19. Weak and Strong Derivatives

For this section, let Ω be an open subset of $\mathbb{R}^{d}, p, q, r \in[1, \infty], L^{p}(\Omega)=$ $L^{p}\left(\Omega, \mathcal{B}_{\Omega}, m\right)$ and $L_{l o c}^{p}(\Omega)=L_{l o c}^{p}\left(\Omega, \mathcal{B}_{\Omega}, m\right)$, where m is Lebesgue measure on $\mathcal{B}_{\mathbb{R}^{d}}$ and \mathcal{B}_{Ω} is the Borel σ - algebra on Ω. If $\Omega=\mathbb{R}^{d}$, we will simply write L^{p} and $L_{\text {loc }}^{p}$ for $L^{p}\left(\mathbb{R}^{d}\right)$ and $L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ respectively. Also let

$$
\langle f, g\rangle:=\int_{\Omega} f g d m
$$

for any pair of measurable functions $f, g: \Omega \rightarrow \mathbb{C}$ such that $f g \in L^{1}(\Omega)$. For example, by Hölder's inequality, if $\langle f, g\rangle$ is defined for $f \in L^{p}(\Omega)$ and $g \in L^{q}(\Omega)$ when $q=\frac{p}{p-1}$.
Definition 19.1. A sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset L_{l o c}^{p}(\Omega)$ is said to converge to $u \in L_{l o c}^{p}(\Omega)$ if $\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{L^{q}(K)}=0$ for all compact subsets $K \subset \Omega$.

The following simple but useful remark will be used (typically without further comment) in the sequel.

Remark 19.2. Suppose $r, p, q \in[1, \infty]$ are such that $r^{-1}=p^{-1}+q^{-1}$ and $f_{t} \rightarrow f$ in $L^{p}(\Omega)$ and $g_{t} \rightarrow g$ in $L^{q}(\Omega)$ as $t \rightarrow 0$, then $f_{t} g_{t} \rightarrow f g$ in $L^{r}(\Omega)$. Indeed,

$$
\begin{aligned}
\left\|f_{t} g_{t}-f g\right\|_{r} & =\left\|\left(f_{t}-f\right) g_{t}+f\left(g_{t}-g\right)\right\|_{r} \\
& \leq\left\|f_{t}-f\right\|_{p}\left\|g_{t}\right\|_{q}+\|f\|_{p}\left\|g_{t}-g\right\|_{q} \rightarrow 0 \text { as } t \rightarrow 0
\end{aligned}
$$

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let $v \in \mathbb{R}^{d}$ and $u \in L^{p}(\Omega)\left(u \in L_{l o c}^{p}(\Omega)\right)$ then $\partial_{v} u$ is said to exist weakly in $L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ if there exists a function $g \in L^{p}(\Omega)\left(g \in L_{l o c}^{p}(\Omega)\right)$ such that

$$
\begin{equation*}
\left\langle u, \partial_{v} \phi\right\rangle=-\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{19.1}
\end{equation*}
$$

The function g if it exists will be denoted by $\partial_{v}^{(w)} u$. Similarly if $\alpha \in \mathbb{N}_{0}^{d}$ and ∂^{α} is as in Notation 11.10, we say $\partial^{\alpha} u$ exists weakly in $L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ iff there exists $g \in L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ such that

$$
\left\langle u, \partial^{\alpha} \phi\right\rangle=(-1)^{|\alpha|}\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega) .
$$

More generally if $p(\xi)=\sum_{|\alpha| \leq N} a_{\alpha} \xi^{\alpha}$ is a polynomial in $\xi \in \mathbb{R}^{n}$, then $p(\partial) u$ exists weakly in $L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ iff there exists $g \in L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ such that

$$
\begin{equation*}
\langle u, p(-\partial) \phi\rangle=\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{19.2}
\end{equation*}
$$

and we denote g by w-p($\partial) u$.
By Corollary 11.28, there is at most one $g \in L_{l o c}^{1}(\Omega)$ such that Eq. (19.2) holds, so $\mathrm{w}-p(\partial) u$ is well defined.
Lemma 19.4. Let $p(\xi)$ be a polynomial on $\mathbb{R}^{d}, k=\operatorname{deg}(p) \in \mathbb{N}$, and $u \in L_{\text {loc }}^{1}(\Omega)$ such that $p(\partial) u$ exists weakly in $L_{l o c}^{1}(\Omega)$. Then
(1) $\operatorname{supp}_{m}(\mathrm{w}-p(\partial) u) \subset \operatorname{supp}_{m}(u)$, where $\operatorname{supp}_{m}(u)$ is the essential support of u relative to Lebesgue measure, see Definition 11.14.
(2) If $\operatorname{deg} p=k$ and $\left.u\right|_{U} \in C^{k}(U, \mathbb{C})$ for some open set $U \subset \Omega$, then $\mathrm{w}-p(\partial) u=$ $p(\partial) u$ a.e. on U.

Proof.

(1) Since

$$
\langle\mathrm{w}-p(\partial) u, \phi\rangle=-\langle u, p(-\partial) \phi\rangle=0 \text { for all } \phi \in C_{c}^{\infty}\left(\Omega \backslash \operatorname{supp}_{m}(u)\right),
$$

an application of Corollary 11.28 shows $\mathrm{w}-p(\partial) u=0$ a.e. on $\Omega \backslash$ $\operatorname{supp}_{m}(u)$. So by Lemma 11.15, $\Omega \backslash \operatorname{supp}_{m}(u) \subset \Omega \backslash \operatorname{supp}_{m}(\mathrm{w}-p(\partial) u)$, i.e. $\operatorname{supp}_{m}(\mathrm{w}-p(\partial) u) \subset \operatorname{supp}_{m}(u)$.
(2) Suppose that $\left.u\right|_{U}$ is C^{k} and let $\psi \in C_{c}^{\infty}(U)$. (We view ψ as a function in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ by setting $\psi \equiv 0$ on $\mathbb{R}^{d} \backslash U$.) By Corollary 11.25 , there exists $\gamma \in C_{c}^{\infty}(\Omega)$ such that $0 \leq \gamma \leq 1$ and $\gamma=1$ in a neighborhood of $\operatorname{supp}(\psi)$. Then by setting $\gamma u=0$ on $\mathbb{R}^{d} \backslash \operatorname{supp}(\gamma)$ we may view $\gamma u \in C_{c}^{k}\left(\mathbb{R}^{d}\right)$ and so by standard integration by parts (see Lemma 11.26) and the ordinary product rule,

$$
\begin{align*}
\langle\mathrm{w}-p(\partial) u, \psi\rangle & =\langle u, p(-\partial) \psi\rangle=-\langle\gamma u, p(-\partial) \psi\rangle \\
& =\langle p(\partial)(\gamma u), \psi\rangle=\langle p(\partial) u, \psi\rangle \tag{19.3}
\end{align*}
$$

wherein the last equality we have γ is constant on $\operatorname{supp}(\psi)$. Since Eq. (19.3) is true for all $\psi \in C_{c}^{\infty}(U)$, an application of Corollary 11.28 with $h=\mathrm{w}-p(\partial) u-p(\partial) u$ and $\mu=m$ shows $\mathrm{w}-p(\partial) u=p(\partial) u$ a.e. on U.

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing $p(\partial) u$ for $\mathrm{w}-p(\partial) u$. So in the sequel we will always interpret $p(\partial) u$ in the weak or "distributional" sense.
Example 19.6. Suppose $u(x)=|x|$ for $x \in \mathbb{R}$, then $\partial u(x)=\operatorname{sgn}(x)$ in $L_{\text {loc }}^{1}(\mathbb{R})$ while $\partial^{2} u(x)=2 \delta(x)$ so $\partial^{2} u(x)$ does not exist weakly in $L_{l o c}^{1}(\mathbb{R})$.
Example 19.7. Suppose $d=2$ and $u(x, y)=1_{y>x}$. Then $u \in L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$, while $\partial_{x} 1_{y>x}=-\delta(y-x)$ and $\partial_{y} 1_{y>x}=\delta(y-x)$ and so that neither $\partial_{x} u$ or $\partial_{y} u$ exists weakly. On the other hand $\left(\partial_{x}+\partial_{y}\right) u=0$ weakly. To prove these assertions, notice $u \in C^{\infty}\left(\mathbb{R}^{2} \backslash \Delta\right)$ where $\Delta=\left\{(x, x): x \in \mathbb{R}^{2}\right\}$. So by Lemma 19.4, for any polynomial $p(\xi)$ without constant term, if $p(\partial) u$ exists weakly then $p(\partial) u=0$. However,

$$
\begin{aligned}
\left\langle u,-\partial_{x} \phi\right\rangle & =-\int_{y>x} \phi_{x}(x, y) d x d y=-\int_{\mathbb{R}} \phi(y, y) d y, \\
\left\langle u,-\partial_{y} \phi\right\rangle & =-\int_{y>x} \phi_{y}(x, y) d x d y=\int_{\mathbb{R}} \phi(x, x) d x \text { and } \\
\left\langle u,-\left(\partial_{x}+\partial_{y}\right) \phi\right\rangle & =0
\end{aligned}
$$

from which it follows that $\partial_{x} u$ and $\partial_{y} u$ can not be zero while $\left(\partial_{x}+\partial_{y}\right) u=0$.
On the other hand if $p(\xi)$ and $q(\xi)$ are two polynomials and $u \in L_{l o c}^{1}(\Omega)$ is a function such that $p(\partial) u$ exists weakly in $L_{l o c}^{1}(\Omega)$ and $q(\partial)[p(\partial) u]$ exists weakly in $L_{l o c}^{1}(\Omega)$ then $(q p)(\partial) u$ exists weakly in $L_{l o c}^{1 o}(\Omega)$. This is because

$$
\begin{aligned}
\langle u,(q p)(-\partial) \phi\rangle & =\langle u, p(-\partial) q(-\partial) \phi\rangle \\
& =\langle p(\partial) u, q(-\partial) \phi\rangle=\langle q(\partial) p(\partial) u, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega) .
\end{aligned}
$$

Example 19.8. Let $u(x, y)=1_{x>0}+1_{y>0}$ in $L_{\text {loc }}^{1}\left(\mathbb{R}^{2}\right)$. Then $\partial_{x} u(x, y)=\delta(x)$ and $\partial_{y} u(x, y)=\delta(y)$ so $\partial_{x} u(x, y)$ and $\partial_{y} u(x, y)$ do not exist weakly in $L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$. However $\partial_{y} \partial_{x} u$ does exists weakly and is the zero function. This shows $\partial_{y} \partial_{x} u$ may exists weakly despite the fact both $\partial_{x} u$ and $\partial_{y} u$ do not exists weakly in $L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$.

Lemma 19.9. Suppose $u \in L_{\text {loc }}^{1}(\Omega)$ and $p(\xi)$ is a polynomial of degree k such that $p(\partial) u$ exists weakly in $L_{l o c}^{1}(\Omega)$ then

$$
\begin{equation*}
\langle p(\partial) u, \phi\rangle=\langle u, p(-\partial) \phi\rangle \text { for all } \phi \in C_{c}^{k}(\Omega) \tag{19.4}
\end{equation*}
$$

Note: The point here is that Eq. (19.4) holds for all $\phi \in C_{c}^{k}(\Omega)$ not just $\phi \in$ $C_{c}^{\infty}(\Omega)$.

Proof. Let $\phi \in C_{c}^{k}(\Omega)$ and choose $\eta \in C_{c}^{\infty}(B(0,1))$ such that $\int_{\mathbb{R}^{d}} \eta(x) d x=1$ and let $\eta_{\epsilon}(x):=\epsilon^{-d} \eta(x / \epsilon)$. Then $\eta_{\epsilon} * \phi \in C_{c}^{\infty}(\Omega)$ for ϵ sufficiently small and $p(-\partial)\left[\eta_{\epsilon} * \phi\right]=\eta_{\epsilon} * p(-\partial) \phi \rightarrow p(-\partial) \phi$ and $\eta_{\epsilon} * \phi \rightarrow \phi$ uniformly on compact sets as $\epsilon \downarrow 0$. Therefore by the dominated convergence theorem,

$$
\langle p(\partial) u, \phi\rangle=\lim _{\epsilon \downarrow 0}\left\langle p(\partial) u, \eta_{\epsilon} * \phi\right\rangle=\lim _{\epsilon \downarrow 0}\left\langle u, p(-\partial)\left(\eta_{\epsilon} * \phi\right)\right\rangle=\langle u, p(-\partial) \phi\rangle .
$$

Lemma 19.10 (Product Rule). Let $u \in L_{l o c}^{1}(\Omega), v \in \mathbb{R}^{d}$ and $\phi \in C^{1}(\Omega)$. If $\partial_{v}^{(w)} u$ exists in $L_{l o c}^{1}(\Omega)$, then $\partial_{v}^{(w)}(\phi u)$ exists in $L_{l o c}^{1}(\Omega)$ and

$$
\partial_{v}^{(w)}(\phi u)=\partial_{v} \phi \cdot u+\phi \partial_{v}^{(w)} u \text { a.e. }
$$

Moreover if $\phi \in C_{c}^{1}(\Omega)$ and $F:=\phi u \in L^{1}$ (here we define F on \mathbb{R}^{d} by setting $F=0$ on $\left.\mathbb{R}^{d} \backslash \Omega\right)$, then $\partial^{(w)} F=\partial_{v} \phi \cdot u+\phi \partial_{v}^{(w)} u$ exists weakly in $L^{1}\left(\mathbb{R}^{d}\right)$.

Proof. Let $\psi \in C_{c}^{\infty}(\Omega)$, then using Lemma 19.9,

$$
\begin{aligned}
-\left\langle\phi u, \partial_{v} \psi\right\rangle & =-\left\langle u, \phi \partial_{v} \psi\right\rangle=-\left\langle u, \partial_{v}(\phi \psi)-\partial_{v} \phi \cdot \psi\right\rangle=\left\langle\partial_{v}^{(w)} u, \phi \psi\right\rangle+\left\langle\partial_{v} \phi \cdot u, \psi\right\rangle \\
& =\left\langle\phi \partial_{v}^{(w)} u, \psi\right\rangle+\left\langle\partial_{v} \phi \cdot u, \psi\right\rangle
\end{aligned}
$$

This proves the first assertion. To prove the second assertion let $\gamma \in C_{c}^{\infty}(\Omega)$ such that $0 \leq \gamma \leq 1$ and $\gamma=1$ on a neighborhood of $\operatorname{supp}(\phi)$. So for $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, using $\partial_{v} \gamma=0$ on $\operatorname{supp}(\phi)$ and $\gamma \psi \in C_{c}^{\infty}(\Omega)$, we find

$$
\begin{aligned}
\left\langle F, \partial_{v} \psi\right\rangle & =\left\langle\gamma F, \partial_{v} \psi\right\rangle=\left\langle F, \gamma \partial_{v} \psi\right\rangle=\left\langle(\phi u), \partial_{v}(\gamma \psi)-\partial_{v} \gamma \cdot \psi\right\rangle \\
& =\left\langle(\phi u), \partial_{v}(\gamma \psi)\right\rangle=-\left\langle\partial_{v}^{(w)}(\phi u),(\gamma \psi)\right\rangle \\
& =-\left\langle\partial_{v} \phi \cdot u+\phi \partial_{v}^{(w)} u, \gamma \psi\right\rangle=-\left\langle\partial_{v} \phi \cdot u+\phi \partial_{v}^{(w)} u, \psi\right\rangle .
\end{aligned}
$$

This show $\partial_{v}^{(w)} F=\partial_{v} \phi \cdot u+\phi \partial_{v}^{(w)} u$ as desired.
Lemma 19.11. Suppose $q \in[1, \infty)$, $p(\xi)$ is a polynomial in $\xi \in \mathbb{R}^{d}$ and $u \in L_{l o c}^{q}(\Omega)$. If there exists $\left\{u_{m}\right\}_{m=1}^{\infty} \subset L_{\text {loc }}^{q}(\Omega)$ such that $p(\partial) u_{m}$ exists in $L_{l o c}^{q}(\Omega)$ for all m and there exists $g \in L_{l o c}^{\bar{q}^{1}}(\Omega)$ such that for all $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\lim _{m \rightarrow \infty}\left\langle u_{m}, \phi\right\rangle=\langle u, \phi\rangle \text { and } \lim _{m \rightarrow \infty}\left\langle p(\partial) u_{m}, \phi\right\rangle=\langle g, \phi\rangle
$$

then $p(\partial) u$ exists in $L_{\text {loc }}^{q}(\Omega)$ and $p(\partial) u=g$.
Proof. Since

$$
\langle u, p(\partial) \phi\rangle=\lim _{m \rightarrow \infty}\left\langle u_{m}, p(\partial) \phi\right\rangle=-\lim _{m \rightarrow \infty}\left\langle p(\partial) u_{m}, \phi\right\rangle=\langle g, \phi\rangle
$$

for all $\phi \in C_{c}^{\infty}(\Omega), p(\partial) u$ exists and is equal to $g \in L_{l o c}^{q}(\Omega)$.
Conversely we have the following proposition.

Proposition 19.12 (Mollification). Suppose $q \in[1, \infty), p_{1}(\xi), \ldots, p_{N}(\xi)$ is a collection of polynomials in $\xi \in \mathbb{R}^{d}$ and $u \in L_{\text {loc }}^{q}(\Omega)$ such that $p_{l}(\partial) u$ exists weakly in $L_{l o c}^{q}(\Omega)$ for $l=1,2, \ldots, N$. Then there exists $u_{n} \in C_{c}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ in $L_{l o c}^{q}(\Omega)$ and $p_{l}(\partial) u_{n} \rightarrow p_{l}(\partial) u$ in $L_{l o c}^{q}(\Omega)$ for $l=1,2, \ldots, N$.

Proof. Let $\eta \in C_{c}^{\infty}(B(0,1))$ such that $\int_{\mathbb{R}^{d}} \eta d m=1$ and $\eta_{\epsilon}(x):=\epsilon^{-d} \eta(x / \epsilon)$ be as in the proof of Lemma 19.9. For any function $f \in L_{l o c}^{1}(\Omega), \epsilon>0$ and $x \in \Omega_{\epsilon}:=\left\{y \in \Omega: \operatorname{dist}\left(y, \Omega^{c}\right)>\epsilon\right\}$, let

$$
f_{\epsilon}(x):=f * \eta_{\epsilon}(x):=1_{\Omega} f * \eta_{\epsilon}(x)=\int_{\Omega} f(y) \eta_{\epsilon}(x-y) d y .
$$

Notice that $f_{\epsilon} \in C^{\infty}\left(\Omega_{\epsilon}\right)$ and $\Omega_{\epsilon} \uparrow \Omega$ as $\epsilon \downarrow 0$.
Given a compact set $K \subset \Omega$ let $K_{\epsilon}:=\{x \in \Omega: \operatorname{dist}(x, K) \leq \epsilon\}$. Then $K_{\epsilon} \downarrow K$ as $\epsilon \downarrow 0$, there exists $\epsilon_{0}>0$ such that $K_{0}:=K_{\epsilon_{0}}$ is a compact subset of $\Omega_{0}:=\Omega_{\epsilon_{0}} \subset \Omega$ (see Figure 38) and for $x \in K$,

$$
f * \eta_{\epsilon}(x):=\int_{\Omega} f(y) \eta_{\epsilon}(x-y) d y=\int_{K_{\epsilon}} f(y) \eta_{\epsilon}(x-y) d y
$$

Therefore, using Theorem 11.21,

Figure 38. The geomentry of $K \subset K_{0} \subset \Omega_{0} \subset \Omega$.
$\left\|f * \eta_{\epsilon}-f\right\|_{L^{p}(K)}=\left\|\left(1_{K_{0}} f\right) * \eta_{\epsilon}-1_{K_{0}} f\right\|_{L^{p}(K)} \leq\left\|\left(1_{K_{0}} f\right) * \eta_{\epsilon}-1_{K_{0}} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \rightarrow 0$ as $\epsilon \downarrow 0$.
Hence, for all $f \in L_{l o c}^{q}(\Omega), f * \eta_{\epsilon} \in C^{\infty}\left(\Omega_{\epsilon}\right)$ and

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}\left\|f * \eta_{\epsilon}-f\right\|_{L^{p}(K)}=0 . \tag{19.5}
\end{equation*}
$$

Now let $p(\xi)$ be a polynomial on $\mathbb{R}^{d}, u \in L_{l o c}^{q}(\Omega)$ such that $p(\partial) u \in L_{\text {loc }}^{q}(\Omega)$ and $v_{\epsilon}:=\eta_{\epsilon} * u \in C^{\infty}\left(\Omega_{\epsilon}\right)$ as above. Then for $x \in K$ and $\epsilon<\epsilon_{0}$,

$$
\begin{align*}
p(\partial) v_{\epsilon}(x) & =\int_{\Omega} u(y) p\left(\partial_{x}\right) \eta_{\epsilon}(x-y) d y=\int_{\Omega} u(y) p\left(-\partial_{y}\right) \eta_{\epsilon}(x-y) d y \\
& =\int_{\Omega} u(y) p\left(-\partial_{y}\right) \eta_{\epsilon}(x-y) d y=\left\langle u, p(\partial) \eta_{\epsilon}(x-\cdot)\right\rangle \\
& =\left\langle p(\partial) u, \eta_{\epsilon}(x-\cdot)\right\rangle=(p(\partial) u)_{\epsilon}(x) . \tag{19.6}
\end{align*}
$$

From Eq. (19.6) we may now apply Eq. (19.5) with $f=u$ and $f=p_{l}(\partial) u$ for $1 \leq l \leq N$ to find

$$
\left\|v_{\epsilon}-u\right\|_{L^{p}(K)}+\sum_{l=1}^{N}\left\|p_{l}(\partial) v_{\epsilon}-p_{l}(\partial) u\right\|_{L^{p}(K)} \rightarrow 0 \text { as } \epsilon \downarrow 0 .
$$

For $n \in \mathbb{N}$, let

$$
K_{n}:=\left\{x \in \Omega:|x| \leq n \text { and } d\left(x, \Omega^{c}\right) \geq 1 / n\right\}
$$

(so $K_{n} \subset K_{n+1}^{o} \subset K_{n+1}$ for all n and $K_{n} \uparrow \Omega$ as $n \rightarrow \infty$ or see Lemma 10.10) and choose $\psi_{n} \in C_{c}^{\infty}\left(K_{n+1}^{o},[0,1]\right)$, using Corollary 11.25 , so that $\psi_{n}=1$ on a neighborhood of K_{n}. Choose $\epsilon_{n} \downarrow 0$ such that $K_{n+1} \subset \Omega_{\epsilon_{n}}$ and

$$
\left\|v_{\epsilon_{n}}-u\right\|_{L^{p}\left(K_{n}\right)}+\sum_{l=1}^{N}\left\|p_{l}(\partial) v_{\epsilon_{n}}-p_{l}(\partial) u\right\|_{L^{p}\left(K_{n}\right)} \leq 1 / n
$$

Then $u_{n}:=\psi_{n} \cdot v_{\epsilon_{n}} \in C_{c}^{\infty}(\Omega)$ and since $u_{n}=v_{\epsilon_{n}}$ on K_{n} we still have

$$
\begin{equation*}
\left\|u_{n}-u\right\|_{L^{p}\left(K_{n}\right)}+\sum_{l=1}^{N}\left\|p_{l}(\partial) u_{n}-p_{l}(\partial) u\right\|_{L^{p}\left(K_{n}\right)} \leq 1 / n \tag{19.7}
\end{equation*}
$$

Since any compact set $K \subset \Omega$ is contained in K_{n}^{o} for all n sufficiently large, Eq. (19.7) implies

$$
\lim _{n \rightarrow \infty}\left[\left\|u_{n}-u\right\|_{L^{p}(K)}+\sum_{l=1}^{N}\left\|p_{l}(\partial) u_{n}-p_{l}(\partial) u\right\|_{L^{p}(K)}\right]=0
$$

The following proposition is another variant of Proposition 19.12 which the reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose $q \in[1, \infty), p_{1}(\xi), \ldots, p_{N}(\xi)$ is a collection of polynomials in $\xi \in \mathbb{R}^{d}$ and $u \in L^{q}=L^{q}\left(\mathbb{R}^{d}\right)$ such that $p_{l}(\partial) u \in L^{q}$ for $l=1,2, \ldots, N$. Then there exists $u_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left[\left\|u_{n}-u\right\|_{L^{p}}+\sum_{l=1}^{N}\left\|p_{l}(\partial) u_{n}-p_{l}(\partial) u\right\|_{L^{p}}\right]=0
$$

Notation 19.14 (Difference quotients). For $v \in \mathbb{R}^{d}$ and $h \in \mathbb{R} \backslash\{0\}$ and a function $u: \Omega \rightarrow \mathbb{C}$, let

$$
\partial_{v}^{h} u(x):=\frac{u(x+h v)-u(x)}{h}
$$

for those $x \in \Omega$ such that $x+h v \in \Omega$. When v is one of the standard basis elements, e_{i} for $1 \leq i \leq d$, we will write $\partial_{i}^{h} u(x)$ rather than $\partial_{e_{i}}^{h} u(x)$. Also let

$$
\nabla^{h} u(x):=\left(\partial_{1}^{h} u(x), \ldots, \partial_{n}^{h} u(x)\right)
$$

be the difference quotient approximation to the gradient.
Definition 19.15 (Strong Differentiability). Let $v \in \mathbb{R}^{d}$ and $u \in L^{p}$, then $\partial_{v} u$ is said to exist strongly in L^{p} if the $\lim _{h \rightarrow 0} \partial_{v}^{h} u$ exists in L^{p}. We will denote the limit by $\partial_{v}^{(s)} u$.

It is easily verified that if $u \in L^{p}, v \in \mathbb{R}^{d}$ and $\partial_{v}^{(s)} u \in L^{p}$ exists then $\partial_{v}^{(w)} u$ exists and $\partial_{v}^{(w)} u=\partial_{v}^{(s)} u$. The key to checking this assetion is the identity,

$$
\begin{align*}
\left\langle\partial_{v}^{h} u, \phi\right\rangle & =\int_{\mathbb{R}^{d}} \frac{u(x+h v)-u(x)}{h} \phi(x) d x \\
& =\int_{\mathbb{R}^{d}} u(x) \frac{\phi(x-h v)-\phi(x)}{h} d x=\left\langle u, \partial_{-v}^{h} \phi\right\rangle \tag{19.8}
\end{align*}
$$

Hence if $\partial_{v}^{(s)} u=\lim _{h \rightarrow 0} \partial_{v}^{h} u$ exists in L^{p} and $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then

$$
\left\langle\partial_{v}^{(s)} u, \phi\right\rangle=\lim _{h \rightarrow 0}\left\langle\partial_{v}^{h} u, \phi\right\rangle=\lim _{h \rightarrow 0}\left\langle u, \partial_{-v}^{h} \phi\right\rangle=\left.\frac{d}{d h}\right|_{0}\langle u, \phi(\cdot-h v)\rangle=-\left\langle u, \partial_{v} \phi\right\rangle
$$

wherein Corollary 7.43 has been used in the last equality to bring the derivative past the integral. This shows $\partial_{v}^{(w)} u$ exists and is equal to $\partial_{v}^{(s)} u$. What is somewhat more surprising is that the converse assertion that if $\partial_{v}^{(w)} u$ exists then so does $\partial_{v}^{(s)} u$. Theorem 19.18 is a generalization of Theorem 12.36 from L^{2} to L^{p}. For the reader's convenience, let us give a self-contained proof of the version of the Banach - Alaoglu's Theorem which will be used in the proof of Theorem 19.18. (This is the same as Theorem 18.27 above.)

Proposition 19.16 (Weak-* Compactness: Banach - Alaoglu's Theorem). Let X be a separable Banach space and $\left\{f_{n}\right\} \subset X^{*}$ be a bounded sequence, then there exist a subsequence $\left\{\tilde{f}_{n}\right\} \subset\left\{f_{n}\right\}$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in X$ with $f \in X^{*}$.

Proof. Let $D \subset X$ be a countable linearly independent subset of X such that $\overline{\operatorname{span}(D)}=X$. Using Cantor's diagonal trick, choose $\left\{\tilde{f}_{n}\right\} \subseteq\left\{f_{n}\right\}$ such that $\lambda_{x}:=\lim _{n \rightarrow \infty} \tilde{f}_{n}(x)$ exist for all $x \in D$. Define $f: \operatorname{span}(D) \rightarrow \mathbb{R}$ by the formula

$$
f\left(\sum_{x \in D} a_{x} x\right)=\sum_{x \in D} a_{x} \lambda_{x}
$$

where by assumption $\#\left(\left\{x \in D: a_{x} \neq 0\right\}\right)<\infty$. Then $f: \operatorname{span}(D) \rightarrow \mathbb{R}$ is linear and moreover $\tilde{f}_{n}(y) \rightarrow f(y)$ for all $y \in \operatorname{span}(D)$. Now

$$
|f(y)|=\lim _{n \rightarrow \infty}\left|\tilde{f}_{n}(y)\right| \leq \limsup _{n \rightarrow \infty}\left\|\tilde{f}_{n}\right\|\|y\| \leq C\|y\| \text { for all } y \in \operatorname{span}(D)
$$

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional on X. We still denote the extension of f by $f \in X^{*}$. Finally, if $x \in X$ and $y \in$ $\operatorname{span}(D)$

$$
\begin{aligned}
\left|f(x)-\tilde{f}_{n}(x)\right| & \leq|f(x)-f(y)|+\left|f(y)-\tilde{f}_{n}(y)\right|+\left|\tilde{f}_{n}(y)-\tilde{f}_{n}(x)\right| \\
& \leq\|f\|\|x-y\|+\left\|\tilde{f}_{n}\right\|\|x-y\|+\mid f(y)-\tilde{f}_{n}(y) \| \\
& \leq 2 C\|x-y\|+\left|f(y)-\tilde{f}_{n}(y)\right| \rightarrow 2 C\|x-y\| \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore $\limsup _{n \rightarrow \infty}\left|f(x)-\tilde{f}_{n}(x)\right| \leq 2 C\|x-y\| \rightarrow 0$ as $y \rightarrow x$.
Corollary 19.17. Let $p \in(1, \infty]$ and $q=\frac{p}{p-1}$. Then to every bounded sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset L^{p}(\Omega)$ there is a subsequence $\left\{\tilde{u}_{n}\right\}_{n=1}^{\infty}$ and an element $u \in L^{p}(\Omega)$ such that

$$
\lim _{n \rightarrow \infty}\left\langle\tilde{u}_{n}, g\right\rangle=\langle u, g\rangle \text { for all } g \in L^{q}(\Omega)
$$

Proof. By Theorem 15.14, the map

$$
v \in L^{p}(\Omega) \rightarrow\langle v, \cdot\rangle \in\left(L^{q}(\Omega)\right)^{*}
$$

is an isometric isomorphism of Banach spaces. By Theorem $11.3, L^{q}(\Omega)$ is separable for all $q \in[1, \infty)$ and hence the result now follows from Proposition 19.16.
Theorem 19.18 (Weak and Strong Differentiability). Suppose $p \in[1, \infty), u \in$ $L^{p}\left(\mathbb{R}^{d}\right)$ and $v \in \mathbb{R}^{d} \backslash\{0\}$. Then the following are equivalent:
(1) There exists $g \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} h_{n}=0$ and

$$
\lim _{n \rightarrow \infty}\left\langle\partial_{v}^{h_{n}} u, \phi\right\rangle=\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

(2) $\partial_{v}^{(w)} u$ exists and is equal to $g \in L^{p}\left(\mathbb{R}^{d}\right)$, i.e. $\left\langle u, \partial_{v} \phi\right\rangle=-\langle g, \phi\rangle$ for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
(3) There exists $g \in L^{p}\left(\mathbb{R}^{d}\right)$ and $u_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $u_{n} \xrightarrow{L^{p}} u$ and $\partial_{v} u_{n} \xrightarrow{L^{p}} g$ as $n \rightarrow \infty$.
(4) $\partial_{v}^{(s)} u$ exists and is is equal to $g \in L^{p}\left(\mathbb{R}^{d}\right)$, i.e. $\partial_{v}^{h} u \rightarrow g$ in L^{p} as $h \rightarrow 0$.

Moreover if $p \in(1, \infty)$ any one of the equivalent conditions 1. - 4. above are implied by the following condition.
1^{\prime}. There exists $\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} h_{n}=0$ and $\sup _{n}\left\|\partial_{v}^{h_{n}} u\right\|_{p}<$ ∞.

Proof. 4. $\Longrightarrow 1$. is simply the assertion that strong convergence implies weak convergence.

1. $\Longrightarrow 2$. For $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, Eq. (19.8) and the dominated convergence theorem implies

$$
\langle g, \phi\rangle=\lim _{n \rightarrow \infty}\left\langle\partial_{v}^{h_{n}} u, \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle u, \partial_{-v}^{h_{n}} \phi\right\rangle=-\left\langle u, \partial_{v} \phi\right\rangle
$$

$2 . \Longrightarrow 3$. Let $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ such that $\int_{\mathbb{R}^{d}} \eta(x) d x=1$ and let $\eta_{m}(x)=$ $m^{d} \eta(m x)$, then by Proposition 11.24, $h_{m}:=\eta_{m} * u \in C^{\infty}\left(\mathbb{R}^{d}\right)$ for all m and

$$
\begin{aligned}
\partial_{v} h_{m}(x) & =\partial_{v} \eta_{m} * u(x)=\int_{\mathbb{R}^{d}} \partial_{v} \eta_{m}(x-y) u(y) d y=\left\langle u,-\partial_{v}\left[\eta_{m}(x-\cdot)\right]\right\rangle \\
& =\left\langle g, \eta_{m}(x-\cdot)\right\rangle=\eta_{m} * g(x)
\end{aligned}
$$

By Theorem 11.21, $h_{m} \rightarrow u \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\partial_{v} h_{m}=\eta_{m} * g \rightarrow g$ in $L^{p}\left(\mathbb{R}^{d}\right)$ as $m \rightarrow \infty$. This shows 3. holds except for the fact that h_{m} need not have compact support. To fix this let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d},[0,1]\right)$ such that $\psi=1$ in a neighborhood of 0 and let $\psi_{\epsilon}(x)=\psi(\epsilon x)$ and $\left(\partial_{v} \psi\right)_{\epsilon}(x):=\left(\partial_{v} \psi\right)(\epsilon x)$. Then

$$
\partial_{v}\left(\psi_{\epsilon} h_{m}\right)=\partial_{v} \psi_{\epsilon} h_{m}+\psi_{\epsilon} \partial_{v} h_{m}=\epsilon\left(\partial_{v} \psi\right)_{\epsilon} h_{m}+\psi_{\epsilon} \partial_{v} h_{m}
$$

so that $\psi_{\epsilon} h_{m} \rightarrow h_{m}$ in L^{p} and $\partial_{v}\left(\psi_{\epsilon} h_{m}\right) \rightarrow \partial_{v} h_{m}$ in L^{p} as $\epsilon \downarrow 0$. Let $u_{m}=\psi_{\epsilon_{m}} h_{m}$ where ϵ_{m} is chosen to be greater than zero but small enough so that

$$
\left\|\psi_{\epsilon_{m}} h_{m}-h_{m}\right\|_{p}+\left\|\partial_{v}\left(\psi_{\epsilon_{m}} h_{m}\right) \rightarrow \partial_{v} h_{m}\right\|_{p}<1 / m
$$

Then $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), u_{m} \rightarrow u$ and $\partial_{v} u_{m} \rightarrow g$ in L^{p} as $m \rightarrow \infty$.
3 . $\Longrightarrow 4$. By the fundamental theorem of calculus

$$
\begin{align*}
\partial_{v}^{h} u_{m}(x) & =\frac{u_{m}(x+h v)-u_{m}(x)}{h} \\
& =\frac{1}{h} \int_{0}^{1} \frac{d}{d s} u_{m}(x+s h v) d s=\int_{0}^{1}\left(\partial_{v} u_{m}\right)(x+s h v) d s \tag{19.9}
\end{align*}
$$

and therefore,

$$
\partial_{v}^{h} u_{m}(x)-\partial_{v} u_{m}(x)=\int_{0}^{1}\left[\left(\partial_{v} u_{m}\right)(x+s h v)-\partial_{v} u_{m}(x)\right] d s
$$

So by Minkowski's inequality for integrals, Theorem 9.27,

$$
\left\|\partial_{v}^{h} u_{m}(x)-\partial_{v} u_{m}\right\|_{p} \leq \int_{0}^{1}\left\|\left(\partial_{v} u_{m}\right)(\cdot+s h v)-\partial_{v} u_{m}\right\|_{p} d s
$$

and letting $m \rightarrow \infty$ in this equation then implies

$$
\left\|\partial_{v}^{h} u-g\right\|_{p} \leq \int_{0}^{1}\|g(\cdot+s h v)-g\|_{p} d s
$$

By the dominated convergence theorem and Proposition 11.13, the right member of this equation tends to zero as $h \rightarrow 0$ and this shows item 4 . holds.
$\left(1^{\prime} . \Longrightarrow 1\right.$. when $p>1$) This is a consequence of Corollary 19.17 (or see Theorem 18.27 above) which asserts, by passing to a subsequence if necessary, that $\partial_{v}^{h_{n}} u \xrightarrow{w} g$ for some $g \in L^{p}\left(\mathbb{R}^{d}\right)$.

Example 19.19. The fact that (1^{\prime}) does not imply the equivalent conditions 1 4 in Theorem 19.18 when $p=1$ is demonstrated by the following example. Let $u:=1_{[0,1]}$, then

$$
\int_{\mathbb{R}}\left|\frac{u(x+h)-u(x)}{h}\right| d x=\frac{1}{|h|} \int_{\mathbb{R}}\left|1_{[-h, 1-h]}(x)-1_{[0,1]}(x)\right| d x=2
$$

for $|h|<1$. On the other hand the distributional derivative of u is $\partial u(x)=\delta(x)-$ $\delta(x-1)$ which is not in L^{1}.

Alternatively, if there exists $g \in L^{1}(\mathbb{R}, d m)$ such that

$$
\lim _{n \rightarrow \infty} \frac{u\left(x+h_{n}\right)-u(x)}{h_{n}}=g(x) \text { in } L^{1}
$$

for some sequence $\left\{h_{n}\right\}_{n=1}^{\infty}$ as above. Then for $\phi \in C_{c}^{\infty}(\mathbb{R})$ we would have on one hand,

$$
\begin{aligned}
\int_{\mathbb{R}} \frac{u\left(x+h_{n}\right)-u(x)}{h_{n}} \phi(x) d x & =\int_{\mathbb{R}} \frac{\phi\left(x-h_{n}\right)-\phi(x)}{h_{n}} u(x) d x \\
& \rightarrow-\int_{0}^{1} \phi^{\prime}(x) d x=(\phi(0)-\phi(1)) \text { as } n \rightarrow \infty
\end{aligned}
$$

while on the other hand,

$$
\int_{\mathbb{R}} \frac{u\left(x+h_{n}\right)-u(x)}{h_{n}} \phi(x) d x \rightarrow \int_{\mathbb{R}} g(x) \phi(x) d x .
$$

These two equations imply

$$
\begin{equation*}
\int_{\mathbb{R}} g(x) \phi(x) d x=\phi(0)-\phi(1) \text { for all } \phi \in C_{c}^{\infty}(\mathbb{R}) \tag{19.10}
\end{equation*}
$$

and in particular that $\int_{\mathbb{R}} g(x) \phi(x) d x=0$ for all $\phi \in C_{c}(\mathbb{R} \backslash\{0,1\})$. By Corollary 11.28, $g(x)=0$ for m - a.e. $x \in \mathbb{R} \backslash\{0,1\}$ and hence $g(x)=0$ for m - a.e. $x \in \mathbb{R}$. But this clearly contradicts Eq. (19.10). This example also shows that the unit ball in $L^{1}(\mathbb{R}, d m)$ is not weakly sequentially compact. Compare with Example 18.24.

Proposition 19.20 (A weak form of Weyls Lemma). If $u \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $f:=\triangle u \in L^{2}\left(\mathbb{R}^{d}\right)$ then $\partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{d}\right)$ for $|\alpha| \leq 2$. Furthermore if $k \in \mathbb{N}_{0}$ and $\partial^{\beta} f \in L^{2}\left(\mathbb{R}^{d}\right)$ for all $|\beta| \leq k$, then $\partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{d}\right)$ for $|\alpha| \leq k+2$.

Proof. By Proposition 19.13, there exists $u_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $u_{n} \rightarrow u$ and $\Delta u_{n} \rightarrow \Delta u=f$ in $L^{2}\left(\mathbb{R}^{d}\right)$. By integration by parts we find

$$
\int_{\mathbb{R}^{d}}\left|\nabla\left(u_{n}-u_{m}\right)\right|^{2} d m=\left(-\Delta\left(u_{n}-u_{m}\right),\left(u_{n}-u_{m}\right)\right)_{L^{2}} \rightarrow-(f-f, u-u)=0 \text { as } m, n \rightarrow \infty
$$

and hence by item 3 . of Theorem 19.18, $\partial_{i} u \in L^{2}$ for each i. Since

$$
\|\nabla u\|_{L^{2}}^{2}=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}}\left|\nabla u_{n}\right|^{2} d m=\left(-\Delta u_{n}, u_{n}\right)_{L^{2}} \rightarrow-(f, u) \text { as } n \rightarrow \infty
$$

we also learn that

$$
\|\nabla u\|_{L^{2}}^{2}=-(f, u) \leq\|f\|_{L^{2}} \cdot\|u\|_{L^{2}}
$$

Let us now consider

$$
\begin{aligned}
\sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}}\left|\partial_{i} \partial_{j} u_{n}\right|^{2} d m & =-\sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}} \partial_{j} u_{n} \partial_{i}^{2} \partial_{j} u_{n} d m \\
& =-\sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \partial_{j} u_{n} \partial_{j} \Delta u_{n} d m=\sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \partial_{j}^{2} u_{n} \Delta u_{n} d m \\
& =\int_{\mathbb{R}^{d}}\left|\Delta u_{n}\right|^{2} d m=\left\|\Delta u_{n}\right\|_{L^{2}}^{2}
\end{aligned}
$$

Replacing u_{n} by $u_{n}-u_{m}$ in this calculation shows

$$
\sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}}\left|\partial_{i} \partial_{j}\left(u_{n}-u_{m}\right)\right|^{2} d m=\left\|\Delta\left(u_{n}-u_{m}\right)\right\|_{L^{2}}^{2} \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

and therefore by Lemma 19.4 (also see Exercise 19.3), $\partial_{i} \partial_{j} u \in L^{2}\left(\mathbb{R}^{d}\right)$ for all i, j and

$$
\sum_{i, j=1}^{d} \int_{\mathbb{R}^{d}}\left|\partial_{i} \partial_{j} u\right|^{2} d m=\|\Delta u\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2}
$$

Let us now further assume $\partial_{i} f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then for $h \in \mathbb{R} \backslash\{0\}, \partial_{i}^{h} u \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\Delta \partial_{i}^{h} u=\partial_{i}^{h} \Delta u=\partial_{i}^{h} f \in L^{2}\left(\mathbb{R}^{d}\right)$ and hence by what we have just proved, $\partial^{\alpha} \partial_{i}^{h} u=\partial_{i}^{h} \partial^{\alpha} u \in L^{2}$ and

$$
\begin{aligned}
\sum_{|\alpha| \leq 2}\left\|\partial_{i}^{h} \partial^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} & \leq C\left[\left\|\partial_{i}^{h} f\right\|_{L^{2}}^{2}+\left\|\partial_{i}^{h} f\right\|_{L^{2}} \cdot\left\|\partial_{i}^{h} u\right\|_{L^{2}}\right] \\
& \leq C\left[\left\|\partial_{i} f\right\|_{L^{2}}^{2}+\left\|\partial_{i} f\right\|_{L^{2}} \cdot\left\|\partial_{i} u\right\|_{L^{2}}\right]
\end{aligned}
$$

with the last bound being independent of $h \neq 0$. Therefore applying Theorem 19.18 again we learn that $\partial_{i} \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{d}\right)$ for all $|\alpha| \leq 2$. The remainder of the proof, which is now an induction argument using the above ideas, is left as an exercise to the reader.

Theorem 19.21. Suppose that Ω is a precompact open subset of \mathbb{R}^{d} and V is an open precompact subset of Ω.
(1) If $1 \leq p<\infty, u \in L^{p}(\Omega)$ and $\partial_{i} u \in L^{p}(\Omega)$, then $\left\|\partial_{i}^{h} u\right\|_{L^{p}(V)} \leq\left\|\partial_{i} u\right\|_{L^{p}(\Omega)}$ for all $0<|h|<\frac{1}{2} \operatorname{dist}\left(V, \Omega^{c}\right)$.
(2) Suppose that $1<p \leq \infty, u \in L^{p}(\Omega)$ and assume there exists a constants $C_{V}<\infty$ and $\epsilon_{V} \in\left(0, \frac{1}{2} \operatorname{dist}\left(V, \Omega^{c}\right)\right)$ such that

$$
\left\|\partial_{i}^{h} u\right\|_{L^{p}(V)} \leq C_{V} \text { for all } 0<|h|<\epsilon_{V}
$$

Then $\partial_{i} u \in L^{p}(V)$ and $\left\|\partial_{i} u\right\|_{L^{p}(V)} \leq C_{V}$. Moreover if $C:=\sup _{V \subset \subset \Omega} C_{V}<$ ∞ then in fact $\partial_{i} u \in L^{p}(\Omega)$ and $\left\|\partial_{i} u\right\|_{L^{p}(\Omega)} \leq C$.
Proof. 1. Let $U \subset_{o} \Omega$ such that $\bar{V} \subset U$ and \bar{U} is a compact subset of Ω. For $u \in C^{1}(\Omega) \cap L^{p}(\Omega), x \in B$ and $0<|h|<\frac{1}{2} \operatorname{dist}\left(V, U^{c}\right)$,

$$
\partial_{i}^{h} u(x)=\frac{u\left(x+h e_{i}\right)-u(x)}{h}=\int_{0}^{1} \partial_{i} u\left(x+t h e_{i}\right) d t
$$

and in particular,

$$
\left|\partial_{i}^{h} u(x)\right| \leq \int_{0}^{1}\left|\partial u\left(x+t h e_{i}\right)\right| d t
$$

Therefore by Minikowski's inequality for integrals,

$$
\begin{equation*}
\left\|\partial_{i}^{h} u\right\|_{L^{p}(V)} \leq \int_{0}^{1}\left\|\partial u\left(\cdot+t h e_{i}\right)\right\|_{L^{p}(V)} d t \leq\left\|\partial_{i} u\right\|_{L^{p}(U)} \tag{19.11}
\end{equation*}
$$

For general $u \in L^{p}(\Omega)$ with $\partial_{i} u \in L^{p}(\Omega)$, by Proposition 19.12, there exists $u_{n} \in C_{c}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ and $\partial_{i} u_{n} \rightarrow \partial_{i} u$ in $L_{l o c}^{p}(\Omega)$. Therefore we may replace u by u_{n} in Eq. (19.11) and then pass to the limit to find

$$
\left\|\partial_{i}^{h} u\right\|_{L^{p}(V)} \leq\left\|\partial_{i} u\right\|_{L^{p}(U)} \leq\left\|\partial_{i} u\right\|_{L^{p}(\Omega)}
$$

2. If $\left\|\partial_{i}^{h} u\right\|_{L^{p}(V)} \leq C_{V}$ for all h sufficiently small then by Corollary 19.17 there exists $h_{n} \rightarrow 0$ such that $\partial_{i}^{h_{n}} u \xrightarrow{w} v \in L^{p}(V)$. Hence if $\varphi \in C_{c}^{\infty}(V)$,

$$
\begin{aligned}
\int_{V} v \varphi d m & =\lim _{n \rightarrow \infty} \int_{\Omega} \partial_{i}^{h_{n}} u \varphi d m=\lim _{n \rightarrow \infty} \int_{\Omega} u \partial_{i}^{-h_{n}} \varphi d m \\
& =-\int_{\Omega} u \partial_{i} \varphi d m=-\int_{V} u \partial_{i} \varphi d m
\end{aligned}
$$

Therefore $\partial_{i} u=v \in L^{p}(V)$ and $\left\|\partial_{i} u\right\|_{L^{p}(V)} \leq\|v\|_{L^{p}(V)} \leq C_{V}$. Finally if $C:=$ $\sup _{V \subset \subset \Omega} C_{V}<\infty$, then by the dominated convergence theorem,

$$
\left\|\partial_{i} u\right\|_{L^{p}(\Omega)}=\lim _{V \uparrow \Omega}\left\|\partial_{i} u\right\|_{L^{p}(V)} \leq C
$$

We will now give a couple of applications of Theorem 19.18.
Lemma 19.22. Let $v \in \mathbb{R}^{d}$.
(1) If $h \in L^{1}$ and $\partial_{v} h$ exists in L^{1}, then $\int_{\mathbb{R}^{d}} \partial_{v} h(x) d x=0$.
(2) If $p, q, r \in[1, \infty)$ satisfy $r^{-1}=p^{-1}+q^{-1}, f \in L^{p}$ and $g \in L^{q}$ are functions such that $\partial_{v} f$ and $\partial_{v} g$ exists in L^{p} and L^{q} respectively, then $\partial_{v}(f g)$ exists in L^{r} and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Moreover if $r=1$ we have the integration by parts formula,

$$
\begin{equation*}
\left\langle\partial_{v} f, g\right\rangle=-\left\langle f, \partial_{v} g\right\rangle \tag{19.12}
\end{equation*}
$$

(3) If $p=1, \partial_{v} f$ exists in L^{1} and $g \in B C^{1}\left(\mathbb{R}^{d}\right)$ (i.e. $g \in C^{1}\left(\mathbb{R}^{d}\right)$ with g and its first derivatives being bounded) then $\partial_{v}(g f)$ exists in L^{1} and $\partial_{v}(f g)=$ $\partial_{v} f \cdot g+f \cdot \partial_{v} g$ and again Eq. (19.12) holds.
Proof. 1) By item 3. of Theorem 19.18 there exists $h_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $h_{n} \rightarrow h$ and $\partial_{v} h_{n} \rightarrow \partial_{v} h$ in L^{1}. Then

$$
\int_{\mathbb{R}^{d}} \partial_{v} h_{n}(x) d x=\left.\frac{d}{d t}\right|_{0} \int_{\mathbb{R}^{d}} h_{n}(x+h v) d x=\left.\frac{d}{d t}\right|_{0} \int_{\mathbb{R}^{d}} h_{n}(x) d x=0
$$

and letting $n \rightarrow \infty$ proves the first assertion.
2) Similarly there exists $f_{n}, g_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $f_{n} \rightarrow f$ and $\partial_{v} f_{n} \rightarrow \partial_{v} f$ in L^{p} and $g_{n} \rightarrow g$ and $\partial_{v} g_{n} \rightarrow \partial_{v} g$ in L^{q} as $n \rightarrow \infty$. So by the standard product rule and Remark 19.2, $f_{n} g_{n} \rightarrow f g \in L^{r}$ as $n \rightarrow \infty$ and

$$
\partial_{v}\left(f_{n} g_{n}\right)=\partial_{v} f_{n} \cdot g_{n}+f_{n} \cdot \partial_{v} g_{n} \rightarrow \partial_{v} f \cdot g+f \cdot \partial_{v} g \text { in } L^{r} \text { as } n \rightarrow \infty
$$

It now follows from another application of Theorem 19.18 that $\partial_{v}(f g)$ exists in L^{r} and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Eq. (19.12) follows from this product rule and item 1. when $r=1$.
3) Let $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $f_{n} \rightarrow f$ and $\partial_{v} f_{n} \rightarrow \partial_{v} f$ in L^{1} as $n \rightarrow \infty$. Then as above, $g f_{n} \rightarrow g f$ in L^{1} and $\partial_{v}\left(g f_{n}\right) \rightarrow \partial_{v} g \cdot f+g \partial_{v} f$ in L^{1} as $n \rightarrow \infty$. In particular if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\left\langle g f, \partial_{v} \phi\right\rangle & =\lim _{n \rightarrow \infty}\left\langle g f_{n}, \partial_{v} \phi\right\rangle=-\lim _{n \rightarrow \infty}\left\langle\partial_{v}\left(g f_{n}\right), \phi\right\rangle \\
& =-\lim _{n \rightarrow \infty}\left\langle\partial_{v} g \cdot f_{n}+g \partial_{v} f_{n}, \phi\right\rangle=-\left\langle\partial_{v} g \cdot f+g \partial_{v} f, \phi\right\rangle .
\end{aligned}
$$

This shows $\partial_{v}(f g)$ exists (weakly) and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Again Eq. (19.12) holds in this case by item 1. already proved.

Lemma 19.23. Let $p, q, r \in[1, \infty]$ satisfy $p^{-1}+q^{-1}=1+r^{-1}, f \in L^{p}, g \in L^{q}$ and $v \in \mathbb{R}^{d}$.
(1) If $\partial_{v} f$ exists strongly in L^{r}, then $\partial_{v}(f * g)$ exists strongly in L^{p} and

$$
\partial_{v}(f * g)=\left(\partial_{v} f\right) * g .
$$

(2) If $\partial_{v} g$ exists strongly in L^{q}, then $\partial_{v}(f * g)$ exists strongly in L^{r} and

$$
\partial_{v}(f * g)=f * \partial_{v} g
$$

(3) If $\partial_{v} f$ exists weakly in L^{p} and $g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then $f * g \in C^{\infty}\left(\mathbb{R}^{d}\right), \partial_{v}(f * g)$ exists strongly in L^{r} and

$$
\partial_{v}(f * g)=f * \partial_{v} g=\left(\partial_{v} f\right) * g
$$

Proof. Items 1 and 2. By Young's inequality (Theorem 11.19) and simple computations:

$$
\begin{aligned}
\left\|\frac{\tau_{-h v}(f * g)-f * g}{h}-\left(\partial_{v} f\right) * g\right\|_{r} & =\left\|\frac{\tau_{-h v} f * g-f * g}{h}-\left(\partial_{v} f\right) * g\right\|_{r} \\
& =\left\|\left[\frac{\tau_{-h v} f-f}{h}-\left(\partial_{v} f\right)\right] * g\right\|_{r} \\
& \leq\left\|\frac{\tau_{-h v} f-f}{h}-\left(\partial_{v} f\right)\right\|_{p}\|g\|_{q}
\end{aligned}
$$

which tends to zero as $h \rightarrow 0$. The second item is proved analogously, or just make use of the fact that $f * g=g * f$ and apply Item 1 .

Using the fact that $g(x-\cdot) \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and the definition of the weak derivative,

$$
\begin{aligned}
f * \partial_{v} g(x) & =\int_{\mathbb{R}^{d}} f(y)\left(\partial_{v} g\right)(x-y) d y=-\int_{\mathbb{R}^{d}} f(y)\left(\partial_{v} g(x-\cdot)\right)(y) d y \\
& =\int_{\mathbb{R}^{d}} \partial_{v} f(y) g(x-y) d y=\partial_{v} f * g(x) .
\end{aligned}
$$

Item 3. is a consequence of this equality and items 1 . and 2.

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.24. Let $\Omega=(\alpha, \beta) \subset \mathbb{R}$ be an open interval and $f \in L_{l o c}^{1}(\Omega)$ such that $\partial^{(w)} f=0$ in $L_{\text {loc }}^{1}(\Omega)$. Then there exists $c \in \mathbb{C}$ such that $f=c$ a.e. More generally, suppose $F: C_{c}^{\infty}(\Omega) \rightarrow \mathbb{C}$ is a linear functional such that $F\left(\phi^{\prime}\right)=0$ for all $\phi \in C_{c}^{\infty}(\Omega)$, where $\phi^{\prime}(x)=\frac{d}{d x} \phi(x)$, then there exists $c \in \mathbb{C}$ such that

$$
\begin{equation*}
F(\phi)=\langle c, \phi\rangle=\int_{\Omega} c \phi(x) d x \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{19.13}
\end{equation*}
$$

Proof. Before giving a proof of the second assertion, let us show it includes the first. Indeed, if $F(\phi):=\int_{\Omega} \phi f d m$ and $\partial^{(w)} f=0$, then $F\left(\phi^{\prime}\right)=0$ for all $\phi \in C_{c}^{\infty}(\Omega)$ and therefore there exists $c \in \mathbb{C}$ such that

$$
\int_{\Omega} \phi f d m=F(\phi)=c\langle\phi, 1\rangle=c \int_{\Omega} \phi f d m .
$$

But this implies $f=c$ a.e. So it only remains to prove the second assertion.
Let $\eta \in C_{c}^{\infty}(\Omega)$ such that $\int_{\Omega} \eta d m=1$. Given $\phi \in C_{c}^{\infty}(\Omega) \subset C_{c}^{\infty}(\mathbb{R})$, let $\psi(x)=\int_{-\infty}^{x}(\phi(y)-\eta(y)\langle\phi, 1\rangle) d y$. Then $\psi^{\prime}(x)=\phi(x)-\eta(x)\langle\phi, 1\rangle$ and $\psi \in C_{c}^{\infty}(\Omega)$ as the reader should check. Therefore,

$$
0=F(\psi)=F(\phi-\langle\phi, \eta\rangle \eta)=F(\phi)-\langle\phi, 1\rangle F(\eta)
$$

which shows Eq. (19.13) holds with $c=F(\eta)$. This concludes the proof, however it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose $f \in L_{l o c}^{1}(\Omega)$ and $\partial^{(w)} f=0$ and $f_{m}:=f * \eta_{m}$ as is in the proof of Lemma 19.9. Then $f_{m}^{\prime}=\partial^{(w)} f * \eta_{m}=0$, so $f_{m}=c_{m}$ for some constant $c_{m} \in \mathbb{C}$. By Theorem 11.21, $f_{m} \rightarrow f$ in $L_{l o c}^{1}(\Omega)$ and therefore if $J=[a, b]$ is a compact subinterval of Ω,

$$
\left|c_{m}-c_{k}\right|=\frac{1}{b-a} \int_{J}\left|f_{m}-f_{k}\right| d m \rightarrow 0 \text { as } m, k \rightarrow \infty
$$

So $\left\{c_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence and therefore $c:=\lim _{m \rightarrow \infty} c_{m}$ exists and $f=$ $\lim _{m \rightarrow \infty} f_{m}=c$ a.e.

Theorem 19.25. Suppose $f \in L_{l o c}^{1}(\Omega)$. Then there exists a complex measure μ on \mathcal{B}_{Ω} such that

$$
\begin{equation*}
-\left\langle f, \phi^{\prime}\right\rangle=\mu(\phi):=\int_{\Omega} \phi d \mu \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{19.14}
\end{equation*}
$$

iff there exists a right continuous function F of bounded variation such that $F=f$ a.e. In this case $\mu=\mu_{F}$, i.e. $\mu((a, b])=F(b)-F(a)$ for all $-\infty<a<b<\infty$.

Proof. Suppose $f=F$ a.e. where F is as above and let $\mu=\mu_{F}$ be the associated measure on \mathcal{B}_{Ω}. Let $G(t)=F(t)-F(-\infty)=\mu((-\infty, t])$, then using Fubini's theorem and the fundamental theorem of calculus,

$$
\begin{aligned}
-\left\langle f, \phi^{\prime}\right\rangle & =-\left\langle F, \phi^{\prime}\right\rangle=-\left\langle G, \phi^{\prime}\right\rangle=-\int_{\Omega} \phi^{\prime}(t)\left[\int_{\Omega} 1_{(-\infty, t]}(s) d \mu(s)\right] d t \\
& =-\int_{\Omega} \int_{\Omega} \phi^{\prime}(t) 1_{(-\infty, t]}(s) d t d \mu(s)=\int_{\Omega} \phi(s) d \mu(s)=\mu(\phi)
\end{aligned}
$$

Conversely if Eq. (19.14) holds for some measure μ, let $F(t):=\mu((-\infty, t])$ then working backwards from above,
$-\left\langle f, \phi^{\prime}\right\rangle=\mu(\phi)=\int_{\Omega} \phi(s) d \mu(s)=-\int_{\Omega} \int_{\Omega} \phi^{\prime}(t) 1_{(-\infty, t]}(s) d t d \mu(s)=-\int_{\Omega} \phi^{\prime}(t) F(t) d t$.
This shows $\partial^{(w)}(f-F)=0$ and therefore by Proposition 19.24, $f=F+c$ a.e. for some constant $c \in \mathbb{C}$. Since $F+c$ is right continuous with bounded variation, the proof is complete.

Proposition 19.26. Let $\Omega \subset \mathbb{R}$ be an open interval and $f \in L_{l o c}^{1}(\Omega)$. Then $\partial^{w} f$ exists in $L_{\text {loc }}^{1}(\Omega)$ iff f has a continuous version \tilde{f} which is absolutely continuous on all compact subintervals of Ω. Moreover, $\partial^{w} f=\tilde{f}^{\prime}$ a.e., where $\tilde{f}^{\prime}(x)$ is the usual pointwise derivative.

Proof. If f is locally absolutely continuous and $\phi \in C_{c}^{\infty}(\Omega)$ with $\operatorname{supp}(\phi) \subset$ $[a, b] \subset \Omega$, then by integration by parts, Corollary 16.32 ,

$$
\int_{\Omega} f^{\prime} \phi d m=\int_{a}^{b} f^{\prime} \phi d m=-\int_{a}^{b} f \phi^{\prime} d m+\left.f \phi\right|_{a} ^{b}=-\int_{\Omega} f \phi^{\prime} d m
$$

This shows $\partial^{w} f$ exists and $\partial^{w} f=f^{\prime} \in L_{l o c}^{1}(\Omega)$.
Now suppose that $\partial^{w} f$ exists in $L_{l o c}^{1}(\Omega)$ and $a \in \Omega$. Define $F \in C(\Omega)$ by $F(x):=\int_{a}^{x} \partial^{w} f(y) d y$. Then F is absolutely continuous on compacts and therefore by fundamental theorem of calculus for absolutely continuous functions (Theorem $16.31), F^{\prime}(x)$ exists and is equal to $\partial^{w} f(x)$ for a.e. $x \in \Omega$. Moreover, by the first part of the argument, $\partial^{w} F$ exists and $\partial^{w} F=\partial^{w} f$, and so by Proposition 19.24 there is a constant c such that

$$
\tilde{f}(x):=F(x)+c=f(x) \text { for a.e. } x \in \Omega .
$$

Definition 19.27. Let X and Y be metric spaces. A function $u: X \rightarrow Y$ is said to be Lipschitz if there exists $C<\infty$ such that

$$
d^{Y}\left(u(x), u\left(x^{\prime}\right)\right) \leq C d^{X}\left(x, x^{\prime}\right) \text { for all } x, x^{\prime} \in X
$$

and said to be locally Lipschitz if for all compact subsets $K \subset X$ there exists $C_{K}<\infty$ such that

$$
d^{Y}\left(u(x), u\left(x^{\prime}\right)\right) \leq C_{K} d^{X}\left(x, x^{\prime}\right) \text { for all } x, x^{\prime} \in K
$$

Proposition 19.28. Let $u \in L_{l o c}^{1}(\Omega)$. Then there exists a locally Lipschitz function $\tilde{u}: \Omega \rightarrow \mathbb{C}$ such that $\tilde{u}=u$ a.e. iff $\partial_{i} u \in L_{l o c}^{1}(\Omega)$ exists and is locally (essentially) bounded for $i=1,2, \ldots, d$.

Proof. Suppose $u=\tilde{u}$ a.e. and \tilde{u} is Lipschitz and let $p \in(1, \infty)$ and V be a precompact open set such that $\bar{V} \subset W$ and let $V_{\epsilon}:=\{x \in \Omega: \operatorname{dist}(x, \bar{V}) \leq \epsilon\}$. Then for $\epsilon<\operatorname{dist}\left(\bar{V}, \Omega^{c}\right), V_{\epsilon} \subset \Omega$ and therefore there is constant $C(V, \epsilon)<\infty$ such that $|\tilde{u}(y)-\tilde{u}(x)| \leq C(V, \epsilon)|y-x|$ for all $x, y \in V_{\epsilon}$. So for $0<|h| \leq 1$ and $v \in \mathbb{R}^{d}$ with $|v|=1$,

$$
\int_{V}\left|\frac{u(x+h v)-u(x)}{h}\right|^{p} d x=\int_{V}\left|\frac{\tilde{u}(x+h v)-\tilde{u}(x)}{h}\right|^{p} d x \leq C(V, \epsilon)|v|^{p}
$$

Therefore Theorem 19.18 may be applied to conclude $\partial_{v} u$ exists in L^{p} and moreover,

$$
\lim _{h \rightarrow 0} \frac{\tilde{u}(x+h v)-\tilde{u}(x)}{h}=\partial_{v} u(x) \text { for } m \text { - a.e. } x \in V
$$

Since there exists $\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} h_{n}=0$ and

$$
\left|\partial_{v} u(x)\right|=\lim _{n \rightarrow \infty}\left|\frac{\tilde{u}\left(x+h_{n} v\right)-\tilde{u}(x)}{h_{n}}\right| \leq C(V) \text { for a.e. } x \in V
$$

it follows that $\left\|\partial_{v} u\right\|_{\infty} \leq C(V)$ where $C(V):=\lim _{\epsilon \downarrow 0} C(V, \epsilon)$.
Conversely, let $\Omega_{\epsilon}:=\left\{x \in \Omega: \operatorname{dist}\left(x, \Omega^{c}\right)>\epsilon\right\}$ and $\eta \in C_{c}^{\infty}(B(0,1),[0, \infty))$ such that $\int_{\mathbb{R}^{n}} \eta(x) d x=1, \eta_{m}(x)=m^{n} \eta(m x)$ and $u_{m}:=u * \eta_{m}$ as in the proof of Theorem 19.18. Suppose $V \subset_{o} \Omega$ with $\bar{V} \subset \Omega$ and ϵ is sufficiently small. Then $u_{m} \in C^{\infty}\left(\Omega_{\epsilon}\right), \partial_{v} u_{m}=\partial_{v} u * \eta_{m},\left|\partial_{v} u_{m}(x)\right| \leq\left\|\partial_{v} u\right\|_{L^{\infty}\left(V_{m}-1\right)}=: C(V, m)<\infty$ and therefore,

$$
\begin{align*}
\left|u_{m}(y)-u_{m}(x)\right| & =\left|\int_{0}^{1} \frac{d}{d t} u_{m}(x+t(y-x)) d t\right| \\
& =\left|\int_{0}^{1}(y-x) \cdot \nabla u_{m}(x+t(y-x)) d t\right| \\
& \leq \int_{0}^{1}|y-x| \cdot\left|\nabla u_{m}(x+t(y-x))\right| d t \\
& \leq C(V, m)|y-x| \text { for all } x, y \in V \tag{19.15}
\end{align*}
$$

By passing to a subsequence if necessary, we may assume that $\lim _{m \rightarrow \infty} u_{m}(x)=$ $u(x)$ for m - a.e. $x \in V$ and then letting $m \rightarrow \infty$ in Eq. (19.15) implies

$$
\begin{equation*}
|u(y)-u(x)| \leq C(V)|y-x| \text { for all } x, y \notin E \tag{19.16}
\end{equation*}
$$

where $E \subset V$ is a m - null set. Define $\tilde{u}_{V}: V \rightarrow \mathbb{C}$ by $\tilde{u}_{V}=u$ on $V \backslash E^{c}$ and $\tilde{u}_{V}(x)=\lim _{\substack{y \rightarrow x \\ y \notin E}} u(y)$ if $x \in E$. Then clearly $\tilde{u}_{V}=u$ a.e. on V and it is easy to show \tilde{u}_{V} is well defined and $\tilde{u}_{V}: V \rightarrow \mathbb{C}$ is Lipschitz continuous. To complete the proof, choose precompact open sets V_{n} such that $V_{n} \subset \bar{V}_{n} \subset V_{n+1} \subset \Omega$ for all n and for $x \in V_{n}$ let $\tilde{u}(x):=\tilde{u}_{V_{n}}(x)$.

Here is an alternative way to construct the function \tilde{u}_{V} above. For $x \in V \backslash E$,

$$
\begin{aligned}
\left|u_{m}(x)-u(x)\right| & =\left|\int_{V} u(x-y) \eta(m y) m^{n} d y-u(x)\right|=\left|\int_{V}[u(x-y / m)-u(x)] \eta(y) d y\right| \\
& \leq \int_{V}|u(x-y / m)-u(x)| \eta(y) d y \leq \frac{C}{m} \int_{V}|y| \eta(y) d y
\end{aligned}
$$

wherein the last equality we have used Eq. (19.16) with V replaced by V_{ϵ} for some small $\epsilon>0$. Letting $K:=C \int_{V}|y| \eta(y) d y<\infty$ we have shown

$$
\left\|u_{m}-u\right\|_{\infty} \leq K / m \rightarrow 0 \text { as } m \rightarrow \infty
$$

and consequently

$$
\left\|u_{m}-u_{n}\right\|_{u}=\left\|u_{m}-u_{n}\right\|_{\infty} \leq 2 K / m \rightarrow 0 \text { as } m \rightarrow \infty
$$

Therefore, u_{n} converges uniformly to a continuous function \tilde{u}_{V}.
The next theorem is from Chapter 1. of Maz'ja [2].
Theorem 19.29. Let $p \geq 1$ and Ω be an open subset of $\mathbb{R}^{d}, x \in \mathbb{R}^{d}$ be written as $x=(y, t) \in \mathbb{R}^{d-1} \times \mathbb{R}$,

$$
Y:=\left\{y \in \mathbb{R}^{d-1}:(\{y\} \times \mathbb{R}) \cap \Omega \neq \emptyset\right\}
$$

and $u \in L^{p}(\Omega)$. Then $\partial_{t} u$ exists weakly in $L^{p}(\Omega)$ iff there is a version \tilde{u} of u such that for a.e. $y \in Y$ the function $t \rightarrow \tilde{u}(y, t)$ is absolutely continuous, $\partial_{t} u(y, t)=\frac{\partial \tilde{u}(y, t)}{\partial t}$ a.e., and $\left\|\frac{\partial \tilde{u}}{\partial t}\right\|_{L^{p}(\Omega)}<\infty$.

Proof. For the proof of Theorem 19.29, it suffices to consider the case where $\Omega=(0,1)^{d}$. Write $x \in \Omega$ as $x=(y, t) \in Y \times(0,1)=(0,1)^{d-1} \times(0,1)$ and $\partial_{t} u$ for the weak derivative $\partial_{e_{d}} u$. By assumption

$$
\int_{\Omega}\left|\partial_{t} u(y, t)\right| d y d t=\left\|\partial_{t} u\right\|_{1} \leq\left\|\partial_{t} u\right\|_{p}<\infty
$$

and so by Fubini's theorem there exists a set of full measure, $Y_{0} \subset Y$, such that

$$
\int_{0}^{1}\left|\partial_{t} u(y, t)\right| d t<\infty \text { for } y \in Y_{0}
$$

So for $y \in Y_{0}$, the function $v(y, t):=\int_{0}^{t} \partial_{t} u(y, \tau) d \tau$ is well defined and absolutely continuous in t with $\frac{\partial}{\partial t} v(y, t)=\partial_{t} u(y, t)$ for a.e. $t \in(0,1)$. Let $\xi \in C_{c}^{\infty}(Y)$ and $\eta \in C_{c}^{\infty}((0,1))$, then integration by parts for absolutely functions implies

$$
\int_{0}^{1} v(y, t) \dot{\eta}(t) d t=-\int_{0}^{1} \frac{\partial}{\partial t} v(y, t) \eta(t) d t \text { for all } y \in Y_{0}
$$

Multiplying both sides of this equation by $\xi(y)$ and integrating in y shows

$$
\int_{\Omega} v(x) \dot{\eta}(t) \xi(y) d y d t=-\int_{\Omega} \frac{\partial}{\partial t} v(y, t) \eta(t) \xi(y) d y d t=-\int_{\Omega} \partial_{t} u(y, t) \eta(t) \xi(y) d y d t
$$

Using the definition of the weak derivative, this equation may be written as

$$
\int_{\Omega} u(x) \dot{\eta}(t) \xi(y) d y d t=-\int_{\Omega} \partial_{t} u(x) \eta(t) \xi(y) d y d t
$$

and comparing the last two equations shows

$$
\int_{\Omega}[v(x)-u(x)] \dot{\eta}(t) \xi(y) d y d t=0
$$

Since $\xi \in C_{c}^{\infty}(Y)$ is arbitrary, this implies there exists a set $Y_{1} \subset Y_{0}$ of full measure such that

$$
\int_{\Omega}[v(y, t)-u(y, t)] \dot{\eta}(t) d t=0 \text { for all } y \in Y_{1}
$$

from which we conclude, using Proposition 19.24, that $u(y, t)=v(y, t)+C(y)$ for $t \in J_{y}$ where $m_{d-1}\left(J_{y}\right)=1$, here m_{k} denotes k - dimensional Lebesgue measure. In conclusion we have shown that

$$
\begin{equation*}
u(y, t)=\tilde{u}(y, t):=\int_{0}^{t} \partial_{t} u(y, \tau) d \tau+C(y) \text { for all } y \in Y_{1} \text { and } t \in J_{y} \tag{19.17}
\end{equation*}
$$

We can be more precise about the formula for $\tilde{u}(y, t)$ by integrating both sides of Eq. (19.17) on t we learn

$$
\begin{aligned}
C(y) & =\int_{0}^{1} d t \int_{0}^{t} \partial_{\tau} u(y, \tau) d \tau-\int_{0}^{1} u(y, t) d t=\int_{0}^{1}(1-\tau) \partial_{\tau} u(y, \tau) d \tau-\int_{0}^{1} u(y, t) d t \\
& =\int_{0}^{1}\left[(1-t) \partial_{t} u(y, t)-u(y, t)\right] d t
\end{aligned}
$$

and hence

$$
\tilde{u}(y, t):=\int_{0}^{t} \partial_{\tau} u(y, \tau) d \tau+\int_{0}^{1}\left[(1-\tau) \partial_{\tau} u(y, \tau)-u(y, \tau)\right] d \tau
$$

which is well defined for $y \in Y_{0}$.
For the converse suppose that such a \tilde{u} exists, then for $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega} u(y, t) \partial_{t} \phi(y, t) d y d t=\int_{\Omega} \tilde{u}(y, t) \partial_{t} \phi(y, t) d t d y=-\int_{\Omega} \frac{\partial \tilde{u}(y, t)}{\partial t} \phi(y, t) d t d y
$$

wherein we have used integration by parts for absolutely continuous functions. From this equation we learn the weak derivative $\partial_{t} u(y, t)$ exists and is given by $\frac{\partial \tilde{u}(y, t)}{\partial t}$ a.e.

19.3. Exercises.

Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.
Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use u_{ϵ} as defined in the proof of Proposition 19.12 to show it suffices to consider the case where $u \in C^{\infty}\left(\mathbb{R}^{d}\right) \cap$ $L^{p}\left(\mathbb{R}^{d}\right)$ with $\partial^{\alpha} u \in L^{p}\left(\mathbb{R}^{d}\right)$ for all $\alpha \in \mathbb{N}_{0}^{d}$. 2. Then let $\psi \in C_{c}^{\infty}(B(0,1),[0,1])$ such that $\psi=1$ on a neighborhood of 0 and let $u_{n}(x):=u(x) \psi(x / n)$.
Exercise 19.3. Let $p \in\left[1, \infty\right.$), α be a multi index (if $\alpha=0$ let ∂^{0} be the identity operator on L^{p}),

$$
D\left(\partial^{\alpha}\right):=\left\{f \in L^{p}\left(\mathbb{R}^{n}\right): \partial^{\alpha} f \text { exists weakly in } L^{p}\left(\mathbb{R}^{n}\right)\right\}
$$

and for $f \in D\left(\partial^{\alpha}\right)$ (the domain of ∂^{α}) let $\partial^{\alpha} f$ denote the α - weak derivative of f. (See Definition 19.3.)
(1) Show ∂^{α} is a densely defined operator on L^{p}, i.e. $D\left(\partial^{\alpha}\right)$ is a dense linear subspace of L^{p} and $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \rightarrow L^{p}$ is a linear transformation.
(2) Show $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \rightarrow L^{p}$ is a closed operator, i.e. the graph,

$$
\Gamma\left(\partial^{\alpha}\right):=\left\{\left(f, \partial^{\alpha} f\right) \in L^{p} \times L^{p}: f \in D\left(\partial^{\alpha}\right)\right\}
$$

is a closed subspace of $L^{p} \times L^{p}$.
(3) Show $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \subset L^{p} \rightarrow L^{p}$ is not bounded unless $\alpha=0$. (The norm on $D\left(\partial^{\alpha}\right)$ is taken to be the L^{p} - norm.)
Exercise 19.4. Let $p \in[1, \infty), f \in L^{p}$ and α be a multi index. Show $\partial^{\alpha} f$ exists weakly (see Definition 19.3) in L^{p} iff there exists $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}$ such that $f_{n} \rightarrow f$ and $\partial^{\alpha} f_{n} \rightarrow g$ in L^{p} as $n \rightarrow \infty$. Hints: See exercises 19.2 and 19.3.
Exercise 19.5. Folland 8.8 on p. 246.
Exercise 19.6. Assume $n=1$ and let $\partial=\partial_{e_{1}}$ where $e_{1}=(1) \in \mathbb{R}^{1}=\mathbb{R}$.
(1) Let $f(x)=|x|$, show ∂f exists weakly in $L_{l o c}^{1}(\mathbb{R})$ and $\partial f(x)=\operatorname{sgn}(x)$ for m - a.e. x.
(2) Show $\partial(\partial f)$ does not exists weakly in $L_{l o c}^{1}(\mathbb{R})$.
(3) Generalize item 1. as follows. Suppose $f \in C(\mathbb{R}, \mathbb{R})$ and there exists a finite set $\Lambda:=\left\{t_{1}<t_{2}<\cdots<t_{N}\right\} \subset \mathbb{R}$ such that $f \in C^{1}(\mathbb{R} \backslash \Lambda, \mathbb{R})$. Assuming $\partial f \in L_{l o c}^{1}(\mathbb{R})$, show ∂f exists weakly and $\partial^{(w)} f(x)=\partial f(x)$ for m - a.e. x.
Exercise 19.7. Suppose that $f \in L_{l o c}^{1}(\Omega)$ and $v \in \mathbb{R}^{d}$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for \mathbb{R}^{d}. If $\partial_{j} f:=\partial_{e_{j}} f$ exists weakly in $L_{l o c}^{1}(\Omega)$ for all $j=1,2, \ldots, n$ then $\partial_{v} f$ exists weakly in $L_{l o c}^{1}(\Omega)$ and $\partial_{v} f=\sum_{j=1}^{n} v_{j} \partial_{j} f$.

Exercise 19.8. Suppose, $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and $\partial_{v} f$ exists weakly and $\partial_{v} f=0$ in $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ for all $v \in \mathbb{R}^{d}$. Then there exists $\lambda \in \mathbb{C}$ such that $f(x)=\lambda$ for m - a.e. $x \in \mathbb{R}^{d}$. Hint: See steps 1. and 2. in the outline given in Exercise 19.9 below.

Exercise 19.9 (A generalization of Exercise 19.8). Suppose Ω is a connected open subset of \mathbb{R}^{d} and $f \in L_{l o c}^{1}(\Omega)$. If $\partial^{\alpha} f=0$ weakly for $\alpha \in \mathbb{Z}_{+}^{n}$ with $|\alpha|=N+1$, then $f(x)=p(x)$ for m - a.e. x where $p(x)$ is a polynomial of degree at most N. Here is an outline.
(1) Suppose $x_{0} \in \Omega$ and $\epsilon>0$ such that $C:=C_{x_{0}}(\epsilon) \subset \Omega$ and let η_{n} be a sequence of approximate δ - functions $\operatorname{such} \operatorname{supp}\left(\eta_{n}\right) \subset B_{0}(1 / n)$ for all n. Then for n large enough, $\partial^{\alpha}\left(f * \eta_{n}\right)=\left(\partial^{\alpha} f\right) * \eta_{n}$ on C for $|\alpha|=N+1$. Now use Taylor's theorem to conclude there exists a polynomial p_{n} of degree at most N such that $f_{n}=p_{n}$ on C.
(2) Show $p:=\lim _{n \rightarrow \infty} p_{n}$ exists on C and then let $n \rightarrow \infty$ in step 1. to show there exists a polynomial p of degree at most N such that $f=p$ a.e. on C.
(3) Use Taylor's theorem to show if p and q are two polynomials on \mathbb{R}^{d} which agree on an open set then $p=q$.
(4) Finish the proof with a connectedness argument using the results of steps 2. and 3. above.

Exercise 19.10. Suppose $\Omega \subset_{o} \mathbb{R}^{d}$ and $v, w \in \mathbb{R}^{d}$. Assume $f \in L_{l o c}^{1}(\Omega)$ and that $\partial_{v} \partial_{w} f$ exists weakly in $L_{l o c}^{1}(\Omega)$, show $\partial_{w} \partial_{v} f$ also exists weakly and $\partial_{w} \partial_{v} f=\partial_{v} \partial_{w} f$.
Exercise 19.11. Let $d=2$ and $f(x, y)=1_{x \geq 0}$. Show $\partial^{(1,1)} f=0$ weakly in $L_{l o c}^{1}$ despite the fact that $\partial_{1} f$ does not exist weakly in $L_{l o c}^{1}$!

