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11. INTRODUCTION TO THE SPECTRAL THEOREM

The following spectral theorem is a minor variant of the usual spectral theo-
rem for matrices. This reformulation has the virtue of carrying over to general
(unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 11.1. Suppose A is an n X n complex self adjoint matriz, i.e. A* = A

or equivalently Aj; = Ai; and let p be counting measure on {1,2,...,n}. Then
there exists a unitary map U : C* — L%({1,2,...,n},du) and a real function
A:{1,2,...,n} — R such that UAE = X - U¢§ for all £ € C". We summarize this
equation by writing UAU Y = M, where

My : L*({1,2,...,n},dp) — L*({1,2,...,n}, dp)
is the linear operator, g € L*({1,2,...,n},du) — X-g € L*({1,2,...,n},du).

Proof. By the usual form of the spectral theorem for self-adjoint matrices, there
exists an orthonormal basis {e; };., of eigenvectors of A4, say Ae; = \;e; with \; € R.
Define U : C"* — L?({1,2,...,n},du) to be the unique (unitary) map determined

by Ue; = §; where
N1 Af i=g
‘W)_{o if i

and let A: {1,2,...,n} — R be defined by A(¢) :=\;. m

Definition 11.2. Let A : H — H be a possibly unbounded operator on H. We let
DA )={yeH: Fz€H > (Az,y) = (z,2) Vo € D(A)}

and for y € D(A*) set A*y = z.

Definition 11.3. If A = A* the A is self adjoint.

Proposition 11.4. Let (X,p) be o — finite measure space, H = L*(X,du) and
f:X — C be a measurable function. Set Ag = fg= M;yg for all

geEDMy)={9€H:fgeH}.
Then D(My) is a dense subspace of H and M; = Mj.

Proof. For any g € H = L*(X,dp) and m € N, let g, := g1f<n- Since
|fgm| < m|g| it follows that fg,, € H and hence g, € D(My). By the dominated
convergence theorem, it follows that g, — ¢ in H as m — oo, hence D(My) is
dense in H.

Suppose h € D(M7) then there exists k € L? such that (Mg, h) = (g, k) for all
g c€ D(Mf), i.e.

/ fgh du = / gk du for all g € D(My)

b'e X

or equivalently

(11.1) / g(fh —k)dp =0 for all g € D(Mjy).
X

Choose X,, C X such that X,, T X and u(X,,) < oo for all n. It is easily checked
that

Th—k

_—1

g'ﬂ = Xn
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is in D(My) and putting this function into Eq. (11.1) shows

/ |fh — k| 1)f<ndp = 0 for all n.

X

Using the monotone convergence theorem, we may let n — oo in this equation to
find [ |fh — k:| dp = 0 and hence that fh = k € L?. This shows h € D(Mjy) and
Mih=fh. m

Theorem 11.5 (Spectral Theorem). Suppose A* = A then there exists (X, ) a
o — finite measure space, f : X — R measurable, and U : H — L?(x, ) unitary

such that UAU' = My. Note this is a statement about domains as well, i.e.
UD(Mjy) = D(A).

I would like to give some examples of computing A* and Theorem 11.5 as
well. We will consider here the case of constant coefficient differential operators
on L?(R™). First we need the following definition.

Definition 11.6. Let aq € C*(U), L =} /<, @0 — 2 m™ order linear differ-
ential operator on D(U) and

L'o= > (110" aa¢]
lo|<m

denote the formal adjoint of L as in Lemma 5.4 above. For f € LP(U) we say
Lf € LP(U) or LY (U) if the generalized function Lf may be represented by an
element of LP(U) or L} (U) respectively, i.e. Lf =g e L? (U) iff

loc

(11.2) /Uf -Lt¢ dm = /Ug¢dm for all ¢ € C°(U).

In terms of the complex inner product,

)i= | H@a@yin(a)
Eq. (11.2) is equivalent to

(f-L¥¢) = (g,0) for all p € CZ(U)

loc

where

Lo =Y (-1)" 0" [ang].

o] <m

Notice that L® satisfies L® ¢ = LT¢. (We do not write L* here since L® is to be
considered an operator on the space on D’ (U).)

Remark 11.7. Recall that if f,h € L? (R™), then the following are equivalent

( ) f=h
) (h,g) = (f,F'g) for all g € C (R™).
3) (h,g) = (f,F'g) forall g € S(R™).
4) (h,g) = (f,F'g) for all g € L* (R™).
Indeed if f = h and g € L2 (R™), the unitarity of F implies

(h.9) = (f.9) = (Ff.9) = (£.F9).
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Hence 1 = 4 and it is clear that 4 = 3 = 2. If 2 holds, then again since F is
unitary we have

(h.g) = (£.F'g) = (f.9) forall g € C* (R")
which implies h = f a.e., i.e. h = f in L2 (R™).
Proposition 11.8. Let p(z) = Z\a\gm aax® be a polynomial on C™,

(11.3) L:=p(0):= ) aa0"

loe| <m
and f € L2 (R™). Then Lf € L* (R") iff p(i€) f(£) € L2 (R™) and in which case
(11.4) (Lf) (&) = p(iE)F(©)-

Put more concisely, letting
DB)={feL*R"):LfeL*R")}
with Bf = Lf for all f € D(B), we have
FBF ' = Mye).
Proof. As above, let

(11.5) LT .= Z ao (—0)* and L® := Z o (—0)”.
loe|<m la|<m
For ¢ € C° (R™),
LO¢)\/ = L® ¢ zz £d>\(§) ¢ zz €d>\
/ \a|<m /

= / D@6 () M) = 7~ [p (06 (6)] (2)
So if f € L? (R™) such that Lf € L? (R™). Then by Remark 11.7,
(L],6) = (Lf,6") = (£, 1°6") = (f(2), F " [p(i&)6 (&) (@)
= (f(©), [pE86 ©)]) = (v (i€) (), 0 (€)) for all 6 € C= (R)

from which it follows that Eq. (11.4) holds and that p (i€) f(€) € L2 (R").
Conversely, if f € L?(R") is such that p(i€) f(£) € L?(R") then for ¢ €
ce (R,

(11.6) (f, L% ¢) = (f,fL%) .
Since
F(L?¢) (€) :/L® )ye T EdN(x /gb @SN (z)
=/¢( ) Tg0e e dN (x /¢ Tq (—i€)" e S\ (z)
= p (i) (),

Eq. (11.6) becomes
(£:L26) = (£(©).p(©6(0) = (p (i) £(£).6(9)) = (F7* [p(6) f(©)] (@), 6(x)) -
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This shows Lf = F ! {p (i€) f(f)} €L*(R"). m

Lemma 11.9. Suppose p(x) =3, <, Ga®” is a polynomial on R™ and L = p(0)
is the constant coefficient differential operator B = 3, <,, aa0% with D(B) :=
S(R™) C L? (R™). Then

FBF " = My(ig)|s(er)-

Proof. This is result of the fact that F (S (R")) = S(R") and for f € S(R")
we have

@)= | J©emaxe)

so that
Bf(@)= [ FOLeiNE = [ Femieeare)
so that
(Bf) (&) = p(i€) f(€) for all f € S (R").
| |

Lemma 11.10. Suppose g : R™ — C is a measurable function such that |g(z)| <
C (1 + \:E|M) for some constants C' and M. Let A be the unbounded operator on
L? (R™) defined by D(A) = S (R™) and for f € S(R"), Af = gf. Then A* = Mj.

Proof. If h € D (Mj) and f € D(A), we have

ar.m) = [ afhim = [ fahdm = (£, 0450)

which shows My C A*, i.e. h € D(A*) and A*h = Mzh. Now suppose h € D (A*)
and A*h =k, i.e.

/ gfhdm = (Af,h) = (f,k) = | fkdm for all f € S (R™)
n Rn

or equivalently that
/ (gh — F) fdm = 0 for all f € S (R™).

Since the last equality (even just for f € C° (R™)) implies gh — k = 0 a.e. we may
conclude that h € D(Mjy) and k = Mzh, ie. A* C M. m

Theorem 11.11. Suppose p(x) = Z\a\gm aer® is a polynomial on R™ and
A = p(0) is the constant coefficient differential operator with D(A) := C® (R™) C
L2 (R") such that A= L = p(9) on D(A), see Eq. (11.3). Then A* is the operator
described by

D(A") = {f € L*(R"): L'f € L* (R")}
_ {f € L* (R") : p(i€) f(€) € L? (Rn)}

and A*f = LY f for f € D(A*) where L' is defined in Eq. (11.5) above. Moreover

* T—1 __
we have FA*F~* = Mp(ig)'
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Proof. Let D(B) = S(R™) and B := L on D(B) so that A C B. We are first
going to show A* = B*. As is easily verified, in general if A C B then B* C A*. So
we need only show A* C B*. Now by definition, if g € D(A*) with kK = A*g, then

(Af,g) = (/,K) for all | € D(4) == C= (R").
Suppose that f € S (R™) and ¢ € C° (R") such that ¢ = 1 in a neighborhood of
0. Then f,(x) := ¢(z/n)f(x) is in S (R™) and hence
(11.7) (fn k) = (Lfn,9)-

An exercise in the product rule and the dominated convergence theorem shows
fn— fand Lf, — Lf in L? (R") as n — oo. Therefore we may pass to the limit
in Eq. (11.7) to learn

(f,k)=(Bf,g) for all feS(R")

which shows g € D(B*) and B*g = k.
By Lemma 11.10, we may conclude that A* = B* = Mm and by Proposition
11.8 we then conclude that

DA% ={re 2®"): plie) f(©) € I* (R™)}
={feLl?R"):LTfeL*R"))}
and for f € D (A*) we have A*f = LTf. m
Example 11.12. If we take L = A with D(L) := C2° (R™), then
L*=A=FM pF!
where D(A) = {f € L*(R") : Af € L? (R")} and Af = Af.
Theorem 11.13. Suppose A = A* and A < 0. Then for all ug € D(A) there exists
a unique solution u € C*([0,00)) such that u(t) € D(A) for all t and
(11.8) w(t) = Au(t) with u(0) = up.
Writing u(t) = e!4ug, the map ug — e*4
(11.9) letAuol| < [Juo| for all t > 0.

So et4 extends uniquely to H by continuity. This extension satisfies:
tA

ug 18 a linear contraction semi-group, i.e.

(1) Strong Continuity: the map t € [0,00) — e
ug € H.
(2) Smoothing property: t >0

ug 18 continuous for all

etug € () D(A") =: C(A)
n=0

and

k
(11.10) | Aket4|| < <§> e * for all k € N.

Proof. Uniqueness. Suppose u solves Eq. (11.8), then

d

dt

Hence ||u(t)] is decreasing so that ||u(t)|| < ||ug||-This implies the uniqueness as-
sertion in the theorem and the norm estimate in Eq. (11.9).

(u(t), u(t)) = 2Re(u, u) = 2Re(Au,u) < 0.
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Existence: By the spectral theorem we may assume A = M acting on L?(X, p)
for some o — finite measure space (X, ) and some measurable function f : X —
[0, 00). We wish to show u(t) = etfuy € L? solves

a(t) = fu(t) with u(0) = up € D(My) C L*.
Let ¢t > 0 and |A| < t. Then by the mean value inequality
e(ttA)f _ otf
A
This estimated along with the fact that
_ (t+D)f _ tf o
U(t + A) u(t) _ e € o p()lIlL)Wlbe fetf
A A
enables us to use the dominated convergence theorem to conclude

u(t) = L2fii£{10 W = el fug = fu(t)

Uo

= max{\fe(HA)fuo\ : A between 0 and A} < | fuo| € L2

ug as A — 0

as desired. i.e. u(t) = fu(t).

The extension of ' to H is given by M,.;. For g € L?, |e/g| <|g| € L? and
etfg — e™9f pointwise as t — 7, so the Dominated convergence theorem shows
t € [0,00) — etg € H is continuous. For the last two assertions, let ¢ > 0 and
f(z) = z%e’®. Then (In f)’(z) = £ + ¢ which is zero when z = —k/t and therefore

B\ F
k te| _ _ —k
I;lg(}){‘m e I| =|f(=k/t)| = <?> e ".
Hence
B\
|A*etA,p < max’xket’”‘ < (—> e " < oo
z<0 t
| ]

Theorem 11.14. Take A= FM_j;2F ' s0 Als = A then

C=(A) = ﬁ D(A™) ¢ ¢ (R?)

n=1

i.e. for all f € C®(A) there exists a version f of f such that f € C®(R?).

Proof. By assumption |¢[2"f(¢) € L2 for all n. Therefore f(£) = % for

some g, € L? for all n. Therefore for n chosen so that 2n > m + d, we have

€

<
T+ e ||, =

2

/ € F©ldE < llgnllze

Rd

which shows |£]™|f(€)| € L' for all m = 0,1,2,... We may now differentiate the
inversion formula, f(z) = [ f(£)e'™¢d¢ to find

D2 f(w) = [ (i€)" f(@)e™de for any
and thus conclude f € C*. m

Exercise 11.1. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.
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11.1. Du Hammel’s principle again.

Lemma 11.15. Suppose A is an operator on H such that A* is densely defined
then A* is closed.

Proof. If f,, € D(A*) — f € H and A*f,, — g then for all h € D(A)
(9,h) = lim (A" fp, h)
while
lim (A" fu ) = Tim (f, AR) = (f, AB),
ie. (Ah, f)=(h,g) for all h € D(A). Thus f € D(A*) and A*f =g. ®m
Corollary 11.16. If A* = A then A is closed.

Corollary 11.17. Suppose A is closed and u(t) € D(A) is a path such that u(t)
and Au(t) are continuous in t. Then

A /O Tu(T)dT: /0 TAu(T)dT.

Proof. Let m, be a sequence of partitions of [0, T] such that mesh(m,) — 0 as
n — oo and set

fn = Zu(Ti)(Ti+1 — Ti) S D(A)

Tn

Then f, — fo 7)dT and

ZAu ) (Tit1 — T5) —>/ Au(r

Therefore fo 7)dr € D(A) and Afo T)dT = fo Au()dr. =
Lemma 11.18. Suppose A = A*, A <0, and h:[0,00] — H is continuous. Then
(s,t) € [0,00) x [0,00) — e*4h(t)
(s,t) € (0,00) x [0,00) — AFesAh(t)
are continuous maps into H.

Proof. Let k£ > 0, then if s > o,
4% ("4 h(t) = e h(r) | = [[4Fe™ (=) — b))
< [[AFer | ||t ) — A(r)] 4+ e An(r) h(T)H

< (£ v im0+ =i o).

lim  ||A* (e*2h(t) — e”*h(r))|| = 0

slo and t—7

So
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and we may take o = 0 if £ = 0. Similarly, if s < o,
45 (e hte) — 7 ir) | = [|A%er? (hte) — 70 ) |

< [[AFes ]| [IR() = A+ [|a(r) = e 4n(r) ]

K\ _ os
< <;> e [I0(t) = B+ [1(r) = el ]
and the latter expression tends to zeroas s Toandt — 7. m
Lemma 11.19. Let h € C([0,00),H), D = {(s,t) eR?:s>¢>0} and
F(s,t) := fg e~ An(T)dr for (s,t) € D. Then
(1) FeCYD,H) (in fact F € C>*(D, H)),

(11.11) %F(s,t) = eB=D4n(t)

and

(11.12)

aF(Sat) _ ! (s—7m)A
Ep —/0 Ae h(T)dr.

(2) Given € >0 let

t
ue(t) i= Ft+e,t) = / (=T A ().

0
Then ue € C* ((—e,00), H) , ue(t) € D(A) for allt > —¢ and
(11.13) e (t) = e“Ah(t) + Auc(t).

Proof. We claim the function

t
(s,t) € D — F(s,t) := / eI AR(TYdr
0

is continuous. Indeed if (s',¢") € D and (s,t) € D is sufficiently close to (s',t’) so
that s > t/, we have

’

t t
F(s,t)—F(s',t’):/O e(S_T)Ah(T)dT—/O e DA () dr

t t
:/ e(s_T)Ah(T)dT—/ e(s_T)Ah(T)dT
0 0

t/
—I-/ {6(577—)14 - e(slfT)A} h(T)dr
0
so that

”F(Svt) - F(Slvt/>” <

A e [
0

[e(sz)A - e(slfT)A] h(T)H dr.

t
/ e(S*T)Ah(T)H dr
t

t
/
0

[ iaian

By the dominated convergence theorem,

[ inan

(11.14) <

=0

lim
(8,8)=(s",t")



PDE LECTURE NOTES, MATH 237A-B 165

and

t,
lim / H [e(S_T)A - e(s/_T)A] h(T)H dr=0
(s,t)=(s",t") Jo

which along with Eq. (11.14) shows F' is continuous.
By the fundamental theorem of calculus,

0

aF(s,t) = e(s7DA (1)

and as we have seen this expression is continuous on D. Moreover, since
0

&e(S_T)Ah(T) = Ae*=DAp(7)

is continuous and bounded for on s > t > 7, we may differentiate under the integral
to find

OF (st ¢
(5,t) = / Ae*=DAR(T)dr for s > t.
0Os 0
A similar argument (making use of Eq. (11.10) with k£ = 1) shows % is con-

tinuous for (s,t) € D.
By the chain rule, u.(t) := F(t +¢,t) is C! for t > —¢ and

OF(t+e1) | OF(t+ct)
Os ot

t
— e ARt + / A= AR () dr = AR(E) + g (8).
0

() =

Theorem 11.20. Suppose A = A*, A < 0, ug € H and h : [0,00) — H is
continuous. Assume further that h(t) € D(A) for all t € [0,00) and t — Ah(t) is
continuous, then

¢
(11.15) u(t) == etug +/ eI AR(T)dr
0
is the unique function u € C1((0,00), H) N C([0,00), H) such that u(t) € D(A) for
all t > 0 satisfying the differential equation
u(t) = Au(t) + h(t) for t >0 and u(0+) = up.

Proof. Uniqueness: If v(t) is another such solution then w(t) := u(t) — v(t)
satisfies,

w(t) = Aw(t) with w(0+) =0
which we have already seen implies w = 0.

Existence: By linearity and Theorem 11.13 we may assume with out loss of
generality that ug = 0 in which case

u(t) = /Ot eI AR(T)dr.

By Lemma 11.18, we know 7 € [0,#] — e(!*"74h(r) € H is continuous, so the
integral in Eq. (11.15) is well defined. Similarly by Lemma 11.18,

7€ [0,t] = e AAR(T) = AT An(r) e H
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and so by Corollary 11.17, u(t) € D(A) for all ¢ > 0 and
t t
Au(t) = / A=A (Y dr = / e AAR(T)dr.
0

0
Let

t
uﬁ(t):/ eI AR(r)dr
0

be defined as in Lemma 11.19. Then using the dominated convergence theorem,
t
sup [[uc(£) — u(t)]| < Sup/ H (e(t+efT)A _ e(pﬂA) h(T)H dr
t<T t<T Jo

T
S/ |(e“* = I) h(r)||dT — 0 as e | O,
0

T
sup || Au.(t) — Au(t)] < / ||(€EA —I) Ah(7)||dr — 0 ase |0
t<T 0

‘ /0 tGEAh(T)dT* /O t h(r)dr

Integrating Eq. (11.13) shows
t t
(11.16) e (t) = / eAR(r)dr + / Aug (7)dr
0 0
and then passing to the limit as € | 0 in this equations shows

t ¢
u(t) = / h(T)dr —l—/ Au(T)dT.
0 0
This shows w is differentiable and u(t) = h(t) + Au(t) for all ¢ > 0. =

and

t
g/ | (e = I) h(7)||dr — 0 as € | 0.
0

Theorem 11.21. Let a > 0, h : [0,00) — H be a locally a — Holder continuous
function, A= A*, A <0 and ug € H. The function

¢
u(t) := eug +/ eI AR(T)dr
0
is the unique function u € C*((0,00), H) N C([0,00), H) such that u(t) € D(A) for
all t > 0 satisfying the differential equation
u(t) = Au(t) + h(t) fort >0 and u(0+) = up.
(For more details see Pazy [2, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 11.20 and for existence
we may assume ug = 0.
With out loss of generality we may assume ug = 0 so that

u(t) = /Ot e=DAn(1)dr.

By Lemma 11.18, we know 7 € [0,] — e"""4h(7) € H is continuous, so the
integral defining u is well defined. For € > 0, let

t t
ue(t) ::/ €(t+€_T)Ah(T)dT :/ e(t_T)AeEAh(T)dT.
0 0



PDE LECTURE NOTES, MATH 237A-B 167

Notice that v(1) := e“h(r) € C>(A) for all 7 and moreover since Aed is a
bounded operator, it follows that 7 — Awv(7) is continuous. So by Lemma 11.18; it

follows that 7 € [0,t] — Ael*="4v(7) € H is continuous as well. Hence we know
ue(t) € D(A) and

¢
Aue(t):/ Ae(t_T)AeSAh(T)dT.
0

Now . .
Aug(t) = / Act+e=D A (1) dr + / Aet+e=DA (1) — h()] dr,
0 0
t
/ AetH e AR()dr = —eltHemAR()7=t _ (t+IAR(p) _ oAy
0
and
1
Aette=DA () p(t H <e 'l _|n(r)—h(t
| 4e () = W) < &7 o= W) — RO
1 _
<Ce'————Jt—7|*<Ce 't —7*".
(t+e—1)

These results along with the dominated convergence theorem shows lim, g Au.(t)
exists and is given by

t
lim Au,(t) = lim [e<t+f>Ah(t) - eeAh(t)} Flim [ Ae®HDA[R(r) — h(t)] dr
€l0 €l0 €l0 Jo

= e n(t) — h(t) + / t AetDA (1) — h(t)] dr.
0

Because A is a closed operator, it follows that u(t) € D(A) and

Au(t) = eAh(t) — h(t) + /t A=A () — h(t)] dr.
0

Claim: ¢ — Au(t) is continuous. To prove this it suffices to show

t
o(t) = A / eE=A(R(r) — h(t))dr
0
is continuous and for this we have

t+A t
W(t+ A) — v(t) = / AeU+E=DA(B () — Bt + A))dr — / Act=DA(h(r) — h(t))dr
0 0
=1+1I

where

t+A
I / At +A=DA((1) — bt + A))dr and
11 = / t [Ae(t+A_T)A(h(T) R+ A)) — AetDA(R(r) — h(t))} dr
0
= / t [Ae“*A*T)A(h(T) — h(t)) — Ae"A(h(r) — h(t))] dr
0

t

+/ [Ae(t+A—T>A(h(t) —h(t+ A))} dr
0

=11, +1I,
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and
II, = /Ot A [e(t"’_A_T)A = e<f—T>A] (h(7) — h(t))dr and
I = [e<t+A>A - eM} (h(t) — h(t + ).

We estimate I as

i <| [ a0y e+ )| ar

|A]
<C :C’/ 2 tde = Ca ' |A|" — 0as A — 0.
0

t+A 1
—t+ A —7|%d
/t t-’-A—T‘ * 7" dr

It is easily seen that ||II3]| < 2C|A]* — 0 as A — 0 and
A [e<t+A*T>A - e<H>A} (h(r) — h(t))” <Clt—r*"

which is integrable, so by the dominated convergence theorem,

t
ni < [ |
0

This completes the proof of the claim.
Moreover,

Auc(t) — Au(t) = eUTIAn(t) — et h(t) + h(t) — e h(t)

+ /0 A (el — l=04) [h(r) — h(t)] dr

A [e(HA*T)A — e(th)A] (h(7) — h(t))” dr — 0as A — 0.

so that
| Auc(t) — Au(t)]| < 2||h(t) — e“Ah()|| + /0 et (4~ 1) [b(r) — h) | ar

1
|t =7l

< 2||A(t) — eAh(t)|| + e ! /0 [(e = 1) [n(7) — h(D)]|| dT

from which it follows Auc(t) — Au(t) boundedly. We may now pass to the limit in

Eq. (11.16) to find
t t
/ eeAh(T)dT—i-/ AUG(T)dT:|
0 0

t t
= / h(r)dr +/ Au(T)dr
0 0
from which it follows that u € C'((0,00), H) and u(t) = h(t) + Au(t). =

) =1l =1
) = T (o) =ty |



