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3. Fully nonlinear first order PDE

In this section let U ⊂o Rn be an open subset of Rn and (x, z, p) ∈ Ū ×Rn×R→
F (x, z, p) ∈ R be a C2 — function. Actually to simplify notation let us suppose
U =Rn.We are now looking for a solution u : Rn → R to the fully non-linear PDE,
(3.1) F (x, u(x),∇u(x)) = 0.
As above, we “reduce” the problem to solving ODE’s. To see how this might be
done, suppose u solves (3.1) and x(s) is a curve in Rn and let

z(s) = u(x(s)) and p(s) = ∇u(x(s)).
Then

z0(s) = ∇u(x(s)) · x0(s) = p(s) · x0(s) and(3.2)

p0(s) = ∂x0(s)∇u(x(s)).(3.3)

We would now like to find an equation for x(s) which along with the above system
of equations would form and ODE for (x(s), z(s), p(s)). The term, ∂x0(s)∇u(x(s)),
which involves two derivative of u is problematic and we would like to replace it by
something involving only∇u and u. In order to get the desired relation, differentiate
Eq. (3.1) in x in the direction v to find

0 = Fx · v + Fz∂vu+ Fp · ∂v∇u = Fx · v + Fz∂vu+ Fp ·∇∂vu
= Fx · v + Fz ∇u · v + (∂Fp∇u) · v,

wherein we have used the fact that mixed partial derivative commute. This equation
is equivalent to

(3.4) ∂Fp∇u|(x,u(x),∇u(x)) = −(Fx + Fz ∇u)|(x,u(x),∇u(x)).
By requiring x(s) to solve x0(s) = Fp(x(s), z(s), p(s)), we find, using Eq. (3.4) and
Eqs. (3.2) and (3.3) that (x(s), z(s), p(s)) solves the characteristic equations,

x0(s) = Fp(x(s), z(s), p(s))

z0(s) = p(s) · Fp(x(s), z(s), p(s))
p0(s) = −Fx(x(s), z(s), p(s))− Fz(x(s), z(s), p(s))p(s).

We will in the future simply abbreviate these equations by

x0 = Fp

z0 = p · Fp(3.5)

p0 = −Fx − Fzp.

The above considerations have proved the following Lemma.

Lemma 3.1. Let

A(x, z, p) := (Fp(x, z, p), p · Fp(x, z, p),−Fx(x, z, p)− Fz(x, z, p)p) ,

π1(x, z, p) = x and π2(x, z, p) = z.

If u solves Eq. (3.1) and x0 ∈ U, then

esA(x0, u(x0),∇u(x0)) = (x(s), u(x(s)),∇u(x(s))) and
u(x(s)) = π2 ◦ esA(x0, u(x0),∇u(x0))(3.6)

where x(s) = π1 ◦ esA(x0, u(x0),∇u(x0)).
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We now want to use Eq. (3.6) to produce solutions to Eq. (3.1). As in the
quasi-linear case we will suppose Σ : U ⊂o Rn−1 −→ Rn is a surface, Σ(0) = x0,
DΣ(y) is injective for all y ∈ U and u0 : Σ→ R is given. We wish to solve Eq. (3.1)
for u with the added condition that u(Σ(y)) = u0(y). In order to make use of Eq.
(3.6) to do this, we first need to be able to find ∇u(Σ(y)). The idea is to use Eq.
(3.1) to determine ∇u(Σ(y)) as a function of Σ(y) and u0(y) and for this we will
invoke the implicit function theorem. If u is a function such that u(Σ(y)) = u0(y)
for y near 0 and p0 = ∇u(x0) then

∂vu0(0) = ∂vu(Σ(y))|y=0 = ∇u(x0) · Σ0(0)v = p0 · Σ0(0)v.
Notation 3.2. Let ∇Σu0(y) denote the unique vector in Rn which is tangential to
Σ at Σ(y) and such that

∂vu0(y) = ∇Σu0(y) · Σ0(0)v for all v ∈ Rn−1.
Theorem 3.3. Let F : Rn × R × Rn → R be a C2 function, 0 ∈ U ⊂o Rn−1,
Σ : U ⊂o Rn−1 C2−→ Rn be an embedded submanifold, (x0, z0, p0) ∈ Σ×R×Rn such
that F (x0, z0, p0) = 0 and x0 = Σ(0), u0 : Σ

C1−→ R such that u0(x0) = z0, n(y) be
a normal vector to Σ at y. Further assume

(1) ∂vu0(0) = p0 · Σ0(0)v = p0 · ∂vΣ(0) for all v ∈ Rn−1.
(2) Fp(x0, y0, z0) · n(0) 6= 0.
Then there exists a neighborhood V ⊂ Rn of x0 and a C2-function u : V → R

such that u ◦ Σ = u0 near 0 and Eq. (3.1) holds for all x ∈ V.

Proof. Step 1. There exist a neighborhood U0 ⊂ U and a function p0 : U0 →
Rn such that
(3.7) p0(y)

tan = ∇Σu0(y) and F (Σ(y), u(Σ((y)), p0(y)) = 0

for all y ∈ U0, where p0(y)tan is component of p0(y) tangential to Σ. This is an

Figure 11. Decomposing p into its normal and tangential components.

exercise in the implicit function theorem.
Choose α0 ∈ R such that ∇Σu0(0) + α0n(0) = p0 and define

f(α, y) := F (Σ(y), u0(y),∇Σu0(y) + αn(y)).

Then
∂f

∂α
(α, 0) = Fp(x0, z0,∇Σu0(0) + αn(0)) · n(0) 6= 0,
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so by the implicit function theorem there exists 0 ∈ U0 ⊂ U and α : U0 → R such
that f(α(y), y) = 0 for all y ∈ U0. Now define

p0(y) := ∇Σu0(y) + α(y)n(y) for y ∈ U0.

To simplify notation in the future we will from now on write U for U0.
Step 2. Suppose (x, z, p) is a solution to (3.5) such that F (x(0), z(0), p(0)) = 0

then

(3.8) F (x(s), z(s), p(s)) = 0 for all t ∈ J

because
d

ds
F (x(s), z(s), p(s)) = Fx · x0 + Fzz

0 + Fp · p0

= Fx · Fp + Fz(p · Fp)− Fp · (Fx + Fzp) = 0.(3.9)

Step 3. (Notation). For y ∈ U let

(X(s, y), Z(s, y), P (s, y)) = esA(Σ(y), u0(y), p0(y)),

ie. X(s, y), Z(s, y) and P (s, y) solve the coupled system of O.D.E.’s:

X 0 = Fp with X(0, y) = Σ(y)

Z0 = P · Fp with Z(0, y) = u0(y)

P 0 = Fx − FzP with P (0, y) = p0(y).(3.10)

With this noration Eq. (3.8) becomes

(3.11) F (X(s, y), Z(s, y), P (s, y)) = 0 for all t ∈ J.

Step 4. There exists a neighborhood 0 ∈ U0 ⊂ U and 0 ∈ J ⊂ R such that
X : J × U0 → Rn is a C1 diffeomorphism onto an open set V := X(J × U0) ⊂ Rn
with x0 ∈ V. Indeed, X(0, y) = Σ(y) so that DyX(0, y)|y=0 = Σ0(0) and hence

DX(0, 0)(a, v) =
∂X

∂s
(0, 0)a+ Σ0(0)v = Fp(x0, z0, p0)a+ Σ

0(0)v.

By the assumptions, Fp(x0, z0, p0) /∈ Ran Σ0(0) and Σ0(0) is injective, it follows
that DX(0, 0) is invertible So the assertion is a consequence of the inverse function
theorem.
Step 5. Define

u(x) := Z(X−1(x)),

then u is the desired solution. To prove this first notice that u is uniquely charac-
terized by

u(X(s, y)) = Z(s, y) for all (s, y) ∈ J0 × U0.

Because of Step 2., to finish the proof it suffices to show ∇u(X(s, y)) = P (s, y).
Step 6. ∇u(X(s, y)) = P (s, y). From Eq. (3.10),

(3.12) P ·X 0 = P · Fp = Z 0 =
d

ds
u(X) = ∇u(X) ·X 0

which shows
[P −∇u(X)] ·X 0 = 0.

So to finish the proof it suffices to show

[P −∇u(X)] · ∂vX = 0
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for all v ∈ Rn−1 or equivalently that
(3.13) P (s, y) · ∂vX = ∇u(x) · ∂vX = ∂vu(X) = ∂vZ

for all v ∈ Rn−1.
To prove Eq. (3.13), fix a y and let

r(s) := P (s, y) · ∂vX(s, y)− ∂vZ(s, y).

Then using Eq. (3.10),

r0 = P 0 · ∂vX + P · ∂vX 0 − ∂vZ
0

= (−Fx − FzP ) · ∂vX + P · ∂vFp − ∂v(P · Fp)
= (−Fx − FzP ) · ∂vX − (∂vP ) · Fp.(3.14)

Further, differentiating Eq. (3.11) in y implies for all v ∈ Rn−1 that
(3.15) Fx · ∂vX + Fz∂vZ + Fp · ∂vP = 0.
Adding Eqs. (3.14) and (3.15) then shows

r0 = −FzP · ∂vX + Fz∂vZ = −Fzr
which implies

r(s) = e−
R s
0
Fz(X,Z,P )(σ,y)dσr(0).

This shows r ≡ 0 because p0(y)T = (∇Σu0) (Σ(y)) and hence
r(0) = p0(y) · ∂vΣ(y)− ∂vu0(Σ(y)) = [p0(y)−∇Σu0(Σ(y))] · ∂vΣ(y) = 0.

Example 3.4 (Quasi-Linear Case Revisited). Let us consider the quasi-linear PDE
in Eq. (2.39),

(3.16) A(x, z) ·∇xu(x)− c(x, u(x)) = 0.

in light of Theorem 3.3. This may be written in the form of Eq. (3.1) by setting

F (x, z, p) = A(x, z) · p− c(x, z).

The characteristic equations (3.5) for this F are

x0 = Fp = A

z0 = p · Fp = p ·A
p0 = −Fx − Fzp = − (Ax · p− cx)− (Az · p− cz) p.

Recalling that p(s) = ∇u(s, x), the z equation above may expressed, by using Eq.
(3.16) as

z0 = p ·A = c.

Therefore the equations for (x(s), z(s)) may be written as

x0(s) = A(x, z) and z0 = c(x, z)

and these equations may be solved without regard for the p — equation. This is
what makes the quasi-linear PDE simpler than the fully non-linear PDE.
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3.1. An Introduction to Hamilton Jacobi Equations. A Hamilton Jacobi
Equation is a first order PDE of the form

(3.17)
∂S

∂t
(t, x) +H(x,∇xS(t, x)) = 0 with S(0, x) = g(x)

where H : Rn×Rn → R and g : Rn → R are given functions. In this section we are
going to study the connections of this equation to the Euler Lagrange equations of
classical mechanics.

3.1.1. Solving the Hamilton Jacobi Equation (3.17) by characteristics. Now let us
solve the Hamilton Jacobi Equation (3.17) using the method of characteristics. In
order to do this let

(p0, p) = (
∂S

∂t
,∇xS(t, x)) and F (t, x, z, p) := p0 +H(x, p).

Then Eq. (3.17) becomes

0 = F (t, x, S,
∂S

∂t
,∇xS).

Hence the characteristic equations are given by

d

ds
(t(s), x(s)) = F(p0,p) = (1,∇pH(x(s), p(s))

d

ds
(p0, p)(s) = −F(t,x) − Fz(p0, p) = −F(t,x) = (0,−∇xH(x(s), p(s)))

and
z0(s) = (p0, p) · F(p0,p) = p0(s) + p(s) ·∇pH(x(s), p(s)).

Solving the t equation with t(0) = 0 gives t = s and so we identify t and s and our
equations become

ẋ(t) = ∇pH(x(t), p(t))(3.18)

ṗ(t) = −∇xH(x(t), p(t))(3.19)

d

dt

·
∂S

∂t
(t, x(t))

¸
=

d

dt
p0(t) = 0 and

d

dt
[S(t, x(t))] =

d

dt
z(t) =

∂S

∂t
(t, x(t)) + p(t) ·∇pH(x(t), p(t))

= −H(x(t), p(t)) + p(t) ·∇pH(x(t), p(t)).

Hence we have proved the following proposition.

Proposition 3.5. If S solves the Hamilton Jacobi Equation Eq. 3.17 and
(x(t), p(t)) are solutions to the Hamilton Equations (3.18) and ?? (see also Eq.
(3.29) below) with p(0) = (∇xg) (x(0)) then

S(T, x(T )) = g(x(0)) +

Z T

0

[p(t) ·∇pH(x(t), p(t))−H(x(t), p(t))] dt.

In particular if (T, x) ∈ R× Rn then

(3.20) S(T, x) = g(x(0)) +

Z T

0

[p(t) ·∇pH(x(t), p(t))−H(x(t), p(t))] dt.

provided (x, p) is a solution to Hamilton Equations (3.18) and (3.19) satisfying the
boundary condition x(T ) = x and p(0) = (∇xg) (x(0)).
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Remark 3.6. Let X(t, x0, p0) = x(t) and P (t, x0, p0) = p(t) where (x(t), p(t)) sat-
isfies Hamilton Equations (3.18) and (3.19) with (x(0), p(0)) = (x0, p0) and let
Ψ(t, x) := (t,X(t, x,∇g(x)). Then Ψ(0, x) = (0, x) so

∂vΨ(0, 0) = (0, v) and ∂tΨ(0, 0) = (1,∇pH(x,∇g(x)))
from which it follows that Ψ0(0, 0) is invertible. Therefore given a ∈ Rn, the exists
> 0 such that Ψ−1(t, x) is well defined for |t| < and |x − a| < . Writing

Ψ−1(T, x) = (T, x0(T, x)) we then have that

(x(t), p(t)) := (X(t, x0(T, x),∇g(x0(T, x)), P (t, x0,∇g(x0(T, x)))
solves Hamilton Equations (3.18) and (3.19) satisfies the boundary condition
x(T ) = x and p(0) = (∇xg) (x(0)).

3.1.2. The connection with the Euler Lagrange Equations. Our next goal is to ex-
press the solution S(T, x) in Eq. (3.20) solely in terms of the path x(t). For this
we digress a bit to Lagrangian mechanics and the notion of the “classical action.”

Definition 3.7. Let T > 0, L : Rn × Rn −→ R be a smooth “Lagrangian” and
g : Rn → R be a smooth function. The g — weighted action IgT (q) of a function
q ∈ C2([0, T ],Rn) is defined to be

IgT (q) = g(q(0)) +

Z T

0

L(q(t), q̇(t))dt.

When g = 0 we will simply write IT for I0,T .

We are now going to study the function S(T, x) of “least action,”

S(T, x) := inf
©
IgT (q) : q ∈ C2([0, T ]) with q(T ) = x

ª(3.21)

= inf

(
g(q(0)) +

Z T

0

L(q(t), q̇(t))dt : q ∈ C2([0, T ]) with q(T ) = x

)
.

The next proposition records the differential of IgT (q).

Proposition 3.8. Let L ∈ C∞(Rn × Rn,R) be a smooth Lagrangian, then for
q ∈ C2([0, T ],Rn) and h ∈ C1([0, T ],Rn)

DIgT (q)h = [(∇g(q)−D2L(q, q̇)) · h]t=0 + [D2L(q, q̇) · h]t=T
+

Z T

0

(D1L(q, q̇)− d

dt
D2L(q, q̇))h dt(3.22)

Proof. By differentiating past the integral,

∂hIT (q) =
d

ds
|0IT (q + sh) =

Z T

0

d

ds
|0L(q(t) + sh(t), q̇(t) + sḣ(t))dt

=

Z T

0

(D1L(q, q̇)h+D2L(q, q̇)ḣ)dt

=

Z T

0

(D1L(q, q̇)− d

dt
D2L(q, q̇))h dt+D2L(q, q̇)h

¯̄̄T
0
.

This completes the proof since IgT (q) = g(q(0))+IT (q) and ∂h [g(q(0))] = ∇g(q(0)) ·
h(0).
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Definition 3.9. A function q ∈ C2([0, T ],Rn) is said to solve the Euler Lagrange
equation for L if q solves

(3.23) D1L(q, q̇)− d

dt
[D2L(q, q̇)] = 0.

This is equivalently to q satisfying DIT (q)h = 0 for all h ∈ C1([0, T ],Rn) which
vanish on ∂[0, T ] = {0, T} .
Let us note that the Euler Lagrange equations may be written as:

D1L(q, q̇) = D1D2L(q, q̇)q̇ +D2
2L(q, q̇)q̈.

Corollary 3.10. Any minimizer q (or more generally critical point) of IgT (·) must
satisfy the Euler Lagrange Eq. (3.23) with the boundary conditions

(3.24) q(T ) = x and ∇g(q(0)) = ∇q̇L(q(0), q(0)) = D2L(q(0), q(0)).

Proof. The corollary is a consequence Proposition 3.8 and the first derivative
test which implies DIgT (q)h = 0 for all h ∈ C1([0, T ],Rn) such that h(T ) = 0.

Example 3.11. Let U ∈ C∞(Rn,R), m > 0 and L(q, v) = 1
2m |v|2 − U(q). Then

D1L(q, v) = −∇U(q) and D2L(q, v) = mv

and the Euler Lagrange equations become

−∇U(q) = d

dt
[mq̇] = mq̈

which are Newton’s equations of motion for a particle of mass m subject to a force
−∇U. In particular if U = 0, then q(t) = q(0) + tq̇(0).

The following assumption on L will be assumed for the rest of this section.

Assumption 1. We assume
£
D2
2L(q, v)

¤−1
exists for all (q, v) ∈ Rn × Rn and

v → D2L(q, v) is invertible for all q∈Rn.
Notation 3.12. For q, p ∈ Rn let
(3.25) V (q, p) := [D2L(q, ·)]−1 (p).
Equivalently, V (q, p) is the unique element of Rn such that
(3.26) D2L(q, V (q, p)) = p.

Remark 3.13. The function V : Rn × Rn → Rn is smooth in (q, p). This is a
consequence of the implicit function theorem applied to Ψ(q, v) := (q,D2L(q, v)).

Under Assumption 1, Eq. (3.23) may be written as

(3.27) q̈ = F (q, q̇)

where
F (q, q̇) = D2

2L(q, q̇)
−1{D1L(q, q̇)−D(D2L(q, q̇)q̇}.

Definition 3.14 (Legendre Transform). Let L ∈ C∞(Rn × Rn,R) be a function
satisfying Assumption 1. The Legendre transform L∗ ∈ C∞(Rn×Rn,R) is defined
by

L∗(x, p) := p · v − L(x, v) where p = ∇vL(x, v),

i.e.

(3.28) L∗(x, p) = p · V (x, p)− L(x, V (x, p)).
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Proposition 3.15. Let H(x, p) := L∗(x, p), q ∈ C2([0, T ],Rn) and p(t) :=
Lv(q(t), q̇(t)). Then

(1) H ∈ C∞(Rn × Rn,R) and
Hx(x, p) = −Lx(x, V (x, p)) and Hp(x, p) = V (x, p)..

(2) H satisfies Assumption 1 and H∗ = L, i.e. (L∗)∗ = L.
(3) The path q ∈ C2([0, T ],Rn) solves the Euler Lagrange Eq. (3.23) then

(q(t), p(t)) satisfies Hamilton’s Equations:

q̇(t) = Hp(q(t), p(t))

ṗ(t) = −Hx(q(t), p(t)).(3.29)

(4) Conversely if (q, p) solves Hamilton’s equations (3.29) then q solves the
Euler Lagrange Eq. (3.23) and

(3.30)
d

dt
H(q(t), p(t)) = 0.

Proof. The smoothness of H follows by Remark 3.13.

(1) Using Eq. (3.28) and Eq. (3.26)

Hx(x, p) = p · Vx(x, p)− Lx(x, V (x, p))− Lv(x, V (x, p))Vx(x, p)

= p · Vx(x, p)− Lx(x, V (x, p))− p · Vx(x, p) = −Lx(x, V (x, p)).
and similarly,

Hp(x, p) = V (x, p) + p · Vp(x, p)− Lv(x, V (x, p))Vp(x, p)

= V (x, p) + p · Vp(x, p)− p · Vp(x, p) = V (x, p).

(2) Since Hp(x, p) = V (x, p) = [Lv(x, ·)]−1 (p) and by Remark 3.13, p →
V (x, p) is smooth with a smooth inverse Lv(x, ·), it follows that H sat-
isfies Assumption 1. Letting p = Lv(x, v) in Eq. (3.28) shows

H(x, Lv(x, v)) = Lv(x, v) · V (x, Lv(x, v))− L(x, V (x, Lv(x, v)))

= Lv(x, v) · v − L(x, v)

and using this and the definition of H∗ we find

H∗(x, v) = v · [Hp(x, ·)]−1 (v)−H(x, [Hp(x, ·)]−1 (v))
= v · Lv(x, v)−H(x, Lv(x, v)) = L(x, v).

(3) Now suppose that q solves the Euler Lagrange Eq. (3.23) and p(t) =
Lv(q(t), q̇(t)), then

ṗ =
d

dt
Lv(q, q̇) = Lq(q, q̇) = Lq(q, V (q, p)) = −Hq(q, p)

and
q̇ = [Lv(q, ·)]−1 (p) = V (q, p) = Hp(q, p).

(4) Conversely if (q, p) solves Eq. (3.29), then

q̇ = Hp(q, p) = V (q, p).

Therefore
Lv(q, q̇) = Lv(q, V (q, p)) = p
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and

d

dt
Lv(q, q̇) = ṗ = −Hq(q, p) = Lq(q, V (q, p)) = Lq(q, q̇).

Equation (3.30) is easily verified as well:

d

dt
H(q, p) = Hq(q, p) · q̇ +Hp(q, p) · ṗ

= Hq(q, p) ·Hp(q, p)−Hp(q, p) ·Hq(q, p) = 0.

Example 3.16. Letting L(q, v) = 1
2m |v|2 − U(q) as in Example 3.11, L satisfies

Assumption 1,

V (x, p) = [∇vL(x, ·)]−1 (p) = p/m

H(x, p) = L∗(x, p) = p · p
m
− L(x, p/m)) =

1

2m
|p|2 + U(q)

which is the conserved energy for this classical mechanical system. Hamilton’s
equations for this system are,

q̇ = p/m and ṗ = −∇U(q).
Notation 3.17. Let φt(x, v) = q(t) where q is the unique maximal solution to Eq.
(3.27) (or equivalently 3.23)) with q(0) = x and q̇(0) = v.

Theorem 3.18. Suppose L ∈ C∞(Rn×Rn,R) satisfies Assumption 1 and let H =
L∗ denote the Legendre transform of L. Assume there exists an open interval J ⊂ R
with 0 ∈ J and U ⊂o Rn such that there exists a smooth function x0 : J ×U → Rn
such that

(3.31) φT (x0(T, x), V (x0(T, x),∇g(x0(T, x))) = x.

Let

(3.32) qx,T (t) := φt(x0(T, x), V (x0(T, x),∇g(x0(T, x)))
so that qx,T solves the Euler Lagrange equations, qx,T (T ) = x, qx,T (0) = x0(T, x)
and q̇x,T (0) = V (x0(T, x),∇g(x0(T, x)) or equivalently

∂vL(qx,T (0), q̇x,T (0)) = ∇g(x0(T, x)).
Then the function

(3.33) S(T, x) := IgT (qx,T ) = g(qx,T (0)) +

Z T

0

L(qx,T (t), q̇x,T (t))dt.

solves the Hamilton Jacobi Equation (3.17).

Conjecture 3.19. For general g and L convex in v, the function

S(t, x) = inf{g(q(0)) +
Z t

0

L(q(τ), q̇(τ))dτ : q ∈ C2([0, t],Rn) with q(t) = x}

is a distributional solution to the Hamilton Jacobi Equation Eq. 3.17. See Evans
to learn more about this conjecture.
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Proof. We will give two proofs of this Theorem.
First Proof. One need only observe that the theorem is a consequence of

Definition 3.14 and Proposition 3.15 and 3.5.
Second Direct Proof. By the fundamental theorem of calculus and differen-

tiating past the integral,

∂S(T, x)

∂T
= ∇g(x0(T, x)) · ∂

∂T
x0(T, x) + L(qx,T (T ), q̇x,T (T )) +

Z T

0

∂

∂T
L(qx,T (t), q̇x,T (t)))dt

= ∇g(x0(T, x)) · ∂

∂T
x0(T, x) + L(qx,T (T ), q̇x,T (T )) +DIT (qx,T )

·
∂

∂T
qx,T

¸

= L(qx,T (T ), q̇x,T (T )) +DIgT (qx,T )

·
∂

∂T
qx,T

¸
.

(3.34)

Using Proposition 3.8 and the fact that qx,T satisfies the Euler Lagrange equations
and the boundary conditions in Corollary 3.10 we find

(3.35) DIgT (qx,T )

·
∂

∂T
qx,T

¸
=

µ
D2L(qx,T (t), q̇x,T (t))

∂

∂T
qx,T (t)

¶ ¯̄̄
t=T

.

Furthermore differentiating the identity, qx,T (T ) = x, in T implies

(3.36) 0 =
d

dT
x =

d

dT
qx,T (T ) = q̇x,T (T ) +

d

dT
qx,T (t)|t=T

Combining Eqs. (3.34) — (3.36) gives

(3.37)
∂S(T, x)

∂T
= L(x, q̇x,T (T )))−D2L(x, q̇x,T (T ))q̇x,T (T ).

Similarly for v ∈ Rn,
∂vS(T, x) = ∂vI

g
T (qx,T ) = DIgT ((qx,T )) [∂vqx,T ]

= D2L(qx,T (T ), q̇x,T (T ))∂vqx,T (T ) = D2L(x, q̇x,T (T ))v

wherein the last equality we have use qx,T (T ) = x. This last equation is equivalent
to

D2L(x, q̇x,T (T )) = ∇xS(T, x)

from which it follows that

(3.38) q̇x,T (T ) = V (x,∇xS(T, x)).

Combining Eqs. (3.37) and (3.38) and the definition of H, shows

∂S(T, x)

∂T
= L(x, V (x,∇xS(T, x)))−D2L(x, q̇x,T (T ))V (x,∇xS(T, x))

= −H(x,∇xS(T, x)).

Remark 3.20. The hypothesis of Theorem 3.18 may always be satisfied locally,
for let ψ : R × Rn → R × Rn be given by ψ(t, y) := (t, φt(y, V (y,∇g(y)). Then
ψ(0, y) := (0, y) and so

ψ̇(0, y) = (1, ∗) and ψy(0, y) = idRn
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from which it follows that ψ0(0, y)−1 exists for all y ∈ Rn. So the inverse function
theorem guarantees for each a ∈ Rn that there exists an open interval J ⊂ R with
0 ∈ J and a ∈ U ⊂o Rn and a smooth function x0 : J × U → Rn such that

ψ(T, x0(T, x)) = (T, x0(T, x)) for T ∈ J and x ∈ U,

i.e.
φT (x0(T, x), V (x0(T, x),∇g(x0(T, x))) = x.
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3.2. Geometric meaning of the Legendre Transform. Let V be a finite di-
mensional real vector space and f : V → R be a strictly convex function. The
graph of an α ∈ V ∗. defines a hyperplane which if translate by some amount called
−f∗(α) just touches the graph of f at one point, say v, see Figure 12. That is to

Figure 12. Legendre Transform of f.

say, −f∗(α) + α(v) = f(v).
Now suppose further that f is smooth and f 00 > 0. At the point of contact, v, α

and f have the same tangent plane and since α is linear this means that f 0(v) = α.
The function f∗ : V ∗ → R defined by this means is called the Legendre transform
of f and is given explicitly by

f∗(α) = α(v)− f(v) with v such that f 0(v) = α, i.e. α = (f 0)−1 (v).

The Legendre transform above applied to L(x, v) is this transform applied to f(v) :=
L(x, v).


