12. Heat Equation

The heat equation for a function $u: \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is the partial differential equation

$$
\begin{equation*}
\left(\partial_{t}-\frac{1}{2} \Delta\right) u=0 \text { with } u(0, x)=f(x) \tag{12.1}
\end{equation*}
$$

where f is a given function on \mathbb{R}^{n}. By Fourier transforming Eq. (12.1) in the $x-$ variables only, one finds that (12.1) implies that

$$
\begin{equation*}
\left(\partial_{t}+\frac{1}{2}|\xi|^{2}\right) \hat{u}(t, \xi)=0 \text { with } \hat{u}(0, \xi)=\hat{f}(\xi) \tag{12.2}
\end{equation*}
$$

and hence that $\hat{u}(t, \xi)=e^{-t|\xi|^{2} / 2} \hat{f}(\xi)$. Inverting the Fourier transform then shows that

$$
u(t, x)=\mathcal{F}^{-1}\left(e^{-t|\xi|^{2} / 2} \hat{f}(\xi)\right)(x)=\left(\mathcal{F}^{-1}\left(e^{-t|\xi|^{2} / 2}\right) \star f\right)(x)=: e^{t \Delta / 2} f(x)
$$

From Example ??,

$$
\mathcal{F}^{-1}\left(e^{-t|\xi|^{2} / 2}\right)(x)=p_{t}(x)=t^{-n / 2} e^{-\frac{1}{2 t}|x|^{2}}
$$

and therefore,

$$
u(t, x)=\int_{\mathbb{R}^{n}} p_{t}(x-y) f(y) \mathbf{d} y
$$

This suggests the following theorem.
Theorem 12.1. Let

$$
\begin{equation*}
p_{t}(x-y):=(2 \pi t)^{-n / 2} e^{-|x-y|^{2} / 2 t} \tag{12.3}
\end{equation*}
$$

be the heat kernel on \mathbb{R}^{n}. Then

$$
\begin{equation*}
\left(\partial_{t}-\frac{1}{2} \Delta_{x}\right) p_{t}(x-y)=0 \text { and } \lim _{t \downarrow 0} p_{t}(x-y)=\delta_{x}(y) \tag{12.4}
\end{equation*}
$$

where δ_{x} is the δ-function at x in \mathbb{R}^{n}. More precisely, if f is a continuous bounded function on \mathbb{R}^{n}, then

$$
u(t, x)=\int_{\mathbb{R}^{n}} p_{t}(x-y) f(y) d y
$$

is a solution to Eq. (12.1) where $u(0, x):=\lim _{t \downarrow 0} u(t, x)$.
Proof. Direct computations show that $\left(\partial_{t}-\frac{1}{2} \Delta_{x}\right) p_{t}(x-y)=0$ and an application of Theorem ?? shows $\lim _{t \downarrow 0} p_{t}(x-y)=\delta_{x}(y)$ or equivalently that $\lim _{t \downarrow 0} \int_{\mathbb{R}^{n}} p_{t}(x-y) f(y) d y=f(x)$ uniformly on compact subsets of \mathbb{R}^{n}. This shows that $\lim _{t \downarrow 0} u(t, x)=f(x)$ uniformly on compact subsets of \mathbb{R}^{n}.

Proposition 12.2 (Properties of $\left.e^{t \Delta / 2}\right)$. (1) For $f \in L^{2}\left(\mathbb{R}^{n}, d x\right)$, the function

$$
\left(e^{t \Delta / 2} f\right)(x)=\left(P_{t} f\right)(x)=\int_{\mathbb{R}^{n}} f(y) \frac{e^{-\frac{1}{2 t}|x-y|^{2}}}{(2 \pi t)^{n / 2}} d y
$$

is smooth in (t, x) for $t>0$ and $x \in \mathbb{R}^{n}$ and is in fact real analytic.
(2) $e^{t \Delta / 2}$ acts as a contraction on $L^{p}\left(\mathbb{R}^{n}, d x\right)$ for all $p \in[0, \infty]$ and $t>0$. Indeed,
(3) Moreover, $p_{t} * f \rightarrow f$ in L^{p} as $t \rightarrow 0$.

Proof. Item 1. is fairly easy to check and is left the reader. One just notices that $p_{t}(x-y)$ analytically continues to $\operatorname{Re} t>0$ and $x \in \mathbb{C}^{n}$ and then shows that it is permissible to differentiate under the integral.

Item 2.

$$
\left|\left(p_{t} * f\right)(x)\right| \leq \int_{\mathbb{R}^{n}}|f(y)| p_{t}(x-y) d y
$$

and hence with the aid of Jensen's inequality we have,

$$
\left\|p_{t} * f\right\|_{L^{p}}^{p} \leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|f(y)|^{p} p_{t}(x-y) d y d x=\|f\|_{L^{p}}^{p}
$$

So P_{t} is a contraction $\forall t>0$.
Item 3. It suffices to show, because of the contractive properties of $p_{t} *$, that $p_{t} * f \rightarrow f$ as $t \downarrow 0$ for $f \in C_{c}\left(\mathbb{R}^{n}\right)$. Notice that if f has support in the ball of radius R centered at zero, then

$$
\begin{aligned}
\left|\left(p_{t} * f\right)(x)\right| & \leq \int_{\mathbb{R}^{n}}|f(y)| P_{t}(x-y) d y \leq\|f\|_{\infty} \int_{|y| \leq R} P_{t}(x-y) d y \\
& =\|f\|_{\infty} C R^{n} e^{-\frac{1}{2 t}(|x|-R)^{2}}
\end{aligned}
$$

and hence

$$
\left\|p_{t} * f-f\right\|_{L^{p}}^{p}=\int_{|y| \leq R}\left|p_{t} * f-f\right|^{p} d y+\|f\|_{\infty} C R^{n} e^{-\frac{1}{2 t}(|x|-R)^{2}}
$$

Therefore $p_{t} * f \rightarrow f$ in L^{p} as $t \downarrow 0 \quad \forall f \in C_{c}\left(\mathbb{R}^{n}\right)$.
Theorem 12.3 (Forced Heat Equation). Suppose $g \in C_{b}\left(\mathbb{R}^{d}\right)$ and $f \in$ $C_{b}^{1,2}\left([0, \infty) \times \mathbb{R}^{d}\right)$ then

$$
u(t, x):=p_{t} * g(x)+\int_{0}^{t} p_{t-\tau} * f(\tau, x) d \tau
$$

solves

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+f \text { with } u(0, \cdot)=g
$$

Proof. Because of Theorem 12.1, we may with out loss of generality assume $g=0$ in which case

$$
u(t, x)=\int_{0}^{t} p_{t} * f(t-\tau, x) d \tau
$$

Therefore

$$
\begin{aligned}
\frac{\partial u}{\partial t}(t, x) & =p_{t} * f(0, x)+\int_{0}^{t} p_{\tau} * \frac{\partial}{\partial t} f(t-\tau, x) d \tau \\
& =p_{t} * f_{0}(x)-\int_{0}^{t} p_{\tau} * \frac{\partial}{\partial \tau} f(t-\tau, x) d \tau
\end{aligned}
$$

and

$$
\frac{\triangle}{2} u(t, x)=\int_{0}^{t} p_{t} * \frac{\triangle}{2} f(t-\tau, x) d \tau
$$

Hence we find, using integration by parts and approximate δ - function arguments, that

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}-\frac{\triangle}{2}\right) u(t, x) & =p_{t} * f_{0}(x)+\int_{0}^{t} p_{\tau} *\left(-\frac{\partial}{\partial \tau}-\frac{1}{2} \triangle\right) f(t-\tau, x) d \tau \\
& =p_{t} * f_{0}(x)+\lim _{\epsilon \downarrow 0} \int_{\epsilon}^{t} p_{\tau} *\left(-\frac{\partial}{\partial \tau}-\frac{1}{2} \triangle\right) f(t-\tau, x) d \tau \\
& =p_{t} * f_{0}(x)-\left.\lim _{\epsilon \downarrow 0} p_{\tau} * f(t-\tau, x)\right|_{\epsilon} ^{t} \\
& +\lim _{\epsilon \downarrow 0} \int_{\epsilon}^{t}\left(\frac{\partial}{\partial \tau}-\frac{1}{2} \triangle\right) p_{\tau} * f(t-\tau, x) d \tau \\
& =p_{t} * f_{0}(x)-p_{t} * f_{0}(x)+\lim _{\epsilon \downarrow 0} p_{\epsilon} * f(t-\epsilon, x)=f(t, x)
\end{aligned}
$$

12.1. Extensions of Theorem 12.1.

Proposition 12.4. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a measurable function and there exists constants $c, C<\infty$ such that

$$
|f(x)| \leq C e^{\frac{c}{2}|x|^{2}}
$$

Then $u(t, x):=p_{t} * f(x)$ is smooth for $(t, x) \in\left(0, c^{-1}\right) \times \mathbb{R}^{n}$ and for all $k \in \mathbb{N}$ and all multi-indices α,

$$
\begin{equation*}
D^{\alpha}\left(\frac{\partial}{\partial t}\right)^{k} u(t, x)=\left(D^{\alpha}\left(\frac{\partial}{\partial t}\right)^{k} p_{t}\right) * f(x) \tag{12.5}
\end{equation*}
$$

In particular u satisfies the heat equation $u_{t}=\Delta u / 2$ on $\left(0, c^{-1}\right) \times \mathbb{R}^{n}$.
Proof. The reader may check that

$$
D^{\alpha}\left(\frac{\partial}{\partial t}\right)^{k} p_{t}(x)=q\left(t^{-1}, x\right) p_{t}(x)
$$

where q is a polynomial in its variables. Let $x_{0} \in \mathbb{R}^{n}$ and $\epsilon>0$ be small, then for $x \in B\left(x_{0}, \epsilon\right)$ and any $\beta>0$,

$$
\begin{aligned}
|x-y|^{2} & =|x|^{2}-2|x||y|+|y|^{2} \geq|y|^{2}+|x|^{2}-\left(\beta^{-2}|x|^{2}+\beta^{2}|y|^{2}\right) \\
& \geq\left(1-\beta^{2}\right)|y|^{2}-\left(\beta^{-2}-1\right)\left(\left|x_{0}\right|^{2}+\epsilon\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(y) & :=\sup \left\{\left|D^{\alpha}\left(\frac{\partial}{\partial t}\right)^{k} p_{t}(x-y) f(y)\right|: \epsilon \leq t \leq c-\epsilon \text { and } x \in B\left(x_{0}, \epsilon\right)\right\} \\
& \leq \sup \left\{\left|q\left(t^{-1}, x-y\right) \frac{e^{-\frac{1}{2 t}|x-y|^{2}}}{(2 \pi t)^{n / 2}} C e^{\frac{c}{2}|y|^{2}}\right|: \epsilon \leq t \leq c-\epsilon \text { and } x \in B\left(x_{0}, \epsilon\right)\right\} \\
& \leq C\left(\beta, x_{0}, \epsilon\right) \sup \left\{\left|(2 \pi t)^{-n / 2} q\left(t^{-1}, x-y\right) e^{\left[-\frac{1}{2 t}\left(1-\beta^{2}\right)+\frac{c}{2}\right]|y|^{2}}\right|: \epsilon \leq t \leq c-\epsilon \text { and } x \in B\left(x_{0}, \epsilon\right)\right\} .
\end{aligned}
$$

By choosing β close to 0 , the reader should check using the above expression that for any $0<\delta<(1 / t-c) / 2$ there is a $\tilde{C}<\infty$ such that $g(y) \leq \tilde{C} e^{-\delta|y|^{2}}$. In particular $g \in L^{1}\left(\mathbb{R}^{n}\right)$. Hence one is justified in differentiating past the integrals in $p_{t} * f$ and this proves Eq. (12.5).

Lemma 12.5. There exists a polynomial $q_{n}(x)$ such that for any $\beta>0$ and $\delta>0$,

$$
\int_{\mathbb{R}^{n}} 1_{|y| \geq \delta} e^{-\beta|y|^{2}} d y \leq \delta^{n} q_{n}\left(\frac{1}{\beta \delta^{2}}\right) e^{-\beta \delta^{2}}
$$

Proof. Making the change of variables $y \rightarrow \delta y$ and then passing to polar coordinates shows

$$
\int_{\mathbb{R}^{n}} 1_{|y| \geq \delta} e^{-\beta|y|^{2}} d y=\delta^{n} \int_{\mathbb{R}^{n}} 1_{|y| \geq 1} e^{-\beta \delta^{2}|y|^{2}} d y=\sigma\left(S^{n-1}\right) \delta^{n} \int_{1}^{\infty} e^{-\beta \delta^{2} r^{2}} r^{n-1} d r
$$

Letting $\lambda=\beta \delta^{2}$ and $\phi_{n}(\lambda):=\int_{r=1}^{\infty} e^{-\lambda r^{2}} r^{n} d r$, integration by parts shows

$$
\begin{aligned}
\phi_{n}(\lambda) & =\int_{r=1}^{\infty} r^{n-1} d\left(\frac{e^{-\lambda r^{2}}}{-2 \lambda}\right)=\frac{1}{2 \lambda} e^{-\lambda}+\frac{1}{2} \int_{r=1}^{\infty}(n-1) r^{(n-2)} \frac{e^{-\lambda r^{2}}}{\lambda} d r \\
& =\frac{1}{2 \lambda} e^{-\lambda}+\frac{n-1}{2 \lambda} \phi_{n-2}(\lambda)
\end{aligned}
$$

Iterating this equation implies

$$
\phi_{n}(\lambda)=\frac{1}{2 \lambda} e^{-\lambda}+\frac{n-1}{2 \lambda}\left(\frac{1}{2 \lambda} e^{-\lambda}+\frac{n-3}{2 \lambda} \phi_{n-4}(\lambda)\right)
$$

and continuing in this way shows

$$
\phi_{n}(\lambda)=e^{-\lambda} r_{n}\left(\lambda^{-1}\right)+\frac{(n-1)!!}{2^{\delta} \lambda^{\delta}} \phi_{i}(\lambda)
$$

where δ is the integer part of $n / 2, i=0$ if n is even and $i=1$ if n is odd and r_{n} is a polynomial. Since

$$
\phi_{0}(\lambda)=\int_{r=1}^{\infty} e^{-\lambda r^{2}} d r \leq \phi_{1}(\lambda)=\int_{r=1}^{\infty} r e^{-\lambda r^{2}} d r=\frac{e^{-\lambda}}{2 \lambda}
$$

it follows that

$$
\phi_{n}(\lambda) \leq e^{-\lambda} q_{n}\left(\lambda^{-1}\right)
$$

for some polynomial q_{n}.
Proposition 12.6. Suppose $f \in C\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that $|f(x)| \leq C e^{\frac{c}{2}|x|^{2}}$ then $p_{t} * f \rightarrow$ f uniformly on compact subsets as $t \downarrow 0$. In particular in view of Proposition 12.4, $u(t, x):=p_{t} * f(x)$ is a solution to the heat equation with $u(0, x)=f(x)$.

Proof. Let $M>0$ be fixed and assume $|x| \leq M$ throughout. By uniform continuity of f on compact set, given $\epsilon>0$ there exists $\delta=\delta(t)>0$ such that $|f(x)-f(y)| \leq \epsilon$ if $|x-y| \leq \delta$ and $|x| \leq M$. Therefore, choosing $a>c / 2$ sufficiently small,

$$
\begin{aligned}
\left|p_{t} * f(x)-f(x)\right| & =\left|\int p_{t}(y)[f(x-y)-f(x)] d y\right| \leq \int p_{t}(y)|f(x-y)-f(x)| d y \\
& \leq \epsilon \int_{|y| \leq \delta} p_{t}(y) d y+C(2 \pi t)^{-n / 2} \int_{|y| \geq \delta}\left[e^{\frac{c}{2}|x-y|^{2}}+e^{\frac{c}{2}|x|^{2}}\right] e^{-\frac{1}{2 t}|y|^{2}} d y \\
& \leq \epsilon+\tilde{C}(2 \pi t)^{-n / 2} \int_{|y| \geq \delta} e^{-\left(\frac{1}{2 t}-a\right)|y|^{2}} d y
\end{aligned}
$$

So by Lemma 12.5, it follows that

$$
\left|p_{t} * f(x)-f(x)\right| \leq \epsilon+\tilde{C}(2 \pi t)^{-n / 2} \delta^{n} q_{n}\left(\frac{1}{\beta\left(\frac{1}{2 t}-a\right)^{2}}\right) e^{-\left(\frac{1}{2 t}-a\right) \delta^{2}}
$$

and therefore

$$
\limsup _{t \downarrow 0} \sup _{|x| \leq M}\left|p_{t} * f(x)-f(x)\right| \leq \epsilon \rightarrow 0 \text { as } \epsilon \downarrow 0
$$

Lemma 12.7. If $q(x)$ is a polynomial on \mathbb{R}^{n}, then

$$
\int_{\mathbb{R}^{n}} p_{t}(x-y) q(y) d y=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \frac{\Delta^{n}}{2^{n}} q(x)
$$

Proof. Since

$$
f(t, x):=\int_{\mathbb{R}^{n}} p_{t}(x-y) q(y) d y=\int_{\mathbb{R}^{n}} p_{t}(y) \sum a_{\alpha \beta} x^{\alpha} y^{\beta} d y=\sum C_{\alpha}(t) x^{\alpha}
$$

$f(t, x)$ is a polynomial in x of degree no larger than that of q. Moreover $f(t, x)$ solves the heat equation and $f(t, x) \rightarrow q(x)$ as $t \downarrow 0$. Since $g(t, x):=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \frac{\Delta^{n}}{2^{n}} q(x)$ has the same properties of f and Δ is a bounded operator when acting on polynomials of a fixed degree we conclude $f(t, x)=g(t, x)$.

Example 12.8. Suppose $q(x)=x_{1} x_{2}+x_{3}^{4}$, then

$$
\begin{aligned}
e^{t \Delta / 2} q(x) & =x_{1} x_{2}+x_{3}^{4}+\frac{t}{2} \Delta\left(x_{1} x_{2}+x_{3}^{4}\right)+\frac{t^{2}}{2!\cdot 4} \Delta^{2}\left(x_{1} x_{2}+x_{3}^{4}\right) \\
& =x_{1} x_{2}+x_{3}^{4}+\frac{t}{2} 12 x_{3}^{2}+\frac{t^{2}}{2!\cdot 4} 4! \\
& =x_{1} x_{2}+x_{3}^{4}+6 t x_{3}^{2}+3 t^{2}
\end{aligned}
$$

Proposition 12.9. Suppose $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and there exists a constant $C<\infty$ such that

$$
\sum_{|\alpha|=2 N+2}\left|D^{\alpha} f(x)\right| \leq C e^{C|x|^{2}}
$$

then

$$
\left(p_{t} * f\right)(x)=" e^{t \Delta / 2} f(x) "=\sum_{k=0}^{N} \frac{t^{k}}{k!} \Delta^{k} f(x)+O\left(t^{N+1}\right) \text { as } t \downarrow 0
$$

Proof. Fix $x \in \mathbb{R}^{n}$ and let

$$
f_{N}(y):=\sum_{|\alpha| \leq 2 N+1} \frac{1}{\alpha!} D^{\alpha} f(x) y^{\alpha} .
$$

Then by Taylor's theorem with remainder

$$
\left|f(x+y)-f_{N}(y)\right| \leq C|y|^{2 N+2} \sup _{t \in[0,1]} e^{C|x+t y|^{2}} \leq C|y|^{2 N+2} e^{2 C\left[|x|^{2}+|y|^{2}\right]} \leq \tilde{C}|y|^{2 N+2} e^{2 C|y|^{2}}
$$

and thus

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} p_{t}(y) f(x+y) d y-\int_{\mathbb{R}^{n}} p_{t}(y) f_{N}(y) d y\right| & \leq \tilde{C} \int_{\mathbb{R}^{n}} p_{t}(y)|y|^{2 N+2} e^{2 C|y|^{2}} d y \\
& =\tilde{C} t^{N+1} \int_{\mathbb{R}^{n}} p_{1}(y)|y|^{2 N+2} e^{2 t^{2} C|y|^{2}} d y \\
& =O\left(t^{N+1}\right)
\end{aligned}
$$

Since $f(x+y)$ and $f_{N}(y)$ agree to order $2 N+1$ for y near zero, it follows that

$$
\int_{\mathbb{R}^{n}} p_{t}(y) f_{N}(y) d y=\sum_{k=0}^{N} \frac{t^{k}}{k!} \Delta^{k} f_{N}(0)=\left.\sum_{k=0}^{N} \frac{t^{k}}{k!} \Delta_{y}^{k} f(x+y)\right|_{y=0}=\sum_{k=0}^{N} \frac{t^{k}}{k!} \Delta^{k} f(x)
$$

which completes the proof.
12.2. Representation Theorem and Regularity. In this section, suppose that Ω is a bounded domain such that $\bar{\Omega}$ is a C^{2} - submanifold with C^{2} boundary and for $T>0$ let $\Omega_{T}:=(0, T) \times \Omega$, and

$$
\Gamma_{T}:=([0, T] \times \partial \Omega) \cup(\{0\} \times \Omega) \subset \operatorname{bd}\left(\Omega_{T}\right)=([0, T] \times \partial \Omega) \cup(\{0, T\} \times \Omega)
$$

as in Figure 36 below.

Figure 36. A cylindrical region Ω_{T} and the parabolic boundary Γ_{T}.

Theorem 12.10 (Representation Theorem). Suppose $u \in C^{2,1}\left(\bar{\Omega}_{T}\right)\left(\bar{\Omega}_{T}=\bar{\Omega}_{T}=\right.$ $[0, T] \times \bar{\Omega})$ solves $u_{t}=\frac{1}{2} \triangle u+f$ on $\bar{\Omega}_{T}$. Then

$$
\begin{aligned}
u(T, x) & =\int_{\Omega} p_{T}(x-y) u(0, y) d y+\int_{[0, T] \times \Omega} p_{T-t}(x-y) f(t, y) d y d t \\
& +\frac{1}{2} \int_{[0, T] \times \partial \Omega}\left[\frac{\partial p_{T-t}}{\partial n_{y}}(x-y) u(t, y)-p_{T-t}(x-y) \frac{\partial u}{\partial n}(y)\right] d \sigma(y) d t
\end{aligned}
$$

Proof. For $v \in C^{2,1}([0, T] \times \bar{\Omega})$, integration by parts shows

$$
\begin{aligned}
\int_{\Omega_{T}} f v d y d t & =\int_{\Omega_{T}} v\left(u_{t}-\frac{1}{2} \Delta v\right) d y d t \\
& =\int_{\Omega_{T}}\left(-v_{t}+\frac{1}{2} \nabla v \cdot \nabla u\right) d y d t+\left.\int_{\Omega} v u\right|_{t=0} ^{t=T} d y+\frac{1}{2} \int_{[0, T] \times \partial \Omega} v \frac{\partial v}{\partial n} d t d \sigma \\
& =\int_{\Omega_{T}}\left(-v_{t}-\frac{1}{2} \triangle v\right) u d y d t+\left.\int_{\Omega} v u\right|_{0} ^{T} d y+\frac{1}{2} \int_{[0, T] \times \partial \Omega}\left(\frac{\partial u}{\partial n} u-v \frac{\partial u}{\partial n}\right) d \sigma d t .
\end{aligned}
$$

Given $\epsilon>0$, taking $v(t, y):=p_{T+\epsilon-t}(x-y)$ (note that $v_{t}+\frac{1}{2} \triangle v=0$ and $v \in$ $\left.C^{2,1}([0, T] \times \Omega)\right)$ implies

$$
\begin{aligned}
\int_{[0, T] \times \Omega} f(t, y) p_{T+\epsilon-t}(x-y) d y d t & =0+\int_{\Omega} p_{\epsilon}(x-y) u(t, y) d y-\int_{\Omega} p_{T+\epsilon}(x-y) u(t, y) d y \\
& +\frac{1}{2} \int_{[0, T] \times \partial \Omega}\left[\frac{\partial p_{T+\epsilon-t}(x-y)}{\partial n_{y}} u(t, y)-p_{T+\epsilon-t}(x-y) \frac{\partial u}{\partial n}(y)\right] d \sigma(y) d t
\end{aligned}
$$

Let $\epsilon \downarrow 0$ above to complete the proof.
Corollary 12.11. Suppose $f:=0$ so $u_{t}(t, x)=\frac{1}{2} \Delta u(t, x)$. Then $u \in$ $C^{\infty}((0, T) \times \Omega)$.

Proof. Extend $p_{t}(x)$ for $t \leq 0$ by setting $p_{t}(x):=0$ if $t \leq 0$. It is not to hard to check that this extension is C^{∞} on $\mathbb{R} \times \mathbb{R}^{n} \backslash\{0\}$. Using this notation we may write Eq. (12.6) as

$$
\begin{aligned}
& u(t, x)=\int_{\Omega} p_{t}(x-y) u(0, y) d y \\
& +\frac{1}{2} \int_{[0, \infty) \times \partial \Omega}\left[\frac{\partial p_{t-\tau}}{\partial n_{y}}(x-y) u(t, y)-p_{T-t}(x-y) \frac{\partial u}{\partial n}(y)\right] d \sigma(y) d \tau
\end{aligned}
$$

The result follows since now it permissible to differentiate under the integral to show $u \in C^{\infty}((0, T) \times \Omega)$.

Remark 12.12. Since $x \rightarrow p_{t}(x)$ is analytic one may show that $x \rightarrow u(t, x)$ is analytic for all $x \in \Omega$.

12.3. Weak Max Principles.

Notation 12.13. Let $a_{i j}, b_{j} \in C\left(\bar{\Omega}_{T}\right)$ satisfy $a_{i j}=a_{j i}$ and for $u \in C^{2}(\Omega)$ let

$$
\begin{equation*}
L u(t, x)=\sum_{i, j=1}^{n} a_{i j}(t, x) u_{x_{i} x_{j}}(x)+\sum_{i=1}^{n} b_{i}(t, x) u_{x_{i}}(x) . \tag{12.7}
\end{equation*}
$$

We say L is elliptic if there exists $\theta>0$ such that

$$
\sum a_{i j}(t, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2} \text { for all } \xi \in \mathbb{R}^{n} \text { and }(t, x) \in \bar{\Omega}_{T}
$$

Assumption 3. In this section we assume L is elliptic. As an example $L=\frac{1}{2} \Delta$ is elliptic.

Lemma 12.14. Let L be an elliptic operator as above and suppose $u \in C^{2}(\Omega)$ and $x_{0} \in \Omega$ is a point where $u(x)$ has a local maximum. Then $L u\left(t, x_{0}\right) \leq 0$ for all $t \in[0, T]$.

Proof. Fix $t \in[0, T]$ and set $B_{i j}=u_{x_{i} x_{j}}\left(x_{0}\right), A_{i j}:=a_{i j}\left(t, x_{0}\right)$ and let $\left\{e_{i}\right\}_{i=1}^{n}$ be an orthonormal basis for \mathbb{R}^{n} such that $A e_{i}=\lambda_{i} e_{i}$. Notice that $\lambda_{i} \geq \theta>0$ for
all i. By the first derivative test, $u_{x_{i}}\left(x_{0}\right)=0$ for all i and hence

$$
\begin{aligned}
L u\left(t, x_{0}\right) & =\sum A_{i j} B_{i j}=\sum A_{j i} B_{i j}=\operatorname{tr}(A B) \\
& =\sum e_{i} \cdot A B e_{i}=\sum A e_{i} \cdot B e_{i}=\sum_{i} \lambda_{i} e_{i} \cdot B e_{i} \\
& =\sum_{i} \lambda_{i} \partial_{e_{i}}^{2} u\left(t, x_{0}\right) \leq 0 .
\end{aligned}
$$

The last inequality if a consequence of the second derivative test which asserts $\partial_{v}^{2} u\left(t, x_{0}\right) \leq 0$ for all $v \in \mathbb{R}^{n}$.

Theorem 12.15 (Elliptic weak maximum principle). Let Ω be a bounded domain and L be an elliptic operator as in Eq. (12.7). We now assume that $a_{i j}$ and b_{j} are functions of x alone. For each $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ such that $L u \geq 0$ on Ω (i.e. u is L - subharmonic) we have

$$
\begin{equation*}
\max _{\bar{\Omega}} u \leq \max _{\operatorname{bd}(\Omega)} u \tag{12.8}
\end{equation*}
$$

Proof. Let us first assume $L u>0$ on Ω. If u and had an interior local maximum at $x_{0} \in \Omega$ then by Lemma 12.14, $L u\left(x_{0}\right) \leq 0$ which contradicts the assumption that $L u\left(x_{0}\right)>0$. So if $L u>0$ on Ω we conclude that Eq. (12.8) holds.

Now suppose that $L u \geq 0$ on Ω. Let $\phi(x):=e^{\lambda x_{1}}$ with $\lambda>0$, then

$$
L \phi(x)=\left(\lambda^{2} a_{11}(x)+b_{1}(x) \lambda\right) e^{\lambda x_{1}} \geq \lambda\left(\lambda \theta+b_{1}(x)\right) e^{\lambda x_{1}}
$$

By continuity of $b(x)$ we may choose λ sufficiently large so that $\lambda \theta+b_{1}(x)>0$ on $\bar{\Omega}$ in which case $L \phi>0$ on Ω. The results in the first paragraph may now be applied to $u_{\epsilon}(x):=u(x)+\epsilon \phi(x)$ (for any $\epsilon>0$) to learn

$$
u(x)+\epsilon \phi(x)=u_{\epsilon}(x) \leq \max _{\mathrm{bd}(\Omega)} u_{\epsilon} \leq \max _{\mathrm{bd}(\Omega)} u+\epsilon \max _{\mathrm{bd}(\Omega)} \phi \text { for all } x \in \bar{\Omega} .
$$

Letting $\epsilon \downarrow 0$ in this expression then implies

$$
u(x) \leq \max _{\operatorname{bd}(\Omega)} u \text { for all } x \in \bar{\Omega}
$$

which is equivalent to Eq. (12.8).
Theorem 12.16 (Parabolic weak maximum principle). Assume $u \in C^{1,2}\left(\bar{\Omega}_{T} \backslash \Gamma_{T}\right) \cap$ $C\left(\bar{\Omega}_{T}\right)$.
(1) If $u_{t}-L u \leq 0$ in Ω_{T} then

$$
\begin{equation*}
\max _{\bar{\Omega}_{T}} u=\max _{\Gamma_{T}} u \tag{12.9}
\end{equation*}
$$

(2) If $u_{t}-L u \geq 0$ in Ω_{T} then $\min _{\bar{\Omega}_{T}} u=\min _{\Gamma_{T}} u$.

Proof. Item 1. follows from Item 2. by replacing $u \rightarrow-u$, so it suffices to prove item 1. We begin by assuming $u_{t}-L u<0$ on $\bar{\Omega}_{T}$ and suppose for the sake of contradiction that there exists a point $\left(t_{0}, x_{0}\right) \in \bar{\Omega}_{T} \backslash \Gamma_{T}$ such that $u\left(t_{0}, x_{0}\right)=\max _{\bar{\Omega}_{T}} u$.
(1) If $\left(t_{0}, x_{0}\right) \in \Omega_{T}$ (i.e. $0<t_{0}<T$) then by the first derivative test $\frac{\partial u}{\partial t}\left(t_{0}, x_{0}\right)=0$ and by Lemma $12.14 L u\left(t_{0}, x_{0}\right) \leq 0$. Therefore,

$$
\left(u_{t}-L u\right)\left(t_{0}, x_{0}\right)=-L u\left(t_{0}, x_{0}\right) \geq 0
$$

which contradicts the assumption that $u_{t}-L u<0$ in Ω_{T}.
(2) If $\left(t_{0}, x_{0}\right) \in \bar{\Omega}_{T} \backslash \Gamma_{T}$ with $t_{0}=T$, then by the first derivative test, $\frac{\partial u}{\partial t}\left(T, x_{0}\right) \geq 0$ and by Lemma $12.14 L u\left(t_{0}, x_{0}\right) \leq 0$. So again

$$
\left(u_{t}-L u\right)\left(t_{0}, x_{0}\right) \geq 0
$$

which contradicts the assumption that $u_{t}-L u<0$ in Ω_{T}.
Thus we have proved Eq. (12.9) holds if $u_{t}-L u<0$ on $\bar{\Omega}_{T}$. Finally if $u_{t}-L u \leq 0$ on $\bar{\Omega}_{T}$ and $\epsilon>0$, the function $u^{\epsilon}(t, x):=u(t, x)-\epsilon t$ satisfies $u_{t}^{\epsilon}-L u^{\epsilon} \leq-\epsilon<0$. Therefore by what we have just proved

$$
u(t, x)-\epsilon t \leq \max _{\bar{\Omega}_{T}} u^{\epsilon}=\max _{\Gamma_{T}} u^{\epsilon} \leq \max _{\Gamma_{T}} u \text { for all }(t, x) \in \bar{\Omega}_{T}
$$

Letting $\epsilon \downarrow 0$ in the last equation shows that Eq. (12.9) holds.
Corollary 12.17. There is at most one solution $u \in C^{1,2}\left(\bar{\Omega}_{T} \backslash \Gamma_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ to the partial differential equation

$$
\frac{\partial u}{\partial t}=L u \text { with } u=f \text { on } \Gamma_{T}
$$

Proof. If there were another solution v, then $w:=u-v$ would solve $\frac{\partial w}{\partial t}=L w$ with $w=0$ on Γ_{T}. So by the maximum principle in Theorem $12.16, w=0$ on $\bar{\Omega}_{T}$.

We now restrict back to $L=\frac{1}{2} \triangle$ and we wish to see what can be said when $\Omega=\mathbb{R}^{n}$ - an unbounded set.

Theorem 12.18. Suppose $u \in C\left([0, T] \times \mathbb{R}^{n}\right) \cap C^{2,1}\left((0, T) \times \mathbb{R}^{n}\right)$,

$$
u_{t}-\frac{1}{2} \triangle u \leq 0 \text { on }[0, T] \times \mathbb{R}^{n}
$$

and there exists constants $A, a<\infty$ such that

$$
u(t, x) \leq A e^{a|x|^{2}} \text { for }(t, x) \in(0, T) \times \mathbb{R}^{n}
$$

Then

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}^{n}} u(t, x) \leq K:=\sup _{x \in \mathbb{R}^{n}} u(0, x)
$$

Proof. Recall that

$$
p_{t}(x)=\left(\frac{1}{t}\right)^{n / 2} e^{-\frac{1}{2 t}|x|^{2}}=\left(\frac{1}{t}\right)^{n / 2} e^{-\frac{1}{2 t} x \cdot x}
$$

solves the heat equation

$$
\begin{equation*}
\partial_{t} p_{t}(x)=\frac{1}{2} \triangle p_{t}(x) . \tag{12.10}
\end{equation*}
$$

Since both sides of Eq. (12.10) are analytic as functions in x, so ${ }^{7}$

$$
\frac{\partial p_{t}}{\partial t}(i x)=\frac{1}{2}\left(\triangle p_{t}\right)(i x)=-\frac{1}{2} \triangle_{x} p_{t}(i x)
$$

and therefore for all $\tau>0$ and $t<\tau$

$$
\frac{\partial p_{\tau-t}}{\partial t}(i x)=-\dot{p}_{\tau-t}(i x)=\frac{1}{2} \triangle_{x} p_{\tau-t}(i x)
$$

[^0]That is to say the function

$$
\rho(t, x):=p_{\tau-t}(i x)=\left(\frac{1}{\tau-t}\right)^{n / 2} e^{\frac{1}{2(\tau-t)}|x|^{2}} \text { for } 0 \leq t<\tau
$$

solves the heat equation. (This can be checked directly as well.)
Let $\epsilon, \tau>0$ (to be chosen later) and set

$$
v(t, x)=u(t, x)-\epsilon \rho(t, x) \text { for } 0 \leq t \leq \tau / 2
$$

Since $\rho(t, x)$ is increasing in t,

$$
v(t, x) \leq A e^{a|x|^{2}}-\epsilon\left(\frac{1}{\tau}\right)^{n / 2} e^{\frac{1}{2 \tau}|x|^{2}} \text { for } 0 \leq t \leq \tau / 2
$$

Hence if we require $\frac{1}{2 \tau}>a$ or $\tau<\frac{1}{2 a}$ it will follows that

$$
\lim _{|x| \rightarrow \infty}\left[\sup _{0 \leq t \leq \tau / 2} v(t, x)\right]=-\infty
$$

Therefore we may choose M sufficiently large so that

$$
v(t, x) \leq K:=\sup _{z} u(0, z) \text { for all }|x| \geq M \text { and } 0 \leq t \leq \tau / 2
$$

Since

$$
\left(\partial_{t}-\frac{\triangle}{2}\right) v=\left(\partial_{t}-\frac{\triangle}{2}\right) u \leq 0
$$

we may apply the maximum principle with $\Omega=B(0, M)$ and $T=\tau / 2$ to conclude for $(t, x) \in \Omega_{T}$ that

$$
u(t, x)-\epsilon \rho(t, x)=v(t, x) \leq \sup _{z \in \Omega} v(0, z) \leq K \text { if } 0 \leq t \leq \tau / 2
$$

We may now let $\epsilon \downarrow 0$ in this equation to conclude that

$$
\begin{equation*}
u(t, x) \leq K \text { if } 0 \leq t \leq \tau / 2 \tag{12.11}
\end{equation*}
$$

By applying Eq. (12.11) to $u(t+\tau / 2, x)$ we may also conclude

$$
u(t, x) \leq K \text { if } 0 \leq t \leq \tau
$$

Repeating this argument then enables us to show $u(t, x) \leq K$ for all $0 \leq t \leq T$.
Corollary 12.19. The heat equation

$$
u_{t}-\frac{1}{2} \triangle u=0 \text { on }[0, T] \times \mathbb{R}^{n} \text { with } u(0, \cdot)=f(\cdot) \in C\left(\mathbb{R}^{n}\right)
$$

has at most one solution in the class of functions $u \in C\left([0, T] \times \mathbb{R}^{n}\right) \cap C^{2,1}((0, T) \times$ \mathbb{R}^{n}) which satisfy

$$
u(t, x) \leq A e^{a|x|^{2}} \text { for }(t, x) \in(0, T) \times \mathbb{R}^{n}
$$

for some constants A and a.
Theorem 12.20 (Max Principle a la Hamilton). Suppose $u \in C^{1,2}\left([0, T] \times \mathbb{R}^{d}\right)$ satisfies
(1) $u(t, x) \leq A e^{a|x|^{2}}$ for some $A, a($ for all $t \leq T)$
(2) $u(0, x) \leq 0$ for all x
(3) $\frac{\partial u}{\partial t} \leq \triangle u$ i.e. $\left(\partial_{t}-\triangle\right) u \leq 0$.

Then $u(t, x) \leq 0$ for all $(t, x) \in[0, T] \times \mathbb{R}^{d}$.

Proof. Special Case. Assume $\frac{\partial u}{\partial t}<\Delta u$ on $[0, T] \times \mathbb{R}^{d}, u(0, x)<0$ for all $x \in \mathbb{R}^{d}$ and there exists $M>0$ such that $u(t, x)<0$ if $|x| \geq M$ and $t \in[0, T]$.For the sake of contradiction suppose there is some point $(t, x) \in[0, T] \times \mathbb{R}^{d}$ such that $u(t, x)>0$.

By the intermediate value theorem there exists $\tau \in[0, t]$ such that $u(\tau, x)=0$. In particular the set $\{u=0\}$ is a non-empty closed compact subset of $(0, T] \times B(0, M)$. Let

$$
\pi:(0, T] \times B(0, M) \rightarrow(0, T]
$$

be projection onto the first factor, since $\{u \neq 0\}$ is a compact subset of $(0, T] \times$ $B(0, M)$ if follows that

$$
t_{0}:=\min \{t \in \pi(\{u=0\})\}>0
$$

Choose a point $x_{0} \in B(0, M)$ such that $\left(t_{0}, x_{0}\right) \in\{u=0\}$, i.e. $u\left(t_{0}, x_{0}\right)=0$, see Figure 37 below. Since $u(t, x)<0$ for all $0 \leq t<t_{0}$ and $x \in \mathbb{R}^{d}, u\left(t_{0}, x\right) \leq 0$

Figure 37. Finding a point $\left(t_{0}, x_{0}\right)$ such that t_{0} is as small as possible and $u\left(t_{0}, x_{0}\right)=0$.
for all $x \in \mathbb{R}^{d}$ with $u\left(t_{0}, x_{0}\right)=0$. This information along with the first and second derivative tests allows us to conclude

$$
\nabla u\left(t_{0}, x_{0}\right)=0, \Delta u\left(t_{0}, x_{0}\right) \leq 0 \text { and } \frac{\partial u}{\partial t}\left(t_{0}, x_{0}\right) \geq 0
$$

This then implies that

$$
0 \leq \frac{\partial u}{\partial t}\left(t_{0}, x_{0}\right)<\Delta u\left(t_{0}, x_{0}\right) \leq 0
$$

which is absurd. Hence we conclude that $u \leq 0$ on $[0, T] \times \mathbb{R}^{d}$.
General Case: Let $p_{t}(x)=\frac{1}{t^{d / 2}} e^{-\frac{1}{4 t}|x|^{2}}$ be the fundamental solution to the heat equation

$$
\partial_{t} p_{t}=\triangle p_{t}
$$

Let $\tau>0$ to be determined later. As in the proof of Theorem 12.18, the function

$$
\rho(t, x):=p_{\tau-t}(i x)=\left(\frac{1}{\tau-t}\right)^{d / 2} e^{\frac{1}{4(\tau-t)}|x|^{2}} \text { for } 0 \leq t<\tau
$$

is still a solution to the heat equation. Given $\epsilon>0$, define, for $t \leq \tau / 2$,

$$
u_{\epsilon}(t, x)=u(t, x)-\epsilon-\epsilon t-\epsilon \rho(t, x) .
$$

Then

$$
\begin{aligned}
\left(\partial_{t}-\triangle\right) u_{\epsilon} & =\left(\partial_{t}-\triangle\right) u-\epsilon \leq-\epsilon<0 \\
u_{\epsilon}(0, x) & =u(0, x)-\epsilon \leq 0-\epsilon \leq-\epsilon<0
\end{aligned}
$$

and for $t \leq \tau / 2$

$$
u_{\epsilon}(t, x) \leq A e^{a|x|^{2}}-\epsilon-\epsilon \frac{1}{\tau^{d / 2}} e^{\frac{1}{4 \tau}|x|^{2}}
$$

Hence if we choose τ such that $\frac{1}{4 \tau}>a$, we will have $u_{\epsilon}(t, x)<0$ for $|x|$ sufficiently large. Hence by the special case already proved, $u_{\epsilon}(t, x) \leq 0$ for all $0 \leq t \leq \frac{\tau}{2}$ and $\epsilon>0$. Letting $\epsilon \downarrow 0$ implies that $u(t, x) \leq 0$ for all $0 \leq t \leq \tau / 2$. As in the proof of Theorem 12.18 we may step our way up by applying the previous argument to $u(t+\tau / 2, x)$ and then to $u(t+\tau, x)$, etc. to learn $u(t, x) \leq 0$ for all $0 \leq t \leq T$.

12.4. Non-Uniqueness of solutions to the Heat Equation.

Theorem 12.21 (See Fritz John §7). For any $\alpha>1$, let

$$
g(t):= \begin{cases}e^{-t^{-\alpha}} & t>0 \tag{12.12}\\ 0 & t \leq 0\end{cases}
$$

and define

$$
u(t, x)=\sum_{k=0}^{\infty} \frac{g^{(k)}(t) x^{2 k}}{(2 k)!}
$$

Then $u \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
u_{t}=u_{x x} \text { and } u(0, x):=0 \tag{12.13}
\end{equation*}
$$

In particular, the heat equation does not have unique solutions.
Proof. We are going to look for a solution to Eq. (12.13) of the form

$$
u(t, x)=\sum_{n=0}^{\infty} g_{n}(t) x^{n}
$$

in which case we have (formally) that

$$
\begin{aligned}
0 & =u_{t}-u_{x x}=\sum_{n=0}^{\infty}\left(\dot{g}_{n}(t) x^{n}-g_{n}(t) n(n-1) x^{n-2}\right) \\
& =\sum_{n=0}^{\infty}\left[\dot{g}_{n}(t)-(n+2)(n+1) g_{n+2}(t)\right] x^{n}
\end{aligned}
$$

This implies

$$
\begin{equation*}
g_{n+2}=\frac{\dot{g}_{n}}{(n+2)(n+1)} . \tag{12.14}
\end{equation*}
$$

To simplify the final answer, we will now assume $u_{x}(0, x)=0$, i.e. $g_{1} \equiv 0$ in which case Eq. (12.14) implies $g_{n} \equiv 0$ for all n odd. We also have with $g:=g_{0}$,

$$
g_{2}=\frac{\dot{g}_{0}}{2 \cdot 1}=\frac{\dot{g}}{2!}, g_{4}=\frac{\dot{g}_{2} 0}{4 \cdot 3}=\frac{\ddot{g}}{4!}, g_{6}=\frac{g^{(3)}}{6!} \ldots g_{2 k}=\frac{g^{(k)}}{(2 k)!}
$$

and hence

$$
\begin{equation*}
u(t, x)=\sum_{k=0}^{\infty} \frac{g^{(k)}(t) x^{2 k}}{(2 k)!} \tag{12.15}
\end{equation*}
$$

The function $u(t, x)$ will solve $u_{t}=u_{x x}$ for $(t, x) \in \mathbb{R}^{2}$ with $u(0, x)=0$ provided the convergence in the sum is adequate to justify the above computations.

Now let $g(t)$ be given by Eq. (12.12) and extend g to $\mathbb{C} \backslash(-\infty, 0]$ via $g(z)=e^{-z^{-\alpha}}$ where

$$
z^{-\alpha}=e^{-\alpha \log (z)}=e^{-\alpha(\ln r+i \theta)} \text { for } z=r e^{i \theta} \text { with }-\pi<\theta<\pi
$$

In order to estimate $g^{(k)}(t)$ we will use of the Cauchy estimates on the contour $|z-t|=\gamma t$ where γ is going to be chosen sufficiently close to 0 . Now

$$
\operatorname{Re}\left(z^{-\alpha}\right)=e^{-\alpha \ln r} \cos (\alpha \theta)=|z|^{-\alpha} \cos (\alpha \theta)
$$

and hence

$$
|g(z)|=e^{-\operatorname{Re}\left(z^{-\alpha}\right)}=e^{-|z|^{-\alpha} \cos (\alpha \theta)}
$$

From Figure 38, we see

Figure 38. Here is a picture of the maximum argument θ_{m} that a point z on $\partial B(t, \gamma t)$ may attain. Notice that $\sin \theta_{m}=\gamma t / t=\gamma$ is independent of t and $\theta_{m} \rightarrow 0$ as $\gamma \rightarrow 0$.

$$
\beta(\gamma):=\min \left\{\cos (\alpha \theta):-\pi<\theta<\pi \text { and }\left|r e^{i \theta}-t\right|=\gamma t\right\}
$$

is independent of t and $\beta(\gamma) \rightarrow 1$ as $\gamma \rightarrow 0$. Therefore for $|z-t|=\gamma t$ we have

$$
|g(z)| \leq e^{-|z|^{-\alpha} \beta(\gamma)} \leq e^{-([\gamma+1] t)^{-\alpha} \beta(\gamma)}=e^{-\frac{\beta(\gamma)}{1+\gamma} t^{-\alpha}} \leq e^{-\frac{1}{2} t^{-\alpha}}
$$

provided γ is chosen so small that $\frac{\beta(\gamma)}{1+\gamma} \geq \frac{1}{2}$.
By for $w \in B(t, t \gamma)$, the Cauchy integral formula and its derivative give

$$
\begin{aligned}
g(w) & =\frac{1}{2 \pi i} \oint_{|z-t|=\gamma t} \frac{g(z)}{z-w} d z \text { and } \\
g^{(k)}(w) & =\frac{k!}{2 \pi i} \oint_{|z-t|=\gamma t} \frac{g(z)}{(z-w)^{k+1}} d z
\end{aligned}
$$

and in particular

$$
\begin{equation*}
\left|g^{(k)}(t)\right| \leq \frac{k!}{2 \pi} \oint_{|z-t|=\gamma t} \frac{|g(z)|}{|z-w|^{k+1}}|d z| \leq \frac{k!}{2 \pi} e^{-\frac{1}{2} t^{-\alpha}} \frac{2 \pi \gamma t}{|\gamma t|^{k+1}}=\frac{k!}{|\gamma t|^{k}} e^{-\frac{1}{2} t^{-\alpha}} \tag{12.16}
\end{equation*}
$$

We now use this to estimate the sum in Eq. (12.15) as

$$
\begin{aligned}
|u(t, x)| & \leq \sum_{k=0}^{\infty}\left|\frac{g^{(k)}(t) x^{2 k}}{(2 k)!}\right| \leq e^{-\frac{1}{2} t^{-\alpha}} \sum_{k=0}^{\infty} \frac{k!}{(\gamma t)^{k}} \frac{|x|^{2 k}}{(2 k)!} \\
& \leq e^{-\frac{1}{2} t^{-\alpha}} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x^{2}}{\gamma t}\right)^{k}=\exp \left(\frac{x^{2}}{\gamma t}-\frac{1}{2} t^{-\alpha}\right)<\infty .
\end{aligned}
$$

Therefore $\lim _{t \downarrow 0} u(t, x)=0$ uniformly for x in compact subsets of \mathbb{R}. Similarly one may use the estimate in Eq. (12.16) to show u is smooth and

$$
\begin{aligned}
u_{x x} & =\sum_{k=0}^{\infty} \frac{g^{(k)}(t)(2 k)(2 k-1) x^{2 k-2}}{(2 k)!}=\sum_{k=1}^{\infty} \frac{g^{(k)}(t) x^{2(k-1)}}{(2(k-1))!} \\
& =\sum_{k=0}^{\infty} \frac{g^{(k+1)}(t) x^{2 k}}{(2 k)!}=u_{t} .
\end{aligned}
$$

12.5. The Heat Equation on the Circle and \mathbb{R}. In this subsection, let $S_{L}:=$ $\{L z: z \in S\}$ - be the circle of radius L. As usual we will identify functions on S_{L} with $2 \pi L$ - periodic functions on \mathbb{R}. Given two $2 \pi L$ periodic functions f, g, let

$$
(f, g)_{L}:=\frac{1}{2 \pi L} \int_{-\pi L}^{\pi L} f(x) \bar{g}(x) d x
$$

and denote $H_{L}:=L_{2 \pi L}^{2}$ to be the $2 \pi L$ - periodic functions f on \mathbb{R} such that $(f, f)_{L}<\infty$. By Fourier's theorem we know that the functions $\chi_{k}^{L}(x):=e^{i k x / L}$ with $k \in \mathbb{Z}$ form an orthonormal basis for H_{L} and this basis satisfies

$$
\frac{d^{2}}{d x^{2}} \chi_{k}^{L}=-\left(\frac{k}{L}\right)^{2} \chi_{k}^{L}
$$

Therefore the solution to the heat equation on S_{L},

$$
u_{t}=\frac{1}{2} u_{x x} \text { with } u(0, \cdot)=f \in H_{L}
$$

is given by

$$
\begin{aligned}
u(t, x) & =\sum_{k \in \mathbb{Z}}\left(f, \chi_{k}^{L}\right) e^{-\frac{1}{2}\left(\frac{k}{L}\right)^{2} t} e^{i k x / L} \\
& =\sum_{k \in \mathbb{Z}}\left(\frac{1}{2 \pi L} \int_{-\pi L}^{\pi L} f(y) e^{-i k y / L} d y\right) e^{-\frac{1}{2}\left(\frac{k}{L}\right)^{2} t} e^{i k x / L} \\
& =\int_{-\pi L}^{\pi L} p_{t}^{L}(x-y) f(y) d y
\end{aligned}
$$

where

$$
p_{t}^{L}(x)=\frac{1}{2 \pi L} \sum_{k \in \mathbb{Z}} e^{-\frac{1}{2}\left(\frac{k}{L}\right)^{2} t} e^{i k x / L}
$$

If f is L periodic then it is $n L$ - periodic for all $n \in \mathbb{N}$, so we also would learn

$$
u(t, x)=\int_{-\pi n L}^{\pi n L} p_{t}^{n L}(x-y) f(y) d y \text { for all } n \in \mathbb{N}
$$

this suggest that we might pass to the limit as $n \rightarrow \infty$ in this equation to learn

$$
u(t, x)=\int_{\mathbb{R}} p_{t}(x-y) f(y) d y
$$

where

$$
\begin{aligned}
p_{t}(x) & :=\lim _{n \rightarrow \infty} p_{t}^{n L}(x)=\lim _{L \rightarrow \infty} \frac{1}{2 \pi L} \sum_{k \in \mathbb{Z}} e^{-\frac{1}{2}\left(\frac{k}{L}\right)^{2} t} e^{i\left(\frac{k}{L}\right) x} \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-\frac{1}{2} \xi^{2} t} e^{i \xi x} d \xi=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
\end{aligned}
$$

From this we conclude

$$
u(t, x)=\int_{\mathbb{R}} p_{t}(x-y) f(y) d y=\int_{-\pi L}^{\pi L} \sum_{n \in \mathbb{Z}} p_{t}(x-y+2 \pi n L) f(y) d y
$$

and we arrive at the identity

$$
\sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x+2 \pi n L)^{2}}{2 t}}=\sum_{n \in \mathbb{Z}} p_{t}(x+2 \pi n L)=\frac{1}{2 \pi L} \sum_{k \in \mathbb{Z}} e^{-\frac{1}{2}\left(\frac{k}{L}\right)^{2} t} e^{i k x / L}
$$

which is a special case of Poisson's summation formula.

[^0]: ${ }^{7}$ Similarly since both sides of Eq. (12.10) are analytic functions in t, it follows that

 $$
 \frac{\partial}{\partial t} p_{-t}(x)=-\dot{p}_{t}(x)=-\frac{1}{2} \triangle p_{-t} .
 $$

