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7. LP-SPACES

Let (X, M, p) be a measure space and for 0 < p < oo and a measurable function
f: X —=Clet

(7.1) 1£llp = ( / FiPdp)e.
When p = o0, let
(7.2) 1flloe = inf{a > 0: u(|f] > a) = 0}

For 1 <p < o0, let
LP( X, M,p) ={f:X — C: f is measurable and ||f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g|, = 0iff f ~ g and if f ~ g then
Il £l = llgllp- In general we will let (by abuse of notation) use f to denote both the
function f and the equivalence class containing f.

Remark 7.1. Suppose that ||f|lcc < M, then for all @ > M, p(|f| > a) = 0 and
therefore p(|f| > M) = lim, oo p(|f] > M +1/n) =0, ie. |f(z)| < M for p -
a.e. z. Conversely, if |[f| < M a.e. and a > M then p(|f| > @) = 0 and hence
I fllcc < M. This leads to the identity:

[[flloc =inf{a >0:|f(x)| <a for p —a.e. z}.

Theorem 7.2 (Holder’s inequality). Suppose that 1 < p < 0o and q := p%l, or

equivalently p~! +q~ ' = 1. If f and g are measurable functions then

(7.3) 1fglle < I £1lp - lgllq-

Assuming p € (1,00) and ||fl|p - ||lgllq < o0, equality holds in Eq. (7.3) iff |f|” and
lg|* are linearly dependent as elements of L. If we further assume that ||f||, and
llgllq are positive then equality holds in Eq. (7.3) iff

(7.4) 9L F1I5 = NlgliglfIP a-e.

Proof. The cases where ||f||; =0 or oo or ||g||, =0 or co are easy to deal with
and are left to the reader. So we will assume now that 0 < ||f||g, [lg|l, < co. Let
s=1fl/IIfll, and t = |g|/||g|lq then Lemma 2.27 implies

fol 117 1 g
1fllpllglle = 2 Ifll  a llglle

. . . _ —1 .
with equality iff |g/|lglld = [fP2/IFISY = [£17/9/1£IB/, ie. ool flE =
lgl|2]f|P. Integrating Eq. (7.5) implies

1 1
ol 1,1,
1fllpllglle — 2 @
with equality iff Eq. (7.4) holds. The proof is finished sing it is easily checked that
equality holds in Eq. (7.3) when |f|” = c|g|? of |g|? = ¢|f[” for some constant c. m

The following corollary is an easy extension of Holder’s inequality.

(7.5)

Corollary 7.3. Suppose that f; : X — C are measurable functions fori =1,...,n
and p1,...,pn and v are positive numbers such that Z?Zl pi_1 =r~L then

n n n
Hfi < H | fill,, where Zpi_l =r L
i=1 i=1 =1

T
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Proof. To prove this inequality, start with n = 2, then for any p € [1, o],

Il = / frardp < £ 197
y4

where p* = =) is the conjugate exponent. Let p; = pr and ps = p*r so that

I as desired. Then the previous equation states that

£l < (171, lgll,,

as desired. The general case is now proved by induction. Indeed,

n+1 n
117 I17
i=1 i=1

where ¢~! —t—p;_lH =771 Since Y0 p;t = q”
hypothesis to conclude

ptpy =

n

H fi fnt1

i=1

<

Hf”'H Prt1

T T

q

! we may now use the induction

n

11+

i=1

n
<ITIfl,..
q =1

which combined with the previous displayed equation proves the generalized form
of Holder’s inequality. m

Theorem 7.4 (Minkowski’s Inequality). If 1 < p < oo and f,g € L? then
(7.6) 1f +9gllp < 1 £llp + llgllp-
Moreover if p < 0o, then equality holds in this inequality iff
sgn(f) = sgn(g) whenp =1 and
f=cg org=cf for some c>0 whenp>1.

Proof. When p = oo, |f] < ||f]l,, a-e. and |g| < ||g||,, a.e. so that [f+ g| <
Lfl+ 19l < Ifllo + ll9lls, a.e. and therefore

1f + 9lloe < Nfllec +119lloo -
When p < o0,

[f +9l” < (2max(|f],]g]))" = 2P max (|7, [g") < 27 (IfI" + lgI"),

1f+allf < 27 (15 + llglp) < oo

||f+g\|1:/X\f+g\duS/X|f|du+/X\g\du

with equality iff | f| + |g| = |f + ¢g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p € (1,00), we may assume ||f +g||p, [|f][, and ||g[|, are all positive since
otherwise the theorem is easily verified. Now

[f+glP =[f +allf +9PF < (f] + gD f + g
with equality iff sgn(f) = sgn(g). Integrating this equation and applying Holder’s
inequality with ¢ =p/(p — 1) gives

/ |f + glPdp S/ £l \f+g|p’1du+/ lg| [f + gPdp
X X X

(7.7) < (£ 1o+ lgllp) 11 + 9" g

In case p =1,
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with equality iff
sgn(f) = sgn(g) and

SN | f+glP gl \*
9 (175) =1 = () e
Therefore
(7.9 I+ 9Pl = [ (F +aryeda= [ 1+ aPdn
Combining Eqs. (7.7) and (7.9) implies
(7.10) I1f + gllB < I Fllpll £ + B2+ [lgllplLf + glIB/

with equality iff Eq. (7.8) holds which happens iff f = cg a.e. with ¢ > 0.. Solving
for || f + g|lp, in Eq. (7.10) gives Eq. (7.6). m
The next theorem gives another example of using Holder’s inequality

Theorem 7.5. Suppose that (X, M, u) and (Y,N,v) be o-finite measure spaces,
pel,oo] andk: X xY — C be a M@ N — measurable function. Assume there
exist finite constants C7 and Cy such that

A |k(x,y)| du(z) < Cy forv a.e. y and
[ el ) < Ca for p o

If f € LP(v), then
/|kxy y)| dv(y) < oo for p — a.e. z,

r— Kf(z):= [k(z,y)f(y)dv(y) € LP(u) and
(7.11) 1K Fll gy < €177 Cy" £

Lr(v)

Proof. Suppose p € (1,00) to begin with and let ¢ = p/(p—1), then by Holder’s
inequality,

/|kxy )] dv(y) /|kxy\/q|k<xy>|”p|f<)\du(>

<[ [ i) v [ i a) v

<0y [/X k(z,y)| f(y)IpdV(y)} l/p-

Therefore, using Tonelli’s theorem,
P
/ k(- 0) F ) ()| < CB/f / () / duy) k()| |7 ()P
p Y X
—cple /X () | ()P / dpa(z) [k, )]
<yl / () | F )P = CCy (£,
X
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From this it follows that @ — K f(z) := [k(z,y)f(y)dv(y) € LP(p) and that Eq.
(7.11) holds.
Similarly, if p = oo,
[ )i @) < 1l [ kel ) < Calfll, for - ae. .

so that | K f||pe ) < C2 [ fllpe(yy - I p=1, then

/X dp(z) /Y dv(y) |k 9) f (4)] = /Y dv(y) | £ ()] /X dpu(z) k(2 )|
<0 /Y dv(y) | £ (v)

which shows [[Kfll 1) < Cillflli,)- ®

7.1. Jensen’s Inequality.

Definition 7.6. A function ¢ : (a,b) — R is convex if for all @ < zy < x1 < b and
t €10,1] ¢(xy) <tp(xy) + (1 —t)p(xo) where z, = tay + (1 — t)zo.

The following Proposition is clearly motivated by Figure 13.
120
115

r10

-6 4 2 0 2

FIGURE 13. A convex function with along with two cords corre-
sponding to g = —2 and z; =4 and g = —5 and x; = —2.

Proposition 7.7. se that ¢ : (a,b) — R is a convex function, then
1. For all u,v,w, z € (a,b) such that u < v, w < z, u < w and v < z we have

Pv) — ¢(w) _ #(z) — d(w)

vV —U - zZ—Ww

(7.12)

2. For each c € (a,b), the right and left sided derivatives ¢/, (c) exists in R and
if a <u<wv<b, then ¢ (u) < ¢ (v) < ¢, (v).
3. The function ¢ is continuous.

4. For allt € (a,b) there exists B € R such that ¢p(z) > ¢(t) + B(z —t) for all
€ (a,b).
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Proof. 1a) Suppose first that « < v = w < 2, in which case Eq. (7.12) is
equivalent to
(¢(v) = ¢(u) (z = v) < (B(2) = B(v)) (v —w)
which after solving for ¢(v) is equivalent to the following equations holding:
—u
< .
5(0) < 92 T2 4 o) 2
But this last equation states that ¢(v) < ¢(2)t + ¢(u) (1 —t) where ¢ = 2= and
v =tz + (1 — t)u and hence is valid by the definition of ¢ being convex.
1b) Now assume v = w < v < z, in which case Eq. (7.12) is equivalent to

(@(v) = d(w)) (z = u) < (H(2) = () (v —u)

which after solving for ¢(v) is equivalent to

P(v) (z —u) < ¢(2) (v = u) + P(u) (2 — )

which is equivalent to

v zZ—U

v — zZ—U

L)

z—u z—u

P(v) < ¢(2)

Again this equation is valid by the convexity of ¢.
lc) u < w < v = z, in which case Eq. (7.12) is equivalent to

(¢(2) = ¢(u)) (z — w) < (¢(2) — ¢(w)) (z — w)
and this is equivalent to the inequality,
p(w) < ¢(2)

which again is true by the convexity of ¢.
1) General case. If u < w < v < 2, then by la-1c)

w—u zZ—w

+ p(u)

zZ—U zZ—U

P(2) — p(w) > P(v) — d(w) > P(v) — P(u)
andifu<v<w<z
P(2) — p(w) > P(w) — ¢(v) > Pw) — du)

We have now taken care of all possible cases.

2) On the set a < w < z < b, Eq. (7.12) shows that (¢(z) — p(w)) /(z —w) is a
decreasing function in w and an increasing function in z and therefore ¢/, () exists
for all € (a,b). Also from Eq. (7.12) we learn that

(7.13) & (u) < w forall a < u < w < z < b,
(7.14) Mgd)’_(z) foralla <u<wv<z<b,

v—u
and letting w | z in the first equation also implies that

P (u) < ¢! (2) foralla <u < z<b,

/

The inequality, ¢’ (z) < ¢/, (2), is also an easy consequence of Eq. (7.12).
3) Since ¢(z) has both left and right finite derivatives, it follows that ¢ is con-
tinuous. (For an alternative proof, see Rudin.)
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4) Given t, let 3 € [¢"_(t), ¢/, (t)], then by Eqgs. (7.13) and (7.14),
t — ot
K20 < ) < 5 < o) < D00
for all a < u <t < z <b. Item 4. now follows. m

Corollary 7.8. Suppose ¢ : (a,b) — R is differential then ¢ is convex iff ¢’ is non
decreasing. In particular if ¢ € C?(a,b) then ¢ is convex iff ¢" > 0.

Proof. By Proposition 7.7, if ¢ is convex then ¢’ is non-decreasing. Conversely
if ¢’ is increasing then

M = ¢/ (&) for some &; € (¢, 1)
1 —¢C
and
M = ¢' (&) for some & € (g, ¢).
c— T
Hence
1) = dle) () = Plo)
T — ¢ - cC— X0

for all g < ¢ < x; from which it follows that ¢ is convex. m

Example 7.9. The function exp(z) is convex , z? is convex iff p > 1 and — log(x)
is convex.

Theorem 7.10 (Jensen’s Inequality). Suppose that (X, M,u) is a probability
space, i.e. j is a positive measure and u(X) = 1. Also suppose that f € L' (u),
f:X —(a,b), and ¢ : (a,b) — R is a convex function. Then

</>( /. fdu> < [ oty

where if po f ¢ L (1), then ¢o f is integrable in the extended sense and [, ¢(f)dp =
0.

Proof. Let t = [, fdu € (a,b) and let 3 € R such that ¢(s) — ¢(t) > B(s —t)
for all s € (a,b). Then integrating the inequality, ¢(f) — () > B(f —t), implies

that
0</¢ ) — (1) /¢ ) — ¢/fdu

Moreover, if ¢(f) is not integrable, then ¢(f) > (/)( ) — t) which shows that
negative part of ¢(f) is integrable. Therefore, [ ¢ ¥ dﬂ oo in this case. m

Example 7.11. The convex function in Example 7.9 lead to the following inequal-

ities,
exp (/X fdu> S/Xefdu,
/X log(|f[)du < log ( /X Ifdu> <log ( /X fdu>

gan| < ([ 171dm) < [ 1117
X X X

and for p > 1,
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The last equation may also easily be derived using Holder’s inequality. As a special
case of the first equation, we get another proof of Lemma 2.27. Indeed, let p and ¢
be conjugate exponents, s,t > 0, and a =Ins and b = Int, then
st — elatd) — p(baatipa) o 1 ga + 1opa _ 14 + 1o
q p q p
Of course the above considerations may also be viewed as just using directly the
property that the exponential function is convex.

7.2. Modes of Convergence. As usual let (X, M, 1) be a fixed measure space
and let {f,} be a sequence of measurable functions on X. Also let f : X — C be
a measurable function. We have the following notions of convergence and Cauchy
sequences.

Definition 7.12. 1. f, — f a.e. if there is a set E € M such that y(E°) =0
and hmn_,oo 1Efn = 1Ef
2. fu — fin p — measure if lim, .o p(|fn — f| > €) = 0 for all e > 0. We will

abbreviate this by saying f,, — f in L° or by f, - f
3. fn— fin LPiff f € LP and f,, € LP for all n, and lim,, oo [ |fp — f|Pdp = 0.

Definition 7.13. 1. {f,} is a.e. Cauchy if there is a set E € M such that
w(E°) =0 and{1g f,,} is a pointwise Cauchy sequences
2. {fn} is Cauchy in pu — measure (or L — Cauchy) if lim,, p—oo (| fn — fin] >
€) =0 for all € > 0.
3. {fn} is Cauchy in LP if limy, oo [ |frn — fin[Pdp = 0.

Lemma 7.14 (Chebyshev’s inequality again). Let p € [1,00) and f € LP, then
1
p(fl>e < e—p”ng for all e > 0.

In particular if { f,} C LP is LP — convergent (Cauchy) then { f,} is also convergent
(Cauchy) in measure.

Proof. By Chebyshev’s inequality (5.12),

1 1
— p P = p — p
pr12 0 = (P 2 @) < 5 [ 11 = 251
and therefore if {f,,} is LP — Cauchy, then

1
([ fn— finl > €) < e_prn — fmllP — 0 as m,n — oo

showing {f,} is L° — Cauchy. A similar argument holds for the L? — convergent
case. W

o0
Lemma 7.15. Suppose an, € C and |ant1 — an| < €, and Y €, < oco. Then

n=1

lim a, =a € C exists and |a — a,| < 6, = €k-

n—oo

e

Proof. Let m > n then

m—1 m—1 00
(7.15) | —an] =1| 3 (art1—ar)| < X lapsr —ap| < 30 e =06 .
k=n k=nj k=n

SO |@m — an| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo in
(7.15) to find |a — an| < 6, W
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FIGURE 14. Modes of convergence examples.

Theorem 7.16. Suppose {f,} is L°-Cauchy. Then there exists a subsequence g; =

©w
fn; of {fn} such thatlimg; = f ewists a.e. and f,, — f as n — oo. Moreover if g

is a measurable function such that f, A g asn — oo, then f =g a.e.

Proof. Let ¢, > 0 such that €, < 0o (¢, = 27" would do) and set 6,, =
n=1
€r. Choose g; = fy, such that {n;} is a subsequence of N and

k=n

1({lgi+1 — gil > €;}) <¢;.



126 BRUCE K. DRIVER'

Let Ej = {|gj+1 — g;| > €5},
Py = U Ej = U {lgj41 — 951 > €5}
Jj=N j=N
and
e ﬂ Fy = ﬂ U E; ={|gj+1 — g;] > € L.0.}.
N=1 N=1j=N

Then p(E) = 0 since

w(E) < Zu(Ej) < Zej:(SNHOaSN—mx;.
=N =N

For v & Fu, |gj+1(x) — gj(z)| < ¢ for all j > N and by Lemma 7.15, f(z) =
lim g;(x) exists and | f(x) —g;(x)| < §; for all j > N. Therefore, lim g;(z) = f(z)
j—o0 Jj=o

exists for all x ¢ E. Moreover, {z : |f(z) — fj(z)| > §;} C F; for all j > N and
hence

w(|f —gj] > 8;) < pu(F;) <6; = 0asj— oo.

Therefore g; £, fasj — 0.

Since
Ufn = fl>ef =1{1f —9j + 95 — fal > €}
CAlf — g5l > €e/2tU{lgj — ful > €/2},
mw({[fn = f1>€}) < p({lf — 951 > €/2}) + n(lgy — fal > €/2)
and

p({lfn = f1 > €}) < lim sup p(lg; — ful > €/2) = 0 as n — oo.

If also f, - g as n — oo, then arguing as above

plf =gl >€) <p({lf = fol > €/2}) + pllg = ful > €/2) = 0 as n — oo.

Hence
1 > 1
pllf =gl > 0) = unzitlf —gl > —}) < > ullf—gl> ~) =0,
n=1

ie. f=gae =

Corollary 7.17 (Dominated Convergence Theorem). Suppose {f,}, {gn}, and g
are in L' and f € LY are functions such that

|fn‘§gn a.e., fnL)fv gnL)gv and /gnﬁ/g as n — 00.

Then f € L' and lim, oo ||f — full, = O, ice. fn — [ in L. In particular
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Proof. First notice that |f| < g a.e. and hence f € L! since g € L*. To see that
|f| < g, use Theorem 7.16 to find subsequences {f,, } and {g,, } of {f.} and {g,}
respectively which are almost everywhere convergent. Then

[fl = Hm |fo,| < lim g, =gae

If (for sake of contradiction) limy, .o || f — fnll; # O there exists € > 0 and a
subsequence {fy, } of {f,} such that

(7.16) /\f — fn,| > € for all k.

Using Theorem 7.16 again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — g almost everywhere. Noting,
|f = frel <9+ Gny — 29 and [ (g+ gn,) — [ 29, an application of the extended
dominated convergence theorem of Exercise 5.17 implies limg_oo [ |f — fn,| = 0
which contradicts Eq. (7.16). m

Exercise 7.1 (Fatou’s Lemma). If f, > 0 and f, — f in measure, then [ f <
liminfn_,ooffn.

Theorem 7.18 (Egoroff’s Theorem). Suppose u(X) < oo and f, — f a.e. Then
for all € > 0 there exists E € M such that u(E) < € and f, — f uniformly on E°.

In particular fn -~ f as n — oco.

Proof. Let f,, — f a.e. Then p({|f, — f| > § i.0. n}) =0 for all k> 0, i.e.

g [ Utlf=at> 3 = N Utli-a>3] =0

n>N N=1n>N

Let E, := U {|fn — f| > +} and choose an increasing sequence {Nj,},~, such
n>Ny

that p(Ey) < €27F for all k. Setting E := UEg, w(E) < >, 2 F =eand if z ¢ E,

then |f,, — f| < 4 for all n > Ny, and all k. That is f, — f uniformly on E¢. m

Exercise 7.2. Show that Egoroft’s Theorem remains valid when the assumption
p(X) < oo is replaced by the assumption that |f,| < g € L* for all n.

7.3. Completeness of LP — spaces.

Theorem 7.19. Let |-, be as defined in Eq. (7.2), then (L°°(X, M, pn),||-||ls) is
a Banach space. A sequence {fn},-, C L™ converges to f € L> iff there exists
E € M such that n(E) = 0 and f, — f uniformly on E°. Moreover, bounded

simple functions are dense in L*°.

Proof. By Minkowski’s Theorem 7.4, ||-||, satisfies the triangle inequality. The
reader may easily check the remaining conditions that ensure ||-||, is a norm.

Suppose that {f,, },-, C L* is a sequence such f,, — f € L=, ie. [|f — full., —
0 as n — o0o. Then for all £ € N, there exists N < oo such that

iz (\f — ful > kfl) =0 for all n > Ny.
Let

b= Uzozl U”ZNA- {‘fffn‘ > kil}.
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Then u(E) = 0 and for z € E¢, |f(z) — fn(z)] < k! for all n > Nj. This shows
that f,, — f uniformly on E¢. Conversely, if there exists E € M such that u(E) =0
and f,, — f uniformly on E°, then for any € > 0,

pw(f=ful =) =p{lf = ful 2 NE) =0

for all n sufficiently large. That is to say limsup,,_, ., ||f — fall < € for all € > 0.
The density of simple functions follows from the approximation Theorem 5.13.

So the last item to prove is the completeness of L for which we will use Theorem
3.55. Suppose that {f,} -, C L* is a sequence such that > °  [|f,||., < oc. Let

n=1

My, = |folle s Bn = {|ful > My,}, and E :=U;2 | E,, so that p(£) = 0. Then

n=1

o0 o0
Z sup |fn(z)| < ZM" < oo
n—1%€E* n=1

which shows that Sy (z) = Zivzl fn(z) converges uniformly to S(z) := Y07 | fn(z)
on E° ie. limy oo IS — SnHOO —0. m

Theorem 7.20 (Completeness of LP(u)). Forl <p < oo, LP(u) equipped with the
L? — norm, |||, (see Eq. (7.1)), is a Banach space.

Proof. By Minkowski’s Theorem 7.4, |||, satisfies the triangle inequality. As
above thee reader may easily check the remaining conditions that ensure [-[|,, is a
norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the case
p = oo being done in Theorem 7.19. By Chebyshev’s inequality (Lemma 7.14),
{f.} is L9-Cauchy (i.e. Cauchy in measure) and by Theorem 7.16 there exists a
subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s Lemma,

llgs = fllz = /kli_{go inf|g; — gil[Pdp < lim inf/ 95 — gn|Pdp

= lim inf|[g; — gi|5 — 0 as j — oo.
k—oo

In particular, |||, < llg; — fllp + llgjllp < oo so the f € L” and g; L, f- The
proof is finished because,

1fro = Fllp < W = gillo + g5 = fllp — 0 as j,n — oo.

[

The LP(u) — norm controls two types of behaviors of f, namely the “behavior at
infinity” and the behavior of local singularities. So in particular, if f is blows up at
a point zg € X, then locally near zg it is harder for f to be in LP(u) as p increases.
On the other hand a function f € LP(u) is allowed to decay at “infinity” slower and
slower as p increases. With these insights in mind, we should not in general expect
LP(p) C L9(p) or L(p) C LP(p). However, there are two notable exceptions. (1) If
w#(X) < oo, then there is no behavior at infinity to worry about and L(u) C LP(u)
for all ¢ < p as is shown in Corollary 7.21 below. (2) If 4 is counting measure, i.e.
w(A) = #(A), then all functions in LP(u) for any p can not blow up on a set of
positive measure, so there are no local singularities. In this case LP(u) C L4(u) for
all ¢ < p, see Corollary 7.25 below.

Corollary 7.21. If u(X) < oo, then LP(u) C Li(u) for all 0 < p < ¢ < 00 and
the inclusion map is bounded.
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Proof. Choose a € [1, 0] such that
1 1 1
LS R
p a q q—p

Then by Corollary 7.3,
£, = 11F - 1, < 1Fllg - 1Ll = £ f g = 0(X) @7 £]lg-

The reader may easily check this final formula is correct even when ¢ = oo provided
we interpret 1/p —1/co to be 1/p. m

Proposition 7.22. Suppose that 0 < p < q¢ < r < oo, then L9 C LP + L", i.e.
every function f € LY may be written as f = g+ h with g € L and h € L". For
1<p<r<ocoand feIL?+ L" let

111 == int {llll, + 18], £ =g+ k-
Then (LP 4+ L",||-||) is a Banach space and the inclusion map from L% to LP + L"
is bounded; in fact ||f|| < 2 Hqu for all f € LY.

Proof. Let M > 0, then the local singularities of f are contained in the set
E := {|f| > M} and the behavior of f at “infinity” is solely determined by f on
E°. Hence let ¢ = flg and h = flge so that f = g + h. By our earlier discussion
we expect that g € LP and h € L™ and this is the case since,

p
ol = 7 Lsarlls = [ 157 g =37 [ |2 7000
f? _
<]\/[p/‘ﬁ 1|f|>1\,1§]\/[p quHZ < o0
and
T o r_ T _ r f "
IAlly = ||f1|f\§M||r*/\f\ Lifjcn = M /'M Lisi<ar

T f I T—

Moreover this shows

|FIl < M=ol 2 4 drel | g
Taking M = A||f[|, then gives

1< (Nor 2y g g,

and then taking A =1 shows || f|| < 2{/f||,. The the proof that (L? + L", [|-||) is a
Banach space is left as Exercise 7.7 to the reader. m

Corollary 7.23. Suppose that 0 <p < q <r < oo, then LP N L" C L? and

(7.17) 171, < A1 1117

where X € (0,1) is determined so that
lzé—kl;)\ with A =p/q if r = c0.
q p r

Further assume 1 <p < q<r <oo, and for f € LP N L" let

IFIF = 11F 1, + AL
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Then (LP N L",||-||) is a Banach space and the inclusion map of LP N L" into L9 is
bounded, in fact

(7.18) 1, < max (A1, (1= 2)1) (11, + 11,)
where
1 1
_ g v _plr—q
I

The heuristic explanation of this corollary is that if f € LP N L", then f has local
singularities no worse than an L" function and behavior at infinity no worse than
an LP function. Hence f € L? for any ¢ between p and r.

Proof. Let A\ be determined as above, a = p/\ and b = r/(1 — \), then by
Corollary 7.3,

17l = =< | e, = e .

Tt is easily checked that ||-|| is a norm on LP N L”. To show this space is complete,
suppose that {f,} C LPNL" is a ||-|| — Cauchy sequence. Then {f,,} is both LP and
L™ — Cauchy. Hence there exist f € LP and g € L" such that lim,_,« || f — fn]| »,=0
and lim, . ||g — fnll 4 = 0. By Chebyshev’s inequality (Lemma 7.14) f,, — f and
frn — g in measure and therefore by Theorem 7.16, f = g a.e. It now is clear that
lim,, oo ||f — fnll = 0. The estimate in Eq. (7.18) is left as Exercise 7.6 to the
reader.

Remark 7.24. Let p =p1, r = po and for X € (0,1) let p be defined by

1 1—Xx A
(7.19) — = + =
Px Po P1

Combining Proposition 7.22 and Corollary 7.23 gives
LPo N P C P> C LPo + P
and Eq. (7.17) becomes
T=X ) oA
£l < 1 F1lpy ™ 11, -

Corollary 7.25. Suppose now that u is counting measure on X. Then LP(u) C
L) for all 0 <p < q < o0 and ||f|l, <|[|f]l,-

Proof. Suppose that 0 < p < ¢ = oo, then
1£1I%, = sup {| f(@)]” sz € X} < Y |f (@) = | fI5

zeX

Le. [|flloo < [If]l, for all 0 < p < co. For 0 < p < g < oo, apply Corollary 7.23 with
r = oo to find

£, < WAIEE LIS < WA N AL = |I£1l,
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7.4. Converse of Holder’s Inequality. Throughout this section we assume
(X, M, ) is a o-finite measure space, ¢ € [1,00] and p € [1,00] are conjugate
exponents, i.e. p~' 4+ ¢~ = 1. For g € L4, let ¢, € (LP)* be given by

(7.20) 40(5) = [ af dn

By Holder’s inequality

(721) 300 < [ lafldn < lallalfI,
which implies that

(7.22) [¢gll(Lry+ == sup{lpg(f)] : [|f]l, =1} < [lgllq-

Proposition 7.26 (Converse of Holder’s Inequality). Let (X, M, u) be a o-finite
measure space and 1 < p < oo as above. For all g € L9,

(7.2 lolly = golizrye 2= sup {I6o(7)] - 17}, =1}

and for any measurable function g: X — C,

(724) ol =suw{ [ ol e 171, =1 and £ > 0}
X

Proof. Assume first that ¢ < oo so p > 1. Then

169()] = ' [af au| < [1os1d < o151,

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 7.2, when |f|” = c|g|? for some constant

¢> 0. So let f:=sgn(g)|g|?? which for p = cc is to be interpreted as f = sgn(g),
|q/oo =1.

ie. |g
When p = oo,

lbo(F)] = /X gsgn(g)di = lll1 = gl 11 £lles

which shows that [|¢g|[(L<)+ > [|g][1. If p < o0, then

12 = / = / 1917 = [lglle

while
30(5) = [afdn= [ lalgtdn = [ lgttan =gl
Hence
‘¢g(f)| _ HQHZ . a(l1-%)
This shows that ||¢4|| > ||g|l; which combined with Eq. (7.22) implies Eq. (7.23).
The last case to consider is p = 1 and ¢ = co. Let M := ||g||cc and choose

X, € M such that X,, T X as n — oo and u(X,) < oo for all n. For any
€e>0, u(lgl > M—¢) >0and X, N{lg| > M —€} T {lg| > M — €}. Therefore,
w(X,, N{lg] > M —€}) > 0 for n sufficiently large. Let

[ =sgn(9)lx,n{g|>r—e}
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then
[fllh = p(Xn N {lg] > M —€}) € (0,00)

and

- dy = d
pg (f)] /XRH{QZMC} sgn(g)gdp /xm{|g|zMe} |gldp
> (M —e)u(X, N {lg] > M —e€}) = (M —e)||f|1

Since € > 0 is arbitrary, it follows from this equation that ||¢g/(L1) > M = ||g|oo-
Let M(g) denote the right member in Eq. (7.24). By Holder’s inequality, M (g) <
llgll o - The proof of the opposite inequality will be divided into the cases ¢ = co and
q < o0.
When ¢ = oo and g/, < oo, let a € (0,1) and for n € N let f, :=
1X”ﬂ{\g\2£¥|\gllw} € L'. Then for n sufficiently large || f,||, = n(X.N{lg| > «|lgll.})

is positive and therefore,

Jofadp _ Ixanfisizatol.} 9%
1l #(Xn 0 {lgl = ellglloc}

Since « is arbitrary, M(g) > ||g]l, - If ||g]lo, = 00, let M € (0,00) and let f, :=
Ix,n{g/>n}- Again for n sufficiently large || f, ||, = p(X5 N {lg| > M}) is positive
and therefore,

M(g) >

fgf’”d/j’ — anﬁ{|g|2A[} gd'u > M
1falli  w(Xan{lgl > M}) —

Since M < oo is arbitrary, it follows that M(g) = oo = ||g||, -

M(g) >

Now suppose ¢ < oo. For n € Nlet f, := 1x, {jg/<n} |g|Q/p where p = q/(q — 1)
and by convention f, = 1x,n{¢<n} if ¢ = 1. For n sufficiently large, f,, is not zero
almost everywhere and

0<wHﬁ:/ ol dp < mt(X) < 00 if g > 1
XN {|g|<n}

and || fu|l., = 1if ¢ =1. When ¢ > 1, we find

/mnw:/ mﬁ”w:/ 191 djs and
X Xnﬁ{|g|§n} Xnﬂ{\g\gn}

q 1/q

gl d

M(g) > Jx.ouaen 9 Ml/p = (/ quu)
(fX,m{\g\gn} |g|q dﬂ) Xn0{lgl<n}

and similarly when g =1,

M(g) > / lgl dp.
Xnﬂ{‘g‘fn}

Using the monotone convergence theorem in these equations to let n — oo implies
M(g) > g, m

As an application we can derive a sweeping generalization of Minkowski’s inequal-
ity. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough discussion of
complex interpolation theory.)



REAL ANALYSIS LECTURE NOTES 133

Theorem 7.27 (Minkowski’s Inequality for Integrals). Let (X, M, p) and (Y,N,v)
be o-finite measure spaces and 1 < p < oco. If f is a M ® N measurable function,
then y — || f(-,y)ll Lo (u) i measurable and

1. if f is a positive M ® N measurable function, then

(7.25) I /Y Fe @) g < /Y 1£(,9)

2. If f : XxY — C is a M®N measurable function and [y, || f(-,y)|| v dv(y) <
oo then for p — a.e. =z, f(z,) € L'(v), the p —a.e. defined function
x— [, f(x,y)dv(y) is in LP(n) and the bound in Eq. (7.25) holds.

Proof. For p € [1,00], let Fy(y) := || f(-,v)|

| oy (y)-

LP(p)- prE[l OO)

B = Wil = [ 156l dut >) ’

is a measurable function on Y by Fubini’s theorem. To see that F,, is measurable,
let X,, € M such that X,, T X and p(X,,) < oo for all n. Then by Exercise 7.5,

Lr(p)

which shows that Fi is (Y, N) — measurable as well. This shows that integral on
the right side of Eq. (7.25) is well defined.

Now suppose that f > 0, ¢ = p/(p — 1)and g € L%(u) such that g > 0 and
lgll Lagw = 1- Then by Tonelli’s theorem and Hélder’s inequality,

[ et atwyinte) = [ avt) [ duerstanato
<ol [ 176

= [ st
Y
Therefore by Proposition 7.26,

H/Yf(-,y)dl/(y)\m(u) —Sup{/X [/Y f(wvy)d'/(y)] g(z)du(z) : g
< [ 176 ler oty

proving Eq. (7.25) in this case.
Now let f: X x Y — C be as in item 2) of the theorem. Applying the first part
of the theorem to |f| shows

/ |f(z,y)| dv(y) < oo for p— ae. =,
v

ie. f(x,-) € L'(v) for the p —a.e. x. Since | [y f(z,y)dv(y)| < [y |f(z,y)|dv(y) it
follows by item 1) that

|| / Fem)dv @)l < | /\f ) dv() oo /||f oo dv ().

Hence the function, © € X — [, f(x,y)dv(y), is in L?(u) and the bound in Eq.
(7.25) holds. m
Here is an application of Minkowski’s inequality for integrals.

Ll’ }L)dl/( )

| 2o (uydv (y).-

La(u) = 1and g > O}
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Theorem 7.28 (Theorem 6.20 in Folland). Suppose that k : (0,00) x (0,00) — C
is a measurable function such that k is homogenous of degree —1, i.e. k(Ax, \y) =
A k(z,y) for all X > 0. If

C’p::/ \k(z,1)| 2= YPdz < oo
0

for some p € [1,00], then for f € LP((0,00),m), k(z,-)f(-) € LP((0,00),m) for m
— a.e. x Moreover, the m — a.e. defined function

(7.26) (kD@ = [ k) f)dy
is in LP((0,00),m) and

| K f]

Proof. By the homogeneity of k, k(z,y) = y‘lk(ﬁ, 1). Hence

[ el = [t i )
:/0 x~ \k(l,z)f(xz)\:z:dz:/o |k(1,2) f(z2)| dz.

o0 o0 dx
ip 0,00),m) ‘f(y2)|pdy = |f'(x)‘p VR
(©e0rm) = | ;

z

Lr((0,00),m) — <C ||fHL1’ (0,00),m)*

Since

(- 2)]

17 ¢ 2)llzo((0,00)m) = 2~ Y7l f]

Using Minkowski’s inequality for integrals then shows

\ | e sl < [Timaaisea)

= I llr ((0,00),m) /
0

= Cpll fllLr((0,00),m) < 00

This shows that K f in Eq. (7.26) is well defined from m — a.e. z. The proof is
finished by observing

L ((0,00),m H/ y)| dy

for all f € LP((0,00),m).

Lr((0,00),m)"

L7 ((0,00),m) dz

Lr((0,00),m)

E(1, z)| 2 MPdy

1K f]

< Gyllf]

Lr((0,00),m)

L7 ((0,00),m)

7.5. Uniform Integrability. This section will address the question as to what
extra conditions are needed in order that an L° — convergent sequence is LP —
convergent.

Notation 7.29. For f € L!(u) and E € M, let
u(f: E) = / fdp.
E
and more generally if A, B € M let

w(f: A B):= fdpu.
ANB
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Lemma 7.30. Suppose g € L* (1), then for any € > 0 there exist a § > 0 such that
w(lgl : E) < € whenever u(E) < 6.

Proof. If the Lemma is false, there would exist € > 0 and sets E,, such that
w(E,) — 0 while u(|g| : E,) > € for all n. Since |15, 9| < |g| € L! and for any § €
(0,1), u(1g, |g| > 6) < u(E,) — 0 as n — oo, the dominated convergence theorem
of Corollary 7.17 implies lim,,_ 1(|g| : E,) = 0. This contradicts u(|g| : E,,) > €
for all n and the proof is complete. m

Suppose that { fn}zozl is a sequence of measurable functions which converge in
L'(u) to a function f. Then for E € M and n € N,

[t B) < [u(f = fo: E) + |pf = E) < |If = fully + [u(f : E)].
Let en :=sup,~n ||f — full;, then ex | 0 as N T oo and

(7.27) sup|u(fn: E)| < Sgqu(fn tE)|V(en +u(f: E)]) <en+plgn: E),

where gy = |f| + SN, |fn] € L'. From Lemma 7.30 and Eq. (7.27) one easily
concludes,

(7.28) Ve>036>0 > sup|u(fn: E)| <ewhen u(E) <é.

Definition 7.31. Functions {f,} -, C L(p) satisfying Eq. (7.28) are said to be
uniformly integrable.

Remark 7.32. Let {f,} be real functions satisfying Eq. (7.28), E be a set where
w(E) < éand E, = EN{f, >0}. Then u(E,) < § so that u(f;f : E) = u(fn :
E,) < € and similarly p(f;, : E) < e. Therefore if Eq. (7.28) holds then

(7.29) sup u(|fn] : E) < 2€ when p(E) < 6.

Similar arguments work for the complex case by looking at the real and imaginary
parts of f,. Therefore {f,} -, C L*(p) is uniformly integrable iff

(7.30) Ve>036>0 3 supu(|fn|: E) < e when pu(F) < 6.

Lemma 7.33. Assume that u(X) < oo and { fn} is uniformly bounded sequence in
LY(p) (i.e. K =sup, ||fall; < o0), then {fn} is uniformly integrable iff

(7.31) Jim sup (| fal ¢ [ fal = M) = 0.

Proof. Suppose that (7.30) holds, then
u(lfnl = M) < K/M <6
for M sufficiently large. This shows that
sup (| ful + [fn] 2 M) <€

Since € is arbitrary, we concluded that Eq. (7.31) must hold.
Conversely, suppose that Eq. (7.31) holds, then automatically K = sup,, u(|fr]) <
oo because

I fnl) = wl[ fal = [fnl = M)+ p(|fnl = [ ful < M)
<sup p(|ful = |ful = M) + Mp(X) < .
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Moreover,

([ fnl 2 B) = pllfnl < [ful =2 M, E) + p(|fal : [ful < M, E)
<sup pi(|ful : [fal = M) + Mu(E).

So given € > 0 choose M so large that sup,, u(|fn] : [fn] > M) < €/2 and then take
b=¢€¢/(2M). m

Remark 7.34. Tt is not in general true that if {f,,} C L!(p) is uniformly integrable
then sup,, u(| fn|) < co. For example take X = {x} and u({*}) = 1. Let f,(x) = n.
Since for § < 1 a set E C X such that p(E) < § is in fact the empty set, we see
that Eq. (7.29) holds in this example. However, for finite measure spaces with out

“atoms”, for every 6 > 0 we may find a finite partition of X by sets {Eg}lzzl with
w(E¢) < 6. Then if Eq. (7.29) holds with 2¢ = 1, then

(| fnl) = ZN(UM tE) <k
=1

showing that u(|f,|) < k for all n.

The following Lemma gives a concrete necessary condition for verifying a se-
quence of functions is uniformly integrable.

Lemma 7.35. Suppose that (X) < oo, ¢(x) > 0 is a strictly monotonically in-
creasing function on Ry such that lim, oo ¢(x) = oco. Suppose that {f,} is a se-
quence of measurable functions such that

s%pu(\fnld)(\fnl)) =K < oo.

Then {fy},., is uniformly integrable, and in fact
sup u(|fu] « ful 2 M) < K/¢(M)
which implies Eq. (7.81).
Proof. Let M € (0,00), then
pllful = [fnl 2 M) = p([fnl s {D ([fal) = 6(M)})
< ullfo| S0
From this inequality it is clear that {f,} is uniformly integrable. m
Theorem 7.36 (Vitali Convergence Theorem). (Folland 6.15) Suppose that 1 <

p < oo. A sequence {f,} C LP is Cauchy iff

1. {fn} is L° — Cauchy,

2. {|fnl"} — is uniformly integrable.

3. For alle > 0, there exits a set E € M such that ju(
e for all n. (This condition is vacuous when p(X)

Proof. (=) Suppose {f,} C L is Cauchy. Then (1) {f,} is L° — Cauchy by
Lemma 7.14. (2) By completeness of LP, there exists f € L such that || f, — f|, —
0 as n — co. By the mean value theorem,

1P = 1£al?| < pmax(|£], |faD))P T = | £all < UL+ fDP I = £l

) < K/p(M).

E) < oo and [,.
< 00.)

fal? dp <
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and therefore by Holder’s inequality,
S =Pt < [QR1 1P = Vfall i < [ (1 1l 1F = Ful

<ol = Fallpll(F1+ 1fal)? " g = DI+ [fallZ/4If = fallp
< p(Ifllp + 1 fallp)? 21 F = fally

where ¢ := p/(p — 1). This shows that [||f|? — |fn|P|dx — 0 as n — 00.1® By the
remarks prior to Definition 7.31, {|f,["} is uniformly integrable.

To verify (3), for M > 0 and n € Nlet Epy = {|f| > M} and Ep(n) = {|fn] >
M}. Then pu(Ey) < 575 11f]|5 < 0o and by the dominated convergence theorem,

[ 15 = [ 171 icard = 0 a5 21 —0.
Eiy
Moreover,

(732) [ fudeg, |, < I 1eg, |, + (= Dleg, (|, < 12, ], + 1Fn = 1,

So given € > 0, choose N sufficiently large such that for all n > N, [[f — fu|[b < e.

Then choose M sufficiently small such that [,. [f|? du < e and [p. (n) |fIP dp < €
M M

foralln=1,2,...,N — 1. Letting E = E)y UEy(1)U---U Ep (N — 1), we have

p(E) < oo, g |[frnlP dp < eforn <N -1
and by Eq. (7.32)
/E‘ |fulP du < (€Y/P + €/P)P < 2P¢ for n > N.
Therefore we have found E € M such that u(E) < oo and

sup [ 17, dp < 27

n

which verifies (3) since € > 0 was arbitrary.
(«<=) Now suppose{ f,,} C LP satisfies conditions (1) - (3). Let ¢ > 0, E be as
in (3) and

Amn = {2 € E|fim(2) = fu(@)| = €}

Then
1(fn = fn) Liellp < Il fadimellp + | fm Lie|lp < 2¢*77
and
[fn = fmllp = [(fa = fu)1Eelp + | (fn = frn) Ly A [l
+ H(fn - fm)]'Amn P
(7.33) <N = fr) Ly A llp + 1(Fr = for) Ly [l + 267,

3Here is an alternative proof. Let hy = ||fn|P — |fIP| < |fnl|P+|f|P =: gn € L and g = 2| f|P.
Then gn £ g, hn £ 0 and fgn — fg. Therefore by the dominated convergence theorem in
Corollary 7.17, lim [ hp dp = 0.
n— oo
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Using properties (1) and (3) and 1gngif,,—f.|<c} | fm — ful? < €1p € L, the
dominated convergence theorem in Corollary 7.17 implies

Wﬁ*ﬂﬁbmmM:/bmm4$@Uﬁ*RV‘ﬂ 0.

m,n— o0

which combined with Eq. (7.33) implies

limsup || fr — finllp < limsup [[(fo = fin)la,, [l +2¢"/7.
Finally

H(fn - fm)lAnm p < anlAnLn |p + Hfm 1A7nn P < 26(6)
where

6(e) =sup sup{ [|fu 1ellp: E€ M > u(E) <€}

By property (2), 6(¢) — 0 as € — 0. Therefore
limsup || fr, — fnllp < 2¢¥P +0+25(e) - 0ase 0

m,n— o0

and therefore {f,} is LP-Cauchy. =
Here is another version of Vitali’s Convergence Theorem.

Theorem 7.37 (Vitali Convergence Theorem). (This is problem 9 on p. 133 in
Rudin.) Assume that p(X) < oo, {fn} is uniformly integrable, f, — f a.e. and
|f| < o0 a.e., then f € L*(p) and f, — f in L*(p).

Proof. Let € > 0 be given and choose § > 0 as in the Eq. (7.29). Now use
Egoroff’s Theorem 7.18 to choose a set E where {f,} converges uniformly on F
and p(E°) < 6. By uniform convergence on E, there is an integer N < oo such that
|frn — fm| <1 on E for all m,n > N. Letting m — oo, we learn that

|fvn —fI|<1lonE.
Therefore |f| <|fn|+ 1 on E and hence
p(lfD) = p(£1 = E) + p(lf] - E°)
< pllfn D) + (X)) + | f] - E9).
Now by Fatou’s lemma,
w(|fl: B <lim inf p(|fn]: E°) <2< o0
by Eq. (7.29). This shows that f € L. Finally
w(lf = ful) = u(lf = ful : E) + p(lf = ful - E°)
S pllf = ful 2 B) + pl([ 1+ [ ful  E)
< u(lf = ful : E) + e
and so by the Dominated convergence theorem we learn that

lim sup p(|f — fal) < 4e.

n—00

Since € > 0 was arbitrary this completes the proof. m

Theorem 7.38 (Vitali again). Suppose that f, — f in u measure and Eq. (7.31)
holds, then fp, — f in L.
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Proof. This could of course be proved using 7.37 after passing to subsequences
to get {f.} to converge a.s. However I wish to give another proof. By Fatou’s
lemma f € L'(u). Now let

tx () = 2ljp<x + K> k-
then ¢ (fn) LN o (f) because |px (f) — dx(fn)| < |f — fr] and since
[f = ful S| = o (D] + 10k (f) = ¢ (fo)| + |0 (fn) = fal

we have that

ulf = ful S plf = ox(F) + o (f) — ox(fu)l + ok (fr) = fnl
= w(f1: 11 =2 K) + plor (F) = dx (fn)| + pful = | fn] = K).

Therefore by the dominated convergence theorem
lim sup pulf — ful < u(f]: 1F] > K) + T sup p(|fol 2 1fu] > K.

This last expression goes to zero as K — oo by uniform integrability. m
7.6. Exercises.

Definition 7.39. The essential range of f, essran(f), consists of those A € C
such that pu(|f — A| <€) >0 for all € > 0.

Definition 7.40. Let (X, 7) be a topological space and v be a measure on Bx =
o(7). The support of v, supp(v), consists of those z € X such that v(V) > 0 for
all open neighborhoods, V, of z.

Exercise 7.3. Let (X,d) be a separable metric space (see Definition 3.44) and v
be a measure on Bx — the Borel o — algebra on X. Show
1. supp(v) is a closed set. (This is true on all topological spaces.)
2. v(X \ supp(v)) = 0 and use this to conclude that W := X \ supp(v) is the
largest open set in X such that (W) = 0. Hint: Let D be a countable dense
subset of X and

V:={B;(1/n) :xz € D and n € N}.

Show that W may be written as a union of elements from V € V with the
property that pu(V) =0.

Exercise 7.4. Prove the following facts about essran(f).

1. Let v = f,u:= po f~! — a Borel measure on C. Show essran(f) = supp(v).

2. essran(f) is a closed set and f(x) € essran(f) for almost every z, i.e. pu(f ¢
essran(f)) = 0.

3. If F C Cis a closed set such that f(z) € F for almost every « then essran(f) C
F. So essran(f) is the smallest closed set F such that f(xz) € F for almost
every x.

4. ||fll =sup{|A] : A € essran(f)} .

Exercise 7.5. Let f € LP N L* for some p < oo. Show |/f||, = limg— || f], -
If we further assume p(X) < oo, show | f[|, = limg—co || f[l, for all measurable
functions f : X — C. In particular, f € L iff limg. || f[|, < oc.

Exercise 7.6. Prove Eq. (7.18) in Corollary 7.23. (Part of Folland 6.3 on p. 186.)
Hint: Use Lemma 2.27 applied to the right side of Eq. (7.17).
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Exercise 7.7. Complete the proof of Proposition 7.22 by showing (L* + L, ||-||)
is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 7.8. Folland 6.5 on p. 186.

Exercise 7.9. Folland 6.6 on p. 186.

Exercise 7.10. Folland 6.9 on p. 186.

Exercise 7.11. Folland 6.10 on p. 186. Use Exercise 5.17, i.e. Problem 2.20 of
Folland.

Exercise 7.12. Let (X, M, i) and (Y, N, v) be o-finite measure spaces, f € L?(v)
and k € L?(u ® v). Show

/|k(x,y)f(y)\ dv(y) < oo for p — a.e. .

Let K f(z) := [k(z,y)f(y)dv(y) when the integral is defined. Show K f € L?(p)
and K : L?(v) — L?(u) is a bounded operator with 1K op < 15l 2(u0) -

Exercise 7.13. Folland 6.27 on p. 196.
Exercise 7.14. Folland 2.32 on p. 63.
Exercise 7.15. Folland 2.38 on p. 63.



