Suppose f := 0 so ut(t, x) = 1

24u(t, x). Then u ∈
C∞ ((0, T )×Ω) .
Proof. Extend pt(x) for t ≤ 0 by setting pt(x) := 0 if t ≤ 0. It is not to hard to

check that this extension is C∞ on R×Rn\{0}. Using this notation we may write
Eq. (12.6) as

u(t, x) =

Z
Ω

pt(x− y)u(0, y)dy

+
1

2

Z
[0,∞)×∂Ω

·
∂pt−τ
∂ny

(x− y)u(t, y)− pT−t(x− y)
∂u

∂n
(y)

¸
dσ(y)dτ.

The result follows since now it permissible to differentiate under the integral to
show u ∈ C∞ ((0, T )×Ω) .
Remark 12.12. Since x → pt(x) is analytic one may show that x → u(t, x) is
analytic for all x ∈ Ω.
12.3. Weak Max Principles.

Notation 12.13. Let aij , bj ∈ C
¡
Ω̄T
¢
satisfy aij = aji and for u ∈ C2(Ω) let

(12.7) Lu(t, x) =
nX

i,j=1

aij(t, x)uxixj (x) +
nX
i=1

bi(t, x)uxi(x).

We say L is elliptic if there exists θ > 0 such thatX
aij(t, x)ξiξj ≥ θ|ξ|2 for all ξ ∈ Rn and (t, x) ∈ Ω̄T .

Assumption 3. In this section we assume L is elliptic. As an example L = 1
2∆

is elliptic.

Lemma 12.14. Let L be an elliptic operator as above and suppose u ∈ C2 (Ω) and
x0 ∈ Ω is a point where u(x) has a local maximum. Then Lu(t, x0) ≤ 0 for all
t ∈ [0, T ].
Proof. Fix t ∈ [0, T ] and set Bij = uxixj (x0), Aij := aij(t, x0) and let {ei}ni=1

be an orthonormal basis for Rn such that Aei = λiei. Notice that λi ≥ θ > 0 for
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all i. By the first derivative test, uxi(x0) = 0 for all i and hence

Lu(t, x0) =
X

AijBij =
X

AjiBij = tr(AB)

=
X

ei ·ABei =
X

Aei ·Bei =
X
i

λiei ·Bei

=
X
i

λi∂
2
eiu(t, x0) ≤ 0.

The last inequality if a consequence of the second derivative test which asserts
∂2vu(t, x0) ≤ 0 for all v ∈ Rn.
Theorem 12.15 (Elliptic weak maximum principle). Let Ω be a bounded domain
and L be an elliptic operator as in Eq. (12.7). We now assume that aij and bj are
functions of x alone. For each u ∈ C

¡
Ω̄
¢∩C2(Ω) such that Lu ≥ 0 on Ω (i.e. u is

L — subharmonic) we have

(12.8) max
Ω̄

u ≤ max
bd(Ω)

u.

Proof. Let us first assume Lu > 0 on Ω. If u and had an interior local maximum
at x0 ∈ Ω then by Lemma 12.14, Lu(x0) ≤ 0 which contradicts the assumption that
Lu(x0) > 0. So if Lu > 0 on Ω we conclude that Eq. (12.8) holds.
Now suppose that Lu ≥ 0 on Ω. Let φ(x) := eλx1 with λ > 0, then

Lφ(x) =
¡
λ2a11(x) + b1(x)λ

¢
eλx1 ≥ λ (λθ + b1(x)) e

λx1 .

By continuity of b(x) we may choose λ sufficiently large so that λθ+b1(x) > 0 on Ω̄
in which case Lφ > 0 on Ω. The results in the first paragraph may now be applied
to u (x) := u(x) + φ(x) (for any > 0) to learn

u(x) + φ(x) = u (x) ≤ max
bd(Ω)

u ≤ max
bd(Ω)

u+ max
bd(Ω)

φ for all x ∈ Ω̄.

Letting ↓ 0 in this expression then implies
u(x) ≤ max

bd(Ω)
u for all x ∈ Ω̄

which is equivalent to Eq. (12.8).

Theorem 12.16 (Parabolic weak maximum principle). Assume u ∈ C1,2(ΩT \ΓT )∩
C(ΩT ).

(1) If ut − Lu ≤ 0 in ΩT then
(12.9) max

ΩT

u = max
ΓT

u.

(2) If ut − Lu ≥ 0 in ΩT then min
ΩT

u = min
ΓT

u.

Proof. Item 1. follows from Item 2. by replacing u → −u, so it suffices to
prove item 1. We begin by assuming ut−Lu < 0 on Ω̄T and suppose for the sake of
contradiction that there exists a point (t0, x0) ∈ ΩT \ΓT such that u(t0, x0) = max

ΩT

u.

(1) If (t0, x0) ∈ ΩT (i.e. 0 < t0 < T ) then by the first derivative test
∂u
∂t (t0, x0) = 0 and by Lemma 12.14 Lu(t0, x0) ≤ 0. Therefore,

(ut − Lu) (t0, x0) = −Lu(t0, x0) ≥ 0
which contradicts the assumption that ut − Lu < 0 in ΩT .
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(2) If (t0, x0) ∈ ΩT \ΓT with t0 = T, then by the first derivative test,
∂u
∂t (T, x0) ≥ 0 and by Lemma 12.14 Lu(t0, x0) ≤ 0. So again

(ut − Lu) (t0, x0) ≥ 0
which contradicts the assumption that ut − Lu < 0 in ΩT .

Thus we have proved Eq. (12.9) holds if ut−Lu < 0 on Ω̄T . Finally if ut−Lu ≤ 0
on Ω̄T and > 0, the function u (t, x) := u(t, x) − t satisfies ut − Lu ≤ − < 0.
Therefore by what we have just proved

u(t, x)− t ≤ max
ΩT

u = max
ΓT

u ≤ max
ΓT

u for all (t, x) ∈ Ω̄T .

Letting ↓ 0 in the last equation shows that Eq. (12.9) holds.
Corollary 12.17. There is at most one solution u ∈ C1,2(ΩT \ΓT )∩C(ΩT ) to the
partial differential equation

∂u

∂t
= Lu with u = f on ΓT .

Proof. If there were another solution v, then w := u− v would solve ∂w
∂t = Lw

with w = 0 on ΓT . So by the maximum principle in Theorem 12.16, w = 0 on Ω̄T .

We now restrict back to L = 1
24 and we wish to see what can be said when

Ω = Rn — an unbounded set.
Theorem 12.18. Suppose u ∈ C([0, T ]×Rn) ∩ C2,1((0, T )×Rn),

ut − 1
2
4u ≤ 0 on [0, T ]×Rn

and there exists constants A, a <∞ such that

u(t, x) ≤ Aea|x|
2

for (t, x) ∈ (0, T )×Rn.
Then

sup
(t,x)∈[0,T ]×Rn

u(t, x) ≤ K := sup
x∈Rn

u(0, x).

Proof. Recall that

pt(x) =

µ
1

t

¶n/2
e−

1
2t |x|2 =

µ
1

t

¶n/2
e−

1
2tx·x

solves the heat equation

(12.10) ∂tpt(x) =
1

2
4pt(x).

Since both sides of Eq. (12.10) are analytic as functions in x, so7

∂pt
∂t
(ix) =

1

2
(4pt)(ix) = −1

2
4xpt(ix)

and therefore for all τ > 0 and t < τ
∂pτ−t
∂t

(ix) = −ṗτ−t(ix) = 1

2
4xpτ−t(ix).

7Similarly since both sides of Eq. (12.10) are analytic functions in t, it follows that

∂

∂t
p−t(x) = −ṗt(x) = −1

2
4p−t.
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That is to say the function

ρ(t, x) := pτ−t(ix) =
µ

1

τ − t

¶n/2
e

1
2(τ−t) |x|2 for 0 ≤ t < τ

solves the heat equation. (This can be checked directly as well.)
Let , τ > 0 (to be chosen later) and set

v(t, x) = u(t, x)− ρ(t, x) for 0 ≤ t ≤ τ/2.

Since ρ(t, x) is increasing in t,

v(t, x) ≤ Aea|x|
2 −

µ
1

τ

¶n/2
e

1
2τ |x|2 for 0 ≤ t ≤ τ/2.

Hence if we require 1
2τ > a or τ < 1

2a it will follows that

lim
|x|→∞

"
sup

0≤t≤τ/2
v(t, x)

#
= −∞.

Therefore we may choose M sufficiently large so that

v(t, x) ≤ K := sup
z

u(0, z) for all |x| ≥M and 0 ≤ t ≤ τ/2.

Since µ
∂t − 4

2

¶
v =

µ
∂t − 4

2

¶
u ≤ 0

we may apply the maximum principle with Ω = B(0,M) and T = τ/2 to conclude
for (t, x) ∈ ΩT that

u(t, x)− ρ(t, x) = v(t, x) ≤ sup
z∈Ω

v(0, z) ≤ K if 0 ≤ t ≤ τ/2.

We may now let ↓ 0 in this equation to conclude that
(12.11) u(t, x) ≤ K if 0 ≤ t ≤ τ/2.

By applying Eq. (12.11) to u(t+ τ/2, x) we may also conclude

u(t, x) ≤ K if 0 ≤ t ≤ τ.

Repeating this argument then enables us to show u(t, x) ≤ K for all 0 ≤ t ≤ T.

Corollary 12.19. The heat equation

ut − 1
2
4u = 0 on [0, T ]×Rn with u(0, ·) = f(·) ∈ C (Rn)

has at most one solution in the class of functions u ∈ C([0, T ]×Rn)∩C2,1((0, T )×
Rn) which satisfy

u(t, x) ≤ Aea|x|
2

for (t, x) ∈ (0, T )×Rn
for some constants A and a.

Theorem 12.20 (Max Principle a la Hamilton). Suppose u ∈ C1,2
¡
[0, T ]×Rd¢ satisfies

(1) u(t, x) ≤ Aea|x|
2

for some A, a ( for all t ≤ T )
(2) u(0, x) ≤ 0 for all x
(3) ∂u

∂t ≤ 4u i.e. (∂t −4)u ≤ 0.
Then u(t, x) ≤ 0 for all (t, x) ∈ [0, T ]×Rd.
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Proof. Special Case. Assume ∂u
∂t < 4u on [0, T ] × Rd, u(0, x) < 0 for all

x ∈ Rd and there exists M > 0 such that u(t, x) < 0 if |x| ≥ M and t ∈ [0, T ].For
the sake of contradiction suppose there is some point (t, x) ∈ [0, T ]×Rd such that
u(t, x) > 0.
By the intermediate value theorem there exists τ ∈ [0, t] such that u(τ, x) = 0. In

particular the set {u = 0} is a non-empty closed compact subset of (0, T ]×B(0,M).
Let

π : (0, T ]×B(0,M)→ (0, T ]

be projection onto the first factor, since {u 6= 0} is a compact subset of (0, T ] ×
B(0,M) if follows that

t0 := min{t ∈ π ({u = 0})} > 0.
Choose a point x0 ∈ B(0,M) such that (t0, x0) ∈ {u = 0}, i.e. u(t0, x0) = 0, see
Figure 37 below. Since u(t, x) < 0 for all 0 ≤ t < t0 and x ∈ Rd, u(t0, x) ≤ 0

Figure 37. Finding a point (t0, x0) such that t0 is as small as
possible and u(t0, x0) = 0.

for all x ∈ Rd with u(t0, x0) = 0. This information along with the first and second
derivative tests allows us to conclude

∇u(t0, x0) = 0, 4u(t0, x0) ≤ 0 and ∂u

∂t
(t0, x0) ≥ 0.

This then implies that

0 ≤ ∂u

∂t
(t0, x0) < 4u(t0, x0) ≤ 0

which is absurd. Hence we conclude that u ≤ 0 on [0, T ]× Rd.
General Case: Let pt(x) = 1

td/2
e−

1
4t |x|2 be the fundamental solution to the

heat equation
∂tpt = 4pt.

Let τ > 0 to be determined later. As in the proof of Theorem 12.18, the function

ρ(t, x) := pτ−t(ix) =
µ

1

τ − t

¶d/2
e

1
4(τ−t) |x|2 for 0 ≤ t < τ
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is still a solution to the heat equation. Given > 0, define, for t ≤ τ/2,

u (t, x) = u(t, x)− − t− ρ(t, x).

Then

(∂t −4)u = (∂t −4)u− ≤ − < 0,

u (0, x) = u(0, x)− ≤ 0− ≤ − < 0

and for t ≤ τ/2

u (t, x) ≤ Aea|x|
2 − − 1

τd/2
e

1
4τ |x|2 .

Hence if we choose τ such that 1
4τ > a, we will have u (t, x) < 0 for |x| sufficiently

large. Hence by the special case already proved, u (t, x) ≤ 0 for all 0 ≤ t ≤ τ
2 and

> 0. Letting ↓ 0 implies that u(t, x) ≤ 0 for all 0 ≤ t ≤ τ/2. As in the proof
of Theorem 12.18 we may step our way up by applying the previous argument to
u(t+ τ/2, x) and then to u(t+ τ, x), etc. to learn u(t, x) ≤ 0 for all 0 ≤ t ≤ T.

12.4. Non-Uniqueness of solutions to the Heat Equation.

Theorem 12.21 (See Fritz John §7). For any α > 1, let

(12.12) g(t) :=

½
e−t

−α
t > 0

0 t ≤ 0
and define

u(t, x) =
∞X
k=0

g(k)(t)x2k

(2k)!
.

Then u ∈ C∞(R2) and

(12.13) ut = uxx and u(0, x) := 0.

In particular, the heat equation does not have unique solutions.

Proof. We are going to look for a solution to Eq. (12.13) of the form

u(t, x) =
∞X
n=0

gn(t)x
n

in which case we have (formally) that

0 = ut − uxx =
∞X
n=0

(ġn(t)x
n − gn(t)n(n− 1)xn−2)

=
∞X
n=0

[ġn(t)− (n+ 2)(n+ 1)gn+2(t)]xn.

This implies

(12.14) gn+2 =
ġn

(n+ 2)(n+ 1)
.

To simplify the final answer, we will now assume ux(0, x) = 0, i.e. g1 ≡ 0 in which
case Eq. (12.14) implies gn ≡ 0 for all n odd. We also have with g := g0,

g2 =
ġ0
2 · 1 =

ġ

2!
, g4 =

ġ20

4 · 3 =
g̈

4!
, g6 =

g(3)

6!
. . . g2k =

g(k)

(2k)!
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and hence

(12.15) u(t, x) =
∞X
k=0

g(k)(t)x2k

(2k)!
.

The function u(t, x) will solve ut = uxx for (t, x) ∈ R2 with u(0, x) = 0 provided
the convergence in the sum is adequate to justify the above computations.
Now let g(t) be given by Eq. (12.12) and extend g to C\(−∞, 0] via g(z) = e−z

−α

where

z−α = e−α log(z) = e−α(ln r+iθ) for z = reiθ with − π < θ < π.

In order to estimate g(k)(t) we will use of the Cauchy estimates on the contour
|z − t| = γt where γ is going to be chosen sufficiently close to 0. Now

Re(z−α) = e−α ln r cos(αθ) = |z|−α cos(αθ)
and hence

|g(z)| = e−Re(z
−α) = e−|z|

−α cos(αθ).

From Figure 38, we see

Figure 38. Here is a picture of the maximum argument θm that
a point z on ∂B(t, γt) may attain. Notice that sin θm = γt/t = γ
is independent of t and θm → 0 as γ → 0.

β(γ) := min
©
cos(αθ) : −π < θ < π and |reiθ − t| = γt

ª
is independent of t and β(γ)→ 1 as γ → 0. Therefore for |z − t| = γt we have

|g(z)| ≤ e−|z|
−αβ(γ) ≤ e−([γ+1]t)

−αβ(γ) = e−
β(γ)
1+γ t

−α ≤ e−
1
2 t
−α

provided γ is chosen so small that β(γ)
1+γ ≥ 1

2 .

By for w ∈ B(t, tγ), the Cauchy integral formula and its derivative give

g(w) =
1

2πi

I
|z−t|=γt

g(z)

z − w
dz and

g(k)(w) =
k!

2πi

I
|z−t|=γt

g(z)

(z − w)k+1
dz

and in particular
(12.16)¯̄̄

g(k)(t)
¯̄̄
≤ k!

2π

I
|z−t|=γt

|g(z)|
|z − w|k+1

|dz| ≤ k!

2π
e−

1
2 t
−α 2πγt

|γt|k+1
=

k!

|γt|k
e−

1
2 t
−α

.
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We now use this to estimate the sum in Eq. (12.15) as

|u(t, x)| ≤
∞X
k=0

¯̄̄̄
g(k)(t)x2k

(2k)!

¯̄̄̄
≤ e−

1
2 t
−α
∞X
k=0

k!

(γt)k
|x|2k
(2k)!

≤ e−
1
2 t
−α
∞X
k=0

1

k!

µ
x2

γt

¶k
= exp

µ
x2

γt
− 1
2
t−α

¶
<∞.

Therefore lim
t↓0

u(t, x) = 0 uniformly for x in compact subsets of R. Similarly one

may use the estimate in Eq. (12.16) to show u is smooth and

uxx =
∞X
k=0

g(k)(t)(2k)(2k − 1)x2k−2
(2k)!

=
∞X
k=1

g(k)(t)x2(k−1)

(2(k − 1))!

=
∞X
k=0

g(k+1)(t)x2k

(2k)!
= ut.

12.5. The Heat Equation on the Circle and R. In this subsection, let SL :=
{Lz : z ∈ S} — be the circle of radius L. As usual we will identify functions on SL
with 2πL — periodic functions on R. Given two 2πL periodic functions f, g, let

(f, g)L :=
1

2πL

Z πL

−πL
f(x)ḡ(x)dx

and denote HL := L22πL to be the 2πL — periodic functions f on R such that
(f, f)L < ∞. By Fourier’s theorem we know that the functions χLk (x) := eikx/L

with k ∈ Z form an orthonormal basis for HL and this basis satisfies

d2

dx2
χLk = −

µ
k

L

¶2
χLk .

Therefore the solution to the heat equation on SL,

ut =
1

2
uxx with u(0, ·) = f ∈ HL

is given by

u(t, x) =
X
k∈Z
(f, χLk )e

− 1
2 (

k
L)

2
teikx/L

=
X
k∈Z

Ã
1

2πL

Z πL

−πL
f(y)e−iky/Ldy

!
e−

1
2 (

k
L)

2
teikx/L

=

Z πL

−πL
pLt (x− y)f(y)dy

where

pLt (x) =
1

2πL

X
k∈Z

e−
1
2(

k
L )

2
teikx/L.

If f is L periodic then it is nL — periodic for all n ∈ N, so we also would learn

u(t, x) =

Z πnL

−πnL
pnLt (x− y)f(y)dy for all n ∈ N.
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this suggest that we might pass to the limit as n→∞ in this equation to learn

u(t, x) =

Z
R
pt(x− y)f(y)dy

where

pt(x) := lim
n→∞ pnLt (x) = lim

L→∞
1

2πL

X
k∈Z

e−
1
2 (

k
L )

2
tei(

k
L )x

=
1

2π

Z
R
e−

1
2 ξ

2teiξxdξ =
1√
2πt

e−
x2

2t .

From this we conclude

u(t, x) =

Z
R
pt(x− y)f(y)dy =

Z πL

−πL

X
n∈Z

pt(x− y + 2πnL)f(y)dy

and we arrive at the identityX
n∈Z

1√
2πt

e−
(x+2πnL)2

2t =
X
n∈Z

pt(x+ 2πnL) =
1

2πL

X
k∈Z

e−
1
2(

k
L)

2
teikx/L

which is a special case of Poisson’s summation formula.


