11. Introduction to the Spectral Theorem

The following spectral theorem is a minor variant of the usual spectral theorem for matrices. This reformulation has the virtue of carrying over to general (unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 11.1. Suppose A is an $n \times n$ complex self adjoint matrix, i.e. $A^* = A$ or equivalently $A_{ji} = \bar{A}_{ij}$ and let μ be counting measure on $\{1, 2, ..., n\}$. Then there exists a unitary map $U : \mathbb{C}^n \to L^2(\{1, 2, ..., n\}, d\mu)$ and a real function $\lambda : \{1, 2, ..., n\} \to \mathbb{R}$ such that $UA\xi = \lambda \cdot U\xi$ for all $\xi \in \mathbb{C}^n$. We summarize this equation by writing $UAU^{-1} = M_{\lambda}$ where

$$M_{\lambda}: L^{2}(\{1, 2, \dots, n\}, d\mu) \to L^{2}(\{1, 2, \dots, n\}, d\mu)$$

is the linear operator, $g \in L^2(\{1,2,\ldots,n\},d\mu) \to \lambda \cdot g \in L^2(\{1,2,\ldots,n\},d\mu)$.

Proof. By the usual form of the spectral theorem for self-adjoint matrices, there exists an orthonormal basis $\{e_i\}_{i=1}^n$ of eigenvectors of A, say $Ae_i = \lambda_i e_i$ with $\lambda_i \in \mathbb{R}$. Define $U: \mathbb{C}^n \to L^2(\{1, 2, \dots, n\}, d\mu)$ to be the unique (unitary) map determined by $Ue_i = \delta_i$ where

$$\delta_i(j) = \begin{cases} 1 & \text{if} \quad i = j \\ 0 & \text{if} \quad i \neq j \end{cases}$$

and let $\lambda: \{1, 2, \dots, n\} \to \mathbb{R}$ be defined by $\lambda(i) := \lambda_i$.

Definition 11.2. Let $A: H \to H$ be a possibly unbounded operator on H. We let

$$D(A^*) = \{ y \in H : \exists z \in H \ni (Ax, y) = (x, z) \ \forall \ x \in D(A) \}$$

and for $y \in D(A^*)$ set $A^*y = z$.

Definition 11.3. If $A = A^*$ the A is self adjoint.

Proposition 11.4. Let (X, μ) be σ – finite measure space, $H = L^2(X, d\mu)$ and $f: X \to \mathbb{C}$ be a measurable function. Set $Ag = fg = M_f g$ for all

$$g \in D(M_f) = \{ g \in H : fg \in H \}.$$

Then $D(M_f)$ is a dense subspace of H and $M_f^* = M_{\bar{f}}$.

Proof. For any $g \in H = L^2(X, d\mu)$ and $m \in \mathbb{N}$, let $g_m := g1_{|f| \leq m}$. Since $|fg_m| \leq m |g|$ it follows that $fg_m \in H$ and hence $g_m \in D(M_f)$. By the dominated convergence theorem, it follows that $g_m \to g$ in H as $m \to \infty$, hence $D(M_f)$ is dense in H.

Suppose $h \in \mathcal{D}(M_f^*)$ then there exists $k \in L^2$ such that $(M_f g, h) = (g, k)$ for all $g \in D(M_f)$, i.e.

$$\int_X fg\overline{h} \ d\mu = \int_X g\overline{k} \ d\mu \text{ for all } g \in D(M_f)$$

or equivalently

(11.1)
$$\int_X g(\overline{fh-k})d\mu = 0 \text{ for all } g \in D(M_f).$$

Choose $X_n \subset X$ such that $X_n \uparrow X$ and $\mu(X_n) < \infty$ for all n. It is easily checked that

$$g_n := 1_{X_n} \frac{\overline{f}h - k}{|\overline{f}h - k|} 1_{|f| \le n}$$

is in $D(M_f)$ and putting this function into Eq. (11.1) shows

$$\int_{X} |\overline{f}h - k| \, 1_{|f| \le n} d\mu = 0 \text{ for all } n.$$

Using the monotone convergence theorem, we may let $n \to \infty$ in this equation to find $\int_X |\overline{f}h - k| d\mu = 0$ and hence that $\overline{f}h = k \in L^2$. This shows $h \in D(M_{\overline{f}})$ and $M_f^*h = \overline{f}h$.

Theorem 11.5 (Spectral Theorem). Suppose $A^* = A$ then there exists (X, μ) a σ – finite measure space, $f: X \to \mathbb{R}$ measurable, and $U: H \to L^2(x, \mu)$ unitary such that $UAU^{-1} = M_f$. Note this is a statement about domains as well, i.e. $UD(M_f) = D(A)$.

I would like to give some examples of computing A^* and Theorem 11.5 as well. We will consider here the case of constant coefficient differential operators on $L^2(\mathbb{R}^n)$. First we need the following definition.

Definition 11.6. Let $a_{\alpha} \in C^{\infty}(U)$, $L = \sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} - a m^{\text{th}}$ order linear differential operator on $\mathcal{D}(U)$ and

$$L^{\dagger} \phi = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \, \partial^{\alpha} \left[a_{\alpha} \phi \right]$$

denote the **formal adjoint** of L as in Lemma 5.4 above. For $f \in L^p(U)$ we say $Lf \in L^p(U)$ or $L^p_{loc}(U)$ if the generalized function Lf may be represented by an element of $L^p(U)$ or $L^p_{loc}(U)$ respectively, i.e. $Lf = g \in L^p_{loc}(U)$ iff

(11.2)
$$\int_{U} f \cdot L^{\dagger} \phi \ dm = \int_{U} g \phi dm \text{ for all } \phi \in C_{c}^{\infty}(U).$$

In terms of the complex inner product,

$$(f,g) := \int_{U} f(x) \bar{g}(x) dm(x)$$

Eq. (11.2) is equivalent to

$$(f \cdot L^{\circledast} \phi) = (g, \phi)$$
 for all $\phi \in C_c^{\infty}(U)$

where

$$L^{\circledast} \phi := \sum_{|\alpha| \le m} (-1)^{|\alpha|} \partial^{\alpha} \left[\bar{a}_{\alpha} \phi \right].$$

Notice that L^{\circledast} satisfies $L^{\circledast}\bar{\phi} = \overline{L^{\dagger}\phi}$. (We do not write L^{*} here since L^{\circledast} is to be considered an operator on the space on $\mathcal{D}'(U)$.)

Remark 11.7. Recall that if $f, h \in L^2(\mathbb{R}^n)$, then the following are equivalent

- (1) $\hat{f} = h$.
- (2) $(h,g) = (f, \mathcal{F}^{-1}g)$ for all $g \in C_c^{\infty}(\mathbb{R}^n)$.
- (3) $(h,g) = (f, \mathcal{F}^{-1}g)$ for all $g \in \mathcal{S}(\mathbb{R}^n)$.
- (4) $(h,g) = (f, \mathcal{F}^{-1}g)$ for all $g \in L^2(\mathbb{R}^n)$.

Indeed if $\hat{f} = h$ and $g \in L^2(\mathbb{R}^n)$, the unitarity of \mathcal{F} implies

$$(h,g) = (\hat{f},g) = (\mathcal{F}f,g) = (f,\mathcal{F}^{-1}g).$$

Hence $1 \Longrightarrow 4$ and it is clear that $4 \Longrightarrow 3 \Longrightarrow 2$. If 2 holds, then again since \mathcal{F} is unitary we have

$$(h,g) = (f, \mathcal{F}^{-1}g) = (\hat{f},g) \text{ for all } g \in C_c^{\infty}(\mathbb{R}^n)$$

which implies $h = \hat{f}$ a.e., i.e. $h = \hat{f}$ in $L^{2}(\mathbb{R}^{n})$.

Proposition 11.8. Let $p(x) = \sum_{|\alpha| \le m} a_{\alpha} x^{\alpha}$ be a polynomial on \mathbb{C}^n ,

(11.3)
$$L := p(\partial) := \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha}$$

and $f \in L^2(\mathbb{R}^n)$. Then $Lf \in L^2(\mathbb{R}^n)$ iff $p(i\xi)\hat{f}(\xi) \in L^2(\mathbb{R}^n)$ and in which case (11.4) $(Lf) \hat{f}(\xi) = p(i\xi)\hat{f}(\xi).$

Put more concisely, letting

$$D(B) = \left\{ f \in L^2\left(\mathbb{R}^n\right) : Lf \in L^2\left(\mathbb{R}^n\right) \right\}$$

with Bf = Lf for all $f \in D(B)$, we have

$$\mathcal{F}B\mathcal{F}^{-1} = M_{p(i\xi)}$$

Proof. As above, let

(11.5)
$$L^{\dagger} := \sum_{|\alpha| \le m} a_{\alpha} (-\partial)^{\alpha} \text{ and } L^{\circledast} := \sum_{|\alpha| \le m} \bar{a}_{\alpha} (-\partial)^{\alpha}.$$

For $\phi \in C_c^{\infty}(\mathbb{R}^n)$,

$$L^{\circledast}\phi^{\vee}(x) = L^{\circledast} \int \phi(\xi) e^{ix\cdot\xi} d\lambda(\xi) = \sum_{|\alpha| \le m} \bar{a}_{\alpha} (-\partial_{x})^{\alpha} \int \phi(\xi) e^{ix\cdot\xi} d\lambda(\xi)$$
$$= \int \overline{p(i\xi)}\phi(\xi) e^{ix\cdot\xi} d\lambda(\xi) = \mathcal{F}^{-1} \left[\overline{p(i\xi)}\phi(\xi) \right](x)$$

So if $f \in L^{2}(\mathbb{R}^{n})$ such that $Lf \in L^{2}(\mathbb{R}^{n})$. Then by Remark 11.7,

$$(\widehat{Lf}, \phi) = (Lf, \phi^{\vee}) = \langle f, L^{\circledast} \phi^{\vee} \rangle = \langle f(x), \mathcal{F}^{-1} \left[\overline{p(i\xi)} \phi(\xi) \right] (x) \rangle$$
$$= \langle \widehat{f}(\xi), \left[\overline{p(i\xi)} \phi(\xi) \right] \rangle = \langle p(i\xi) \widehat{f}(\xi), \phi(\xi) \rangle \text{ for all } \phi \in C_c^{\infty} (\mathbb{R}^n)$$

from which it follows that Eq. (11.4) holds and that $p\left(i\xi\right)\hat{f}(\xi)\in L^{2}\left(\mathbb{R}^{n}\right)$.

Conversely, if $f \in L^2(\mathbb{R}^n)$ is such that $p(i\xi)\hat{f}(\xi) \in L^2(\mathbb{R}^n)$ then for $\phi \in C_c^{\infty}(\mathbb{R}^n)$,

(11.6)
$$(f, L^{\circledast} \phi) = (\hat{f}, \mathcal{F}L^{\circledast} \phi).$$

Since

$$\mathcal{F}\left(L^{\circledast}\phi\right)(\xi) = \int L^{\circledast}\phi\left(x\right)e^{-ix\cdot\xi}d\lambda(x) = \int \phi\left(x\right)\overline{L_{x}}e^{-ix\cdot\xi}d\lambda(x)$$

$$= \int \phi\left(x\right)\overline{a_{\alpha}}\partial_{x}^{\alpha}e^{-ix\cdot\xi}d\lambda(x) = \int \phi\left(x\right)\overline{a_{\alpha}}\left(-i\xi\right)^{\alpha}e^{-ix\cdot\xi}d\lambda(x)$$

$$= \overline{p\left(i\xi\right)}\hat{\phi}(\xi),$$

Eq. (11.6) becomes

$$\left(f,L^{\circledast}\phi\right)=\left(\hat{f}(\xi),\overline{p\left(i\xi\right)}\hat{\phi}(\xi)\right)=\left(p\left(i\xi\right)\hat{f}(\xi),\hat{\phi}(\xi)\right)=\left(\mathcal{F}^{-1}\left[p\left(i\xi\right)\hat{f}(\xi)\right](x),\phi(x)\right).$$

This shows $Lf = \mathcal{F}^{-1} \left[p(i\xi) \, \hat{f}(\xi) \right] \in L^2(\mathbb{R}^n)$.

Lemma 11.9. Suppose $p(x) = \sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha}$ is a polynomial on \mathbb{R}^n and $L = p(\partial)$ is the constant coefficient differential operator $B = \sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha}$ with $D(B) := \mathcal{S}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$. Then

$$\mathcal{F}B\mathcal{F}^{-1} = M_{p(i\xi)}|_{\mathcal{S}(\mathbb{R}^n)}.$$

Proof. This is result of the fact that $\mathcal{F}(\mathcal{S}(\mathbb{R}^n)) = \mathcal{S}(\mathbb{R}^n)$ and for $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$f(x) = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i\xi \cdot x} d\lambda(\xi)$$

so that

$$Bf(x) = \int_{\mathbb{R}^n} \hat{f}(\xi) L_x e^{i\xi \cdot x} d\lambda(\xi) = \int_{\mathbb{R}^n} \hat{f}(\xi) p(i\xi) e^{i\xi \cdot x} d\lambda(\xi)$$

so that

$$(Bf)^{\hat{}}(\xi) = p(i\xi)\hat{f}(\xi) \text{ for all } f \in \mathcal{S}(\mathbb{R}^n).$$

Lemma 11.10. Suppose $g: \mathbb{R}^n \to \mathbb{C}$ is a measurable function such that $|g(x)| \leq C\left(1+|x|^M\right)$ for some constants C and M. Let A be the unbounded operator on $L^2(\mathbb{R}^n)$ defined by $D(A) = \mathcal{S}(\mathbb{R}^n)$ and for $f \in \mathcal{S}(\mathbb{R}^n)$, Af = gf. Then $A^* = M_{\bar{q}}$.

Proof. If $h \in D(M_{\bar{q}})$ and $f \in D(A)$, we have

$$(Af,h)=\int_{\mathbb{D}^n}gfar{h}dm=\int_{\mathbb{D}^n}f\overline{gh}dm=(f,M_{ar{g}}h)$$

which shows $M_{\bar{g}} \subset A^*$, i.e. $h \in D(A^*)$ and $A^*h = M_{\bar{g}}h$. Now suppose $h \in D(A^*)$ and $A^*h = k$, i.e.

$$\int_{\mathbb{R}^{n}} g f \bar{h} dm = (Af, h) = (f, k) = \int_{\mathbb{R}^{n}} f \bar{k} dm \text{ for all } f \in \mathcal{S}(\mathbb{R}^{n})$$

or equivalently that

$$\int_{\mathbb{D}^n} \left(g\bar{h} - \bar{k} \right) f dm = 0 \text{ for all } f \in \mathcal{S}\left(\mathbb{R}^n\right).$$

Since the last equality (even just for $f \in C_c^{\infty}(\mathbb{R}^n)$) implies $g\bar{h} - \bar{k} = 0$ a.e. we may conclude that $h \in D(M_{\bar{g}})$ and $k = M_{\bar{g}}h$, i.e. $A^* \subset M_{\bar{g}}$.

Theorem 11.11. Suppose $p(x) = \sum_{|\alpha| \leq m} a_{\alpha} x^{\alpha}$ is a polynomial on \mathbb{R}^n and $A = p(\partial)$ is the constant coefficient differential operator with $D(A) := C_c^{\infty}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$ such that $A = L = p(\partial)$ on D(A), see Eq. (11.3). Then A^* is the operator described by

$$D(A^*) = \left\{ f \in L^2(\mathbb{R}^n) : L^{\dagger} f \in L^2(\mathbb{R}^n) \right\}$$
$$= \left\{ f \in L^2(\mathbb{R}^n) : p(i\xi)\hat{f}(\xi) \in L^2(\mathbb{R}^n) \right\}$$

and $A^*f = L^{\dagger}f$ for $f \in D(A^*)$ where L^{\dagger} is defined in Eq. (11.5) above. Moreover we have $\mathcal{F}A^*\mathcal{F}^{-1} = M_{\overline{p(i\xi)}}$.

Proof. Let $D(B) = \mathcal{S}(\mathbb{R}^n)$ and B := L on D(B) so that $A \subset B$. We are first going to show $A^* = B^*$. As is easily verified, in general if $A \subset B$ then $B^* \subset A^*$. So we need only show $A^* \subset B^*$. Now by definition, if $g \in D(A^*)$ with $k = A^*g$, then

$$(Af,g)=(f,k)$$
 for all $f\in D(A):=C_c^\infty\left(\mathbb{R}^n\right)$.

Suppose that $f \in \mathcal{S}(\mathbb{R}^n)$ and $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\phi = 1$ in a neighborhood of 0. Then $f_n(x) := \phi(x/n)f(x)$ is in $\mathcal{S}(\mathbb{R}^n)$ and hence

(11.7)
$$(f_n, k) = (Lf_n, g).$$

An exercise in the product rule and the dominated convergence theorem shows $f_n \to f$ and $Lf_n \to Lf$ in $L^2(\mathbb{R}^n)$ as $n \to \infty$. Therefore we may pass to the limit in Eq. (11.7) to learn

$$(f,k) = (Bf,g)$$
 for all $f \in \mathcal{S}(\mathbb{R}^n)$

which shows $g \in D(B^*)$ and $B^*g = k$.

By Lemma 11.10, we may conclude that $A^* = B^* = M_{\overline{p(i\xi)}}$ and by Proposition 11.8 we then conclude that

$$D(A^*) = \left\{ f \in L^2(\mathbb{R}^n) : p(i\xi)\hat{f}(\xi) \in L^2(\mathbb{R}^n) \right\}$$
$$= \left\{ f \in L^2(\mathbb{R}^n) : L^{\dagger}f \in L^2(\mathbb{R}^n) \right\}$$

and for $f \in D(A^*)$ we have $A^*f = L^{\dagger}f$.

Example 11.12. If we take $L = \Delta$ with $D(L) := C_c^{\infty}(\mathbb{R}^n)$, then

$$L^* = \bar{\Delta} = \mathcal{F} M_{-|\mathcal{E}|^2} \mathcal{F}^{-1}$$

where $D(\bar{\Delta}) = \{ f \in L^2(\mathbb{R}^n) : \Delta f \in L^2(\mathbb{R}^n) \} \text{ and } \bar{\Delta} f = \Delta f.$

Theorem 11.13. Suppose $A = A^*$ and $A \le 0$. Then for all $u_0 \in D(A)$ there exists a unique solution $u \in C^1([0,\infty))$ such that $u(t) \in D(A)$ for all t and

(11.8)
$$\dot{u}(t) = Au(t) \text{ with } u(0) = u_0.$$

Writing $u(t) = e^{tA}u_0$, the map $u_0 \to e^{tA}u_0$ is a linear contraction semi-group, i.e.

(11.9)
$$||e^{tA}u_0|| \le ||u_0|| \text{ for all } t \ge 0.$$

So e^{tA} extends uniquely to H by continuity. This extension satisfies:

- (1) Strong Continuity: the map $t \in [0, \infty) \to e^{tA}u_0$ is continuous for all $u_0 \in H$.
- (2) Smoothing property: t > 0

$$e^{tA}u_0 \in \bigcap_{n=0}^{\infty} D(A^n) =: C^{\infty}(A)$$

and

(11.10)
$$||A^k e^{tA}|| \le \left(\frac{k}{t}\right)^k e^{-k} \text{ for all } k \in \mathbb{N}.$$

Proof. Uniqueness. Suppose u solves Eq. (11.8), then

$$\frac{d}{dt}(u(t), u(t)) = 2\operatorname{Re}(\dot{u}, u) = 2\operatorname{Re}(Au, u) \le 0.$$

Hence ||u(t)|| is decreasing so that $||u(t)|| \le ||u_0||$. This implies the uniqueness assertion in the theorem and the norm estimate in Eq. (11.9).

Existence: By the spectral theorem we may assume $A = M_f$ acting on $L^2(X, \mu)$ for some σ – finite measure space (X, μ) and some measurable function $f: X \to [0, \infty)$. We wish to show $u(t) = e^{tf}u_0 \in L^2$ solves

$$\dot{u}(t) = fu(t)$$
 with $u(0) = u_0 \in D(M_f) \subset L^2$.

Let t > 0 and $|\Delta| < t$. Then by the mean value inequality

$$\left| \frac{e^{(t+\Delta)f} - e^{tf}}{\Delta} u_0 \right| = \max \left\{ |fe^{(t+\tilde{\Delta})f} u_0| : \tilde{\Delta} \text{ between } 0 \text{ and } \Delta \right\} \le |fu_0| \in L^2.$$

This estimated along with the fact that

$$\frac{u(t+\Delta)-u(t)}{\Delta} = \frac{e^{(t+\Delta)f}-e^{tf}}{\Delta}u_0 \xrightarrow{\text{point wise}} fe^{tf}u_0 \text{ as } \Delta \to 0$$

enables us to use the dominated convergence theorem to conclude

$$\dot{u}(t) = L^2 - \lim_{\Delta \to 0} \frac{u(t+\Delta) - u(t)}{\Delta} = e^{tf} f u_0 = f u(t)$$

as desired. i.e. $\dot{u}(t) = fu(t)$.

The extension of e^{tA} to H is given by $M_{e^{tf}}$. For $g \in L^2$, $\left| e^{tf}g \right| \leq |g| \in L^2$ and $e^{tf}g \to e^{\tau g}f$ pointwise as $t \to \tau$, so the Dominated convergence theorem shows $t \in [0,\infty) \to e^{tA}g \in H$ is continuous. For the last two assertions, let t>0 and $f(x)=x^ke^{tx}$. Then $(\ln f)'(x)=\frac{k}{x}+t$ which is zero when x=-k/t and therefore

$$\max_{x \le 0} \left| x^k e^{tx} \right| = \left| f(-k/t) \right| = \left(\frac{k}{t}\right)^k e^{-k}.$$

Hence

$$||A^k e^{tA}||_{op} \le \max_{x \le 0} |x^k e^{tx}| \le \left(\frac{k}{t}\right)^k e^{-k} < \infty.$$

Theorem 11.14. Take $A = \mathcal{F}M_{-|\xi|^2}\mathcal{F}^{-1}$ so $A|_{\mathcal{S}} = \Delta$ then

$$C^{\infty}(A) := \bigcap_{n=1}^{\infty} D(A^n) \subset C^{\infty}(\mathbb{R}^d)$$

i.e. for all $f \in C^{\infty}(A)$ there exists a version \tilde{f} of f such that $\tilde{f} \in C^{\infty}(\mathbb{R}^d)$.

Proof. By assumption $|\xi|^{2n} \hat{f}(\xi) \in L^2$ for all n. Therefore $\hat{f}(\xi) = \frac{g_n(\xi)}{1+|\xi|^{2n}}$ for some $g_n \in L^2$ for all n. Therefore for n chosen so that 2n > m + d, we have

$$\int_{\mathbb{R}^d} |\xi|^m |\hat{f}(\xi)| d\xi \le ||g_n||_{L^2} \left\| \frac{|\xi|^m}{1 + |\xi|^{2n}} \right\|_2 < \infty$$

which shows $|\xi|^m |\hat{f}(\xi)| \in L^1$ for all m = 0, 1, 2, ... We may now differentiate the inversion formula, $f(x) = \int \hat{f}(\xi) e^{ix\cdot\xi} d\xi$ to find

$$D^{\alpha}f(x) = \int (i\xi)^{\alpha}\hat{f}(\xi)e^{ix\cdot\xi}d\xi$$
 for any α

and thus conclude $f \in C^{\infty}$.

Exercise 11.1. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.

11.1. Du Hammel's principle again.

Lemma 11.15. Suppose A is an operator on H such that A^* is densely defined then A^* is closed.

Proof. If $f_n \in D(A^*) \to f \in H$ and $A^*f_n \to g$ then for all $h \in D(A)$

$$(g,h) = \lim_{n \to \infty} (A^* f_n, h)$$

while

$$\lim_{n \to \infty} (A^* f_n, h) = \lim_{n \to \infty} (f_n, Ah) = (f, Ah),$$

i.e. (Ah, f) = (h, g) for all $h \in D(A)$. Thus $f \in D(A^*)$ and $A^*f = g$.

Corollary 11.16. If $A^* = A$ then A is closed.

Corollary 11.17. Suppose A is closed and $u(t) \in D(A)$ is a path such that u(t) and Au(t) are continuous in t. Then

$$A\int_0^T u(\tau)d\tau = \int_0^T Au(\tau)d\tau.$$

Proof. Let π_n be a sequence of partitions of [0,T] such that $mesh(\pi_n) \to 0$ as $n \to \infty$ and set

$$f_n = \sum_{\pi_n} u(\tau_i)(\tau_{i+1} - \tau_i) \in D(A).$$

Then $f_n \to \int_0^T u(\tau) d\tau$ and

$$A f_n = \sum_{\pi_n} Au(\tau_i)(\tau_{i+1} - \tau_i) \to \int_0^T Au(\tau)d\tau.$$

Therefore $\int_0^T u(\tau)d\tau \in D(A)$ and $A \int_0^T u(\tau)d\tau = \int_0^T Au(\tau)d\tau$.

Lemma 11.18. Suppose $A = A^*$, $A \le 0$, and $h : [0, \infty] \to H$ is continuous. Then

$$(s,t) \in [0,\infty) \times [0,\infty) \to e^{sA}h(t)$$

$$(s,t) \in (0,\infty) \times [0,\infty) \to A^k e^{sA} h(t)$$

are continuous maps into H.

Proof. Let $k \geq 0$, then if $s \geq \sigma$,

$$\begin{aligned} \left\|A^{k}\left(e^{sA}h(t) - e^{\sigma A}h(\tau)\right)\right\| &= \left\|A^{k}e^{\sigma A}\left(e^{(s-\sigma)A}h(t) - h(\tau)\right)\right\| \\ &\leq \left\|A^{k}e^{\sigma A}\right\| \left\|e^{(s-\sigma)A}\left[h(t) - h(\tau)\right] + e^{(s-\sigma)A}h(\tau) - h(\tau)\right\| \\ &\leq \left(\frac{k}{\sigma}\right)^{k}e^{-k} \cdot \left[\left\|h(t) - h(\tau)\right\| + \left\|e^{(s-\sigma)A}h(\tau) - h(\tau)\right\|\right]. \end{aligned}$$

So

$$\lim_{s \mid \sigma \text{ and } t \to \tau} \left\| A^k \left(e^{sA} h(t) - e^{\sigma A} h(\tau) \right) \right\| = 0$$

and we may take $\sigma = 0$ if k = 0. Similarly, if $s \leq \sigma$,

$$\begin{aligned} \|A^{k} \left(e^{sA} h(t) - e^{\sigma A} h(\tau) \right) \| &= \left\| A^{k} e^{sA} \left(h(t) - e^{(\sigma - s)A} h(\tau) \right) \right\| \\ &\leq \|A^{k} e^{sA} \| \left[\|h(t) - h(\tau)\| + \left\| h(\tau) - e^{(\sigma - s)A} h(\tau) \right\| \right] \\ &\leq \left(\frac{k}{s} \right)^{k} e^{-k} \left[\|h(t) - h(\tau)\| + \left\| h(\tau) - e^{(\sigma - s)A} h(\tau) \right\| \right] \end{aligned}$$

and the latter expression tends to zero as $s \uparrow \sigma$ and $t \to \tau$.

Lemma 11.19. Let $h \in C([0,\infty), H)$, $D := \{(s,t) \in \mathbb{R}^2 : s > t \ge 0\}$ and $F(s,t) := \int_0^t e^{(s-\tau)A} h(\tau) d\tau$ for $(s,t) \in D$. Then

(1)
$$F \in C^1(D, H)$$
 (in fact $F \in C^{\infty}(D, H)$)

(11.11)
$$\frac{\partial}{\partial t}F(s,t) = e^{(s-t)A}h(t)$$

and

(11.12)
$$\frac{\partial F(s,t)}{\partial s} = \int_0^t Ae^{(s-\tau)A}h(\tau)d\tau.$$

(2) Given $\epsilon > 0$ let

$$u_{\epsilon}(t) := F(t + \epsilon, t) = \int_{0}^{t} e^{(t + \epsilon - \tau)A} h(\tau) d\tau.$$

Then $u_{\epsilon} \in C^{1}((-\epsilon, \infty), H)$, $u_{\epsilon}(t) \in D(A)$ for all $t > -\epsilon$ and

(11.13)
$$\dot{u}_{\epsilon}(t) = e^{\epsilon A} h(t) + A u_{\epsilon}(t).$$

Proof. We claim the function

$$(s,t) \in D \to F(s,t) := \int_0^t e^{(s-\tau)A} h(\tau) d\tau$$

is continuous. Indeed if $(s',t') \in D$ and $(s,t) \in D$ is sufficiently close to (s',t') so that s > t', we have

$$F(s,t) - F(s',t') = \int_0^t e^{(s-\tau)A} h(\tau) d\tau - \int_0^{t'} e^{(s'-\tau)A} h(\tau) d\tau$$
$$= \int_0^t e^{(s-\tau)A} h(\tau) d\tau - \int_0^{t'} e^{(s-\tau)A} h(\tau) d\tau$$
$$+ \int_0^{t'} \left[e^{(s-\tau)A} - e^{(s'-\tau)A} \right] h(\tau) d\tau$$

so that

$$||F(s,t) - F(s',t')|| \le \left| \int_{t'}^{t} \left\| e^{(s-\tau)A} h(\tau) \right\| d\tau \right| + \int_{0}^{t'} \left\| \left[e^{(s-\tau)A} - e^{(s'-\tau)A} \right] h(\tau) \right\| d\tau$$

$$(11.14) \qquad \le \left| \int_{t'}^{t} \left\| h(\tau) \right\| d\tau \right| + \int_{0}^{t'} \left\| \left[e^{(s-\tau)A} - e^{(s'-\tau)A} \right] h(\tau) \right\| d\tau.$$

By the dominated convergence theorem,

$$\lim_{(s,t)\to(s',t')} \left| \int_{t'}^{t} \|h(\tau)\| d\tau \right| = 0$$

and

$$\lim_{(s,t)\to(s',t')} \int_0^{t'} \left\| \left[e^{(s-\tau)A} - e^{(s'-\tau)A} \right] h(\tau) \right\| d\tau = 0$$

which along with Eq. (11.14) shows F is continuous.

By the fundamental theorem of calculus,

$$\frac{\partial}{\partial t}F(s,t) = e^{(s-t)A}h(t)$$

and as we have seen this expression is continuous on D. Moreover, since

$$\frac{\partial}{\partial s}e^{(s-\tau)A}h(\tau) = Ae^{(s-\tau)A}h(\tau)$$

is continuous and bounded for on $s > t > \tau$, we may differentiate under the integral to find

$$\frac{\partial F(s,t)}{\partial s} = \int_0^t A e^{(s-\tau)A} h(\tau) d\tau \text{ for } s > t.$$

A similar argument (making use of Eq. (11.10) with k=1) shows $\frac{\partial F(s,t)}{\partial s}$ is continuous for $(s,t)\in D$.

By the chain rule, $u_{\epsilon}(t) := F(t + \epsilon, t)$ is C^1 for $t > -\epsilon$ and

$$\dot{u}_{\epsilon}(t) = \frac{\partial F(t+\epsilon,t)}{\partial s} + \frac{\partial F(t+\epsilon,t)}{\partial t}$$
$$= e^{\epsilon A}h(t) + \int_{0}^{t} Ae^{(s-\tau+\epsilon)A}h(\tau)d\tau = e^{\epsilon A}h(t) + u_{\epsilon}(t).$$

Theorem 11.20. Suppose $A = A^*$, $A \leq 0$, $u_0 \in H$ and $h : [0, \infty) \to H$ is continuous. Assume further that $h(t) \in D(A)$ for all $t \in [0, \infty)$ and $t \to Ah(t)$ is continuous, then

(11.15)
$$u(t) := e^{tA}u_0 + \int_0^t e^{(t-\tau)A}h(\tau)d\tau$$

is the unique function $u \in C^1((0,\infty), H) \cap C([0,\infty), H)$ such that $u(t) \in D(A)$ for all t > 0 satisfying the differential equation

$$\dot{u}(t) = Au(t) + h(t) \text{ for } t > 0 \text{ and } u(0+) = u_0.$$

Proof. Uniqueness: If v(t) is another such solution then w(t) := u(t) - v(t) satisfies,

$$\dot{w}(t) = Aw(t)$$
 with $w(0+) = 0$

which we have already seen implies w = 0.

Existence: By linearity and Theorem 11.13 we may assume with out loss of generality that $u_0 = 0$ in which case

$$u(t) = \int_0^t e^{(t-\tau)A} h(\tau) d\tau.$$

By Lemma 11.18, we know $\tau \in [0,t] \to e^{(t-\tau)A}h(\tau) \in H$ is continuous, so the integral in Eq. (11.15) is well defined. Similarly by Lemma 11.18,

$$\tau \in [0, t] \to e^{(t-\tau)A} Ah(\tau) = Ae^{(t-\tau)A} h(\tau) \in H$$

and so by Corollary 11.17, $u(t) \in D(A)$ for all $t \geq 0$ and

$$Au(t) = \int_0^t Ae^{(t-\tau)A}h(\tau)d\tau = \int_0^t e^{(t-\tau)A}Ah(\tau)d\tau.$$

Let

$$u_{\epsilon}(t) = \int_{0}^{t} e^{(t+\epsilon-\tau)A} h(\tau) d\tau$$

be defined as in Lemma 11.19. Then using the dominated convergence theorem,

$$\sup_{t \le T} \|u_{\epsilon}(t) - u(t)\| \le \sup_{t \le T} \int_{0}^{t} \|\left(e^{(t+\epsilon-\tau)A} - e^{(t-\tau)A}\right) h(\tau)\| d\tau$$

$$\le \int_{0}^{T} \|\left(e^{\epsilon A} - I\right) h(\tau)\| d\tau \to 0 \text{ as } \epsilon \downarrow 0,$$

$$\sup_{t \le T} \|Au_{\epsilon}(t) - Au(t)\| \le \int_{0}^{T} \|\left(e^{\epsilon A} - I\right) Ah(\tau)\| d\tau \to 0 \text{ as } \epsilon \downarrow 0.$$

and

$$\left\| \int_0^t e^{\epsilon A} h(\tau) d\tau - \int_0^t h(\tau) d\tau \right\| \le \int_0^t \left\| \left(e^{\epsilon A} - I \right) h(\tau) \right\| d\tau \to 0 \text{ as } \epsilon \downarrow 0.$$

Integrating Eq. (11.13) shows

(11.16)
$$u_{\epsilon}(t) = \int_{0}^{t} e^{\epsilon A} h(\tau) d\tau + \int_{0}^{t} A u_{\epsilon}(\tau) d\tau$$

and then passing to the limit as $\epsilon \downarrow 0$ in this equations shows

$$u(t) = \int_0^t h(\tau)d\tau + \int_0^t Au(\tau)d\tau.$$

This shows u is differentiable and $\dot{u}(t) = h(t) + Au(t)$ for all t > 0.

Theorem 11.21. Let $\alpha > 0$, $h : [0, \infty) \to H$ be a locally α – Holder continuous function, $A = A^*$, $A \le 0$ and $u_0 \in H$. The function

$$u(t) := e^{tA}u_0 + \int_0^t e^{(t-\tau)A}h(\tau)d\tau$$

is the unique function $u \in C^1((0,\infty), H) \cap C([0,\infty), H)$ such that $u(t) \in D(A)$ for all t > 0 satisfying the differential equation

$$\dot{u}(t) = Au(t) + h(t) \text{ for } t > 0 \text{ and } u(0+) = u_0.$$

(For more details see Pazy [2, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 11.20 and for existence we may assume $u_0 = 0$.

With out loss of generality we may assume $u_0 = 0$ so that

$$u(t) = \int_0^t e^{(t-\tau)A} h(\tau) d\tau.$$

By Lemma 11.18, we know $\tau \in [0,t] \to e^{(t-\tau)A}h(\tau) \in H$ is continuous, so the integral defining u is well defined. For $\epsilon > 0$, let

$$u_{\epsilon}(t) := \int_0^t e^{(t+\epsilon-\tau)A} h(\tau) d\tau = \int_0^t e^{(t-\tau)A} e^{\epsilon A} h(\tau) d\tau.$$

Notice that $v(\tau) := e^{\epsilon A}h(\tau) \in C^{\infty}(A)$ for all τ and moreover since $Ae^{\epsilon A}$ is a bounded operator, it follows that $\tau \to Av(\tau)$ is continuous. So by Lemma 11.18, it follows that $\tau \in [0,t] \to Ae^{(t-\tau)A}v(\tau) \in H$ is continuous as well. Hence we know $u_{\epsilon}(t) \in D(A)$ and

$$Au_{\epsilon}(t) = \int_{0}^{t} Ae^{(t-\tau)A}e^{\epsilon A}h(\tau)d\tau.$$

Now

$$Au_{\epsilon}(t) = \int_0^t Ae^{(t+\epsilon-\tau)A}h(t)d\tau + \int_0^t Ae^{(t+\epsilon-\tau)A}\left[h(\tau) - h(t)\right]d\tau,$$
$$\int_0^t Ae^{(t+\epsilon-\tau)A}h(t)d\tau = -e^{(t+\epsilon-\tau)A}h(t)|_{\tau=0}^{\tau=t} = e^{(t+\epsilon)A}h(t) - e^{\epsilon A}h(t)$$

and

$$\begin{aligned} \left\| A e^{(t+\epsilon-\tau)A} \left[h(\tau) - h(t) \right] \right\| &\leq e^{-1} \frac{1}{(t+\epsilon-\tau)} \left\| h(\tau) - h(t) \right\| \\ &\leq C e^{-1} \frac{1}{(t+\epsilon-\tau)} \left| t - \tau \right|^{\alpha} \leq C e^{-1} \left| t - \tau \right|^{\alpha-1}. \end{aligned}$$

These results along with the dominated convergence theorem shows $\lim_{\epsilon\downarrow 0} Au_{\epsilon}(t)$ exists and is given by

$$\lim_{\epsilon \downarrow 0} A u_{\epsilon}(t) = \lim_{\epsilon \downarrow 0} \left[e^{(t+\epsilon)A} h(t) - e^{\epsilon A} h(t) \right] + \lim_{\epsilon \downarrow 0} \int_0^t A e^{(t+\epsilon-\tau)A} \left[h(\tau) - h(t) \right] d\tau$$
$$= e^{tA} h(t) - h(t) + \int_0^t A e^{(t-\tau)A} \left[h(\tau) - h(t) \right] d\tau.$$

Because A is a closed operator, it follows that $u(t) \in D(A)$ and

$$Au(t) = e^{tA}h(t) - h(t) + \int_0^t Ae^{(t-\tau)A} [h(\tau) - h(t)] d\tau.$$

Claim: $t \to Au(t)$ is continuous. To prove this it suffices to show

$$v(t) := A \int_0^t e^{(t-\tau)A} (h(\tau) - h(t)) d\tau$$

is continuous and for this we have

$$v(t+\Delta) - v(t) = \int_0^{t+\Delta} Ae^{(t+\Delta-\tau)A} (h(\tau) - h(t+\Delta)) d\tau - \int_0^t Ae^{(t-\tau)A} (h(\tau) - h(t)) d\tau$$
$$= I + II$$

where

$$I = \int_{t}^{t+\Delta} A e^{(t+\Delta-\tau)A} (h(\tau) - h(t+\Delta)) d\tau \text{ and}$$

$$II = \int_{0}^{t} \left[A e^{(t+\Delta-\tau)A} (h(\tau) - h(t+\Delta)) - A e^{(t-\tau)A} (h(\tau) - h(t)) \right] d\tau$$

$$= \int_{0}^{t} \left[A e^{(t+\Delta-\tau)A} (h(\tau) - h(t)) - A e^{(t-\tau)A} (h(\tau) - h(t)) \right] d\tau$$

$$+ \int_{0}^{t} \left[A e^{(t+\Delta-\tau)A} (h(t) - h(t+\Delta)) \right] d\tau$$

$$= II_{1} + II_{2}$$

and

$$II_1 = \int_0^t A \left[e^{(t+\Delta-\tau)A} - e^{(t-\tau)A} \right] (h(\tau) - h(t)) d\tau \text{ and}$$
$$II_2 = \left[e^{(t+\Delta)A} - e^{\Delta A} \right] (h(t) - h(t+\Delta)).$$

We estimate I as

$$\begin{split} \|I\| &\leq \left| \int_t^{t+\triangle} \left\| A e^{(t+\triangle -\tau)A} (h(\tau) - h(t+\triangle)) \right\| d\tau \right| \\ &\leq C \left| \int_t^{t+\triangle} \frac{1}{t+\Delta -\tau} \left| t+\Delta -\tau \right|^\alpha d\tau \right| = C \int_0^{|\Delta|} x^{\alpha-1} dx = C\alpha^{-1} \left| \Delta \right|^\alpha \to 0 \text{ as } \Delta \to 0. \end{split}$$

It is easily seen that $||II_2|| \leq 2C |\Delta|^{\alpha} \to 0$ as $\Delta \to 0$ and

$$\left\| A \left[e^{(t+\Delta-\tau)A} - e^{(t-\tau)A} \right] \left(h(\tau) - h(t) \right) \right\| \le C \left| t - \tau \right|^{\alpha-1}$$

which is integrable, so by the dominated convergence theorem,

$$||II_1|| \le \int_0^t ||A[e^{(t+\Delta-\tau)A} - e^{(t-\tau)A}](h(\tau) - h(t))|| d\tau \to 0 \text{ as } \Delta \to 0.$$

This completes the proof of the claim.

Moreover,

$$Au_{\epsilon}(t) - Au(t) = e^{(t+\epsilon)A}h(t) - e^{tA}h(t) + h(t) - e^{\epsilon A}h(t)$$
$$+ \int_{0}^{t} A\left(e^{(t+\epsilon-\tau)A} - e^{(t-\tau)A}\right) \left[h(\tau) - h(t)\right] d\tau$$

so that

$$||Au_{\epsilon}(t) - Au(t)|| \le 2 ||h(t) - e^{\epsilon A}h(t)|| + \int_0^t ||Ae^{(t-\tau)A} (e^{\epsilon A} - I) [h(\tau) - h(t)]|| d\tau$$

$$\le 2 ||h(t) - e^{\epsilon A}h(t)|| + e^{-1} \int_0^t \frac{1}{|t-\tau|} ||(e^{\epsilon A} - I) [h(\tau) - h(t)]|| d\tau$$

from which it follows $Au_{\epsilon}(t) \to Au(t)$ boundedly. We may now pass to the limit in Eq. (11.16) to find

$$u(t) = \lim_{\epsilon \downarrow 0} u_{\epsilon}(t) = \lim_{\epsilon \downarrow 0} \left[\int_{0}^{t} e^{\epsilon A} h(\tau) d\tau + \int_{0}^{t} A u_{\epsilon}(\tau) d\tau \right]$$
$$= \int_{0}^{t} h(\tau) d\tau + \int_{0}^{t} A u(\tau) d\tau$$

from which it follows that $u \in C^1((0,\infty), H)$ and $\dot{u}(t) = h(t) + Au(t)$.