6. Elliptic Ordinary Differential Operators

Let $\Omega \subset_{o} \mathbb{R}^{n}$ be a bounded connected open region. A function $u \in C^{2}(\Omega)$ is said to satisfy Laplace's equation if

$$
\triangle u=0 \text { in } \Omega
$$

More generally if $f \in C(\Omega)$ is given we say u solves the Poisson equation if

$$
-\triangle u=f \text { in } \Omega
$$

In order to get a unique solution to either of these equations it is necessary to impose "boundary" conditions on u.

Example 6.1. For Dirichlet boundary conditions we impose $u=g$ on $\partial \Omega$ and for Neumann boundary conditions we impose $\frac{\partial u}{\partial \nu}=g$ on $\partial \Omega$, where $g: \partial \Omega \rightarrow \mathbb{R}$ is a given function.
Lemma 6.2. Suppose $f: \Omega \xrightarrow{C^{0}} \mathbb{R}, \partial \Omega$ is C^{2} and $g: \partial \Omega \rightarrow \mathbb{R}$ is continuous. Then if there exists a solution to $-\triangle u=f$ with $u=g$ on $\partial \Omega$ such that $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ then the solution is unique.

Definition 6.3. Given an open set $\Omega \subset \mathbb{R}^{n}$ we say $u \in C^{1}(\bar{\Omega})$ if $u \in C^{1}(\Omega) \cap C(\bar{\Omega})$ and ∇u extends to a continuous function on $\bar{\Omega}$.

Proof. If \widetilde{u} is another solution then $v=\widetilde{u}-u$ solves $\Delta v=0, v=0$ on $\partial \Omega$. By the divergence theorem,

$$
0=\int_{\Omega} \triangle v \cdot v d m=-\int_{\Omega}|\nabla v|^{2} d m+\int_{\partial \Omega} v \nabla v \cdot n d \sigma=-\int_{\Omega}|\nabla v|^{2} d m
$$

where the boundary terms are zero since $v=0$ on $\partial \Omega$. This identity implies $\int|\nabla u|^{2} d x=0$ which then shows $\nabla v \equiv 0$ and since Ω is connected we learn v Ω is constant on Ω. Because v is zero on $\partial \Omega$ we conclude $v \equiv 0$, that is $u=\tilde{u}$.

For the rest of this section we will now restrict to $n=1$. However we will allow for more general operators than Δ in this case.
6.1. Symmetric Elliptic ODE. Let $a \in C^{1}([0,1],(0, \infty))$ and

$$
\begin{equation*}
L f=-\left(a f^{\prime}\right)^{\prime}=-a f^{\prime \prime}-a^{\prime} f^{\prime} \text { for } f \in C^{2}([0,1]) \tag{6.1}
\end{equation*}
$$

In the following theorem we will impose Dirichlet boundary conditions on L by restricting the domain of L to

$$
D(L):=\left\{f \in C^{2}([0,1], \mathbb{R}): f(0)=f(1)=0\right\}
$$

Theorem 6.4. The linear operator $L: D(L) \rightarrow C([0,1], \mathbb{R})$ is invertible and $L^{-1}:$ $C([0,1], \mathbb{R}) \rightarrow D(L) \subset C^{2}([0,1], \mathbb{R})$ is a bounded operator.

Proof.
(1) (Uniqueness) If $f, g \in D(L)$ then by integration by parts

$$
\begin{equation*}
(L f, g):=\int_{0}^{1}(L f)(x) g(x) d x=\int_{0}^{1} a(x) f^{\prime}(x) g^{\prime}(x) d x \tag{6.2}
\end{equation*}
$$

Therefore if $L f=0$ then

$$
0=(L f, f)=\int_{0}^{1} a(x) f^{\prime}(x)^{2} d x
$$

and hence $f^{\prime} \equiv 0$ and since $f(0)=0, f \equiv 0$. This shows L is injective.
(2) (Existence) Given $g \in C([0,1], \mathbb{R})$ we are looking for $f \in D(L)$ such that $L f=g$, i.e. $\left(a f^{\prime}\right)^{\prime}=g$. Integrating this equation implies

$$
-a(x) f^{\prime}(x)=-C+\int_{0}^{x} g(y) d y
$$

Therefore

$$
f^{\prime}(z)=\frac{C}{a(z)}-\int 1_{y \leq z} \frac{1}{a(z)} g(y) d y
$$

which upon integration and using $f(0)=0$ gives

$$
f(x)=\int_{0}^{x} \frac{C}{a(z)} d z-\int 1_{y \leq z \leq x} \frac{1}{a(z)} g(y) d z d y
$$

If we let

$$
\begin{equation*}
\alpha(x):=\int_{0}^{x} \frac{1}{a(z)} d z \tag{6.3}
\end{equation*}
$$

the last equation may be written as

$$
f(x)=C \alpha(x)-\int_{0}^{x}(\alpha(x)-\alpha(y)) g(y) d y
$$

It is a simple matter to work backwards to show the function f defined in Eq. (6.4) satisfies $L f=g$ and $f(0)=0$ for any constant C. So it only remains to choose C so that

$$
0=f(1)=C \alpha(1)-\int_{0}^{1}(\alpha(1)-\alpha(y)) g(y) d y
$$

Solving for C gives $C=\int_{0}^{1}\left(1-\frac{\alpha(y)}{\alpha(1)}\right) g(y) d y$ and the resulting function f may be written as

$$
\begin{aligned}
f(x) & =\int_{0}^{1}\left[\left(1-\frac{\alpha(y)}{\alpha(1)}\right) \alpha(x)-1_{y \leq x}(\alpha(x)-\alpha(y))\right] g(y) d y \\
& =\int_{0}^{1} G(x, y) g(y) d y
\end{aligned}
$$

where

$$
G(x, y)=\left\{\begin{array}{lll}
\alpha(x)\left(1-\frac{\alpha(y)}{\alpha(1)}\right) & \text { if } & x \leq y \\
\alpha(y)\left(1-\frac{\alpha(x)}{\alpha(1)}\right) & \text { if } & y \leq x
\end{array}\right.
$$

For example when $a \equiv 1$,

$$
G(x, y)=\left\{\begin{array}{lll}
x(1-y) & \text { if } & x \leq y \\
y(1-x) & \text { if } & y \leq x
\end{array}\right.
$$

Definition 6.5. The function G defined in Eq. (6.5) is called the Green's function for the operator $L: D(L) \rightarrow C([0,1], \mathbb{R})$.

Remarks 6.6. The proof of Theorem 6.4 shows

$$
\begin{equation*}
\left(L^{-1} g\right)(x):=\int_{0}^{1} G(x, y) g(y) d y \tag{6.6}
\end{equation*}
$$

where G is defined in Eq. (6.5). The Green's function G has the following properties:
(1) Since L is invertible and G is a right inverse, G is also a left inverse, i.e. $G L f=f$ for all $f \in D(L)$.
(2) G is continuous.
(3) G is symmetric, $G(y, x)=G(x, y)$. (This reflects the symmetry in L, $(L f, g)=(f, L g)$ for all $f, g \in D(L)$, which follows from Eq. (6.2).)
(4) G may be written as

$$
G(x, y)=\left\{\begin{array}{lll}
u(x) v(y) & \text { if } & x \leq y \\
u(y) v(x) & \text { if } & y \leq x
\end{array}\right.
$$

where u and v are L - harmonic functions (i.e. and $L u=L v=0$) with $u(0)=0$ and $v(1)=0$. In particular $L_{x} G(x, y)=0=L_{y} G(x, y)$ for all $y \neq x$.
(5) The first order derivatives of the Green's function have a jump discontinuity on the diagonal. Explicitly,

$$
G_{y}(x, x+)-G_{y}(x, x-)=-\frac{1}{a(x)}
$$

which follows directly from

$$
G_{y}(x, y)=\frac{1}{a(y)}\left\{\begin{array}{cll}
-\frac{\alpha(x)}{\alpha(1)} & \text { if } & x<y \tag{6.7}\\
\left(1-\frac{\alpha(x)}{\alpha(1)}\right) & \text { if } & y<x
\end{array}\right.
$$

By symmetry we also have

$$
G_{x}(y+, y)-G_{x}(y-, y)=-\frac{1}{a(y)}
$$

(6) By Items 4. and 5. and Lemma 5.11 it follows that

$$
L_{y} G(x, y):=L_{y} T_{G(x, y)}=\frac{d}{d y}\left(a(y) G_{y}(x, y)\right)=\delta(y-x)
$$

and similarly that

$$
L_{x} T_{G(x, y)}=L_{x} G(x, y)=\delta(x-y)
$$

As a consequence of the above remarks we have the following representation theorem for function $f \in C^{2}([0,1])$.
Theorem 6.7 (Representation Theorem). For any $f \in C^{2}([0,1])$,

$$
\begin{equation*}
f(x)=(G L f)(x)-\left.G_{y}(x, y) a(y) f(y)\right|_{y=0} ^{y=1} \tag{6.8}
\end{equation*}
$$

Moreover if we are given $h: \partial[0,1] \rightarrow \mathbb{R}$ and $g \in C([0,1])$, then the unique solution to

$$
L f=g \text { with } f=h \text { on } \partial[0,1]
$$

is

$$
\begin{equation*}
f(x)=(G g)(x)-\left.G_{y}(x, y) a(y) h(y)\right|_{y=0} ^{y=1} \tag{6.9}
\end{equation*}
$$

Proof. By repeated use of Lemma 5.11,

$$
\begin{aligned}
(G L f)(x) & =-\int_{0}^{1} G(x, y) \frac{d}{d y}\left(a(y) f^{\prime}(y)\right) d y \\
& =\int_{0}^{1} G_{y}(x, y) a(y) f^{\prime}(y) d y \text { (no boundary terms since } G(x, 0)=G(x, 1)=0 \text {) } \\
& =\left.G_{y}(x, y) a(y) f(y)\right|_{y=0} ^{y=1}+\int_{0}^{1} L_{y} G(x, y) f(y) d y \\
& =\left.G_{y}(x, y) a(y) f(y)\right|_{y=0} ^{y=1}+\int_{0}^{1} \delta(x-y) f(y) d y \\
& =\left.G_{y}(x, y) a(y) f(y)\right|_{y=0} ^{y=1}+f(x)
\end{aligned}
$$

which proves Eq. (6.8).
Now suppose that f is defined as in Eq. (6.9). Observe from Eq. (6.7) that

$$
\lim _{x \uparrow 1} a(1) G_{y}(x, 1)=-1 \text { and } \lim _{x \downarrow 0} a(0) G_{y}(x, 0)=1
$$

and also notice that $G_{y}(x, 1)$ and $G_{y}(x, 0)$ are L_{x} - harmonic functions. Therefore by these remarks and Eq. (6.6), $f=h$ on $\partial[0,1]$ and

$$
L f(x)=g(x)-\left.L_{x} G_{y}(x, y) a(y) h(y)\right|_{y=0} ^{y=1}=g(x)
$$

as desired.
6.2. General Regular 2nd order elliptic ODE. Let $J=[r, s]$ be a closed bounded interval in \mathbb{R}.

Definition 6.8. A second order linear operator of the form

$$
\begin{equation*}
L f=-a f^{\prime \prime}+b f^{\prime}+c f \tag{6.10}
\end{equation*}
$$

with $a \in C^{2}(J), b \in C^{1}(J)$ and $c \in C^{2}(J)$ is said to be elliptic if $a>0$, (more generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We will now consider the Dirichlet boundary valued problem for $f \in C^{2}([r, s])$,

$$
\begin{equation*}
L f=-a f^{\prime \prime}+b f^{\prime}+c f=0 \text { with } f=0 \text { on } \partial J . \tag{6.11}
\end{equation*}
$$

Lemma 6.9. Let $u, v \in C^{2}(J)$ be two L-harmonic functions, i.e. $L u=0=L v$ and let

$$
W:=\operatorname{det}\left[\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right]=u v^{\prime}-v u^{\prime}
$$

be the Wronskian of u and v. Then W satisfies

$$
\begin{aligned}
W^{\prime} & =\frac{b}{a} W, \frac{d}{d x} \frac{1}{W}=-\frac{b}{a} \frac{1}{W} \text { and } \\
W(x) & =W(r) e^{\int_{r}^{x} \frac{b}{a}(t) d t}
\end{aligned}
$$

Proof. By direct computation

$$
a W^{\prime}=a\left(u v^{\prime \prime}-v u^{\prime \prime}\right)=u\left(b v^{\prime}+c v\right)-v\left(b u^{\prime}+c u\right)=b W
$$

Definition 6.10. Let $H^{k}(J)$ denote those $f \in C^{k-1}(J)$ such that $f^{(k-1)}$ is absolutely continuous and $f^{(k)} \in L^{2}(J)$. We also let $H_{0}^{2}(J)=\left\{f \in H^{2}(J):\left.f\right|_{\partial J}=0\right\}$. We make $H^{k}(J)$ into a Hilbert space using the following inner product

$$
(u, v)_{H^{k}}:=\sum_{j=0}^{k}\left(D^{j} u, D^{j} v\right)_{L^{2}}
$$

Theorem 6.11. As above, let $D(L)=\left\{f \in C^{2}(J): f=0\right.$ on $\left.\partial J\right\}$. If the $\operatorname{Nul}(L) \cap$ $D(L)=\{0\}$, i.e. if the only solution $f \in D(L)$ to $L f=0$ is $f=0$, then L : $D(L) \rightarrow C(J)$ is an invertible. Moreover there exists a continuous function G on $J \times J$ (called the Dirichlet Green's function for L) such that

$$
\begin{equation*}
\left(L^{-1} g\right)(x)=\int_{J} G(x, y) g(y) d y \text { for all } g \in C(J) \tag{6.12}
\end{equation*}
$$

Moreover if $g \in L^{2}(J)$ then $G g \in H_{0}^{2}(J)$ and $L(G g)=g$ a.e. and more generally if $g \in H^{k}(J)$ then $G g \in H_{0}^{k+2}(J)$

Proof. To prove the surjectivity of $L: D(L) \rightarrow C(J)$, (i.e. existence of solutions $f \in D(L)$ to $L f=g$ with $g \in C(J))$ we are going to construct the Green's function G.
(1) Formal requirements on the Greens function. Assuming Eq. (6.12) holds and working formally we should have

$$
\begin{equation*}
g(x)=L_{x} \int_{J} G(x, y) g(y) d y=\int_{J} L_{x} G(x, y) g(y) d y \tag{6.13}
\end{equation*}
$$

for all $g \in C(J)$. Hence, again formally, this implies

$$
L_{x} G(x, y)=\delta(y-x) \text { with } G(r, y)=G(s, y)=0
$$

This can be made more convincing by as follows. Let $\phi \in \mathcal{D}:=\mathcal{D}(r, s)$, then multiplying

$$
g(x)=L_{x} \int_{J} G(x, y) g(y) d y
$$

by ϕ, integrating the result and then using integration by parts and Fubini's theorem gives

$$
\begin{aligned}
\int_{J} g(x) \phi(x) d x & =\int_{J} d x \phi(x) L_{x} \int_{J} d y G(x, y) g(y) \\
& =\int_{J} d x L_{x} \phi(x) \int_{J} d y G(x, y) g(y) \\
& =\int_{J} d y g(y) \int_{J} d x L_{x} \phi(x) G(x, y) \text { for all } g \in C(J)
\end{aligned}
$$

From this we conclude

$$
\int_{J} L_{x} \phi(x) G(x, y) d x=\phi(y)
$$

i.e. $L_{x} T_{G(x, y)}=\delta(x-y)$.
(2) Constructing G. In order to construct a solution to Eq. (6.14), let u, v be two non-zero L - harmonic functions chosen so that $u(r)=0=v(s)$ and $u^{\prime}(r)=1=v^{\prime}(s)$ and let W be the Wronskian of u and v. By Lemma 6.9, either W is never zero or is identically zero. If $W=0$, then $\left(u(r), u^{\prime}(r)\right)=$
$\lambda\left(v(r), v^{\prime}(r)\right)$ for some $\lambda \in \mathbb{R}$ and by uniqueness of solutions to ODE it would follow that $u \equiv \lambda v$. In this case $u(r)=0$ and $u(s)=\lambda v(s)=0$, and hence $u \in D(L)$ with $L u=0$. However by assumption, this implies $u=0$ which is impossible since $u^{\prime}(0)=1$. Thus W is never 0 .

By Eq. (6.14) we should require $L_{x} G(x, y)=0$ for $x \neq y$ and $G(r, y)=$ $G(s, y)=0$ which implies that

$$
G(x, y)=\left\{\begin{array}{lll}
u(x) \phi(y) & \text { if } & x<y \\
v(x) \psi(y) & \text { if } & x>y
\end{array}\right.
$$

for some functions ϕ and ψ. We now want to choose ϕ and ψ so that G is continuous and $L_{x} G(x, y)=\delta(x-y)$. Using

$$
G_{x}(x, y)=\left\{\begin{array}{lll}
u^{\prime}(x) \phi(y) & \text { if } & x<y \\
v^{\prime}(x) \psi(y) & \text { if } & x>y
\end{array}\right.
$$

Lemma 6.9, we are led to require

$$
\begin{aligned}
& 0=G(y+, y)-G(y-, y)=u(y) \phi(y)-v(y) \psi(y) \\
& 1=-\left.\left[a(x) G_{x}(x, y)\right]\right|_{x=y-} ^{x=y+}=-a(y)\left[v^{\prime}(y) \psi(y)-u^{\prime}(y) \phi(y)\right]
\end{aligned}
$$

Solving these equations for ϕ and ψ gives

$$
\binom{\phi}{\psi}=-\frac{1}{a W}\binom{v}{u}
$$

and hence

$$
G(x, y)=-\frac{1}{a(y) W(y)}\left\{\begin{array}{lll}
u(x) v(y) & \text { if } & x \leq y \tag{6.15}\\
v(x) u(y) & \text { if } & x \geq y
\end{array}\right.
$$

(3) With this G, Eq. (6.12) holds. Given $g \in C(J)$, then f in Eq. (6.12) may be written as

$$
\begin{aligned}
f(x) & =\int_{J} G(x, y) g(y) d y \\
& =-v(x) \int_{r}^{x} \frac{u(y)}{a(y) W(y)} g(y) d y-u(x) \int_{x}^{s} \frac{v(y)}{a(y) W(y)} g(y) d y
\end{aligned}
$$

Differentiating this equation twice gives

$$
f^{\prime}(x)=-v^{\prime}(x) \int_{r}^{x} \frac{u(y)}{a(y) W(y)} g(y) d y-u^{\prime}(x) \int_{x}^{s} \frac{v(y)}{a(y) W(y)} g(y) d y
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =-v^{\prime \prime}(x) \int_{r}^{x} \frac{u(y)}{a(y) W(y)} g(y) d y-u^{\prime \prime}(x) \int_{x}^{s} \frac{v(y)}{a(y) W(y)} g(y) d y \\
& -v^{\prime}(x) \frac{u(x)}{a(x) W(x)} g(x)+u^{\prime}(x) \frac{v(x)}{a(x) W(x)} g(x)
\end{aligned}
$$

Using $L v=0=L u$, the definition of W and the last two equations we find

$$
\begin{aligned}
-a(x) f^{\prime \prime}(x) & =\left[b(x) v^{\prime}(x)+c(x) v(x)\right] \int_{r}^{x} \frac{u(y)}{a(y) W(y)} g(y) d y \\
& +\left[b(x) u^{\prime}(x)+c(x) u(x)\right] \int_{x}^{s} \frac{v(y)}{a(y) W(y)} g(y) d y+g(x) \\
& =-b(x) f^{\prime}(x)-c(x) f(x)+g(x)
\end{aligned}
$$

i.e. $L f=g$.

Hence we have proved $L: D(L) \rightarrow C(J)$ is surjective and $L^{-1}: C(J) \rightarrow D(L)$ is given by Eq. (6.12).

Now suppose $g \in L^{2}(J)$, we will show that $f \in C^{1}(J)$ and Eq. (6.17) is still valid. The difficulty here is that it is clear that f is differentiable almost everywhere and Eq. (6.17) holds for almost every x. However this is not good enough, we need Eq. (6.17) to hold for all x. To remedy this, choose $g_{n} \in C(J)$ such that $g_{n} \rightarrow g$ in $L^{2}(J)$ and let $f_{n}:=G g_{n}$. Then by what we have just proved,

$$
f_{n}^{\prime}(x)=\int_{J} G_{x}(x, y) g_{n}(y) d y
$$

Now by the Cauchy-Schwarz inequality,

$$
\left|\int_{J} G_{x}(x, y)\left[g(y)-g_{n}(y)\right] d y\right|^{2} \leq\left\|g-g_{n}\right\|_{L^{2}(J)}^{2} \int_{J}\left|G_{x}(x, y)\right|^{2} d y \leq C\left\|g-g_{n}\right\|_{L^{2}(J)}^{2}
$$

where $C:=\sup _{x \in J} \int_{J}\left|G_{x}(x, y)\right|^{2} d y<\infty$. From this inequality it follows that $f_{n}^{\prime}(x)$ converges uniformly to $\int_{J} G_{x}(x, y) g(y) d y$ as $n \rightarrow \infty$ and hence $f \in C^{1}(J)$ and

$$
f^{\prime}(x)=\int_{J} G_{x}(x, y) g(y) d y \text { for all } x \in J
$$

i.e. Eq. (6.17) is valid for all $x \in J$. It now follows from Eq. (6.17) that $f \in H^{2}(J)$ and Eq. (6.18) holds for almost every x. Working as before we may conclude $L f=g$ a.e. Finally if $g \in H^{k}(J)$ for $k \geq 1$, the reader may easily show $f \in H_{0}^{k+2}(J)$ by examining Eqs. (6.17) and (6.18).

Remark 6.12. When L is given as in Eq. (6.1), $b=-a^{\prime}$ and by Lemma 6.9

$$
W(x)=W(0) e^{-\int_{0}^{x} \frac{a^{\prime}}{a}(t) d t}=W(0) e^{-\ln (a(x) / a(0))}=\frac{W(0) a(0)}{a(x)}
$$

So in this case

$$
G(x, y)=-\frac{1}{W(0) a(0)}\left\{\begin{array}{lll}
u(x) v(y) & \text { if } & x \leq y \\
v(x) u(y) & \text { if } & x \geq y
\end{array}\right.
$$

where we may take

$$
u(x)=\alpha(x):=\int_{0}^{x} \frac{1}{a(z)} d z \text { and } v(x)=\left(1-\frac{\alpha(x)}{\alpha(1)}\right)
$$

Finally for this choice of u and v we have

$$
W(0)=u(0) v^{\prime}(0)-u^{\prime}(0) v(0)=-\frac{1}{a(0)}
$$

giving

$$
G(x, y)=\left\{\begin{array}{lll}
u(x) v(y) & \text { if } & x \leq y \\
v(x) u(y) & \text { if } & x \geq y
\end{array}\right.
$$

which agrees with Eq. (6.5) above.
Lemma 6.13. Let $L^{*} f:=-(a f)^{\prime \prime}-(b f)^{\prime}+c f$ be the formal adjoint of L. Then

$$
\begin{equation*}
(L f, g)=\left(f, L^{*} g\right) \text { for all } f, g \in D(L) \tag{6.19}
\end{equation*}
$$

where $(f, g):=\int_{J} f(x) g(x) d x$. Moreover if $\operatorname{nul}(L)=\{0\}$ then $\operatorname{nul}\left(L^{*}\right)=\{0\}$ and the Greens function for L^{*} is G^{*} defined by $G^{*}(x, y)=G(y, x)$, where G is the Green's function in Eq. (6.15). Consequently $L_{y}^{*} G(x, y)=\delta(x-y)$.

Proof. First observe that G^{*} has been defined so that $\left(G^{*} g, f\right)=(g, G f)$ for all $f \in L^{2}(J)$.Eq. (6.19) follows by two integration by parts after observing the boundary terms are zero because $f=g=0$ on ∂J. If $g \in \operatorname{nul}\left(L^{*}\right)$ and $f \in D(L)$, we find

$$
0=\left(L^{*} g, f\right)=(g, L f) \text { for all } f \in D(L)
$$

By Theorem 6.11, if $\operatorname{nul}(L)=\{0\}$ then $L: D(L) \rightarrow C(J)$ is invertible so the above equation implies $\operatorname{nul}\left(L^{*}\right)=\{0\}$. Another application of Theorem 6.11 then shows $L^{*}: D(L) \rightarrow C(J)$ is invertible and has a Green's function which we call $\tilde{G}(x, y)$. We will now complete the proof by showing $\tilde{G}=G^{*}$. To do this observe that

$$
(f, g)=\left(L^{*} \tilde{G} f, g\right)=(\tilde{G} f, L g)=\left(f, \tilde{G}^{*} L g\right) \text { for all } f, g \in D(L)
$$

and this then implies $\tilde{G}^{*} L=I d_{D(L)}=G L$. Cancelling the L from this equation, show $\tilde{G}^{*}=G$ or equivalently that $\tilde{G}=G^{*}$. The remaining assertions of the Lemma follows from this observation.

Here is an alternate proof that $L_{y}^{*} G(x, y)=\delta(x-y)$, also see Using $G L=$ $I_{D(L)}$, we learn for $u \in D(L)$ and $v \in C(J)$ that

$$
(v, u)=(v, G L u)=\left(L^{*} G^{*} v, u\right)
$$

which then implies $L^{*} G^{*} v=v$ for all $v \in C(J)$. This implies

$$
f(x)=\int_{J} G(x, y) L f(y) d y=\left\langle T_{G(x, \cdot)}, L f\right\rangle=\left\langle L^{*} T_{G(x, \cdot)}, f\right\rangle \text { for all } f \in D(L)
$$

from which it follows that $L_{y}^{*} T_{G(x, y)}=\delta(x-y)$.
Definition 6.14. A Green's function for L is a function $G(x, y)$ as defined as in Eq. (6.15) where u and v are any two linearly independent L - harmonic functions. ${ }^{2}$

The following theorem in is a generalization of Theorem 6.7.
Theorem 6.15 (Representation Theorem). Suppose and G is a Green's function for L then
(1) $L_{x} T_{G(x, y)}=\delta(x-y)$ and $L G=I$ on $L^{2}(J)$. (However $G g$ and $G^{*} g$ may no longer satisfy the given Dirichlet boundary conditions.)
(2) $L_{y}^{*} T_{G(x, y)}=\delta(x-y)$. More precisely we have the following representation formula. For any $f \in H^{2}(J)$,

$$
\begin{equation*}
f(x)=(G L f)(x)+\left.\left\{G(x, y) a(y) f^{\prime}(y)-[a(y) G(x, y)]_{y} f(y)\right\}\right|_{y=r} ^{y=s} \tag{6.20}
\end{equation*}
$$

(3) Let us now assume $\operatorname{nul}(L)=\{0\}$ and G is the Dirichlet Green's function for L. The Eq. (6.20) specializes to

$$
f(x)=(G L f)(x)-\left.[a(y) G(x, y)]_{y} f(y)\right|_{y=r} ^{y=s}
$$

Moreover if we are given $h: \partial J \rightarrow \mathbb{R}$ and $g \in L^{2}(J)$, then the unique solution $f \in H^{2}(J)$ to

$$
L f=g \text { a.e. with } f=h \text { on } \partial J
$$

is

$$
\begin{equation*}
f(x)=(G g)(x)+H(x) \tag{6.21}
\end{equation*}
$$

[^0]where, for $x \in J^{0}$,
\[

$$
\begin{align*}
& H(x):=-\left.[a(y) G(x, y)]_{y} h(y)\right|_{y=r} ^{y=s} \tag{6.22}\\
& \text { and } H(r):=H(r+) \text { and } H(s):=H(s-) \text {. }
\end{align*}
$$
\]

Proof. 1. The first item follows from the proof of Theorem 6.11 with out any modification.
2. Using Lemma 6.9,

$$
\begin{aligned}
L^{*}\left(\frac{u}{a W}\right) & =-\left(\frac{u}{W}\right)^{\prime \prime}-\left(\frac{b u}{a W}\right)^{\prime}+\frac{c u}{a W} \\
& =-\left(\frac{u^{\prime}}{W}-\frac{b}{a} \frac{1}{W} u\right)^{\prime}-\left(\frac{b u}{a W}\right)^{\prime}+\frac{c u}{a W} \\
& =-\left(\frac{u^{\prime}}{W}\right)^{\prime}+\frac{c u}{a W}=-\left(\frac{u^{\prime \prime}}{W}-\frac{b}{a} \frac{1}{W} u\right)+\frac{c u}{a W} \\
& =\frac{1}{a} L u=0
\end{aligned}
$$

Similarly $L^{*}\left(\frac{v}{a W}\right)=0$ and therefore $L_{y}^{*} G(x, y)=0$ for $y \neq x$. Since

$$
\begin{align*}
G_{y}(x, y) & =-\left(\frac{d}{d y} \frac{1}{a(y) W(y)}\right)\left\{\begin{array}{lll}
u(x) v(y) & \text { if } & x \leq y \\
v(x) u(y) & \text { if } & x \geq y
\end{array}\right. \\
& -\frac{1}{a(y) W(y)}\left\{\begin{array}{lll}
u(x) v^{\prime}(y) & \text { if } & x \leq y \\
v(x) u^{\prime}(y) & \text { if } & x \geq y
\end{array}\right. \tag{6.23}
\end{align*}
$$

we find

$$
G_{y}(x, x+)-G_{y}(x, x-)=\frac{1}{a(x) W(x)}\left\{v(x) u^{\prime}(x)-u(x) v^{\prime}(x)\right\}=-\frac{1}{a(x)}
$$

Finally since

$$
L_{y}^{*}=-a \frac{d^{2}}{d y^{2}}+\text { lower order terms }
$$

we may conclude form Lemma 5.11 that $L_{y}^{*} G(x, y)=\delta(x-y)$. Using integration by parts for absolutely continuous functions and Lemma 6.13, for $f \in H^{2}(J)$,

$$
\begin{aligned}
(G L f)(x) & =\int_{J} G(x, y) L f(y) d y \\
& =\int_{J} G(x, y)\left(-a(y) \frac{d^{2}}{d y^{2}}+b(y) \frac{d}{d y}+c(y)\right) f(y) d y \\
& =\int_{J}\left[\frac{d}{d y}[a(y) G(x, y)] f^{\prime}(y)+\left(-\frac{d}{d y}[b(y) G(x, y)] f+c(y)\right) f(y)\right] d y \\
& -\left.G(x, y) a(y) f^{\prime}(y)\right|_{\substack{y=s \\
y=r}} ^{y=s}+\left.[a(y) G(x, y)]_{y} f(y)\right|_{y=r} ^{y=s}+\left\langle L_{y}^{*} G(x, y), f(y)\right\rangle \\
& =-\left.G(x, y) a(y) f^{\prime}(y)\right|_{y=r} ^{y=r}+[a) \\
& =\left.[a(y) G(x, y)]_{y} f(y)\right|_{y=r} ^{y=s}-\left.G(x, y) a(y) f^{\prime}(y)\right|_{y=r} ^{y=s}+f(x) .
\end{aligned}
$$

This proves Eq. (6.20).
3. Now suppose G is the Dirichlet Green's function for L. By Eq. (6.15),

$$
\begin{aligned}
{[-a(y) G(x, y)]_{y} } & =\left(\frac{d}{d y} \frac{1}{W(y)}\right)\left\{\begin{array}{lll}
u(x) v(y) & \text { if } x \leq y \\
v(x) u(y) & \text { if } x \geq y
\end{array}\right. \\
& +\frac{1}{W(y)}\left\{\begin{array}{lll}
u(x) v^{\prime}(y) & \text { if } & x \leq y \\
v(x) u^{\prime}(y) & \text { if } & x \geq y
\end{array}\right.
\end{aligned}
$$

and hence the function H defined in Eq. (6.22) is more explicitly given by

$$
\begin{equation*}
H(x)=\frac{1}{W(s)}\left(u(x) v^{\prime}(s)\right) h(s)-\frac{1}{W(r)}\left(v(x) u^{\prime}(r)\right) h(r) \tag{6.24}
\end{equation*}
$$

From this equation or the fact that $L_{x} G(x, r)=0=L_{x} G(x, s), H$ is is L - harmonic on J^{0}. Moreover, from Eq. (6.24),

$$
H(r)=-\frac{1}{W(r)}\left(v(r) u^{\prime}(r)\right) h(r)=\frac{1}{W(r)}\left(u(r) v^{\prime}(r)-v(r) u^{\prime}(r)\right) h(r)=h(r)
$$

and

$$
H(s)=\frac{1}{W(s)}\left(u(s) v^{\prime}(s)\right) h(s)=\frac{1}{W(s)}\left(u(s) v^{\prime}(s)-v(s) u^{\prime}(s)\right) h(s)=h(s)
$$

Therefore if f is defined by Eq. (6.21),

$$
L f=L G g-L H=g \text { a.e. on } J^{0}
$$

because $L G=I$ on $L^{2}(J)$ and

$$
\left.f\right|_{\partial J}=\left.(G g)\right|_{\partial J}+\left.H\right|_{\partial J}=\left.H\right|_{\partial J}=h
$$

since $G g \in H_{0}^{2}(J)$.
Corollary 6.16 (Elliptic Regularity I). Suppose $-\infty \leq r_{0}<s_{0} \leq \infty, J_{0}:=\left(r_{0}, s_{0}\right)$ and L is as in Eq. (6.11) with the further assumption that $a, b, c \in C^{\infty}(\mathbb{R})$. If $f \in C^{2}\left(J_{0}\right)$ is a function such that $g:=L f \in C^{k}\left(J_{0}\right)$ for some $k \geq 0$, then $f \in C^{k+2}\left(J_{0}\right)$.

Proof. Let $r<s$ be chosen so that $J:=[r, s]$ is a bounded subinterval of J_{0} and let G be a Green's function as in Definition 6.14. Since a, b, c are smooth, it follows from our general theory of ODE that $G(x, y) \in C^{\infty}(J \times J \backslash \Delta)$ where $\Delta=\{(x, x): x \in J\}$ is the diagonal in $J \times J$. Now by Theorem 6.15,

$$
f(x)=(G g)(x)+\left.\left\{G(x, y) a(y) f^{\prime}(y)-[a(y) G(x, y)]_{y} f(y)\right\}\right|_{y=r} ^{y=s} \text { for } x \in J^{0}
$$

Since

$$
\left.x \rightarrow\left\{G(x, y) a(y) f^{\prime}(y)-[a(y) G(x, y)]_{y} f(y)\right\}\right|_{y=r} ^{y=s} \in C^{\infty}\left(J^{0}\right)
$$

it suffices to show $G g \in C^{k+2}\left(J^{0}\right)$. But this follows by examining the formula for $(G g)^{\prime \prime}$ given on the right side of Eq. (6.18).

In fact we have the following rather striking version of this result.
Theorem 6.17 (Hypoellipticity). Suppose $-\infty \leq r_{0}<s_{0} \leq \infty, J_{0}:=\left(r_{0}, s_{0}\right)$ and L is as in $E q$. (6.11) with the further assumption that $a, b, c \in C^{\infty}(\mathbb{R})$. If $u \in \mathcal{D}^{\prime}\left(J_{0}\right)$ is a generalized function such that $v:=L u \in C^{\infty}\left(J_{0}\right)$, then $u \in C^{\infty}\left(J_{0}\right)$.

Proof. As in the proof of Corollary 6.16 let $r<s$ be chosen so that $J:=[r, s]$ is a bounded subinterval of J_{0} and let G be the Green's function constructed above. ${ }^{3}$ Further suppose $\xi \in J^{0}, \theta \in C_{c}^{\infty}\left(J^{0},[0,1]\right)$ such that $\theta=1$ in a neighborhood U of ξ and $\alpha \in C_{c}^{\infty}(V,[0,1])$ such that $\alpha=1$ in a neighborhood V of ξ, see Figure 15.

Figure 15. Constructing the cutoff functions, θ and α.

Finally suppose that $\phi \in C_{c}^{\infty}(V)$, then

$$
\begin{aligned}
\phi & =\theta \phi=\theta L^{*} G^{*} \phi=\theta L^{*}\left(M_{\alpha}+M_{1-\alpha}\right) G^{*} \phi \\
& =L^{*} M_{\alpha} G^{*} \phi+\theta L^{*} M_{1-\alpha} G^{*} \phi
\end{aligned}
$$

and hence

$$
\begin{aligned}
\langle u, \phi\rangle & =\left\langle u, L^{*} M_{\alpha} G^{*} \phi+\theta L^{*} M_{1-\alpha} G^{*} \phi\right\rangle \\
& =\left\langle L u, M_{\alpha} G^{*} \phi\right\rangle+\left\langle u, \theta L^{*} M_{1-\alpha} G^{*} \phi\right\rangle
\end{aligned}
$$

Now

$$
\left\langle L u, M_{\alpha} G^{*} \phi\right\rangle=\left\langle v, M_{\alpha} G^{*} \phi\right\rangle=\left\langle G M_{\alpha} v, \phi\right\rangle
$$

and writing $u=D^{n} T_{h}$ for some continuous function h (which is always possible locally) we find

$$
\begin{aligned}
\left\langle u, \theta L^{*} M_{1-\alpha} G^{*} \phi\right\rangle & =(-1)^{n}\left\langle u, D^{n} M_{\theta} L^{*} M_{1-\alpha} G^{*} \phi\right\rangle \\
& =(-1)^{n} \int_{J \times J} h(x) D_{x}^{n}\left[\theta(x) L_{x}^{*}(1-\alpha(x)) G(y, x)\right] \phi(y) d y d x \\
& =\int_{J} \psi(y) \phi(y) d y
\end{aligned}
$$

where

$$
\psi(y):=\int_{J} h(x) D_{x}^{n}\left[\theta(x) L_{x}^{*}(1-\alpha(x)) G(y, x)\right] d x
$$

which is smooth for $y \in V$ because $1-\alpha(x)=0$ on V and so $(1-\alpha(x)) G(y, x)$ is smooth for $(x, y) \in J \times V$. Putting this altogether shows

$$
\langle u, \phi\rangle=\left\langle G M_{\alpha} v+\psi, \phi\right\rangle \text { for all } \phi \in C_{c}^{\infty}(V)
$$

[^1]That is to say $u=G M_{\alpha} v+\psi$ on V which proves the theorem since $G M_{\alpha} v+\psi \in$ $C^{\infty}(V)$.

Example 6.18. Let $L=\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial x^{2}}$ be the wave operator on \mathbb{R}^{2} which is not elliptic. Given $f \in C^{2}(\mathbb{R})$ we have already seen that $L f(y-x)=0 \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Clearly since f was arbitrary, it does not follow that $F(x, y):=f(y-x) \in C^{\infty}\left(\mathbb{R}^{2}\right)$. Moreover, if f is merely continuous and $F(x, y):=f(y-x)$, then $L T_{F}=0$ with $F \notin C^{2}\left(\mathbb{R}^{2}\right)$. To check $L T_{F}=0$ we first observe

$$
\begin{aligned}
-\left\langle\left(\partial_{x}+\partial_{y}\right) T_{F}, \phi\right\rangle & =\left\langle T_{F},\left(\partial_{x}+\partial_{y}\right) \phi\right\rangle=\int_{\mathbb{R}^{2}} f(y-x)\left(\partial_{x}+\partial_{y}\right) \phi(x, y) d x d y \\
& =\int_{\mathbb{R}^{2}} f(y)\left[\phi_{x}(x, y+x)+\phi_{y}(x, y+x)\right] d x d y \\
& =\int_{\mathbb{R}^{2}} f(y) \frac{\partial}{\partial x}[\phi(x, y+x)] d x d y=0 .
\end{aligned}
$$

Therefore $L T_{F}=\left(\partial_{x}-\partial_{y}\right)\left(\partial_{x}+\partial_{y}\right) T_{F}=0$ as well.
Corollary 6.19. Suppose a, b, c are smooth and $u \in \mathcal{D}^{\prime}\left(J^{0}\right)$ is an eigenvector for L, i.e. $L u=\lambda u$ for some $\lambda \in \mathbb{C}$. Then $u \in C^{\infty}(J)$.

Proof. Since $L-\lambda$ is an elliptic ordinary differential operator and $(L-\lambda) u=$ $0 \in C^{\infty}\left(J^{0}\right)$, it follows by Theorem 6.17 that $u \in C^{\infty}\left(J^{0}\right)$.

6.3. Elementary Sobolev Inequalities.

Notation 6.20. Let $\overline{\int_{J}} f d m:=\frac{1}{|J|} \int_{J} f d m$ denote the average of f over $J=[r, s]$.
Proposition 6.21. For $f \in H^{1}(J)$,

$$
\begin{aligned}
|f(x)| & \leq\left|\int_{J} f d m\right|+\left\|f^{\prime}\right\|_{L^{1}(J)} \\
& \leq\left|\int_{J} f d m\right|+\sqrt{|J|}\left(\int_{J}\left|f^{\prime}(y)\right|^{2} d y\right)^{1 / 2} \leq C(|J|)\|f\|_{H^{1}(J)}
\end{aligned}
$$

where $C(|J|)=\max \left(\frac{1}{\sqrt{|J|}}, \sqrt{|J|}\right)$.
Proof. By the fundamental theorem of calculus for absolutely continuous functions

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) d y
$$

for any $a, x \in J$. Integrating this equation on a and then dividing by $|J|:=s-r$ implies

$$
f(x)=\overline{\int_{J}} f d m+\overline{\int_{J}} d a \int_{a}^{x} f^{\prime}(y) d y
$$

and hence

$$
\begin{aligned}
|f(x)| & \leq\left|\int_{J} f d m\right|+\overline{\int_{J}} d a\left|\int_{a}^{x}\right| f^{\prime}(y)|d y| \\
& \leq\left|\int_{J} f d m\right|+\int_{J}\left|f^{\prime}(y)\right| d y \\
& \leq\left|\int_{J} f d m\right|+\sqrt{|J|}\left(\int_{J}\left|f^{\prime}(y)\right|^{2} d y\right)^{1 / 2} \\
& \leq \frac{1}{\sqrt{|J|}}\left(\int_{J}|f|^{2} d m\right)^{1 / 2}+\sqrt{|J|}\left(\int_{J}\left|f^{\prime}(y)\right|^{2} d y\right)^{1 / 2}
\end{aligned}
$$

Notation 6.22. For the remainder of this section, suppose $L f=-\frac{1}{\rho} D\left(\rho a f^{\prime}\right)+c f$. is an elliptic ordinary differential operator on $J=[r, s], \rho \in C^{2}(J,(0, \infty))$ is a positive weight and

$$
(f, g)_{\rho}:=\int_{J} f(x) g(x) \rho(x) d x
$$

We will also take $D(L)=H_{0}^{2}(J)$, so that we are imposing Dirichlet boundary conditions on L. Finally let

$$
\mathcal{E}(f, g):=\int_{J}\left[a f^{\prime} g^{\prime}+c f g\right] \rho d m \text { for } f, g \in H^{1}(J)
$$

Lemma 6.23. For $f, g \in D(L)$,

$$
\begin{equation*}
(L f, g)_{\rho}=\mathcal{E}(f, g)=(f, L g)_{\rho} \tag{6.25}
\end{equation*}
$$

Moreover

$$
\mathcal{E}(f, f) \geq a_{0}\left\|f^{\prime}\right\|_{2}^{2}+c_{0}\|f\|_{2}^{2} \text { for all } f \in H^{1}(J)
$$

where $c_{0}:=\min _{J} c$ and $a_{0}=\min _{J}$ a. If $\lambda_{0} \in \mathbb{R}$ with $\lambda_{0}+c_{0}>0$ then

$$
\begin{equation*}
\|f\|_{H^{1}(J)}^{2} \leq K\left[\mathcal{E}(f, f)+\lambda_{0}\|f\|_{2}^{2}\right] \tag{6.26}
\end{equation*}
$$

where $K=\left[\min \left(a_{0}, c_{0}+\lambda_{0}\right)\right]^{-1}$.
Proof. Eq. (6.25) is a simple consequence of integration by parts. By elementary estimates

$$
\mathcal{E}(f, f) \geq a_{0}\left\|f^{\prime}\right\|_{2}^{2}+c_{0}\|f\|_{2}^{2}
$$

and

$$
\mathcal{E}(f, f)+\lambda_{0}\|f\|_{2}^{2} \geq a_{0}\left\|f^{\prime}\right\|_{2}^{2}+\left(c_{0}+\lambda_{0}\right)\|f\|_{2}^{2} \geq \min \left(a_{0}, c_{0}+\lambda_{0}\right)\|f\|_{H^{1}(J)}^{2}
$$

which proves Eq. (6.26).
Corollary 6.24. Suppose $\lambda_{0}+c_{0}>0$ then $\operatorname{Nul}\left(L+\lambda_{0}\right) \cap D(L)=0$ and hence

$$
\left(L+\lambda_{0}\right): H_{0}^{2}(J) \rightarrow L^{2}(J)
$$

is invertible and the resolvent $\left(L+\lambda_{0}\right)^{-1}$ has a continuous integral kernel $G(x, y)$, i.e.

$$
\left(L+\lambda_{0}\right)^{-1} u(x)=\int_{J} G(x, y) u(y) d y
$$

Moreover if we define $D\left(L^{k}\right)$ inductively by

$$
D\left(L^{k}\right):=\left\{u \in D\left(L^{k-1}\right): L^{k-1} u \in D(L)\right\}
$$

we have $D\left(L^{k}\right)=H_{0}^{2 k}(J)$.
Proof. By Lemma 6.23, for all $u \in D(L)$,

$$
\|u\|_{H^{1}(J)}^{2} \leq K\left((L u, u)+\lambda_{0}\|u\|_{2}^{2}\right)=K\left(\left(\left(L+\lambda_{0}\right) u, u\right)\right)
$$

so that if $\left(L+\lambda_{0}\right) u=0$, then $\|u\|_{H^{1}(J)}^{2}=0$ and hence $u=0$. The remaining assertions except for $D\left(L^{k}\right)=H_{0}^{k}(J)$ now follow directly from Theorem 6.11 applied with L replaced by $L+\lambda_{0}$. Finally if $u \in D(L)$ then $\left(L+\lambda_{0}\right) u=L u+\lambda_{0} u \in L^{2}(J)$ and therefore

$$
u=\left(L+\lambda_{0}\right)^{-1}\left(L u+\lambda_{0} u\right) \in H_{0}^{2}(J)
$$

Now suppose we have shown, $D\left(L^{k}\right)=H_{0}^{2 k}(J)$ and $u \in D\left(L^{k+1}\right)$, then

$$
\left(L+\lambda_{0}\right) u=L u+\lambda_{0} u \in D\left(L^{k}\right)+D\left(L^{k+1}\right) \subset D\left(L^{k}\right)=H_{0}^{2 k}(J)
$$

and so by Theorem 6.11, $u \in\left(L+\lambda_{0}\right)^{-1} H_{0}^{2 k}(J) \subset H_{0}^{2 k+2}(J)$.
Corollary 6.25. There exists an orthonormal basis $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ for $L^{2}(J, \rho d m)$ of eigenfunctions of L with eigenvalues $\lambda_{n} \in \mathbb{R}$ such that $-c_{0} \leq \lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots$.

Proof. Let $\lambda_{0}>-c_{0}$ and let $G:=\left(L+\lambda_{0}\right)^{-1}: L^{2}(J) \rightarrow H_{0}^{2}(J)=D(L) \subset$ $L^{2}(J)$. From the theory of compact operators to be developed later, G is a compact symmetric positive definite operator on $L^{2}(J)$ and hence there exists an orthonormal basis $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ for $L^{2}(J, \rho d m)$ of eigenfunctions of G with eigenvalues $\mu_{n}>0$ such that $\mu_{0} \geq \mu_{1} \geq \mu_{2} \geq \ldots \rightarrow 0 .{ }^{4}$ Since

$$
\mu_{n} \phi_{n}=G \phi_{n}=\left(L+\lambda_{0}\right)^{-1} \phi_{n}
$$

it follows that $\mu_{n}\left(L+\lambda_{0}\right) \phi_{n}=\phi_{n}$ for all n and therefore $L \phi_{n}=\lambda_{n} \phi_{n}$ with $\lambda_{n}=$ $\left(\mu_{n}^{-} 1-\lambda_{0}\right) \uparrow \infty$. Finally since L is a second order ordinary differential equation there can be at most one linearly independent eigenvector for a given eigenvalue λ_{n} and hence $\lambda_{n}<\lambda_{n}+1$ for all n.
Example 6.26. Let $J=[0, \pi], \rho=1$ and $L=-D^{2}$ on $H_{0}^{2}(J)$. Then $L \phi=\lambda \phi$ implies $\phi^{\prime \prime}+\lambda \phi=0$. Since L is positive, we need only consider the case where $\lambda \geq 0$ in which case $\phi(x)=a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x)$. The boundary conditions for f imply $a=0$ and $0=\sin (\sqrt{\lambda} \pi)$, i.e. $\sqrt{\lambda} \in \mathbb{N}_{+}$. Therefore in this example

$$
\phi_{k}(x)=\sqrt{\frac{2}{\pi}} \sin (k x) \text { with } \lambda_{k}=k^{2}
$$

The collection of functions $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for $L^{2}(J)$.
Theorem 6.27. Let $J=[r, s]$ and $\rho, a \in C^{2}(J,(0, \infty)), c \in C^{2}(J)$ and L be defined by

$$
L f=-\frac{1}{\rho} D\left(\rho a f^{\prime}\right)+c f
$$

and for $\lambda \in \mathbb{R}$ let

$$
E^{\lambda}:=\left\{\phi \in H_{0}^{2}(J): L \phi=\alpha \phi \text { for some } \alpha<\lambda\right\}
$$

[^2]Then there are constants $d_{1}, d_{2}>0$ such that

$$
\begin{equation*}
\operatorname{dim}\left(E^{\lambda}\right) \leq d_{1} \lambda+d_{2} \tag{6.27}
\end{equation*}
$$

Proof. For $\lambda \in \mathbb{R}$ let $E_{\lambda}:=\left\{\phi \in H_{0}^{2}(J): L \phi=\lambda \phi\right\}$. By Corollary 6.24, $E_{\lambda}=$ $\{0\}$ if $\lambda<c_{0}$ and since $(L f, g)_{\rho}=(f, L g)_{\rho}$ for all $f, g \in H_{0}^{2}(J)$ it follows that $E_{\lambda} \perp E_{\beta}$ for all $\lambda \neq \beta$. Indeed, if $f \in E_{\lambda}$ and $g \in E_{\beta}$, then

$$
(\beta-\lambda)(f, g)_{\rho}=(f, L g)_{\rho}-(L f, g)_{\rho}=0
$$

Thus it follow that any finite dimensional subspace $W \subset E^{\lambda}$ has an orthonormal basis (relative to $(\cdot, \cdot)_{\rho}$ - inner product) of eigenvectors $\left\{\phi_{k}\right\}_{k=1}^{n} \subset E^{\lambda}$ of L, say $L \phi_{k}=\lambda_{k} \phi_{k}$. Let $u=\sum_{k=1}^{n} u_{k} \phi_{k}$ where $u_{k} \in \mathbb{R}$. By Proposition 6.21 and Lemma 6.23,

$$
\|u\|_{u}^{2} \leq C\|u\|_{H^{1}(J)}^{2} \leq C\left(\left(L+\lambda_{0}\right) u, u\right)_{\rho}=C\left(\sum_{k=1}^{n} u_{k}\left(\lambda_{k}+\lambda_{0}\right) \phi_{k}, u\right)_{\rho}
$$

(where C is a constant varying from place to place but independent of u) and hence for any $x \in J$,

$$
\left|\sum_{k=1}^{n} u_{k} \phi_{k}(x)\right|^{2} \leq\|u\|_{u}^{2} \leq C\left(\lambda+\lambda_{0}\right) \sum_{k=1}^{n}\left|u_{k}\right|^{2}
$$

Now choose $u_{k}=\phi_{k}(x)$ in this equation to find

$$
\left.\left.\left|\sum_{k=1}^{n}\right| \phi_{k}(x)\right|^{2}\right|^{2} \leq C\left(\lambda+\lambda_{0}\right) \sum_{k=1}^{n}\left|\phi_{k}(x)\right|^{2}
$$

or equivalently that

$$
\sum_{k=1}^{n}\left|\phi_{k}(x)\right|^{2} \leq C\left(\lambda+\lambda_{0}\right)
$$

Multiplying this equation by ρ and then integrating shows

$$
\operatorname{dim}(W)=n=\sum_{k=1}^{n}\left(\phi_{k}, \phi_{k}\right)_{\rho} \leq C\left(\lambda+\lambda_{0}\right) \int_{J} \rho d m=C^{\prime}\left(\lambda+\lambda_{0}\right)
$$

Since $W \subset E^{\lambda}$ is arbitrary, it follows that

$$
\operatorname{dim}\left(E^{\lambda}\right) \leq C^{\prime}\left(\lambda+\lambda_{0}\right)
$$

Remarks 6.28. Notice that for all $\lambda \in \mathbb{R}, \operatorname{dim}\left(E_{\lambda}\right) \leq 1$ because if $u, v \in E_{\lambda}$ then by uniqueness of solutions to ODE, $u=\left[u^{\prime}(r) / v^{\prime}(r)\right] v$. Let $\left\{\phi_{k}\right\}_{k=1}^{\infty} \subset H_{0}^{2}(J) \cap$ $C^{\infty}(J)$ be the eigenvectors of L ordered so that the corresponding eigenvalues are increasing. With this ordering we have $k=\operatorname{dim}\left(E^{\lambda_{k}}\right) \leq d_{1} \lambda_{k}+d_{2}$ and therefore,

$$
\begin{equation*}
\lambda_{k} \geq d_{1}^{-1}\left(k-d_{2}\right) \tag{6.28}
\end{equation*}
$$

The estimates in Eqs. (6.27) and (6.28) are not particularly good as Example 6.26 illustrates.

6.4. Application to Heat and Wave Equations.

Lemma 6.29. L is a closed operator, i.e. if $s_{n} \in D(L)$ and $s_{n} \rightarrow s$ and $L s_{n} \rightarrow g$ in L^{2}, then $s \in D(L)$ and $L s=g$. In particular if $f_{k} \in D(L)$ and $\sum_{k=1}^{\infty} f_{k}$ and $\sum_{k=1}^{\infty} L f_{k}$ exists in L^{2}, then $\sum_{k=1}^{\infty} f_{k} \in D(L)$ and

$$
L \sum_{k=1}^{\infty} f_{k}=\sum_{k=1}^{\infty} L f_{k}
$$

Proof. Let $\lambda_{0}+c_{0}>0$ and $G=\left(L+\lambda_{0}\right)^{-1}$. Then by assumption $\left(L+\lambda_{0}\right) s_{n} \rightarrow$ $g+\lambda_{0} s$ and so

$$
s \leftarrow s_{n}=G\left(L+\lambda_{0}\right) s_{n} \rightarrow G\left(g+\lambda_{0} s\right) \text { as } n \rightarrow \infty
$$

showing $s=G g \in D\left(L+\lambda_{0}\right)=D(L)$ and

$$
\left(L+\lambda_{0}\right) s=\left(L+\lambda_{0}\right) G\left(g+\lambda_{0} s\right)=g+\lambda_{0} s
$$

and hence $L s=g$ as desired. The assertions about the sums follow by applying the sequence results to $s_{n}=\sum_{k=1}^{n} f_{k}$.
Theorem 6.30. Given $f \in L^{2}$, let

$$
\begin{equation*}
u(t)=e^{-t L} f=\sum_{n=0}^{\infty}\left(f, \phi_{n}\right) e^{-t \lambda_{n}} \phi_{n} \tag{6.29}
\end{equation*}
$$

Then for $t>0, u(t, x)$ is smooth in (t, x) and solves the heat equation

$$
\begin{align*}
u_{t}(t, x) & =-L u(t, x), u(t, x)=0 \text { for } x \in \partial J \tag{6.30}\\
\text { and } f & =L^{2}-\lim _{t \downarrow 0} u(t) \tag{6.31}
\end{align*}
$$

Moreover, $u(t, x)=\int_{J} p_{t}(x, y) f(y) \rho(y) d y$ where

$$
\begin{equation*}
p_{t}(x, y):=\sum_{n=0}^{\infty} e^{-t \lambda_{n}} \phi_{n}(x) \phi_{n}(y) \tag{6.32}
\end{equation*}
$$

is a smooth function in $t>0$ and $x, y \in J$. The function p_{t} is called the Diurichlet Heat Kernel for L.

Proof. (Sketch.) For any $t>0$ and $k \in \mathbb{N}$, $\sup _{n}\left(e^{-t \lambda_{n}} \lambda_{n}^{k}\right)<\infty$ and so by Lemma 6.29, for $t>0, u(t) \in D\left(L^{k}\right)=H_{0}^{2 k}(J)^{5}$ (Corollary 6.24) and

$$
L^{k} u(t)=\sum_{n=0}^{\infty}\left(f, \phi_{n}\right) e^{-t \lambda_{n}} \lambda_{n}^{k} \phi_{n}
$$

Also we have $L^{k} u^{(m)}(t)$ exists in L^{2} for all $k, m \in \mathbb{N}$ and

$$
L^{k} u^{(m)}(t)=(-1)^{m} \sum_{n=0}^{\infty}\left(f, \phi_{n}\right) e^{-t \lambda_{n}} \lambda_{n}^{k+m} \phi_{n}
$$

By Sobolev inequalities and elliptic estimates such as Proposition 6.21 and Lemma 6.23 , one concludes that $u \in C^{\infty}\left((0, \infty), H_{0}^{k}(J)\right)$ for all k and then that $u \in$

[^3]$C^{\infty}((0, \infty) \times J, \mathbb{R})$. Eq. (6.30) is now relatively easy to prove and Eq. (6.31) follows from the following computation
$$
\|f-u(t)\|_{2}^{2}=\sum_{n=1}^{\infty}\left|\left(f, \phi_{n}\right)\right|^{2}\left|1-e^{-t \lambda_{n}}\right|^{2}
$$
which goes to 0 as $t \downarrow 0$ by the D.C.T. for sums.
Finally from Eq. (6.29)
$$
u(t, x)=\sum_{n=0}^{\infty} \int_{J} f(y) \phi(y) \rho(y) d y e^{-t \lambda_{n}} \phi_{n}(x)=\int_{J} \sum_{n=0}^{\infty} e^{-t \lambda_{n}} \phi_{n}(x) \phi(y) f(y) \rho(y) d y
$$
where the interchange of the sum and the integral is permissible since
$$
\int_{J} \sum_{n=0}^{\infty} e^{-t \lambda_{n}}\left|\phi_{n}(x) \phi(y) f(y)\right| \rho(y) d y \leq C \int_{J} \sum_{n=0}^{\infty} e^{-t \lambda_{n}}\left(\lambda_{0}+\lambda_{n}\right)^{2}|f(y)| \rho(y) d y<\infty
$$
since $\sum_{n=0}^{\infty} e^{-t \lambda_{n}}\left(\lambda_{0}+\lambda_{n}\right)^{2}<\infty$ because λ_{n} grows linearly in n. Moreover one similarly shows
$$
\left(\frac{\partial}{\partial t}\right)^{j} \partial_{x}^{2 k-1} \partial_{y}^{2 l-1} p_{t}(x, y)=\sum_{n=0}^{\infty}\left(-\lambda_{n}\right)^{j} e^{-t \lambda_{n}} \partial_{x}^{2 k-1} \phi_{n}(x) \partial_{y}^{2 l-1} \phi(y)
$$
where the above operations are permissible since
$$
\left\|\phi_{n}^{(2 k-1)}\right\|_{u} \leq C\left\|\phi_{n}\right\|_{H_{0}^{2 k}(J)} \leq C\left\|\left(L+\lambda_{0}\right)^{k} \phi_{n}\right\|_{2}=C\left(\lambda_{n}+\lambda_{0}\right)^{k}
$$
and therefore
$$
\sum_{n=0}^{\infty}\left|\left(-\lambda_{n}\right)^{j} e^{-t \lambda_{n}} \partial_{x}^{2 k-1} \phi_{n}(x) \partial_{y}^{2 l-1} \phi(y)\right| \leq C \sum_{n=0}^{\infty}\left|\lambda_{n}\right|^{j}\left(\lambda_{n}+\lambda_{0}\right)^{k+l} e^{-t \lambda_{n}}<\infty
$$

Again we use λ_{n} grows linearly with n. From this one may conclude that $p_{t}(x, y)$ is smooth for $t>0$ and $x, y \in J$. (We will do this in more detail when we work out the higher dimensional analogue.)

Remark 6.31 (Wave Equation). Suppose $f \in D\left(L^{k}\right)$, then

$$
\left|\left(f, \phi_{n}\right)\right|=\left|\frac{1}{\lambda_{n}^{k}}\left(f, L^{k} \phi_{n}\right)\right|=\left|\frac{1}{\lambda_{n}^{k}}\left(L^{k} f, \phi_{n}\right)\right| \leq \frac{1}{\left|\lambda_{n}^{k}\right|}
$$

and therefore

$$
\cos (t \sqrt{L}) f:=\sum_{n=0}^{\infty} \cos \left(t \sqrt{\lambda_{n}}\right)\left(f, \phi_{n}\right) \phi_{n}
$$

will be convergent in L^{2} but moreover

$$
L^{k} \cos (t \sqrt{L}) f:=\sum_{n=0}^{\infty} \cos \left(t \sqrt{\lambda_{n}}\right)\left(f, \phi_{n}\right) \lambda_{n}^{k} \phi_{n}=\sum_{n=0}^{\infty} \cos \left(t \sqrt{\lambda_{n}}\right)\left(L^{k} f, \phi_{n}\right) \phi_{n}
$$

will also be convergent. Therefore if we let

$$
u(t)=\cos (t \sqrt{L}) f+\frac{\sin (t \sqrt{L})}{\sqrt{L}} g
$$

where $f, g \in D\left(L^{k}\right)$ for all k. Then we will get a solution to the wave equation

$$
u_{t t}(t, x)+L u(t, x)=0 \text { with } u(0)=f \text { and } \dot{u}(0)=g .
$$

More on all of this later.
6.5. Extensions to Other Boundary Conditions. In this section, we will assume $\rho \in C^{2}(J,(0, \infty))$,

$$
\begin{equation*}
L u=-\rho^{-1}\left(\rho a u^{\prime}\right)^{\prime}+b u^{\prime}+c u \tag{6.33}
\end{equation*}
$$

is an elliptic ODE on $L^{2}(J)$ with smooth coefficients and

$$
\begin{equation*}
(u, v)=(u, v)_{\rho}=\int_{J} u(x) v(x) \rho(x) d x \tag{6.34}
\end{equation*}
$$

Theorem 6.32. For $v \in H^{2}(J)$ let

$$
\begin{equation*}
L^{*} v=-\rho^{-1}\left(\rho a v^{\prime}\right)^{\prime}-b v^{\prime}+\left[c-\rho^{-1}(\rho b)^{\prime}\right] v \tag{6.35}
\end{equation*}
$$

Then for $u, v \in H^{2}(J)$,

$$
\begin{equation*}
(L u, v)=\left(u, L^{*} v\right)+\left.\mathcal{B}(u, v)\right|_{\partial J} \tag{6.36}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{B}(u, v)=\rho a\left\{\left(u^{\prime}, u\right) \cdot\left(-v, v^{\prime}+\frac{b}{a} v\right)\right\} \tag{6.37}
\end{equation*}
$$

Proof. This is an exercise in integration by parts,

$$
\begin{aligned}
(L u, v) & =\int_{J}\left(-\left(\rho a u^{\prime}\right)^{\prime}+\rho b u^{\prime}+\rho c u\right) v d m \\
& =\int_{J}\left(\rho a u^{\prime} v^{\prime}-(\rho b v)^{\prime} u+\rho c u\right) d m+\left.\left[\rho b u v-\rho a u^{\prime} v\right]\right|_{\partial J} \\
& =\int_{J}\left(-u\left(\rho a v^{\prime}\right)^{\prime}-(\rho b v)^{\prime} u+\rho c v u\right) d m+\left.\left[\rho b u v+\rho a u v^{\prime}-\rho a u^{\prime} v\right]\right|_{\partial J} \\
& =\int_{J}\left(-u \rho^{-1}\left(\rho a v^{\prime}\right)^{\prime}-\rho^{-1}(\rho b v)^{\prime} u+c v u\right) \rho d m+\left.\left[\rho a\left(\frac{b}{a} u v+u v^{\prime}-v u^{\prime}\right)\right]\right|_{\partial J} \\
& =\left(u, L^{*} v\right)+\left.\left[\rho a\left(u^{\prime}, u\right) \cdot\left(-v, v^{\prime}+\frac{b}{a} v\right)\right]\right|_{\partial J}
\end{aligned}
$$

Notation 6.33. Given $(\alpha, \beta): \partial J \rightarrow \mathbb{R}^{2} \backslash\{0\}$ and $u, v \in H^{2}(J)$ let

$$
B u=\alpha u^{\prime}+\beta u=(\alpha, \beta) \cdot\left(u^{\prime}, u\right) \text { on } \partial J
$$

and

$$
B^{*} v=\alpha v^{\prime}+\left(\beta+\frac{b}{a} \alpha\right) v=\alpha v^{\prime}+\tilde{\beta} v \text { on } \partial J
$$

where $\tilde{\beta}:=\left(\beta+\frac{b}{a} \alpha\right)$.
Remarks 6.34. The function $(\alpha, \tilde{\beta}): \partial J \rightarrow \mathbb{R}^{2}$ also takes values in $\mathbb{R}^{2} \backslash\{0\}$ because $(\alpha, \tilde{\beta})=0$ iff $(\alpha, \beta)=0$. Furthermore if $\alpha=0$ then $\tilde{\beta}=\beta$.

Proposition 6.35. Let B and B^{*} be as defined in Notation 6.33 and define

$$
\begin{aligned}
D(L) & =\left\{u \in H^{2}(J): B u=0 \text { on } \partial J\right\} \\
D\left(L^{*}\right) & =\left\{u \in H^{2}(J): B^{*} u=0 \text { on } \partial J\right\}
\end{aligned}
$$

Then $v \in H^{2}(J)$ satisfies

$$
\begin{equation*}
(L u, v)=\left(u, L^{*} v\right) \text { for all } u \in D(L) \tag{6.38}
\end{equation*}
$$

iff $v \in D\left(L^{*}\right)$.
Proof. We have to check that $\mathcal{B}(u, v)$ appearing in Eq. (6.36) is 0 . (Actually we must check that $\left.\mathcal{B}(u, v)\right|_{\partial J}=0$ which we might arrange by using something like "periodic boundary conditions." I am not considering this type of condition at the moment. Since u may be chosen to be zero near r or s we must require $\mathcal{B}(u, v)=0$ on ∂J.) Now $\mathcal{B}(u, v)=0$ iff

$$
\begin{equation*}
\left(u^{\prime}, u\right) \cdot\left(-v, v^{\prime}+\frac{b}{a} v\right)=0 \tag{6.39}
\end{equation*}
$$

which happens iff $\left(u^{\prime}, u\right)$ is parallel to $\left(v^{\prime}+\frac{b}{a} v, v\right)$. The boundary condition $B u=0$ may be rewritten as saying $\left(u^{\prime}, u\right) \cdot(\alpha, \beta)=0$ or equivalently that $\left(u^{\prime}, u\right)$ is parallel to $(-\beta, \alpha)$ on ∂J. Therefore the condition in Eq. (6.39) is equivalent to $(-\beta, \alpha)$ is parallel to ($v^{\prime}+\frac{b}{a} v, v$) or equivalently that

$$
0=(\alpha, \beta) \cdot\left(v^{\prime}+\frac{b}{a} v, v\right)=B^{*} v .
$$

Corollary 6.36. The formulas for L and L^{*} agree iff $b=0$ in which case

$$
L u=-\rho^{-1} D\left(a \rho u^{\prime}\right)+c u,
$$

$B=B^{*}, D(L)=D\left(L^{*}\right)$ and

$$
\begin{equation*}
(L u, v)=(u, L v) \text { for all } u, v \in D(L) . \tag{6.40}
\end{equation*}
$$

(In fact L is a "self-adjoint operator," as we will see later by showing $\left(L+\lambda_{0}\right)^{-1}$ exists for λ_{0} sufficiently large. Eq. (6.40) then may be used to deduce $\left(L+\lambda_{0}\right)^{-1}$ is a bounded self-adjoint operator with a symmetric Green's functions G.)
6.5.1. Dirichlet Forms Associated to $(L, D(L))$. For the rest of this section let $a, b_{1}, b_{2}, c_{0}, \rho \in C^{2}(J)$, with $a>0$ and $\rho>0$ on J and for $u, v \in H^{1}(J)$, let

$$
\begin{align*}
\mathcal{E}(u, v):= & \int_{J}\left(a u^{\prime} v^{\prime}+b_{1} u v^{\prime}+b_{2} u^{\prime} v+c_{0} u v\right) \rho d m \text { and } \tag{6.41}\\
& \|u\|_{H^{1}(J)}:=\left(\left\|u^{\prime}\right\|^{2}+\|u\|^{2}\right)^{1 / 2}
\end{align*}
$$

where $\|u\|^{2}=(u, u)_{\rho}$ as defined in Eq. (6.34).
Lemma 6.37 (A Coercive inequality for \mathcal{E}). There is a constant $K<\infty$ such that

$$
\begin{equation*}
|\mathcal{E}(u, v)| \leq K\|u\|_{H^{1}(J)}\|v\|_{H^{1}(J)} \text { for } u, v \in H^{1}(J) . \tag{6.42}
\end{equation*}
$$

Let $a_{0}=\min _{J} a, \bar{c}=\min _{J} c_{0}$ and $B:=\max _{J}\left|b_{1}+b_{2}\right|$, then for $u \in H^{1}(J)$,

$$
\begin{equation*}
\mathcal{E}(u, u) \geq \frac{a_{0}}{2}\left\|u^{\prime}\right\|^{2}+\left(\bar{c}-\frac{B^{2}}{2 a_{0}}\right)\|u\|^{2} . \tag{6.43}
\end{equation*}
$$

Proof. Let $A=\max _{J} a, B_{i}=\max _{J}\left|b_{i}\right|$ and $C_{0}:=\max _{J}\left|c_{0}\right|$, then

$$
\begin{aligned}
|\mathcal{E}(u, v)| & \leq \int_{J}\left(a\left|u^{\prime}\right|\left|v^{\prime}\right|+\left|b_{1}\right||u|\left|v^{\prime}\right|+\left|b_{2}\right|\left|u^{\prime}\right||v|+\left|c_{0}\right||u||v|\right) \rho d m \\
& \leq A\left\|u^{\prime}\right\|\left\|v^{\prime}\right\|+B_{1}\|u\|\left\|v^{\prime}\right\|+B_{2}\left\|u^{\prime}\right\|\|v\|+C_{0}\|u\|\|v\| \\
& \leq K\left(\left\|u^{\prime}\right\|^{2}+\|u\|^{2}\right)^{1 / 2}\left(\left\|v^{\prime}\right\|^{2}+\|v\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Let $a_{0}=\min _{J} a, \bar{c}=\min _{J} c$ and $B:=\max _{J}\left|b_{1}+b_{2}\right|$, then for any $\delta>0$,

$$
\begin{aligned}
\mathcal{E}(u, u) & =\int_{J}\left(a\left|u^{\prime}\right|^{2}+\left(b_{1}+b_{2}\right) u u^{\prime}+c_{0}|u|^{2}\right) \rho d m \\
& \geq a_{0}\left\|u^{\prime}\right\|^{2}+\bar{c}\|u\|^{2}-B \int_{J}|u|\left|u^{\prime}\right| \rho d m \\
& \geq a_{0}\left\|u^{\prime}\right\|^{2}+\bar{c}\|u\|^{2}-\frac{B}{2}\left(\delta\left\|u^{\prime}\right\|^{2}+\delta^{-1}\|u\|^{2}\right) \\
& =\left(a_{0}-\frac{B \delta}{2}\right)\left\|u^{\prime}\right\|^{2}+\left(\bar{c}-\frac{B}{2} \delta^{-1}\right)\|u\|^{2} .
\end{aligned}
$$

Taking $\delta=a_{0} / B$ in this equation proves Eq. (6.43).
Theorem 6.38. Let

$$
\begin{align*}
b & =\left(b_{2}-b_{1}\right), c:=c_{0}-\rho^{-1}\left(\rho b_{1}\right)^{\prime}, \tag{6.44}\\
L u & =-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}+b u^{\prime}+c u \text { and } \\
B u & =\left.\left(\rho a u^{\prime}+\rho b_{1} u\right)\right|_{\partial J} .
\end{align*}
$$

Then for $u \in H^{2}(J)$ and $v \in H^{1}(J)$

$$
\mathcal{E}(u, v)=(L u, v)+[(B u) v]_{\partial J}
$$

and for $u \in H^{1}(J)$ and $v \in H^{2}(J)$,

$$
\mathcal{E}(u, v)=\left(u, L^{*} v\right)+\left[\left(B^{*} v\right) u\right]_{\partial J} .
$$

Here (as in Eq. (6.35)

$$
L^{*} v=-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}-\rho^{-1}[\rho b u]^{\prime}+c u
$$

and (as in Notation 6.33)

$$
B^{*} v=\rho a v^{\prime}+\left(\rho b_{1}+\frac{b}{a} \rho a\right) v=\rho a v^{\prime}+\rho b_{2} v
$$

Proof. Let $u \in H^{2}(J)$ and $v \in H^{1}(J)$ and integrating Eq. (6.41) by parts to find
$\mathcal{E}(u, v)=\int_{J}\left(-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime} v-\rho^{-1}\left(\rho b_{1} u\right)^{\prime} v+b_{2} u^{\prime} v+c_{0} u v\right) \rho d m+\left[\rho a u^{\prime} v+\rho b_{1} u v\right]_{\partial J}$

$$
\begin{equation*}
=(L u, v)+[B u \cdot v]_{\partial J} \tag{6.45}
\end{equation*}
$$

where

$$
\begin{aligned}
L u & =-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}-\rho^{-1}\left(\rho b_{1} u\right)^{\prime}+b_{2} u^{\prime}+c_{0} u \\
& =-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}+\left(b_{2}-b_{1}\right) u^{\prime}+\left[c_{0}-\rho^{-1}\left(\rho b_{1}\right)^{\prime}\right] u \\
& =-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}+b u^{\prime}+c u
\end{aligned}
$$

and

$$
B u=\rho a u^{\prime}+\rho b_{1} u
$$

Similarly

$$
\begin{aligned}
\mathcal{E}(u, v) & =\int_{J}\left(-u \rho^{-1}\left(a \rho v^{\prime}\right)^{\prime}+b_{1} u v^{\prime}-u \rho^{-1}\left(\rho b_{2} v\right)^{\prime}+c_{0} u v\right) \rho d m+\left[\left(\rho a u v^{\prime}+\rho b_{2} u v\right)\right]_{\partial J} \\
& =\left(u, L^{\dagger} v\right)+\left[B^{\dagger} v \cdot u\right]_{\partial J}
\end{aligned}
$$

where

$$
\begin{aligned}
L^{\dagger} v & =-\rho^{-1}\left(a \rho v^{\prime}\right)^{\prime}+b_{1} v^{\prime}-\rho^{-1}\left(\rho b_{2} v\right)^{\prime}+c_{0} v \\
& =-\rho^{-1}\left(a \rho v^{\prime}\right)^{\prime}+\left(b_{1}-b_{2}\right) v^{\prime}+\left[c_{0}-\rho^{-1}\left(\rho b_{2}\right)^{\prime}\right] v \\
& =-\rho^{-1}\left(a \rho v^{\prime}\right)^{\prime}-b v^{\prime}+\left[c+\rho^{-1}\left(\rho\left(b_{1}-b_{2}\right)\right)^{-1}\right] v \\
& =-\rho^{-1}\left(a \rho v^{\prime}\right)^{\prime}-b v^{\prime}+\left[c-\rho^{-1}(\rho b)^{\prime}\right] v=L^{*} v
\end{aligned}
$$

and

$$
B^{\dagger} v=\left(\rho a v^{\prime}+\rho b_{2} v\right)=B^{*} v
$$

Remark 6.39. As a consequence of Theorem 6.38, the mapping

$$
\left(a, b_{1}, b_{2}, c_{0}\right) \rightarrow\left[(u, v) \rightarrow \mathcal{E}(u, v):=\int_{J}\left(a u^{\prime} v^{\prime}+b_{1} u v^{\prime}+b_{2} u^{\prime} v+c_{0} u v\right) \rho d m\right]
$$

is highly non-injective. In fact \mathcal{E} depends only on $a, b=b_{2}-b_{1}$ and $c:=c_{0}-$ $\rho^{-1}\left(\rho b_{1}\right)^{\prime}$ on J and b_{1} on ∂J.
Corollary 6.40. As above let $(\alpha, \beta): \partial J \rightarrow \mathbb{R}^{2} \backslash\{0\}$ and let

$$
\begin{aligned}
D(L) & =\left\{u \in H^{2}(J): B u=\alpha u^{\prime}+\beta u=0 \text { on } \partial J\right\} \text { and } \\
L u & =-\rho^{-1}\left(a \rho u^{\prime}\right)^{\prime}+b u^{\prime}+c u .
\end{aligned}
$$

Given $\lambda_{0}>0$ sufficiently large, $\left(L+\lambda_{0}\right): D(L) \rightarrow L^{2}(J)$ is invertible and there is a continuous Green's function $G(x, y)$ such that

$$
\left(L+\lambda_{0}\right)^{-1} f(x)=\int_{J} G(x, y) f(y) d y
$$

Proof. Let us normalize α so that $\alpha=a$ whenever $\alpha \neq 0$. The boundary term in Eq. (6.45) will be zero whenever

$$
a u^{\prime}+b_{1} u=0 \text { when } v \neq 0 \text { on } \partial J .
$$

This suggests that we define a subspace χ of $H^{1}(J)$ by

$$
\chi:=\left\{u \in H^{1}(J): u=0 \text { on } \partial J \text { where } \alpha=0 \text { on } \partial J\right\} .
$$

Hence χ is either $H_{0}^{1}(J), H^{1}(J),\left\{u \in H^{1}(J): u(r)=0\right\}$ or $\left\{u \in H^{1}(J): u(s)=0\right\}$. Now choose a function $b_{1} \in C^{2}(J)$ such that $b_{1}=\beta$ on ∂J, then set $b_{2}:=b+b_{1}$ and $c_{0}=c+\rho^{-1}\left(\rho b_{1}\right)^{\prime}$, then

$$
D(L)=\chi \cap\left\{u \in H^{2}(J): B u=a u^{\prime}+b_{1} u=0 \text { on } \partial J\right\}
$$

and

$$
(L u, v)=\mathcal{E}(u, v) \text { for all } u \in D(L) \text { and } v \in \chi
$$

Using this observation, it follows from Eq. (6.43) of Lemma 6.37, for λ_{0} sufficiently large and any $u \in D(L)$, that

$$
\begin{aligned}
\left(\left(L+\lambda_{0}\right) u, u\right) & =\mathcal{E}(u, u)+\lambda_{0}(u, u) \\
& \geq \frac{a_{0}}{2}\left\|u^{\prime}\right\|^{2}+\left(\bar{c}-\frac{B^{2}}{2 a_{0}}+\lambda_{0}\right)\|u\|^{2} \geq \frac{a_{0}}{2}\|u\|_{H^{1}(J)}^{2}
\end{aligned}
$$

As usual this equation shows $\operatorname{Nul}\left(L+\lambda_{0}\right)=\{0\}$. The remaining assertions are now proved as in the proof of Corollary 6.24.

[^0]: ${ }^{2}$ For example choose u, v so that $L u=0=L v$ and $u(\alpha)=v^{\prime}(\alpha)=0$ and $u^{\prime}(\alpha)=v(\alpha)=1$.

[^1]: ${ }^{3}$ Actually we can simply define G^{*} to be a Green's function for L^{*}. It is not necessary to know $G^{*}(x, y)=G(y, x)$ where G is a Green's function for L.

[^2]: ${ }^{4}$ In fact G is "Hilbert Schmidt" which then implies

 $$
 \sum_{n=0}^{\infty} \mu_{n}^{2}<\infty
 $$

[^3]: ${ }^{5}$ Basically, if $L^{k} u=g \in L^{2}(J)$ then $u=G^{k} g \in H_{0}^{2 k}(J)$.

