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11. Introduction to the Spectral Theorem

The following spectral theorem is a minor variant of the usual spectral theo-
rem for matrices. This reformulation has the virtue of carrying over to general
(unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 11.1. Suppose A is an n × n complex self adjoint matrix, i.e. A∗ = A
or equivalently Aji = Āij and let µ be counting measure on {1, 2, . . . , n}. Then
there exists a unitary map U : Cn → L2({1, 2, . . . , n}, dµ) and a real function
λ : {1, 2, . . . , n} → R such that UAξ = λ · Uξ for all ξ ∈ Cn. We summarize this
equation by writing UAU−1 =Mλ where

Mλ : L
2({1, 2, . . . , n}, dµ)→ L2({1, 2, . . . , n}, dµ)

is the linear operator, g ∈ L2({1, 2, . . . , n}, dµ)→ λ · g ∈ L2({1, 2, . . . , n}, dµ).
Proof. By the usual form of the spectral theorem for self-adjoint matrices, there

exists an orthonormal basis {ei}ni=1 of eigenvectors of A, say Aei = λiei with λi ∈ R.
Define U : Cn → L2({1, 2, . . . , n}, dµ) to be the unique (unitary) map determined
by Uei = δi where

δi(j) =

½
1 if i = j
0 if i 6= j

and let λ : {1, 2, . . . , n}→ R be defined by λ(i) := λi.

Definition 11.2. Let A : H → H be a possibly unbounded operator on H. We let

D(A∗) = {y ∈ H : ∃ z ∈ H 3 (Ax, y) = (x, z) ∀ x ∈ D(A)}
and for y ∈ D(A∗) set A∗y = z.

Definition 11.3. If A = A∗ the A is self adjoint.

Proposition 11.4. Let (X,µ) be σ — finite measure space, H = L2(X, dµ) and
f : X → C be a measurable function. Set Ag = fg =Mfg for all

g ∈ D(Mf ) = {g ∈ H : fg ∈ H}.
Then D(Mf ) is a dense subspace of H and M∗f =Mf̄ .

Proof. For any g ∈ H = L2(X, dµ) and m ∈ N, let gm := g1|f|≤m. Since
|fgm| ≤ m |g| it follows that fgm ∈ H and hence gm ∈ D(Mf ). By the dominated
convergence theorem, it follows that gm → g in H as m → ∞, hence D(Mf ) is
dense in H.
Suppose h ∈ D(M∗f ) then there exists k ∈ L2 such that (Mfg, h) = (g, k) for all

g ∈ D(Mf ), i.e. Z
X

fgh dµ =

Z
X

gk dµ for all g ∈ D(Mf )

or equivalently

(11.1)
Z
X

g(fh− k)dµ = 0 for all g ∈ D(Mf ).

Choose Xn ⊂ X such that Xn ↑ X and µ(Xn) < ∞ for all n. It is easily checked
that

gn := 1Xn

fh− k¯̄
fh− k

¯̄1|f |≤n
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is in D(Mf ) and putting this function into Eq. (11.1) showsZ
X

¯̄
fh− k

¯̄
1|f |≤ndµ = 0 for all n.

Using the monotone convergence theorem, we may let n → ∞ in this equation to
find

R
X

¯̄
fh− k

¯̄
dµ = 0 and hence that f̄h = k ∈ L2. This shows h ∈ D(Mf̄ ) and

M∗f h = fh.

Theorem 11.5 (Spectral Theorem). Suppose A∗ = A then there exists (X,µ) a
σ — finite measure space, f : X → R measurable, and U : H → L2(x, µ) unitary
such that UAU−1 = Mf . Note this is a statement about domains as well, i.e.
UD(Mf ) = D(A).

I would like to give some examples of computing A∗ and Theorem 11.5 as
well. We will consider here the case of constant coefficient differential operators
on L2(Rn). First we need the following definition.

Definition 11.6. Let aα ∈ C∞(U), L =
P
|α|≤m aα∂

α — a mth order linear differ-
ential operator on D(U) and

L
†
φ =

X
|α|≤m

(−1)|α| ∂α [aαφ]

denote the formal adjoint of L as in Lemma 5.4 above. For f ∈ Lp(U) we say
Lf ∈ Lp(U) or Lploc(U) if the generalized function Lf may be represented by an
element of Lp(U) or Lploc(U) respectively, i.e. Lf = g ∈ Lploc(U) iff

(11.2)
Z
U

f · L†φ dm =

Z
U

gφdm for all φ ∈ C∞c (U).

In terms of the complex inner product,

(f, g) :=

Z
U

f(x)ḡ(x)dm(x)

Eq. (11.2) is equivalent to¡
f · L~φ¢ = (g, φ) for all φ ∈ C∞c (U)

where
L~φ :=

X
|α|≤m

(−1)|α| ∂α [āαφ] .

Notice that L~ satisfies L~ φ̄ = L†φ. (We do not write L∗ here since L~ is to be
considered an operator on the space on D0 (U) .)
Remark 11.7. Recall that if f, h ∈ L2 (Rn) , then the following are equivalent

(1) f̂ = h.
(2) (h, g) =

¡
f,F−1g¢ for all g ∈ C∞c (Rn) .

(3) (h, g) =
¡
f,F−1g¢ for all g ∈ S (Rn) .

(4) (h, g) =
¡
f,F−1g¢ for all g ∈ L2 (Rn) .

Indeed if f̂ = h and g ∈ L2 (Rn) , the unitarity of F implies

(h, g) =
³
f̂ , g

´
= (Ff, g) = ¡f,F−1g¢ .
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Hence 1 =⇒ 4 and it is clear that 4 =⇒ 3 =⇒ 2. If 2 holds, then again since F is
unitary we have

(h, g) =
¡
f,F−1g¢ = ³f̂ , g´ for all g ∈ C∞c (Rn)

which implies h = f̂ a.e., i.e. h = f̂ in L2 (Rn) .

Proposition 11.8. Let p(x) =
P

|α|≤m aαx
α be a polynomial on Cn,

(11.3) L := p (∂) :=
X
|α|≤m

aα∂
α

and f ∈ L2 (Rn) . Then Lf ∈ L2 (Rn) iff p(iξ)f̂(ξ) ∈ L2 (Rn) and in which case

(11.4) (Lf)ˆ (ξ) = p(iξ)f̂(ξ).

Put more concisely, letting

D(B) =
©
f ∈ L2 (Rn) : Lf ∈ L2 (Rn)

ª
with Bf = Lf for all f ∈ D(B), we have

FBF−1 =Mp(iξ).

Proof. As above, let

(11.5) L† :=
X
|α|≤m

aα (−∂)α and L~ :=
X
|α|≤m

āα (−∂)α .

For φ ∈ C∞c (Rn) ,

L~φ∨(x) = L~
Z

φ (ξ) eix·ξdλ(ξ) =
X
|α|≤m

āα (−∂x)α
Z

φ (ξ) eix·ξdλ(ξ)

=

Z
p (iξ)φ (ξ) eix·ξdλ(ξ) = F−1

h
p (iξ)φ (ξ)

i
(x)

So if f ∈ L2 (Rn) such that Lf ∈ L2 (Rn) . Then by Remark 11.7,

(cLf, φ) = (Lf, φ∨) = hf, L~φ∨i = hf(x),F−1 hp (iξ)φ (ξ)i (x)i
= hf̂(ξ),

h
p (iξ)φ (ξ)

i
i = hp (iξ) f̂(ξ), φ (ξ)i for all φ ∈ C∞c (Rn)

from which it follows that Eq. (11.4) holds and that p (iξ) f̂(ξ) ∈ L2 (Rn) .
Conversely, if f ∈ L2 (Rn) is such that p (iξ) f̂(ξ) ∈ L2 (Rn) then for φ ∈

C∞c (Rn) ,

(11.6)
¡
f, L~φ

¢
=
³
f̂ ,FL~φ

´
.

Since

F ¡L~φ¢ (ξ) = Z L~φ (x) e−ix·ξdλ(x) =
Z

φ (x)Lxe
−ix·ξdλ(x)

=

Z
φ (x) aα∂

α
x e
−ix·ξdλ(x) =

Z
φ (x) aα (−iξ)α e−ix·ξdλ(x)

= p (iξ)φ̂(ξ),

Eq. (11.6) becomes¡
f, L~φ

¢
=
³
f̂(ξ), p (iξ)φ̂(ξ)

´
=
³
p (iξ) f̂(ξ), φ̂(ξ)

´
=
³
F−1

h
p (iξ) f̂(ξ)

i
(x), φ(x)

´
.
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This shows Lf = F−1
h
p (iξ) f̂(ξ)

i
∈ L2 (Rn) .

Lemma 11.9. Suppose p(x) =
P
|α|≤m aαx

α is a polynomial on Rn and L = p(∂)

is the constant coefficient differential operator B =
P
|α|≤m aα∂

α with D(B) :=

S (Rn) ⊂ L2 (Rn) . Then
FBF−1 =Mp(iξ)|S(Rn).

Proof. This is result of the fact that F (S (Rn)) = S (Rn) and for f ∈ S (Rn)
we have

f(x) =

Z
Rn

f̂(ξ)eiξ·xdλ(ξ)

so that

Bf(x) =

Z
Rn

f̂(ξ)Lxe
iξ·xdλ(ξ) =

Z
Rn

f̂(ξ)p(iξ)eiξ·xdλ(ξ)

so that

(Bf)ˆ (ξ) = p(iξ)f̂(ξ) for all f ∈ S (Rn) .

Lemma 11.10. Suppose g : Rn → C is a measurable function such that |g(x)| ≤
C
³
1 + |x|M

´
for some constants C and M. Let A be the unbounded operator on

L2 (Rn) defined by D(A) = S (Rn) and for f ∈ S (Rn) , Af = gf. Then A∗ =Mḡ.

Proof. If h ∈ D (Mḡ) and f ∈ D(A), we have

(Af, h) =

Z
Rn

gfh̄dm =

Z
Rn

fghdm = (f,Mḡh)

which shows Mḡ ⊂ A∗, i.e. h ∈ D(A∗) and A∗h = Mḡh. Now suppose h ∈ D (A∗)
and A∗h = k, i.e.Z

Rn
gfh̄dm = (Af, h) = (f, k) =

Z
Rn

fkdm for all f ∈ S (Rn)

or equivalently that Z
Rn

¡
gh̄− k̄

¢
fdm = 0 for all f ∈ S (Rn) .

Since the last equality (even just for f ∈ C∞c (Rn)) implies gh̄− k̄ = 0 a.e. we may
conclude that h ∈ D(Mḡ) and k =Mḡh, i.e. A∗ ⊂Mḡ.

Theorem 11.11. Suppose p(x) =
P

|α|≤m aαx
α is a polynomial on Rn and

A = p(∂) is the constant coefficient differential operator with D(A) := C∞c (Rn) ⊂
L2 (Rn) such that A = L = p(∂) on D(A), see Eq. (11.3). Then A∗ is the operator
described by

D(A∗) =
©
f ∈ L2 (Rn) : L†f ∈ L2 (Rn)

ª
=
n
f ∈ L2 (Rn) : p(iξ)f̂(ξ) ∈ L2 (Rn)

o
and A∗f = L†f for f ∈ D(A∗) where L† is defined in Eq. (11.5) above. Moreover
we have FA∗F−1 =Mp(iξ).
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Proof. Let D(B) = S (Rn) and B := L on D(B) so that A ⊂ B. We are first
going to show A∗ = B∗. As is easily verified, in general if A ⊂ B then B∗ ⊂ A∗. So
we need only show A∗ ⊂ B∗. Now by definition, if g ∈ D(A∗) with k = A∗g, then

(Af, g) = (f, k) for all f ∈ D(A) := C∞c (Rn) .
Suppose that f ∈ S (Rn) and φ ∈ C∞c (Rn) such that φ = 1 in a neighborhood of
0. Then fn(x) := φ(x/n)f(x) is in S (Rn) and hence
(11.7) (fn, k) = (Lfn, g) .

An exercise in the product rule and the dominated convergence theorem shows
fn → f and Lfn → Lf in L2 (Rn) as n → ∞. Therefore we may pass to the limit
in Eq. (11.7) to learn

(f, k) = (Bf, g) for all f ∈ S (Rn)
which shows g ∈ D(B∗) and B∗g = k.
By Lemma 11.10, we may conclude that A∗ = B∗ = Mp(iξ) and by Proposition

11.8 we then conclude that

D (A∗) =
n
f ∈ L2 (Rn) : p(iξ)f̂(ξ) ∈ L2 (Rn)

o
=
©
f ∈ L2 (Rn) : L†f ∈ L2 (Rn)

ª
and for f ∈ D (A∗) we have A∗f = L†f.

Example 11.12. If we take L = ∆ with D(L) := C∞c (Rn) , then
L∗ = ∆̄ = FM−|ξ|2F−1

where D(∆̄) =
©
f ∈ L2 (Rn) : ∆f ∈ L2 (Rn)

ª
and ∆̄f = ∆f.

Theorem 11.13. Suppose A = A∗ and A ≤ 0. Then for all u0 ∈ D(A) there exists
a unique solution u ∈ C1([0,∞)) such that u(t) ∈ D(A) for all t and

(11.8) u̇(t) = Au(t) with u(0) = u0.

Writing u(t) = etAu0, the map u0 → etAu0 is a linear contraction semi-group, i.e.

(11.9) ketAu0k ≤ ku0k for all t ≥ 0.
So etA extends uniquely to H by continuity. This extension satisfies:

(1) Strong Continuity: the map t ∈ [0,∞) → etAu0 is continuous for all
u0 ∈ H.

(2) Smoothing property: t > 0

etAu0 ∈
∞\
n=0

D(An) =: C∞(A)

and

(11.10) kAketAk ≤
µ
k

t

¶k
e−k for all k ∈ N.

Proof. Uniqueness. Suppose u solves Eq. (11.8), then
d

dt
(u(t), u(t)) = 2Re(u̇, u) = 2Re(Au, u) ≤ 0.

Hence ku(t)k is decreasing so that ku(t)k ≤ ku0k.This implies the uniqueness as-
sertion in the theorem and the norm estimate in Eq. (11.9).
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Existence: By the spectral theorem we may assume A =Mf acting on L2(X,µ)
for some σ — finite measure space (X,µ) and some measurable function f : X →
[0,∞). We wish to show u(t) = etfu0 ∈ L2 solves

u̇(t) = fu(t) with u(0) = u0 ∈ D(Mf ) ⊂ L2.

Let t > 0 and |∆| < t. Then by the mean value inequality¯̄̄̄
e(t+4)f − etf

4 u0

¯̄̄̄
= max

n
|fe(t+4̃)fu0| : ∆̃ between 0 and ∆

o
≤ |fu0| ∈ L2.

This estimated along with the fact that

u(t+∆)− u(t)

4 =
e(t+4)f − etf

4 u0
point wise→ fetfu0 as ∆→ 0

enables us to use the dominated convergence theorem to conclude

u̇(t) = L2— lim
∆→0

u(t+4)− u(t)

4 = etffu0 = fu(t)

as desired. i.e. u̇(t) = fu(t).
The extension of etA to H is given by Metf . For g ∈ L2,

¯̄
etfg

¯̄ ≤ |g| ∈ L2 and
etfg → eτgf pointwise as t → τ, so the Dominated convergence theorem shows
t ∈ [0,∞) → etAg ∈ H is continuous. For the last two assertions, let t > 0 and
f(x) = xketx. Then (ln f)0(x) = k

x + t which is zero when x = −k/t and therefore

max
x≤0

¯̄
xketx

¯̄
= |f(−k/t)| =

µ
k

t

¶k
e−k.

Hence

kAketAkop ≤ max
x≤0

¯̄
xketx

¯̄ ≤ µk
t

¶k
e−k <∞.

Theorem 11.14. Take A = FM−|ξ|2F−1 so A|S = ∆ then

C∞(A) :=
∞\
n=1

D(An) ⊂ C∞
¡
Rd
¢

i.e. for all f ∈ C∞(A) there exists a version f̃ of f such that f̃ ∈ C∞(Rd).

Proof. By assumption |ξ|2nf̂(ξ) ∈ L2 for all n. Therefore f̂(ξ) = gn(ξ)
1+|ξ|2n for

some gn ∈ L2 for all n. Therefore for n chosen so that 2n > m+ d, we haveZ
Rd

|ξ|m|f̂(ξ)|dξ ≤ kgnkL2
°°°° |ξ|m
1 + |ξ|2n

°°°°
2

<∞

which shows |ξ|m|f̂(ξ)| ∈ L1 for all m = 0, 1, 2, . . . We may now differentiate the
inversion formula, f(x) =

R
f̂(ξ)eix·ξdξ to find

Dαf(x) =

Z
(iξ)αf̂(ξ)eix·ξdξ for any α

and thus conclude f ∈ C∞.

Exercise 11.1. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.
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11.1. Du Hammel’s principle again.

Lemma 11.15. Suppose A is an operator on H such that A∗ is densely defined
then A∗ is closed.

Proof. If fn ∈ D(A∗)→ f ∈ H and A∗fn → g then for all h ∈ D(A)

(g, h) = lim
n→∞(A

∗fn, h)

while

lim
n→∞(A

∗fn, h) = lim
n→∞(fn, Ah) = (f,Ah),

i.e. (Ah, f) = (h, g) for all h ∈ D(A). Thus f ∈ D(A∗) and A∗f = g.

Corollary 11.16. If A∗ = A then A is closed.

Corollary 11.17. Suppose A is closed and u(t) ∈ D(A) is a path such that u(t)
and Au(t) are continuous in t. Then

A

Z T

0

u(τ)dτ =

Z T

0

Au(τ)dτ.

Proof. Let πn be a sequence of partitions of [0, T ] such that mesh(πn)→ 0 as
n→∞ and set

fn =
X
πn

u(τi)(τi+1 − τi) ∈ D(A).

Then fn →
R T
0
u(τ)dτ and

Afn =
X
πn

Au(τi)(τi+1 − τi)→
Z T

0

Au(τ)dτ.

Therefore
R T
0
u(τ)dτ ∈ D(A) and A

R T
0
u(τ)dτ =

R T
0
Au(τ)dτ.

Lemma 11.18. Suppose A = A∗, A ≤ 0, and h : [0,∞]→ H is continuous. Then

(s, t) ∈ [0,∞)× [0,∞)→ esAh(t)

(s, t) ∈ (0,∞)× [0,∞)→ AkesAh(t)

are continuous maps into H.

Proof. Let k ≥ 0, then if s ≥ σ,°°Ak
¡
esAh(t)− eσAh(τ)

¢°° = °°°AkeσA
³
e(s−σ)Ah(t)− h(τ)

´°°°
≤ °°AkeσA

°°°°°e(s−σ)A [h(t)− h(τ)] + e(s−σ)Ah(τ)− h(τ)
°°°

≤
µ
k

σ

¶k
e−k ·

h
kh(t)− h(τ)k+

°°°e(s−σ)Ah(τ)− h(τ)
°°°i .

So

lim
s↓σ and t→τ

°°Ak
¡
esAh(t)− eσAh(τ)

¢°° = 0
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and we may take σ = 0 if k = 0. Similarly, if s ≤ σ,°°Ak
¡
esAh(t)− eσAh(τ)

¢°° = °°°AkesA
³
h(t)− e(σ−s)Ah(τ)

´°°°
≤ °°AkesA

°° hkh(t)− h(τ)k+
°°°h(τ)− e(σ−s)Ah(τ)

°°°i
≤
µ
k

s

¶k
e−k

h
kh(t)− h(τ)k+

°°°h(τ)− e(σ−s)Ah(τ)
°°°i

and the latter expression tends to zero as s ↑ σ and t→ τ.

Lemma 11.19. Let h ∈ C ([0,∞),H) , D :=
©
(s, t) ∈ R2 : s > t ≥ 0ª and

F (s, t) :=
R t
0
e(s−τ)Ah(τ)dτ for (s, t) ∈ D. Then

(1) F ∈ C1(D,H) (in fact F ∈ C∞(D,H)),

(11.11)
∂

∂t
F (s, t) = e(s−t)Ah(t)

and

(11.12)
∂F (s, t)

∂s
=

Z t

0

Ae(s−τ)Ah(τ)dτ.

(2) Given > 0 let

u (t) := F (t+ , t) =

Z t

0

e(t+ −τ)Ah(τ)dτ.

Then u ∈ C1 ((− ,∞),H) , u (t) ∈ D(A) for all t > − and

(11.13) u̇ (t) = e Ah(t) +Au (t).

Proof. We claim the function

(s, t) ∈ D → F (s, t) :=

Z t

0

e(s−τ)Ah(τ)dτ

is continuous. Indeed if (s0, t0) ∈ D and (s, t) ∈ D is sufficiently close to (s0, t0) so
that s > t0, we have

F (s, t)− F (s0, t0) =
Z t

0

e(s−τ)Ah(τ)dτ −
Z t0

0

e(s
0−τ)Ah(τ)dτ

=

Z t

0

e(s−τ)Ah(τ)dτ −
Z t0

0

e(s−τ)Ah(τ)dτ

+

Z t0

0

h
e(s−τ)A − e(s

0−τ)A
i
h(τ)dτ

so that

kF (s, t)− F (s0, t0)k ≤
¯̄̄̄Z t

t0

°°°e(s−τ)Ah(τ)°°° dτ ¯̄̄̄+ Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ
≤
¯̄̄̄Z t

t0
kh(τ)k dτ

¯̄̄̄
+

Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ.(11.14)

By the dominated convergence theorem,

lim
(s,t)→(s0,t0)

¯̄̄̄Z t

t0
kh(τ)k dτ

¯̄̄̄
= 0
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and

lim
(s,t)→(s0,t0)

Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ = 0
which along with Eq. (11.14) shows F is continuous.
By the fundamental theorem of calculus,

∂

∂t
F (s, t) = e(s−t)Ah(t)

and as we have seen this expression is continuous on D. Moreover, since

∂

∂s
e(s−τ)Ah(τ) = Ae(s−τ)Ah(τ)

is continuous and bounded for on s > t > τ, we may differentiate under the integral
to find

∂F (s, t)

∂s
=

Z t

0

Ae(s−τ)Ah(τ)dτ for s > t.

A similar argument (making use of Eq. (11.10) with k = 1) shows ∂F (s,t)
∂s is con-

tinuous for (s, t) ∈ D.
By the chain rule, u (t) := F (t+ , t) is C1 for t > − and

u̇ (t) =
∂F (t+ , t)

∂s
+

∂F (t+ , t)

∂t

= e Ah(t) +

Z t

0

Ae(s−τ+ )Ah(τ)dτ = e Ah(t) + u (t).

Theorem 11.20. Suppose A = A∗, A ≤ 0, u0 ∈ H and h : [0,∞) → H is
continuous. Assume further that h(t) ∈ D(A) for all t ∈ [0,∞) and t → Ah(t) is
continuous, then

(11.15) u(t) := etAu0 +

Z t

0

e(t−τ)Ah(τ)dτ

is the unique function u ∈ C1((0,∞),H) ∩ C([0,∞),H) such that u(t) ∈ D(A) for
all t > 0 satisfying the differential equation

u̇(t) = Au(t) + h(t) for t > 0 and u(0+) = u0.

Proof. Uniqueness: If v(t) is another such solution then w(t) := u(t) − v(t)
satisfies,

ẇ(t) = Aw(t) with w(0+) = 0

which we have already seen implies w = 0.
Existence: By linearity and Theorem 11.13 we may assume with out loss of

generality that u0 = 0 in which case

u(t) =

Z t

0

e(t−τ)Ah(τ)dτ.

By Lemma 11.18, we know τ ∈ [0, t] → e(t−τ)Ah(τ) ∈ H is continuous, so the
integral in Eq. (11.15) is well defined. Similarly by Lemma 11.18,

τ ∈ [0, t]→ e(t−τ)AAh(τ) = Ae(t−τ)Ah(τ) ∈ H
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and so by Corollary 11.17, u(t) ∈ D(A) for all t ≥ 0 and

Au(t) =

Z t

0

Ae(t−τ)Ah(τ)dτ =
Z t

0

e(t−τ)AAh(τ)dτ.

Let

u (t) =

Z t

0

e(t+ −τ)Ah(τ)dτ

be defined as in Lemma 11.19. Then using the dominated convergence theorem,

sup
t≤T

ku (t)− u(t)k ≤ sup
t≤T

Z t

0

°°°³e(t+ −τ)A − e(t−τ)A
´
h(τ)

°°° dτ
≤
Z T

0

°°¡e A − I
¢
h(τ)

°° dτ → 0 as ↓ 0,

sup
t≤T

kAu (t)−Au(t)k ≤
Z T

0

°°¡e A − I
¢
Ah(τ)

°° dτ → 0 as ↓ 0
and °°°°Z t

0

e Ah(τ)dτ −
Z t

0

h(τ)dτ

°°°° ≤ Z t

0

°°¡e A − I
¢
h(τ)

°° dτ → 0 as ↓ 0.

Integrating Eq. (11.13) shows

(11.16) u (t) =

Z t

0

e Ah(τ)dτ +

Z t

0

Au (τ)dτ

and then passing to the limit as ↓ 0 in this equations shows

u(t) =

Z t

0

h(τ)dτ +

Z t

0

Au(τ)dτ.

This shows u is differentiable and u̇(t) = h(t) +Au(t) for all t > 0.

Theorem 11.21. Let α > 0, h : [0,∞) → H be a locally α — Holder continuous
function, A = A∗, A ≤ 0 and u0 ∈ H. The function

u(t) := etAu0 +

Z t

0

e(t−τ)Ah(τ)dτ

is the unique function u ∈ C1((0,∞),H) ∩ C([0,∞),H) such that u(t) ∈ D(A) for
all t > 0 satisfying the differential equation

u̇(t) = Au(t) + h(t) for t > 0 and u(0+) = u0.

(For more details see Pazy [2, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 11.20 and for existence
we may assume u0 = 0.
With out loss of generality we may assume u0 = 0 so that

u(t) =

Z t

0

e(t−τ)Ah(τ)dτ.

By Lemma 11.18, we know τ ∈ [0, t] → e(t−τ)Ah(τ) ∈ H is continuous, so the
integral defining u is well defined. For > 0, let

u (t) :=

Z t

0

e(t+ −τ)Ah(τ)dτ =
Z t

0

e(t−τ)Ae Ah(τ)dτ.
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Notice that v(τ) := e Ah(τ) ∈ C∞(A) for all τ and moreover since Ae A is a
bounded operator, it follows that τ → Av(τ) is continuous. So by Lemma 11.18, it
follows that τ ∈ [0, t] → Ae(t−τ)Av(τ) ∈ H is continuous as well. Hence we know
u (t) ∈ D(A) and

Au (t) =

Z t

0

Ae(t−τ)Ae Ah(τ)dτ.

Now

Au (t) =

Z t

0

Ae(t+ −τ)Ah(t)dτ +
Z t

0

Ae(t+ −τ)A [h(τ)− h(t)] dτ,Z t

0

Ae(t+ −τ)Ah(t)dτ = −e(t+ −τ)Ah(t)|τ=tτ=0 = e(t+ )Ah(t)− e Ah(t)

and °°°Ae(t+ −τ)A [h(τ)− h(t)]
°°° ≤ e−1

1

(t+ − τ)
kh(τ)− h(t)k

≤ Ce−1
1

(t+ − τ)
|t− τ |α ≤ Ce−1 |t− τ |α−1 .

These results along with the dominated convergence theorem shows lim ↓0Au (t)
exists and is given by

lim
↓0

Au (t) = lim
↓0

h
e(t+ )Ah(t)− e Ah(t)

i
+ lim
↓0

Z t

0

Ae(t+ −τ)A [h(τ)− h(t)] dτ

= etAh(t)− h(t) +

Z t

0

Ae(t−τ)A [h(τ)− h(t)] dτ.

Because A is a closed operator, it follows that u(t) ∈ D(A) and

Au(t) = etAh(t)− h(t) +

Z t

0

Ae(t−τ)A [h(τ)− h(t)] dτ.

Claim: t→ Au(t) is continuous. To prove this it suffices to show

v(t) := A

Z t

0

e(t−τ)A(h(τ)− h(t))dτ

is continuous and for this we have

v(t+4)− v(t) =

Z t+4

0

Ae(t+4−τ)A(h(τ)− h(t+4))dτ −
Z t

0

Ae(t−τ)A(h(τ)− h(t))dτ

= I + II

where

I =

Z t+4

t

Ae(t+4−τ)A(h(τ)− h(t+4))dτ and

II =

Z t

0

h
Ae(t+4−τ)A(h(τ)− h(t+4))−Ae(t−τ)A(h(τ)− h(t))

i
dτ

=

Z t

0

h
Ae(t+4−τ)A(h(τ)− h(t))−Ae(t−τ)A(h(τ)− h(t))

i
dτ

+

Z t

0

h
Ae(t+4−τ)A(h(t)− h(t+4))

i
dτ

= II1 + II2
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and

II1 =

Z t

0

A
h
e(t+4−τ)A − e(t−τ)A

i
(h(τ)− h(t))dτ and

II2 =
h
e(t+∆)A − e∆A

i
(h(t)− h(t+4)).

We estimate I as

kIk ≤
¯̄̄̄
¯
Z t+4

t

°°°Ae(t+4−τ)A(h(τ)− h(t+4))
°°° dτ ¯̄̄̄¯

≤ C

¯̄̄̄
¯
Z t+4

t

1

t+4− τ
|t+4− τ |α dτ

¯̄̄̄
¯ = C

Z |∆|

0

xα−1dx = Cα−1 |∆|α → 0 as ∆→ 0.

It is easily seen that kII2k ≤ 2C |∆|α → 0 as ∆→ 0 and°°°A he(t+4−τ)A − e(t−τ)A
i
(h(τ)− h(t))

°°° ≤ C |t− τ |α−1

which is integrable, so by the dominated convergence theorem,

kII1k ≤
Z t

0

°°°A he(t+4−τ)A − e(t−τ)A
i
(h(τ)− h(t))

°°° dτ → 0 as ∆→ 0.

This completes the proof of the claim.
Moreover,

Au (t)−Au(t) = e(t+ )Ah(t)− etAh(t) + h(t)− e Ah(t)

+

Z t

0

A
³
e(t+ −τ)A − e(t−τ)A

´
[h(τ)− h(t)] dτ

so that

kAu (t)−Au(t)k ≤ 2°°h(t)− e Ah(t)
°°+ Z t

0

°°°Ae(t−τ)A ¡e A − I
¢
[h(τ)− h(t)]

°°° dτ
≤ 2°°h(t)− e Ah(t)

°°+ e−1
Z t

0

1

|t− τ |
°°¡e A − I

¢
[h(τ)− h(t)]

°° dτ
from which it follows Au (t)→ Au(t) boundedly. We may now pass to the limit in
Eq. (11.16) to find

u(t) = lim
↓0

u (t) = lim
↓0

·Z t

0

e Ah(τ)dτ +

Z t

0

Au (τ)dτ

¸
=

Z t

0

h(τ)dτ +

Z t

0

Au(τ)dτ

from which it follows that u ∈ C1((0,∞),H) and u̇(t) = h(t) +Au(t).


