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19. Weak and Strong Derivatives

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ,m) and Lploc(Ω) = Lploc(Ω,BΩ,m), where m is Lebesgue measure on BRd
and BΩ is the Borel σ — algebra on Ω. If Ω = Rd, we will simply write Lp and Lploc
for Lp(Rd) and Lploc(Rd) respectively. Also let

hf, gi :=
Z
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω). For
example, by Hölder’s inequality, if hf, gi is defined for f ∈ Lp(Ω) and g ∈ Lq(Ω)
when q = p

p−1 .

Definition 19.1. A sequence {un}∞n=1 ⊂ Lploc(Ω) is said to converge to u ∈ Lploc(Ω)
if limn→∞ ku− unkLq(K) = 0 for all compact subsets K ⊂ Ω.
The following simple but useful remark will be used (typically without further

comment) in the sequel.

Remark 19.2. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 + q−1 and ft → f
in Lp(Ω) and gt → g in Lq(Ω) as t→ 0, then ftgt → fg in Lr(Ω). Indeed,

kftgt − fgkr = k(ft − f) gt + f (gt − g)kr
≤ kft − fkp kgtkq + kfkp kgt − gkq → 0 as t→ 0

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Ω) (u ∈ Lploc(Ω))
then ∂vu is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there exists a function
g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that

(19.1) hu, ∂vφi = −hg, φi for all φ ∈ C∞c (Ω).

The function g if it exists will be denoted by ∂
(w)
v u. Similarly if α ∈ Nd0 and ∂α is

as in Notation 11.10, we say ∂αu exists weakly in Lp(Ω) (Lploc(Ω)) iff there exists
g ∈ Lp(Ω) (Lploc(Ω)) such that

hu, ∂αφi = (−1)|α|hg, φi for all φ ∈ C∞c (Ω).

More generally if p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn, then p(∂)u exists
weakly in Lp(Ω) (Lploc(Ω)) iff there exists g ∈ Lp(Ω) (Lploc(Ω)) such that

(19.2) hu, p(−∂)φi = hg, φi for all φ ∈ C∞c (Ω)

and we denote g by w−p(∂)u.
By Corollary 11.28, there is at most one g ∈ L1loc(Ω) such that Eq. (19.2) holds,

so w−p(∂)u is well defined.
Lemma 19.4. Let p(ξ) be a polynomial on Rd, k = deg (p) ∈ N, and u ∈ L1loc(Ω)
such that p(∂)u exists weakly in L1loc(Ω). Then

(1) suppm(w−p(∂)u) ⊂ suppm(u), where suppm(u) is the essential support of
u relative to Lebesgue measure, see Definition 11.14.

(2) If deg p = k and u|U ∈ Ck (U,C) for some open set U ⊂ Ω, then w−p(∂)u =
p (∂)u a.e. on U.

Proof.
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(1) Since

hw−p(∂)u, φi = −hu, p(−∂)φi = 0 for all φ ∈ C∞c (Ω \ suppm(u)),
an application of Corollary 11.28 shows w−p(∂)u = 0 a.e. on Ω \
suppm(u). So by Lemma 11.15, Ω \ suppm(u) ⊂ Ω \ suppm(w−p(∂)u), i.e.
suppm(w−p(∂)u) ⊂ suppm(u).

(2) Suppose that u|U is Ck and let ψ ∈ C∞c (U). (We view ψ as a function
in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U.) By Corollary 11.25, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γu = 0 on Rd \ supp(γ) we may view γu ∈ Ck

c (Rd) and
so by standard integration by parts (see Lemma 11.26) and the ordinary
product rule,

hw−p(∂)u, ψi = hu, p(−∂)ψi = −hγu, p(−∂)ψi
= hp(∂) (γu) , ψi = hp(∂)u, ψi(19.3)

wherein the last equality we have γ is constant on supp(ψ). Since Eq.
(19.3) is true for all ψ ∈ C∞c (U), an application of Corollary 11.28 with
h = w−p(∂)u− p (∂)u and µ = m shows w−p(∂)u = p (∂)u a.e. on U.

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing p (∂)u
for w−p(∂)u. So in the sequel we will always interpret p(∂)u in the weak or “dis-
tributional” sense.

Example 19.6. Suppose u(x) = |x| for x ∈ R, then ∂u(x) = sgn(x) in L1loc (R)
while ∂2u(x) = 2δ(x) so ∂2u(x) does not exist weakly in L1loc (R) .

Example 19.7. Suppose d = 2 and u(x, y) = 1y>x. Then u ∈ L1loc
¡
R2
¢
, while

∂x1y>x = −δ (y − x) and ∂y1y>x = δ (y − x) and so that neither ∂xu or ∂yu exists
weakly. On the other hand (∂x + ∂y)u = 0 weakly. To prove these assertions,
notice u ∈ C∞

¡
R2 \∆¢ where ∆ = ©(x, x) : x ∈ R2ª . So by Lemma 19.4, for any

polynomial p (ξ) without constant term, if p (∂)u exists weakly then p (∂)u = 0.
However,

hu,−∂xφi = −
Z
y>x

φx(x, y)dxdy = −
Z
R
φ(y, y)dy,

hu,−∂yφi = −
Z
y>x

φy(x, y)dxdy =

Z
R
φ(x, x)dx and

hu,−(∂x + ∂y)φi = 0
from which it follows that ∂xu and ∂yu can not be zero while (∂x + ∂y)u = 0.
On the other hand if p(ξ) and q (ξ) are two polynomials and u ∈ L1loc (Ω) is a

function such that p(∂)u exists weakly in L1loc (Ω) and q (∂) [p (∂)u] exists weakly
in L1loc (Ω) then (qp) (∂)u exists weakly in L1loc (Ω) . This is because

hu, (qp) (−∂)φi = hu, p (−∂) q(−∂)φi
= hp (∂)u, q(−∂)φi = hq(∂)p (∂)u, φi for all φ ∈ C∞c (Ω) .

Example 19.8. Let u(x, y) = 1x>0 + 1y>0 in L1loc
¡
R2
¢
. Then ∂xu(x, y) = δ(x)

and ∂yu(x, y) = δ(y) so ∂xu(x, y) and ∂yu(x, y) do not exist weakly in L1loc
¡
R2
¢
.

However ∂y∂xu does exists weakly and is the zero function. This shows ∂y∂xu may
exists weakly despite the fact both ∂xu and ∂yu do not exists weakly in L1loc

¡
R2
¢
.



370 BRUCE K. DRIVER†

Lemma 19.9. Suppose u ∈ L1loc (Ω) and p(ξ) is a polynomial of degree k such that
p (∂)u exists weakly in L1loc (Ω) then

(19.4) hp (∂)u, φi = hu, p (−∂)φi for all φ ∈ Ck
c (Ω) .

Note: The point here is that Eq. (19.4) holds for all φ ∈ Ck
c (Ω) not just φ ∈

C∞c (Ω) .

Proof. Let φ ∈ Ck
c (Ω) and choose η ∈ C∞c (B (0, 1)) such that

R
Rd η(x)dx = 1

and let η (x) := −dη(x/ ). Then η ∗ φ ∈ C∞c (Ω) for sufficiently small and
p (−∂) [η ∗ φ] = η ∗ p (−∂)φ → p (−∂)φ and η ∗ φ → φ uniformly on compact
sets as ↓ 0. Therefore by the dominated convergence theorem,

hp (∂)u, φi = lim
↓0
hp (∂)u, η ∗ φi = lim

↓0
hu, p (−∂) (η ∗ φ)i = hu, p (−∂)φi.

Lemma 19.10 (Product Rule). Let u ∈ L1loc(Ω), v ∈ Rd and φ ∈ C1(Ω). If ∂(w)v u

exists in L1loc(Ω), then ∂
(w)
v (φu) exists in L1loc(Ω) and

∂(w)v (φu) = ∂vφ · u+ φ∂(w)v u a.e.

Moreover if φ ∈ C1c (Ω) and F := φu ∈ L1 (here we define F on Rd by setting F = 0
on Rd \ Ω ), then ∂(w)F = ∂vφ · u+ φ∂

(w)
v u exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then using Lemma 19.9,

−hφu, ∂vψi = −hu, φ∂vψi = −hu, ∂v (φψ)− ∂vφ · ψi = h∂(w)v u, φψi+ h∂vφ · u,ψi
= hφ∂(w)v u,ψi+ h∂vφ · u,ψi.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω) such
that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(φ). So for ψ ∈ C∞c (Rd), using
∂vγ = 0 on supp(φ) and γψ ∈ C∞c (Ω), we find

hF, ∂vψi = hγF, ∂vψi = hF, γ∂vψi = h(φu) , ∂v (γψ)− ∂vγ · ψi
= h(φu) , ∂v (γψ)i = −h∂(w)v (φu) , (γψ)i
= −h∂vφ · u+ φ∂(w)v u, γψi = −h∂vφ · u+ φ∂(w)v u, ψi.

This show ∂
(w)
v F = ∂vφ · u+ φ∂

(w)
v u as desired.

Lemma 19.11. Suppose q ∈ [1,∞), p(ξ) is a polynomial in ξ ∈ Rd and u ∈ Lqloc(Ω).
If there exists {um}∞m=1 ⊂ Lqloc(Ω) such that p (∂)um exists in Lqloc(Ω) for all m
and there exists g ∈ Lqloc(Ω) such that for all φ ∈ C∞c (Ω),

lim
m→∞hum, φi = hu, φi and lim

m→∞hp (∂)um, φi = hg, φi

then p (∂)u exists in Lqloc(Ω) and p (∂)u = g.

Proof. Since

hu, p (∂)φi = lim
m→∞hum, p (∂)φi = − lim

m→∞hp (∂)um, φi = hg, φi

for all φ ∈ C∞c (Ω), p (∂)u exists and is equal to g ∈ Lqloc(Ω).
Conversely we have the following proposition.
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Proposition 19.12 (Mollification). Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a col-
lection of polynomials in ξ ∈ Rd and u ∈ Lqloc(Ω) such that pl(∂)u exists weakly in
Lqloc(Ω) for l = 1, 2, . . . , N. Then there exists un ∈ C∞c (Ω) such that un → u in
Lqloc(Ω) and pl (∂)un → pl (∂)u in Lqloc(Ω) for l = 1, 2, . . . , N.

Proof. Let η ∈ C∞c (B(0, 1)) such that
R
Rd ηdm = 1 and η (x) := −dη(x/ )

be as in the proof of Lemma 19.9. For any function f ∈ L1loc (Ω) , > 0 and
x ∈ Ω := {y ∈ Ω : dist(y,Ωc) > } , let

f (x) := f ∗ η (x) := 1Ωf ∗ η (x) =
Z
Ω

f(y)η (x− y)dy.

Notice that f ∈ C∞(Ω ) and Ω ↑ Ω as ↓ 0.
Given a compact set K ⊂ Ω let K := {x ∈ Ω : dist(x,K) ≤ } . Then K ↓ K as
↓ 0, there exists 0 > 0 such that K0 := K 0 is a compact subset of Ω0 := Ω 0 ⊂ Ω
(see Figure 38) and for x ∈ K,

f ∗ η (x) :=
Z
Ω

f(y)η (x− y)dy =

Z
K

f(y)η (x− y)dy.

Therefore, using Theorem 11.21,

0

Ω

Figure 38. The geomentry of K ⊂ K0 ⊂ Ω0 ⊂ Ω.

kf ∗ η − fkLp(K) = k(1K0f) ∗ η − 1K0fkLp(K) ≤ k(1K0f) ∗ η − 1K0fkLp(Rd) → 0 as ↓ 0.
Hence, for all f ∈ Lqloc(Ω), f ∗ η ∈ C∞(Ω ) and

(19.5) lim
↓0
kf ∗ η − fkLp(K) = 0.

Now let p(ξ) be a polynomial on Rd, u ∈ Lqloc(Ω) such that p (∂)u ∈ Lqloc(Ω) and
v := η ∗ u ∈ C∞(Ω ) as above. Then for x ∈ K and < 0,

p(∂)v (x) =

Z
Ω

u(y)p(∂x)η (x− y)dy =

Z
Ω

u(y)p(−∂y)η (x− y)dy

=

Z
Ω

u(y)p(−∂y)η (x− y)dy = hu, p(∂)η (x− ·)i
= hp(∂)u, η (x− ·)i = (p(∂)u) (x).(19.6)



372 BRUCE K. DRIVER†

From Eq. (19.6) we may now apply Eq. (19.5) with f = u and f = pl(∂)u for
1 ≤ l ≤ N to find

kv − ukLp(K) +
NX
l=1

kpl(∂)v − pl(∂)ukLp(K) → 0 as ↓ 0.

For n ∈ N, let
Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 1/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n → ∞ or see Lemma 10.10)

and choose ψn ∈ C∞c (K
o
n+1, [0, 1]), using Corollary 11.25, so that ψn = 1 on a

neighborhood of Kn. Choose n ↓ 0 such that Kn+1 ⊂ Ω n
and

kv
n
− ukLp(Kn)

+
NX
l=1

kpl(∂)v n
− pl(∂)ukLp(Kn)

≤ 1/n.

Then un := ψn · v n ∈ C∞c (Ω) and since un = v n on Kn we still have

(19.7) kun − ukLp(Kn)
+

NX
l=1

kpl(∂)un − pl(∂)ukLp(Kn)
≤ 1/n.

Since any compact set K ⊂ Ω is contained in Ko
n for all n sufficiently large, Eq.

(19.7) implies

lim
n→∞

"
kun − ukLp(K) +

NX
l=1

kpl(∂)un − pl(∂)ukLp(K)
#
= 0.

The following proposition is another variant of Proposition 19.12 which the
reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a collection of poly-
nomials in ξ ∈ Rd and u ∈ Lq = Lq

¡
Rd
¢
such that pl(∂)u ∈ Lq for l = 1, 2, . . . ,N.

Then there exists un ∈ C∞c
¡
Rd
¢
such that

lim
n→∞

"
kun − ukLp +

NX
l=1

kpl(∂)un − pl(∂)ukLp
#
= 0.

Notation 19.14 (Difference quotients). For v ∈ Rd and h ∈ R\{0} and a function
u : Ω→ C, let

∂hvu(x) :=
u(x+ hv)− u(x)

h
for those x ∈ Ω such that x+hv ∈ Ω.When v is one of the standard basis elements,
ei for 1 ≤ i ≤ d, we will write ∂hi u(x) rather than ∂heiu(x). Also let

∇hu(x) :=
¡
∂h1u(x), . . . , ∂

h
nu(x)

¢
be the difference quotient approximation to the gradient.

Definition 19.15 (Strong Differentiability). Let v ∈ Rd and u ∈ Lp, then ∂vu is
said to exist strongly in Lp if the limh→0 ∂hvu exists in Lp.We will denote the limit
by ∂(s)v u.
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It is easily verified that if u ∈ Lp, v ∈ Rd and ∂(s)v u ∈ Lp exists then ∂(w)v u exists
and ∂

(w)
v u = ∂

(s)
v u. The key to checking this assetion is the identity,

h∂hvu, φi =
Z
Rd

u(x+ hv)− u(x)

h
φ(x)dx

=

Z
Rd

u(x)
φ(x− hv)− φ(x)

h
dx = hu, ∂h−vφi.(19.8)

Hence if ∂(s)v u = limh→0 ∂hv u exists in Lp and φ ∈ C∞c (Rd), then

h∂(s)v u, φi = lim
h→0

h∂hvu, φi = lim
h→0

hu, ∂h−vφi =
d

dh
|0hu, φ (·− hv)i = −hu, ∂vφi

wherein Corollary 7.43 has been used in the last equality to bring the derivative
past the integral. This shows ∂(w)v u exists and is equal to ∂(s)v u.What is somewhat
more surprising is that the converse assertion that if ∂(w)v u exists then so does
∂
(s)
v u. Theorem 19.18 is a generalization of Theorem 12.36 from L2 to Lp. For the
reader’s convenience, let us give a self-contained proof of the version of the Banach
- Alaoglu’s Theorem which will be used in the proof of Theorem 19.18. (This is the
same as Theorem 18.27 above.)

Proposition 19.16 (Weak-∗ Compactness: Banach - Alaoglu’s Theorem). Let X
be a separable Banach space and {fn} ⊂ X∗ be a bounded sequence, then there exist
a subsequence {f̃n} ⊂ {fn} such that lim

n→∞ fn(x) = f(x) for all x ∈ X with f ∈ X∗.

Proof. Let D ⊂ X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f̃n} ⊆ {fn} such that
λx := lim

n→∞ f̃n(x) exist for all x ∈ D. Define f : span(D)→ R by the formula

f(
X
x∈D

axx) =
X
x∈D

axλx

where by assumption #({x ∈ D : ax 6= 0}) < ∞. Then f : span(D) → R is linear
and moreover f̃n(y)→ f(y) for all y ∈ span(D). Now

|f(y)| = lim
n→∞ |f̃n(y)| ≤ lim supn→∞

kf̃nk kyk ≤ Ckyk for all y ∈ span(D).

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional
on X. We still denote the extension of f by f ∈ X∗. Finally, if x ∈ X and y ∈
span(D)

|f(x)− f̃n(x)| ≤ |f(x)− f(y)|+ |f(y)− f̃n(y)|+ |f̃n(y)− f̃n(x)|
≤ kfk kx− yk+ kf̃nk kx− yk+ |f(y)− f̃n(y)k
≤ 2Ckx− yk+ |f(y)− f̃n(y)|→ 2Ckx− yk as n→∞.

Therefore lim sup
n→∞

|f(x)− f̃n(x)| ≤ 2Ckx− yk→ 0 as y → x.

Corollary 19.17. Let p ∈ (1,∞] and q = p
p−1 . Then to every bounded sequence

{un}∞n=1 ⊂ Lp (Ω) there is a subsequence {ũn}∞n=1 and an element u ∈ Lp(Ω) such
that

lim
n→∞hũn, gi = hu, gi for all g ∈ Lq (Ω) .
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Proof. By Theorem 15.14, the map

v ∈ Lp(Ω)→ hv, ·i ∈ (Lq(Ω))∗
is an isometric isomorphism of Banach spaces. By Theorem 11.3, Lq(Ω) is separable
for all q ∈ [1,∞) and hence the result now follows from Proposition 19.16.

Theorem 19.18 (Weak and Strong Differentiability). Suppose p ∈ [1,∞), u ∈
Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:

(1) There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞h∂

hn
v u, φi = hg, φi for all φ ∈ C∞c (Rd).

(2) ∂
(w)
v u exists and is equal to g ∈ Lp(Rd), i.e. hu, ∂vφi = −hg, φi for all
φ ∈ C∞c (Rd).

(3) There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp→ u and ∂vun

Lp→ g
as n→∞.

(4) ∂
(s)
v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hv u→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.

10. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and supn
°°∂hnv u

°°
p
<

∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies weak
convergence.
1. =⇒ 2. For φ ∈ C∞c (Rd), Eq. (19.8) and the dominated convergence theorem

implies
hg, φi = lim

n→∞h∂
hn
v u, φi = lim

n→∞hu, ∂
hn−vφi = −hu, ∂vφi.

2. =⇒ 3. Let η ∈ C∞c (Rd,R) such that
R
Rd η(x)dx = 1 and let ηm(x) =

mdη(mx), then by Proposition 11.24, hm := ηm ∗ u ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vηm ∗ u(x) =
Z
Rd

∂vηm(x− y)u(y)dy = hu,−∂v [ηm (x− ·)]i
= hg, ηm (x− ·)i = ηm ∗ g(x).

By Theorem 11.21, hm → u ∈ Lp(Rd) and ∂vhm = ηm∗g → g in Lp(Rd) asm→∞.
This shows 3. holds except for the fact that hm need not have compact support.
To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a neighborhood of 0 and let
ψ (x) = ψ( x) and (∂vψ) (x) := (∂vψ) ( x). Then

∂v (ψ hm) = ∂vψ hm + ψ ∂vhm = (∂vψ) hm + ψ ∂vhm

so that ψ hm → hm in Lp and ∂v (ψ hm)→ ∂vhm in Lp as ↓ 0. Let um = ψ mhm
where m is chosen to be greater than zero but small enough so that

kψ mhm − hmkp + k∂v (ψ mhm)→ ∂vhmkp < 1/m.

Then um ∈ C∞c (Rd), um → u and ∂vum → g in Lp as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

∂hvum(x) =
um(x+ hv)− um(x)

h

=
1

h

Z 1

0

d

ds
um(x+ shv)ds =

Z 1

0

(∂vum) (x+ shv)ds.(19.9)
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and therefore,

∂hvum(x)− ∂vum(x) =

Z 1

0

[(∂vum) (x+ shv)− ∂vum(x)] ds.

So by Minkowski’s inequality for integrals, Theorem 9.27,°°∂hvum(x)− ∂vum
°°
p
≤
Z 1

0

k(∂vum) (·+ shv)− ∂vumkp ds

and letting m→∞ in this equation then implies°°∂hvu− g
°°
p
≤
Z 1

0

kg(·+ shv)− gkp ds.

By the dominated convergence theorem and Proposition 11.13, the right member
of this equation tends to zero as h→ 0 and this shows item 4. holds.
(10. =⇒ 1. when p > 1) This is a consequence of Corollary 19.17 (or see Theorem

18.27 above) which asserts, by passing to a subsequence if necessary, that ∂hnv u
w→ g

for some g ∈ Lp(Rd).

Example 19.19. The fact that (10) does not imply the equivalent conditions 1 —
4 in Theorem 19.18 when p = 1 is demonstrated by the following example. Let
u := 1[0,1], thenZ

R

¯̄̄̄
u(x+ h)− u(x)

h

¯̄̄̄
dx =

1

|h|
Z
R

¯̄
1[−h,1−h](x)− 1[0,1](x)

¯̄
dx = 2

for |h| < 1. On the other hand the distributional derivative of u is ∂u(x) = δ(x)−
δ(x− 1) which is not in L1.
Alternatively, if there exists g ∈ L1(R, dm) such that

lim
n→∞

u(x+ hn)− u(x)

hn
= g(x) in L1

for some sequence {hn}∞n=1 as above. Then for φ ∈ C∞c (R) we would have on one
hand,Z

R

u(x+ hn)− u(x)

hn
φ(x)dx =

Z
R

φ(x− hn)− φ(x)

hn
u(x)dx

→ −
Z 1

0

φ0(x)dx = (φ(0)− φ(1)) as n→∞,

while on the other hand,Z
R

u(x+ hn)− u(x)

hn
φ(x)dx→

Z
R
g(x)φ(x)dx.

These two equations imply

(19.10)
Z
R
g(x)φ(x)dx = φ(0)− φ(1) for all φ ∈ C∞c (R)

and in particular that
R
R g(x)φ(x)dx = 0 for all φ ∈ Cc(R\ {0, 1}). By Corollary

11.28, g(x) = 0 for m — a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m — a.e. x ∈ R.
But this clearly contradicts Eq. (19.10). This example also shows that the unit ball
in L1(R, dm) is not weakly sequentially compact. Compare with Example 18.24.
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Proposition 19.20 (A weak form of Weyls Lemma). If u ∈ L2(Rd) such that
f := 4u ∈ L2(Rd) then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ 2. Furthermore if k ∈ N0 and

∂βf ∈ L2
¡
Rd
¢
for all |β| ≤ k, then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ k + 2.

Proof. By Proposition 19.13, there exists un ∈ C∞c
¡
Rd
¢
such that un → u and

∆un → ∆u = f in L2
¡
Rd
¢
. By integration by parts we findZ

Rd
|∇(un − um)|2 dm = (−∆(un−um), (un−um))L2 → − (f − f, u− u) = 0 as m,n→∞

and hence by item 3. of Theorem 19.18, ∂iu ∈ L2 for each i. Since

k∇uk2L2 = lim
n→∞

Z
Rd
|∇un|2 dm = (−∆un, un)L2 → −(f, u) as n→∞

we also learn that
k∇uk2L2 = −(f, u) ≤ kfkL2 · kukL2 .

Let us now consider
dX

i,j=1

Z
Rd
|∂i∂jun|2 dm = −

dX
i,j=1

Z
Rd

∂jun∂
2
i ∂jundm

= −
dX

j=1

Z
Rd

∂jun∂j∆undm =
dX

j=1

Z
Rd

∂2j un∆undm

=

Z
Rd
|∆un|2 dm = k∆unk2L2 .

Replacing un by un − um in this calculation shows
dX

i,j=1

Z
Rd
|∂i∂j(un − um)|2 dm = k∆(un − um)k2L2 → 0 as m,n→∞

and therefore by Lemma 19.4 (also see Exercise 19.3), ∂i∂ju ∈ L2
¡
Rd
¢
for all i, j

and
dX

i,j=1

Z
Rd
|∂i∂ju|2 dm = k∆uk2L2 = kfk2L2 .

Let us now further assume ∂if ∈ L2
¡
Rd
¢
. Then for h ∈ R \ {0} , ∂hi u ∈ L2(Rd)

and ∆∂hi u = ∂hi ∆u = ∂hi f ∈ L2(Rd) and hence by what we have just proved,
∂α∂hi u = ∂hi ∂

αu ∈ L2 andX
|α|≤2

°°∂hi ∂αu°°2L2(Rd) ≤ C
h°°∂hi f°°2L2 + °°∂hi f°°L2 · °°∂hi u°°L2i

≤ C
h
k∂ifk2L2 + k∂ifkL2 · k∂iukL2

i
with the last bound being independent of h 6= 0. Therefore applying Theorem 19.18
again we learn that ∂i∂αu ∈ L2(Rd) for all |α| ≤ 2. The remainder of the proof,
which is now an induction argument using the above ideas, is left as an exercise to
the reader.

Theorem 19.21. Suppose that Ω is a precompact open subset of Rd and V is an
open precompact subset of Ω.
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(1) If 1 ≤ p < ∞, u ∈ Lp(Ω) and ∂iu ∈ Lp(Ω), then k∂hi ukLp(V ) ≤ k∂iukLp(Ω)
for all 0 < |h| < 1

2dist(V,Ω
c).

(2) Suppose that 1 < p ≤ ∞, u ∈ Lp(Ω) and assume there exists a constants
CV <∞ and V ∈ (0, 12dist(V,Ωc)) such that

k∂hi ukLp(V ) ≤ CV for all 0 < |h| < V .

Then ∂iu ∈ Lp(V ) and k∂iukLp(V ) ≤ CV . Moreover if C := supV⊂⊂ΩCV <
∞ then in fact ∂iu ∈ Lp(Ω) and k∂iukLp(Ω) ≤ C.

Proof. 1. Let U ⊂o Ω such that V̄ ⊂ U and Ū is a compact subset of Ω. For
u ∈ C1 (Ω) ∩ Lp(Ω), x ∈ B and 0 < |h| < 1

2dist(V,U
c),

∂hi u(x) =
u(x+ hei)− u(x)

h
=

Z 1

0

∂iu(x+ thei) dt

and in particular,

|∂hi u(x)| ≤
Z 1

0

|∂u(x+ thei)|dt.
Therefore by Minikowski’s inequality for integrals,

(19.11) k∂hi ukLp(V ) ≤
Z 1

0

k∂u(·+ thei)kLp(V )dt ≤ k∂iukLp(U).

For general u ∈ Lp(Ω) with ∂iu ∈ Lp(Ω), by Proposition 19.12, there exists
un ∈ C∞c (Ω) such that un → u and ∂iun → ∂iu in Lploc(Ω). Therefore we may
replace u by un in Eq. (19.11) and then pass to the limit to find

k∂hi ukLp(V ) ≤ k∂iukLp(U) ≤ k∂iukLp(Ω).
2. If k∂hi ukLp(V ) ≤ CV for all h sufficiently small then by Corollary 19.17 there

exists hn → 0 such that ∂hni u
w→ v ∈ Lp(V ). Hence if ϕ ∈ C∞c (V ),Z

V

vϕdm = lim
n→∞

Z
Ω

∂hni uϕdm = lim
n→∞

Z
Ω

u∂−hni ϕdm

= −
Z
Ω

u∂iϕ dm = −
Z
V

u∂iϕ dm.

Therefore ∂iu = v ∈ Lp(V ) and k∂iukLp(V ) ≤ kvkLp(V ) ≤ CV . Finally if C :=
supV⊂⊂ΩCV <∞, then by the dominated convergence theorem,

k∂iukLp(Ω) = lim
V ↑Ω

k∂iukLp(V ) ≤ C.

We will now give a couple of applications of Theorem 19.18.

Lemma 19.22. Let v ∈ Rd.
(1) If h ∈ L1 and ∂vh exists in L1, then

R
Rd ∂vh(x)dx = 0.

(2) If p, q, r ∈ [1,∞) satisfy r−1 = p−1+ q−1, f ∈ Lp and g ∈ Lq are functions
such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf ·g+f ·∂vg. Moreover if r = 1 we have the integration
by parts formula,

(19.12) h∂vf, gi = −hf, ∂vgi.
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(3) If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with g and
its first derivatives being bounded) then ∂v(gf) exists in L1 and ∂v(fg) =
∂vf · g + f · ∂vg and again Eq. (19.12) holds.

Proof. 1) By item 3. of Theorem 19.18 there exists hn ∈ C∞c (Rd) such that
hn → h and ∂vhn → ∂vh in L1. ThenZ

Rd
∂vhn(x)dx =

d

dt
|0
Z
Rd

hn(x+ hv)dx =
d

dt
|0
Z
Rd

hn(x)dx = 0

and letting n→∞ proves the first assertion.
2) Similarly there exists fn, gn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in

Lp and gn → g and ∂vgn → ∂vg in Lq as n→∞. So by the standard product rule
and Remark 19.2, fngn → fg ∈ Lr as n→∞ and

∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 19.18 that ∂v(fg) exists in Lr

and ∂v(fg) = ∂vf · g+ f · ∂vg. Eq. (19.12) follows from this product rule and item
1. when r = 1.
3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in L1 as n→∞. Then

as above, gfn → gf in L1 and ∂v(gfn) → ∂vg · f + g∂vf in L1 as n → ∞. In
particular if φ ∈ C∞c (Rd), then

hgf, ∂vφi = lim
n→∞hgfn, ∂vφi = − lim

n→∞h∂v (gfn) , φi
= − lim

n→∞h∂vg · fn + g∂vfn, φi = −h∂vg · f + g∂vf, φi.
This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf ·g+f ·∂vg. Again Eq. (19.12)
holds in this case by item 1. already proved.

Lemma 19.23. Let p, q, r ∈ [1,∞] satisfy p−1 + q−1 = 1 + r−1, f ∈ Lp, g ∈ Lq

and v ∈ Rd.
(1) If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.
(2) If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.
(3) If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗ g ∈ C∞(Rd), ∂v(f ∗ g)

exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.
Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple

computations:°°°°τ−hv(f ∗ g)− f ∗ g
h

− (∂vf) ∗ g
°°°°
r

=

°°°°τ−hvf ∗ g − f ∗ g
h

− (∂vf) ∗ g
°°°°
r

=

°°°°·τ−hvf − f

h
− (∂vf)

¸
∗ g
°°°°
r

≤
°°°°τ−hvf − f

h
− (∂vf)

°°°°
p

kgkq
which tends to zero as h→ 0. The second item is proved analogously, or just make
use of the fact that f ∗ g = g ∗ f and apply Item 1.
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Using the fact that g(x− ·) ∈ C∞c (Rd) and the definition of the weak derivative,

f ∗ ∂vg(x) =
Z
Rd

f(y) (∂vg) (x− y)dy = −
Z
Rd

f(y) (∂vg(x− ·)) (y)dy

=

Z
Rd

∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.24. Let Ω = (α, β) ⊂ R be an open interval and f ∈ L1loc(Ω) such
that ∂(w)f = 0 in L1loc(Ω). Then there exists c ∈ C such that f = c a.e. More
generally, suppose F : C∞c (Ω) → C is a linear functional such that F (φ0) = 0 for
all φ ∈ C∞c (Ω), where φ

0(x) = d
dxφ(x), then there exists c ∈ C such that

(19.13) F (φ) = hc, φi =
Z
Ω

cφ(x)dx for all φ ∈ C∞c (Ω).

Proof. Before giving a proof of the second assertion, let us show it includes the
first. Indeed, if F (φ) :=

R
Ω
φfdm and ∂(w)f = 0, then F (φ0) = 0 for all φ ∈ C∞c (Ω)

and therefore there exists c ∈ C such thatZ
Ω

φfdm = F (φ) = chφ, 1i = c

Z
Ω

φfdm.

But this implies f = c a.e. So it only remains to prove the second assertion.
Let η ∈ C∞c (Ω) such that

R
Ω
ηdm = 1. Given φ ∈ C∞c (Ω) ⊂ C∞c (R) , let

ψ(x) =
R x
−∞ (φ(y)− η(y)hφ, 1i) dy. Then ψ0(x) = φ(x)−η(x)hφ, 1i and ψ ∈ C∞c (Ω)

as the reader should check. Therefore,

0 = F (ψ) = F (φ− hφ, ηiη) = F (φ)− hφ, 1iF (η)
which shows Eq. (19.13) holds with c = F (η). This concludes the proof, however
it will be instructive to give another proof of the first assertion.
Alternative proof of first assertion. Suppose f ∈ L1loc(Ω) and ∂(w)f = 0

and fm := f ∗ ηm as is in the proof of Lemma 19.9. Then f 0m = ∂(w)f ∗ ηm = 0,
so fm = cm for some constant cm ∈ C. By Theorem 11.21, fm → f in L1loc(Ω) and
therefore if J = [a, b] is a compact subinterval of Ω,

|cm − ck| = 1

b− a

Z
J

|fm − fk| dm→ 0 as m, k →∞.

So {cm}∞m=1 is a Cauchy sequence and therefore c := limm→∞ cm exists and f =
limm→∞ fm = c a.e.

Theorem 19.25. Suppose f ∈ L1loc(Ω). Then there exists a complex measure µ on
BΩ such that

(19.14) −hf, φ0i = µ(φ) :=

Z
Ω

φdµ for all φ ∈ C∞c (Ω)

iff there exists a right continuous function F of bounded variation such that F = f
a.e. In this case µ = µF , i.e. µ((a, b]) = F (b)− F (a) for all −∞ < a < b <∞.
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Proof. Suppose f = F a.e. where F is as above and let µ = µF be the
associated measure on BΩ. Let G(t) = F (t) − F (−∞) = µ((−∞, t]), then using
Fubini’s theorem and the fundamental theorem of calculus,

−hf, φ0i = −hF, φ0i = −hG,φ0i = −
Z
Ω

φ0(t)
·Z
Ω

1(−∞,t](s)dµ(s)

¸
dt

= −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s) =

Z
Ω

φ(s)dµ(s) = µ(φ).

Conversely if Eq. (19.14) holds for some measure µ, let F (t) := µ((−∞, t]) then
working backwards from above,

−hf, φ0i = µ(φ) =

Z
Ω

φ(s)dµ(s) = −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s) = −
Z
Ω

φ0(t)F (t)dt.

This shows ∂(w) (f − F ) = 0 and therefore by Proposition 19.24, f = F + c a.e. for
some constant c ∈ C. Since F + c is right continuous with bounded variation, the
proof is complete.

Proposition 19.26. Let Ω ⊂ R be an open interval and f ∈ L1loc(Ω). Then ∂wf

exists in L1loc(Ω) iff f has a continuous version f̃ which is absolutely continuous on
all compact subintervals of Ω. Moreover, ∂wf = f̃ 0 a.e., where f̃ 0(x) is the usual
pointwise derivative.

Proof. If f is locally absolutely continuous and φ ∈ C∞c (Ω) with supp(φ) ⊂
[a, b] ⊂ Ω, then by integration by parts, Corollary 16.32,Z

Ω

f 0φdm =

Z b

a

f 0φdm = −
Z b

a

fφ0dm+ fφ|ba = −
Z
Ω

fφ0dm.

This shows ∂wf exists and ∂wf = f 0 ∈ L1loc(Ω).
Now suppose that ∂wf exists in L1loc(Ω) and a ∈ Ω. Define F ∈ C (Ω) by

F (x) :=
R x
a
∂wf(y)dy. Then F is absolutely continuous on compacts and therefore

by fundamental theorem of calculus for absolutely continuous functions (Theorem
16.31), F 0(x) exists and is equal to ∂wf(x) for a.e. x ∈ Ω. Moreover, by the first
part of the argument, ∂wF exists and ∂wF = ∂wf, and so by Proposition 19.24
there is a constant c such that

f̃(x) := F (x) + c = f(x) for a.e. x ∈ Ω.

Definition 19.27. Let X and Y be metric spaces. A function u : X → Y is said
to be Lipschitz if there exists C <∞ such that

dY (u(x), u(x0)) ≤ CdX(x, x0) for all x, x0 ∈ X

and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (u(x), u(x0)) ≤ CKd
X(x, x0) for all x, x0 ∈ K.

Proposition 19.28. Let u ∈ L1loc(Ω). Then there exists a locally Lipschitz function
ũ : Ω → C such that ũ = u a.e. iff ∂iu ∈ L1loc(Ω) exists and is locally (essentially)
bounded for i = 1, 2, . . . , d.
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Proof. Suppose u = ũ a.e. and ũ is Lipschitz and let p ∈ (1,∞) and V be
a precompact open set such that V̄ ⊂ W and let V :=

©
x ∈ Ω : dist(x, V̄ ) ≤ ª

.

Then for < dist(V̄ ,Ωc), V ⊂ Ω and therefore there is constant C(V, ) <∞ such
that |ũ(y)− ũ(x)| ≤ C(V, ) |y − x| for all x, y ∈ V . So for 0 < |h| ≤ 1 and v ∈ Rd
with |v| = 1,Z

V

¯̄̄̄
u(x+ hv)− u(x)

h

¯̄̄̄p
dx =

Z
V

¯̄̄̄
ũ(x+ hv)− ũ(x)

h

¯̄̄̄p
dx ≤ C(V, ) |v|p .

Therefore Theorem 19.18 may be applied to conclude ∂vu exists in Lp and moreover,

lim
h→0

ũ(x+ hv)− ũ(x)

h
= ∂vu(x) for m — a.e. x ∈ V.

Since there exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and

|∂vu(x)| = lim
n→∞

¯̄̄̄
ũ(x+ hnv)− ũ(x)

hn

¯̄̄̄
≤ C(V ) for a.e. x ∈ V,

it follows that k∂vuk∞ ≤ C(V ) where C(V ) := lim ↓0C(V, ).
Conversely, let Ω := {x ∈ Ω : dist(x,Ωc) > } and η ∈ C∞c (B(0, 1), [0,∞)) such

that
R
Rn η(x)dx = 1, ηm(x) = mnη(mx) and um := u ∗ ηm as in the proof of

Theorem 19.18. Suppose V ⊂o Ω with V̄ ⊂ Ω and is sufficiently small. Then
um ∈ C∞(Ω ), ∂vum = ∂vu∗ηm, |∂vum(x)| ≤ k∂vukL∞(Vm−1 ) =: C(V,m) <∞ and
therefore,

|um(y)− um(x)| =
¯̄̄̄Z 1

0

d

dt
um(x+ t(y − x))dt

¯̄̄̄
=

¯̄̄̄Z 1

0

(y − x) ·∇um(x+ t(y − x))dt

¯̄̄̄
≤
Z 1

0

|y − x| · |∇um(x+ t(y − x))| dt
≤ C(V,m) |y − x| for all x, y ∈ V.(19.15)

By passing to a subsequence if necessary, we may assume that limm→∞ um(x) =
u(x) for m — a.e. x ∈ V and then letting m→∞ in Eq. (19.15) implies

(19.16) |u(y)− u(x)| ≤ C(V ) |y − x| for all x, y /∈ E

where E ⊂ V is a m — null set. Define ũV : V → C by ũV = u on V \ Ec and
ũV (x) = limy→x

y/∈E
u(y) if x ∈ E. Then clearly ũV = u a.e. on V and it is easy to

show ũV is well defined and ũV : V → C is Lipschitz continuous. To complete the
proof, choose precompact open sets Vn such that Vn ⊂ V̄n ⊂ Vn+1 ⊂ Ω for all n
and for x ∈ Vn let ũ(x) := ũVn(x).
Here is an alternative way to construct the function ũV above. For x ∈ V \E,

|um(x)− u(x)| =
¯̄̄̄Z
V

u(x− y)η(my)mndy − u(x)

¯̄̄̄
=

¯̄̄̄Z
V

[u(x− y/m)− u(x)] η(y)dy

¯̄̄̄
≤
Z
V

|u(x− y/m)− u(x)| η(y)dy ≤ C

m

Z
V

|y| η(y)dy

wherein the last equality we have used Eq. (19.16) with V replaced by V for some
small > 0. Letting K := C

R
V
|y| η(y)dy <∞ we have shown

kum − uk∞ ≤ K/m→ 0 as m→∞
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and consequently

kum − unku = kum − unk∞ ≤ 2K/m→ 0 as m→∞.

Therefore, un converges uniformly to a continuous function ũV .
The next theorem is from Chapter 1. of Maz’ja [2].

Theorem 19.29. Let p ≥ 1 and Ω be an open subset of Rd, x ∈ Rd be written as
x = (y, t) ∈ Rd−1 ×R,

Y :=
©
y ∈ Rd−1 : ({y} ×R) ∩Ω 6= ∅ª

and u ∈ Lp(Ω). Then ∂tu exists weakly in Lp(Ω) iff there is a version ũ of u such that
for a.e. y ∈ Y the function t→ ũ(y, t) is absolutely continuous, ∂tu(y, t) =

∂ũ(y,t)
∂t

a.e., and
°°∂ũ
∂t

°°
Lp(Ω)

<∞.

Proof. For the proof of Theorem 19.29, it suffices to consider the case where
Ω = (0, 1)d. Write x ∈ Ω as x = (y, t) ∈ Y × (0, 1) = (0, 1)d−1 × (0, 1) and ∂tu for
the weak derivative ∂edu. By assumptionZ

Ω

|∂tu(y, t)| dydt = k∂tuk1 ≤ k∂tukp <∞

and so by Fubini’s theorem there exists a set of full measure, Y0 ⊂ Y, such thatZ 1

0

|∂tu(y, t)| dt <∞ for y ∈ Y0.

So for y ∈ Y0, the function v(y, t) :=
R t
0
∂tu(y, τ)dτ is well defined and absolutely

continuous in t with ∂
∂tv(y, t) = ∂tu(y, t) for a.e. t ∈ (0, 1). Let ξ ∈ C∞c (Y ) and

η ∈ C∞c ((0, 1)) , then integration by parts for absolutely functions impliesZ 1

0

v(y, t)η̇(t)dt = −
Z 1

0

∂

∂t
v(y, t)η(t)dt for all y ∈ Y0.

Multiplying both sides of this equation by ξ(y) and integrating in y showsZ
Ω

v(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂

∂t
v(y, t)η(t)ξ(y)dydt = −

Z
Ω

∂tu(y, t)η(t)ξ(y)dydt.

Using the definition of the weak derivative, this equation may be written asZ
Ω

u(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂tu(x)η(t)ξ(y)dydt

and comparing the last two equations showsZ
Ω

[v(x)− u(x)] η̇(t)ξ(y)dydt = 0.

Since ξ ∈ C∞c (Y ) is arbitrary, this implies there exists a set Y1 ⊂ Y0 of full measure
such that Z

Ω

[v(y, t)− u(y, t)] η̇(t)dt = 0 for all y ∈ Y1

from which we conclude, using Proposition 19.24, that u(y, t) = v(y, t) + C(y) for
t ∈ Jy where md−1 (Jy) = 1, here mk denotes k — dimensional Lebesgue measure.
In conclusion we have shown that

(19.17) u(y, t) = ũ(y, t) :=

Z t

0

∂tu(y, τ)dτ + C(y) for all y ∈ Y1 and t ∈ Jy.
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We can be more precise about the formula for ũ(y, t) by integrating both sides
of Eq. (19.17) on t we learn

C(y) =

Z 1

0

dt

Z t

0

∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt =

Z 1

0

(1− τ) ∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt

=

Z 1

0

[(1− t) ∂tu(y, t)− u(y, t)] dt

and hence

ũ(y, t) :=

Z t

0

∂τu(y, τ)dτ +

Z 1

0

[(1− τ) ∂τu(y, τ)− u(y, τ)] dτ

which is well defined for y ∈ Y0.
For the converse suppose that such a ũ exists, then for φ ∈ C∞c (Ω) ,Z
Ω

u(y, t)∂tφ(y, t)dydt =

Z
Ω

ũ(y, t)∂tφ(y, t)dtdy = −
Z
Ω

∂ũ(y, t)

∂t
φ(y, t)dtdy

wherein we have used integration by parts for absolutely continuous functions. From
this equation we learn the weak derivative ∂tu(y, t) exists and is given by

∂ũ(y,t)
∂t

a.e.

19.3. Exercises.

Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use u as defined in the proof
of Proposition 19.12 to show it suffices to consider the case where u ∈ C∞

¡
Rd
¢ ∩

Lp
¡
Rd
¢
with ∂αu ∈ Lp

¡
Rd
¢
for all α ∈ Nd0. 2. Then let ψ ∈ C∞c (B(0, 1), [0, 1])

such that ψ = 1 on a neighborhood of 0 and let un(x) := u(x)ψ(x/n).

Exercise 19.3. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the identity
operator on Lp),

D(∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}
and for f ∈ D(∂α) (the domain of ∂α) let ∂αf denote the α — weak derivative of f.
(See Definition 19.3.)

(1) Show ∂α is a densely defined operator on Lp, i.e. D(∂α) is a dense linear
subspace of Lp and ∂α : D(∂α)→ Lp is a linear transformation.

(2) Show ∂α : D(∂α)→ Lp is a closed operator, i.e. the graph,

Γ(∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D(∂α)} ,
is a closed subspace of Lp × Lp.

(3) Show ∂α : D(∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D(∂α) is taken to be the Lp — norm.)

Exercise 19.4. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf exists
weakly (see Definition 19.3) in Lp iff there exists fn ∈ C∞c (Rn) and g ∈ Lp such
that fn → f and ∂αfn → g in Lp as n→∞. Hints: See exercises 19.2 and 19.3.

Exercise 19.5. Folland 8.8 on p. 246.

Exercise 19.6. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.
(1) Let f(x) = |x| , show ∂f exists weakly in L1loc(R) and ∂f(x) = sgn(x) for

m — a.e. x.
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(2) Show ∂(∂f) does not exists weakly in L1loc(R).
(3) Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a finite

set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R). Assuming
∂f ∈ L1loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x) for m — a.e. x.

Exercise 19.7. Suppose that f ∈ L1loc(Ω) and v ∈ Rd and {ej}nj=1 is the standard
basis for Rd. If ∂jf := ∂ejf exists weakly in L1loc(Ω) for all j = 1, 2, . . . , n then ∂vf

exists weakly in L1loc(Ω) and ∂vf =
Pn

j=1 vj∂jf.

Exercise 19.8. Suppose, f ∈ L1loc(Rd) and ∂vf exists weakly and ∂vf = 0 in
L1loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m — a.e.
x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 19.9 below.
Exercise 19.9 (A generalization of Exercise 19.8). Suppose Ω is a connected open
subset of Rd and f ∈ L1loc(Ω). If ∂

αf = 0 weakly for α ∈ Zn+ with |α| = N +1, then
f(x) = p(x) for m — a.e. x where p(x) is a polynomial of degree at most N. Here
is an outline.

(1) Suppose x0 ∈ Ω and > 0 such that C := Cx0( ) ⊂ Ω and let ηn be a
sequence of approximate δ — functions such supp(ηn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗ηn) = (∂αf)∗ηn on C for |α| = N+1. Now
use Taylor’s theorem to conclude there exists a polynomial pn of degree at
most N such that fn = pn on C.

(2) Show p := limn→∞ pn exists on C and then let n →∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 19.10. Suppose Ω ⊂o Rd and v,w ∈ Rd. Assume f ∈ L1loc(Ω) and that
∂v∂wf exists weakly in L1loc(Ω), show ∂w∂vf also exists weakly and ∂w∂vf = ∂v∂wf.

Exercise 19.11. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in L1loc
despite the fact that ∂1f does not exist weakly in L1loc!


