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6. Elliptic Ordinary Differential Operators

Let Ω ⊂o Rn be a bounded connected open region. A function u ∈ C2(Ω) is said
to satisfy Laplace’s equation if

4u = 0 in Ω.

More generally if f ∈ C(Ω) is given we say u solves the Poisson equation if

−4u = f in Ω.

In order to get a unique solution to either of these equations it is necessary to
impose “boundary" conditions on u.

Example 6.1. For Dirichlet boundary conditions we impose u = g on ∂Ω and
forNeumann boundary conditions we impose ∂u

∂ν = g on ∂Ω, where g : ∂Ω→ R
is a given function.

Lemma 6.2. Suppose f : Ω C0

−→ R, ∂Ω is C2 and g : ∂Ω→ R is continuous. Then
if there exists a solution to −4u = f with u = g on ∂Ω such that u ∈ C2(Ω)∩C1(Ω)
then the solution is unique.

Definition 6.3. Given an open set Ω ⊂ Rn we say u ∈ C1(Ω) if u ∈ C1(Ω)∩C(Ω)
and ∇u extends to a continuous function on Ω.
Proof. If eu is another solution then v = eu− u solves 4v = 0, v = 0 on ∂Ω. By

the divergence theorem,

0 =

Z
Ω

4v · vdm = −
Z
Ω

|∇v|2dm+

Z
∂Ω

v∇v · ndσ = −
Z
Ω

|∇v|2dm,

where the boundary terms are zero since v = 0 on ∂Ω. This identity impliesR
Ω

|∇u|2dx = 0 which then shows ∇v ≡ 0 and since Ω is connected we learn v

is constant on Ω. Because v is zero on ∂Ω we conclude v ≡ 0, that is u = ũ.
For the rest of this section we will now restrict to n = 1. However we will allow

for more general operators than ∆ in this case.

6.1. Symmetric Elliptic ODE. Let a ∈ C1 ([0, 1], (0,∞)) and
(6.1) Lf = −(af 0)0 = −af 00 − a0f 0 for f ∈ C2 ([0, 1]) .

In the following theorem we will impose Dirichlet boundary conditions on L by
restricting the domain of L to

D(L) := {f ∈ C2([0, 1],R) : f(0) = f(1) = 0}.
Theorem 6.4. The linear operator L : D(L)→ C([0, 1],R) is invertible and L−1 :
C([0, 1],R)→ D(L) ⊂ C2([0, 1],R) is a bounded operator.

Proof.
(1) (Uniqueness) If f, g ∈ D(L) then by integration by parts

(6.2) (Lf, g) :=

Z 1

0

(Lf)(x)g(x)dx =

Z 1

0

a(x)f 0(x)g0(x) dx.

Therefore if Lf = 0 then

0 = (Lf, f) =

Z 1

0

a(x)f 0(x)2 dx
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and hence f 0 ≡ 0 and since f(0) = 0, f ≡ 0. This shows L is injective.
(2) (Existence) Given g ∈ C([0, 1],R) we are looking for f ∈ D(L) such that

Lf = g, i.e. (af 0)0 = g. Integrating this equation implies

−a(x)f 0(x) = −C +
Z x

0

g(y)dy.

Therefore

f 0(z) =
C

a(z)
−
Z
1y≤z

1

a(z)
g(y)dy

which upon integration and using f(0) = 0 gives

f(x) =

Z x

0

C

a(z)
dz −

Z
1y≤z≤x

1

a(z)
g(y) dz dy.

If we let

(6.3) α(x) :=

Z x

0

1

a(z)
dz

the last equation may be written as

(6.4) f(x) = Cα(x)−
Z x

0

(α(x)− α(y))g(y) dy.

It is a simple matter to work backwards to show the function f defined in
Eq. (6.4) satisfies Lf = g and f(0) = 0 for any constant C. So it only
remains to choose C so that

0 = f(1) = C α(1)−
Z 1

0

(α(1)− α(y))g(y)dy.

Solving for C gives C =
R 1
0

³
1− α(y)

α(1)

´
g(y) dy and the resulting function f

may be written as

f(x) =

Z 1

0

·µ
1− α(y)

α(1)

¶
α(x)− 1y≤x(α(x)− α(y))

¸
g(y) dy

=

Z 1

0

G(x, y)g(y)dy

where

(6.5) G(x, y) =

 α(x)
³
1− α(y)

α(1)

´
if x ≤ y

α(y)
³
1− α(x)

α(1)

´
if y ≤ x.

For example when a ≡ 1,

G(x, y) =

½
x (1− y) if x ≤ y
y (1− x) if y ≤ x

.

Definition 6.5. The function G defined in Eq. (6.5) is called the Green’s func-
tion for the operator L : D(L)→ C([0, 1],R).
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Remarks 6.6. The proof of Theorem 6.4 shows

(6.6)
¡
L−1g

¢
(x) :=

Z 1

0

G(x, y)g(y)dy

where G is defined in Eq. (6.5). The Green’s function G has the following proper-
ties:

(1) Since L is invertible and G is a right inverse, G is also a left inverse, i.e.
GLf = f for all f ∈ D(L).

(2) G is continuous.
(3) G is symmetric, G(y, x) = G(x, y). (This reflects the symmetry in L,

(Lf, g) = (f, Lg) for all f, g ∈ D(L), which follows from Eq. (6.2).)
(4) G may be written as

G(x, y) =

½
u(x)v(y) if x ≤ y
u(y)v(x) if y ≤ x.

where u and v are L — harmonic functions (i.e. and Lu = Lv = 0) with
u(0) = 0 and v(1) = 0. In particular LxG(x, y) = 0 = LyG(x, y) for all
y 6= x.

(5) The first order derivatives of the Green’s function have a jump discontinuity
on the diagonal. Explicitly,

Gy(x, x+)−Gy(x, x−) = − 1

a(x)

which follows directly from

(6.7) Gy(x, y) =
1

a(y)

( −α(x)
α(1) if x < y³

1− α(x)
α(1)

´
if y < x.

By symmetry we also have

Gx(y+, y)−Gx(y−, y) = − 1

a(y)
.

(6) By Items 4. and 5. and Lemma 5.11 it follows that

LyG(x, y) := LyTG(x,y) =
d

dy
(a(y)Gy(x, y)) = δ(y − x)

and similarly that

LxTG(x,y) = LxG(x, y) = δ(x− y).

As a consequence of the above remarks we have the following representation
theorem for function f ∈ C2([0, 1]).

Theorem 6.7 (Representation Theorem). For any f ∈ C2([0, 1]),

(6.8) f(x) = (GLf)(x)−Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

.

Moreover if we are given h : ∂[0, 1]→ R and g ∈ C ([0, 1]) , then the unique solution
to

Lf = g with f = h on ∂[0, 1]

is

(6.9) f(x) = (Gg)(x)−Gy(x, y)a(y)h(y)
¯̄̄y=1
y=0

.
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Proof. By repeated use of Lemma 5.11,

(GLf)(x) = −
Z 1

0

G(x, y)
d

dy
(a(y)f 0(y))dy

=

Z 1

0

Gy(x, y)a(y)f
0(y)dy (no boundary terms since G(x, 0) = G(x, 1) = 0)

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+

Z 1

0

LyG(x, y)f(y)dy

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+

Z 1

0

δ(x− y)f(y)dy

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+ f(x)

which proves Eq. (6.8).
Now suppose that f is defined as in Eq. (6.9). Observe from Eq. (6.7) that

lim
x↑1

a(1)Gy(x, 1) = −1 and lim
x↓0

a(0)Gy(x, 0) = 1

and also notice that Gy(x, 1) and Gy(x, 0) are Lx — harmonic functions. Therefore
by these remarks and Eq. (6.6), f = h on ∂[0, 1] and

Lf(x) = g(x)− LxGy(x, y)a(y)h(y)
¯̄̄y=1
y=0

= g(x)

as desired.

6.2. General Regular 2nd order elliptic ODE. Let J = [r, s] be a closed
bounded interval in R.

Definition 6.8. A second order linear operator of the form

(6.10) Lf = −af 00 + bf 0 + cf

with a ∈ C2 (J) , b ∈ C1 (J) and c ∈ C2 (J) is said to be elliptic if a > 0, (more
generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We will
now consider the Dirichlet boundary valued problem for f ∈ C2 ([r, s]) ,

(6.11) Lf = −af 00 + bf 0 + cf = 0 with f = 0 on ∂J.

Lemma 6.9. Let u, v ∈ C2 (J) be two L — harmonic functions, i.e. Lu = 0 = Lv
and let

W := det

·
u v
u0 v0

¸
= uv0 − vu0

be the Wronskian of u and v. Then W satisfies

W 0 =
b

a
W,

d

dx

1

W
= − b

a

1

W
and

W (x) =W (r)e
R x
r

b
a (t)dt.

Proof. By direct computation

aW 0 = a (uv00 − vu00) = u (bv0 + cv)− v (bu0 + cu) = bW.
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Definition 6.10. Let Hk(J) denote those f ∈ Ck−1(J) such that f (k−1) is ab-
solutely continuous and f (k) ∈ L2(J).We also letH2

0 (J) =
©
f ∈ H2(J) : f |∂J = 0

ª
.

We make Hk(J) into a Hilbert space using the following inner product

(u, v)Hk :=
kX

j=0

¡
Dju,Djv

¢
L2

.

Theorem 6.11. As above, let D(L) =
©
f ∈ C2 (J) : f = 0 on ∂J

ª
. If the Nul(L)∩

D(L) = {0} , i.e. if the only solution f ∈ D(L) to Lf = 0 is f = 0, then L :
D(L) → C (J) is an invertible. Moreover there exists a continuous function G on
J × J (called the Dirichlet Green’s function for L) such that

(6.12)
¡
L−1g

¢
(x) =

Z
J

G(x, y)g(y)dy for all g ∈ C (J) .

Moreover if g ∈ L2(J) then Gg ∈ H2
0 (J) and L(G g) = g a.e. and more generally

if g ∈ Hk(J) then Gg ∈ Hk+2
0 (J)

Proof. To prove the surjectivity of L : D(L)→ C (J) , (i.e. existence of solutions
f ∈ D(L) to Lf = g with g ∈ C(J)) we are going to construct the Green’s function
G.

(1) Formal requirements on the Greens function. Assuming Eq. (6.12)
holds and working formally we should have

(6.13) g(x) = Lx

Z
J

G(x, y)g(y)dy =

Z
J

LxG(x, y)g(y)dy

for all g ∈ C(J). Hence, again formally, this implies

(6.14) LxG(x, y) = δ(y − x) with G(r, y) = G(s, y) = 0.

This can be made more convincing by as follows. Let φ ∈ D := D(r, s),
then multiplying

g(x) = Lx

Z
J

G(x, y)g(y)dy

by φ, integrating the result and then using integration by parts and Fubini’s
theorem givesZ

J

g(x)φ(x)dx =

Z
J

dxφ(x)Lx

Z
J

dyG(x, y)g(y)

=

Z
J

dxLxφ(x)

Z
J

dyG(x, y)g(y)

=

Z
J

dyg(y)

Z
J

dx Lxφ(x)G(x, y) for all g ∈ C(J).

From this we concludeZ
J

Lxφ(x)G(x, y)dx = φ(y),

i.e. LxTG(x,y) = δ(x− y).
(2) Constructing G. In order to construct a solution to Eq. (6.14), let u, v be

two non-zero L — harmonic functions chosen so that u(r) = 0 = v(s) and
u0(r) = 1 = v0(s) and let W be the Wronskian of u and v. By Lemma 6.9,
either W is never zero or is identically zero. If W = 0, then (u(r), u0(r)) =
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λ(v(r), v0(r)) for some λ ∈ R and by uniqueness of solutions to ODE it
would follow that u ≡ λv. In this case u(r) = 0 and u(s) = λv(s) = 0, and
hence u ∈ D(L) with Lu = 0. However by assumption, this implies u = 0
which is impossible since u0(0) = 1. Thus W is never 0.
By Eq. (6.14) we should require LxG(x, y) = 0 for x 6= y and G(r, y) =

G(s, y) = 0 which implies that

G(x, y) =

½
u(x)φ(y) if x < y
v(x)ψ(y) if x > y

for some functions φ and ψ. We now want to choose φ and ψ so that G is
continuous and LxG(x, y) = δ(x− y). Using

Gx(x, y) =

½
u0(x)φ(y) if x < y
v0(x)ψ(y) if x > y

Lemma 6.9, we are led to require

0 = G(y+, y)−G(y−, y) = u(y)φ(y)− v(y)ψ(y)

1 = − [a(x)Gx(x, y)] |x=y+x=y− = −a(y) [v0(y)ψ(y)− u0(y)φ(y)] .

Solving these equations for φ and ψ givesµ
φ
ψ

¶
= − 1

aW

µ
v
u

¶
and hence

(6.15) G(x, y) = − 1

a(y)W (y)

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y.

(3) With this G, Eq. (6.12) holds. Given g ∈ C(J), then f in Eq. (6.12)
may be written as

f(x) =

Z
J

G(x, y)g(y)dy

= −v(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy − u(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy.(6.16)

Differentiating this equation twice gives

(6.17) f 0(x) = −v0(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy − u0(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy

and

f 00(x) = −v00(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy − u00(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy

− v0(x)
u(x)

a(x)W (x)
g(x) + u0(x)

v(x)

a(x)W (x)
g(x).(6.18)

Using Lv = 0 = Lu, the definition of W and the last two equations we find

−a(x)f 00(x) = [b(x)v0(x) + c(x)v(x)]

Z x

r

u(y)

a(y)W (y)
g(y)dy

+ [b(x)u0(x) + c(x)u(x)]

Z s

x

v(y)

a(y)W (y)
g(y)dy + g(x)

= −b(x)f 0(x)− c(x)f(x) + g(x),
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i.e. Lf = g.

Hence we have proved L : D(L)→ C(J) is surjective and L−1 : C(J)→ D(L) is
given by Eq. (6.12).
Now suppose g ∈ L2(J), we will show that f ∈ C1(J) and Eq. (6.17) is still

valid. The difficulty here is that it is clear that f is differentiable almost everywhere
and Eq. (6.17) holds for almost every x. However this is not good enough, we need
Eq. (6.17) to hold for all x. To remedy this, choose gn ∈ C(J) such that gn → g in
L2(J) and let fn := Ggn. Then by what we have just proved,

f 0n(x) =
Z
J

Gx(x, y)gn(y)dy

Now by the Cauchy-Schwarz inequality,¯̄̄̄Z
J

Gx(x, y) [g(y)− gn(y)] dy

¯̄̄̄2
≤ kg − gnk2L2(J)

Z
J

|Gx(x, y)|2 dy ≤ C kg − gnk2L2(J)
where C := supx∈J

R
J
|Gx(x, y)|2 dy <∞. From this inequality it follows that f 0n(x)

converges uniformly to
R
J
Gx(x, y)g(y)dy as n→∞ and hence f ∈ C1(J) and

f 0(x) =
Z
J

Gx(x, y)g(y)dy for all x ∈ J,

i.e. Eq. (6.17) is valid for all x ∈ J. It now follows from Eq. (6.17) that f ∈ H2(J)
and Eq. (6.18) holds for almost every x.Working as before we may conclude Lf = g

a.e. Finally if g ∈ Hk(J) for k ≥ 1, the reader may easily show f ∈ Hk+2
0 (J) by

examining Eqs. (6.17) and (6.18).

Remark 6.12. When L is given as in Eq. (6.1), b = −a0 and by Lemma 6.9

W (x) =W (0)e−
R x
0

a0
a (t)dt =W (0)e− ln(a(x)/a(0)) =

W (0)a(0)

a(x)
.

So in this case

G(x, y) = − 1

W (0)a(0)

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

where we may take

u(x) = α(x) :=

Z x

0

1

a(z)
dz and v(x) =

µ
1− α(x)

α(1)

¶
.

Finally for this choice of u and v we have

W (0) = u(0)v0(0)− u0(0)v(0) = − 1

a(0)

giving

G(x, y) =

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

which agrees with Eq. (6.5) above.

Lemma 6.13. Let L∗f := −(af)00− (bf)0+ cf be the formal adjoint of L. Then

(6.19) (Lf, g) = (f, L∗g) for all f, g ∈ D(L)

where (f, g) :=
R
J
f(x)g(x)dx. Moreover if nul(L) = {0} then nul(L∗) = {0} and

the Greens function for L∗ is G∗ defined by G∗(x, y) = G(y, x), where G is the
Green’s function in Eq. (6.15). Consequently L∗yG(x, y) = δ(x− y).
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Proof. First observe that G∗ has been defined so that (G∗g, f) = (g,Gf) for
all f ∈ L2(J).Eq. (6.19) follows by two integration by parts after observing the
boundary terms are zero because f = g = 0 on ∂J. If g ∈ nul(L∗) and f ∈ D(L),
we find

0 = (L∗g, f) = (g, Lf) for all f ∈ D(L).

By Theorem 6.11, if nul(L) = {0} then L : D(L)→ C(J) is invertible so the above
equation implies nul(L∗) = {0} . Another application of Theorem 6.11 then shows
L∗ : D(L) → C(J) is invertible and has a Green’s function which we call G̃(x, y).
We will now complete the proof by showing G̃ = G∗. To do this observe that

(f, g) = (L∗G̃f, g) = (G̃f, Lg) = (f, G̃∗Lg) for all f, g ∈ D(L)

and this then implies G̃∗L = IdD(L) = GL. Cancelling the L from this equation,
show G̃∗ = G or equivalently that G̃ = G∗. The remaining assertions of the Lemma
follows from this observation.
Here is an alternate proof that L∗yG(x, y) = δ(x − y), also see Using GL =

ID(L), we learn for u ∈ D(L) and v ∈ C (J) that

(v, u) = (v,GLu) = (L∗G∗v, u)

which then implies L∗G∗v = v for all v ∈ C(J). This implies

f(x) =

Z
J

G(x, y)Lf(y)dy = hTG(x,·), Lfi = hL∗TG(x,·), fi for all f ∈ D(L)

from which it follows that L∗yTG(x,y) = δ(x− y).

Definition 6.14. A Green’s function for L is a function G(x, y) as defined
as in Eq. (6.15) where u and v are any two linearly independent L — harmonic
functions.2

The following theorem in is a generalization of Theorem 6.7.

Theorem 6.15 (Representation Theorem). Suppose and G is a Green’s function
for L then

(1) LxTG(x,y) = δ(x − y) and LG = I on L2(J). (However Gg and G∗g may
no longer satisfy the given Dirichlet boundary conditions.)

(2) L∗yTG(x,y) = δ(x − y). More precisely we have the following representation
formula. For any f ∈ H2(J),

(6.20) f(x) = (GLf)(x) +
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r

.

(3) Let us now assume nul(L) = {0} and G is the Dirichlet Green’s function
for L. The Eq. (6.20) specializes to

f(x) = (GLf)(x)− [a(y)G(x, y)]y f(y)
¯̄̄y=s
y=r

.

Moreover if we are given h : ∂J → R and g ∈ L2 (J) , then the unique
solution f ∈ H2(J) to

Lf = g a.e. with f = h on ∂J

is

(6.21) f(x) = (Gg)(x) +H(x)

2For example choose u, v so that Lu = 0 = Lv and u(α) = v0(α) = 0 and u0(α) = v(α) = 1.
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where, for x ∈ J0,

(6.22) H(x) := − [a(y)G(x, y)]y h(y)
¯̄̄y=s
y=r

and H(r) := H(r+) and H(s) := H(s−).
Proof. 1. The first item follows from the proof of Theorem 6.11 with out any

modification.
2. Using Lemma 6.9,

L∗
³ u

aW

´
= −( u

W
)00 − ( bu

aW
)0 +

cu

aW

= −( u
0

W
− b

a

1

W
u)0 − ( bu

aW
)0 +

cu

aW

= −( u
0

W
)0 +

cu

aW
= −(u

00

W
− b

a

1

W
u) +

cu

aW

=
1

a
Lu = 0.

Similarly L∗( v
aW ) = 0 and therefore L

∗
yG(x, y) = 0 for y 6= x. Since

Gy(x, y) = −
µ

d

dy

1

a(y)W (y)

¶½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

− 1

a(y)W (y)

½
u(x)v0(y) if x ≤ y
v(x)u0(y) if x ≥ y

(6.23)

we find

Gy(x, x+)−Gy(x, x−) = 1

a(x)W (x)
{v(x)u0(x)− u(x)v0(x)} = − 1

a(x)
.

Finally since

L∗y = −a
d2

dy2
+ lower order terms

we may conclude form Lemma 5.11 that L∗yG(x, y) = δ(x− y).Using integration by
parts for absolutely continuous functions and Lemma 6.13, for f ∈ H2(J),

(GLf)(x) =

Z
J

G(x, y)Lf(y)dy

=

Z
J

G(x, y)

µ
−a(y) d

2

dy2
+ b(y)

d

dy
+ c(y)

¶
f(y)dy

=

Z
J

·
d

dy
[a(y)G(x, y)] f 0(y) +

µ
− d

dy
[b(y)G(x, y)] f + c(y)

¶
f(y)

¸
dy

−G(x, y)a(y)f 0(y)|y=sy=r

= −G(x, y)a(y)f 0(y)|y=sy=r + [a(y)G(x, y)]y f(y)|y=sy=r + hL∗yG(x, y), f(y)i
= [a(y)G(x, y)]y f(y)|y=sy=r −G(x, y)a(y)f 0(y)|y=sy=r + f(x).

This proves Eq. (6.20).
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3. Now suppose G is the Dirichlet Green’s function for L. By Eq. (6.15),

[−a(y)G(x, y)]y =
µ

d

dy

1

W (y)

¶½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

+
1

W (y)

½
u(x)v0(y) if x ≤ y
v(x)u0(y) if x ≥ y

and hence the function H defined in Eq. (6.22) is more explicitly given by

(6.24) H(x) =
1

W (s)
(u(x)v0(s))h(s)− 1

W (r)
(v(x)u0(r))h(r).

From this equation or the fact that LxG(x, r) = 0 = LxG(x, s), H is is L — harmonic
on J0. Moreover, from Eq. (6.24),

H(r) = − 1

W (r)
(v(r)u0(r))h(r) =

1

W (r)
(u(r)v0(r)− v(r)u0(r))h(r) = h(r)

and

H(s) =
1

W (s)
(u(s)v0(s))h(s) =

1

W (s)
(u(s)v0(s)− v(s)u0(s))h(s) = h(s).

Therefore if f is defined by Eq. (6.21),

Lf = LGg − LH = g a.e. on J0

because LG = I on L2(J) and

f |∂J = (Gg) |∂J +H|∂J = H|∂J = h

since Gg ∈ H2
0 (J).

Corollary 6.16 (Elliptic Regularity I). Suppose −∞ ≤ r0 < s0 ≤ ∞, J0 := (r0, s0)
and L is as in Eq. (6.11) with the further assumption that a, b, c ∈ C∞(R). If
f ∈ C2 (J0) is a function such that g := Lf ∈ Ck (J0) for some k ≥ 0, then
f ∈ Ck+2 (J0) .

Proof. Let r < s be chosen so that J := [r, s] is a bounded subinterval of J0
and let G be a Green’s function as in Definition 6.14. Since a, b, c are smooth,
it follows from our general theory of ODE that G(x, y) ∈ C∞ (J × J \∆) where
∆ = {(x, x) : x ∈ J} is the diagonal in J × J. Now by Theorem 6.15,

f(x) = (Gg)(x) +
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r

for x ∈ J0.

Since

x→
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r
∈ C∞(J0)

it suffices to show Gg ∈ Ck+2(J0). But this follows by examining the formula for
(Gg)00 given on the right side of Eq. (6.18).
In fact we have the following rather striking version of this result.

Theorem 6.17 (Hypoellipticity). Suppose −∞ ≤ r0 < s0 ≤ ∞, J0 := (r0, s0) and
L is as in Eq. (6.11) with the further assumption that a, b, c ∈ C∞(R). If u ∈ D0 (J0)
is a generalized function such that v := Lu ∈ C∞(J0), then u ∈ C∞(J0).
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Proof. As in the proof of Corollary 6.16 let r < s be chosen so that J := [r, s] is
a bounded subinterval of J0 and let G be the Green’s function constructed above.3

Further suppose ξ ∈ J0, θ ∈ C∞c (J
0, [0, 1]) such that θ = 1 in a neighborhood U of

ξ and α ∈ C∞c (V, [0, 1]) such that α = 1 in a neighborhood V of ξ, see Figure 15.

Figure 15. Constructing the cutoff functions, θ and α.

Finally suppose that φ ∈ C∞c (V ), then

φ = θφ = θL∗G∗φ = θL∗ (Mα +M1−α)G∗φ

= L∗MαG
∗φ+ θL∗M1−αG∗φ

and hence

hu, φi = hu, L∗MαG
∗φ+ θL∗M1−αG∗φi

= hLu,MαG
∗φi+ hu, θL∗M1−αG∗φi.

Now
hLu,MαG

∗φi = hv,MαG
∗φi = hGMαv, φi

and writing u = DnTh for some continuous function h (which is always possible
locally) we find

hu, θL∗M1−αG∗φi = (−1)n hu,DnMθL
∗M1−αG∗φi

= (−1)n
Z
J×J

h(x)Dn
x [θ(x)L

∗
x(1− α(x))G(y, x)]φ(y)dydx

=

Z
J

ψ(y)φ(y)dy

where

ψ(y) :=

Z
J

h(x)Dn
x [θ(x)L

∗
x(1− α(x))G(y, x)] dx

which is smooth for y ∈ V because 1− α(x) = 0 on V and so (1− α(x))G(y, x) is
smooth for (x, y) ∈ J × V. Putting this altogether shows

hu, φi = hGMαv + ψ, φi for all φ ∈ C∞c (V ).

3Actually we can simply define G∗ to be a Green’s function for L∗. It is not necessary to know
G∗(x, y) = G(y, x) where G is a Green’s function for L.
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That is to say u = GMαv + ψ on V which proves the theorem since GMαv + ψ ∈
C∞(V ).

Example 6.18. Let L = ∂2

∂y2− ∂2

∂x2 be the wave operator on R
2 which is not elliptic.

Given f ∈ C2(R) we have already seen that Lf(y−x) = 0 ∈ C∞(R2). Clearly since
f was arbitrary, it does not follow that F (x, y) := f(y − x) ∈ C∞(R2). Moreover,
if f is merely continuous and F (x, y) := f(y− x), then LTF = 0 with F /∈ C2(R2).
To check LTF = 0 we first observe

−h(∂x + ∂y)TF , φi = hTF , (∂x + ∂y)φi =
Z
R2

f(y − x) (∂x + ∂y)φ(x, y)dxdy

=

Z
R2

f(y) [φx(x, y + x) + φy(x, y + x)] dxdy

=

Z
R2

f(y)
∂

∂x
[φ(x, y + x)] dxdy = 0.

Therefore LTF = (∂x − ∂y) (∂x + ∂y)TF = 0 as well.

Corollary 6.19. Suppose a, b, c are smooth and u ∈ D0(J0) is an eigenvector for
L, i.e. Lu = λu for some λ ∈ C. Then u ∈ C∞(J).

Proof. Since L− λ is an elliptic ordinary differential operator and (L− λ)u =
0 ∈ C∞(J0), it follows by Theorem 6.17 that u ∈ C∞(J0).

6.3. Elementary Sobolev Inequalities.

Notation 6.20. Let
R
J
fdm := 1

|J|
R
J
fdm denote the average of f over J = [r, s].

Proposition 6.21. For f ∈ H1(J),

|f(x)| ≤
¯̄̄̄Z

J

fdm

¯̄̄̄
+ kf 0kL1(J)

≤
¯̄̄̄Z

J

fdm

¯̄̄̄
+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

≤ C (|J |) kfkH1(J) .

where C (|J |) = max
µ

1√
|J| ,

p|J |¶ .

Proof. By the fundamental theorem of calculus for absolutely continuous func-
tions

f(x) = f(a) +

Z x

a

f 0(y)dy

for any a, x ∈ J. Integrating this equation on a and then dividing by |J | := s − r
implies

f(x) =

Z
J

fdm+

Z
J

da

Z x

a

f 0(y)dy
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and hence

|f(x)| ≤
¯̄̄̄Z

J

fdm

¯̄̄̄
+

Z
J

da

¯̄̄̄Z x

a

|f 0(y)| dy
¯̄̄̄

≤
¯̄̄̄Z

J

fdm

¯̄̄̄
+

Z
J

|f 0(y)| dy

≤
¯̄̄̄Z

J

fdm

¯̄̄̄
+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

≤ 1p|J |
µZ

J

|f |2 dm
¶1/2

+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

.

Notation 6.22. For the remainder of this section, suppose Lf = − 1ρD (ρaf 0)+cf.

is an elliptic ordinary differential operator on J = [r, s], ρ ∈ C2(J, (0,∞)) is a
positive weight and

(f, g)ρ :=

Z
J

f(x)g(x)ρ(x)dx.

We will also take D(L) = H2
0 (J), so that we are imposing Dirichlet boundary

conditions on L. Finally let

E(f, g) :=
Z
J

[af 0g0 + cfg] ρdm for f, g ∈ H1(J).

Lemma 6.23. For f, g ∈ D(L),

(6.25) (Lf, g)ρ = E(f, g) = (f, Lg)ρ.
Moreover

E(f, f) ≥ a0 kf 0k22 + c0 kfk22 for all f ∈ H1(J)

where c0 := minJ c and a0 = minJ a. If λ0 ∈ R with λ0 + c0 > 0 then

(6.26) kfk2H1(J) ≤ K
h
E(f, f) + λ0 kfk22

i
where K = [min(a0, c0 + λ0)]

−1 .

Proof. Eq. (6.25) is a simple consequence of integration by parts. By elementary
estimates

E(f, f) ≥ a0 kf 0k22 + c0 kfk22
and

E(f, f) + λ0 kfk22 ≥ a0 kf 0k22 + (c0 + λ0) kfk22 ≥ min(a0, c0 + λ0) kfk2H1(J)

which proves Eq. (6.26).

Corollary 6.24. Suppose λ0 + c0 > 0 then Nul(L+ λ0) ∩D(L) = 0 and hence
(L+ λ0) : H

2
0 (J)→ L2(J)

is invertible and the resolvent (L+ λ0)
−1 has a continuous integral kernel G(x, y),

i.e.

(L+ λ0)
−1 u(x) =

Z
J

G(x, y)u(y)dy.

Moreover if we define D(Lk) inductively by

D(Lk) :=
©
u ∈ D(Lk−1) : Lk−1u ∈ D(L)

ª
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we have D(Lk) = H2k
0 (J).

Proof. By Lemma 6.23, for all u ∈ D(L),

kuk2H1(J) ≤ K
³
(Lu, u) + λ0 kuk22

´
= K (((L+ λ0)u, u))

so that if (L+ λ0)u = 0, then kuk2H1(J) = 0 and hence u = 0. The remaining
assertions except forD(Lk) = Hk

0 (J) now follow directly from Theorem 6.11 applied
with L replaced by L+λ0. Finally if u ∈ D(L) then (L+ λ0)u = Lu+λ0u ∈ L2(J)
and therefore

u = (L+ λ0)
−1 (Lu+ λ0u) ∈ H2

0 (J).

Now suppose we have shown, D(Lk) = H2k
0 (J) and u ∈ D

¡
Lk+1

¢
, then

(L+ λ0)u = Lu+ λ0u ∈ D(Lk) +D(Lk+1) ⊂ D(Lk) = H2k
0 (J)

and so by Theorem 6.11, u ∈ (L+ λ0)
−1

H2k
0 (J) ⊂ H2k+2

0 (J).

Corollary 6.25. There exists an orthonormal basis {φn}∞n=0 for L2(J, ρdm) of
eigenfunctions of L with eigenvalues λn ∈ R such that −c0 ≤ λ0 < λ1 < λ2 < . . . ..

Proof. Let λ0 > −c0 and let G := (L+ λ0)
−1 : L2(J) → H2

0 (J) = D(L) ⊂
L2(J). From the theory of compact operators to be developed later, G is a compact
symmetric positive definite operator on L2(J) and hence there exists an orthonor-
mal basis {φn}∞n=0 for L2(J, ρdm) of eigenfunctions of G with eigenvalues µn > 0
such that µ0 ≥ µ1 ≥ µ2 ≥ . . . → 0.4 Since

µnφn = Gφn = (L+ λ0)
−1 φn,

it follows that µn (L+ λ0)φn = φn for all n and therefore Lφn = λnφn with λn =
(µ−n 1− λ0) ↑ ∞. Finally since L is a second order ordinary differential equation
there can be at most one linearly independent eigenvector for a given eigenvalue λn
and hence λn < λn + 1 for all n.

Example 6.26. Let J = [0, π], ρ = 1 and L = −D2 on H2
0 (J). Then Lφ = λφ

implies φ00+λφ = 0. Since L is positive, we need only consider the case where λ ≥ 0
in which case φ(x) = a cos

³√
λx
´
+ b sin

³√
λx
´
. The boundary conditions for f

imply a = 0 and 0 = sin
³√

λπ
´
, i.e.

√
λ ∈ N+. Therefore in this example

φk(x) =

r
2

π
sin (kx) with λk = k2.

The collection of functions {φk}∞k=1 is an orthonormal basis for L2(J).
Theorem 6.27. Let J = [r, s] and ρ, a ∈ C2(J, (0,∞)), c ∈ C2(J) and L be defined
by

Lf = −1
ρ
D (ρaf 0) + cf.

and for λ ∈ R let
Eλ :=

©
φ ∈ H2

0 (J) : Lφ = αφ for some α < λ
ª
.

4In fact G is “Hilbert Schmidt” which then implies
∞X
n=0

µ2n <∞.
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Then there are constants d1, d2 > 0 such that

(6.27) dim(Eλ) ≤ d1λ+ d2.

Proof. For λ ∈ R let Eλ :=
©
φ ∈ H2

0 (J) : Lφ = λφ
ª
. By Corollary 6.24, Eλ =

{0} if λ < c0 and since (Lf, g)ρ = (f, Lg)ρ for all f, g ∈ H2
0 (J) it follows that

Eλ ⊥ Eβ for all λ 6= β. Indeed, if f ∈ Eλ and g ∈ Eβ , then

(β − λ) (f, g)ρ = (f, Lg)ρ − (Lf, g)ρ = 0.
Thus it follow that any finite dimensional subspace W ⊂ Eλ has an orthonormal
basis (relative to (·, ·)ρ — inner product) of eigenvectors {φk}nk=1 ⊂ Eλ of L, say
Lφk = λkφk. Let u =

Pn
k=1 ukφk where uk ∈ R. By Proposition 6.21 and Lemma

6.23,

kuk2u ≤ C kuk2H1(J) ≤ C ((L+ λ0)u, u)ρ = C

Ã
nX

k=1

uk (λk + λ0)φk, u

!
ρ

(where C is a constant varying from place to place but independent of u) and hence
for any x ∈ J, ¯̄̄̄

¯
nX

k=1

ukφk(x)

¯̄̄̄
¯
2

≤ kuk2u ≤ C (λ+ λ0)
nX

k=1

|uk|2 .

Now choose uk = φk(x) in this equation to find¯̄̄̄
¯
nX

k=1

|φk(x)|2
¯̄̄̄
¯
2

≤ C (λ+ λ0)
nX

k=1

|φk(x)|2

or equivalently that
nX

k=1

|φk(x)|2 ≤ C (λ+ λ0) .

Multiplying this equation by ρ and then integrating shows

dim(W ) = n =
nX

k=1

(φk, φk)ρ ≤ C (λ+ λ0)

Z
J

ρdm = C 0 (λ+ λ0) .

Since W ⊂ Eλ is arbitrary, it follows that

dim(Eλ) ≤ C0 (λ+ λ0) .

Remarks 6.28. Notice that for all λ ∈ R, dim(Eλ) ≤ 1 because if u, v ∈ Eλ then
by uniqueness of solutions to ODE, u = [u0(r)/v0(r)] v. Let {φk}∞k=1 ⊂ H2

0 (J) ∩
C∞(J) be the eigenvectors of L ordered so that the corresponding eigenvalues are
increasing. With this ordering we have k = dim(Eλk) ≤ d1λk + d2 and therefore,

(6.28) λk ≥ d−11 (k − d2).

The estimates in Eqs. (6.27) and (6.28) are not particularly good as Example 6.26
illustrates.
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6.4. Application to Heat and Wave Equations.

Lemma 6.29. L is a closed operator, i.e. if sn ∈ D(L) and sn → s and Lsn → g
in L2, then s ∈ D(L) and Ls = g. In particular if fk ∈ D(L) and

P∞
k=1 fk andP∞

k=1 Lfk exists in L2, then
P∞

k=1 fk ∈ D(L) and

L
∞X
k=1

fk =
∞X
k=1

Lfk.

Proof. Let λ0+c0 > 0 and G = (L+ λ0)
−1

. Then by assumption (L+ λ0) sn →
g + λ0s and so

s← sn = G (L+ λ0) sn → G (g + λ0s) as n→∞
showing s = Gg ∈ D(L+ λ0) = D(L) and

(L+ λ0) s = (L+ λ0)G (g + λ0s) = g + λ0s

and hence Ls = g as desired. The assertions about the sums follow by applying the
sequence results to sn =

Pn
k=1 fk.

Theorem 6.30. Given f ∈ L2, let

(6.29) u(t) = e−tLf =
∞X
n=0

(f, φn)e
−tλnφn.

Then for t > 0, u(t, x) is smooth in (t, x) and solves the heat equation

ut(t, x) = −Lu(t, x), u(t, x) = 0 for x ∈ ∂J(6.30)

and f = L2 − lim
t↓0

u(t)(6.31)

Moreover, u(t, x) =
R
J
pt(x, y)f(y)ρ(y)dy where

(6.32) pt(x, y) :=
∞X
n=0

e−tλnφn(x)φn(y)

is a smooth function in t > 0 and x, y ∈ J. The function pt is called the Diurichlet
Heat Kernel for L.

Proof. (Sketch.) For any t > 0 and k ∈ N, supn
¡
e−tλnλkn

¢
< ∞ and so by

Lemma 6.29, for t > 0, u(t) ∈ D
¡
Lk
¢
= H2k

0 (J)
5 (Corollary 6.24) and

Lku(t) =
∞X
n=0

(f, φn)e
−tλnλknφn.

Also we have Lku(m)(t) exists in L2 for all k,m ∈ N and

Lku(m)(t) = (−1)m
∞X
n=0

(f, φn)e
−tλnλk+mn φn.

By Sobolev inequalities and elliptic estimates such as Proposition 6.21 and Lemma
6.23, one concludes that u ∈ C∞((0,∞),Hk

0 (J)) for all k and then that u ∈

5Basically, if Lku = g ∈ L2(J) then u = Gkg ∈ H2k
0 (J).
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C∞((0,∞) × J,R). Eq. (6.30) is now relatively easy to prove and Eq. (6.31)
follows from the following computation

kf − u(t)k22 =
∞X
n=1

|(f, φn)|2
¯̄
1− e−tλn

¯̄2
which goes to 0 as t ↓ 0 by the D.C.T. for sums.
Finally from Eq. (6.29)

u(t, x) =
∞X
n=0

Z
J

f(y)φ(y)ρ(y)dye−tλnφn(x) =
Z
J

∞X
n=0

e−tλnφn(x)φ(y)f(y)ρ(y)dy

where the interchange of the sum and the integral is permissible sinceZ
J

∞X
n=0

e−tλn |φn(x)φ(y)f(y)| ρ(y)dy ≤ C

Z
J

∞X
n=0

e−tλn (λ0 + λn)
2 |f(y)| ρ(y)dy <∞

since
P∞

n=0 e
−tλn (λ0 + λn)

2 < ∞ because λn grows linearly in n. Moreover one
similarly showsµ

∂

∂t

¶j
∂2k−1x ∂2l−1y pt(x, y) =

∞X
n=0

(−λn)j e−tλn∂2k−1x φn(x)∂
2l−1
y φ(y)

where the above operations are permissible since°°°φ(2k−1)n

°°°
u
≤ C kφnkH2k

0 (J) ≤ C
°°°(L+ λ0)

k
φn

°°°
2
= C (λn + λ0)

k

and therefore
∞X
n=0

¯̄̄
(−λn)j e−tλn∂2k−1x φn(x)∂

2l−1
y φ(y)

¯̄̄
≤ C

∞X
n=0

|λn|j (λn + λ0)
k+l e−tλn <∞.

Again we use λn grows linearly with n. From this one may conclude that pt(x, y)
is smooth for t > 0 and x, y ∈ J. (We will do this in more detail when we work out
the higher dimensional analogue.)

Remark 6.31 (Wave Equation). Suppose f ∈ D(Lk), then

|(f, φn)| =
¯̄̄̄
1

λkn
(f, Lkφn)

¯̄̄̄
=

¯̄̄̄
1

λkn
(Lkf, φn)

¯̄̄̄
≤ 1

|λkn|
and therefore

cos
³
t
√
L
´
f :=

∞X
n=0

cos
³
t
p
λn

´
(f, φn)φn

will be convergent in L2 but moreover

Lk cos
³
t
√
L
´
f :=

∞X
n=0

cos
³
t
p
λn

´
(f, φn)λ

k
nφn =

∞X
n=0

cos
³
t
p
λn

´
(Lkf, φn)φn

will also be convergent. Therefore if we let

u(t) = cos
³
t
√
L
´
f +

sin
³
t
√
L
´

√
L

g

where f, g ∈ D(Lk) for all k. Then we will get a solution to the wave equation

utt(t, x) + Lu(t, x) = 0 with u(0) = f and u̇(0) = g.
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More on all of this later.

6.5. Extensions to Other Boundary Conditions. In this section, we will as-
sume ρ ∈ C2(J, (0,∞)),
(6.33) Lu = −ρ−1(ρau0)0 + bu0 + cu

is an elliptic ODE on L2(J) with smooth coefficients and

(6.34) (u, v) = (u, v)ρ =

Z
J

u(x)v(x)ρ(x)dx.

Theorem 6.32. For v ∈ H2(J) let

(6.35) L∗v = −ρ−1(ρav0)0 − bv0 +
£
c− ρ−1(ρb)0

¤
v.

Then for u, v ∈ H2(J),

(6.36) (Lu, v) = (u, L∗v) + B(u, v)|∂J
where

(6.37) B(u, v) = ρa

½
(u0, u) · (−v, v0 + b

a
v)

¾
.

Proof. This is an exercise in integration by parts,

(Lu, v) =

Z
J

³
− (ρau0)0 + ρbu0 + ρcu

´
vdm

=

Z
J

¡
ρau0v0 − (ρbv)0 u+ ρcu

¢
dm+ [ρbuv − ρau0v] |∂J

=

Z
J

³
−u (ρav0)0 − (ρbv)0 u+ ρcvu

´
dm+ [ρbuv + ρauv0 − ρau0v] |∂J

=

Z
J

³
−uρ−1 (ρav0)0 − ρ−1 (ρbv)0 u+ cvu

´
ρdm+

·
ρa

µ
b

a
uv + uv0 − vu0

¶¸
|∂J

= (u,L∗v) +
·
ρa(u0, u) · (−v, v0 + b

a
v)

¸
|∂J .

Notation 6.33. Given (α, β) : ∂J → R2 \ {0} and u, v ∈ H2(J) let

Bu = αu0 + βu = (α, β) · (u0, u) on ∂J

and

B∗v = αv0 +
µ
β +

b

a
α

¶
v = αv0 + β̃v on ∂J

where β̃ :=
¡
β + b

aα
¢
.

Remarks 6.34. The function (α, β̃) : ∂J → R2 also takes values in R2 \ {0} because
(α, β̃) = 0 iff (α, β) = 0. Furthermore if α = 0 then β̃ = β.

Proposition 6.35. Let B and B∗ be as defined in Notation 6.33 and define

D(L) =
©
u ∈ H2(J) : Bu = 0 on ∂J

ª
.

D(L∗) =
©
u ∈ H2(J) : B∗u = 0 on ∂J

ª
,

Then v ∈ H2(J) satisfies

(6.38) (Lu, v) = (u, L∗v) for all u ∈ D(L)
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iff v ∈ D(L∗).

Proof. We have to check that B(u, v) appearing in Eq. (6.36) is 0. (Actually
we must check that B(u, v)|∂J = 0 which we might arrange by using something like
“periodic boundary conditions.” I am not considering this type of condition at the
moment. Since u may be chosen to be zero near r or s we must require B(u, v) = 0
on ∂J.) Now B(u, v) = 0 iff

(6.39) (u0, u) ·
µ
−v, v0 + b

a
v

¶
= 0

which happens iff (u0, u) is parallel to
¡
v0 + b

av, v
¢
. The boundary condition Bu = 0

may be rewritten as saying (u0, u) · (α, β) = 0 or equivalently that (u0, u) is parallel
to (−β, α) on ∂J. Therefore the condition in Eq. (6.39) is equivalent to (−β, α) is
parallel to

¡
v0 + b

av, v
¢
or equivalently that

0 = (α, β) ·
µ
v0 +

b

a
v, v

¶
= B∗v.

Corollary 6.36. The formulas for L and L∗ agree iff b = 0 in which case

Lu = −ρ−1D (aρu0) + cu,

B = B∗, D(L) = D(L∗) and

(6.40) (Lu, v) = (u, Lv) for all u, v ∈ D(L).

(In fact L is a “self-adjoint operator,” as we will see later by showing (L+ λ0)
−1

exists for λ0 sufficiently large. Eq. (6.40) then may be used to deduce (L+ λ0)
−1

is a bounded self-adjoint operator with a symmetric Green’s functions G.)

6.5.1. Dirichlet Forms Associated to (L,D(L)). For the rest of this section let
a, b1, b2, c0, ρ ∈ C2(J), with a > 0 and ρ > 0 on J and for u, v ∈ H1(J), let

(6.41) E(u, v) :=
Z
J

(au0v0 + b1uv
0 + b2u

0v + c0uv) ρdm and

kukH1(J) :=
³
ku0k2 + kuk2

´1/2
where kuk2 = (u, u)ρ as defined in Eq. (6.34).
Lemma 6.37 (A Coercive inequality for E). There is a constant K <∞ such that

(6.42) |E(u, v)| ≤ K kukH1(J) kvkH1(J) for u, v ∈ H1(J).

Let a0 = minJ a, c̄ = minJ c0 and B := maxJ |b1 + b2| , then for u ∈ H1(J),

(6.43) E(u, u) ≥ a0
2
ku0k2 +

µ
c̄− B2

2a0

¶
kuk2 .

Proof. Let A = maxJ a, Bi = maxJ |bi| and C0 := maxJ |c0| , then
|E(u, v)| ≤

Z
J

(a |u0| |v0|+ |b1| |u| |v0|+ |b2| |u0| |v|+ |c0| |u| |v|) ρdm
≤ A ku0k kv0k+B1 kuk kv0k+B2 ku0k kvk+ C0 kuk kvk

≤ K
³
ku0k2 + kuk2

´1/2 ³
kv0k2 + kvk2

´1/2
.
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Let a0 = minJ a, c̄ = minJ c and B := maxJ |b1 + b2| , then for any δ > 0,
E(u, u) =

Z
J

³
a |u0|2 + (b1 + b2)uu

0 + c0 |u|2
´
ρdm

≥ a0 ku0k2 + c̄ kuk2 −B

Z
J

|u| |u0| ρdm

≥ a0 ku0k2 + c̄ kuk2 − B

2

³
δ ku0k2 + δ−1 kuk2

´
=

µ
a0 − Bδ

2

¶
ku0k2 +

µ
c̄− B

2
δ−1

¶
kuk2 .

Taking δ = a0/B in this equation proves Eq. (6.43).

Theorem 6.38. Let

b = (b2 − b1) , c := c0 − ρ−1 (ρb1)
0
,(6.44)

Lu = −ρ−1 (aρu0)0 + bu0 + cu and

Bu = (ρau0 + ρb1u) |∂J .
Then for u ∈ H2(J) and v ∈ H1(J)

E(u, v) = (Lu, v) + [(Bu) v]∂J
and for u ∈ H1(J) and v ∈ H2(J),

E(u, v) = (u,L∗v) + [(B∗v)u]∂J .
Here (as in Eq. (6.35)

L∗v = −ρ−1 (aρu0)0 − ρ−1 [ρbu]0 + cu

and (as in Notation 6.33)

B∗v = ρav0 +
µ
ρb1 +

b

a
ρa

¶
v = ρav0 + ρb2v.

Proof. Let u ∈ H2(J) and v ∈ H1(J) and integrating Eq. (6.41) by parts to
find

E(u, v) =
Z
J

³
−ρ−1 (aρu0)0 v − ρ−1 (ρb1u)

0
v + b2u

0v + c0uv
´
ρdm+ [ρau0v + ρb1uv]∂J

= (Lu, v) + [Bu · v]∂J
(6.45)

where

Lu = −ρ−1 (aρu0)0 − ρ−1 (ρb1u)
0
+ b2u

0 + c0u

= −ρ−1 (aρu0)0 + (b2 − b1)u
0 +
£
c0 − ρ−1 (ρb1)

0¤
u

= −ρ−1 (aρu0)0 + bu0 + cu

and
Bu = ρau0 + ρb1u.

Similarly

E(u, v) =
Z
J

³
−uρ−1 (aρv0)0 + b1uv

0 − uρ−1 (ρb2v)
0 + c0uv

´
ρdm+ [(ρauv0 + ρb2uv)]∂J

= (u, L
†
v) +

£
B†v · u¤

∂J
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where

L†v = −ρ−1 (aρv0)0 + b1v
0 − ρ−1 (ρb2v)

0 + c0v

= −ρ−1 (aρv0)0 + (b1 − b2) v
0 +
£
c0 − ρ−1 (ρb2)

0¤ v
= −ρ−1 (aρv0)0 − bv0 +

h
c+ ρ−1 (ρ(b1 − b2))

−1i
v

= −ρ−1 (aρv0)0 − bv0 +
£
c− ρ−1 (ρb)0

¤
v = L∗v.

and
B†v = (ρav0 + ρb2v) = B∗v.

Remark 6.39. As a consequence of Theorem 6.38, the mapping

(a, b1, b2, c0)→
·
(u, v)→ E(u, v) :=

Z
J

(au0v0 + b1uv
0 + b2u

0v + c0uv) ρdm

¸
is highly non-injective. In fact E depends only on a, b = b2 − b1 and c := c0 −
ρ−1 (ρb1)

0 on J and b1 on ∂J.

Corollary 6.40. As above let (α, β) : ∂J → R2 \ {0} and let
D(L) =

©
u ∈ H2(J) : Bu = αu0 + βu = 0 on ∂J

ª
and

Lu = −ρ−1 (aρu0)0 + bu0 + cu.

Given λ0 > 0 sufficiently large, (L+ λ0) : D(L)→ L2(J) is invertible and there is
a continuous Green’s function G(x, y) such that

(L+ λ0)
−1f(x) =

Z
J

G(x, y)f(y)dy.

Proof. Let us normalize α so that α = a whenever α 6= 0. The boundary term
in Eq. (6.45) will be zero whenever

au0 + b1u = 0 when v 6= 0 on ∂J.

This suggests that we define a subspace χ of H1(J) by

χ :=
©
u ∈ H1(J) : u = 0 on ∂J where α = 0 on ∂J

ª
.

Hence χ is eitherH1
0 (J), H

1(J),
©
u ∈ H1(J) : u(r) = 0

ª
or
©
u ∈ H1(J) : u(s) = 0

ª
.

Now choose a function b1 ∈ C2(J) such that b1 = β on ∂J, then set b2 := b + b1
and c0 = c+ ρ−1 (ρb1)

0
, then

D(L) = χ ∩ ©u ∈ H2(J) : Bu = au0 + b1u = 0 on ∂J
ª

and
(Lu, v) = E(u, v) for all u ∈ D(L) and v ∈ χ.

Using this observation, it follows from Eq. (6.43) of Lemma 6.37, for λ0 sufficiently
large and any u ∈ D(L), that

((L+ λ0)u, u) = E(u, u) + λ0(u, u)

≥ a0
2
ku0k2 +

µ
c̄− B2

2a0
+ λ0

¶
kuk2 ≥ a0

2
kuk2H1(J) .

As usual this equation shows Nul(L+λ0) = {0} . The remaining assertions are now
proved as in the proof of Corollary 6.24.


