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4. Cauchy — Kovalevskaya Theorem

As a warm up we will start with the corresponding result for ordinary differential
equations.

Theorem 4.1 (ODE Version of Cauchy — Kovalevskaya, I.). Suppose a > 0 and
f : (−a, a)→ R is real analytic near 0 and u(t) is the unique solution to the ODE

(4.1) u̇(t) = f(u(t)) with u(0) = 0.

Then u is also real analytic near 0.

We will give four proofs. However it is the last proof that the reader should focus
on for understanding the PDE version of Theorem 4.1.
Proof. (First Proof.)If f(0) = 0, then u(t) = 0 for all t is the unique solution

to Eq. (4.1) which is clearly analytic. So we may now assume that f(0) 6= 0. Let
G(z) :=

R z
0

1
f(u)du, another real analytic function near 0. Then as usual we have

d

dt
G(u(t)) =

1

f(u(t))
u̇(t) = 1

and hence G(u(t)) = t. We then have u(t) = G−1(t) which is real analytic near
t = 0 since G0(0) = 1

f(0) 6= 0.
Proof. (Second Proof.) For z ∈ C let uz(t) denote the solution to the ODE

(4.2) u̇z(t) = zf(uz(t)) with uz(0) = 0.

Notice that if u(t) is analytic, then t → u(tz) satisfies the same equation as uz.
Since G(z, u) = zf(u) is holomorphic in z and u, it follows that uz in Eq. (4.2)
depends holomorphically on z as can be seen by showing ∂̄zuz = 0, i.e. showing
z → uz satisfies the Cauchy Riemann equations. Therefore if > 0 is chosen small
enough such that Eq. (4.2) has a solution for |t| < and |z| < 2, then

(4.3) u(t) = u1(t) =
∞X
n=0

1n

n!
∂nz uz(t)|z=0.

Now when z ∈ R, uz(t) = u(tz) and therefore

∂nz uz(t)|z=0 = ∂nz u(tz)|z=0 = u(n)(0)tn.

Putting this back in Eq. (4.3) shows

u(t) =
∞X
n=0

1

n!
u(n)(0)tn

which shows u(t) is analytic for t near 0.
Proof. (Third Proof.) Go back to the original proof of existence of solutions,

but now replace t by z ∈ C and
R t
0
f(u(τ))dτ by

R z
0
f(u(ξ))dξ =

R 1
0
f(u(tz))zdt.

Then the usual Picard iterates proof work in the class of holomorphic functions to
give a holomorphic function u(z) solving Eq. (4.1).
Proof. (Fourth Proof: Method of Majorants) Suppose for the moment we have

an analytic solution to Eq. (4.1). Then by repeatedly differentiating Eq. (4.1) we
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learn

ü(t) = f 0(u(t))u̇(t) = f 0(u(t))f(u(t))

u(3)(t) = f 00(u(t))f2(u(t)) + [f 0(u(t))]2 f(u(t))
...

u(n)(t) = pn

³
f(u(t)), . . . , f (n−1)(u(t))

´
where pn is a polynomial in n variables with all non-negative integer coefficients.
The first few polynomials are p1(x) = x, p2(x, y) = xy, p3(x, y, z) = x2z + xy2.
Notice that these polynomials are universal, i.e. are independent of the function f
and ¯̄̄

u(n)(0)
¯̄̄
=
¯̄̄
pn

³
f(0), . . . , f (n−1)(0)

´¯̄̄
≤ pn

³
|f(0)| , . . . ,

¯̄̄
f (n−1)(0)

¯̄̄´
≤ pn

³
g(0), . . . , g(n−1)(0)

´
where g is any analytic function such that

¯̄
f (k)(0)

¯̄ ≤ g(k)(0) for all k ∈ Z+. (We
will abbreviate this last condition as f ¿ g.) Now suppose that v(t) is a solution
to

(4.4) v̇(t) = g(v(t)) with v(0) = 0,

then we know from above that

v(n)(0) = pn

³
g(0), . . . , g(n−1)(0)

´
≥
¯̄̄
u(n)(0)

¯̄̄
for all n.

Hence if knew that v were analytic with radius of convergence larger that some
ρ > 0, then by comparison we would find

∞X
n=0

1

n!

¯̄̄
u(n)(0)

¯̄̄
ρn ≤

∞X
n=0

1

n!
v(n)(0)ρn <∞

and this would show

u(t) :=
∞X
n=0

1

n!
pn

³
f(0), . . . , f (n−1)(0)

´
tn

is a well defined analytic function for |t| < ρ.
I now claim that u(t) solves Eq. (4.1). Indeed, both sides of Eq. (4.1) are

analytic in t, so it suffices to show the derivatives of each side of Eq. (4.1) agree at
t = 0. For example u̇(0) = f(0), ü(0) = d

dt |0f(u(t)), etc. However this is the case
by the very definition of u(n)(0) for all n.
So to finish the proof, it suffices to find an analytic function g such that¯̄

f (k)(0)
¯̄ ≤ g(k)(0) for all k ∈ Z+ and for which we know the solution to Eq.

(4.4) is analytic about t = 0. To this end, suppose that the power series expansion
for f(t) at t = 0 has radius of convergence larger than r > 0, then

P∞
n=0

1
n!f

(n)(0)rn

is convergent and in particular,

C := max
n

¯̄̄̄
1

n!
f (n)(0)rn

¯̄̄̄
<∞

from which we conclude

max
n

¯̄̄̄
1

n!
f (n)(0)

¯̄̄̄
≤ Cr−n.
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Let

g(u) :=
∞X
n=0

Cr−nun = C
1

1− u/r
= C

r

r − u
.

Then clearly f ¿ g. To conclude the proof, we will explicitly solve Eq. (4.4) with
this function g(t),

v̇(t) = C
r

r − v(t)
with v(0) = 0.

By the usual separation of variables methods we find rv(t)− 1
2v
2(t) = Crt, i.e.

2Crt− 2rv(t) + v2(t) = 0

which has solutions, v(t) = r±√r2 − 2Crt. We must take the negative sign to get
the correct initial condition, so that

(4.5) v(t) = r −
p
r2 − 2Crt = r − r

p
1− 2Ct/r

which is real analytic for |t| < ρ := r/C.
Let us now Jazz up this theorem to that case of a system of ordinary differential

equations. For this we will need the following lemma.

Lemma 4.2. Suppose h : (−a, a)d→ Rd is real analytic near 0 ∈ (−a, a)d, then

h¿ Cr

r − z1 − · · ·− zd

for some constants C and r.

Proof. By definition, there exists ρ > 0 such that

h(z) =
X
α

hαz
α for |z| < ρ

where hα =
1
α!∂

αh(0). Taking z = r(1, 1, . . . , 1) with r < ρ implies there exists
C <∞ such that |hα| r|α| ≤ C for all α, i.e.

|hα| ≤ Cr−|α| ≤ C
|α|!
α!

r−|α|.

This completes the proof sinceX
α

C
|α|!
α!

r−|α|zα = C
∞X
n=0

X
|α|=n

|α|!
α!

³z
r

´α
= C

∞X
n=0

µ
z1 + · · ·+ zd

r

¶n
= C

1

1− ¡ z1+···+zdr

¢ = Cr

r − z1 − · · ·− zd

all of which is valid provided |z| := |z1|+ · · ·+ |zd| < r.

Theorem 4.3 (ODE Version of Cauchy — Kovalevskaya, II.). Suppose a > 0 and
f : (−a, a)d→ Rd be real analytic near 0 ∈ (−a, a)d and u(t) is the unique solution
to the ODE

(4.6) u̇(t) = f(u(t)) with u(0) = 0.

Then u is also real analytic near 0.
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Proof. All but the first proof of Theorem 4.1 may be adapted to the cover
this case. The only proof which perhaps needs a little more comment is the fourth
proof. By Lemma 4.2, we can find C, r > 0 such that

fj(z)¿ gj(z) :=
Cr

r − z1 − · · ·− zd

for all j. Let v(t) denote the solution to the ODE,

(4.7) v̇(t) = g(v(t)) =
Cr

r − v1(t)− · · ·− vd(t)
(1, 1, . . . , 1)

with v(0) = 0. By symmetry, vj(t) = v1(t) =: w(t) for each j so Eq. (4.7) implies

ẇ(t) =
Cr

r − dw(t)
=

C (r/d)

(r/d)− w(t)
with w(0) = 0.

We have already solved this equation (see Eq. (4.5) with r replaced by r/d) to find

(4.8) w(t) = r/d−
p
r2/d2 − 2Crt/d = r/d

³
1−

p
1− 2Cdt/r

´
.

Thus v(t) = w(t)(1, 1, . . . , 1) is a real analytic function which is convergent for
|t| < r/(2Cd).
Now suppose that u is a real analytic solution to Eq. (4.6). Then by repeatedly

differentiating Eq. (4.6) we learn

üj(t) = ∂ifj(u(t))u̇i(t) = ∂ifj(u(t))fi(u(t))

u
(3)
j (t) = ∂k∂ifj(u(t))u̇k(t)u̇i(t) + ∂ifj(u(t))üi(t)

...

u
(n)
j (t) = pn

µ
{∂αfj(u(t))}|α|<n ,

n
u
(k)
i (t)

o
k<n,1≤i≤d

¶
(4.9)

where pn is a polynomial with all non-negative integer coefficients. We now define
u
(n)
j (0) inductively so that

u
(n)
j (0) = pn

µ
{∂αfj(u(0))}|α|<n ,

n
u
(k)
i (0)

o
k<n,1≤i≤d

¶
for all n and j and we will attempt to define

(4.10) u(t) =
∞X
n=0

1

n!
u(n)(0)tn.

To see this sum is convergent we make use of the fact that the polynomials pn are
universal i.e. are independent of the function fj) and have non-negative coefficients
so that by induction¯̄̄

u
(n)
j (0)

¯̄̄
≤ pn

µ
{|∂αfj(u(0))|}|α|<n ,

n¯̄̄
u
(k)
i (0)

¯̄̄o
k<n,1≤i≤d

¶
≤ pn

µ
{∂αgj(u(0))}|α|<n ,

n
v
(k)
i (0)

o
k<n,1≤i≤d

¶
= v

(n)
j (0).
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Notice the when n = 0 that |uj(0)| = 0 = vj(0).
1 Thus we have shown u ¿ v

and so by comparison the sum in Eq. (4.10) is convergent for t near 0. As before
u(t) solves Eq. (4.6) since both functions u̇(t) and f(u(t)) are analytic functions of
t which have common values for all derivatives in t at t = 0.

4.1. PDE Cauchy Kovalevskaya Theorem. In this section we will consider the
following general quasi-linear system of partial differential equations

(4.11)
X
|α|=k

aα(x, J
k−1u)∂αxu(x) + c(x, Jk−1u) = 0

where

J lu(x) = (u(x),Du(x), D2u(x), . . . , Dlu(x))

is the “l — jet” of u. Here u : Rn → Rm and aα(J
k−1u, x) is an m × m matrix.

As usual we will want to give boundary data on some hypersurface Σ ⊂ Rn. Let
ν denote a smooth vector field along Σ such that v(x) /∈ TxΣ (TxΣ is the tangent
space to Σ at x) for x ∈ Σ. For example we might take ν(x) to be orthogonal to
TxΣ for all x ∈ Σ. To hope to get a unique solution to Eq. (4.11) we will further
assume there are smooth functions gl on Σ for l = 0, . . . , k − 1 and we will require
(4.12) Dlu(x)(v(x), . . . , v(x)) = gl(x) for x ∈ Σ and l = 0, . . . , k − 1.
Proposition 4.4. Given a smooth function u on a neighborhood of Σ satisfying
Eq. (4.12), we may calculate Dlu(x) for x ∈ Σ and l < k in terms of the functions
gl and there tangential derivatives.

Proof. Let us begin by choosing a coordinate system y on Rn such that Σ ∩
D(y) = {yn = 0} and let us extend ν to a neighborhood of Σ by requiring ∂ν

∂yn
= 0.

To complete the proof, we are going to show by induction on k that we may computeµ
∂

∂y

¶α
u(x) for all x ∈ Σ and |α| < k

from Eq. (4.12).
The claim is clear when k = 1, since u = g0 on Σ. Now suppose that k = 2 and

let νi = νi(y1, . . . , yn−1) such that

ν =
nX
i=1

νi
∂

∂yi
in a neighborhood of Σ.

Then

g1 = (Du) ν = νu =
nX
i=1

νi
∂u

∂yi
=
X
i<n

νi
∂g0
∂yi

+ νn
∂u

∂yn
.

Since ν is not tangential to Σ = {yn = 0} , it follows that νn 6= 0 and hence

(4.13)
∂u

∂yn
=
1

νn

Ã
g1 −

X
i<n

νi
∂g0
∂yi

!
on Σ.

1The argument shows that v(n)j (0) ≥ 0 for all n. This is also easily seen directly by induction
using Eq. (4.9) with f replaced by g and the fact that ∂αgj(0) ≥ 0 for all α.
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For k = 3, first observe from the equality u = g0 on Σ and Eq. (4.13) we may
compute all derivatives of u of the form ∂αu

∂yα on Σ provided αn ≤ 1. From Eq.
(4.12) for l = 2, we have

g2 =
¡
D2u

¢
(v, v) = v2u+ l.o.ts. =

X
νj

∂

∂yj

µ
νi
∂u

∂yi

¶
+ l.o.ts. = ν2n

∂2u

∂y2n
+ l.o.ts.

where l.o.ts. denotes terms involving ∂αu
∂yα with αn ≤ 1. From this result, it follows

that we may compute ∂2u
∂y2n

in terms of derivatives of g0, g1 and g2. The reader is
asked to finish the full inductive argument of the proof.

Remark 4.5. The above argument shows that from Eq. (4.12) we may compute
∂αu
∂yα for any α such that αn < k.

To study Eq. (4.11) in more detail, let us rewrite Eq. (4.11) in the y — coordi-
nates. Using the product and the chain rule repeatedly Eq. (4.11) may be written
as

(4.14)
X
|α|=k

bα(y, J
k−1u)∂αy u(y) + c(y, Jk−1u) = 0

where

J lu(y) = (u(y), Du(y),D2u(y), . . . , Dlu(y)).

We will be especially concerned with the b(0,0,...,0,k) coefficient which can be deter-
mined as follows:

X
|α|=k

aα

µ
∂

∂x

¶α
=
X
|α|=k

aα

 nX
j=1

∂yj
∂x

∂

∂yj

α

=
X
|α|=k

aα

µ
∂yn
∂x

∂

∂yn

¶α
+ l.o.ts.

=
X
|α|=k

aα

µ
∂yn
∂x

¶αµ
∂

∂yn

¶k
+ l.o.ts.

where l.o.ts. now denotes terms involving ∂αu
∂yα with αn < k. From this equation we

learn that

b(0,0,...,0,k)(y, J
k−1u) =

X
|α|=k

aα

µ
∂yn
∂x

¶α
=
X
|α|=k

aα

µ
dyn

µ
∂

∂x

¶¶α
.

Definition 4.6. We will say that boundary data (Σ, g0, . . . , gk−1) is non-
characteristic for Eq. (4.11) at x ∈ Σ if

b(0,0,...,0,k)(y, J
k−1u) =

X
|α|=k

aα(x, J
k−1u(x))

µ
dyn

µ
∂

∂x

¶¶α
is invertible at x.

Notice that this condition is independent of the choice of coordinate system y.
To see this, for ξ ∈ (Rn)∗ let

σ(ξ) =
X
|α|=k

aα(x, J
k−1u(x))

µ
ξ

µ
∂

∂x

¶¶α
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which is k — linear form on (Rn)∗ . This form is coordinate independent since if f
is a smooth function such that f(x) = 0 and dfx = ξ, then

σ(ξ) =
1

k!

X
|α|=k

aα(x, J
k−1u(x))

µ
∂

∂x

¶α
fk|x.

Noting that

b(0,0,...,0,k)(y, J
k−1u) = σ(dyn)

our non-characteristic condition becomes, σ(dyn) is invertible. Finally dyn is the
unique element ξ of (Rn)∗ \ {0} up to scaling such that ξ|TxΣ ≡ 0. So the non-
characteristic condition may be written invariantly as σ(ξ) is invertible for all (or
any) ξ ∈ (Rn)∗ \ {0} such that ξ|TxΣ ≡ 0.
Assuming the given boundary data is non-characteristic, Eq. (4.11) may be put

into “standard form,”

(4.15)
X
|α|=k

bα(y, J
k−1u)∂αy u(y) + c(y, Jk−1u) = 0

with
∂lu

∂yln
= gl on yn = 0 for l < k

where b(0,0,...,0,k)(y, Jk−1u) = Id - matrix and

J lu(y) = (u(y), Du(y),D2u(y), . . . , Dlu(y)).

By adding new dependent variables and possible a new independent variable for
yn one may reduce the problem to solving the system in Eq. (4.20) below. The
resulting theorem may be stated as follows.

Theorem 4.7 (Cauchy Kovalevskaya). Suppose all the coefficients in Eq. (4.11)
are real analytic and the boundary data in Eq. (4.12) are also real analytic and
non-characteristic near some point a ∈ Σ. Then there is a unique real analytic
solution to Eqs. (4.11) and (4.12). (The boundary data in Eq. (4.12) is said to
be real analytic if there exists coordinates y as above which are real analytic and
the functions ν and gl for l = 0, . . . , k − 1 are real analytic functions in the y —
coordinate system.)

Example 4.8. Suppose a, b, C, r are positive constants. We wish to show the
solution to the quasi-linear PDE

(4.16) wt =
Cr

r − y − aw
[bwy + 1] with w(0, y) = 0

is real analytic near (t, y) = (0, 0). To do this we will solve the equation using the
method of characteristics. Let g(y, z) := Cr

r−y−az , then the characteristic equations
are

t0 = 0 with t(0) = 0

y0 = −bg(y, z) with y(0) = y0 and

z0 = g(y, z) with z(0) = 0.
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From these equations we see that we may identify t with s and that y + bz = y0.
Thus z(t) = w(t, y(t)) satisfies

ż = g(y0 − bz, z) =
Cr

r − y0 + bz − az

=
Cr

r − y0 + (b− a) z
with z(0) = 0.

Integrating this equation gives

Crt =

Z t

0

(r − y0 + (b− a) z(τ)) ż(τ)dτ = (r − y0) z − 1
2
(a− b) z2

= (r − y − bz) z − 1
2
(a− b) z2 = (r − y) z − 1

2
(a+ b) z2,

i.e.
1

2
(a+ b) z2 − (r − y) z + Crt = 0.

The quadratic formula gives

w(t, y) =
1

a+ b

h
(r − y)±

p
(r − y)2 − 2 (a+ b)Crt

i
and using w(0, y) = 0 we conclude

(4.17) w(t, y) =
1

a+ b

h
(r − y)−

p
(r − y)2 − 2 (a+ b)Crt

i
.

Notice the w is real analytic for (t, y) near (0, 0).

In general we could use the method of characteristics and ODE properties (as in
Example 4.8) to show

ut = a(x, u)ux + b(x, u) with u(0, x) = g(x)

has local real analytic solutions if a, b and g are real analytic. The method would
also work for the fully non-linear case as well. However, the method of characteris-
tics fails for systems while the method we will present here works in this generality.

Exercise 4.1. Verify w in Eq. (4.17) solves Eq. (4.16).

Solution 1 (4.1). Let ρ :=
p
(r − y)2 − 2 (a+ b)Crt, then

w(t, y) =
1

a+ b
[r − y − ρ] =

r − y

a+ b
− 1

a+ b
ρ,

wt = Cr/ρ, ρ = r − y − (a+ b)w and

bwy + 1 =
b

a+ b
[−1 + (r − y) /ρ] + 1 =

1

a+ b
[a+ b (r − y) /ρ] .

Hence
bwy + 1

wt
=

1

(a+ b)Cr
[ρa+ b (r − y)]

=
1

(a+ b)Cr
[(r − y − (a+ b)w) a+ b (r − y)]

=
1

Cr
[r − y − aw]

as desired.
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Example 4.9. Now let us solve for

v(t, x) =
¡
v1, . . . , vm

¢
(t, x1, . . . , xn)

where v satisfies

vjt =
Cr

r − x1 − · · ·− xn −
Pm

k=1 v
k

"
1 +

nX
i=1

mX
k=1

∂iv
k

#
with v(0, x) = 0.

By symmetry, vj = v1 =: w(t, y) for all j where y = x1+ · · ·+xn. Since ∂ivj = wy,
the above equations all may be written as

wt =
Cr

r − y −mw
[mnwy + 1] with w(0, y) = 0.

Therefore from Example 4.8 with a = m and b = mn, we find

(4.18) w(t, y) =
1

m(n+ 1)

h
(r − y)−

p
(r − y)2 − 2m(n+ 1)Crt

i
.

and hence that

(4.19) v(t, x) = w(t, x1 + · · ·+ xn) (1, 1, 1, . . . , 1) ∈ Rm.
4.2. Proof of Theorem 4.7. As is outlined in Evans, Theorem 4.7 may be reduced
to the following theorem.

Theorem 4.10. Let (t, x, z) = (t, x1, . . . , xn, z1, . . . , zm) ∈ R× Rn × Rm and
assume (t, x, z) → Bj(t, x, z) ∈ {m×m — matrices} (for j = 1, . . . , n) and
(t, x, z) → c(t, x, z) ∈ Rm are real analytic functions near (0, 0, 0) ∈ R× Rn × Rm
and x→ f(x) ∈ Rm is real analytic near 0 ∈ Rn. Then there exists, in a neighbor-
hood of (t, x) = (0, 0) ∈ R×Rn, a unique real analytic solution u(t, x) ∈ Rm to the
quasi-linear system

(4.20) ut(t, x) =
nX

j=1

Bj(t, x, u(t, x))∂ju(t, x) + c(t, x, u(t, x)) with u(0, x) = f(x).

Proof. (Sketch.)
Step 0. By replacing u(t, x) by u(t, x)−f(x), we may assume f ≡ 0. By letting

um+1(t, x) = t if necessary, we may assume Bj and c do not depend on t. With
these reductions we are left to solve

(4.21) ut(t, x) =
nX

j=1

Bj(x, u(t, x))∂ju(t, x) + c(x, u(t, x)) with u(0, x) = 0.

Step 1. Let

g(x, z) :=
Cr

r − x1 − · · ·− xn − z1 − · · ·− zm

where C and r are positive constants such that

(Bj)kl ¿ g and ck ¿ g

for all k, l, j. For this choice of C and r, let v denote the solution constructed in
Example 4.9 above.
Step 2. By repeatedly differentiating Eq. (4.20), show that if u solves Eq.

(4.20) then ∂αx ∂
k
t u

j(0, 0) is a universal polynomial in the derivatives
©
∂lt∂

α
x

ª
α,l<k
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of the entries of Bj and c and u with all coefficients being non-negative. Use this
fact and induction to conclude¯̄

∂αx ∂
k
t u

j(0, 0)
¯̄ ≤ ∂αx ∂

k
t v

j(0, 0) for all α, k and l.

Step 3. Use the computation in Step 2. to define ∂αx ∂kt uj(0, 0) for all α and k
and then defined

(4.22) u(t, x) :=
X
α,k

∂αx ∂
k
t u(0, 0)

α!k!
tkxα.

Because of step 2. and Example 4.9, this series is convergent for (t, x) sufficiently
close to zero.
Step 4. The function u defined in Step 3. solves Eq. (4.20) because both

ut(t, x) and
nX

j=1

Bj(x, u(t, x))∂ju(t, x) + c(x, u(t, x))

are both real analytic functions in (t, x) each having, by construction, the same
derivatives at (0, 0).

4.3. Examples.

Corollary 4.11 (Isothermal Coordinates). Suppose that we are given a metric
ds2 = Edx2+2Fdxdy+Gdy2 on R2 such that G/E and F/E are real analytic near
(0, 0). Then there exists a complex function u and a positive function ρ such that
Du(0, 0) is invertible and ds2 = ρ |du|2 where du = uxdx+ uydy.

Proof. Working out |du|2 gives
|du|2 = |ux|2 dx2 + 2Re(uxūy)dxdy + |uy|2 dy2.

Writing uy = λux, the previous equation becomes

|du|2 = |ux|2
³
dx2 + 2Re(λ)dxdy + |λ|2 dy2

´
.

Hence we must have

E = ρ |ux|2 , F = ρ |ux|2Reλ and G = ρ |ux|2 |λ|2

or equivalently
F/E = Reλ and G/E = |λ|2 .

Writing λ = a+ ib, we find a = F/E and a2 + b2 = G/E so that

λ =
F

E
± i

q
G/E − (F/E)2 = 1

E

³
F ± i

p
GE − F 2

´
.

We make a choice of the sign above, then we are looking for u(x, y) ∈ C such that
uy = λux. Letting u = α+ iβ, the equation uy = λux may be written as the system
of real equations

αy = Re [(a+ ib) (αx + iβx)] = aαx − bβx and

βy = Im [(a+ ib) (αx + iβx)] = aβx + bαx

which is equivalent to µ
α
β

¶
y

=

µ
a −b
b a

¶µ
α
β

¶
x

.



58 BRUCE K. DRIVER†

So we may apply the Cauchy Kovalevskaya theorem 4.10 with t = y to find a real
analytic solution to this equation with (say) u(x, 0) = x, i.e. α(x, 0) = x and
β(x, 0) = 0. (We could take u(x, 0) = f(x) for any real analytic function f such
that f 0(0) 6= 0.) The only thing that remains to check is that Du(0, 0) is invertible.
But

Du(0, 0) =

µ
Reux Reuy
Imux Imuy

¶
=

µ
αx αy
βx βy

¶
=

µ
αx aαx − bβx
βx aβx + bαx

¶
so that

det [Du] = b
¡
α2x + β2x

¢
= Imλ |ux|2 .

Thus

det [Du(0, 0)] = Imλ(0, 0) = ±
q
G/E − (F/E)2|(0,0) 6= 0.

Example 4.12. Consider the linear PDE,

(4.23) uy = ux with u(x, 0) = f(x)

where f(x) =
P∞

m=0 amx
m as real analytic function near x = 0 with radius of

convergence ρ. (So for any r < ρ, |am| ≤ Cr−n.) Formally the solution to Eq.
(4.23) should be given by

u(x, y) =
∞X
n=0

1

n!
∂ny u(x, y)|y=0yn.

Now using the PDE (4.23),

∂ny u(x, y)|y=0 = ∂nxu(x, 0) = f (n)(x).

Thus we get

(4.24) u(x, y) =
∞X
n=0

1

n!
f (n)(x)yn.

By the Cauchy estimates, ¯̄̄
f (n)(x)

¯̄̄
≤ n!ρ

(ρ− |x|)n+1
and so ∞X

n=0

1

n!

¯̄̄
f (n)(x)yn

¯̄̄
≤ ρ

∞X
n=0

|y|n
(ρ− |x|)n+1

which is finite provided |y| < ρ− |x| , i.e. |x|+ |y| < ρ. This of course makes sense
because we know the solution to Eq. (4.23) is given by

u(x, y) = f(x+ y).

Now we can expand Eq. (4.24) out to find

u(x, y) =
∞X
n=0

1

n!

X
m≥n

m(m− 1) . . . (m− n+ 1)amx
m−n

 yn

=
X

m≥n≥0

µ
m

n

¶
amx

m−nyn.(4.25)
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SinceX
m≥n≥0

µ
m

n

¶ ¯̄
amx

m−nyn
¯̄ ≤ C

X
m≥n≥0

µ
m

n

¶ ¯̄
r−mxm−nyn

¯̄
= C

X
m≥0

r−m (|x|+ |y|)m <∞

provided |x| + |y| < r. Since r < ρ was arbitrary, it follows that Eq. (4.25) is
convergent for |x|+ |y| < ρ.

Let us redo this example. By the PDE in Eq. (4.23), ∂my ∂nxu(x, y) = ∂n+mx u(x, y)
and hence

∂my ∂nxu(0, 0) = f (m+n)(0).

Written another way
Dαu(0, 0) = f (|α|)(0)

and so the power series expansion for u must be given by

(4.26) u(x, y) =
X
α

f (|α|)(0)
α!

(x, y)α.

Using f (m)(0)/m! ≤ Cr−m we learnX
α

¯̄̄̄
f (|α|)(0)

α!
(x, y)α

¯̄̄̄
≤ C

X
α

¯̄
f (|α|)(0)

¯̄
α!

|x|α1 |y|α2 = C
∞X

m=0

¯̄
f (|α|)(0)

¯̄
m!

X
|α|=m

m!

α!
|x|α1 |y|α2

≤ C
∞X

m=0

r−m (|x|+ |y|)m = C
r

r − (|x|+ |y|) <∞

if |x| + |y| < r. Since r < ρ was arbitrary, it follows that the series in Eq. (4.26)
converges for |x|+ |y| < ρ.
Now it is easy to check directly that Eq. (4.26) solves the PDE. However this

is necessary since by construction Dαuy(0, 0) = Dαux(0, 0) for all α. This implies,
because uy and ux are both real analytic, that ux = uy.


