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1.

ABSTRACT. These are lecture notes from Math 240.

Things to do:

0) Exhibit a non-measurable null set and a non-Borel measurable Riemann
integrable function.

1) Weak convergence on metric spaces. See Durrett, Stochastic calculus,
Chapter 8 for example. Also see Stroock’s book on this point, chapter 3. See
Problems 3.1.18-3.1.20.

2) Infinite product measures using the Caratheodory extension theorem in
the general case of products of arbitrary probability spaces. See Stroock’s book
on probability from an analytic point of view.

3) Do enough on topological vector spaces to cover what is needed for the
section on distributions, this includes Banach - Steinhauss theorem and open
mapping theorem in the context of Frechet spaces. See Rudin’s functional
analysis and len’s notes.

4) Add manifolds basics including Stoke’s theorems and partitions of unity.
See file Partitn.tex in 257af94 directory. Also add facts about smooth measure
on manifolds, see the last chapter of bookall.tex for this material.

5) Also basic ODE facts, i.e. flows of vector fields

6) Put in some complex variables.

7) Bochner Integrals (See Gaussian.tex for a discussion and problems be-
low.)

8) Add in implicit function theorem proof of existence to ODE’s via Joel
Robbin’s method, see PDE notes.

9) Manifold theory including Sards theorem (See p.538 of Taylor Volume I
and references), Stokes Theorem, perhaps a little PDE on manifolds.

10) Put in more PDE stuff, especially by hilbert space methods. See file
zpde.tex in this directory.

11) Add some functional analysis, including the spectral theorem. See
Taylor volume 2.

12) Perhaps some probability theory including stochastic integration. See
course.tex from 257af94 and other files on disk. For Kolmogorov continuity
criteria see course.tex from 257af94 as well. Also see Gaussian.tex in 289aW98
for construction of Wiener measures.

13) There are some typed notes on Partitions of unity called partitn.tex,
from PDE course and other notes from that course may be useful. For more
ODE stuff see pdenote2.tex from directory 231a-f96. These notes also contain
quadratic form notes and compact and Fredholm operator notes.

15) Move Holder spaces much earlier in the text as illustrations of com-
pactness theorems.

14) Use the proof in Loomis of Tychonoff’s theorem, see p.11

15) Perhaps the pi-lambda theorem should go in section 4 when discussing
the generation of o — algebras.

Major Break down thoughts:

I Real Analysis

II: Topology

III: Complex Variables

IV Distributrion Theory, PDE 1

V: Functional analysis and PDE 2. (Sobolev Spaces)

VI: Probability Theory

VII: Manifold Theory and PDE 3.
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1. INTRODUCTION

Not written as of yet. Topics to mention.

(1) A better and more general integral.
(a) Convergence Theorems
(b) Integration over diverse collection of sets. (See probability theory.)
(c) Integration relative to different weights or densities including singular
weights.
(d) Characterization of dual spaces.
(e) Completeness.
(2) Infinite dimensional Linear algebra.
(3) ODE and PDE.
(4) Harmonic and Fourier Analysis.
(5) Probability Theory

2. LIMITS, SUMS, AND OTHER BASICS

2.1. Set Operations. Suppose that X is a set. Let P(X) or 2% denote the power
set of X, that is elements of P(X) = 2% are subsets of A. For A € 2% let

A=X\A={zeX z ¢ A}
and more generally if A, B C X let
B\A={zxeB:x ¢ A}.
We also define the symmetric difference of A and B by
AAB =(B\A)U(A\ B).

As usual if {Ay},; is an indexed collection of subsets of X we define the union
and the intersection of this collection by

UaerAoi={z€X:Jael 5 x€ A,} and
Nacrlo ={zeX:z € A,Vaell.

Notation 2.1. We will also write [ ], .; Aa for UscrAq in the case that {A,}
are pairwise disjoint, i.e. A, NAg =0if a # 5.

acl

Notice that U is closely related to 3 and N is closely related to V. For example
let {A4,} 7| be a sequence of subsets from X and define

{410} ={zeX :#{n:z € A,} =} and
{4, a.a.} :={r € X :z € 4, for all n sufficiently large}.

(One should read {4, i.0.} as A, infinitely often and {4, a.a.} as A,, almost al-
ways.) Then z € {A, i.0.} if VN € N3n > N > x € A, which may be written
as

{An 10} = ﬂjovozl Un>nN A,.
Similarly, x € {4, a.a.} iff IN e N>V n > N, z € A, which may be written as

{An a.a.} = U?:l ngN An
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2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set R := RU{+oc}, i.e. it
is R with two new points called co and —oco. We use the following conventions,
+00-0=0, oo+ a = too for any a € R, 0o+ 00 = 0o and —0o — o0 = —oo while
00 — 00 is not defined.

If A C R we will let sup A and inf A denote the least upper bound and greatest
lower bound of A respectively. We will also use the following convention, if A = §),
then sup® = —oco and inf ) = +oo.

Notation 2.3. Suppose that {z,},-, C R is a sequence of numbers. Then

(2.1) lim inf z, = lim inf{x; : k> n} and
(2.2) lim sup x, = lim sup{axy : k > n}.
n— 00 n—00

We will also write lim for lim inf and lim for limsup .

Remark 2.4. Notice that if ay := inf{xy : £ > n} and by := sup{xy : k > n},then
{ax} is an increasing sequence while {b;} is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist and

lim inf z, =supinf{zy : k > n} and

n—o0

lim sup z, = infsup{zy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let {a,}22; and {b,}52, be two sequences of real numbers.
Then
(1) liminf, . a, <limsup,,_, . a, andlim, . a, evists in R iff iminf,, . a, =
limsup,, . an € R.
(2) There is a subsequence {an,}3>, of {an}S>y such that limy o0 ap, =
lim sup,, o, an.
3)
(2.3) lim sup (a, + b,) < lim sup a, + lim sup b,
n—oo n—oo n—oo
whenever the right side of this equation is not of the form oo — co.
(4) If ap, > 0 and b, >0 for alln € N, then
(2.4) lim sup (apb,) < lim sup a, -lim sup by,

provided the right hand side of (2.4) is not of the form 0 - oo or oo - 0.

Proof. We will only prove part 1. and leave the rest as an exercise to the reader.
We begin by noticing that

inf{ar : k > n} <sup{ap:k>n}Vn

so that

lim inf a, <lim sup a,.
n—oo n—oo

Now suppose that liminf,, . a, = limsup,,_,., @, = a € R. Then for all € > 0,
there is an integer N such that

a—e<inf{ay: k> N} <sup{ap:k >N} <a+e,



ANALYSIS TOOLS WITH APPLICATIONS 3

a—e<ap<a+eforal k> N.

Hence by the definition of the limit, limg_, ax = a.

If liminf,,_, o a, = 0o, then we know for all M € (0,00) there is an integer N
such that

M <inf{a; : k> N}

and hence lim, .~ a, = oo. The case where limsup,_,., a, = —oo is handled
similarly.

Conversely, suppose that lim, . a, = A € R exists. If A € R, then for every
€ > 0 there exists N(e¢) € N such that |[A — a,| < e for all n > N(e), i.e

A—e<a, <A+eforalln> N(e).
From this we learn that

A—e¢<lim inf a, <lim sup a, < A+e.

n—0oo n— o0
Since € > 0 is arbitrary, it follows that
A <lim inf a, <lim sup a, < A4,

n—00 n— oo

ie. that A =liminf,,_, a, = limsup,,_, ., an.
If A = oo, then for all M > 0 there exists N(M) such that a, > M for all
n > N(M). This show that
lim inf a, > M

n—0o0

and since M is arbitrary it follows that

oo < lim inf a, <lim sup a,.

n—oo n— 00

The proof is similar if A = —oco as well. =

2.3. Sums of positive functions. In this and the next few sections, let X and Y
be two sets. We will write a CC X to denote that « is a finite subset of X.

Definition 2.6. Suppose that a : X — [0, 00| is a function and F' C X is a subset,

then
Za—z —sup{Za(x):aCCF}.

zeF TEQ

Remark 2.7. Suppose that X = N = {1,2,3,...}, then
N

Za = Z = A}gnoo a(n).

n=1 n=1

Indeed for all N, ij:l a(n) < ) ya, and thus passing to the limit we learn that

oo

Za(n) < Za.
N

n=1
Conversely, if @« CC N, then for all N large enough so that « C {1,2,..., N}, we
have > a < ZnN:1 a(n) which upon passing to the limit implies that

Za<Z

n=1
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and hence by taking the supremum over o we learn that

Za<2

n=1

Remark 2.8. Suppose that Yy a < oo, then {x € X : a(x) > 0} is at most count-
able. To see this first notice that for any € > 0, the set {z : a(z) > €} must be finite
for otherwise )" a = co. Thus

{reX:a(z)>0}= UZOZ1{$ ca(z) > 1/k}

which shows that {x € X : a(x) > 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that a,b: X — [0,00] are two functions, then

Z a+b) Z a+ Z b and
IR
for all X > 0.
I will only prove the first assertion, the second being easy. Let &« CC X be a

finite set, then
da+b)=>"a+> b<> at+> b
« [} X X

[e3%

which after taking sups over a shows that

da+b) <> a+ > b

X
Similarly, if a, 5 CC X, then

Za+2b< da+d b= (a+b) <) (a+b)

aupg alUp aUp X

Taking sups over « and [ then shows that
da+d b<> (a+b).
X X X

Lemma 2.10. Let X and Y be sets, R C X xY and suppose that a: R — R is a
function. Let ;,R:={y €Y :(z,y) € R} and R, :={x € X : (z,y) € R}. Then

sup a(z,y) = sup sup a(x,y) = sup sup a(z,y) and

(z,y)ER reX ye. R yeY xeR,
£ — inf inf — inf inf
" }yrl)e Lol y) = inf o L a(z,y) Jnf nf a(z,y).
(Recall the conventions: sup () = —oo and inf ) = +00.)

Proof. Let M = sup, ,)er a(2,y), N = sup,e_ga(z,y). Then a(z,y) < M
for all (z,y) € R implies N, = sup, ¢ pa(z,y) < M and therefore that

(2.5) sup sup a(z,y) = Sup N, < M.
rzeX yeEx R

Similarly for any (z,y) € R,

a(r,y) < Ny < sup N; = sup sup a(z,y)
zeX z€X yEL R
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and therefore

(2.6) sup a(z,y) < sup sup a(z,y) =M
(z,y)ER zeX yEa R

Equations (2.5) and (2.6) show that

sup a(zr,y) = sup sup a(z,y).
(z,y)ER zeX yEL R

The assertions involving infinums are proved analogously or follow from what we
have just proved applied to the function —a. m

Y

FIGURE 1. The = and y — slices of a set R C X x Y.

Theorem 2.11 (Monotone Convergence Theorem for Sums). Suppose that f, :
X — [0,00] is an increasing sequence of functions and

fz) = Tim f,(z) = sup fa(2).
Then

lm Y fo=)f
X X

Proof. We will give two proves. For the first proof, let Py(X) = {A C X :
A CC X}. Then

Jim Z fu = sup Z fo=sup sup Z fo= sup sup)» f,

n a€Pp(X) a€Pp(X) n T
= sup lim fn= sup lim f, = sup f= f.
a€Pf(X) ”HC’OZ a€Pp(X za:nﬂoo a€Pf(X) %: Z

(Second Proof.) Let S, = >y fn and S = > f. Since f, < f, < f for all
n < m, it follows that

Sp <Sm <S8

which shows that lim,,_, . 5, exists and is less that .S, i.e.

(2.7) A= lim Y fu<) f
X X
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Noting that Y fn <>y fn =Sn < A for all a CC X and in particular,
angAforallnandaCCX.

Letting n tend to infinity in this equation shows that
Y f<Aforallacc X
«@

and then taking the sup over all « CC X gives
(2.8) Y f<A=lim Y f
X X

which combined with Eq. (2.7) proves the theorem. m

Lemma 2.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0,00] is a
sequence of functions, then

Zlim inf f, <lim inf an
X n—oo n—oo X
Proof. Define g, = 1I;fk fn so that g T liminf, . f, as k — oo. Since g < f,,

for all £ < n,

ng§2fnforalln2k
X X
and therefore
ng < lim inf Z fn for all k.
X n—oo X
We may now use the monotone convergence theorem to let kK — oo to find
L _ . MCT .. L
St o= 3 gm0 S Jim S < ot 3
X X X X
]
Remark 2.13. If A=)y a < oo, then for all € > 0 there exists o CC X such that
A=) a>A—c
(03

for all @ CC X containing a. or equivalently,

A—Za

for all @« CC X containing a.. Indeed, choose a, so that Zae a>A—e

(2.9) <e

2.4. Sums of complex functions.

Definition 2.14. Suppose that a : X — C is a function, we say that
Sam Y ato
X reX

exists and is equal to A € C, if for all € > 0 there is a finite subset a. C X such
that for all @« CC X containing a. we have

A—Za

<e
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The following lemma is left as an exercise to the reader.

Lemma 2.15. Suppose that a,b: X — C are two functions such that >y a and
Yo x b exist, then ) (a+ \b) exists for all A € C and

> (a+ ) = Z a+ A Z b.
X
Definition 2.16 (Summable). We call a function a : X — C summable if

Z\a| < o0.
X

Proposition 2.17. Leta : X — C be a function, then ) y a exists iff Yy |a| < oo,
i.e. iff a is summable.

Proof. If )" |a| < oo, then ) (Rea)™® < oo and Yox (Ima)* < oo and hence
by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by
Lemma 2.15, > y a exists and

Za = Z(Rea)Jr — Z(Rea)f +1 (Z (Ima)™ — Z(Ima)) .

X X X
Conversely, if )" y |a] = oo then, because |a| < |Rea| + [Imal, we must have
Z |Rea| = oo or Z Ima| =
X X
Thus it suffices to consider the case where a : X — R is a real function. Write
a=a" —a~ where
(2.10) at(z) = max(a(z),0) and a~ (z) = max(—a(zx),0).

Then |a| = a™ 4+ a~ and
oo:Z\a| :Za"’—l—Za_
X X X

which shows that either > a®™ = oo or )y a~ = co. Suppose, with out loss of
generality, that Yy a™ = oco. Let X' := {& € X : a(xz) > 0}, then we know that
>_x» @ = 00 which means there are finite subsets a;, C X’ C X suchthat >, a>n
for all n. Thus if & CC X is any finite set, it follows that lim, . > = 00,
and therefore > a can not exist as a number in R. &

anUa

Remark 2.18. Suppose that X = N and a : N — C is a sequence, then it is not
necessarily true that

(2.11) S a(n) = Y aln).

n=1 neN
This is because
oo N
Z a(n) = lim a(n)
N—oo
n=1 n=1

depends on the ordering of the sequence a where as ) _ya(n) does not. For
example, take a(n) = (—1)"/n then ) _yla(n)| = coie. Y ya(n) does not
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exist while > | a(n) does exist. On the other hand, if

Z|a |—Z|a )| < o0

neN
then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem for Sums). Suppose that f, :
X — C is a sequence of functions on X such that f(x) =lim,_,o fn(z) € C exists
for all x € X. Further assume there is a dominating function g : X — [0,00)
such that

(2.12) |fn(z)| < g(z) for allz € X andn € N

and that g is summable. Then

(2.13) dim Y fa(2) =) f()

zeX reX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in the
case where f is real. By Fatou’s Lemma,

Zg:l:f th 1nf (9 £ frn) <lim 1ang:|:fn
X

=Y g+lim inf (j:an> :
X n—oo X
Since liminf,,_,(—a,) = —limsup,,_, ., @y, we have shown,

liminf, o > f
£y pS gy T 2
ST WE WA et

lim sup an < Zf < lim 1nf an

n—oo

and therefore

This shows that lim " fnex1stb and is equal to ) f. m
n—oo

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that |f| < g
and in particular that f is summable. Given € > 0, let & CC X such that

ZQSE-

X\
Then for 8 CC X such that o C 3,

SNF=> "t =D fa)
B B B
B\ex
<Z‘f fn“"zzg

B\
< U ful +2e
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and hence that

Zf_z.f’n §Z|f_f’n|+2€'
B B o

Since this last equation is true for all such 8 CC X, we learn that

Zf*an §Z|f*fn|+2e
X X a

which then implies that

lim sup Zf*an < lim sup Z|f fnl + 2

n—oo n—oo
X X

= 2¢.

Because € > 0 is arbitrary we conclude that

Zf an

lim sup

n—oo

which is the same as Eq. (2.13). =

2.5. Tterated sums. Let X and Y be two sets. The proof of the following lemma
is left to the reader.

Lemma 2.20. Suppose that a : X — C is function and F C X is a subset such
that a(x) =0 for all x ¢ F. Show that ) . a exists iff Y\ a exists, and if the sums

exist then
Sa=Ya
X F

Theorem 2.21 (Tonelli’s Theorem for Sums). Suppose that a : X x Y — [0, o0,

then
2 =) D e=) )

XxXY
Proof. It suffices to show, by symmetry, that
2 =20
XXY
Let A CC X x Y. The for any o CC X and § CC Y such that A C a x 3, we have
2oas) a=3 ) as) ) as) ) a
axf a fB a Y X Y
ie. Y na <) ¢ >y a. Taking the sup over A in this last equation shows
ST P
XxY X Y

We must now show the opposite inequality. If >y, , a = oo we are done so
we now assume that a is summable. By Remark 2.8, there is a countable set
{(z},, )} ooy C X XY off of which a is identically 0.
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Let {yn},—, be an enumeration of {y,} ., then since a(z,y) = 0 if y ¢

{Wntozr s ey al@,y) = 2202, a(w,yy) for all € X. Hence

o0 N
S Y awy) = 3 Y alwp) = Y Jim S ate )
zeX yeyY zeX n=1 rzeX n=1
N
(2.14) = Nlim Z Z a(x, yn),
e zeX n=1

wherein the last inequality we have used the monotone convergence theorem with
Fy(z) := 22[:1 a(x,yn). If a« CC X, then

S aeu)= Y a< X

r€an=1 ax{yn 71:’71 XxXY

and therefore,

N
(2.15) ]\}gnoo Z Za(x,yn) < Z a.

zeX n=1 XXY

Hence it follows from Egs. (2.14) and (2.15) that

(2.16) Z Z a(z,y) < Z a

rzeX yey XxXY

as desired.

Alternative proof of Eq. (2.16). Let A = {2}, : n € N} and let {z,,},-, be an
enumeration of A. Then for x ¢ A, a(z,y) =0forall y € Y.

Given e > 0, let § : X — [0, 00) be the function such that } 0 = € and §(z) >0
for z € A. (For example we may define ¢ by 6(x,,) = €¢/2" for all n and é(x) = 0 if
x ¢ A.) For each z € X, let 8, CC X be a finite set such that

Y al@y) <Y alz,y) + ().

yeyY YEPBs
Then
ddasdy Y alwy) + ) b)
X Y ze€X yEPBy rzeX
S S awp)re= sp Y Y alwg) e
2EX yEPa aCCX en yes,
(2.17) <) a+te
XxY

wherein the last inequality we have used
YD ITTIED SIED B
€ yEPB, A XxY
with
Ay ={(z,y) e X xY:z€aandy€ f,} CX xY.
Since € > 0 is arbitrary in Eq. (2.17), the proof is complete. m
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Theorem 2.22 (Fubini’s Theorem for Sums). Now suppose that a : X xY — C
is a summable function, i.e. by Theorem 2.21 any one of the following equivalent
conditions hold:

(1) Yoxxy lal < oo,
(2) x> ylal <ooor

(3) Xy doxlal <oc.
> azz;a:;;a.

Then
XXY X

Proof. If a : X — R is real valued the theorem follows by applying Theorem
2.21 to a* — the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the real and
imaginary parts of a. m

2.6. (P — spaces, Minkowski and Holder Inequalities. In this subsection, let
X — (0,00] be a given function. Let F denote either C or R. For p € (0, 00)
and f: X — T, let

11l = O 1f (@) [Pr(a))/”
zeX
and for p = oo let

[flloc = sup {[f(2)]: 2 € X}.
Also, for p > 0, let
() ={f: X = F:[|fll, < oo}
In the case where p(z) =1 for all z € X we will simply write ¢7(X) for ¢P(u).
Definition 2.23. A norm on a vector space L is a function ||-|| : L — [0, 00) such
that

(1) (Homogeneity) ||Af|| = I\ ||f|| for all A € F and f € L.
(2) (Triangle inequality) |[f + gl < ||l + llg]| for all f,g € L.
(3) (Positive definite) || f|]| = 0 implies f = 0.

A pair (L,||-||) where L is a vector space and ||-|| is a norm on L is called a
normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 2.24. Forp € [1,00], (¢P(w), ] - |lp) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 2.30 below. m

2.6.1. Some inequalities.

Proposition 2.25. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = co. Let g = f~* and
for s,t >0 let (

F(s) = /08 f(s)ds" and G(t) = /0 g(thdt'.

Then for all s,t > 0,
st < F(s)+ G(t)
and equality holds iff t = f(s).
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Proof. Let
As i ={(o,7):0< 7 < f(o) for 0 <o < s} and
By :={(0,7):0< 0 <g(r) for 0 <7 <t}

then as one sees from Figure 2, [0, s] x [0,¢] C A5 U B;. (In the figure: s =3, t =1,
Aj is the region under ¢t = f(s) for 0 < s < 3 and Bj is the region to the left of the
curve s = g(t) for 0 < ¢ < 1.) Hence if m denotes the area of a region in the plane,
then

st =m([0,s] x [0,]) < m(As) +m(B:) = F(s) + G(¢).

As it stands, this proof is a bit on the intuitive side. However, it will become rig-
orous if one takes m to be Lebesgue measure on the plane which will be introduced
later.

We can also give a calculus proof of this theorem under the additional assumption
that f is C'. (This restricted version of the theorem is all we need in this section.)
To do this fix t > 0 and let

h(s) = st — F(s) = /O (= f(0))do.

If o > g(t) = f~1(t), then t — f(0) < 0 and hence if s > g(t), we have

S

s g(t)
h(s) = / (t— f(0))do = / (t— f(0))do + / (= S)io

g(t)
< / (t— f(0))do = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some point
s € (0,t] and hence at a point where 0 = h/(s) =t — f(s). The only solution to this
equation is s = g(t) and we have thus shown

g(t)
st— F(s) = h(s) < / (t - f(0))do = h(g(t))

with equality when s = g(¢). To finish the proof we must show fog(t) (t— f(o))do =
G(t). This is verified by making the change of variables ¢ = ¢(7) and then inte-
grating by parts as follows:

Definition 2.26. The conjugate exponent g € [1,00] to p € [1,00] is g := ﬁ with
the convention that ¢ = oo if p = 1. Notice that ¢ is characterized by any of the
following identities:

1 1 q

(2.18) —+—:1,1+—=q,p—£=1andq(p—1)=p.
P q p q
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FIGURE 2. A picture proof of Proposition 2.25.

Lemma 2.27. Let p € (1,00) and q := % € (1,00) be the conjugate exponent.
Then

sl P
st<—+ — forall s,t >0
q p
with equality if and only if s = tP.

Proof. Let F(s) = % for p> 1. Then f(s) = sP~! =t and g(t) = 7T = a1
wherein we have used ¢ — 1 =p/(p—1)— 1 =1/(p—1). Therefore G(t) = t%/q
and hence by Proposition 2.25,

with equality iff t = s?~!. m
Theorem 2.28 (Holder’s inequality). Let p,q € [1,00] be conjugate exponents. For
all f,g: X —F,
(2.19) 1fglle < 11l - llglle-
If p € (1,00), then equality holds in Eq. (2.19) iff

PN 9]

()P =G5
1f1lp lgllq

Proof. The proof of Eq. (2.19) for p € {1,00} is easy and will be left to
the reader. The cases where ||f|l, = 0 or oo or ||g||, = 0 or co are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 < |Ifllg, llglly < oo. Letting s = |f|/|| fll, and ¢t = |g|/||g]lq in Lemma 2.27 implies

fol  _ 1 1fP 1 gl
Ifllpllglle = 2 1A q llglle
Multiplying this equation by p and then summing gives
el 11
Ifllpllglls — P q
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with equality iff

g |f1Pt g | fIP/
=07 = = = = 19l = llgllglLf1P-
lglle 718 lglle 17117

Definition 2.29. For a complex number )\ € C, let

2 i AN#£0
Sgn(A):{ 0 it A—o.

Theorem 2.30 (Minkowski’s Inequality). If 1 <p < oo and f,g € (P(u) then

1f +gllp < I£1lp + llgllp,
with equality iff
sgn(f) = sgn(g) when p =1 and
f =cg for some ¢ > 0 when p € (1,00).

Proof. For p=1,
If+alle =D 1 +aln <Y (flu+lgl) =D 1fun+ D lglu
X X X X

with equality iff
|fl+ 19l =1f+g] <= sgn(f)=sgn(g).
For p = o0,
1f+9lleo = sup If+gl < S;p(lfl +gl)
< s;plf\ +S§plg| = [|flloc + llglloo-

Now assume that p € (1, 00). Since

|f +gl” < 2max (|f],]g]))" = 2P max (|f[", [g]") <27 (|f]” +1g]")
it follows that
I1f + glls <22 (|15 + lgll) < oc.

The theorem is easily verified if || f + g||, = 0, so we may assume || f + g, > 0.
Now

(2.20) \f+glP =1 +allf + 9P < (f1 + gDl f +glP*

with equality iff sgn(f) = sgn(g). Multiplying Eq. (2.20) by p and then summing
and applying Holder’s inequality gives

SUF+alPu <Y 1A F+gP D 1ol If + 9l 'n
X X X

(2.21) < (1l + lgllp) 1S+l Hlg

with equality iff
< /| ),,_( [/ +gl" >q_< 9] )p
[1£1lp 11+ 91"~ g gl

and sgn(f) = sgn(g).
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By Eq. (2.18), ¢(p — 1) = p, and hence

(2.22) IF+ P 8= (1F+ 9P =Y If + 9"
X X

Combining Egs. (2.21) and (2.22) implies

(2:23) 17+ 91 < 1705 + g1/ + gl lf + o1/

with equality iff
sgn(f) = sgn(g) and

|f] )p_ |f+gl? _( lg] >p
24 _ _ ,
(2.24) (vm 7o~ Tl

Solving for || f + g¢||, in Eq. (2.23) with the aid of Eq. (2.18) shows that || f + g||, <
Il fllp + 1lgll, with equality iff Eq. (2.24) holds which happens iff f = cg with ¢ > 0.
]

2.7. Exercises .

2.7.1. Set Theory. Let f: X — Y be a function and {4;};c; be an indexed family
of subsets of Y, verify the following assertions.

Exercise 2.1. (N;cr4;)¢ = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (Ujer4;) = Nicr(B \ 4;).
Exercise 2.3. f1(UjerA;) = Uier f1(A).

Exercise 2.4. f~1(NierA;) = Nierf 1 (A;).

Exercise 2.5. Find a counter example which shows that f(CND) = f(C)N f(D)
need not hold.

Exercise 2.6. Now suppose for each n € N = {1,2,...} that f, : X — Risa
function. Let
D={zeX: lim f,(z) =400}

show that
(2.25) D =N UNe Mpsn{z € X @ fir(z) > M},
Exercise 2.7. Let f, : X — R be as in the last problem. Let
C={zxeX: nILH;O fn(x) exists in R}.

Find an expression for C similar to the expression for D in (2.25). (Hint: use the
Cauchy criteria for convergence.)
2.7.2. Limit Problems.
Exercise 2.8. Prove Lemma 2.15.
Exercise 2.9. Prove Lemma 2.20.

Let {a,}22,; and {b,}22; be two sequences of real numbers.
Exercise 2.10. Show liminf,, o (—a,) = —limsup,,_, . an.

Exercise 2.11. Suppose that limsup,_,. a, = M € R, show that there is a
subsequence {an, }32, of {a,}ne, such that limy_. an, = M.
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Exercise 2.12. Show that
(2.26) lim sup(ay, + by,) < limsup a,, + limsup b,

provided that the right side of Eq. (2.26) is well defined, i.e. no oo — 0o or —oco+ 00
type expressions. (It is OK to have 0o + 0o = 00 or —00 — 00 = —00, etc.)
Exercise 2.13. Suppose that a,, > 0 and b, > 0 for all n € N. Show

(2.27) lim sup(ay,by,) < limsup a,, - limsup by,

n—oo n—oo n—oo

provided the right hand side of (2.27) is not of the form 0 - co or oo - 0.
2.7.3. Dominated Convergence Theorem Problems.

Notation 2.31. For ugp € R™ and ¢ > 0, let B, () := {z € R : |x — ug| < §} be
the ball in R™ centered at ug with radius 6.

Exercise 2.14. Suppose U C R™ is a set and ug € U is a point such that
U N (Byuy(6) \ {uo}) # 0 for all § > 0. Let G : U \ {up} — C be a function on
U\ {ug}. Show that lim, .., G(u) exists and is equal to A € C,! iff for all se-

quences {u,},-, C U\ {up} which converge to ug (i.e. lim, oo u, = ug) we have

lim,, 00 G(uyn) = A.
Exercise 2.15. Suppose that Y isaset, U CR"isaset,and f:U XY — Cisa
function satisfying:

(1) For each y € Y, the function u € U — f(u,y) is continuous on U.>

(2) There is a summable function ¢ : ¥ — [0, 00) such that

|f(u,y)] < g(y) forall y € Y and u € U.

Show that
(2.28) F(u) = f(u,y)
yey
is a continuous function for u € U.
Exercise 2.16. Suppose that Y is a set, J = (a,b) C R is an interval, and f :
J xY — C is a function satisfying:

(1) For each y € Y, the function u — f(u,y) is differentiable on J,
(2) There is a summable function g : Y — [0, 00) such that

<g(y) for all y € Y.

0
%f(lh y)

(3) There is a ug € J such that »° y |f(uo,y)| < oco.
Show:
a) for all u € J that 3° y |f(u,y)| < oo.

'More explicitly, limy v, G(u) = A means for every every € > 0 there exists a § > 0 such that

|G(u) — A| < € whenerver u € U N (Byy(9) \ {uo})-

2To say g := f(-,y) is continuous on U means that g : U — C is continuous relative to the
metric on R” restricted to U.
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b) Let F(u) := >, cy f(u,y), show F is differentiable on J and that

u):za—

yeY

(Hint: Use the mean value theorem.)

Exercise 2.17 (Differentiation of Power Series). Suppose R > 0 and {a,},, is
a sequence of complex numbers such that Y7 |a,|r" < oo for all r € (0, R).

Show, using Exercise 2.16, f(z) := Y .~ ,a,2z" is continuously differentiable for
€ (—R, R) and
oo oo
"(z) = Znanx"_l = Znanx”_
n=0 n=1
Exercise 2.18. Let {a,},. __ be a summable sequence of complex numbers, i.e.

S o lan| < oo. For t >0 and x € R, define

— 2
§ ane tn eznx’

where as usual e = cos(x) + isin(z). Prove the following facts about F :

(1) F(t,x) is continuous for (¢,x) € [0,00) xR. Hint: Let Y = Z and u = (¢, z)
and use Exercise 2.15.

(2) OF(t,x)/0t, OF (t,x)/0x and 9*F(t,z)/0x? exist for t > 0 and z € R.
Hint: Let Y = Z and u = ¢ for computing 0F (¢t,z)/0t and v = «x for
computing OF (t,z)/0x and 0*F(t,r)/0x2. See Exercise 2.16.

(3) F satisfies the heat equation, namely

OF (t,z)/0t = 0*°F(t,z)/0x* for t > 0 and = € R.
2.7.4. Inequalities.

Exercise 2.19. Generalize Proposition 2.25 as follows. Let a € [—00,0] and f : RN
[a,00) — [0,00) be a continuous strictly increasing function such that lim f(s) =

oo, fla) = 0if a > —oo or limg_._ f(s) = 0 if a = —o0. Also 157;00: 7
b= f(0) > 0,
s) = / ) f(s)ds' and G(t) = / tg(t’)dt’-
Then for all s,t > 0, ’ 0
< F(s)+ G(t v b) < F(s) + G(t)

and equality holds iff ¢ = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+(tVv1)In(tvl) —(tvl) <e’+tlnt—t.
Hint: Refer to the following pictures.
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F1GUuRrRE 3. Comparing areas when t > b goes the same way as in
the text.
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FIGURE 4. When ¢ < b, notice that g(¢t) < 0 but G(¢) > 0. Also
notice that G(t) is no longer needed to estimate st.

3. METRIC, BANACH AND TOPOLOGICAL SPACES

3.1. Basic metric space notions.

Definition 3.1. A function d: X x X — [0,00) is called a metric if
(1) (Symmetry) d(x,y) = d(y,z) for all x,y € X
(2) (Non-degenerate) d(z,y) =0if and only if s =y € X
(3) (Triangle inequality) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.
As primary examples, any normed space (X, ||-||) is a metric space with d(z,y) :=
lx — y|| . Thus the space ¢P(u) is a metric space for all p € [1, 00]. Also any subset

of a metric space is a metric space. For example a surface ¥ in R? is a metric space
with the distance between two points on ¥ being the usual distance in R3.

Definition 3.2. Let (X, d) be a metric space. The open ball B(z,d) C X centered
at x € X with radius 0 > 0 is the set

B(z,0) :={y € X : d(z,y) < ¢}.
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We will often also write B(x,d) as B, (J). We also define the closed ball centered
at x € X with radius 6 > 0 as the set C,(9) := {y € X : d(z,y) < d}.

Definition 3.3. A sequence {z,},, in a metric space (X, d) is said to be conver-
gent if there exists a point € X such that lim, . d(z,z,) = 0. In this case we
write lim,,_,oc £, = « of ,, — = as n — oo.

Exercise 3.1. Show that = in Definition 3.3 is necessarily unique.

Definition 3.4. A set F C X is closed iff every convergent sequence {z,} -,
which is contained in F has its limit back in F. A set V' C X is open iff V¢ is
closed. We will write F' C X to indicate the F' is a closed subset of X and V C, X
to indicate the V is an open subset of X. We also let 75 denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {F}},_, are
closed sets then U}_, Fj, is closed. (By taking complements, this shows that the
collection of open sets, 74, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset A C X, let da(z) = inf{d(x,a)|la € A},
then

(3.1) |lda(z) = da(y)| < d(z,y) Va,y € X.
Moreover the set F, = {x € X|da(x) > €} is closed in X.
Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) + d(y,a).
Take the inf over a in the above equation shows that
da(z) < d(z,y) +daly) Vz,y € X.

Therefore, d4(x) —da(y) < d(z,y) and by interchanging = and y we also have that
da(y) — da(z) < d(z,y) which implies Eq. (3.1). Now suppose that {z,} -, C F.
is a convergent sequence and = = lim,,_,, z, € X. By Eq. (3.1),

e—da(z) <da(zp)—da(z) <d(z,z,) — 0asn — oo,
so that € < da(z). This shows that « € F, and hence F is closed. m
Corollary 3.6. The function d satisfies,
|d(z,y) —d(«',y")| < d(y,y') + d(z,2")
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 3.5 for single point sets and the triangle inequality for the
absolute value of real numbers,

|d($,y) - d(l'/,y/)| < ‘d(.’]ﬁ,y) - d($,y/)| + ‘d(.’E,y/) - d({L‘/,yl)‘
< d(y, y/) + d<x7 xl)'
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Exercise 3.3. Show that V' C X is open iff for every x € V there is a § > 0 such
that B, (0) C V. In particular show B,(d) is open for all z € X and ¢ > 0.

Lemma 3.7. Let A be a closed subset of X and F, C X be as defined as in Lemma
3.5. Then F. T A¢ ase | 0.

Proof. It is clear that da(xz) =0 for x € A so that F, C A° for each ¢ > 0 and
hence UesoF. C A°. Now suppose that z € A¢ C, X. By Exercise 3.3 there exists
an € > 0 such that By(e) C A, i.e. d(z,y) > € for all y € A. Hence z € F, and we
have shown that A C UcsoF.. Finally it is clear that F, C F., whenever ¢/ <e. m

Definition 3.8. Given a set A contained a metric space X, let A C X be the
closure of A defined by

A={zeX:3{z,} CA> 2= lim z,}.
n—00
That is to say A contains all limit points of A.
Exercise 3.4. Given A C X, show A is a closed set and in fact
(3.2) A=n{F:ACF C X with F closed}.
That is to say A is the smallest closed set containing A.

3.2. Continuity. Suppose that (X,d) and (Y, p) are two metric spaces and f :
X — Y is a function.

Definition 3.9. A function f: X — Y is continuous at x € X if for all € > 0 there
is a > 0 such that

d(f(z), f(2")) < € provided that p(z,z") < 4.
The function f is said to be continuous if f is continuous at all points = € X.
The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that (X, p) and (Y, d) are two metric
spaces and f : X — Y is a function. Then the following are equivalent:
f s continuous.

(1)
(2) fFUV) €T, for allV € 1y, ice. f7H(V) is open in X if V is open in Y.
(3) f~YC) is closed in X if C is closed in'Y.
(4) For all convergent sequences {xzn} C X, {f(zn)} is convergent in' Y and
lim f(z,)=f ( lim xn) .

Proof. 1. = 2. For all x+ € X and € > 0 there exists 6 > 0 such that
d(f(z), f(z") < eif p(z,z") < 4. ie.
B, (8) C f~H(By(e)

Soif V C,Y and z € f~!(V) we may choose € > 0 such that Bj,(€) C V then

By (8) € fH By (e) C f7H(V)

showing that f~1(V) is open.
2. = 1. Let ¢ > 0 and 2 € X, then, since f~!(Bj)(€)) Co X, there exists § > 0
such that B, (8) C f~H(By)(€)) i-e. if p(z,2’) < & then d(f(2'), f(z)) < e
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2. <= 3. If C is closed in Y, then C¢ C, Y and hence f~(C¢) C, X. Since
f7HCe) = (f74(C))°, this shows that f~!(C) is the complement of an open set
and hence closed. Similarly one shows that 3. = 2.

1. = 4. If f is continuous and z,, — x in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2’)) < € when p(x,2’) < §. There exists an N > 0 such that
p(x,x,) < § for all n > N and therefore d(f(x), f(z,)) < € for all n > N. That is
to say lim, o f(2,) = f(x) as n — oo.

4. = 1. We will show that not 1. = not 4. Not 1 implies there exists ¢ > 0,
a point € X and a sequence {z,},., C X such that d(f(z), f(z,)) > € while
p(z,x,) < . Clearly this sequence {z,,} violates 4. m

There is of course a local version of this lemma. To state this lemma, we will
use the following terminology.

Definition 3.11. Let X be metric space and « € X. A subset A C X is a neigh-
borhood of x if there exists an open set V' C, X such that x € V C A. We will
say that A C X is an open neighborhood of z if A is open and x € A.

Lemma 3.12 (Local Continuity Lemma). Suppose that (X, p) and (Y,d) are two
metric spaces and f: X — Y is a function. Then following are equivalent:
(1) f is continuous as z € X.
(2) For all neighborhoods A C'Y of f(z), f~1(A) is a neighborhood of x € X.
(3) For all sequences {xzn} C X such that x = lim, oo @y, {f(xn)} is conver-
gent in'Y and

lim f(z,)=f ( lim xn) .

n—oo n—oo

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.

Example 3.13. The function d4 defined in Lemma 3.5 is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y, ) is continuous for
each r € X.

Exercise 3.5. Show the closed ball C,(d) := {y € X : d(z,y) < d} is a closed
subset of X.

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.14. A collection of subsets 7 of X is a topology if

1) 0, Xer
(2) 7 is closed under arbitrary unions, i.e. if V, € 7, for a € I then |J V, € 7.
acl
(3) 7 is closed under finite intersections, i.e. if Vq,...,V,, € 7 then ViN---NV,, €
T

A pair (X, 7) where 7 is a topology on X will be called a topological space.

Notation 3.15. The subsets V' C X which are in 7 are called open sets and we
will abbreviate this by writing V' C, X and the those sets F' C X such that F“ € 7
are called closed sets. We will write F' C X if F' is a closed subset of X.

Example 3.16. (1) Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 7, is a topology, see Exercise
3.2.
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(2) Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {0, X} . In this topology only the empty set and X are open
(closed).

(3) Let X = {1,2,3}, then 7 = {0, X,{2,3}} is a topology on X which does
not come from a metric.

(4) Againlet X = {1,2,3}. Then 7 = {{1},{2,3},0, X }. is a topology, and the
sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and {1,3} are
neither open nor closed.

FI1GURE 5. A topology.

Definition 3.17. Let (X, 7) be a topological space, A C X and i4 : A — X be
the inclusion map, i.e. i4(a) = a for all @ € A. Define
Ta=i (1) ={ANV :Ver},
the so called relative topology on A.
Notice that the closed sets in Y relative to Ty are precisely those sets of the form

C'NY where C is close in X. Indeed, B C Y is closed iff Y\ B =Y NV for some
V € 7 which is equivalent to B=Y \ (Y NV) =Y NV for some V € 7.

Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d) is
a metric space and 7 = 7 is the topology coming from d, then (74) 4 is the topology
induced by making A into a metric space using the metric d|ax 4.

Notation 3.18 (Neighborhoods of ). An open neighborhood of a point z € X
is an open set V' C X such that © € V. Let 7, = {V € 7 : € V} denote the
collection of open neighborhoods of z. A collection 1 C 7, is called a neighborhood
base at x € X if for all V € 7, there exists W € n such that W C V.

The notation 7, should not be confused with
Ty =ign (1) ={}nV:Vert={0{z}}.

When (X, d) is a metric space, a typical example of a neighborhood base for z is
1 = {B.(€) : € € D} where D is any dense subset of (0, 1].

Definition 3.19. Let (X, 7) be a topological space and A be a subset of X.
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(1) The closure of A is the smallest closed set A containing A4, i.e.
A=n{F:ACFrCX}.

(Because of Exercise 3.4 this is consistent with Definition 3.8 for the closure
of a set in a metric space.)
(2) The interior of A is the largest open set A° contained in A, i.e.

A°=u{Ver:VCA}.
(3) The accumulation points of A is the set
acc(A) ={z e X: VNA\{z} #0for all V € 7, }.

(4) The boundary of A is the set 9A := A\ A°.
(5) A is a neighborhood of a point x € X if x € A°. This is equivalent to
requiring there to be an open neighborhood of V' of x € X such that V' C A.

Remark 3.20. The relationships between the interior and the closure of a set are:

(A% =({Ve:VerandV C A} =({C:Cisclosed C D A°} = A°

and similarly, (4)¢ = (A°)°. Hence the boundary of A may be written as
(3.3) 0A=A\A° = AN (A°)° = An Ac,
which is to say 0A consists of the points in both the closure of A and A°.

Proposition 3.21. Let A C X and z € X.

(1) If VCo X and ANV =0 then ANV = 0.

(2) z€e Aff VNAAD for allV € 1y,

(B) €A VNA£D and VN A £ for all V € 7.
4)

(4) A= AUacc(A).
Proof. 1. Since ANV = ), A C V¢ and since V¢ is closed, A C V¢. That is to
say ANV = 0.

2. By Remark 3.20°, A = ((A°)°)° so z € A iff z ¢ (A°)° which happens iff
VZAforall Ve, ie it VNA#Qforall Ve r,.

3. This assertion easily follows from the Item 2. and Eq. (3.3).

4. Ttem 4. is an easy consequence of the definition of acc(A) and item 2. m

Lemma 3.22. Let ACY C X, AY denote the closure of A in'Y" with its relative
topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using the comments after Definition 3.17,
AY =n{BCY:AcCB}=n{CnY:AcCCC X}
=YNn(n{C:AcCrC X})=YnA~.
Alternative proof. Let x € Y then z € AY iff forall V € 7Y, VN A # (). This

happens iff for all U € X UNYNA=UNA# () which happens iff + € AX. That
is tosay AY = AXNY. m

3Here is another direct proof of item 2. which goes by showing z ¢ A iff there exists V € 7
such that VN A=0. Iff ¢ Athen V= Ac €7, and VNA CVNA=0. Conversely if there
exists V € 7, such that VN A =0 then by Item 1. ANV = 0.
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Definition 3.23. Let (X, 7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if U/ is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact.

Proposition 3.24. Suppose that K C X is a compact set and F C K is a closed
subset. Then F is compact. If {K;}_, is a finite collections of compact subsets of
X then K = U}, K; is also a compact subset of X.

Proof. Let U C 7 is an open cover of F, then YU {F*°} is an open cover of K.
The cover YU {F°} of K has a finite subcover which we denote by UyU {F*°} where
Uy CC U. Since F'N F° = (), it follows that Uy is the desired subcover of F.

For the second assertion suppose U C 7 is an open cover of K. Then U covers
each compact set K; and therefore there exists a finite subset U; CC U for each i
such that K; C Ul;. Then Uy := U} U; is a finite cover of K. m

Definition 3.25. We say a collection F of closed subsets of a topological space
(X, 7) has the finite intersection property if NFy # () for all 7y CC F.

The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.26. A topological space X is compact iff every family of closed sets
F C P(X) with the finite intersection property satisfies [\ F # 0.

Proof. (=) Suppose that X is compact and F C P(X) is a collection of closed
sets such that (| F = (. Let

U=F={C°:CeFycCr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fy = U§ CC F,
then NFy = 0 so that F does not have the finite intersection property.

(<) If X is not compact, there exists an open cover U of X with no finite sub-
cover. Let F = U°, then F is a collection of closed sets with the finite intersection
property while (\F =0. =

Exercise 3.7. Let (X, 7) be a topological space. Show that A C X is compact iff
(A,74) is a compact topological space.

Definition 3.27. Let (X, 7) be a topological space. A sequence {z,},., C X
converges to a point z € X if for all V € 7, x, € V almost always (abbreviated
a.a.),l.e. #({n:x, ¢ V}) < co. We will write z,, — z asn — oo or lim, oo T, = &
when x,, converges to z.

Example 3.28. Let Y = {1,2,3} and 7 = {Y, 0, {1,2},{2,3},{2}} and y,, = 2 for
all n. Then y,, — y for every y € Y. So limits need not be unique!

Definition 3.29. Let (X,7x) and (Y, 7y) be topological spaces. A function f :
X — Y is continuous if f~!(1y) C 7x. We will also say that f is 7x /7y —
continuous or (7x,7y) — continuous. We also say that f is continuous at a point
x € X if for every open neighborhood V' of f(z) there is an open neighborhood U
of z such that U C f~1(V). See Figure 6.

Definition 3.30. A map f: X — Y between topological spaces is called a home-
omorphism provided that f is bijective, f is continuous and f~! : Y — X is
continuous. If there exists f : X — Y which is a homeomorphism, we say that
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F1GURE 6. Checking that a function is continuous at =z € X.

X and Y are homeomorphic. (As topological spaces X and Y are essentially the
same.)

Exercise 3.8. Show f : X — Y is continuous iff f is continuous at all points
z e X.

Exercise 3.9. Show f : X — Y is continuous iff f~1(C) is closed in X for all
closed subsets C of Y.

Exercise 3.10. Suppose f: X — Y is continuous and K C X is compact, then
f(K) is a compact subset of Y.

Exercise 3.11 (Dini’s Theorem). Let X be a compact topological space and f, :
X — [0,00) be a sequence of continuous functions such that f,(z) | 0 as n — oo
for each z € X. Show that in fact f,, | 0 uniformly in z, i.e. sup,cx fn(z) | 0 as
n — oo. Hint: Given e > 0, consider the open sets V,, := {x € X : f,(z) < €}.

Definition 3.31 (First Countable). A topological space, (X, 7), is first countable
iff every point x € X has a countable neighborhood base. (All metric space are
first countable.)

When 7 is first countable, we may formulate many topological notions in terms
of sequences.

Proposition 3.32. If f : X — Y is continuous at x € X andlim, .z, =z € X,
then lim, o f(z,) = f(x) € Y. Moreover, if there exists a countable neighborhood
base n of x € X, then f is continuous at x iff lim f(z,) = f(x) for all sequences

{zn}o2, C X such that x, — x as n — oo.

Proof. If f: X — Y is continuous and W € 7y is a neighborhood of f(z) € Y,
then there exists a neighborhood V' of z € X such that f(V) C W. Since z,, — z,
x, € V a.a. and therefore f(x,) € f(V) C W a.a., ie. f(z,) — f(z)asn — oo.

Conversely suppose that n = {W,,}52, is a countable neighborhood base at = and
HILH;O f(zn) = f(z) for all sequences {z,} -, C X such that z,, — z. By replacing
W, by Wi N ---N W, if necessary, we may assume that {W,} - is a decreasing
sequence of sets. If f were not continuous at z then there exists V' € 74, such
that « ¢ f~1(V)". Therefore, W,, is not a subset of f~1(V) for all n. Hence for
each n, we may choose x, € W,, \ f~1(V). This sequence then has the property
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that z,, — x as n — oo while f(x,) ¢ V for all n and hence lim,, ., f(z,) # f(2).
n

Lemma 3.33. Suppose there exists {xn},., C A such that x, — x, then x € f_l_.
Conversely if (X,T) is a first countable space (like a metric space) then if x € A
there exists {x,},., C A such that z, — x.

Proof. Suppose {z,}-, C A and z,, — = € X. Since A° is an open set, if
x € A° then z,, € A° C A° a.a. contradicting the assumption that {z,} -, C A.
Hence x € A.

For the converse we now assume that (X, 7) is first countable and that {V,,} | is
a countable neighborhood base at = such that V; D Vo D V3 D .... By Proposition
3.21, 2 € Aif VNA# (Qforall V € 7,. Hence 2 € A implies there exists x,, € V,,NA
for all n. It is now easily seen that x, — x asn — co. m

Definition 3.34 (Support). Let f: X — Y be a function from a topological space
(X, 7x) to a vector space Y. Then we define the support of f by

supp(f) :={z € X : f(z) # 0},

a closed subset of X.

Example 3.35. For example, let f(x) = sin(x)1jg 4 (z) € R, then
{f #0} = (0,4m) \ {r, 27, 37}

and therefore supp(f) = [0, 4].

Notation 3.36. If X and Y are two topological spaces, let C(X,Y) denote the
continuous functions from X to Y. If Y is a Banach space, let

BO(X,Y) :={f e C(X,Y): Sup 1f(@)lly < oo}

and
C.(X,Y):={f € C(X,Y) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

The next result is included for completeness but will not be used in the sequel
so may be omitted.

Lemma 3.37. Suppose that f : X — Y is a map between topological spaces. Then
the following are equivalent:

(1) f is continuous.

(2) f(A) C f(A) forall AC X

(3) f~Y(B) C f~YB) forall BC X.
Proof. If f is continuous, then f~! (f(A)) is closed and since A C f=1 (f(A)) C
ft (f(A)) it follows that A C f~! (f(A)) . From this equation we learn that

f(A) C f(A) so that (1) implies (2) Now assume (2), then for B C Y (taking
A= f~1(B)) we have

FUHB)) C f(fHB) C f(F1(B) c B
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and therefore
(3.4) f~H(B) c f1(B).

This shows that (2) implies (3) Finally if Eq. (3.4) holds for all B, then when B is
closed this shows that

fUB) C fU(B) = f7Y(B) € f~1(B)

which shows that

f7H(B) = f1(B).
Therefore f~1(B) is closed whenever B is closed which implies that f is continuous.
n

3.4. Completeness.

Definition 3.38 (Cauchy sequences). A sequence {z,} -, in a metric space (X, d)
is Cauchy provided that
lim d(z,,zmn) =0.

m,n—0o0

Exercise 3.12. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(z,y) = |z — y|. Choose a sequence {z,}°-, C Q which converges to v/2 € R,
then {z,} -, is (Q,d) — Cauchy but not (Q,d) — convergent. The sequence does
converge in R however.

Definition 3.39. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.13. Let (X, d) be a complete metric space. Let A C X be a subset of
X viewed as a metric space using d|ax 4. Show that (A, d|ax) is complete iff A is
a closed subset of X.

Definition 3.40. If (X, ||-||) is a normed vector space, then we say {z,} —, C X
is a Cauchy sequence if lim, o0 ||Zm — 25| = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,},—, C X which is Cauchy is
convergent where {z,}.—, C X is convergent iff there exists z € X such that
limy,, 00 ||&n, — 2| = 0. As usual we will abbreviate this last statement by writing
lim,, o T, = T.

Lemma 3.41. Suppose that X is a set then the bounded functions £>°(X) on X is
a Banach space with the norm

Il =1l fllee = sup [f(2)].
reX

Moreover if X is a topological space the set BC(X) C £°(X) = B(X) is closed
subspace of £°(X) and hence is also a Banach space.

Proof. Let {f,},—, C ¢*°(X) be a Cauchy sequence. Since for any = € X, we
have

(35) |fn(~73) - fm(x)| < an - meOO
which shows that {f,(z)},—, C F is a Cauchy sequence of numbers. Because F

(F =R or C) is complete, f(z) := lim, . fn(x) exists for all z € X. Passing to
the limit » — oo in Eq. (3.5) implies

|f(x) = fm(2)] < limfggo Il fn = finlloo
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and taking the supremum over x € X of this inequality implies

If = fmlloe <lim sup ||fn — finlloo — 0 as m — o0
n—oo

showing f,, — f in £>°(X).

For the second assertion, suppose that {f,}.., C BC(X) C £*°(X) and f,, —
f € £°°(X). We must show that f € BC(X), i.e. that f is continuous. To this end
let x,y € X, then

[f(@) = fF)l < (@) = fu(@)| + [fu(2) = fu()] + [ fn(y) = F(y)]
Thus if € > 0, we may choose n large so that 2| f — f,||, < €/2 and then for this
n there exists an open neighborhood V, of z € X such that |f,(z) — fn(y)] < €/2

for y € V. Thus |f(z) — f(y)| < € for y € V, showing the limiting function f is
continuous. ®

Remark 3.42. Let X be a set, Y be a Banach space and ¢*°(X,Y) denote
the bounded functions f : X — Y equipped with the norm ||f|| = [|f|l. =
supyex || f(2)]ly . If X is a topological space, let BC(X,Y) denote those f €
¢>*(X,Y) which are continuous. The same proof used in Lemma 3.41 shows that
¢>°(X,Y) is a Banach space and that BC(X,Y) is a closed subspace of {*(X,Y).

Theorem 3.43 (Completeness of P(u)). Let X be a set and p: X — (0,00] be a
given function. Then for any p € [1, 00, (€P(n), |Ill,) is a Banach space.

Proof. We have already proved this for p = co in Lemma 3.41 so we now assume
that p € [1,00). Let {f},—; C P(u) be a Cauchy sequence. Since for any x € X,

1
|fn(2) = fin(2)] < m .frn — mep — 0 asm,n — o0

it follows that {f,(z)},—, is a Cauchy sequence of numbers and f(z) :=
lim,, 0o frn(x) exists for all z € X. By Fatou’s Lemma,

Ifn = fllp =D g lim inf |fy = fnl? < T inf Y e |fo = finl?
X X
= lim inf|\fn—fm\|§—>0asn—>oo.

This then shows that f = (f — fn)+ fn € €P(u) (being the sum of two P — functions)
ep
and that f, — f. =

Example 3.44. Here are a couple of examples of complete metric spaces.
(1) X =R and d(z,y) = |z — y|-
() X = B and dlz.) = o =yl = Sy 01 =00
(3) X =¢P(u) for p € [1,00] and any weight function p.
(4) X = C(]0,1],R) — the space of continuous functions from [0,1] to R and
d(f,g) = max,cpo,1] | f(t) — g(t)|. This is a special case of Lemma 3.41.
(5) Here is a typical example of a non-complete metric space. Let X =

C([0,1],R) and
0= [ 110 - g0 at
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3.5. Compactness in Metric Spaces. Let (X, p) be a metric space and let
Bi(€) = Bu(e) \ {z}.

Definition 3.45. A point x € X is an accumulation point of a subset £ C X if
0#ENV\{z} for all V C, X containing x.

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.46. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

(1) z € X is an accumulation point of E.

(2) Bl(e)NE#D for all € > 0.

(3) By(e) N E is an infinite set for all € > 0.

(4) There exists {xyp},—, C E\ {z} with lim, . z,, = .

Definition 3.47. A metric space (X, p) is said to be € — bounded (e > 0) provided
there exists a finite cover of X by balls of radius e. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.48. Let X be a metric space. The following are equivalent.
(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(¢) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b= ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists E C X, such
that #(F) = oo and E has no accumulation points. Then for all z € X there exists
d; > 0 such that V,, := B,(0,) satisfies (V, \ {z})NE = 0. Clearly V = {V,.} . is
a cover of X, yet V has no finite sub cover. Indeed, for each x € X, V, N E consists
of at most one point, therefore if A CC X, Uzcp V. can only contain a finite number
of points from E, in particular X # U,ea V. (See Figure 7.)

FIGURE 7. The construction of an open cover with no finite sub-cover.

(b = ¢) To show X is complete, let {z,} -, C X be a sequence and
E := {z, :n e N}. If #(F) < oo, then {z,},-; has a subsequence {x,, } which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.46 implies that {z,} has a convergence
subsequence.
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‘We now show that X is totally bounded. Let € > 0 be given and choose x; € X. If
possible choose x2 € X such that d(x2,x1) > ¢, then if possible choose 3 € X such
that d(xs,{z1,22}) > € and continue inductively choosing points {.Z‘j}?zl c X
such that d(z,,{x1,...,2n_1}) > €. This process must terminate, for otherwise
we could choose E = {z; }j’;l and infinite number of distinct points such that
d(zj,{z1,...,xj_1}) > eforall j =2,3,4,.... Since for all z € X the B,(¢/3)NE
can contain at most one point, no point € X is an accumulation point of E. (See
Figure 8.)

F1GURE 8. Constructing a set with out an accumulation point.

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Vo}aca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X = U B.(1/n) C U C.(1/n).

€A, z€EA,
Choose x1 € A; such that no finite subset of V covers K; := C,, (1). Since K; =
Uzen, K1 NC,(1/2), there exists zo € Ag such that K := K1 NC,,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, =K, 1NC;, (1/n) with x,, € A,, such no K,, can be covered by a finite subset
of V. Now choose y, € K,, for each n. Since {Kn}f:;1 is a decreasing sequence of
closed sets such that diam(K,,) < 2/n, it follows that {y,} is a Cauchy and hence
convergent with

Y= nlgg() Yn € Moo K.

Since V is a cover of X, there exists V' € V such that z € V. Since K,, | {y} and
diam(K,) — 0, it now follows that K, C V for some n large. But this violates the
assertion that K, can not be covered by a finite subset of V.(See Figure 9.)

|

Remark 3.49. Let X be a topological space and Y be a Banach space. By combining
Exercise 3.10 and Theorem 3.48 it follows that C.(X,Y) ¢ BC(X,Y).

Corollary 3.50. Let X be a metric space then X is compact iff all sequences
{zn} C X have convergent subsequences.

Proof. Suppose X is compact and {z,} C X.
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FIGURE 9. Nested Sequence of cubes.

(1) ¥ #{zn:n=1,2,...}) < oo then choose x € X such that z,, = x i.o.
and let {n;} C {n} such that x,, = for all k. Then z,, — =

(2) f #({zn:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {z}, hence there exists x,, — z.

Conversely if E is an infinite set let {x,}°2; C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z,, — = € X as
n — 00. Now = € X is an accumulation point of £ by Theorem 3.48 and hence X
is compact. H

Corollary 3.51. Compact subsets of R™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M]™ for some positive integer M.
For § > 0, let

As=0Z"N[-M,M]" :={0x:x € Z" and 0|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that
(3.6) K C[-M,M]" C Ugen,B(z,€)

which shows that K is totally bounded. Hence by Theorem 3.48, K is compact.
Suppose that y € [—M, M|™, then there exists x € Ay such that |y; — ;| < ¢ for
1=1,2,...,n. Hence
Po,y) =3 (i — w5)” < nd?
i=1
which shows that d(z,y) < y/nd. Hence if choose § < €/y/n we have shows that
d(z,y) < ¢, ie. Eq. (3.6) holds. m

Example 3.52. Let X = ¢P(N) with p € [1,00) and p € X such that p(k) > 0 for
all k£ € N. The set

K :={x e X :|x(k)| < p(k) for all k € N}
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is compact. To prove this, let {z,} —; C K be a sequence. By compactness of
closed bounded sets in C, for each k € N there is a subsequence of {z,,(k)},—; C C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence {y,}oo, of {x,}oe, such that y(k) := lim,_cc yn (k) exists for all k € N.*
Since |y, (k)| < p(k) for all n it follows that |y(k)| < p(k), i.e. y € K. Finally

Jim [ly =yl = lim " fy(k) - anggo ly(k) — yn (k)" =0
k=

where we have used the Dominated convergence theorem. (Note |y(k) — y, (k)P <
2PpP(k) and pP is summable.) Therefore y, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and totally
bounded. It is simple to show K is closed, for if {xn}zo:l C K is a convergent
sequence in X, x := limy,_,o0 Tp, then |2(k)| < lim, oo |2, (k)| < p(k) for all £ € N.
This shows that € K and hence K is closed. To see that K is totally bounded, let
e > 0 and choose N such that (32 4 \p(k)|p)1/p < e Since [[r, Cory(0) c CN
is closed and bounded, it is compact. Therefore there exists a finite subset A C
I, C(ry(0) such that

N
[T Cotr)(0) C Uzea B (e)

where BY (€) is the open ball centered at z € CV relative to the (7({1,2,3,...,N})
—norm. For each z € A, let Z € X be defined by 2(k) = z(k) if k < N and 2(k) =0
for k > N + 1. I now claim that

(3.7) K C U.epBs(2€)

which, when verified, shows K is totally bounced. To verify Eq. (3.7), let z € K
and write © = u + v where u(k) = z(k) for £ < N and u(k) = 0 for k¥ < N. Then
by construction u € Bz (e) for some Z € A and

oo 1/p
l[v]l, < ( > o(k) p) <e

k=N+1

So we have

= 2], = llu+v = 2], <[lu—- 2], + [, <2e

Exercise 3.14 (Extreme value theorem). Let (X, 7) be a compact topological space
and f : X — R be a continuous function. Show —oco < inf f < sup f < oo and

4The argument is as follows. Let {n be a subsequence of N={n} 2, such that

] 1
lim; oo @,,1 (1) exists. Now choose a subsequence {n2}°° , of {n1}°° 1 such that lim; . x 2(2)
"

exists and similalry {n3}°° , of {n2}°° , such that limj .. x 3(3) exists. Continue on this way

inductively to get
1 2 3
{n}oz1 D {n;}521 D {n5}521 D {nj}521 D -
such that lim;_, Tyl (k) exists for all k& € N. Let m; := n? so that eventually {m;}%2, is a

subsequnce of {n?}]"‘;l for all k. Therefore, we may take y; := .
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there exists a,b € X such that f(a) = inf f and f(b) = sup f. ° Hint: use Exercise
3.10 and Corollary 3.51.

Exercise 3.15 (Uniform Continuity). Let (X, d) be a compact metric space, (Y, p)
be a metric space and f : X — Y be a continuous function. Show that f is
uniformly continuous, i.e. if € > 0 there exists § > 0 such that p(f(y), f(z)) < € if
x,y € X with d(z,y) < 6. Hint: I think the easiest proof is by using a sequence
argument.

Definition 3.53. Let L be a vector space. We say that two norms, |-| and ||-||, on
L are equivalent if there exists constants «, 8 € (0,00) such that

If < alfl and |f] < Bf]| for all f € L.

Lemma 3.54. Let L be a finite dimensional vector space. Then any two norms
|| and ||-|| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}!_, be a basis for L and define a new norm on L by

n n
Zaifi EZ\aJ for a; € F.
i=1 1 i=1

By the triangle inequality of the norm ||, we find

S aifi| <3 ail 1fil <MD ail = M
i=1 i=1 i=1
where M = max; |f;|. Thus we have

fI<MIflL

for all f € L. This inequality shows that |-| is continuous relative to [-||; . Now
let S:={feL:|f|, =1}, a compact subset of L relative to |-||; . Therefore by
Exercise 3.14 there exists fy € S such that

m=inf{|f|: f€S}t=]fo] >0.
Hence given 0 # f € L, then L”l € S so that

n
> aifi
i=1

1

If
! 1
m < = |/l
‘|f||1 /11y
or equivalently
1
171, < - 151
This shows that |-| and ||-||; are equivalent norms. Similarly one shows that |-|| and
||-||; are equivalent and hence so are |-| and ||-[|. m

Definition 3.55. A subset D of a topological space X is dense if D = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.56. The following are examples of countable dense sets.

S5Here is a proof if X is a metric space. Let {zn}p~1 C X be asequence such that f(z,) 7 sup f.
By compactness of X we may assume, by passing to a subsequence if necessary that z,, — b€ X
as n — oo. By continuity of f, f(b) = sup f.
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(1) The rational number Q are dense in R equipped with the usual topology.

(2) More generally, Q% is a countable dense subset of R? for any d € N.

(3) Even more generally, for any function p : N — (0, 00), ¢P () is separable for
all 1 < p < oo. For example, let I' C F be a countable dense set, then

D:={zxelP(p):z; €5 foralliand #{j: x; # 0} < oo}

The set I" can be taken to be Qif F=R or Q +:Q if F = C.
(4) If (X, p) is a metric space which is separable then every subset Y C X is
also separable in the induced topology.

To prove 4. above, let A = {z,,}52, C X be a countable dense subset of X.
Let p(z,Y) = inf{p(z,y) : y € Y} be the distance from z to Y. Recall that
p(,Y) : X — [0,00) is continuous. Let €, = p(x,,Y) > 0 and for each n let
Yn € an(%) NY if €, = 0 otherwise choose y,, € By, (2¢,,) NY. Then if y € Y and
e > 0 we may choose n € N such that p(y,z,) < €, < ¢/3 and 2 < ¢/3. If €, > 0,
P(Yn, Tn) < 2€, < 2¢/3 and if €, = 0, p(yn, zp) < €/3 and therefore

Py, yn) < p(y: n) + p(Tn, yn) < €
This shows that B = {y,,}52; is a countable dense subset of Y.

Lemma 3.57. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A,, CC X such that X = U,en, B(z,1/n).
Let D := U2, Ay, — a countable subset of X. Moreover, it is clear by construction
that D=X. m

3.6. Compactness in Function Spaces. In this section, let (X, 7) be a topolog-
ical space.

Definition 3.58. Let F C C(X).

(1) F is equicontinuous at = € X iff for all € > 0 there exists U € 7, such that
[f(y) — f(z)| <eforally e U and f € F.

(2) F is equicontinuous if F is equicontinuous at all points € X.

(3) F is pointwise bounded if sup{|f(x)|: |f € F} < oo for all z € X.

Theorem 3.59 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topological space
and F C C(X). Then F is precompact in C(X) iff F is equicontinuous and point-
wise bounded.

Proof. (<) Since C(X) C B(X) is a complete metric space, we must show F
is totally bounded. Let € > 0 be given. By equicontinuity there exists V, € 7, for
all z € X such that |f(y) — f(z)| <¢/2if y € V, and f € F. Since X is compact
we may choose A CC X such that X = U,ecpV,. We have now decomposed X
into “blocks” {V,} ., such that each f € F is constant to within € on V. Since
sup{|f(z)]: x € A and f € F} < o0, it is now evident that

M=sup{|f(z)]:z€ X and f € F} <sup{|f(z)]:x€Aand f € F} +¢ < 0.

Let D= {ke/2:k€Z}N[-M,M].If f € Fand ¢ € D* (ie. p: A — Disa

function) is chosen so that |¢(x) — f(z)| < €/2 for all x € A, then
[f () — o) < [f(y) — f@)| +|f(z) — ¢(z)| <eVzeAand y € V.
From this it follows that F = |J {.7-'¢ RS ]D)A} where, for ¢ € DA,

Fo={f € F:|f(y) - o) < e for y € V, and x € A}.
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Let ' := {¢ € D* : Fy # 0} and for each ¢ € T choose fy € FyNF. For f € Fy,
x € A and y € V, we have

1f (W) = sl < 1f () — o)) + |o(z) = foly)] < 2e.
So [|f — fsll < 2e for all f € Fy showing that Fy C By, (2¢). Therefore,

F = U¢er.7:¢ C U¢€FBf¢ (26)

and because € > 0 was arbitrary we have shown that F is totally bounded.

(=) Since ||-]| : C(X) — [0,00) is a continuous function on C(X) it is bounded
on any compact subset F C C(X). This shows that sup {||f| : f € F} < oo which
clearly implies that F is pointwise bounded.® Suppose F were not equicontinuous
at some point z € X that is to say there exists € > 0 such that for all V € 7,
sup sup |f(y) — f(z)| > €. Equivalently said, to each V € 7, we may choose
yeV feF

(3.8) fv € F and zy € V such that |fy (z) — fy(zv)| > e

Set Cy ={fw : W er, and W C V}H'”m C F and notice for any V CC 7, that

NyevCy 2 Chy # 0,

so that {Cv},, € 7, C F has the finite intersection property.® Since F is compact,
it follows that there exists some

fe ) cv#0.

VET(I)

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < €¢/3 for all
y € V. Because f € Cy, there exists W C V such that ||f — fw| < ¢/3. We now
arrive at a contradiction;

e <|fw(@) = fw(@w)| < |fw(z) = f@)] +|f (@) = flaw)| + [f(ew) = fw(@w)]
<e€/3+¢/3+¢/3=c¢

60ne could also prove that F is pointwise bounded by considering the continuous evaluation
maps ez : C(X) — R given by ez (f) = f(x) for all z € X.

"If X is first countable we could finish the proof with the following argument. Let {Vp}52
be a neighborhood base at x such that Vi D Vo D V3 D .... By the assumption that F is not
equicontinuous at z, there exist fn, € F and z, € V,, such that |fn(z) — fn(zn)| > € V n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that f,
converges uniformly to some f € F. Because ,, — x as n — oo we learn that

€ < |fn(@) = fu(zn)| < |fnl2) = f(@)] + |f(2) = flzn)l + |f(zn) = fulzn)l
<2 fu — fll + (@) ~ Flea)] = 0 a5 n — o0

which is a contradiction.

8If we are willing to use Net’s described in Appendix D below we could finish the proof as
follows. Since F is compact, the net {fy }ver, C F has a cluster point f € F C C(X). Choose a
subnet {ga }aca of {fv }very such that go — f uniformly. Then, since zy —  implies zy, — =,
we may conclude from Eq. (3.8) that

€ < |ga(z) = galzv,)| — l9(z) — g(z)| =0

which is a contradiction.
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3.7. Bounded Linear Operators Basics.

Definition 3.60. Let X and Y be normed spaces and T' : X — Y be a linear
map. Then T is said to be bounded provided there exists C < oo such that
IT(x)] < C||lz||x for all z € X. We denote the best constant by || T, i.e.

|7 ()|

[T = sup ———— = sup{||T'(z)]| : ||| = 1}.
a#0 llzl 20

The number ||T'|| is called the operator norm of T.

Proposition 3.61. Suppose that X and Y are normed spaces andT : X — Y is a

linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.
(¢) T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § > 0
such that ||T'(z)|| < 1if ||z|| < J. Therefore for any « € X, ||T (dz/||z||) || < 1 which
implies that ||T'(z)|| < }|z| and hence ||T|| < $ < oc. (c) = (a) Let € X and
€ > 0 be given. Then

IT(y) = T(@)| = 1T =) < ITIl ly — 2l <e

provided ||y —z| < ¢/||T|| =6. m
In the examples to follow all integrals are the standard Riemann integrals, see
Section 4 below for the definition and the basic properties of the Riemann integral.

Example 3.62. Suppose that K : [0, 1] x [0,1] — C is a continuous function. For

f€C([0,1]), let
:/O K(z,y)f(y)dy

1
ITf(z) — Tf(2)| < / K () - K(z.9)| | ()] dy
(3.9) < ] max K (2, ) = K (2,)

Since

and the latter expression tends to 0 as x — z by uniform continuity of K. Therefore
Tf € C([0,1]) and by the linearity of the Riemann integral, T : C([0,1]) — C([0,1])
is a linear map. Moreover,

T (@) < / K (2,9)| ()] dy < / K (@ y)ldy - [l < Al

where
1
(3.10) A:= sup / | K (z,y)] dy < co.
zel0,1] Jo

This shows ||T'|| < A < oo and therefore T is bounded. We may in fact show
IT|| = A. To do this let zg € [0,1] be such that

sup / |ny|dy—/ IK (0, 9)| dy.

z€[0,1]
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Such an zg can be found since, using a similar argument to that in Eq. (3.9),
T — fol |K (z,y)| dy is continuous. Given € > 0, let

K(:C[hy)
€+ | K (z0,y)|”

fe(y) =

and notice that lim. g || fe| ., = 1 and
|K o, Y |

\/€+ |K Zo,Y

ITS ]l > ITfu(wo)] = Tf(zo) = /

Therefore,
|K ZTo,Y
I > lim /
T T o
. 1 |K o,y
= lim
cl0 \/€+ ‘K ZTo,Y
since
K (xog, 2 K(xg,
0 < |K(zoy)| - —oZol___K(@0.9) [ e+ K Gan, )l = 1K Coos )]

Vet 1E@oy)? et Koy

€+ |K(any)‘2 - ‘K(:L‘an”

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0, 1]). Let (for now) L* ([0,1]) denote

C(]0,1]) with the norm
1
i1, = [ 1s@lde

then 7' : L' ([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)| : z,y € [0,1]}, then

1
(TF)()| < / K (2, 9) f ()] dy < M | £,

which shows || T'f||,, < M || f||; and hence,
T ;1o < max{|K(z,y)|:z,y € [0,1]} < oo.

We can in fact show that ||| = M as follows. Let (zq,y0) € [0,1]? satisfying
|K(x0,y0)] = M. Then given e > 0, there exists a neighborhood U = I x J of
(20, y0) such that |K(z,y) — K(xo,y0)| < € for all (z,y) € U. Let f € C.(1,[0,00))
such that fol f(z)dx = 1. Choose o € C such that |a] = 1 and aK(zg,y0) = M,
then

(Taf) (o) = \ / 1 K(wo,y)af(y)dy‘ - ' [ K pari
> Re / o (a0, )y = [ (M =) fw)dy = (M = ) [af |

I
and hence

[Taflle = (M = e)llafl
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showing that ||T'|| > M — e. Since € > 0 is arbitrary, we learn that |T|| > M and
hence ||T|| = M.

One may also view T' as a map from T : C([0,1]) — L'([0,1]) in which case one
may show

1
Tl e < [ ma | (a.)l do < .

For the next three exercises, let X = R” and Y = R™ and T : X — Y be a linear
transformation so that 7" is given by matrix multiplication by an m x n matrix. Let
us identify the linear transformation 7" with this matrix.

Exercise 3.16. Assume the norms on X and Y are the ¢! — norms, i.e. for x € R?,
|| = >=7_; |z;| - Then the operator norm of T is given by

m
1Tl = @agxn; 1351
1=

Exercise 3.17. ms on X and Y are the ¢* — norms, ie. for z € R", |jz| =
maxi<;<n |Z;| . Then the operator norm of T is given by

IT)l = max > |Tyl.
j=1

1<i<m

Exercise 3.18. Assume the norms on X and Y are the £2 — norms, i.e. for x € R?,

lz|* = > iy x3. Show | T||? is the largest eigenvalue of the matrix T T : R — R".

Exercise 3.19. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.63. Let L(X,Y') denote the bounded linear operators from X to Y. If
Y =T we write X* for L(X,F) and call X* the (continuous) dual space to X.

Lemma 3.64. Let X, Y be normed spaces, then the operator norm ||-|| on L(X,Y)
is a norm. Moreover if Z is another normed space and T : X —Y and S:Y — Z
are linear maps, then | ST < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If A, B €
L(X,Y) then the triangle inequality is verified as follows:

Az + Bol) _ |l Ax] + |Be]

|A+ B|| = sup <
z#£0 (||| z#£0 [l
Ax Bx
< sup 122 g, 1By gy 4y
z#£0 [l 240 [Eal

For the second assertion, we have for x € X, that
[ST|| < [|S[[[T] < ST =]l
From this inequality and the definition of ||ST||, it follows that ||ST|| < [|S|||T||. =

Proposition 3.65. Suppose that X is a normed vector space and 'Y is a Banach
space. Then (L(X,Y),|| - |lop) is a Banach space. In particular the dual space X*
is always a Banach space.
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We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.66. A normed space (X, ||-||) is a Banach space iff for every sequence
N

o0

{zn}2y such that Y~ ||z,|| < oo then imy_oo > n = S exists in X (that is to
n=1 n=1

say every absolutely convergent series is a convergent series in X ). As usual we

will denote S by > xy,.

n=1

00 N
Proof. (=)If X is complete and > ||z, | < oo then sequence Sy = > x,, for
n=1 n=1

N € N is Cauchy because (for N > M)

N
ISv = Sull < Sl — 0 as M, N — .
n=M+1

0 N
Therefore S = > 2, :=limy 00 Y Xy exists in X.
n=1 n=1

(<=) Suppose that {z,,} -, is a Cauchy sequence and let {y, = z,, }7>; be a

o0
subsequence of {x,},_; such that > [|yn+1 — yn| < 0o. By assumption

n=1
N oo
UN+L = Y1 = ) Wn1 =) = S =D (Ynr1—ya) € X as N — cc.

n=1 n=1

This shows that limy_.. yn exists and is equal to z := y; + S. Since {z,,} -, is
Cauchy,
|2 = zn| < llz = ykll + [lye — @all — 0 as k,n — oo
showing that lim,, .~ , exists and is equal to z. m
Proof. (Proof of Proposition 3.65.) We must show (L(X,Y), ||-||op) is complete.

(o]
Suppose that T,, € L(X,Y) is a sequence of operators such that Y ||T,] < oc.

n=1
Then
o] o]
D o ITuz]| <Y ITall 2] < o0
n=1 n=1
o0
and therefore by the completeness of Y, Sz := Y T,a = limy_,oo Sy exists in

n=1

N
Y, where Sy := > T,. The reader should check that S : X — Y so defined in

n=1
linear. Since,

N o0
2l = Jim ISl < Jim 32Tl < 3210 il
n= n=

S is bounded and

(3.11) IS < > Tl

n=1
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Similarly,
N ')
I8z — Sl = Jim Sy~ Swal| < Jim S [Tl el = 3 1T el
n=M+1 n=M+1
and therefore,
IS — Sumll < i |7 — 0 as M — oo.
n=M

]
Of course we did not actually need to use Theorem 3.66 in the proof. Here is
another proof. Let {T},} ~_; be a Cauchy sequence in L(X,Y). Then for each = € X,

I Thx — Tzl < ||Tn — Tl ||z]] — 0 as m,n — oo

showing {T,,x} -, is Cauchy in Y. Using the completeness of Y, there exists an
element Tx € Y such that

lim || T,z — Tz| = 0.
n—oo
It is a simple matter to show T': X — Y is a linear map. Moreover,
[Tz — Thx| < Tz — Tna| + | Tme — Toz|| < [Tz — Tnz|| + 1T — Tn| ||
and therefore

1Tz — Thz|| <lim sup (|[Tz — Tzl + | Tm — Toll |2]]) = ||z||-lim sup || T — To]| -

m— 00 m—00
Hence

T —T,| <lim sup ||T), —T,| — 0 as n — oc.
Thus we have shown that T,, — T in L(X,Y") as desired.

3.8. Inverting Elements in L(X) and Linear ODE.

Definition 3.67. A linear map 7' : X — Y is an isometry if | Tz|y = ||z| x for
all z € X. T is said to be invertible if T is a bijection and 7! is bounded.

Notation 3.68. We will write GL(X,Y") for those T' € L(X,Y’) which are invert-
ible. If X =Y we simply write L(X) and GL(X) for L(X,X) and GL(X, X)
respectively.

Proposition 3.69. Suppose X is a Banach space and A € L(X) = L(X,X)

satisfies Y ||A™]| < oco. Then I — A is invertible and
n=0

1 o0 o0
U—AYJ:“zj”:E:A"mmHU—AYJH§§:WWW
n=0 n=0

In particular if |A|| < 1 then the above formula holds and

1
LAl

I =8 <
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Proof. Since L(X) is a Banach space and ) [|A"|| < oo, it follows from Theo-
n=0
rem 3.66 that

N
S = hm SN = lim ZA"

N=oo n=0
exists in L(X). Moreover, by Exercise 3.38 below,
(I-AN)S=({I-17) hm Sy = lim (I-A)Sn

—00 N—oo

= lim (I—A) A”— lim (I — ANt =T

N—>oo N—’OO

and similarly S (I —A) = I. This shows that (I — A)~! exists and is equal to S.
Moreover, (I — A)~! is bounded because

1T =07 =181 < > 1Am.
n=0

If we further assume [|A]| < 1, then ||A"| < HA||" and

Z A" < Z 1AL |A”

Corollary 3.70. Let X and Y be Banach spaces. Then GL(X,Y) is an open
(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and B €
L(X,Y) satisfies

(3.12) 1B — Al < [lA™H™
then B € GL(X,Y)

(3.13) i Ix — "Al e L(Y, X)

and
1

T— A JA-B]
Proof. Let A and B be as above, then
B=A—-(A-B)=A[Ix —A"'"(A-B))] = A(Ix — A)
where A : X — X is given by
A=A A-B)=Ix—-A"'B.

1B = 1A~

Now
A=A~ (A=B))|| <A IIA= Bl < [A7|A77! = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(I-AN"'A" = [Ix - A"Y (A~ B))]

For the last assertion we have,

A

1
1—[[A=H[[|A = BI

1B7H < [[(x = )T 1A < 1475 <A™

IIAH N
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]
For an application of these results to linear ordinary differential equations, see
Section 5.2.

3.9. Supplement: Sums in Banach Spaces.

Definition 3.71. Suppose that X is a normed space and {v, € X : a € A} is a
given collection of vectors in X. We say that s = Y, v, € X if for all € > 0
there exists a finite set I'. C A such that ||s DN vaH < eforal A cC A
such that I'. C A. (Unlike the case of real valued sums, this does not imply that
> acn llvall < 0o. See Proposition 12.19 below, from which one may manufacture
counter-examples to this false premise.)

Lemma 3.72. (1) When X is a Banach space, ) .4 Va evists in X iff for all
€ > 0 there exists I'. CC A such that HZQGAUQH < e forall A CcC A\T..
Also if ), c 4 Va exists in X then {a € A:v, # 0} is at most countable. (2) If
5= pneaVa € X exists and T : X — Y is a bounded linear map between normed
spaces, then ) ., Tva exists in'Y and

TSZTZvaz ZTUQ.
acA a€cA

Proof. (1) Suppose that s = >, v, exists and € > 0. Let I'« CC A be as in
Definition 3.71. Then for A CC A\ T,

E Vol < E va—{—g Vo — S|| + E Vo — S
aEA aEA a€el. a€el’.
= E Vo — S|| + € < 2e.
aclUA

Conversely, suppose for all € > 0 there exists I'« CC A such that HZae A Ua“ < €
for all A cC A\ T.. Let v, := U_I'1)x C A and set s, := Zaew Vq. Then for
m > n,

[|$m — snll = Z V|| <1/n — 0 as m,n — oo.
a€vm\n

Therefore {sn}ff:l is Cauchy and hence convergent in X. Let s := lim,, _, Sy, then
for A CC A such that v, C A, we have

S—E’Ua

1
<lls=sall +|| D va < lls = sall + .
a€A

aEA\Vn

Since the right member of this equation goes to zero as n — oo, it follows that
Y acA Va €xists and is equal to s.

Let v := U2 1, — a countable subset of A. Then for a ¢ v, {a} C A\ ~, for all
n and hence

[vall = Z vg|| <1/n—0asn— .
Be{a}
Therefore v, = 0 for all « € A\ 7.
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(2) Let I'c be as in Definition 3.71 and A CC A such that I'. C A. Then

Ts—ZTva S—Zva

aEA a€cA

<7 <|Tlle

which shows that » _\ T, exists and is equal to T's. m

3.10. Word of Caution.

Example 3.73. Let (X, d) be a metric space. It is always true that B, (e) C Ci(e)
since Cy(€) is a closed set containing B, (¢). However, it is not always true that
B, (€) = Cy(e). For example let X = {1,2} and d(1,2) = 1, then B;(1) = {1},
B (1) = {1} while C1(1) = X. For another counter example, take

X={(z,y) eR*>:z2=00rz =1}

with the usually Euclidean metric coming from the plane. Then
Bo,o)(1) = {(0,y) e R*: [y| < 1},
Booy(1) = {(0,y) e R? : |y| < 1}, while
Cl0,0)(1) = Bo,0) Bio,0)(1) U{(0,1)}.

In spite of the above examples, Lemmas 3.74 and 3.75 below shows that for
certain metric spaces of interest it is true that By (e) = Cy(e).

Lemma 3.74. Suppose that (X,|-|) is a normed vector space and d is the metric
on X defined by d(z,y) = |z —y|. Then
By (e) = Cy(e) and
OBy (e) ={y € X : d(z,y) = €}.

Proof. We must show that C' := C,(¢) C By(¢) =: B. Fory € C, let v =y — x,
then

ol =y — 2| = d(z,y) <e.

Let a, = 1 —1/m so that «;, 7 1 as n — oo. Let y, = = + «a,v, then d(z,y,) =
and(z,y) < ¢, so that y, € B.(¢) and d(y,yn) = 1 —a,, — 0 as n — co. This shows
that y, — y as n — oo and hence that y € B. =

3.10.1. Riemannian Metrics. This subsection is not completely self contained and
may safely be skipped.

Lemma 3.75. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) =1inf {{(0) : 0(0) =z and o(1) =y}

where €(c) is the length of the curve o. We define £(c) = oo if o is not piecewise
smooth.
Then

m = CL(G) and
0B,(e) ={y € X : d(z,y) = €}.
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F1GURE 10. An almost length minimizing curve joining x to y.

Proof. Let C' := C,(¢) C B,(e) = B. We will show that C' C B by showing
B¢ c C°. Suppose that y € B¢ and choose § > 0 such that B,(6) N B = . In
particular this implies that

By(6) N Ba(€) =
We will finish the proof by showing that d(x ,y) €+ 9 > e and hence that y € Ce.
This will be accomplished by showing: if d(z,y) < € —|— § then By (0) N By(e) # 0.

If d(x,y) < max(e,d) then either z € By(d) or y € B,(e). In elther case By (d) N
B, (€) # 0. Hence we may assume that max( 0) <d(z,y) < e+ 4. Let & > 0 be a
number such that

max(e, ) < d(z,y) <a<e+d
and choose a curve o from x to y such that £(o) < «. Also choose 0 < ¢’ < § such
that 0 < @ — ¢ < e which can be done since @ — ¢ < e. Let k(¢) = d(y,o(t)) a
continuous function on [0, 1] and therefore k([0,1]) C R is a connected set which
contains 0 and d(z,y). Therefore there exists ¢y € [0,1] such that d(y,o(ty)) =
k(to) = ¢'. Let z = o(to) € By(J) then

d(x,2) < Loj,40]) = (o) = L(0]1) <@ —d(z,y) =a—08 <e
and therefore z € B, (e) N B, (8) # 0. m

Remark 3.76. Suppose again that X is a Riemannian (or sub-Riemannian) manifold
and

d(z,y) =inf {{(0) : 0(0) = z and o(1) = y}.
Let o be a curve from x to y and let € = £(0) — d(x,y). Then for all 0 <u < v <1,

d(o(u),c0(v)) < (0][u,0]) + €

So if o is within € of a length minimizing curve from z to y that o}, ,) is within
¢ of a length minimizing curve from o(u) to o(v). In particular if d(z,y) = ¢(0)
then d(o(u),0(v)) = £(0][u,]) for all 0 <u <wv <1, ie. if 0 is a length minimizing
curve from z to y that ol . is a length minimizing curve from o(u) to o(v).

To prove these assertions notice that

d(z,y) +e=L(c) = L(o]jo,u) + (T [u,w]) + £(0]fw1))
> d({E, O'(U)) + e(ahu,v]) + d(U(U)v y)

and therefore
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3.11. Exercises.
Exercise 3.20. Prove Lemma 3.46.

Exercise 3.21. Let X = C([0,1],R) and for f € X, let

1l = /|f (1) dt.

Show that (X, ||-||;) is normed space and show by example that this space is not
complete.

Exercise 3.22. Let (X,d) be a metric space. Suppose that {z,}22; C X is a
sequence and set €, := d(x,, Tn41). Show that for m > n that

m—1 0
d(xnaxm) < Z € < Z€k~

k=n k=n
Conclude from this that if

Zek = Zd($n7$n+1) < 00

then {z,}52, is Cauchy. Moreover bhOW that if {z,,}5°, is a convergent sequence

and x = lnnn_,OO T, then
o0

d(z,z,) < Z €k
k=n
Exercise 3.23. Show that (X,d) is a complete metric space iff every sequence
{z,}52, C X such that > 2 | d(2pn,2n11) < 00 is a convergent sequence in X. You
may find it useful to prove the following statements in the course of the proof.
(1) If {z,} is Cauchy sequence, then there is a subsequence y; = x,,; such that
Z;L d(Yj+1,y;) < oo
(2) If {zy,}72, is Cauchy and there exists a subsequence y; = x,; of {z,} such
that x = lim;_. y; exists, then lim, . 2, also exists and is equal to =.

Exercise 3.24. Suppose that f : [0,00) — [0,00) is a C? — function such that
f(0) =0, f/ > 0and f” <0 and (X, p) is a metric space. Show that d(z,y) =
f(p(z,y)) is a metric on X. In particular show that

(e, y)
d(z,y) = ————
() L+ p(z,y)
is a metric on X. (Hint: use calculus to verify that f(a +b) < f(a)+ f(b) for all
a,b € [0,00).)

Exercise 3.25. Let d : C(R) x C(R) — [0, 00) be defined by

L+f—glln’

where || f|[n = sup{[f(2)| : |z[ < ﬂ} = max{lf(x)l el <}
(1) Show that d is a metric on C(R).
(2) Show that a sequence {f,}22, C C(R) converges to f € C(R) as n — oo
iff f,, converges to f uniformly on compact subsets of R.
(3) Show that (C(R),d) is a complete metric space.
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Exercise 3.26. Let {(X,,,d,)}, - be a sequence of metric spaces, X = [[>"; X,,,
and for z = (z(n)),—; and y = (y(n)),—, in X let

d‘x’y)‘;2 T+ dp(2(n), ()

Show: 1) (X,d) is a metric space, 2) a sequence {zj},-, C X converges to z € X
iff zx(n) — z(n) € X,, as k — oo for every n = 1,2,..., and 3) X is complete if
X, is complete for all n.

Exercise 3.27 (Tychonoff’s Theorem). Let us continue the notation of the previous
problem. Further assume that the spaces X, are compact for all n. Show (X, d) is
compact. Hint: Either use Cantor’s method to show every sequence {z,,} ~_; C X
has a convergent subsequence or alternatively show (X, d) is complete and totally
bounded.

Exercise 3.28. Let (X;,d;) for i = 1,...,n be a finite collection of metric spaces
and for 1 <p < oo and x = (z1,%2,...,%,) and y = (y1,...,yn) in X =[], X;,

let
oo(2:9) :{ (S ldiwsw)])" i p# oo
P max; d;(z;, y;) if p=oo
(1) Show (X, p,) is a metric space for p € [1, oo]. Hint: Minkowski’s inequality.
(2) Show that all of the metric {p,:1 <p < oo} are equivalent, i.e. for any
p,q € [1,00] there exists constants ¢, C' < oo such that

pp(z,y) < Cpg(z,y) and py(z,y) < cpp(z,y) for all z,y € X.

Hint: This can be done with explicit estimates or more simply using
Lemma 3.54.

(3) Show that the topologies associated to the metrics p, are the same for all
p € [1,00].

Exercise 3.29. Let C be a closed proper subset of R” and 2 € R™\ C. Show there
exists a y € C such that d(z,y) = do(x).
Exercise 3.30. Let F = R in this problem and A C ¢?(N) be defined by
A={x € ?(N):z(n) >1+1/n for some n € N}
= {x € A(N): z(n) >1+1/n}.

Show A is a closed subset of ¢2(N) with the property that d4(0) = 1 while there
is no y € A such that da(y) = 1. (Remember that in general an infinite union of
closed sets need not be closed.)

3.11.1. Banach Space Problems.

Exercise 3.31. Show that all finite dimensional normed vector spaces (L, ||-||) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.32. Let (X, [|-||) be a normed space over F (R or C). Show the map
Nz,y) eFxXxX —sax+dyeX

is continuous relative to the topology on F x X x X defined by the norm
I 2, ) lps s x o= (AL 2l + lyll-
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(See Exercise 3.28 for more on the metric associated to this norm.) Also show that
[I]l - X — [0, 00) is continuous.

Exercise 3.33. Let p € [1,00] and X be an infinite set. Show the closed unit ball
in ¢P(X) is not compact.

Exercise 3.34. Let X =N and for p,q € [1,00) let -], denote the ¢’(N) — norm.
Show ||+, and |||, are inequivalent norms for p # ¢ by showing

/11,
20 11l

Exercise 3.35. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 3.36. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.

=0 ifp<yq.

Exercise 3.37. Folland Problem 5.11. Showing Holder spaces are Banach spaces.

Exercise 3.38. Let X, Y and Z be normed spaces. Prove the maps
(S,z) e L(X,)Y)x X — Sz €Y
and
(S,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)
are continuous relative to the norms
105, 2) ox vyxx = ISl Lex,y) + Izl and

1S, Dl Lix,yvyxrovizy = ISlLx,y) + 1T Ly z)
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.
3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.39. Let T' € (0,00) and F C C([0,T]) be a family of functions such
that:

(1) f(t) exists for all t € (0,T) and f € F.

(2) supjer 1£(0)] < o0 and

(8) M i= supser supreqom) | f ()] < oo

Show F is precompact in the Banach space C([0,T]) equipped with the norm

1flloe = suPseqo.ry 1 (E)]-
Exercise 3.40. Folland Problem 4.63.
Exercise 3.41. Folland Problem 4.64.
3.11.3. General Topological Space Problems.

Exercise 3.42. Give an example of continuous map, f : X — Y, and a compact
subset K of Y such that f~1(K) is not compact.

Exercise 3.43. Let V' be an open subset of R. Show V' may be written as a disjoint
union of open intervals J,, = (an, by,), where a,, b, € RU{£oo}forn=1,2,--- < N
with N = oo possible.
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4. THE RIEMANN INTEGRAL

In this short chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter. The
following simple “Bounded Linear Transformation” theorem will often be used here
and in the sequel to define linear transformations.

Theorem 4.1 (B. L. T. Theorem). Suppose that Z is a normed space, X is a
Banach space, and S C Z is a dense linear subspace of Z. If T : § — X is a
bounded linear transformation (i.e. there exists C < oo such that |Tz|| < C||z]]
for all z € S), then T has a unique extension to an element T € L(Z,X) and this
extension still satisfies

|Tz|| < Cllz|| forall z € S.
Exercise 4.1. Prove Theorem 4.1.

For the remainder of the chapter, let [a, b] be a fixed compact interval and X be
a Banach space. The collection § = S([a, b], X) of step functions, f:[a,b] — X,
consists of those functions f which may be written in the form

n—1
(4.1) F#) =20l (8) + Y @il 4,0 (t)
=1

where m = {a =1ty <t; <--- <t, = b} is a partition of [a,b] and z; € X. For f as
in Eq. (4.1), let

n—1
(4.2) I(f) = (tig1 —ti)z; € X.

i=0
Exercise 4.2. Show that I(f) is well defined, independent of how f is represented
as a step function. (Hint: show that adding a point to a partition 7 of [a,b] does
not change the right side of Eq. (4.2).) Also verify that I : § — X is a linear
operator.

Proposition 4.2 (Riemann Integral). The linear function I : § — X extends
uniquely to a continuous linear operator I from S (the closure of the step functions
inside of £>°([a,b], X)) to X and this operator satisfies,

(4.3) IO < (0= a) [ fllo forall f € S.

Furthermore, C(Ja,b], X) C S C £*°([a,b], X) and for f €, I(f) may be computed
as

n—1
(4.4) I(f) = ‘Tlri‘fi}o Z () (tiyr — ti)

i=0
where 7 = {a = to < t1 < --- < t, = b} denotes a partition of [a,b],
|7| = max {|tiy1 —t;| : i =0,...,n — 1} is the mesh size of m and cI may be chosen

arbitrarily inside [t;, t;11]-

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality shows,

— n—1

(4.5) 1(f Z i1 = t)l@ill < Y (tier =) flloo < (0= )| fllos-

i=0 =0
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The existence of I satisfying Eq. (4.3) is a consequence of Theorem 4.1.
For f € C([a,b],X), m={a=1ty <t; <--- <1, = b} a partition of [a,b], and
el € [tiytiy1] for i =0,1,2...,n— 1, let

n—1

f‘n'(t) = f( to,t1 + Z f tl,twrl] )

Then I(fr) = Z?;OI f(cF)(ti+1 — t;) so to finish the proof of Eq. (4.4) and that
C(la,b],X) C S, it suffices to observe that limj g ||f — fx|lcoc = 0 because f is
uniformly continuous on [a,b]. =

If f, € S and f € S such that lim, o ||f — full., =0, then for a < a < 3 < b,
then 1[04,5]]0” € S and lim,, Hl[a,ﬁ]f — l[aﬁ]anoo = 0. This shows l[aﬁ]f €S
whenever f € S.

Notation 4.3. For f € S and a < o < 8 < b we will write denote I(1j, gf) by
fﬁ ) dt or fa Al f(#)dt. Also following the usual convention, if a < § < a < b, we

will let
/j by dt = —T(1 5.0 f / £(t)

The next Lemma, whose proof is left to the reader (Exercise 4.4) contains some
of the many familiar properties of the Riemann integral.

Lemma 4.4. Forf € 5([&, bl, X) and v, B, € [a,b], the Riemann integral satisfies:

( dtH —a)sup{llf(t)ll ca<t< B}
v f ﬁ
(2) Jo f@)dt = [, f(£)dt+ [5 f(
(3) The functzon G(t f f(r dT is continuous on [a,b].
(4) IfY is another Banach space and T € L(X,Y), then Tf € S([a,b],Y) and

T (/j f(t)dt) - /j TF(#)dt

(5) The functiont — ||f(t)||x is in S([a,b],R) and

b
< / 170 dt.

(6) If f,9 € S([a,b],R) and f < g, then

/a " Foydt < / " o0)dt.

Theorem 4.5 (Baby Fubini Theorem). Let a,b,c,d € R and f(s,t) € X be a
continuous function of (s,t) for s between a and b and t between ¢ and d. Then the

maps t — fj f(s,t)ds € X and s — fcd f(s,t)dt are continuous and

(4.6) /Cd [/abf(s,t)ds] it = /ab [/Cdf(s,t)dt] ds.

b
f(t)dt
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Proof. With out loss of generality we may assume a < b and ¢ < d. By uniform
continuity of f, Exercise 3.15,

sup || f(s,t) — f(s0,t)|| = 0as s — so
e<t<d

and so by Lemma 4.4
d d
/ f(s,t)dt — / f(so,t)dt as s — sg

showing the continuity of s — fcd f(s,t)dt. The other continuity assertion is proved
similarly.
Now let

T={a<sp<s51 < <sp=bfand ' ={c<ty<t;<---<t,=d}

be partitions of [a, b] and [c, d] respectively. For s € [a,b] let s, = s; if s € (84, Si41]
and i > 1 and s, = sp = a if s € [sg, $1]. Define ¢, for ¢ € [c, d] analogously. Then

/ b [ / df(s,wdt] a5 | b [ / ot )it ds + / e (5)ds
-/ l [ ontara| s -+ [ exras
= [ sea~ [ st
:/ V {F(5ter) = Flsmrt »}dt]ds

The uniform continuity of f and the estimates

where

and

sup [lex ()] < sup/ 1£(5,8) — £ (s, t0)] dt

s€la,b] s€la,b
< (d—=c)sup{[|f(s,t) = f(s,tx)] : (s,1) € Q}

and

b d
Y [/ 1 (5 ter) = £ (5, >|dt] ds
< (b—a)(d—c)sup {||f(s,t) = f(s,tx)] : (s5,) € Q}

allow us to conclude that

b [ pd b [ ,d T
/ /f(s’“dt} s = [ | [ fomtwrit| ds — 0 as [al + 1w~ 0.

By symmetry (or an analogous argument),

d [ b d [ b T
/ /f(s’”dsl b= [ [ Soertards| e =0 a5 frl +1a'] 0
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This completes the proof since

b d
/ [/ f(Smtw')dt] ds= > flsit) (s — 5:)(tj1 — )

0<i<m,0<j<n
d b
:/ / Flsmrte)ds| dt.

4.1. The Fundamental Theorem of Calculus. Our next goal is to show that
our Riemann integral interacts well with differentiation, namely the fundamental
theorem of calculus holds. Before doing this we will need a couple of basic definitions
and results.

Definition 4.6. Let (a,b) C R. A function f : (a,b) — X is differentiable at
t € (a,b) iff L := limp_,0 NL}W exists in X. The limit L, if it exists, will be
denoted by f(t) or %(t). We also say that f € C((a,b) — X) if f is differentiable

at all points ¢ € (a,b) and f € C((a,b) — X).

Proposition 4.7. Suppose that f : [a,b] — X is a continuous function such that
f(t) exists and is equal to zero for t € (a,b). Then f is constant.

Proof. Let € > 0 and « € (a,b) be given. (We will later let ¢ | 0 and « | a.) By
the definition of the derivative, for all 7 € (a, b) there exists d, > 0 such that

(A7) 1@ = F@ = | £ = 1) = f@) e = )| < el =7l i b= 7] < 6.
Let
(4.8) A={telab]: | £() = fla)] < e(t - a)}

and tg be the least upper bound for A. We will now use a standard argument called
continuous induction to show ¢ty = b.

Eq. (4.7) with 7 = « shows ¢y > « and a simple continuity argument shows
to € A7 i.e.

(4.9) 1 (to) — fla)]| < e(to — @)
For the sake of contradiction, suppose that to < b. By Egs. (4.7) and (4.9),

1£(&) = f(@)l < Lf () = f(to)ll + [1f(to) = fla)]| < €(to — o) + e(t — to) = €(t — @)
for 0 <t —to < d¢, which violates the definition of ¢y being an upper bound. Thus
we have shown Eq. (4.8) holds for all ¢ € [«,b]. Since € > 0 and @ > a were
arbitrary we may conclude, using the continuity of f, that || f(t) — f(a)|| = 0 for all
t€la,b]. m

Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem is not
available to vector valued functions. However with the aid of the Hahn Banach
Theorem 18.16 and Lemma 4.4, it is possible to reduce the proof of Proposition 4.7
and the proof of the Fundamental Theorem of Calculus 4.9 to the real valued case,
see Exercise 18.12.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that f € C([a,b], X),
Then
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1) L [*f(r)dr = f(t) for allt € (a,b).

(2) Now assume that F' € C([a,b], X), F is continuously differentiable on (a,b),
and I extends to a continuous function on [a,b] which is still denoted by
F. Then

/bF(t) dt = F(b) — F(a).

Proof. Let h > 0 be a small number and consider

t+h t+h
AL dT—/f dr — f h||—||/ f())dr|
t+h
< / 1) — £t dr
< he(h),

where €(h) = max ¢4 |(f(7) — f())]|. Combining this with a similar computa-
tion when h < 0 shows, for all h € R sufficiently small, that

t+h t
|| / f(r)dr — / F(r)dr — F@OR] < |hle(h).

where now €(h) = max,ey—|n|,c4|n)) || (f(7)—f(#))|. By continuity of f at ¢, e(h) — 0
and hence < f(j f(7) dr exists and is equal to f(t).

For the second item, set G(t f F(7)dr — F(t). Then G is continuous by
Lemma 4.4 and G(t) = 0 for all t € (a,b) by item 1. An application of Proposition

4.7 shows G is a constant and in particular G(b) = G(a), i.e. f: F(t)dr — F(b) =
—F(a). m

Corollary 4.10 (Mean Value Inequality). Suppose that f : [a,b] — X is a con-
tinuous function such that f(t) exists for t € (a,b) and f extends to a continuous
function on [a,b]. Then

(1.10) 170~ s@i < [ 1ol < 6-a- |7 Hoo

Proof. By the fundamental theorem of calculus, f(b) f f t)dt and

then by Lemma 4.4,
/f £)di /nf )l <

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let Q= ( b) x (¢, d)

be an open rectangle in R? and f € C(Q, X). Assume that f(s t), 2 5:f(s,t) and

%% (s,t) exists and are continuous for (s,t) € Q, then Bs atf(s t) exists for

(s,t) € Q and

1£(b)

(4.11) D9 f(s,1) = o f(5,1) for (1) € Q.
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Proof. Fix (sg,tp) € Q. By two applications of Theorem 4.9,

f(s, 1) :f(sto,t)—l—/’%f(a,t)do

S0

(4.12) = f(s0,1) —l—/( ;—Uf(a,to)da—i—/( do//dTaiTa%f(mT)

50

and then by Fubini’s Theorem 4.5 we learn

f(s,t)zf(so,t)+/s (,%f(o,to)da—l—/f dT/Sdogaiaf(o,T).

S0

Differentiating this equation in ¢ and then in s (again using two more applications
of Theorem 4.9) shows Eq. (4.11) holds. m

4.2. Exercises.

Exercise 4.3. Let (>°([a,b], X) = {f : [a,0] = X : [[flloc = supyefay ()] < o0}
Show that (€*°([a,b], X), || - |lcc) is & complete Banach space.

Exercise 4.4. Prove Lemma 4.4.

Exercise 4.5. Using Lemma 4.4, show f = (f1,...,f) € S([a,b],R") iff f; €
S([a,b],R) for i =1,2,...,n and

/abf(t)dt = (/ab fl(t)dt,...,/ab fn(t)dt> _

Exercise 4.6. Give another proof of Proposition 4.11 which does not use Fubini’s
Theorem 4.5 as follows.

(1) By a simple translation argument we may assume (0,0) € @ and we are
trying to prove Eq (4.11) holds at (s,t) = (0,0).
(2) Let h(s,t) = 22 f(s,t) and

s t
G(s,t) :z/ da/ drh(o,T)
0 0
so that Eq. (4.12) states

f(s,t) = f(0,t) + /OS %f(o, to)do + G(s,1)

and differentiating this equation at ¢ = 0 shows

0 0 0
Now show using the definition of the derivative that
(4.14) 9 s 0) = / doh(c,0).
ot 0

Hint: Consider

G(s,t) —t/ doh(o,0) /da/ dr [h(o,7) — h(o,0)].
0

(3) Now differentiate Eq. (4.13) in s using Theorem 4.9 to finish the proof.
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Exercise 4.7. Give another proof of Eq (4.6) in Theorem 4.5 based on Proposition
4.11. To do this let tg € (¢,d) and s¢ € (a,b) and define

G(s,t) /dT/dOfOT

Show G satisfies the hypothesis of Proposition 4.11 which combined with two ap-
plications of the fundamental theorem of calculus implies

0 0 g d

——G(s,t —G(s,t t).

G5 1) = 22 Gls,t) = f(5,1)
Use two more applications of the fundamental theorem of calculus along with the
observation that G = 0 if ¢ = ¢y or s = sg to conclude

(4.15) (s, 1) / da/ dT—— (U,T)Z/dea/t:ma%f(m).

Finally let s = b and t = d in Eq. (4.15) and then let s | @ and to | ¢ to prove Eq.
(4.6).
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5. ORDINARY DIFFERENTIAL EQUATIONS IN A BANACH SPACE

Let X be a Banach space, U C, X, J = (a,b) 3 0and Z € C(J xU,X) - Z
is to be interpreted as a time dependent vector-field on U C X. In this section we
will consider the ordinary differential equation (ODE for short)

(5.1) y(t) = Z(t,y(t)) with y(0) =z € U.

The reader should check that any solution y € C*(J,U) to Eq. (5.1) gives a solution
y € C(J,U) to the integral equation:

t
(2 o) o+ [ Z(ru()ir

0
and conversely if y € C(J,U) solves Eq. (5.2) then y € C'(J,U) and y solves Eq.
(5.1).

Remark 5.1. For notational simplicity we have assumed that the initial condition
for the ODE in Eq. (5.1) is taken at ¢ = 0. There is no loss in generality in doing
this since if § solves

%(t} = Z(t,§(t)) with §(to) =2 € U

iff y(t) := g(¢t +to) solves Eq. (5.1) with Z(t,x) = Z(t + to, ).

5.1. Examples. Let X = R, Z(z) = 2™ with n € N and consider the ordinary
differential equation

(5.3) y(t) = Z(y(t)) = y"(t) with y(0) =z € R.

If y solves Eq. (5.3) with & # 0, then y(t) is not zero for ¢ near 0. Therefore up to
the first time y possibly hits 0, we must have

t i) y(®) TGRS S |
t= / dr = / u "du = ) _
o y(r)" 0 In |2 it n=1

and solving these equations for y(t) implies

T L if n>1
(54) y(t) — y(t,x) _ ”*\/1—(7L—1)t:y"—1
elw if n=1.

The reader should verify by direct calculation that y(t,z) defined above does in-
deed solve Eq. (5.3). The above argument shows that these are the only possible
solutions to the Equations in (5.3).
Notice that when n = 1, the solution exists for all time while for n > 1, we must
require
1—(n—Dtz" ' >0

or equivalently that
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Moreover for n > 1, y(¢,z) blows up as t approaches the value for which 1 — (n —
1)tz"~! = 0. The reader should also observe that, at least for s and ¢ close to 0,

(5:5) y(t,y(s,2)) = y(t + 5, 2)

for each of the solutions above. Indeed, if n = 1 Eq. (5.5) is equivalent to the well
know identity, ete® = e!** and for n > 1,

y(s, z)
t,y(s,x)) =
M) G Dt
B 'L7V17(n71)sz”*1
a n—1
n—1 T
1- (n - l)t |: "’Vl—(n—l)sz"*l
T
. ”‘Vl—(n—l)sw"*l
BEVA R (e 1)t1—(nm—n1_):~x"*1
B x
"y/1—(n—1)sz" 1 — (n—1)tan1
- (t+s.2)
= = S,T).
=D tde
Now suppose Z(x) = |z|* with 0 < @ < 1 and we now consider the ordinary
differential equation
(5.6) §() = Z(y(2)) = [y(8)|° with y(0) =z € R.

Working as above we find, if  # 0 that
t y(t) l-a 11—«
Y A P T
o |y 0

11—«

where u!~® := |u|'"®sgn(u). Since sgn(y(t)) = sgn(z) the previous equation im-
plies

sgn(@)(1 - a)t = sgn(x) [sen(y() [y(t)|' ™" — sen(@)[al' ]
= Iy ~
and therefore,

1—-a

(5.7) y(t,@) = sgn(@) (|2l +sen(@)(1 - a)t)

is uniquely determined by this formula until the first time ¢ where |z|"~*+sgn(z)(1—
a)t = 0. As before y(t) = 0 is a solution to Eq. (5.6), however it is far from being
the unique solution. For example letting = | 0 in Eq. (5.7) gives a function

y(t,04) = (1 - o)) ™
which solves Eq. (5.6) for ¢ > 0. Moreover if we define

(@ —a))TF i t>0
y(t)'_{ 0 if t<0
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(for example if & = 1/2 then y(t) = %tQ 1;>0) then the reader may easily check y
also solve Eq. (5.6). Furthermore, y,(t) := y(t — a) also solves Eq. (5.6) for all
a > 0, see Figure 11 below.

757

257

FIGURE 11. Three different solutions to the ODE ¢(t) = |y(1t)|1/2
with y(0) = 0.

With these examples in mind, let us now go to the general theory starting with
linear ODEs.

5.2. Linear Ordinary Differential Equations. Consider the linear differential
equation
(5.8) y(t) = A(t)y(t) where y(0) =z € X.

Here A € C(J — L(X)) and y € C'(J — X). This equation may be written in its
equivalent (as the reader should verify) integral form, namely we are looking for
y € C(J,X) such that

¢

(5.9) y(t) =x + | A(m)y(r)dr.

In what follows, we will abuse notation and use ||-|| to denote the operator norm
on L (X) associated to [|-|| on X we will also fix J = (a,b) 3 0 and let ||¢||, =
maxie g ||¢(t)] for ¢ € BC(J, X) or BC(J, L (X)).

Notation 5.2. Fort € R and n € N, let

An(t) = {(r,...,m) ER*":0< 1 <--- <7, <t} if ¢2>0
A A, ) ERM < << S0F B £ <0

and also write dr = dry...dr,, and

t Tn T2
/ flr,...m)dr : = (—1)"'1t<0/ dTn/ dTn,l.../ drif(r1,...Tn).
An(t) 0 0 0

Lemma 5.3. Suppose that ¢ € C (R,R), then

(5.10) (71)”'1t<0/A (t)1p(n) (Tn)dT = i| (/ Y(r dT>

n
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Proof. Let U(¢ fo 7)dr. The proof will go by induction on n. The case
n =1 is easily Verlﬁed since

(1)t <o W(m)dr = / W(r)dr = (1),

Ax(t)
Now assume the truth of Eq. (5.10) for n — 1 for some n > 2, then

(—1)"te=<0 /A"(t)w( 1) - () dr= /dTn/ dTn_y . / dr(m) .. Y (T)

) i)
_/Odn(n—l)!d}(n)_/odn(n—l)! ¥ (m)

W(t) n—1 n
:/ ) du— U (t)7
0 (n—1)! n!

wherein we made the change of variables, u = ¥(r,), in the second to last equality.
u

Remark 5.4. Eq. (5.10) is equivalent to

/ (1) .. (Ty)dr = l' Y(7)dT
Ay (t) n. A (t)

and another way to understand this equality is to view | An(t) W(11) ... (7, )dT as

a multiple integral (see Section 8 below) rather than an iterated integral. Indeed,
taking t > 0 for simplicity and letting S,, be the permutation group on {1,2,...,n}
we have

[Ovt]n = UO‘ESR{(Tlv'“aTn) S R™: 0 S Tol S S Ton S t}

with the union being “essentially” disjoint. Therefore, making a change of variables
and using the fact that ¢ (71) ... (7,) is invariant under permutations, we find

</Ot 1/J(T)d7'>n = [, v v

(1) .. (1)dT

ocES, /{(le--aTn)eRn:OSTo-l S“'STanSt}

= Z P(8g-11) .- V(85-1,)ds

{(s1,...,8n)ER™:0<51 <+ <5, <t}

2. / V(1) (s0)ds

€S, {(s1,...,8n)ER™:0<51 <+ <5, <t}
:n!/ W) . d(r)dr.
Ay (t)
Theorem 5.5. Let ¢ € BC(J, X), then the integral equation

(5.11) y(t) = 8(t) + / A(r)y(r)dr

has a unique solution given by

5.12 t) = o(t —1)heo A1) ... A(1) (T )dT
512 =00+ X (1) /M) (1) - . A(r1)d(m1)
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and this solution satisfies the bound

Iyll < 18]l el 1A Idr.
Proof. Define A : BC(J,X) — BC(J,X) by

t
()®) = [ A
Then y solves Eq. (5.9) iff y = ¢ + Ay or equivalently iff (I — A)y = ¢.

An induction argument shows

(A"6)(t / dr A(r) (A1) (72)

= T, T 1 A(T0) A(Ty 1) (A" 2 ) (730
_/Odn/o 1 A1) A1) (A" 26) (1)

/dm/ dTp_1. / driA(ry) ... A(m)d(11)
= (-1 /A n(f)A(rn) A(m) (1 )dr.

Taking norms of this equation and using the triangle inequality along with Lemma
5.3 gives,

(A" @)@ < [[#]]oo / AT - - [|ACT)[|dr

n

§||¢|oo-%< J 14e >|d7>

1
<ol ([ 14yar)
Therefore,

(5.13) A |op < % (/J ||A<T)|Id7>n

and

D 1A o < el IO < o
n=0
where |-, denotes the operator norm on L (BC(J, X)) . An application of Propo-

sition 3.69 now shows (I — A)~! = " A" exists and
n=0

(1 - A)_lH < eJs 1AMl

It is now only a matter of working through the notation to see that these assertions
prove the theorem. m

Corollary 5.6. Suppose that A € L(X) is independent of time, then the solution
to

y(t) = Ay(t) with y(0) =
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tA

is given by y(t) = e*x where

tA _n n
(5.14) e = p A"
n=0
Proof. This is a simple consequence of Eq. 5.12 and Lemma 5.3 with ¢y =1. =
We also have the following converse to this corollary whose proof is outlined in
Exercise 5.11 below.

Theorem 5.7. Suppose that Ty € L(X) for t > 0 satisfies
(1) (Semi-group property.) Ty = Idx and TyTs = Tyys for all s,t > 0.
(2) (Norm Continuity) t — Ty 1is continuous at 0, t.e. ||T, —I|;x) — 0 as
t]o.
Then there evists A € L(X) such that T, = e where et is defined in Eq.
(5.14).

5.3. Uniqueness Theorem and Continuous Dependence on Initial Data.

Lemma 5.8. Gronwall’s Lemma. Suppose that f,e, and k are non-negative
functions of a real variable t such that

(5.15) F(6) < e(t) + /O k(r)f(r)dr|.
Then
(5.16) (r)el7 #@ds| gr|

and in particular if € and k are constants we find that

(5.17) f(t) < ekt
Proof. I will only prove the case ¢ > 0. The case t < 0 can be derived by
applying the £>0 to f( ) = F(—t), k(t) = k(=) and &(t) = ().
Set F(t fo 7)d7r. Then by (5.15),
F=kf<ke+kF.
Hence,
i(e—fot k(s)dsF) — e I k(s)ds(F —kF) < k€€_'[0t k(s)ds
dt -

Integrating this last inequality from 0 to ¢ and then solving for F yields:

t t
F(t) < efo Ks)ds . / drk(7)e(T)e” Jo k(s)ds — / dT/{J(T)G(T)e-[: k(s)ds

0 0
But by the definition of F' we have that

f<e+F,

and hence the last two displayed equations imply (5.16). Equation (5.17) follows
from (5.16) by a simple integration. m

Corollary 5.9 (Continuous Dependence on Initial Data). Let U C, X, 0 € (a,b)
and Z : (a,b)xU — X be a continuous function which is K-Lipschitz function on U,
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ie || Z(t,x)—Z(t, 2| < Kl||lx—2'| for allx and x’ in U. Suppose y1,y2 : (a,b) — U
solve

(5.18) dycli—it) = Z(t,y;(t)) with y;(0) =x; fori=1,2.
Then
(5.19) ly2(8) =91 () < l|lz2 — 21| e" for ¢ € (a,0)

and in particular, there is at most one solution to Eq. (5.1) under the above Lip-
schitz assumption on Z.

Proof. Let f(t) = ||ly2(t) —y1(t)||. Then by the fundamental theorem of calculus,
¢
10 = 1920) =00 + [ (Gn() = n ()|
(

éf@H—AHﬂﬂmﬁD—ﬂﬂm@MWT

t
=||ze — x|+ K '/ flr)ydr
0
Therefore by Gronwall’s inequality we have,

ly2(t) — 1 ()] = f() < ||lwg — 2]

5.4. Local Existence (Non-Linear ODE). We now show that Eq. (5.1) under
a Lipschitz condition on Z. Another existence theorem is given in Exercise 7.9.

Theorem 5.10 (Local Existence). Let T >0, J = (=T,T), xg € X, r > 0 and
C(zo,r):={z e X : |z —ao| <r}

be the closed v — ball centered at xo € X. Assume

(5.20) M =sup{||Z(t,z)| : (t,z) € J x C(zo,7)} < 00
and there exists K < oo such that
(5.21) 1Z(t,x) — Z(t,y)|| < K ||l —yl|| for all z,y € C(xp,7) and t € J.

Let Ty < min{r/M,T} and Jy := (=T, To), then for each x € B(xo,r—MTy) there
exists a unique solution y(t) = y(t,x) to Eq. (5.2) in C (Jo,C(xo,r)). Moreover
y(t, z) is jointly continuous in (t,x), y(t,x) is differentiable in t, y(t,x) is jointly
continuous for all (t,x) € Jy x B(xo,7 — MTy) and satisfies Eq. (5.1).

Proof. The uniqueness assertion has already been proved in Corollary 5.9. To
prove existence, let C, := C(zg,r), Y := C (Jo, C(x0,r)) and

(5.22) S () (t) === —I—/O Z(1,y(T))dr.

With this notation, Eq. (5.2) becomes y = S, (y), i.e. we are looking for a fixed
point of S,.. If y € Y, then

t
1Sz (y)(t) — woll < [l — 2ol + ‘/0 1Z(7,y(T))| dr
<l —zo|| + MTy <r—MTo+ MTy =r,

< |l — ol + M [t]
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showing S, (Y) C Y for all x € B(xg,r — MTp). Moreover if y, z € Y,

15 (0) (1) — Sa(2)(8)]| = H | et - 2 s0)ar

<

/ 26 y(m) - Zir, =) dT\

(5.23) <K

/ ly(r) — 2(r)l| dr
0

Let yo(t,2) =« and y,(-,z) € Y defined inductively by

(524) yn(ax) = Sm(yn—l('ax)) =z +~/O Z(Ta yn—l(Tv x))dT

Using the estimate in Eq. (5.23) repeatedly we find

[Yn+1(t) = yn (B[l < K ’/O 19n(7) = yn—a (1)l d7

t 11
/ dty / dta ||yn—1(t2) — Z/n—z(tz)HH
0 0

t t1 tnfl
L] [ ][ dtnnyl(tn)—yo(tnn]...H
0 0 0

SK"\|y1<~,x>—yo<-,x>||w/ dr
An(t)

<K?

< K'IL

K
ol

K™ |t
59) g

191(2) = yo (s 2) [l < 27

wherein we have also made use of Lemma 5.3. Combining this estimate with

t t
|yl(t»$)—yo(t»$)||=H | 2w <| [ 1z6aar| <
0 0
where
To 0
M, = T max / ||Z(T,x)|\d7,/ 1Z(r,2)| dr b < MT,,
0 —To
shows
K" " KTy
[Yn41(t, ) = yu(t, 2)|| < Mo n|' | < Mo—— .

and this implies

> 50 { Iy 1(+0) = g, 0)lloc g 1€ Jof <D Mo="
n=0 ’

= MOeKTO < 00
n
n=0

where

[0 ) = Y22l oo gy = 50 {lysa (t2) = (£, )| £ € T}

So y(t, z) = lim,— 00 Yn(t,x) exists uniformly for ¢ € J and using Eq. (5.21) we
also have

Sup{HZ(tay(t)) - Z(t, ynfl(t))H IS JO} S K Hy(vx) - ynfl('vx)Hoo,Jo — 0 asn — oo
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Now passing to the limit in Eq. (5.24) shows y solves Eq. (5.2). From this equation
it follows that y(¢, =) is differentiable in ¢ and y satisfies Eq. (5.1).

The continuity of y(¢,x) follows from Corollary 5.9 and mean value inequality
(Corollary 4.10):

ly(t,z) —y(t', )| < |ly(t,x) —y(t, 2" )| + ly(t,2") — y(t',2")]]

/t/t Z(r,y(r,2"))dr

— lly(t, ) — y(t.2)]| + \

<llt.a) =t + | [ 12 gtra)l dr

¢
(5.26) < |z — /|| KT + ‘/ | Z(r,y(r,2")| dr
t/

<z —2'|| KT + M|t —1].

The continuity of ¢(t,z) is now a consequence Eq. (5.1) and the continuity of y
and Z. =

Corollary 5.11. Let J = (a,b) 5 0 and suppose Z € C(J x X, X) satisfies
(5.27) 1Z(t,x) — Z(t,y)|| < K ||z —y|| for allz,y € X andt € J.

Then for all x € X, there is a unique solution y(t,x) (for t € J) to Eq. (5.1).
Moreover y(t,z) and §(t,x) are jointly continuous in (t,x).

Proof. Let Jy = (ao,bp) > 0 be a precompact subinterval of J and YV :=
BC (Jo, X) . By compactness, M := sup,c 7, [|Z(t,0)|| < oo which combined with
Eq. (5.27) implies

sup || Z(t,z)|[| < M + K [|z|| for all z € X.

teJo

Using this estimate and Lemma 4.4 one easily shows S, (Y) C Y for all z € X. The
proof of Theorem 5.10 now goes through without any further change. m

5.5. Global Properties.

Definition 5.12 (Local Lipschitz Functions). Let U C, X, J be an open interval
and Z € C(J x U, X). The function Z is said to be locally Lipschitz in z if for
all € U and all compact intervals I C J there exists K = K(x,I) < oo and
€ = €(x,I) > 0 such that B(z,e(z,I)) C U and
(5.28)

|Z(t,x1) — Z(t,z0)|| < K(x,1)||z1 — zol| for all zg,z1 € B(x,e(x,I)) and t € I.

For the rest of this section, we will assume J is an open interval containing 0, U
is an open subset of X and Z € C(J x U, X) is a locally Lipschitz function.

Lemma 5.13. Let Z € C(J x U, X) be a locally Lipschitz function in X and E be
a compact subset of U and I be a compact subset of J. Then there exists € > 0 such
that Z(t,x) is bounded for (t,x) € I x E. and and Z(t,x) is K — Lipschitz on E.
for allt € I, where

E.:={z €U :dist(z, E) < €}.
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Proof. Let ¢(z,I) and K (z,I) be as in Definition 5.12 above. Since E is com-
pact, there exists a finite subset A C E such that E C V := UzepaB(x,€e(x, I)/2). If
y € V, there exists © € A such that ||y — z|| < e(z,I)/2 and therefore

1Z@y)ll < 1Z(t2)]| + K (2, 1) ly — 2| < [|Z(t,2)]| + K (2, D)e(x,1)/2
< $Es{:l.%s)EI{HZ(t,a:)H + K(z,De(x,1)/2} =1 M < 0.

This shows Z is bounded on I x V.
Let

1
e:=d(E, V) < 3 gleij{le(m,l)

and notice that € > 0 since E is compact, V¢ is closed and ENV¢=0. If y,z € E,
and ||y — z|| < ¢, then as before there exists € A such that ||y — z| < e(x,T)/2.
Therefore
Iz =zl <llz =yl + lly — ll < e+e(x, 1)/2 < ez, 1)
and since y, z € B(x, e(z,I)), it follows that
12(t,y) — 2(t, 2)|| < K(x, Dy — ]| < Kolly — =]

where K¢ := max,ep K(z,I) < co. On the other hand if y, 2 € F, and ||y — z|| > €,
then

2M
I2(t.9) - 2. 2)] <201 < 2Ly .
Thus if we let K := max {2M /e, Ko}, we have shown
|Z(t,y) — Z(t,2)|| < Kl||ly — 2| for all y,z € Ec and t € I.
[

Proposition 5.14 (Maximal Solutions). Let Z € C(J xU, X) be a locally Lipschitz
function in x and let x € U be fized. Then there is an interval J, = (a(x),b(z))
with a € [—00,0) and b € (0,00] and a C*—function y : J — U with the following
properties:

(1) y solves ODE in Eq. (5.1).

(2) If j : J = (a,b) — U is another solution of Eq. (5.1) (we assume that

0€ J) then JCJ and § =yl ;.
The function y : J — U is called the mazimal solution to Eq. (5.1).

Proof. Suppose that y; : J; = (a;,b;) — U, i = 1,2, are two solutions to Eq.
(5.1). We will start by showing the y; = y2 on J; N Js. To do this® let Jy = (ao, bo)
be chosen so that 0 € Jy C J; N Ja, and let E := y1(Jy) U ya(Joy) — a compact
subset of X. Choose ¢ > 0 as in Lemma 5.13 so that Z is Lipschitz on F.. Then
Y1lJos Y2lso + Jo — Ee both solve Eq. (5.1) and therefore are equal by Corollary 5.9.

9Here is an alternate proof of the uniqueness. Let
T = sup{t € [0,min{b1,b2}) : y1 =y2 on [0,t]}.
(T is the first positive time after which y; and y2 disagree.

Suppose, for sake of contradiction, that 7' < min{b1, b2}. Notice that y1(T) = y2(T) =: z'.
Applying the local uniqueness theorem to yi(- — T') and y2(- — T') thought as function from
(=6,8) — B(z/,e(z")) for some § sufficiently small, we learn that y1(- —7T) = y2(- — T') on (—4,9).
But this shows that y1 = y2 on [0,7 + §) which contradicts the definition of T. Hence we must
have the T' = min{b1, b2}, i.e. y1 =y2 on J1 NJ2N[0,00). A similar argument shows that y1 = y2
on Ji N Jz N (—o0,0] as well.
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Since Jo = (ag, by) was chosen arbitrarily so that [a,b] C J; N J3, we may conclude
that y1 = y2 on Jy N Js.

Let (Yo, Ja = (@, ba))aca denote the possible solutions to (5.1) such that 0 €
Jo. Define J, = UJ, and set y = y, on J,. We have just checked that y is well
defined and the reader may easily check that this function y : J, — U satisfies all
the conclusions of the theorem. m

Notation 5.15. For each = € U, let J, = (a(x),b(x)) be the maximal interval on
which Eq. (5.1) may be solved, see Proposition 5.14. Set D(Z) = Ugev(Jp x {z}) C
J x U and let ¢ : D(Z) — U be defined by ¢(t,x) = y(t) where y is the maximal
solution to Eq. (5.1). (So for each = € U, ¢(-,z) is the maximal solution to Eq.

(5.1).)

Proposition 5.16. Let Z € C(Jx U, X) be a locally Lipschitz function in x and y :
Jr = (a(z),b(z)) — U be the mazimal solution to Fq. (5.1). If b(x) < b, then either
lim supyp(0) |12 (¢, y(0)|| = o0 or y(b(z)—) = limyrpe) y(t) exists and y(b(z)—) ¢
U. Similarly, if a > a(x), then either limsup, ) ly(t)| = oo or y(a(z)+) =
limy |, y(t) exists and y(a(z)+) ¢ U.

Proof. Suppose that b < b(z) and M = lmsup,y, [1Z(t, y(t))| < co. Then
there is a by € (0,b(z)) such that | Z(t,y(t))|| < 2M for all t € (by, b(z)). Thus, by
the usual fundamental theorem of calculus argument,
< 2M|t —t'|

IIy(t)*:t/(t’)HS/t 12(t,y()) |l dr

for all ¢,¢" € (bo, b(x)). From this it is easy to conclude that y(b(x)—) = limgypz) y(2)
exists. If y(b(x)—) € U, by the local existence Theorem 5.10, there exists § > 0 and
w € C((b(z) — 6,b(x) + §),U) such that

w(t) = Z(t,w(t)) and w(b(x)) = y(b(x)-).
)+46) = U by

o (t) ifteld,

4(t) = { i(t) if t € [b(z),b(z) +0)

The reader may now easily show § solves the integral Eq. (5.2) and hence also
solves Eq. 5.1 for t € (a(x),b(z) + 4).!° But this violates the maximality of y and
hence we must have that y(b(z)—) ¢ U. The assertions for ¢ near a(z) are proved
similarly. =

Example 5.17. Let X =R?, J =R, U = {(x,y) eER?2:0<r< 1} where r? =
z% + y? and

Now define § : (a, b(z

Z(e,) = +(@,9) + T (-3,2).

The the unique solution (z(t), y(t)

2 (w(0),5(6) = Z(a(0).y(8) with (2(0),5(0)) = (3.0)

1
) to

108¢e the argument in Proposition 5.19 for a slightly different method of extending y which
avoids the use of the integral equation (5.2).
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is given by

e0.00) = (1+3) (s (55) i (73 5))

for t € Jij20) = (—00,1/2). Notice that ||Z(x(t),y(t))|]| — oo as ¢t T 1/2 and
dist((x(t),y(t)),U°) = 0ast ] 1/2.

Example 5.18. (Not worked out completely.) Let X = U = (2, ¢ € C*°(R?) be
a smooth function such that ¢¥» = 1 in a neighborhood of the line segment joining
(1,0) to (0,1) and being supported within the 1/10 — neighborhood of this segment.
Choose a,, T oo and b,, T co and define

(5.29) Z(z) = Z an(bn(Tn, Tni1))(€nt1 — €n).

For any = € 2, only a finite number of terms are non-zero in the above some in a
neighborhood of . Therefor Z : £2 — (2 is a smooth and hence locally Lipshcitz
vector field. Let (y(t),JJ = (a,b)) denote the maximal solution to

y(t) = Z(y(t)) with y(0) = e1.

Then if the a, and b, are chosen appropriately, then b < oo and there will exist
t, 7 b such that y(¢,) is approximately e, for all n. So again y(¢,) does not have
a limit yet sup,e(o ) [[y(t)] < oo. The idea is that Z is constructed to blow the
particle form e; to es to e3 to e4 ete. etc. with the time it takes to travel from e,
to e,41 being on order 1/2™. The vector field in Eq. (5.29) is a first approximation
at such a vector field, it may have to be adjusted a little more to provide an honest
example. In this example, we are having problems because y(t) is “going off in
dimensions.”

Here is another version of Proposition 5.16 which is more useful when dim(X) <
0.

Proposition 5.19. Let Z € C(J x U, X) be a locally Lipschitz function in x and
y: Jy = (a(z),b(x)) — U be the mazimal solution to Eq. (5.1).
(1) If b(x) < b, then for every compact subset K C U there exists Tk < b(x)
such that y(t) ¢ K for all t € [Tk,b(x)).
(2) When dim(X) < oo, we may write this condition as: if b(x) < b, then either
limsup ||y(¢)|| = oo or liminf dist(y(t), U¢) = 0.
t1b(z) tTb(x)

Proof. 1) Suppose that b(xz) < b and, for sake of contradiction, there exists a
compact set K C U and ¢, T b(z) such that y(t,) € K for all n. Since K is compact,
by passing to a subsequence if necessary, we may assume Yo, := lim, o y(t,)
exists in K C U. By the local existence Theorem 5.10, there exists 7Ty > 0 and

0 > 0 such that for each 2’ € B (yx0,d) there exists a unique solution w(-,z’) €
CY((=Tv,Tp),U) solving

w(t, ') = Z(t,w(t,2')) and w(0,2') = z'.

Now choose n sufficiently large so that ¢, € (b(x) —To/2,b(x)) and y(t,) €
B (Yoo, 9) . Define ¢ : (a(x),b(z) + To/2) — U by

N (t) ifted,
g(t) = { z;(t —tn,y(ty)) ifte (t, — To,b(x) +To/2) C (tn — To,tn + To).
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By uniqueness of solutions to ODE’s § is well defined, 7 € C*((a(x), b(x) + Tp/2) , X)
and § solves the ODE in Eq. 5.1. But this violates the maximality of y.
2) For each n € N let

K,:={zeU:|z| <nand dist(z,U¢) > 1/n}.
Then K,, T U and each K, is a closed bounded set and hence compact if dim(X) <
oo. Therefore if b(z) < b, by item 1., there exists T}, € [0, b(x)) such that y(t) ¢ K,

for all t € [T,,b(x)) or equivalently ||y(t)|| > n or dist(y(¢),U°) < 1/n for all
t€[Ty,b(z)). =

Remark 5.20. In general it is not true that the functions a and b are continuous.
For example, let U be the region in R? described in polar coordinates by r > 0 and
0<6<3r/4and Z(z,y) = (0,—1) as in Figure 12 below. Then b(x,y) = y for all
x,y > 0 while b(z,y) = oo for all x < 0 and y € R which shows b is discontinuous.
On the other hand notice that

{b>t}={x<0}U{(x,y) : 2 >0,y >t}

is an open set for all £ > 0.

Peee®) = Usgr, tan(te- g))

FIGURE 12. An example of a vector field for which b(z) is discon-
tinuous. This is given in the top left hand corner of the figure.
The map 9 would allow the reader to find an example on R? if so
desired. Some calculations shows that Z transfered to R? by the
map v is given by

Zy) = - (sin (%” + %tan_l (y)) cos (%” 4 %tan_l (y)>> .

Theorem 5.21 (Global Continuity). Let Z € C(J x U, X) be a locally Lipschitz
function_ in x. Then D(Z) is an open subset of J x U and the functions ¢ : D(Z) —
U and ¢ : D(Z) — U are continuous. More precisely, for all zog € U and all
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open intervals Jy such that 0 € Jy CC Jy, there exists 6 = 6(xo,Jo, Z) > 0 and
C = C(xg,Jo, Z) < 0o such that for all x € B(xg,0), Jo C J, and

(5.30) o(, z) — ¢(‘>$O)HBC(JO,U) < Cllz — ol

Proof. Let |Jo| = by — ag, I = Jy and E := y(Jy) — a compact subset of U and
let € > 0 and K < oo be given as in Lemma 5.13, i.e. K is the Lipschitz constant
for Z on E.. Also recall the notation: A;(¢) = [0,t] if ¢ > 0 and Aq(¢) = [¢,0] if
t<O.

Suppose that z € E, then by Corollary 5.9,

(5.31) (¢, 2) = é(t, 20)|| < |z — wolle"I < & — woljX 17!

for all t € Jo N J, such that such that ¢ (A;(t),z) C E.. Letting 6 := ee~ 10l /2,
and assuming x € B(xg,d), the previous equation implies

llo(t, ) — &d(t, z0)|| < €/2 < e forall t € Jy N J, such that ¢ (Aq(¢),z) C E..

This estimate further shows that ¢(¢,z) remains bounded and strictly away from
the boundary of U for all such ¢. Therefore, it follows from Proposition 5.14 and
“continuous induction!'” that Jy C J, and Eq. (5.31) is valid for all ¢ € Jy. This
proves Eq. (5.30) with C := X!/l

Suppose that (to, o) € D(Z) and let 0 € Jy CC J,, such that ¢y € Jy and d be
as above. Then we have just shown Jy x B(zg,0) C D(Z) which proves D(Z) is
open. Furthermore, since the evaluation map

(to,y) € Jo x BC(Jo,U) = y(to) € X

is continuous (as the reader should check) it follows that ¢ = e o (z — ¢(-,x)) :
Jo X B(xg,d) — U is also continuous; being the composition of continuous maps.
The continuity of q.b(to, x) is a consequences of the continuity of ¢ and the differential
equation 5.1

Alternatively using Eq. (5.2),

[6(to, ) = @(t, zo)|| < l|¢(to, ) — d(to, zo) || + ll¢(to, z0) — ¢(£, zo) |

to
SCIIx—$o|+'/ 1Z(7, ¢(7,@0))| dr| < C' ||z — @o|| + M |t — |
t

where C'is the constant in Eq. (5.30) and M = sup,.¢, | Z(7, ¢(7,70))|| < oo. This
clearly shows ¢ is continuous. m

5.6. Semi-Group Properties of time independent flows. To end this chapter
we investigate the semi-group property of the flow associated to the vector-field Z.
It will be convenient to introduce the following suggestive notation. For (¢,z) €
D(Z), set et?(x) = ¢(t,z). So the path t — e'Z(z) is the maximal solution to

d
aetz(ac) = Z(et?(x)) with % (z) = .
This exponential notation will be justified shortly. It is convenient to have the
following conventions.

HGee the argument in the proof of Proposition 4.7.
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Notation 5.22. We write f : X — X to mean a function defined on some open
subset D(f) C X. The open set D(f) will be called the domain of f. Given two
functions f : X — X and g : X — X with domains D(f) and D(g) respectively,
we define the composite function fog: X — X to be the function with domain

D(fog)={z € X :ax€D(g) and g(z) € D(f)} = g~ (D(f))
given by the rule f o g(z) = f(g(z)) for all x € D(f o g). We now write f = g iff
D(f) = D(g) and f(z) = g(x) for all x € D(f) = D(g). We will also write f C g
it D(f) € D(g) and g|p(y) = f-

Theorem 5.23. For fired t € R we consider €' as a function from X to X with
domain D(et?) = {x € U : (t,z) € D(Z)}, where D(¢) = D(Z) C Rx U, D(Z) and
¢ are defined in Notation 5.15. Conclusions:

(1) Ift,scRandt-s>0, then e!? o e®? = (197,

(2) Ift€R, then e oe ' = Idp(.—1z).

(3) For arbitrary t,s € R, % 0 e3? C e(t+9)Z,

Proof. Item 1. For simplicity assume that ¢, s > 0. The case t,s < 0 is left to
the reader. Suppose that © € D(et? o e*?). Then by assumption x € D(e*?) and
e*?(x) € D(e'%). Define the path y(7) via:

(r) = e™?(x) if 0<7<s
)= eT=9%(x) if s<T<t+s

It is easy to check that y solves 3(7) = Z(y(7)) with y(0) = x. But since, "% (x) is
the maximal solution we must have that € D(e+)%) and y(t + s) = e(t+9)%(z).
That is e(*+5)Z(2) = ' 0 e3Z(z). Hence we have shown that e*Z o e5Z C e(t+9)Z,

To finish the proof of item 1. it suffices to show that D(e(*+%)%) C D(e!? o e%%).
Take x € D(el*t9)%), then clearly x € D(e%%). Set y(1) = e(7+5)%(z) defined for
0 < 7 < t. Then y solves

y(r) = Z(y(1)) with y(0) = e*(x).
But since 7 — €"Z(e*Z(z)) is the maximal solution to the above initial valued prob-
lem we must have that y(7) = ¢"Z(e*?(z)), and in particular at 7 = ¢, e*+)Z(z) =
et (es%(x)). This shows that = € D(e* 0 e5?) and in fact e(*+9)Z C ¢tZ 0 52,

Item 2. Let z € D(e ') — again assume for simplicity that ¢ > 0. Set y(7) =
e(T=97(z) defined for 0 < 7 < t. Notice that y(0) = e~*4(z) and ¢(7) = Z(y(7)).
This shows that y(7) = e74(e~*4(z)) and in particular that € D(e!? o e~*%) and
e'? o e7'?(x) = x. This proves item 2.

Item 3. I will only consider the case that s < 0 and ¢t + s > 0, the other
cases are handled similarly. Write u for t 4+ s, so that ¢t = —s + u. We know that
e!? = e"% o e7%Z by item 1. Therefore

etZ o esZ _ (euZ o est) o BSZ.
Notice in general, one has (f o g) o h = f o (g o h) (you prove). Hence, the above
displayed equation and item 2. imply that

tZ sZ _ euZ ° (e—sZ ° esZ) _ e(t+s)Z

et ce t-‘rs)Z.

o ID(esZ) - 6(

The following result is trivial but conceptually illuminating partial converse to
Theorem 5.23.
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Proposition 5.24 (Flows and Complete Vector Fields). Suppose U C, X, ¢ €
CR x U,U) and ¢i(x) = ¢(t, z). Suppose ¢ satisfies:

(1) ¢o = 1Iu,
(2) G1ods = ¢rys forallt,s € R, and
(3) Z(z) := ¢(0,2) exists for all x € U and Z € C(U, X) is locally Lipschitz.

Then ¢, = et?.
Proof. Let € U and y(t) = ¢¢(x). Then using Item 2.,

5(0) = Sloy(t +5) = - lod(e1 (3) = Solobs © e) = Z(y(1).

Since y(0) = = by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 5.9) that ¢;(z) = y(t) = ¢'?(x). m

5.7. Exercises.

Exercise 5.1. Find a vector field Z such that e®+%)Z is not contained in etZ o e5Z.

Definition 5.25. A locally Lipschitz function Z : U C, X — X is said to be a
complete vector field if D(Z) = R x U. That is for any z € U, t — e'?(z) is defined
for all t € R.

Exercise 5.2. Suppose that Z : X — X is a locally Lipschitz function. Assume
there is a constant C' > 0 such that

I1Z(z)|| < C(1+ ||z||) forall z € X.

Then Z is complete. Hint: use Gronwall’s Lemma 5.8 and Proposition 5.16.

Exercise 5.3. Suppose y is a solution to y(t) = |y(t)|1/2 with y(0) = 0. Show there
exists a, b € [0, 00] such that
1t—b)?% if t>b
y(t) = 0 it —a<t<b
—1(t+a)? if t<—a
Exercise 5.4. Using the fact that the solutions to Eq. (5.3) are never 0 if z # 0,
show that y(¢) = 0 is the only solution to Eq. (5.3) with y(0) = 0.

Exercise 5.5. Suppose that A € L(X). Show directly that:

(1) e*4 define in Eq. (5.14) is convergent in L(X) when equipped with the
operator norm.
(2) e'4 is differentiable in ¢ and that <et4 = Aet4.

Exercise 5.6. Suppose that A € L(X) and v € X is an eigenvector of A with
eigenvalue ), i.e. that Av = Av. Show e*4v = e'*v. Also show that X = R™ and A
is a diagonalizable n x n matrix with

A= 8DS™! with D = diag(\, ..., \n)
then e = SetP S~ where e!” = diag(et™, ... et n).

Exercise 5.7. Suppose that A, B € L(X) and [A, B] = AB — BA = 0. Show that
e(AtB) — 4B,
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Exercise 5.8. Suppose A € C(R, L(X)) satisfies [A(t), A(s)] = 0 for all s,¢t € R.
Show

y(t) = — o([g A(nydr) .
is the unique solution to y(t) = A(¢)y(t) with y(0) =
Exercise 5.9. Compute e’ when
=(4)
and use the result to prove the formula
cos(s +t) = cosscost — sin ssin .
Hint: Sum the series and use e4es4 = e(t+9)4,

Exercise 5.10. Compute e!4 when

A—

o O O

b
c
0

o o Qe

with a, b, ¢ € R. Use your result to compute e!*M+4) where A € R and T is the 3 x 3
identity matrix. Hint: Sum the series.

Exercise 5.11. Prove Theorem 5.7 using the following outline.

(1) First show t € [0,00) — T € L(X) is continuos.

(2) For e >0, let S, := 1 [ Trdr € L(X). Show Sc — I as € | 0 and conclude
from this that S is invertible when € > 0 is sufficiently small. For the
remainder of the proof fix such a small € > 0.

(3) Show
1 t+e
TtSE = —/ T.,-dT
€ Jt

and conclude from this that

1
limt™ ' (Ty = 1) S, = = (T, — Idx).
t|0 €

(4) Using the fact that S. is invertible, conclude A = limyo t=1 (T — 1) exists
in L(X) and that

A:l(Te -1 St
€

(5) Now show using the semigroup property and step 4. that %Tt = AT; for
all ¢ > 0.

(6) Using step 5, show Le *AT, = 0 for all t > 0 and therefore e *4T, =
e Ty = I

Exercise 5.12 (Higher Order ODE). Let X be a Banach space, , U C, X™ and
f€C(JxU,X) be a Locally Lipschitz function in x = (x1, ..., x,). Show the n't
ordinary differential equation,

(5.32)

y " () = f(ty(t),9(t), ...y () with y*)(0) =y for k=0,1,2...,n—1
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where (y3,...,y0~") is given in U, has a unique solution for small ¢ € J. Hint: let
y(@®) = (y(®),9(t),...y" D (¢)) and rewrite Eq. (5.32) as a first order ODE of the

form
y(t) = Z(t,y(1)) with y(0) = (40, --,y5 ).
Exercise 5.13. Use the results of Exercises 5.10 and 5.12 to solve
§(t) — 29(t) + y(t) = 0 with y(0) = a and §(0) = b.
Hint: The 2 x 2 matrix associated to this system, A, has only one eigenvalue 1

and may be written as A = I + B where B% = 0.

Exercise 5.14. Suppose that A : R — L(X) is a continuous function and U,V :
R — L(X) are the unique solution to the linear differential equations

V(t) = A(t)V(t) with V(0) = T
and
(5.33) U(t) = —U(t)A(t) with U(0) = I.
Prove that V(t) is invertible and that V~1(¢) = U(t). Hint: 1) show 4 [U(¢)V (t)] =
0 (which is sufficient if dim(X) < co0) and 2) show compute y(t) := V(¢)U(t) solves
a linear differential ordinary differential equation that has y = 0 as an obvious

solution. Then use the uniqueness of solutions to ODEs. (The fact that U(t) must
be defined as in Eq. (5.33) is the content of Exercise 26.2 below.)

Exercise 5.15 (Duhamel’ s Principle I). Suppose that A : R — L(X) is a contin-
uous function and V : R — L(X) is the unique solution to the linear differential
equation in Eq. (26.36). Let x € X and h € C(R, X) be given. Show that the
unique solution to the differential equation:

(5.34) y(t) = A(t)y(t) + h(t) with y(0) =«

is given by
(5.35) y(t) = V(e)e + V() /0 V()" h(r) dr.

Hint: compute <[V~ ()y(t)] when y solves Eq. (5.34).

Exercise 5.16 (Duhamel’ s Principle II). Suppose that A : R — L(X) is a con-
tinuous function and V' : R — L(X) is the unique solution to the linear differential
equation in Eq. (26.36). Let Wy € L(X) and H € C(R, L(X)) be given. Show that
the unique solution to the differential equation:

(5.36) W (t) = A(t)W (t) + H(t) with W(0) = W,

is given by
(5.37) W(t) = V(t)Wo + V(1) /0 t V(r)"tH(7)dr.

Exercise 5.17 (Non-Homogeneous ODE). Suppose that U C, X is open and
Z :R x U — X is a continuous function. Let J = (a,b) be an interval and ¢y € J.
Suppose that y € C(J,U) is a solution to the “non-homogeneous” differential
equation:

(5.38) y(t) = Z(t,y(t)) with y(t,) =z € U.
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Define Y € C(J —to, R x U) by Y (t) = (t + to,y(t + to)). Show that Y solves the
“homogeneous” differential equation

(5.39) Y(t) = Z(Y(#)) with Y (0) = (to, o),

where Z(t,x) = (1, Z(z)). Conversely, suppose that Y € C'(J — to,R x U) is a
solution to Eq. (5.39). Show that Y () = (¢t + to, y(t + to)) for some y € C1(J,U)
satisfying Eq. (5.38). (In this way the theory of non-homogeneous ode’s may be
reduced to the theory of homogeneous ode’s.)

Exercise 5.18 (Differential Equations with Parameters). Let W be another Ba-
nach space, U xV C, X x W and Z € C(U x V, X) be a locally Lipschitz function
on U x V. For each (z,w) € U xV, let t € J, ,, — ¢(t,z,w) denote the maximal
solution to the ODE

(5.40) y(t) = Z(y(t), w) with y(0) = a.
Prove
(5.41) D:={(t,z,w) ERXxUXV:teJyuw}

isopen in R x U x V and ¢ and (b are continuous functions on D.
Hint: If y(¢) solves the differential equation in (5.40), then v(t) = (y(t),w)
solves the differential equation,

(5.42) o(t) = Z(v(t)) with v(0) = (z,w),

where Z(z,w) = (Z(z,w),0) € X x W and let (¢, (z,w)) := v(t). Now apply the
Theorem 5.21 to the differential equation (5.42).

Exercise 5.19 (Abstract Wave Equation). For A € L(X) and t € R, let

cos(tA) := Z %t%AQ" and

SlIl(tA) L — (71)’” 2n+1 A2n
T AT

n=0

n=0

Show that the unique solution y € C? (R, X) to

(5.43) §i(t) + A%y(t) = 0 with y(0) = yo and 9(0) = g € X
is given by
sin(tA) .
() = cos(eyyo + 220,

Remark 5.26. Exercise 5.19 can be done by direct verification. Alternatively and
more instructively, rewrite Eq. (5.43) as a first order ODE using Exercise 5.12. In
doing so you will be lead to compute e'? where B € L(X x X) is given by

0 I
B_(_A2 O)a

where we are writing elements of X x X as column vectors, < il ) . You should

2
B cos(tA) %
—Asin(tA) cos(tA)

then show
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where

Asin(tA) = Z ﬁﬁ +1A2(n+D)

n=0
Exercise 5.20 (Duhamel’s Principle for the Abstract Wave Equation). Continue
the notation in Exercise 5.19, but now consider the ODE,
(5-44) ii(t) + A%y(t) = f(#) with y(0) = yo and §(0) = 5o € X
where f € C(R, X). Show the unique solution to Eq. (5.44) is given by

sin(tA) . tsin((t—7) A
645 ylo) = cosea + gy 4 [ IUEEDA oy
A 0 A
Hint: Again this could be proved by direct calculation. However it is more in-
structive to deduce Eq. (5.45) from Exercise 5.15 and the comments in Remark

5.26.
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6. ALGEBRAS, 0 — ALGEBRAS AND MEASURABILITY

6.1. Introduction: What are measures and why “measurable” sets.

Definition 6.1 (Preliminary). Suppose that X is a set and P(X) denotes the
collection of all subsets of X. A measure p on X is a function p : P(X) — [0, 00]
such that

(1) (@) =0
(2) If {4; } _, is a finite (/N < c0) or countable (N = 00) collection of subsets
of X which are pair-wise disjoint (i.e. 4;NA; = 0 if ¢ # j) then

(U, A;) = ZM(Ai)-

Example 6.2. Suppose that X is any set and x € X is a point. For A C X, let

1 if reA
0 otherwise.

a4 = {
Then p = 6§, is a measure on X called the Dirac delta function at z.

Example 6.3. Suppose that p is a measure on X and A > 0, then X - p is also a
measure on X. Moreover, if {i,}aes are all measures on X, then = 3 ./ fia;
ie.
= Z to(A) forall Ac X
acJ

is a measure on X. (See Section 2 for the meaning of this sum.) To prove this we
must show that p is countably additive. Suppose that {4;};-, is a collection of
pair-wise disjoint subsets of X, then

(U A;) = ZM(Ai) = Z ZMa(A )

i=1 acJ
= Z Zﬂa(Ai) = Z fra (U721 Aj)
aeld i=1 acJ
= ?ilAi)

wherein the third equality we used Theorem 2.21 and in the fourth we used that
fact that p, is a measure.

Example 6.4. Suppose that X is a set A : X — [0, 00] is a function. Then

pi= Y Mx)ds

rzeX
is a measure, explicitly

pl4) = 3 @)

for all A C X.
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6.2. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure p : P(R) —[0, oo] such that

(1) p(la,b)) = (b—a) for all @ < b and
(2) (Translation invariant) p(A 4+ z) = u(A) for all x € R? (Here A+ x :=
{y+z:ye A} CR)
The answer is no which we now demonstrate. In fact the answer is no even if we
replace (1) by the condition that 0 < p((0,1]) < oo

Let us identify [0,1) with the unit circle S! := {z € C : |z| = 1} by the map
B(t) = e??™ € St for t € [0,1). Using this identification we may use p to define a
function v on P(S?) by v(¢(A)) = u(A) for all A C [0,1). This new function is a
measure on S! with the property that 0 < v((0,1]) < co. For z € St and N C S*
let

(6.1) zN :={zn e S*:n¢c N},

that is to say e’ N is N rotated counter clockwise by angle . We now claim that
v is invariant under these rotations, i.e.

(6.2) v(zN) = v(N)
for all z € St and N C S*. To verify this, write N = ¢(A) and z = ¢(t) for some
t€0,1) and A C [0,1). Then
P(t)¢(A) = ¢(t + Amod 1)
where for A C [0,1) and « € [0, 1), let
t+Amodl ={a+tmodle€[0,1):a€ N}
=(a+Anfa<l—thHUu(t-1)+An{a>1-1t}).
Thus

v(6(t)9(A)) = p(t + Amod 1)
((a+Anfa<l—-tHu(t-1)+An{a>1-1t}))
((a+Anfa<l—t}))+p((t-1)+An{a>1-1t}))
Anfe<l—th+pAn{a>1-1})
(An{a<1—-t}HhHu(An{a>1-1t}))
(4) = v(o(A)).
Therefore it suffices to prove that no finite measure v on S* such that Eq. (6.2)
holds. To do this we will “construct” a non-measurable set N = ¢(A) for some
AC|[0,1).

To do this let

Ri={z=¢e"":tcQ}={2z=¢"":tc[0,1)NQ},

=u
=u
=u
=u
=M

a countable subgroup of S'. As above R acts on S! by rotations and divides S* up
into equivalence classes, where z,w € S* are equivalent if z = rw for some r € R.
Choose (using the axiom of choice) one representative point n from each of these
equivalence classes and let N C S! be the set of these representative points. Then
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every point z € S' may be uniquely written as z = nr with n € N and r € R. That
is to say

(6.3) s =T &N)
reR

where [, Aq is used to denote the union of pair-wise disjoint sets {44} . By Eqgs.
(6.2) and (6.3),

v(8) = v(rN) =Y _v(N).
reER reR
The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S') € (0,1). Thus we have reached the
desired contradiction.
Proof. (Second proof of Answer to Question 1) For N C [0,1) and « € [0,1),
let
N®=N+amodl

={a+amodl €[0,1):a € N}

=(a+Nnf{a<l—-aph)U((a=1)+Nn{a>1-a}).
If i is a measure satisfying the properties of the Question we would have

p(N)=pla+Nnfa<l—-a})+p((ea—1)+Nn{a>1-a})

=uNnfa<l—-a})+pNn{a>1-a})

=p(Nn{a<l—-a}lU(Nn{a>1-a}))
(6.4) — (),
We will now construct a bad set N which coupled with Eq. (6.4) will lead to a
contradiction.

Set
Q:={x+reR:reQ} =x+Q.

Notice that @, N Q, # 0 implies that Q, = Q. Let O = {Q, : z € R} — the

orbit space of the Q action. For all A € O choose f(A) € [0,1/3) N A.'? Define
N = f(O). Then observe:
(1) f(A) = f(B) implies that AN B # () which implies that A = B so that f
is injective.
(2) O={Qn:n € N}.
Let R be the countable set,

R=QnNJ0,1).
We now claim that
(6.5) N'NN°=0if r # s and
(6.6) [0,1) = UperN".

Indeed, if z € N" N N® # () then x = r + nmod1 and z = s + n’ mod 1, then
n—n € Q,ie Q= Q.. That is to say, n = f(Q,) = f(Q./) = n' and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if z € [0,1) and
n:= f(Qz),thenz —n =7 € Q and x € N"mod 1,

12We have used the Axiom of choice here, i.e. [Tacr(AN0,1/3]) #0
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Now that we have constructed IV, we are ready for the contradiction. By Equa-
tions (6.4-6.6) we find

1= u([0,1)) = 3 u(N) = 3 (W)
reER TER
[ oo i u(N)>0
a { 0 if w(N)=0
which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set. m
Because of this example and our desire to have a measure p on R satisfying the
properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets A C R, i.e. we will only try to define 1 on a
smaller collection of “measurable” sets. Such collections will be called o — algebras

which we now introduce. The formal definition of a measure appears in Definition
7.1 of Section 7 below.

6.3. Algebras and o — algebras.

Definition 6.5. A collection of subsets A of X is an Algebra if
1) 0, XeA
(2) A € Aimplies that A° € A
(3) Ais closed under finite unions, i.e. if Ay,..., A, € Athen A;U---UA, € A.
In view of conditions 1. and 2., 3. is equivalent to
3’. A is closed under finite intersections.

Definition 6.6. A collection of subsets M of X is a o — algebra (o — field) if M
is an algebra which also closed under countable unions, i.e. if {4;};°, C M, then
U2, A; € M. (Notice that since M is also closed under taking complements, M is
also closed under taking countable intersections.) A pair (X, M), where X is a set
and M is a 0 — algebra on X, is called a measurable space.

The reader should compare these definitions with that of a topology, see Defini-
tion 3.14. Recall that the elements of a topology are called open sets. Analogously,
we will often refer to elements of and algebra A or a o — algebra M as measurable
sets.

Example 6.7. Here are some examples.
(1) 7 = M ="P(X) in which case all subsets of X are open, closed, and mea-

surable.
(2) Let X = {1,2,3}, then 7 = {0, X,{2,3}} is a topology on X which is not
an algebra.

(3) 7 = A = {{1},{2,3},0, X} is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3},0 are open and closed. The sets {1,2} and
{1,3} are neither open nor closed and are not measurable.

Proposition 6.8. Let £ be any collection of subsets of X. Then there exists a
unique smallest topology 7(E), algebra A(E) and o-algebra o(E) which contains &.

Proof. Note P(X) is a topology and an algebra and a o-algebra and £ C P(X),
so £ is always a subset of a topology, algebra, and ¢ — algebra. One may now easily
check that

7(€) = m{T : 7 is a topology and £ C 7}



ANALYSIS TOOLS WITH APPLICATIONS 79

is a topology which is clearly the smallest topology containing £. The analogous
construction works for the other cases as well. =

We may give explicit descriptions of 7(£) and A(E). However o(€) typically does
not admit a simple concrete description.

Proposition 6.9. Let X be a set and £ C P(X). For simplicity of notation, assume
that X,0 € £ (otherwise adjoin them to & if necessary) and let £¢ = {A°: A € £}
and E. = EU{X,0} UES Then 7(€) = 7 and A(E) = A where

(6.7) 7 := {arbitrary unions of finite intersections of elements from £}
and
(6.8) A = {finite unions of finite intersections of elements from E.}.

Proof. From the definition of a topology and an algebra, it is clear that £ C
7 C7(€) and € C A C A(E). Hence to finish that proof it suffices to show 7 is a
topology and A is an algebra. The proof of these assertions are routine except for
possibly showing that 7 is closed under taking finite intersections and A is closed
under complementation.

To check A is closed under complementation, let Z € A be expressed as

N K
z=U(N Ay

i=1j=1
where A;; € .. Therefore, writing B;; = Afj € &, we find that

N K K
ZC:ﬂUBij: U (Byj, N Byjy N---N Byjy) € A
i=1j=1 JiyeJN=1

wherein we have used the fact that Bi;, N Bgj, N---N Byj, is a finite intersection
of sets from &..

To show 7 is closed under finite intersections it suffices to show for V,W € r
that VN W € 7. Write

V =UqeaVy and W = UgGBWg
where V,, and Wy are sets which are finite intersection of elements from £. Then

VAW = (UaeaVa) N (UBEBWB) = U VonNWger
(a,B)EAXB

since for each (o, 3) € A x B, V, N Wp is still a finite intersection of elements from

£ m

Remark 6.10. One might think that in general ¢(£) may be described as the count-
able unions of countable intersections of sets in £¢. However this is false, since if

z=U( A

i=1j=1
with A” € &, then

7= 0 (0

ji=1,j2=1,...8=1,...
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which is now an uncountable union. Thus the above description is not correct. In
general it is complicated to explicitly describe o(&), see Proposition 1.23 on page
39 of Folland for details.

Exercise 6.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written as
finite union of sets of the form F NV where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 6.11. A set £ C P(X) is said to be an elementary family or ele-
mentary class provided that

e ec&

e £ is closed under finite intersections

o if £ € &, then E° is a finite disjoint union of sets from £. (In particular
X = ()¢ is a disjoint union of elements from &.)

Proposition 6.12. Suppose £ C P(X) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from &.

Proof. This could be proved making use of Proposition 6.12. However it is
easier to give a direct proof.

Let A denote the collection of sets which may be written as finite disjoint unions
of sets from &. Clearly £ C A C A(E) so it suffices to show A is an algebra since
A(E) is the smallest algebra containing £.

By the properties of £, we know that ), X € A. Now suppose that A; =
HFeAi F € A where, for i = 1,2,...,n., A; is a finite collection of disjoint sets
from £. Then

4
i=1

and this is a disjoint (you check) union of elements from £. Therefore A is closed
under finite intersections. Similarly, if A =[], F with A being a finite collection
of disjoint sets from &, then A® = (., F'°. Since by assumption F* € A for
F e AC €& and A is closed under finite intersections, it follows that A° € A. m

n
i=1 \F€EA, (F1,y.-,Fp

YEAL XX Ay

Exercise 6.2. Let A C P(X) and B C P(Y) be elementary families. Show the
collection

E=AxB={AxB:AcAand B € B}

is also an elementary family.

The analogous notion of elementary class £ for topologies is a basis V defined
below.

Definition 6.13. Let (X, 7) be a topological space. We say that S C 7 is a sub-
basis for the topology 7 iff 7 = 7(S) and X = US := UycsV. Wesay V C 7 is a
basis for the topology 7 iff V is a sub-basis with the property that every element
V € 7 may be written as

V=U{BeV:BCV}
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d(x,z)

%

FicUure 13. Fitting balls in the intersection.

Exercise 6.3. Suppose that S is a sub-basis for a topology 7 on a set X. Show V :=
Sy consisting of finite intersections of elements from & is a basis for 7. Moreover, S
is itself a basis for 7 iff

ViNnV,=u{SeS:ScVin}.
for every pair of sets V1,V € S.

Remark 6.14. Let (X, d) be a metric space, then & = {B,(§) : € X and § > 0}
is a basis for 74 — the topology associated to the metric d. This is the content of
Exercise 3.3.

Let us check directly that £ is a basis for a topology. Suppose that z,y € X and
€,0 >0.1If z € B(z,d) N B(y, €), then

(6.9) B(z,a) C B(x,0) N B(y,¢€)

where a = min{d — d(z, z),e — d(y, z) }, see Figure 13. This is a formal consequence
of the triangle inequality. For example let us show that B(z,a) C B(x,d). By the
definition of a, we have that o < § — d(x, z) or that d(z,z) < 0 — a. Hence if
w € B(z,a), then

dz,w) < d(z,2z) +d(z,w) <0 —a+dzw)<d—at+a=17
which shows that w € B(z, ). Similarly we show that w € B(y,€) as well.

Owing to Exercise 6.3, this shows &£ is a basis for a topology. We do not need
to use Exercise 6.3 here since in fact Equation (6.9) may be generalized to finite
intersection of balls. Namely if z; € X, §; > 0 and z € N, B(x;, §;), then
(6.10) B(z,a) C N1 B(x;, ;)
where now « := min{d; — d(z;,2) :i=1,2,...,n}. By Eq. (6.10) it follows that
any finite intersection of open balls may be written as a union of open balls.
Example 6.15. Suppose X = {1,2,3} and £ = {0, X, {1,2}, {1, 3}}, see Figure 14

below.
Then

(&) = {0, X, {1}, {1, 2}, {1,3}}
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FIGURE 14. A collection of subsets.

Definition 6.16. Let X be a set. We say that a family of sets F C P(X) is a
partition of X if X is the disjoint union of the sets in F.

Example 6.17. Let X be a set and &€ = {A4;,..., A,} where Ay,... A, is a
partition of X. In this case
A€) =0(&) =7(€) = {Uiendi - A C{1,2,...,n}}
where U;ep A; := 0 when A = (). Notice that
#AE) =#(P({1,2,...,n})) =2™

Proposition 6.18. Suppose that M C P(X) is a 0 — algebra and M is at most a
countable set. Then there exists a unique finite partition F of X such that F C M
and every element A € M is of the form

(6.11) A=U{aeF:acC A}.
In particular M is actually a finite set.
Proof. For each z € X let
Ay = (NgeaemA) € M.

That is, A, is the smallest set in M which contains z. Suppose that C'= A, N A,
is non-empty. If ¢ C then z € A, \ C € M and hence A, C A, \ C which
shows that A, NC = () which is a contradiction. Hence z € C' and similarly y € C,
therefore A, C C = A, N A, and A, C C = A, N A, which shows that A, = A,.
Therefore, F = {A, : * € X} is a partition of X (which is necessarily countable)
and Eq. (6.11) holds for all A € M. Let F = {P,})_, where for the moment
we allow N = oo. If N = oo, then M is one to one correspondence with {0, 1}N.
Indeed to each a € {0,1}", let A, € M be defined by

Ay =U{P, :a, =1}

This shows that M is uncountable since {0, 1}N is uncountable; think of the base
two expansion of numbers in [0, 1] for example. Thus any countable o — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader. m
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Example 6.19. Let X =R and
& ={(a,00):a € R}U{R,P} = {(a,00) "R : a € R} C P(R).
Notice that £ = &£ and that £ is closed under unions, which shows that

7(€) = &, i.e. & is already a topology. Since (a,00)¢ = (—o0,a] we find that
& = {(a,00),(—00,a], 00 < a < oo} U{R,}. Noting that

(a,00) N (—00,b] = (a, b

it is easy to verify that the algebra A(E) generated by £ may be described as being
those sets which are finite disjoint unions of sets from the following list

&= {(a,b]NR:a,beR}.

(This follows from Proposition 6.12 and the fact that £ is an elementary family of
subsets of R.) The o — algebra, o(£), generated by £ is very complicated. Here
are some sets in 0(£) — most of which are not in A(E).

b) = U (a,b— 1] € o(&).

a

(a) (a,
(b) All of the standard open subsets of R are in o(&).
(c) {z} = ﬂ (ac — ;,x} €o(€)
(d) [a.b] = {a} U (a,b] € o(€)

(e) Any countable subset of R is in o ().

Remark 6.20. In the above example, one may replace £ by &€ = {(a,0) : a €
Q} U{R,0}, in which case A(£) may be described as being those sets which are
finite disjoint unions of sets from the following list

{(a, OO), (—OO, CL], (aa b] L a, be Q} U {Q)aR} :

This shows that A() is a countable set — a fact we will use later on.

Definition 6.21. A topological space, (X, 7), is second countable if there exists
a countable base V for 7, i.e. V C 7 is a countable set such that for every W € 1,

W=U{V:VeVsVcCcW}

Exercise 6.4. Suppose £ C P(X) is a countable collection of subsets of X, then
7 =7(€) is a second countable topology on X.

Proposition 6.22. Fvery separable metric space, (X, p) is second countable.

Proof. Let {x,}22, be a countable dense subset of X. Let V =

{X,0} U {Bs,(rm)} C 7, where {r,}>_, is dense in (0,00). Then V is a

m,n=1
countable base for 7,. To see this let V' C X be open and z € V. Choose
e > 0 such that B,(e) C V and then choose z,, € B,(¢/3). Choose r,, near
€/3 such that p(z,z,) < 7T, < €/3 so that ¢ € B, (r,) C V. This shows
V=U{B:,(tm) : Be,(rm)CV}. =

Notation 6.23. For a general topological space (X, 7), the Borel o — algebra is
the o — algebra, Bx = o(7). We will use Bg to denote the Borel o - algebra on R.

Proposition 6.24. If T is a second countable topology on X and € C P(X) is a
countable set such that T = 7(€), then Bx := o(1) = 0(£), i.e. a(7(€)) =o(E).
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Proof. Let £; denote the collection of subsets of X which are finite intersection
of elements from & along with X and ). Notice that £ is still countable (you prove).

A set Z isin 7(€) iff Z is an arbitrary union of sets from £;. Therefore Z = |J A
AceF
for some subset F C £y which is necessarily countable. Since &5 C o(€) and o (&) is

closed under countable unions it follows that Z € ¢(€) and hence that 7(£) C o(£).
For the last assertion, since & C 7(€) C o(€) it follows that o(€) C o(7(£)) C o(€).
]

Exercise 6.5. Verify the following identities
Br =o0({(a,0):a € R} =0({(a,0) : a € Q} = c({[a, ) : a € Q}).
6.4. Continuous and Measurable Functions. Our notion of a “measurable”
function will be analogous to that for a continuous function. For motivational pur-
poses, suppose (X, M, u) is a measure space and f : X — R,. Roughly speaking,
in the next section we are going to define [ fdu by
X

o0

JEZE "D SR A}
X

mesh—0
0<a1<az<asz<...

For this to make sense we will need to require f~*((a,b]) € M for all a < b. Because
of Lemma 6.30 below, this last condition is equivalent to the condition

fﬁl(BR) - Ma
where we are using the following notation.
Notation 6.25. If f: X — Y is a function and £ C P(Y) let
fE= e = BB E)
If G C P(X), let
f.9={AePW)f(4) € g},
Exercise 6.6. Show f~'€ and f.G are o — algebras (topologies) provided £ and
G are o — algebras (topologies).

Definition 6.26. Let (X, M) and (Y,F) be measurable (topological) spaces. A
function f: X — Y is measurable (continuous) if f~}(F) C M. We will also
say that f is M /F — measurable (continuous) or (M, F) — measurable (continuous).

Example 6.27 (Characteristic Functions). Let (X, M) be a measurable space and
A C X. We define the characteristic function 14 : X — R by

1 if z€d
1A(w)—{o it oA

If A€ M, then 14 is (M, P(R)) — measurable because 1;'(W) is either §), X, A or
A° for any U C R. Conversely, if F is any o — algebra on R containing a set W C R
such that 1 € W and 0 € W€, then A € M if 14 is (M, F) — measurable. This is
because A = 1,1 (W) € M.

Remark 6.28. Let f : X — Y be a function. Given a o — algebra (topology)
F C P(Y), the o — algebra (topology) M := f~1(F) is the smallest o — algebra
(topology) on X such that f is (M, F) - measurable (continuous). Similarly, if M
is a o - algebra (topology) on X then F = f,. M is the largest o — algebra (topology)
on Y such that f is (M, F) - measurable (continuous).
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Lemma 6.29. Suppose that (X, M), (Y,F) and (Z,G) are measurable (topological)
spaces. If f 1 (X,M) = (Y, F) and g : (Y,F) — (Z,G) are measurable (continuous)
functions then go f : (X, M) — (Z,G) is measurable (continuous) as well.

Proof. This is easy since by assumption ¢~1(G) C F and f~! (F) C M so that
(9o NG =1 @) TN F) M.

]
Lemma 6.30. Suppose that f: X — Y is a function and € C P(Y), then
(6.12) o (f1E) = f 1 (o(€)) and
(6.13) T(F7HE) = 177 (€)).
Moreover, if F = o(€) (or F = 7(€)) and M is a o — algebra (topology) on X,
then f is (M,F) — measurable (continuous) iff f~*(£) C M.

Proof. We will prove Eq. (6.12), the proof of Eq. (6.13) being analogous.
If € C F, then f~3(&) C f~1(0(€)) and therefore, (because f~1(c(£)) is a o —
algebra)

G:=a(fH(E) C fH(a(€)

which proves half of Eq. (6.12). For the reverse inclusion notice that
fG={BcCY:fB)eg}

is a o — algebra which contains £ and thus o(€£) C f.G. Hence if B € o(€) we
know that f~Y(B) € G, i.e. f~1(c(£)) C G. The last assertion of the Lemma is
an easy consequence of Eqs. (6.12) and (6.13). For example, if f~1£ C M, then
fro (&) = o (f~1€) € M which shows f is (M, F) — measurable. m

Definition 6.31. A function f : X — Y between to topological spaces is Borel
measurable if f~1(By) C By.

Proposition 6.32. Let X and Y be two topological spaces and f : X — Y be a
continuous function. Then f is Borel measurable.

Proof. Using Lemma 6.30 and By = o(1y),

f7NBy) = fo(ry)) = o(fH(rv)) C olrx) = Bx.
| |

Corollary 6.33. Suppose that (X, M) is a measurable space. Then f: X — R
is (M, Br) — measurable iff f~1((a,0)) € M for all a € R iff f~((a,00)) € M
for all a € Q iff f~1((—o00,a]) € M for all a € R, ete. Similarly, if (X, M) is
a topological space, then f : X — R is (M,7R) - continuous iff f~((a,b)) € M
for all —o < a < b < o iff f7*((a,00)) € M and f~1((—o0,b)) € M for all
a,b € Q. (We are using Tr to denote the standard topology on R induced by the
metric d(x,y) = |z — y|.)

Proof. This is an exercise (Exercise 6.7) in using Lemma 6.30. =
We will often deal with functions f: X — R = RU{£o0}. Let

(6.14) Bg := 0 ({[a,0] : a € R}).
The following Corollary of Lemma 6.30 is a direct analogue of Corollary 6.33.
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Corollary 6.34. f: X — R is (M, Bg) - measurable iff f='((a,c0]) € M for all
a € R iff f71((—o00,a]) € M for all a € R, etc.

Proposition 6.35. Let Br and Bg be as above, then
(6.15) Bg={ACR:ANR €Bg}.
In particular {oo},{—o0} € Bg and Br C Bg.
Proof. Let us first observe that
{—oo} =ML [—00, —n) = N7, [—n, o0 € By,
{00} = N2 [n,00] € Bz and R = R\ {0} € Bz.
Letting i : R — R be the inclusion map,
i (Bg) =0 (i7" ({[a,00] : a €R})) =0 ({i7! ([a,00]) : a € R})
=0 ({la,c]NR:a €R}) =0 ({[a,0) : a € R}) = Br.
Thus we have shown
Br =it (Bg)={ANR:Ac Bg}.
This implies:
(1) Ae Bg = ANR €Bg and
(2) if A C Rissuch that ANR €Bg there exists B € Bg such that ANR = BNR.

Because AAB C {£oo} and {oo},{—o0} € Bz we may conclude that
A € Bg as well.

This proves Eq. (6.15). m
Proposition 6.36 (Closure under sups, infs and limits). Suppose that (X, M) is

a measurable space and f; : (X, M) — R is a sequence of M/Bg — measurable
functions. Then

sup; fj, inf;f;, limsup f; and liminf f;
j—o0 J—0o0

are all M/Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in the
statement.)

Proof. Define g4 (x) := sup; f;(x), then
{z:g91(x) <a} ={z: fij(z) <aVj}
—N{e: f(@) a}eM
so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:9-(z) 2 a} =ni{z: f;(z) > a} e M.
Since

limsup f; =infsup{f;:j >n} and

j—0o0

liminf f; =supinf{f;:j >n}
Jj—o0 n

we are done by what we have already proved. m
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6.4.1. More general pointwise limits.

Lemma 6.37. Suppose that (X, M) is a measurable space, (Y, d) is a metric space
and fj : X =Y is (M, By ) — measurable for all j. Also assume that for eachz € X,
f(@) =lim, o frn(x) exists. Then f: X —Y is also (M, By) — measurable.

Proof. Let V € g and W, :={y € Y : dye(y) > 1/m} for m = 1,2,.... Then

W, € Td,

Wi CWop Cly €Y tdye(y) >1/m}CV
for all m and W,,, T V as m — oo. The proof will be completed by verifying the
identity,

FHV) = U2, URy s £ (Win) € M.
Ifx € f~1(V) then f(z) € V and hence f(z) € W, for some m. Since f,(z) — f(z),
fn(z) € Wy, for almost all n. That is z € U_; UF_; N> fr (Wiy,). Conversely
when z € USS_; UX_; Nu>n S H(W,y) there exists an m such that f,(z) € W, C
W, for almost all n. Since f,,(z) — f(z) € W,, C V, it follows that z € f~*(V). m

Remark 6.38. In the previous Lemma 6.37 it is possible to let (Y, 7) be any topo-
logical space which has the “regularity” property that if V' € 7 there exists W,,, € 7
such that W,, C W,, CV and V = Use_ Wi, Moreover, some extra condition is
necessary on the topology 7 in order for Lemma 6.37 to be correct. For example if

Y ={1,2,3} and 7 = {Y,0,{1,2},{2,3},{2}} as in Example 3.28 and X = {a,b}
with the trivial o — algebra. Let f;(a) = f;(b) = 2 for all j, then f; is constant and
hence measurable. Let f(a) =1 and f(b) = 2, then f; — f as j — oo with f being
non-measurable. Notice that the Borel o — algebra on Y is P(Y).

6.5. Topologies and o — Algebras Generated by Functions.

Definition 6.39. Let £ C P(X) be a collection of sets, A C X, i4 : A — X be
the inclusion map (i4(z) = x) for all x € A, and

Ea=i () ={ANE:E€&}.

When £ = 7 is a topology or £ = M is a o — algebra we call 74 the relative topology
and M4 the relative o — algebra on A.

Proposition 6.40. Suppose that A C X, M C P(X) is a 0 — algebra and T C
P(X) is a topology, then M4 C P(A) is a o — algebra and 74 C P(A) is a topology.
Moreover if € C P(X) is such that M = o(&) (1 = 7(E)) then My = o(€a)
(ta =T1(€E4)).

Proof. The first assertion is Exercise 6.6 and the second assertion is a conse-
quence of Lemma 6.30. Indeed,

Ma = 5" (M) = i31(0(8)) = o(i31(6)) = o(Ea)
and similarly
Ta =iy (1) =iy (1(€)) = 7(i3' (€)) = T(€a).
]

Example 6.41. Suppose that (X,d) is a metric space and A C X is a set. Let
T = 74 and da := d|axa be the metric d restricted to A. Then 74 = 74,, i.e.
the relative topology, 74, of 74 on A is the same as the topology induced by the
restriction of the metric d to A. Indeed, if V' € 74 there exists W € 7 such that
V' N A = W. Therefore for all z € A there exists ¢ > 0 such that B;(e) C W and
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hence B,(¢) N A C V. Since B,(¢) N A = Bl4(e) is a da — ball in A, this shows
V is d4 — open, i.e. 74 C 74,. Conversely, if V' € 74,, then for each x € A there
exists €, > 0 such that B4 (¢) = B,(e) N A C V. Therefore V.= AN W with
W :=UgecaB:(€) € 7. This shows 74, C 74.

Definition 6.42. Let A C X, f : A — C be a function, M C P(X) be a o — algebra
and 7 C P(X) be a topology, then we say that f|4 is measurable (continuous) if
fla is M4 — measurable (74 continuous).

Proposition 6.43. Let A C X, f : X — C be a function, M C P(X) be a o -
algebra and 7 C P(X) be a topology. If f is M — measurable (T continuous) then
fla is M4 measurable (T4 continuous). Moreover if A, € M (A, € T) such that
X = U2 A, and flA, is Ma, measurable (T4, continuous) for all n, then f is
M — measurable (T continuous).

Proof. Notice that i4 is (M4, M) — measurable (74,7) — continuous) hence
fla = foia is My measurable (14 — continuous). Let B C C be a Borel set and
consider

F7HB) = Uty (fHB)NAy) = U2y fl4, (B).
If Ae M (A €7), then it is easy to check that
My={BeM:BcC A} C M and
Ta={BeT:BCA}CT.
The second assertion is now an easy consequence of the previous three equations.

Definition 6.44. Let X and A be sets, and suppose for a € A we are give a
measurable (topological) space (Y,, Fy) and a function f, : X — Y,,. We will write
0(fo:a€ A) (7(fo : a € A)) for the smallest o-algebra (topology) on X such that
each f, is measurable (continuous), i.e.

0(fo:a € A)=0(Uaf, (Fa)) and

T(fa:a € A) =1(Usf (Fa)).
Proposition 6.45. Assuming the notation in Definition 6.44 and additionally let
(Z, M) be a measurable (topological) space and g : Z — X be a function. Then g
is (M,0(fo :a € A)) — measurable (M, 7(fo : v € A)) — continuous) iff fo 0 g is
(M, Fo)—measurable (continuous) for all o € A.

Proof. (=) If gis (M,0(fs : @ € A)) — measurable, then the composition f,og
is (M, F,) — measurable by Lemma 6.29.
(<) Let
G=0(fa:a€A)=0(Uneafi'(Fa))-
If fo 0gis (M, F,) — measurable for all a, then
g TN F) Cc MYac A
and therefore

gil (UaeAfojl(-'Fa)) = UaEAgilf(;l(-'Fa) C M.

Hence

971G = g7 (0 (Vacafs ' (Fa))) = 097" (Vaeafs ' (Fa)) M
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which shows that ¢ is (M, G) — measurable.
The topological case is proved in the same way. ®

6.6. Product Spaces. In this section we consider product topologies and o —
algebras. We will start with a finite number of factors first and then later mention
what happens for an infinite number of factors.

6.6.1. Products with a Finite Number of Factors. Let {X;}!_; be a collection of sets,
X = X7 xXax---xX, and m; : X — X; be the projection map 7 (x1,xa,...,&,) =
x; for each 1 < i < n. Let us also suppose that 7; is a topology on X; and M; is a
o — algebra on X; for each i.

Notation 6.46. Let & C P(X;) be a collection of subsets of X; fori=1,2,...,n
we will write, by abuse of notation, & x & x --- x &, for the collection of subsets
of X1 x -+ x X, of the form A; x Ay x --- x A,, with A; € &; for all 4. That is we
are identifying (Aj, A, ..., A,) with A; X Ay X --- X A,,.

Definition 6.47. The product topology on X, denoted by 1 @ m ® - - @ 7, is
the smallest topology on X so that each map m; : X — X is continuous. Similarly,
the product o — algebra on X, denoted by M1 @ My ®---® M, is the smallest
o — algebra on X so that each map 7; : X — X, is measurable.

Remark 6.48. The product topology may also be described as the smallest topology
containing sets from 7 X -+ X 7, i.e.

TIRT®  Q@Tp =T7(T1 X+ X Tp).

Indeed,
TI®T2Q Ty =T(T1, T2y ..., Tn)
ZT({ﬂ?ﬂW;l(Vi) Viermfori=1,2,...,n})
=7({(VixVax---xV,:Vierfori=1,2,...,n}).
Similarly,

Mi@Ma®@- @M, =0(My X Mg x -+ X My,).

Furthermore if B; C 7; is a basis for the topology 7; for each 4, then By x - -- X B,, is
a basis for 1 @ T, ® - - - ®7,,. Indeed, 71 X - -+ X 7, is closed under finite intersections
and generates 71 ® T2 ® - - - ® T, therefore 71 X -+ X 7, is a basis for the product
topology. Hence for W € 11 @ o ® - - - ® 7, and & = (x1,...,2,) € W, there exists
VixVox. - xV,€m X - X171, such that

zeVixVox---xV, CcW.

Since B; is a basis for 7;, we may now choose U; € B; such that z; € U; C V; for
each 7. Thus

reU xUyx---xU,CW

and we have shown W may be written as a union of sets from By X --- X B,,. Since
By X X By CTp X0 X7 CTy QTR Q T,

this shows By x --- x B, isabasisfor 1 @ m ® -+ ® .
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Lemma 6.49. Let (X;,d;) fori=1,...,n be metric spaces, X := X1 x -+ x X,
and for x = (x1,z2,...,2,) and y = (Y1,Y2, .-, Yn) in X let

(6.16) d(z,y) = Zdi(xiayi)'
i=1

Then the topology, T4, associated to the metric d is the product topology on X, i.e.

Td = Td, @Tdy - Ty

Proof. Let p(z,y) = max{d;(z;,y;) : i = 1,2,...,n}. Then p is equivalent to d

and hence 7, = 74. Moreover if € > 0 and = = (21, 22,...,2,) € X, then

Bf(e) = Bgi(e) X -+ x Bdn(e).

T
By Remark 6.14,
E:={Bf(e): x € X and € > 0}
is a basis for 7, and by Remark 6.48 £ is also a basis for 74, ® 74, ® --- ® 74
Therefore,

n*

Td1®7—d2®"'®7—dn:T(S):Tp:Td'
]

Remark 6.50. Let (Z, M) be a measurable (topological) space, then by Proposition
6.45, a function f : Z — X is measurable (continuous) iff m; 0 f : Z — X; is
(M, M;) — measurable ((7,7;) — continuous) for ¢ = 1,2,...,n. So if we write

f(2) = (f1(2), f2(2), -+, fu(2)) € X1 x Xo X - X Xp,

then f: Z — X is measurable (continuous) iff f; : Z — X; is measurable (continu-
ous) for all i.

Theorem 6.51. Fori=1,2,...,n, let & C P(X;) be a collection of subsets of X;
such that X; € & and M; = o(&;) (or 7, =7(&;)) fori=1,2,...,n, then

Mi@Mo® - @M, =0c(E1 XxE x -+ x&,) and
TTRT® QT =T(E1 X E X -+ X &Ep).
Written out more explicitly, these equations state
(6.17) o(o(&1) xo(&) x - x0(&)) =0(Eg x E x -+ x &) and
(6.18) T(1(E1) X T(E) X -+ X 7(&R)) = 7(E1 X Ea X -+ - X &).

Moreover if {(X;,7:)}i_, is a sequence of second countable topological spaces, T =
TL® T ® -+ Q Ty, s the product topology on X = X1 X -+ x X,,, then

Bx =0(m®mn® - @m)=0(Bx, X xBx,) = Bx, ® - ®Bx,.
That is to say the Borel o — algebra and the product o — algebra on X are the same.

Proof. We will prove Eq. (6.17). The proof of Eq. (6.18) is completely analo-
gous. Let us first do the case of two factors. Since

51 X 52 C 0'(51) X 0'(52)

it follows that
o (& x &) Co(o(&) xa(&)) =o(m,m).
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To prove the reverse inequality it suffices to show m; : X7 x X5 — X; is 0 (&1 X &)
— M; = o(&;) measurable for i = 1,2. To prove this suppose that E € &, then
TN E)=Ex Xy €& x & Co(€1xE)
wherein we have used the fact that X5 € &. Similarly, for E € & we have
T (BE)=X1 x E€& x& Co(&1 x&).
This proves the desired measurability, and hence
o(my,ma) C o (& x &) C o(m,m2).

To prove the last assertion we may assume each &; is countable for ¢ = 1, 2. Since
&1 x &y is countable, a couple of applications of Proposition 6.24 along with the
first two assertions of the theorems gives

o(r @ 1) =0(1 (11 X 12)) =0(7 (7(&1) X 7(&2))) = o(7 (€1 X &2))
=0(& x &) =0 (0(&1) x 0(E)) =0 (M1 x M3) = My @ Ma.
The proof for n factors works the same way. Indeed,
E1x&E X x&, Co(&) xo(&) x - xa(&,)
implies
o0&y xE x--x&,) Co(o(&) xa(&)x-x0a(&))=0(m1,...,m)
and for E € &;,
ﬂi_l(E):Xl XXoxX o X Ximg X EXXip1- XX, €8 xE X+ x&E,
Co(&gx&Ex--xE,).
This show 7; is 0 (&1 X €3 X -+ X &,) — M; = 0(&;) measurable and therefore,
o(m1y e Tp) Co(E1 X Ey X - X &) Co(my,...,mp).
If the &; are countable, then
c(Men® - @m) =0(r
T(T(E1) X 7(E2) X -+ x 7(&r)))
=o(T
=0(& xE X X&)
=0 (0(&) xa(&) x - x (&)
o (M1 x My x - x M)
=M iOMa®--- @M,

Remark 6.52. One can not relax the assumption that X; € &; in Theorem 6.51.
For example, if X7 = Xy = {1,2} and & = & = {{1}}, then o(& x &) =
{®7X1 X XQ, {(1, 1)}} while 0'(0'(81) X 0'(52)) = P(Xl X Xg).

Proposition 6.53. If (X;,d;) are separable metric spaces for i =1,...,n, then
BX1 [ BX,L = B(X1><~-><X,,,)

where Bx, is the Borel o — algebra on X; and B(x, x...xx,,) s the Borel o — algebra
on X1 X --- x X, equipped with the product topology.
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Proof. This follows directly from Proposition 6.22 and Theorem 6.51. =
Because all norms on finite dimensional spaces are equivalent, the usual Euclid-
ean norm on R™ x R™ is equivalent to the “product” norm defined by

1@ Yllgm gz = l2llgm + [1Yllgn -
Hence by Lemma 6.49, the Euclidean topology on R™*™ is the same as the product
topology on R™*" = R™ x R™ Here we are identifying R™ x R™ with R™"" by the
map
(z,9) ER™ X R™ — (T4, ..., Tin, Y15 -+ -, Yn) € R™T™.
Proposition 6.53 and these comments leads to the following corollaries.

Corollary 6.54. After identifying R™ x R™ with R™*" as above and letting Bgrn
denote the Borel o —algebra on R™, we have

n-times
—N—
BR7n+n == BRn 024 B]Rm and BRn = B]R [N BR.
Corollary 6.55. If (X, M) is a measurable space, then

f: (flaf?a"'afn):X_)Rn
is (M, Brn) — measurable iff f; : X — R is (M, Br) - measurable for each i. In
particular, a function f : X — C is (M,Bc) — measurable iff Re f and Im f are
(M, Br) — measurable.

Corollary 6.56. Let (X, M) be a measurable space and f,g: X — C be (M, Bc)
— measurable functions. Then f + g and f - g are also (M, Bc) — measurable.

Proof. Define F: X - CxC, AL :CxC —-Cand M : CxC — C by
F(z) = (f(x),9(x)), AL(w,z) = w =+ z and M(w,z) = wz. Then Ay and M are
continuous and hence (Bcz, Bc) — measurable. Also F is (M, Be ® Be) = (M, Bez2)
— measurable since m 0 F' = f and mp 0 F' = g are (M, Bc) — measurable. Therefore
AroF =f+tgand Mo F = f-g, being the composition of measurable functions,
are also measurable. m

Lemma 6.57. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

[ i @)
Fla): { o« i f@)=0

is measurable.

Proof. Define : : C — C by
‘ 1 if 240
z(z)—{ a if z=0.
For any open set V C C we have
H(V) =it (VA {op) uiT (v n{o})

Because i is continuous except at z = 0, i~ }(V \ {0}) is an open set and hence
in Be. Moreover, i~1(V N {0}) € Bg since i~1(V N {0}) is either the empty set or
the one point set {a} . Therefore i~!(7¢) C Bc and hence i~ (Bc) =i !(o(7c)) =
o(i~Y(rc)) C Bc which shows that 4 is Borel measurable. Since F' = i o f is the
composition of measurable functions, F' is also measurable. m
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6.6.2. General Product spaces .

Definition 6.58. Suppose(Xa, Ma),c4 is a collection of measurable spaces and
let X be the product space
X =]] Xa

acA
and 7, : X — X, be the canonical projection maps. Then the product ¢ — algebra,
&R My, is defined by
(0%

®MQ =o(mg:a€A)=0 (Uwal(/\/la)> :

acA

Similarly if (X, Ma),c 4 is a collection of topological spaces, the product topology
QR My, is defined by

®./\/la =7(mp:a€A) =1 (UWQI(MQ)> :

acA

Remark 6.59. Let (Z, M) be a measurable (topological) space and

(X =] Xa,®/\/la>

acA acA

be as in Definition 6.58. By Proposition 6.45, a function f : Z — X is measurable
(continuous) iff 7, o f is (M, M) — measurable (continuous) for all a € A.

Proposition 6.60. Suppose that (Xn, Ma),c 4 5 a collection of measurable (topo-
logical) spaces and E, C M, generates M., for each o € A, then

(619) ®a€AMa =0 (UaeAﬂa_l(ga)) (T (UaeAﬂ—;l(goz)))

Moreover, suppose that A is either finite or countably infinite, X, € &, for each
a€ A, and M, = o(&,) for each a € A. Then the product o — algebra satisfies

(6.20) ®Maa<{HEa:Ea€€a for allaEA}).

acA acA
Similarly if A is finite and M, = 7(€,), then the product topology satisfies

(6.21) ®Ma7<{HEa;Eaeea for allaEA}).

acA acA

Proof. We will prove Eq. (6.19) in the measure theoretic case since a similar
proof works in the topological category. Since |7, (Ea) C Uam, 1 (M,), it follows

«
that

Fi=0 (Uw;%&)) Co (UWJl(MQ)> = ®Ma.

F D o(ng'(Ea)) = m5 M (0(Ea)) = 75 (Ma)
holds for all « implies that

Conversely,

Uwgl(/\/ta) cCF
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and hence that @ M, C F.

«
We now prove Eq. (6.20). Since we are assuming that X, € &, for each a € A,
we see that

Uwgl(&l) C {H E,:E, €&, for allaEA}

acA
and therefore by Eq. (6.19)

®/\/la =0 (Uw;l(é’a)> Co ({H E,:E, €&, for allozEA}).

acA «@ acA

This last statement is true independent as to whether A is countable or not. For
the reverse inclusion it suffices to notice that since A is countable,

H Ea - maGA’]T;l(Ea) € ® Ma

acA acA

and hence

a({HEa:EaegaforallaeA}> C®./\/la.

a€cA a€A

Here is a generalization of Theorem 6.51 to the case of countable number of factors.
u

Proposition 6.61. Let {X.} .4 be a sequence of sets where A is at most count-
able. Suppose for each o € A we are given a countable set £, C P(X,). Let
To = T(Ea) be the topology on X, generated by E, and X be the product space
[Toca Xo with equipped with the product topology T := ®aecaT(Ex). Then the Borel
o — algebra Bx = o(1) is the same as the product o — algebra:

Bx = ®acaBx,,
where Bx,, = o(17(&a)) = 0(Ea) for all a € A.

Proof. By Proposition 6.60, the topology 7 may be described as the smallest
topology containing & = Uaeam, *(£,). Now £ is the countable union of countable
sets so is still countable. Therefore by Proposition 6.24 and Proposition 6.60 we
have

Bx =o(7) = 0(7(£)) = 0(£) = ®aca0(€a) = ®aca0(Ta) = ®acaBx, -
]

Lemma 6.62. Suppose that (Y,F) is a measurable space and F : X —=Yisa
map. Then to every (o(F),Bg) — measurable function, H from X — R, there is a
(F, Bg) — measurable function h : Y — R such that H = ho F.

Proof. First suppose that H = 14 where A € o(F) = F~1(Bg). Let J € By
such that A = F~!(J) then 14 = 1p-1(j) = 1y o F and hence the Lemma is valid
in this case with h = 1;. More generally if H = a;14, is a simple function, then
there exists J; € Bg such that 14, = 15,0 F and hence H = ho F with h:= > a;1,
— a simple function on R.
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For general (o(F), Bg) — measurable function, H, from X — R, choose simple
functions H,, converging to H. Let h, be simple functions on R such that H, =
h,, o F. Then it follows that

H = lim H, =limsup H,, =limsuph, o F =hoF
where h := limsup,, . h, — a measurable function from Y to R. m
The following is an immediate corollary of Proposition 6.45 and Lemma 6.62.

Corollary 6.63. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Y. Let Y :=[[ cq Yo, F =
®acaFa be the product o — algebra on'Y and M := o(f, : a € A) be the smallest
o-algebra on X such that each f, is measurable. Then the function F' : X — Y
defined by [F(z)], == fa(x) for each o € A is (M, F) — measurable and a function
H: X — Ris (M, Bg) — measurable iff there exists a (F,Bg) — measurable function
h from'Y to R such that H = ho F.

6.7. Exercises.
Exercise 6.7. Prove Corollary 6.33. Hint: See Exercise 6.5.

Exercise 6.8. Folland, Problem 1.5 on p.24. If M is the o — algebra generated by
&€ C P(X), then M is the union of the o — algebras generated by countable subsets
FCE.

Exercise 6.9. Let (X, M) be a measure space and f,, : X — F be a sequence of
measurable functions on X. Show that {z : lim,, . f,(z) exists} € M.

Exercise 6.10. Show that every monotone function f : R — R is (Bg, Br) — mea-
surable.

Exercise 6.11. Folland problem 2.6 on p. 48.

Exercise 6.12. Suppose that X isaset, {(Y,, 7o) : @ € A} is a family of topological
spaces and f, : X — Y, is a given function for all & € A. Assuming that S, C 7,
is a sub-basis for the topology 7, for each o € A, show S := Upea f5 1 (Sa) is a
sub-basis for the topology 7 := 7(f, : @ € A).

Notation 6.64. Let X be a set and p := {p, },—, be a family of semi-metrics on
X, ie p,: X xX — [0,00) are functions satisfying the assumptions of metric
except for the assertion that p,(z,y) = 0 implies z = y. Further assume that
Pn(2,y) < pri1(x,y) for all n and if p,(z,y) = 0 for all n € N then z = y. Given
n€Nand z € X let

Bn(x,€) :={y € X : pn(x,y) <¢}.

We will write 7(p) form the smallest topology on X such that p,(z,-) : X — [0, 00)
is continuous for all n € N and « € X, i.e. 7(p) := 7(pn(z-) :n € Nand z € X).

Exercise 6.13. Using Notation 6.64, show that collection of balls,
B:={B,(z,e):neN, z € X and € > 0},

forms a basis for the topology 7(p). Hint: Use Exercise 6.12 to show B is a sub-
basis for the topology 7(p) and then use Exercise 6.3 to show B is in fact a basis
for the topology 7(p).
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Exercise 6.14. Using the notation in 6.64, let

oo

d(z,y) = Z 2_"71 i";:ég?y)

Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zj},, C X
converges to x € X iff

n=0

lim p,(xk,x) =0 for all n € N.
k—o0

Exercise 6.15. Let {(X,,d,)} -, be a sequence of metric spaces, X = [[2 | X,

n=1

and for z = (z(n)),—, and y = (y(n)),—, in X let

=l da(z(n),y(n)
d(z,y) = ZQ 1+ d,(x(n),y(n))’

(See Exercise 3.26.) Moreover, let 7; : X — X; be the projection maps, show
Tg = @poqTa; = 7({m 11 € N}).
That is show the d — metric topology is the same as the product topology on X.

n=1
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7. MEASURES AND INTEGRATION
Definition 7.1. A measure p on a measurable space (X, M) is a function pu :
M — [0, 00] such that

(1) (@) =0 and
(2) (Finite Additivity) If {A;};_, C M are pairwise disjoint, i.e. A, N A; =0

when i # j, then
n(lJA) =D n4).
i=1 i=1

(3) (Continuity) If A, € M and A,, T A, then u(Ay,) T n(A).
We call a triple (X, M, 1), where (X, M) is a measurable space and p: M —
[0, 0¢] is a measure, a measure space.

Remark 7.2. Properties 2) and 3) in Definition 7.1 are equivalent to the following
condition. If {A4;};°, C M are pairwise disjoint then

(7.1) p(lJ 4) =D n(Ai).
=1 =1

To prove this suppose that Properties 2) and 3) in Definition 7.1 and {4;};>, C M

n o0
are pairwise disjoint. Let B, := |J A; 1 B:= |J A, so that
=1 i=1

1=

n—oo

®) . @ . o >
p(B) = lim p(B) = lim Y u(As) = u(Ay).
=1 i=1

Conversely, if Eq. (7.1) holds we may take A; = () for all j > n to see that Property
2) of Definition 7.1 holds. Also if A,, 1 A, let B,, := A, \ Ap—1. Then {B,,,}fbo:1 are
pairwise disjoint, A, = U7_; Bj and A = U2, B;. So if Eq. (7.1) holds we have

n(A) = p (U2, B)) = ZM(BJ')

=1

= lim > wu(Bj) = lim p(Uj_yBj) = lim pu(A,).
j=1

n—oo

Proposition 7.3 (Basic properties of measures). Suppose that (X, M, 1) is a mea-
sure space and E,F € M and {Ej};il C M, then :

(1) p(E) <p(F) if ECF.

(2) W(UE,) < ¥ u(E,).
(3) If wW(Ey) < oo and E; | E, i.e. By D Ey D E3D ... and E = N;Ej, then

w(E;) | p(E) as j — oo.
Proof.
(1) Since F = EU(F\ E),
w(F) = w(E) + p(F\ E) = p(E).
(2) Let Ejf E;\ (EyU---UE;_) so that the E; ’s are pair-wise disjoint and
E = UE;. Since E; C Ej it follows from Remark 7.2 and part (1), that

WE) =" w(E;) <> u(E;).
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7)

FicUurg 15. Completing a o — algebra.

(3) Define D; = F; \ E; then D; T E; \ E which implies that
p(Er) = p(E) = lim p(Di) = p(Er) — lim p(E;)
which shows that lim; o p(E;) = u(E).
|
Definition 7.4. A set £ C X is a null set if £ € M and p(E) = 0. If P is some

“property” which is either true or false for each € X, we will use the terminology
P a.e. (to be read P almost everywhere) to mean

E:={z € X : P is false for =}

is a null set. For example if f and g are two measurable functions on (X, M, u),
f =g a.e. means that u(f # g) =0.

Definition 7.5. A measure space (X, M, ) is complete if every subset of a null
set is in M, i.e. for all F' C X such that F' C E € M with u(E) = 0 implies that
FeM.

Proposition 7.6. Let (X, M, u) be a measure space. Set
N={NCX:3FeM >3 NCF and u(F) =0}
and
M={AUN:Ae M,N e M},
see Fig. 15. Then M is a 0-algebra. Define i(AUN) = u(A), then fi is the unique

measure on M which extends p.

Proof. Clearly X, € M.
Let A€ M and N € N and choose F' € M such that N C F and u(F) = 0.
Since N¢ = (F'\ N)U F*°,
(AUN)*=A°NN=AN(F\NUF) =[A°N(F\ N)]U[A°N F9]
where [A°N(F\N)] € N and [A°NF¢] € M. Thus M is closed under complements.
If A; € M and N; C F; € M such that u(F;) = 0 then U(A; U N;) = (UA;) U

(UN;) € M since UA; € M and UN; C UF; and pu(UF;) < 3 u(F;) = 0. Therefore,
M is a o-algebra.
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Suppose AUN; = BUN; with A, B € M and N;, N5, € N. Then A C AUN; C
AU N; U Fy = BU Fy which shows that

w(A) < w(B) + p(F) = p(B).
Similarly, we show that u(B) < u(A) so that u(A4) = u(B) and hence G(AUN) :=
w(A) is well defined. It is left as an exercise to show [i is a measure, i.e. that it is
countable additive. m
Many theorems in the sequel will require some control on the size of a measure
. The relevant notion for our purposes (and most purposes) is that of a o — finite
measure defined next.

Definition 7.7. Suppose X is a set, E C M C P(X) and p : M — [0,00] is
a function. The function p is ¢ — finite on &£ if there exists F, € & such that
wE,) < oo and X = U1 E,. If M is a 0 — algebra and p is a measure on M
which is o — finite on M we will say (X, M, ) is a o-finite measure space.

The reader should check that if u is a finitely additive measure on an algebra,
M, then p is o — finite on M iff there exists X,, € M such that X,, T X and
w(X,,) < oo.

7.1. Example of Measures. Most o — algebras and o -additive measures are
somewhat difficult to describe and define. However, one special case is fairly easy
to understand. Namely suppose that F C P(X) is a countable or finite partition of
X and M C P(X) is the o — algebra which consists of the collection of sets A C X
such that

(7.2) A=U{aeF:aC A}.

It is easily seen that M is a o — algebra.
Any measure p : M — [0, 00] is determined uniquely by its values on F. Con-
versely, if we are given any function A : F — [0, co] we may define, for A € M,

A= D AMa)=) Ma)laca
acEF3aCA acF

where 1, 4 is one if &« C A and zero otherwise. We may check that p is a measure
on M. Indeed, if A =[[;2, A; and a € F, then a C A iff & C A; for one and hence
exactly one A;. Therefore 1oca = ;o laca, and hence

M(A) = Z )\(a)lacA = Z )\(Ot) Z 1o¢CA1-

acF acF
— Z Z AMa)laca, = ZM(AZ‘)
i=1 a€F i=1

as desired. Thus we have shown that there is a one to one correspondence between
measures p on M and functions A : F — [0, oo].

We will leave the issue of constructing measures until Sections 13 and 14. How-
ever, let us point out that interesting measures do exist. The following theorem
may be found in Theorem 13.35 or see Section 13.8.1.

Theorem 7.8. To every right continuous non-decreasing function F : R — R there
exists a unique measure pp on Bg such that

(7.3) pr((a,b]) =F(b)—Fa)V —co<a<b< oo
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Moreover, if A € By then

(7.4) pir(A) = inf {Z(F(bi) — Fa;)): A C U2, (as, bl-]}

(7.5) = inf {Z(F(bi) —F(a;)): AC _]_[(az-, bi]} .

In fact the map F — up is a one to one correspondence between right continuous
functions F with F(0) =0 on one hand and measures p on Br such that u(J) < oo
on any bounded set J € Br on the other.

Example 7.9. The most important special case of Theorem 7.8 is when F'(z) = z,
in which case we write m for pr. The measure m is called Lebesgue measure.

Theorem 7.10. Lebesgue measure m is invariant under translations, i.e. for B €
Br and z € R,

(7.6) m(z + B) = m(B).

Moreover, m is the unique measure on Br such that m((0,1]) = 1 and Eq. (7.6)
holds for B € Br and x € R. Moreover, m has the scaling property

(7.7) m(AB) = |A\| m(B)
where A € R, B € Bg and AB := {A\z : x € B}.

Proof. Let my(B) := m(x + B), then one easily shows that m, is a measure on
Br such that m,((a,b]) = b—a for all a < b. Therefore, m, = m by the uniqueness
assertion in Theorem 7.8.

For the converse, suppose that m is translation invariant and m((0,1]) = 1.
Given n € N, we have

(07 1] = UZ:l(

k-1 k . (k-1 1
,ﬁ] = Up=1 <T + (0, ﬁ]) .

Therefore,

L= (o) = Som (5 +0.7)

-

1
n

=3 m((0,2]) = m((0,

1

n

That is to say
1
0,-])=1/n.
m((0,]) = 1/n
1

Similarly, m((0, +]) = {/n for all [,n € N and therefore by the translation invariance
of m,
m((a,b]) =b—a for all a,b € Q with a < b.
Finally for a,b € R such that a < b, choose a,,, b, € Q such that b, | b and a, T a,
then (an, by | (a,b] and thus
m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—a,

i.e. m is Lebesgue measure.
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To prove Eq. (7.7) we may assume that A # 0 since this case is trivial to prove.
Now let m(B) := |A| "' m(AB). It is easily checked that m, is again a measure on
Br which satisfies

ma((a,b]) = X tm ((Aa, Ab)) = A1 (b — Xa) =b—a
if A>0 and
ma((a,b]) = A" m ((Ab,Aa)) = — [\ 7T (Ab—Xa) =b—a

if A< 0. Hence my = m. m

We are now going to develope integration theory relative to a measure. The
integral defined in the case for Lebesgue measure, m, will be an extension of the
standard Riemann integral on R.

7.2. Integrals of Simple functions. Let (X, M, 1) be a fixed measure space in
this section.

Definition 7.11. A function ¢ : X — F is a simple function if ¢ is M — By
measurable and ¢(X) is a finite set. Any such simple functions can be written as

(7.8) ¢ = Aila, with A; € M and ); € F.
=1

Indeed, let A1, Az, ..., A, be an enumeration of the range of ¢ and A; = ¢~ ({\;}).
Also note that Eq. (7.8) may be written more intrinsically as

¢ = Ylo-1((y})-
y€eF

The next theorem shows that simple functions are “pointwise dense” in the space
of measurable functions.
Theorem 7.12 (Approximation Theorem). Let f : X — [0, 00] be measurable and
define

221
k: n
¢n<$) = Z Q_nlf"l«%,kdrl])(x) +2 1f—1((271’oo])(x)
k=0

ST

2271 -1

= Z 2%1{2%<f§%}(l‘) —|—2n1{f>2n}($)
k=0
then ¢, < f for alln, ¢, (z) T f(z) for allx € X and ¢, T f uniformly on the sets
Xy i={zeX: f(z) <M} with M < co. Moreover, if f : X — C is a measurable
function, then there exists simple functions ¢, such that lim, o ¢n(z) = f(x) for
all x and |pn| T |f| as n — occ.

Proof. It is clear by construction that ¢,(z) < f(z) for all  and that 0 <
f(z) —¢n(x) < 27™if £ € Xon. From this it follows that ¢, (x) T f(z) for all z € X
and ¢, T f uniformly on bounded sets.

Also notice that

kE k+1 2k 2k +2 2k 2k+1 2k+1 2k+2
(2_717 on ]_(2n+1’ 2n+1 ] (2n+1’ 2n+1 ] ( 2n+1 ? 2n+1 ]
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and for z € f~ (2n+1,22ﬁ1'11]) On(z) = dny1(z) = 25 and for z €
FU((B 22]) | 6, (2) = 52 < 2 = ¢4 (@), Similarly

(2", 00] = (2", 2" U (2", o],

so for z € f7H(2"M,00]) ¢u(z) = 2" < 2"l = ¢, 1(z) and for z €
U2, 27, dnya(x) > 2% = ¢u(x). Therefore ¢, < ¢, 41 for all n and we
have completed the proof of the first assertion.

For the second assertion, first assume that f : X — R is a measurable function
and choose ¢ to be simple functions such that ¢ T fi as n — oo and define

én = ¢ — ¢, Then
|6nl = ¢ + b < Gh i1 + Gy = |0l
and clearly [¢n| = ¢if + ¢ T fo + - =|f| and ¢ = ¢ — ¢, — f — [- = [as

n — oo.

Now suppose that f : X — C is measurable. We may now choose simple
function w,, and v, such that |u,| T |Re f|, |vn| T Im f|, u,, — Re f and v, — Im f
as n — oo. Let ¢, = u,, + iv,, then

60> = w2 + 02 1 Re fI” + [Im f|” = | /|

and ¢, = up +iv, = Ref+ilmf=fasn—o0. m
We are now ready to define the Lebesgue integral. We will start by integrating
simple functions and then proceed to general measurable functions.

Definition 7.13. Let F = C or [0,00) and suppose that ¢ : X — F is a simple
function. If F = C assume further that u(¢~({y})) < oo for all y # 0 in C. For
such functions ¢, define I,,(¢) by

= ynle ' ({y})-

yeF

Proposition 7.14. Let A € F and ¢ and 1 be two simple functions, then I,
satisfies:

(1)
(7-9) I,u()\(ls) = )J#(qb).
(2)
Lu(¢ + ) = Lu(¥) + 1u(9)-
(3) If ¢ and ¥ are non-negative simple functions such that ¢ <1 then
L) < Lu(¥).

Proof. Let us write {¢ =y} for the set ¢~ '({y}) C X and u(¢ = y) for
p({o =y}) = u(¢~' ({y})) so that

= yule =v).

yeC



ANALYSIS TOOLS WITH APPLICATIONS 103

We will also write {¢ = a,v = b} for ¢~ ({a}) N~1({b}). This notation is more
intuitive for the purposes of this proof. Suppose that A € F then

I(A®) =Y yn(Ao=y) = > y (¢ =y/N)

yeF y€F
=Y Az (¢ = 2) = M,(9)
z€F

provided that A # 0. The case A = 0 is clear, so we have proved 1.
Suppose that ¢ and v are two simple functions, then

Lo+v) =Y zu¢+1=2)

z€F

=Y zu(Uper{d =w, ¢ =2 —w})
z€F

=> 2> pe=w, =2-w)
zeF  weF

= > Grwp=w, v=2)
z,weF

=S cpw =2+ Y wpls =
z€F welF

= L.(¥) + 1u(9)-

which proves 2.
For 3. if ¢ and 1) are non-negative simple functions such that ¢ <

$) = ap(¢=a)= Y ap(¢=ay="b)

a>0 a,b>0
<D buld=ap=b) =Y bu(y =b) = L,(¢),
a,b>0 b>0

wherein the third inequality we have used {¢ = a,v» =b} =0 ifa > 0. =

7.3. Integrals of positive functions.

Definition 7.15. Let Lt = {f : X — [0,00] : f is measurable}. Define

/ fdp =sup{I,(¢): ¢ is simple and ¢ < f}.

Because of item 3. of Proposition 7.14, if ¢ is a non-negative simple function,
Jx ¢dp = I,(¢) so that [ is an extension of I,. We say the f € LT is integrable

if [y fdp < oo.
Remark 7.16. Notice that we still have the monotonicity property: 0 < f < g then

/fdu—sup{l( @) : ¢ is simple and ¢ < f}

< sup{l,(®) : ¢ is simple and ¢ < g} < / g.
X

/chdu:c/de,u.

Similarly if ¢ > 0,
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Also notice that if f is integrable, then p ({f = co}) = 0.

Lemma 7.17. Let X be a set and p : X — [0,00] be a function, let p =
Y owex P(E)0z on M =P(X), i.e.

p(A) =" pl).

T€EA

If f : X — [0,00] is a function (which is necessarily measurable), then

/X fdp = gpﬁ

Proof. Suppose that ¢ : X — [0,00] is a simple function, then ¢ =
2ef0,00) #lo- (12 and

D= pl@) Y leep@ = D 2 ) pl@)le (@)

zeX z€[0,00] z€[0,00] zEX

= 3 o)) = / g

z€[0,00] X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

/ ¢dp=> pp<> pf.
X X X

Taking the sup over ¢ in this last equation then shows that

[QWS;M-

For the reverse inequality, let A CC X be a finite set and N € (0,00). Set
fN¥(z) = min{N, f(z)} and let ¢ be the simple function given by ¢y a(z) :=
1a(z) fN(z). Because ¢y a(z) < f(z),

zA:pr = ;pCZsN,A = /X¢N’Adu < /de,u_

Since fN 1 f as N — oo, we may let N — oo in this last equation to concluded

that
XA:pf < /X fdp

and since A is arbitrary we learn that

;pfé/xfdu-

Theorem 7.18 (Monotone Convergence Theorem). Suppose f, € LT is a sequence
of functions such that fn, 1 f (f is necessarily in L") then

/hT/fwnHW~
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Proof. Since f, < f,, < f, for all n < m < oo,

[tz [tuz[1

from which if follows [ f,, is increasing in n and

(7.10) lim [ f, < / 7.

n—oo

For the opposite inequality, let ¢ be a simple function such that 0 < ¢ < f and
let o € (0,1). By Proposition 7.14,

(7.11) /f"z/lE"f”Z/Enm:a/Enqb'

Write ¢ = > A\;1p, with A; > 0 and B; € M, then
lim ¢ = lim Z /\i/ 1p, = Z Nip(E, N By) = ZA,- lim p(E, N B;)
n—oo n—oo E'n, n—oo

En
=Y s = [
Using this we may let n — oo in Eq. (7.11) to conclude
e f Jn 2, ¢—a/ >

Because this equation holds for all simple functlons 0 < ¢ < f, form the definition
of [ f wehave lim [ f, > a [ f. Since a € (0,1) is arbitrary, lim [ f, > [ f
which combined with Eq. (7.10) proves the theorem. m

The following simple lemma will be use often in the sequel.

Lemma 7.19 (Chebyshev’s Inequality). Suppose that f > 0 is a measurable func-
tion, then for any € > 0,

(7.12) w(f>e < /fdu

In particular if [ fdp < oo then p(f = o0) =0 (i.e. f < oo a.e.) and the set
{f >0} is o — finite.

Proof. Since 1(f>¢ < 1{fze}%f < %f’
1 1
wf ze) :/ 1{fze}dﬂﬁ/ Lipza=fdp < —/ fdp.
X X € €Jx
If M := [, fdu < oo, then
M
M(f:OO)SN(on)SFHOaSnHOO

and {f > 1/n} 1 {f >0} with u(f > 1/n) <nM < oo foralln. m
Corollary 7.20. If f,, € LT is a sequence of functions then

Jrx)e

In particular, if -, [ fn < o0 then Y, fn < o0 a.c.
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Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢,, and 1, such that ¢,, T f1 and ¥, T fa.
Then (¢, + ) is simple as well and (¢, + ¥,) T (f1 + f2) so by the monotone
convergence theorem,

[ 5= i [, 0=t o+ [0.)
~ tim_ ¢n+hm/wnf/f1 [ £

Now to the general case. Let gy = Z fnand g = Z fn, then gy T ¢ and so again

by monotone convergence theorem and the addltwlty just proved,

;/fn:—ngnm;/fn—N@m/;fn
_J\}Enm/gN_/g_g/fn-

Remark 7.21. Tt is in the proof of this corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measurable.
In fact the definition [ fdp makes sense for all functions f : X — [0, oc] not just
measurable functions. Moreover the monotone convergence theorem holds in this
generality with no change in the proof. However, in the proof of Corollary 7.20, we
use the approximation Theorem 7.12 which relies heavily on the measurability of
the functions to be approximated.

The following Lemma and the next Corollary are simple applications of Corollary
7.20.

Lemma 7.22 (First Borell-Carnteli- Lemma.). Let (X, M, 1) be a measure space,
An € M, and set

{4, i.0.} ={z € X : x € A, for infinitely many n’s} = ﬂ U Ay
N=1n>N
If > u(A,) < oo then p({A, i.0.}) =0.

Proof. (First Proof.) Let us first observe that

{4, i.0.} = {xGX:ilAn(x) —oo}.

n=1

Hence if >°7° | u(A,) < oo then

oo>Zu(An):Z/XlAndp:/XZlAndp
n=1 n=1

implies that >~ 14, (z) < oo for p - a.e. z. That is to say u({4, i.0.}) =0.

n=1



ANALYSIS TOOLS WITH APPLICATIONS 107

(Second Proof.) Of course we may give a strictly measure theoretic proof of this
fact:

w(A, i0.) = A}gnoop U A,

n>N

< 1l
= Ngnoo ,U(An)
n>N

and the last limit is zero since > -, u(A,) < co. m

Corollary 7.23. Suppose that (X, M, u) is a measure space and {A,},> ;| C M is
a collection of sets such that p(A; N A;) =0 for all i # j, then

oo
p(Unly An) = Z (A
n=1

Proof. Since

1 ( ff:lAn):/ luge 4, dp and
X

ZM(An) = / Z lAnd,u
n=1 X n=1

it suffices to show

(7.13) > la, =1lux,a, p-ae.

n=1

Now Y07 14, > Ly 4, and S 1a,(x) # Ly A, (z) iff 2 € A;NA; for some
1 # 7, that is

{ Z 14, (x) # 1oz 4, (2 )} = UicjAi N4
n=1
and the later set has measure 0 being the countable union of sets of measure zero.

This proves Eq. (7.13) and hence the corollary. m

Example 7.24. Suppose —o00 < a < b < o0, f € C([a,b],]0,00)) and m be
Lebesgue measure on R. Also let 7, = {a = af < af < --- < af = b} bea
sequence of refining partitions (i.e. 7, C 741 for all k) such that

mesh(my,) := max{|a} —a Hii=1,...,n} = 0as k — oc.

For each k, let

nkfl

fe(@) = fla)lay + > min{f(2) : af <z <af ) gk

ariql

()
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then fr T f as K — oo and so by the monotone convergence theorem,

b
/fdm = fdm = hm / fr dm
a [a,b]

nk
= klinol(};min {f(x) taf <w < aﬁ-l} m ((aéga aﬁ-lD

/ab flx)dx

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable functions:

Example 7.25. For all A > 0, [“ e **dm(z) = A7 and [ 7hzdm(z) = 7.
The proof of these equations are similar. By the monotone convergence theorem,
Example 7.24 and the fundamental theorem of calculus for Riemann integrals (or
see Theorem 7.40 below),

oo N N
/ e Mdm(z) = lim e Mdm(z) = lim e Mdg
0 N—oo Jj N—oo Jj

and

1 , Mo _ Moo
——dm(z) = lim ——dm(z) = lim ——dx
R1—|—.732 N—oo _N1—|—.7,‘2
=tan ' (N) — tan '(=N) = 7.

Let us also consider the functions =77,

1 , ! 1
/0 — dm(z) = lim 1(%)1](ac)ﬁdm(ac)

(0,1] TP n—oo J,
1 2P+l 1
= lim —dx— lim
n—00 1 P n—oo 1 —p 1/n
_ ﬁ if p<1
Tl oo if p>1

If p=1 we find

1 '
/ — dm(z) = lim —dz = lim ln(x)H/n = o0.
n—oo

g
(01 T noee L

Example 7.26. Let {r,}32; be an enumeration of the points in Q N [0, 1] and
define

o

= e

with the convention that
1

Ve —m

=5ifx=mr,.
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Since, By Theorem 7.40,
[ [ s [
———dr = ——dz —dx
0 |;L'—'rn| r, VI — Ty 0 T — T
=2/ — ’I“n‘in —2v/ry — x|yt =2 (m - \/rn)

<4,

we find

o) 1 o0
f(x)dm(z) = 2*"/ ——dz < 27" =4 < 0.
[0,1] ,LZ:l 1] V]z =70l n;
In particular, m(f = c0) = 0, i.e. that f < oo for almost every x € [0,1] and this
implies that

- 1
Z 27" —— < oo for a.e. z €0,1].

n=1 \% “T - T”|

This result is somewhat surprising since the singularities of the summands form a
dense subset of [0, 1].

Proposition 7.27. Suppose that f > 0 is a measurable function. Then fX fdp=0
iff f =0 a.e Alsoif f,g > 0 are measurable functions such that f < g a.e. then

[ fdp < [ gdp. In particular if f = g a.e. then [ fdp = [ gdp.
Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This implies

that pu(¢~'({y})) = 0 for all y > 0 and hence [ ¢dp = 0 and therefore [, fdu = 0.
Conversely, if [ fdu =0, then by Chebyshev’s Inequality (Lemma 7.19),

u(f >1/n) Sn/fduzOfor all n.

Therefore, pu(f >0) <> 07 u(f >1/n)=0,ie. f=0ae.

For the second assertion let E be the exceptional set where g > f,i.e. E:={z €
X : g(x) > f(z)}. By assumption E is a null set and 1gcf < 1geg everywhere.
Because g = 1gcg+ 1gpg and 1gg =0 a.e.,

/gd,u:/lEcgd,u—i—/1Eng:/1Ecgd,u

and similarly [ fdu = [ 1ge fdp. Since 1ge f < 1gcg everywhere,
/fd,u:/lEufd,uS/1Eagdlu:/gdu.

Corollary 7.28. Suppose that {f,} is a sequence of non-negative functions and f
is a measurable function such that f, T f off a null set, then

[t [fasn—c

Proof. Let F C X be a null set such that f,1gc T flge as n — oo. Then by
the monotone convergence theorem and Proposition 7.27,

/fn:/fnlECT/flEcz/fasn—)OO.
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Lemma 7.29 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of measurable
functions then

/lim inf f,, < liminf/fn

Proof. Define g, = 1r>1fl’C fn so that g T liminf, . f, as k — oo. Since gi < f,,

for all £ < n,
/gké/fnforallnzk

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let kK — oo to find

/ lim inf f, = / klim gk MeT klim / gr < lim inf / I

and therefore

7.4. Integrals of Complex Valued Functions.

Definition 7.30. A measurable function f : X — R is integrable if f, = >0
and f_ = —f lir<o) are integrable. We write L' for the space of integrable
functions. For f € L', let

/fdu:/f+du—/f—du

Convention: If f,g: X — R are two measurable functions, let f + g denote
the collection of measurable functions h : X — R such that h(z) = f(z) + g(z)
whenever f(x) + g(x) is well defined, i.e. is not of the form oo — 0o or —oo + 0.
We use a similar convention for f — g. Notice that if f,g € L' and hy,hy € f + g,
then hy = hgy a.e. because |f| < oo and |g| < oo a.e.

Remark 7.31. Since
fi < |f| Sfﬁ*—"_f*v

a measurable function f is integrable iff [|f] du < oo.If f,g € L' and f = g a.e.
then fy = g4 a.e. and so it follows from Proposition 7.27 that [ fdp = [ gdu. In
particular if f,g € L' we may define

[+ ardn= [ b

where h is any element of f + g.

Proposition 7.32. The map
fel'— / fdueR
X

is linear and has the monotonicity property: [ fdu < [ gdu for all f,g € L' such
that f < g a.e.
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Proof. Let f,g € L' and a,b € R. By modifying f and g on a null set, we may
assume that f, g are real valued functions. We have af + bg € L' because
laf +bg| < al|f] + b]lg] € L.

If a < 0, then
(af)4+ = —af- and (af)- = —af;

Jat==affvafri=a[ti=[r)=a]1

A similar calculation works for a > 0 and the case a = 0 is trivial so we have shown

that
/af:a/f.

Now set h = f +g. Since h=hy — h_,
hy —ho = fr—f-+9+—9g-

so that

or
hy +f-4+g9g-=h_+ fr+9g+.
Therefore,
Jrew [rv [o=[ns v [ar
and hence

fimfoom frm frcs - [ 1= o f 1+ ]

Finally if f — f- = f <g=g94 —g_ then fy +¢g_ < g+ + f- which implies

that
/f++/g—§/9++/f—
or equivalently that

1= [ foo- o~ [

The monotonicity property is also a consequence of the linearity of the integral, the
fact that f < g a.e. implies 0 < g — f a.e. and Proposition 7.27. =

Definition 7.33. A measurable function f : X — C is integrable if [, |f] du < oo,
again we write f € L'. Because, max (|Re f|, |Im f]) < |f| < v2max (|Re f|, [Im f|),
J1f| dp < oo iff

[ e flan [ i flau < .

/fduz/Refdu—l—i/Imfdu.

It is routine to show the integral is still linear on the complex L! (prove!).

For f € L! define

Proposition 7.34. Suppose that f € L', then

‘/X fdu‘ S/X\fldu-
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Proof. Start by writing [ f du = Re®. Then using the monotonicity in
Proposition 7.27,

‘ /X fdu’=R=e‘i9 /X fp = /X e fdu
:/XRe(e*wf)dug/X}Re(e*wf)’d,ug/xﬁmu.

Proposition 7.35. f,g € L', then
(1) The set {f # O} is o-finite, in fact {|f| > 3} T {f # 0} and u(|f] = ) <

oo for all n.
(2) The following are equivalent

(a) [gf=Jgg foral Ec M
(b) [If—gl=0

X
(c) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma 7.19,

M(|f\2%)§n/X|f\du<oo

for all n.
2. (a) = (c) Notice that

[i=[oe[t-0=0

for all E € M. Taking F = {Re(f — g) > 0} and using 15 Re(f — g) > 0, we learn
that

OzRe/ (f = g)dp = /1ERe(f—g) e 1pRe(f— g) = 0 ae.
E
This implies that 1 = 0 a.e. which happens iff

1 ({Re(f —g) > 0}) = u(E) = 0.

Similar p(Re(f — g) < 0) = 0 so that Re(f — g) = 0 a.e. Similarly, Im(f —g) =0
a.e and hence f —g=0a.e.,ie. f=ga.e.
(c) = (b) is clear and so is (b) = (a) since

‘/Ef‘/Eg’S/U—g—o.

Definition 7.36. Let (X, M, u) be a measure space and L'(n) = L'(X, M, p)
denote the set of L' functions modulo the equivalence relation; f ~ ¢ iff f = g a.e.
We make this into a normed space using the norm

17 =gl :/\f—gldu

and into a metric space using p1(f,9) = ||f — g1 -
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Remark 7.37. More generally we may define LP(u) = LP(X, M, ) for p € [1,00)
as the set of measurable functions f such that

/ [f1P dp < o0
X

modulo the equivalence relation; f ~ g iff f = g a.e.

We will see in Section 9 that

1/p
1l = ( / Iflpdu) for f € LP()

is a norm and (LP(p), ||-||.») is a Banach space in this norm.

Theorem 7.38 (Dominated Convergence Theorem). Suppose fn,gn,g € L', fr —
fae, |fol <gn €Ll gn— g ae and [ gndp — [y gdp. Then f e L' and

/ fdp = lim / frndu.
X h—oo ) x
(In most typical applications of this theorem g, = g € L' for all n.)

Proof. Notice that |f| = lim, .o |fn| < limy, oo [gn] < g ae. so that f € L.
By considering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,

/ (9% fldp = / liminf (g, + fn) dp < liminf/ (gn £ fn) dp
= lim gndp + lim inf (i/ fndu)
n—oo [y n—oo Pe

/gd,u—l—liminf (:l:/ fndp)
X nee X

Since liminf,_,(—a,) = —limsup,,_, ., @y, we have shown,

liminf,, o [y fodp
dp + du < dp + . X

and therefore
lim sup/ fndp < fdp <lim inf/ fndp.
X X X

n—oo n—oo

This shows that lim [, f,du exists and is equal to [, fdu. m

Corollary 7.39. Let {fn}o—, C L' be a sequence such that Y oo, || full;1 < 00,
then Y07 | fn is convergent a.e. and

/X (i fn> dp = i /X fndp.

n=1 n=1

Proof. The condition Y, || full ;1 < 00 is equivalent tc])VZZo:l |fn| € L'. Hence
>0 | fn is almost everywhere convergent and if Sy := 3, _, f,, then

N )
Sn| <D 1fal €D 1ful € L

n=1 n=1
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So by the dominated convergence theorem,

nd:/ lide:Hm/S’d

= Jim Z [ = Z ] e

Theorem 7.40 (The Fundamental Theorem of Calculus) Suppose —oo<a<b<
oo, f € C((a,b),R)NL ((a,b),m) and F(z) := [ f(y . Then
(1) F e C([a,b],R)NC*((a,b),R).
(2) F'(z) = f(z) for all x € (a,b).
(3) If G € C(la,b],R) N C((a,b),R) is an anti-derivative of f on (a,b) (i.e.
[ =G(ap) then

b
/ f(@)dm(x) = G(b) - Gla).

Proof. Since F(x) := [ Lo (y)f(y)dm(y), limy_.. 14 2)(y) = 1(a,2)(y) for m
—a.e. y and |1(a7x) )f( )’ < Lo @) |f(y)] is an L' — function, it follows from
the dominated convergence Theorem 7.38 that F' is continuous on [a,b]. Simple
manipulations show,

A { [2o ) = F@]dmly)| i h<0
z+h .
L 1) = f@)] dm(y) i b >0

F(z+h)— F(x)
< 1
R [ () = f(@)dm(y) if h <O
<sup{[f(y) — f(2)| -y € [z — |h[,z +[h[]}
and the latter expression, by the continuity of f, goes to zero as h — 0 . This shows
F' = f on (a,b).
For the converse direction, we have by assumption that G'(z) = F'(z) for = €
). Therefore by the mean Value theorem, F'—G = C' for some constant C. Hence

7 @) — f@)dm(y)| i h>0

—_

/ F@)dm(z) = F(b) = F(b) — F(a) = (G(b) + C) — (G(a) + C) = G(b) — G(a).

Example 7.41. The following limit holds,
lim [ (1-2)dm(z) =1.
n—oo [ n
Let fn(x) = (1 = £)"1o,,(z) and notice that lim, .. fn(z) = ™. We will now
show
0 < fu(z) <e ® forall z > 0.
It suffices to consider z € [0,n]. Let g(z) = e® f,(x), then for z € (0,n),

ilng(x) :1+n;(—%) = 1—r1£)

<
Iz D =Y
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which shows that In g(x) and hence g(x) is decreasing on [0,n]. Therefore g(x) <
g(0) =1, i.e.

0< fulz) <e ™.
From Example 7.25, we know

/ e fdm(z) =1 < oo,
0

so that e~* is an integrable function on [0, c0). Hence by the dominated convergence
theorem,

lim n(l - E)”dm(:zc) = lim h frn(x)dm(z)
n—00 Jo n n—oo [q
:/ lim fn(x)dm(x):/ e *dm(z) = 1.
0o " 0

Example 7.42 (Integration of Power Series). Suppose R > 0 and {a,},—, is a
sequence of complex numbers such that > |a,|r™ < oo for all r € (0, R). Then

[ (Z> =3 [ i) = 3o o

for all —R < a < 8 < R. Indeed this follows from Corollary 7.39 since

> / a] 2" dm(a <Z</ lan] [2]" dm(z) + /O'a|an||x|"dm<x>>

n=0 n=0
n+1 [ee]
+| | <27’Z|an|r”<oo

< Z ‘an‘ |5|
n=0

ﬁn-{-l n+1

n+1

where r = max(|3], |a|).
Corollary 7.43 (Differentiation Under the Integral). Suppose that J C R is an
open interval and f: J x X — C is a function such that
(1) = — f(t,x) is measurable for each t € J.
(2) (to, ) € LY(p) for some ty € J.
(3) 2 5t L(t,x) exists for all (t,z).
(4) There is a function g € L' such that )%(t, )) < g€ L' foreachtc J.

Then f(t,-) € L'(w) for all t € J (ie. [|f(t,z)|du(z) < o0), t —
fX f(t,z)du(z) is a differentiable function on J and

G | feadu) = [ Gt oiue),

Proof. (The proof is essentially the same as for sums.) By considering the real
and imaginary parts of f separately, we may assume that f is real. Also notice that

& (1,2) =l n(f(t 0 0) — f(62)

and therefore, for x — 5{(1&,9&) is a sequential limit of measurable functions and
hence is measurable for all ¢t € J. By the mean value theorem,

(7.14) |f(t,x) — f(to,x)| < g(z)|t —to| forallt € J



116 BRUCE K. DRIVER

and hence
[f (&) < |f(t2) = f(to, )| + | (to, )| < g(@) [t —tol + | f (to, z)[ .
This shows f(t,-) € L*(p) for all t € J. Let G(t) := [ f(t,z)du(z), then
0 0

By assumption,

i L8 = [0 ®) _OF )y o al g e x
t—to t— to at

and by Eq. (7.14),

t — f(t
‘w <g(z) forallt € J and z € X.
—to

Therefore, we may apply the dominated convergence theorem to conclude

lim G(tn) — G(to) _ i / fltn,x) — to’m)du(:ﬂ)

n—o00 ty, — to tn —to

ns ) 0
_ /X nh_{go f(t -fz — i;(to l‘) du(.’l’:) — A a—{(to,.’t)du(x)

for all sequences t, € J \ {to} such that t, — to. Therefore, G(ty) =
G(t)=G(to)
t—to

exists and

Glto) = | % (10, 2)d(a).

limt_,to

Example 7.44. Recall from Example 7.25 that

A= / e dm(x) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists C,,(¢) < oo such that

d\" _\ -\ -
< _ xr — n xT < 631"
0< ( _d)\) e z"e < C(e)e

Using this fact, Corollary 7.43 and induction gives
nIANT T = <—i>n)\_1 = / (—i)n e Mdm(z) = / e Mdm(zx).
dX 0,00) \ dA [0,00)
That is n! = A" f[O,oo) e dm(x). Recall that
I(t) .= / ' ~te " dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown that
P(n+1)=n!foralln e N.
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Remark 7.45. Corollary 7.43 may be generalized by allowing the hypothesis to hold
for x € X\ E where E € M is a fixed null set, i.e. E must be independent of t. Con-
sider what happens if we formally apply Corollary 7.43 to g(¢ fo 1y<¢dm(z),

. d [
g(t) = E/o ly<idm(z / 5 Ly<tdm(z).

The last integral is zero since %ngt = 0 unless ¢t = z in which case it is not
defined. On the other hand g(¢) = ¢ so that ¢(¢) = 1. (The reader should decide
which hypothesis of Corollary 7.43 has been violated in this example.)

7.5. Measurability on Complete Measure Spaces. In this subsection we will
discuss a couple of measurability results concerning completions of measure spaces.

13

Proposition 7.46. Suppose that (X, M, ) is a complete measure space® and

f: X — R is measurable.
(1) If g : X — R is a function such that f(z) = g(x) for p — a.e. x, then g is
measurable.
(2) If fr, : X — R are measurable and f : X — R is a function such that
lim, oo fn=f, p - a.e., then f is measurable as well.

Proof. 1. Let E = {z : f(z) # g(z)} which is assumed to be in M and
w(E)=0. Then g = 1gcf 4+ 1gg since f = g on E°. Now 1gcf is measurable so g
will be measurable if we show 1gg is measurable. For this consider,

(7.15) (Lpg) ™' (4) = { ﬁ;j)(_lﬁi))_lm\ o 0 ;i

Since (1gg) ' (B) C Eif 0 ¢ B and u(E) = 0, it follow by completeness of M that
(1gg)~Y(B) € M if 0 ¢ B. Therefore Eq. (7.15) shows that 1gg is measurable.
2. Let E={z: lim f,(x)# f(x)} by assumption F € M and p(F) = 0. Since

g=1gf =lim, o lgefn, ¢ is measurable. Because f = g on E° and p(FE) = 0,
f =g a.e. so by part 1. f is also measurable. m

The above results are in general false if (X, M, u) is not complete. For example,
let X = {0,1,2} M = {{0}, {1,2}, X, 6} and i = &, Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 7.47. Suppose that (X, M, 11) is a measure space and M is the completion
of M relative to ju and [i is the extension of u to M. Then a function f: X — R
is (M, B = Bg) — measurable iff there exists a function g : X — R that is (M, B) -
measurable such E = {x : f(z) # g(2)} € M and i (E) =0, i.e. f(x)=g(x) for ii
— a.e. x. Moreover for such a pair f and g, f € L'*(i) iff g € L*(1) and in which

case
/ fd = / gd.
X X

Proof. Suppose first that such a function g exists so that () = 0. Since
g is also (M, B) — measurable, we see from Proposition 7.46 that f is (M,B) —
measurable.

13Recall this means that if N C X is a set such that N C A € M and u(A) =0, then N € M
as well.
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Conversely if f is (M, B) — measurable, by considering fi we may assume that
f > 0. Choose ( ,B) — measurable simple function ¢, > 0 such that ¢, 1 f as

n — o0o. Writing
On = Z agla,

with Ax € M, we may choose B € M such that By C A and ji(A4 \ Bx) = 0.

Letting
b = Z aglp,

we have produced a (M, B) — measurable simple function é,, > 0 such that E, =
{¢n # ¢n} has zero i — measure. Since i (UnEy,) <> [ (E,), there exists FF € M
such that U, E,, C F and u(F) = 0. It now follows that

1F¢N5n =1pd, 1 g:=1pf asn — cc.

This shows that ¢ = 1pf is (M, B) — measurable and that {f # g} C F has i —
measure zero.
Since f =g, i — a.e., [y fdfi = [y gdfi so to prove Eq. (7.16) it suffices to prove

(7.16) /X gdpi = /X gdp.

Because i = pon M, Eq. (7.16) is easily verified for non-negative M — measurable
simple functions. Then by the monotone convergence theorem and the approxi-
mation Theorem 7.12 it holds for all M — measurable functions g : X — [0, c0].
The rest of the assertions follow in the standard way by considering (Reg), and

(Img), . m

7.6. Comparison of the Lebesgue and the Riemann Integral. For the rest
of this chapter, let —0o < a < b < oo and f : [a,b] — R be a bounded function. A
partition of [a,b] is a finite subset m C [a,b] containing {a,b}. To each partition

(7.17) r={a=ty <ty <---<t, =0}
of [a, b] let
mesh(7) = max{|t; —t;_1|:j =1,...,n},
Mj = sup{f(x) : t; <w <tja}, my=inf{f(z):t; <z <t; .}

Gr = f(@)lgay + D ML, 14,0 9n = F(@)Liay + D myle, ) and
1 1

Sef = Mty —t;1) and sof = mj(t; —t;1).
Notice that

b b
Sy f :/ Grdm and s, f :/ gedm.

The upper and lower Riemann integrals are defined respectively by

b a
/ flx)dx = iITlrf Syfand [ f(x)dx =sup s;f.

b
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Definition 7.48. The function f is Riemann integrable iff f:f = fbf and

which case the Riemann integral f; f is defined to be the common value:

/a ’ fla)de = 7 F@)de = [ F(@)da.

The proof of the following Lemma is left as an exercise to the reader.
Lemma 7.49. If ' and w are two partitions of [a,b] and m C 7' then

GTI'ZGW' ZfZgw' Zgﬂ and
SﬂfZSﬂ/fZSﬂ’fZSﬂf-

There exists an increasing sequence of partitions {m}p., such that mesh(my) | 0
and

&JLZZMM%JT/}wka-

If we let
(7.18) G= len;O Gr, and g = klingo 9
then by the dominated convergence theorem,
b

(7.19) [HMmZg&[Hh=£$&J=/f@W

and o

g

(7.20) /[ ) Gdm = klingo - Gr, = klggo Srf :/ f(x)dx.

Notation 7.50. For = € [a,b], let

H(z) = limsup f(y) = leiﬁ)l sup{f(y) : [y — x| <€ y € [a,b]} and

Yy—x

h(z) = liminf f(y) =lim inf {f(y) : [y -2l <€ y € o, B]}-

Lemma 7.51. The functions H, h : [a,b] — R satisfy:

(1) h(z) < f(z) < H(z) for all z € [a,b] and h(z) = H(x) iff f is continuous
at .

(2) If {m}r—y is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in FEq. (7.18), then

(7.21) G(z)=H(z) > f(x) > h(z) = g(x) Vaé¢mr:=U Tk

(Note 7 is a countable set.)
(3) H and h are Borel measurable.

Proof. Let G, =G, | Gand g = ¢gx, T 9.
(1) It is clear that h(z) < f(x) < H(zx) for all z and H(x) = h(z) iff lim f(y)
y—T
exists and is equal to f(z). That is H(z) = h(z) iff f is continuous at x.
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(2) For z ¢ m,
Gi(x) = H(z) = f(z) = h(z) = gr(z) V k
and letting £ — oo in this equation implies
(7.22) G(z) 2 H(z) =2 f(z) 2 h(z) 2 g(x) V = ¢ .
Moreover, given € > 0 and z ¢ m,

sup{f(y) : ly —=[ <€ y € [a,b]} > Gi(x)
for all k large enough, since eventually Gg(z) is the supremum of f(y)
over some interval contained in [z — €, + €]. Again letting & — oo implies
sup f(y) > G(z) and therefore, that
ly—z|<e
H(z) =limsup f(y) > G(z)
y—x

for all ¢ w. Combining this equation with Eq. (7.22) then implies H(x) =
G(z) if x ¢ m. A similar argument shows that h(z) = g(x) if ¢ ¢ 7 and
hence Eq. (7.21) is proved.

(3) The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set 7,
both H and h are also Borel measurable. (You justify this statement.)

|

Theorem 7.52. Let f : [a,b] — R be a bounded function. Then

b b
(7.23) / f= Hdm and/ f :/ hdm
a [a,b] Ja_ [a,b]

and the following statements are equivalent:
(1) H(z) = h(z) for m -a.e. z,
(2) the set
E:={z €a,b] : f is disconituous at x}
s an m — null set.
(3) f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable!*, i.e. f is L/B -
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra on
[a,b]. Moreover if we let i denote the completion of m, then

b
(7.24) / Hdm :/ f(z)dz :/ fdm = hdm.
[a,b] a [a,b] [a,b]

Proof. Let {m},-; be an increasing sequence of partitions of [a, b] as described
in Lemma 7.49 and let G and ¢ be defined as in Lemma 7.51. Since m(w) = 0,
H = G a.e., Eq. (7.23) is a consequence of Egs. (7.19) and (7.20). From Eq. (7.23),

f is Riemann integrable iff
/ Hdm = hdm
[a,b] [a,b]

and because h < f < H this happens iff h(z) = H(z) for m - a.e. z. Since
h(x)}, this last condition is equivalent to E being a m — null

E={x:H(z) #

14f need not be Borel measurable.
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set. In light of these results and Eq. (7.21), the remaining assertions including Eq.
(7.24) are now consequences of Lemma 7.47. m

Notation 7.53. In view of this theorem we will often write f: f(z)dx for fab fdm.

7.7. Appendix: Bochner Integral. In this appendix we will discuss how to
define integrals of functions taking values in a Banach space. The resulting integral
will be called the Bochner integral. In this section, let (€, F, 1) be a probability
space and X be a separable Banach space.

Remark 7.54. Recall that we have already seen in this case that the Borel o — field
B = B(X) on X is the same as the o — field ( ¢(X*)) which is generated by X* —
the continuous linear functionals on X. As a consequence F': Q — X is F/B(X)
measurable iff o F': Q@ — R is F/B(R) — measurable for all ¢ € X*.

Lemma 7.55. Let 1 < p < oo and LP(u; X) denote the space of measurable func-
tions F : Q — X such that [ ||F|Pdu < co. For F € LP(u; X), define
Q

1
3

1Pl = / | F (%
Q

Then after identifying function F € LP(u; X) which agree modulo sets of 1 — mea-

sure zero, (LP(u; X), || - ||z») becomes a Banach space.
Proof. It is easily checked that || - ||z» is a norm, for example,
1 1
£ 4Gl = | [1F+6ldn) < | [0 +1G1xran
) )
< Fllze + 1G]l ze-

So the main point is to check completeness of the space. For this suppose {F;, }$°

LP = LP(u; X) such that > ||Fyq1— Fullze < oo and define Fyy = 0. Since || F|| 1
n=1

| F||zr it follows that

AN

Z | Fas1 — Fullxdp < Z | Frny1 — Fullpr < o0

Q n=1 n=1

and therefore that Y ||Fh+1 — Fn|lx < oo on as set Qp C Q such that u(Qp) = 1.
n=1

Since X is complete, we know > (F,11(x) — F,(z)) exists in X for all x € Qg so
n=0

we may define F': Q — X by

o Z (Fn+1 — Fn) €eX on

F= n=0
0 on £§.
Then on g,
0 M
F—Fy= Z (Fpy1— F,) = lim Z (Fpyr — F).

M —o0
n=N+1 n=N+1
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So
0o M
IF = Fyly < 3 1Fun = Fally = Jim > [Fu— Fully
n=N-+1 n—N+1

and therefore by Fatou’s Lemma and Minikowski’s inequality,
M

Jim inf Y|P - Fallx
N+1

M

Z |Fn+1 - Fn|
N+1
M o]
Jim_inf > NFpsr = Fallee = > I[Fag1 = Fully = 0as N — oo.

N+1 N+1
Therefore F € LP and A}im Fy=FinLP. m
— 00

[ F'— Fyllzr <

Lp

IN

lim inf
M—oo

Lr

IN

Definition 7.56. A measurable function F': Q — X is said to be a simple function
provided that F(Q) is a finite set. Let S denote the collection of simple functions.
For '€ S set

= S (P (ah) = Y an{F =ah) = Y au({F = o)),

zeX zeX TEF(R)

Proposition 7.57. The map [ : S — X is linear and satisfies for all F € S,

(7.25) I(F)|x < / | Fldg
Q
and
(7.26) (I(F)) = /X poF duVee X .

Proof. If 0 #c € Rand F € S, then

I(cF)zZac,u(cF:x):Zm,u( ) ch,u =cI(F)

zeX zeX yeX
and if c=0, I(0OF) =0=0I(F).If F,G € S,

I(F+G)=> au(F+G=u)

:Zx Z wF =y,G=2z)

x y+z=x
=> W+2)uF =y,G=2)
Y,z
= S g = y) + 3 2n(G = 2) = I(F) + 1(G).
Yy z
Equation (7.25) is a consequence of the following computation:

H(F)x =1 ) au(F=2)| < Y Jelu(F = z) :/IIFHdu
Q

reX zeX
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and Eq. (7.26) follows from:

SL(F) = ¢ zu({F = z}))

zeX

= S d@uF=ah) = [ ooF dn

zeX

Proposition 7.58. The set of simple functions, S, is dense in LP(u, X) for all
p € [1,00).

Proof. By assumption that X is separable, there is a countable dense set
D={x,}>2, C X. Given ¢ > 0 and n € N set

n—1
Ve = B(zp,€) N (U B(mi,e)>

where by convention V¥ = B(z1,¢). Then X = [] V¢ disjoint union. For F €
i=1
LP(u; X) let

Fe = Z:L‘nlpfl(vrf)

n=1

and notice that ||F — F€||y < e on Q and therefore, |F — F¢||1» < e. In particular
this shows that

[E N e <1 = Flze + [Fllze < €+ [[Fl[Lr < o0
so that F© € LP(u; X). Since

00 > |20 = D lwallPu(F~1(V;)),

n=1

there exists N such that Y ||a,[[Pu(F~1(Vs)) < €@ and hence
n=N+1

N N
F— anlFfl(v;) S|IE=Flp + || F = anlF”(VS)

n=1 Lp n=1 Lp
oo
et | D mleoy
n=N+1 Lp
o0 1/1”
=ct ( > IImnllpu(Fl(Vﬁ))>
n=N+1
<e+€e=2e.

N

Since > x,1 r-1(ve)y € S and € > 0 is arbitrary, the last estimate proves the
n=1

proposition. H
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Theorem 7.59. There is a unique continuous linear map I:LYQ,F, ;X)) — X
such that I\s = I where I is defined in Definition 7.56. Moreover, for all F €
LI(Q7‘F7M;X),

(7.27) 1I(F)|lx < / | Flldy
Q

and I(F) is the unique element in X such that
(7.28) qb(f(F)):/ poF duvVeoe X*.
X

The map I(F) will be denoted suggestively by [ Fdu so that Eq. (7.28) may be
written as

qb(/Xqu):/XqﬁoqungeX*.

Proof. The existence of a continuous linear map I : L' (2, F, u; X) — X such
that I|s = I and Eq. (7.27) holds follows from Propositions 7.57 and 7.58 and the
bounded linear transformation Theorem 4.1. If ¢ € X* and F € LY(Q, F, u; X),
choose F,, € S such that F,, — F in LY(Q,F, u; X) as n — oo. Then I(F) =
lim,, o0 I(F},) and hence by Eq. (7.26),

o(I(F)) = ¢( lim I(F,)) = lim ¢(I(F,)) = lim | @0 Fudn.

n—oo n—oo n—oo

This proves Eq. (7.28) since

/(gboF—géan)d/J, §/|¢oF—¢an\du
Q Q

< Q/ I6l1x-

= ||p||x+||F — Fp|lzr — 0 as n — oo.

poF —poFy ydu

The fact that I(F) is determined by Eq. (7.28) is a consequence of the Hahn —
Banach theorem. m

Remark 7.60. The separability assumption on X may be relaxed by assuming that
F : Q — X has separable essential range. In this case we may still define [ x Fdu
by applying the above formalism with X replaced by the separable Banach space
Xo := essran, (F'). For example if €2 is a compact topological space and F': Q@ — X
is a continuous map, then fQ Fdyu is always defined.

7.8. Bochner Integrals.

7.8.1. Bochner Integral Problems From Folland. #15

Let f,g € Li,c € C then |(f + cg)(z)| < |f(z)] + |c| |g(z)| for all z € X.
Integrating over = ||f + cgll1 < ||fll1 + |¢| llglli < oo. Hence f,g € Ly and
c€ C= f+cge Ly sothat Ly is vector subspace of all functions from X — Y.
(By the way Ly is a vector space since the map (y1,y2) — y1+cys from Y xY — Y is

continuous and therefore f+cg = ®(f, g) is a composition of measurable functions).

n
It is clear that Fy is a linear space. Moreover if f = ZijEj with u(E;) < oo
j=1
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then [f(x)] < 37 |yjlem; (x) = |[fllr < Z lyilu(E;) < co. So Fy C Ly. It is
,':1

easily checked that || - ||; is a seminorm Wlth the property

1l =0e / 1 () du(z) =
Sl @I=0 ae.
< f(x)=0 ae.

Hence || - [|; is a norm on L3,/ (null functions).

#16
By, ={yeY |y—uyal < 6II:L/nH}

{yndpi =Y

Let 0 # y € Y and choose {yn, } C {yn} 2 yn, — yask — oo. Then ||y—y,, || — 0
while ||yn,|| — |lyl]] # 0 as k — oo. Hence eventually |y — yn, || < €|lyn,| for k

sufficiently large, i.e. y € By, for all k sufficiently large. Thus Y\ {0} C |J By,.
n=1

Also Y\ {0} = U B if e < 1. Since ||0 — y,|| < €||yn]| can not happen.

n=1

#17
Let f € L1 and 1 > € > 0, BS, as in problem 16. Define A5 = B¢ \ (B{U---U
) and ES = f~1(AS) and set

o0 o]
9e =D UnTms = Y Yniag o f.
1 1

Suppose € E< then [|£()—ge(@)]| = [va—7 (@) < ellgall- Now [yall < lyn—F(@)|+
£ < cllyall+117). Therefore | < L g0 (2)—g.(a) @)

for x € ES. Since n is arbitrary it follows by problem 16 that || f(z) — gc(z)|| <
|| f(x)| for all z ¢ f~'({0}). Since ¢ < 1, by the end of problem 16 we know
0 ¢ AS for any n = g.(z) = 0 if f(x) = 0. Hence ||f(x) — g.(x)] = f(z)]
holds for all x € X. This implies | f — gGHl < e — 0. Also we

Be

n—1

see [lgelli < Iflh +If = geln < o0 = E IIynHU(EG) = llgellr < oo. Choose

n=1

o0 N(e)
N(e) € {1,2,3,...} such that > [jynl|u(Ey) < e Set f(z) = > ynTpe.
n=1

n=N{(e)+1
Then

1f = felly < 1F = gells + llge = fella

o0

€ €
ST+ Y (B

n=N(e)+1

<e(1+!f¢)—>0 as €|0.
—€

Finally f. € Fy so we are done. ]
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#18
Define [ : Fy — Y by [ f(z)du(z) = > yu(f~*({y}) Just is the real variable
X yey

case be in class are shows that [ : Fyy — Y is linear. For f € L} choose f, €
Fy such that ||f — fnll1 = 0,n — oo. Then ||f, — fimll1 — 0 as m,n — co. Now
fn fe FY~

H/f dul| < HyHU(f‘l({y}))=/IIfHdU-

Thereforerfn du— ffm dul| < |fo=fmli =0 m,n — oco. Hence lim [ f, du

n—oo X

exists in Y. Set Ix f du= lim [ f, du.

Claim 1. [, fdu is well defined. Indeed if g, € F, such that ||f — gnlli — 0
asn — oo. Then ||fr — gnlli — 0 as n — oo also. = || [ fn du— [ gndul <
Ifn—9gnll1 =0 n— oco. So nlingofx gndu = nh—>ngo Jx fn du

|| / f dul| = Tim | / f du
.X n—oo X

<limsup ||full1 = I fll1
n—oo

Finally:

#19 D.C.T {f.} C Li, f € L} such that g € L'(dp) for all n || f. ()| < g(z)
a.e. and f,(z) — f(z) a.e. Then || [ f [ full < €|l f— fulldu — 0 by real variable.
n—oo

7.9. Exercises.

Exercise 7.1. Let pu be a measure on an algebra A C P(X), then u(A) + u(B) =
w(AUB)+ pu(ANB) for all A, B € A.

Exercise 7.2. Problem 12 on p. 27 of Folland. Let (X, M, 1) be a finite measure
space and for A, B € M let p(A, B) = u(AAB) where AAB = (A\ B)U(B\ A).
Define A ~ B iff y(AAB) = 0. Show “~ 7 is an equivalence relation, p is a metric
on M/ ~ and p(A) = p(B) if A ~ B. Also show that p: (M/ ~) — [0,00) is a
continuous function relative to the metric p.

Exercise 7.3. Suppose that y, : M — [0, 00] are measures on M for n € N. Also
suppose that p,(A) is increasing in n for all A € M. Prove that p : M — [0, ]
defined by p(A) := lim,,_, pn(A) is also a measure.

Exercise 7.4. Now suppose that A is some index set and for each A € A, puy :
M — [0,00] is a measure on M. Define p : M — [0,00] by pu(A) = > \ca pr(4)
for each A € M. Show that pu is also a measure.

Exercise 7.5. Let (X, M, ) be a measure space and p : X — [0, c0] be a measur-
able function. For A € M, set v(A) := [, pdp.

(1) Show v : M — [0, 00] is a measure.

(2) Let f: X — [0,00] be a measurable function, show

(7.29) /X fdv = /X Fpdp.

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.
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(3) Show that f € L*(v) iff fp € L'(u) and if f € L'(v) then Eq. (7.29) still
holds.

Notation 7.61. It is customary to informally describe v defined in Exercise 7.5
by writing dv = pdu.

Exercise 7.6. Let (X, M,u) be a measure space, (Y, F) be a measurable space
and f : X — Y be a measurable map. Define a function v : F — [0,00] by
v(A) == p(f~1(A)) for all A € F.

(1) Show v is a measure. (We will write v = fopu or v = po f71.)
(2) Show

(7.30) /Ygdv = /X (gof)du

for all measurable functions g : ¥ — [0,00]. Hint: see the hint from
Exercise 7.5.
(3) Show g € L*(v) iff gof € L' (1) and that Eq. (7.30) holds for all g € L*(v).

Exercise 7.7. Let F : R — R be a C'-function such that F'(z) > 0 for all
z € R and lim, 1o F(z) = too. (Notice that F is strictly increasing so that
F~1:R — R exists and moreover, by the implicit function theorem that F~! is a
C! — function.) Let m be Lebesgue measure on Bg and

v(A) =m(F(A)) =m((F~) " (4) = (£ 'm) (4)

for all A € Bg. Show dv = F’dm. Use this result to prove the change of variable
formula,

(7.31) /hoF-F’dm:/hdm
R R

which is valid for all Borel measurable functions h : R — [0, 00].

Hint: Start by showing dv = F’dm on sets of the form A = (a,b] with a,b € R
and a < b. Then use the uniqueness assertions in Theorem 7.8 to conclude dv =
F'dm on all of Bg. To prove Eq. (7.31) apply Exercise 7.6 with ¢ = h o F and
f=F1.

-1

Exercise 7.8. Let (X, M, i) be a measure space and {4,} 2, C M, show
w({A, a.a.}) <liminf u(4,)

and if p (Up>nAm) < 0o for some n, then

w({A, i.0.}) > limsup u (A4,,).

n—oo

Exercise 7.9 (Peano’s Existence Theorem). Suppose Z : RxR? — R? is a bounded
continuous function. Then for each T < 00!’ there exists a solution to the differ-
ential equation

(7.32) x(t) = Z(t,z(t)) for 0 <t < T with 2(0) = xo.
Do this by filling in the following outline for the proof.

15Using Corollary 10.12 below, we may in fact allow T = oco.
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(1) Given € > 0, show there exists a unique function z. € C([—¢,00) — R?)
such that z.(t) = xo for —e <t <0 and

t
(7.33) z(t) = zo +/ Z(7,z(T —€))dr for all t > 0.
0

Here

/Ot Z(1,xe(T — €))dT = (/Ot Zi (1, (T —€)dr, ..., /Ot Za(r, we(T — e))dr)

where Z = (Z3,...,Z4) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t € [0, ¢, it follows from Eq. (7.33) that

t
x(t) = xo +/ Z(7,x0)dT.
0

Now that z(t) is known for ¢ € [—¢, €] it can be found by integration for
t € [—¢, 2¢]. The process can be repeated.

(2) Then use Exercise 3.39 to show there exists {ex},-; C (0,00) such that
limg o0 €, = 0 and x, converges to some z € C([0,T]) (relative to the
sup-norm: |[z[|, = supycpo 1) [2(t)]) as k — oc.

(3) Pass to the limit in Eq. (7.33) with € replaced by €, to show x satisfies

z(t) = o +/O Z(t,z(7))dr ¥Vt € [0,T].

(4) Conclude from this that @(t) exists for ¢ € (0,7) and that x solves Eq.
(7.32).
(5) Apply what you have just prove to the ODE,

y(t) = —Z(—t,y(t)) for 0 < ¢t < T with x(0) = xo.

Then extend x(t) above to [T, T] by setting z(t) = y(—t) if t € [-T,0].
Show « so defined solves Eq. (7.32) for t € (=T, T).

Exercise 7.10. Folland 2.12 on p. 52.
Exercise 7.11. Folland 2.13 on p. 52.
Exercise 7.12. Folland 2.14 on p. 52.

Exercise 7.13. Give examples of measurable functions {f,} on R such that f,
decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example of a
sequence of measurable functions {g,} on [0, 1] such that g, — 0 while [ g,dm =1
for all n.

Exercise 7.14. Folland 2.19 on p. 59.

Exercise 7.15. Suppose {an}zozioo C Cis asummable sequence (i.e. Y oo a,| <
o0), then f(0) :=>°2 __ a,e' is a continuous function for § € R and

_ 1 " —inf
tn = o /77r f(@)e™"""d6.

Exercise 7.16. Folland 2.26 on p. 59.
Exercise 7.17. Folland 2.28 on p. 59.
Exercise 7.18. Folland 2.31b on p. 60.
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8. FuBINI’'S THEOREM

This next example gives a “real world” example of the fact that it is not always
possible to interchange order of integration.

Example 8.1. Consider

1 o] 1 e—y 6—2,7;y
/ dy/ da(e™ " —2e 2Y) = / dy { -2 }
0 1 0 -y —2y

Note well that (l_efy) has not singularity at 0. On the other hand

Y

o] 1 o] e—:[y e—2_z'y
/ dac/ dy(e™™Y — 2e72%) = / dx { -2 }
1 0 1 -z —2x

o] 6729: —e %
A ey

::_ﬁme*{llfmyme(—mﬁ)

Moral [dz [dy f(z,y) # [ dy [ dz f(z,y) is not always true.

In the remainder of this section we will let (X, M, u) and (Y, N,v) be fixed
measure spaces. Our main goals are to show:

(1) There exists a unique measure p ® v on M ® N such that p @ v(A x B) =
pw(A)v(B) for all Ae M and B € N and
(2) For all f: X xY — [0, 00] which are M ® N — measurable,

/Xxyf d(“®”):/Xd“(x)/yd'/(y)f(x,y)
:LW@LW@MM-

Before proving such assertions, we will need a few more technical measure
theoretic arguments which are of independent interest.

1

y=0

8.1. Measure Theoretic Arguments.

Definition 8.2. Let C C P(X) be a collection of sets. We say:

(1) C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,
(2) Cisam — class if it is closed under finite intersections and
(3) Cis a A—class if C satisfies the following properties:
(a) XecC
(b) If A, B € Cand ANB =0, then AU B € C. (Closed under disjoint
unions. )
(¢) If A,B € Cand A D B, then A\ B € C. (Closed under proper
differences.)
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(d) If A, € Cand A,, T A, then A € C. (Closed under countable increasing
unions.)
(4) We will say C is a \g — class if C satisfies conditions a) — ¢) but not necessarily
d).

Remark 8.3. Notice that every A — class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 8.7 where
he/she should then only read the second proof.)

Lemma 8.4 (Monotone Class Theorem). Suppose A C P(X) is an algebra and C
is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CnNnB,CNB*,BNC°eC},

then C(C) is a monotone class. Indeed, if B,, € C(C) and B,, T B, then BS | B¢
and so

C>5CNB,1CNB
C>CNBS | CNB° and
C>B,NC°1BNC"

Since C is a monotone class, it follows that CNB,CNB¢, BNC*® € C,i.e. B € C(C).
This shows that C(C) is closed under increasing limits and a similar argument shows
that C(C) is closed under decreasing limits. Thus we have shown that C(C) is a
monotone class for all C € C.

IfAe ACC,then ANB,ANB*,BNA° € A CC for all B € A and hence
it follows that A C C(A) C C. Since C is the smallest monotone class containing
A and C(A) is a monotone class containing A, we conclude that C(A) = C for any
Ac A

Let B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € A implies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone class we
conclude that C(B) = C for all B € C. That is to say, if A, B € C then A € C = C(B)
and hence AN B, AN B¢, AN B € C. So C is closed under complements (since
X € A C C) and finite intersections and increasing unions from which it easily
follows that C is a o — algebra. m

Let £ C P(X xY) be given by

E=MxN={AxB:Ac M,BeN}

and recall from Exercise 6.2 that £ is an elementary family. Hence the algebra
A = A(E) generated by & consists of sets which may be written as disjoint unions
of sets from &.

Theorem 8.5 (Uniqueness). Suppose that € C P(X) is an elementary class and
M = o(E) (the o — algebra generated by &). If pn and v are two measures on M
which are o — finite on € and such that p=v on £ then p=v on M.

Proof. Let A := A(€) be the algebra generated by £. Since every element of A
is a disjoint union of elements from &, it is clear that ;4 = v on A. Henceforth we
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may assume that & = A. We begin first with the special case where p(X) < oo and
hence v(X) = p(X) < 00. Let

C={AecM:puA)=uv(A)}

The reader may easily check that C is a monotone class. Since A C C, the monotone
class lemma asserts that M = o(A) C C C M showing that C = M and hence that
uw=von M.

For the o — finite case, let X, € A be sets such that u(X,) = v(X,) < co and
X, T X asn — oo. Forn € N, let

(8.1) tn(4) == p(AN X,) and v,(A) =v(AN X,)
for all A € M. Then one easily checks that pu, and v, are finite measure on M
such that p,, = v, on A. Therefore, by what we have just proved, u, = v, on M.
Hence or all A € M, using the continuity of measures,
w(A) = lim p(ANX,)= lim v(ANX,) =v(A).
|

Lemma 8.6. If D is a \g — class which contains a w-class, C, then D contains
A(C) — the algebra generated by C.

Proof. We will give two proofs of this lemma. The first proof is “constructive”
and makes use of Proposition 6.9 which tells how to construct A(C) from C. The
key to the first proof is the following claim which will be proved by induction.

Claim. Let Cy = C and C,, denote the collection of subsets of X of the form

(8.2) AN -NASNB=B\ A1\ Az \ -\ A,.
with 4; € C and B € CU{X}. Then C, C D for all n, i.e. C :=U32C, C D.
By assumption Cy C D and when n =1,
B\AlzB\(AlﬂB)GD

when Ay, B € C C D since A; N B € C C D. Therefore, C; C D. For the induction
step, let B € CU{X} and A; € CU{X} and let £, denote the set in Eq. (8.2) We
now assume C,, C D and wish to show E, 1 € D, where

En+1 == En \ An—i—l == En \ (An+l N En)-

Because

AppiNE, =AiN---NAN(BNAp41) €C, CD
and (Ap,41 NE,) C E, € C, C D, we have FEnt+1 € D as well. This finishes the
proof of the claim.

Notice that C is still a multiplicative class and from Proposition 6.9 (using the
fact that C is a multiplicative class), A(C) consists of finite unions of elements from
C. By applying the claim to C, AfN---N A% € D for all A; € C and hence

AjU---UA, = (A5N---NAS) € D.
Thus we have shown A(C) C D which completes the proof.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest \y — class containing C for if not just replace D by the intersection of all
Ao — classes containing C. Let

D :={AeD:ANCEDYCeC)
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Then C C D and Dy is also a Ag—class as we now check. a) X € D1.b)If A, B € D,
with AN B =, then (AUB)NC = (ANC)[[(BNC)eDforal C eC.c)lf
A,B € Dy with B C A, then (A\ B)NC = ANC\ (BNC) € D for all C € C. Since
C C D1 C D and D is the smallest Ag — class containing C it follows that D; = D.
From this we conclude that if A € D and B € C then AN B € D.

Let

Dy:={AeD:ANDeDV DeD}

Then D5 is a Ag—class (as you should check) which, by the above paragraph, contains
C. As above this implies that D = D5, i.e. we have shown that D is closed under
finite intersections. Since Ay — classes are closed under complementation, D is an
algebra and hence A (C) C D. In fact D = A(C). m

This Lemma along with the monotone class theorem immediately implies
Dynkin’s very useful “m — X\ theorem.”

Theorem 8.7 (m — A Theorem). If D is a A class which contains a contains a
w-class, C, then o(C) C D.

Proof. Since D is a Ay — class, Lemma 8.6 implies that A(C) C D and so by
Remark 8.3 and Lemma 8.4, o(C) C D. Let us pause to give a second stand-alone
proof of this Theorem.

(Second Proof.) With out loss of generality, we may assume that D is the
smallest A — class containing C for if not just replace D by the intersection of all A
— classes containing C. Let

D1 ={AeD:ANnCeDVCEeC}.

Then C C D; and D; is also a A—class because as we now check. a) X € D;. b)
If A,B €Dy with ANB =0, then (AUB)NC = (ANC)[[(BNC) € D for all
CeC.c)If A,B e Dy with BC A, then (A\B)NC=ANC\ (BNC) €D for
allCeC.d)If A, € Dy and A, T Aasn — oo, then A, NC € D for all C € D
and hence A, NC T ANC € D. Since C C D; C D and D is the smallest A\ — class
containing C it follows that D; = D. From this we conclude that if A € D and
B e(C then ANB e D.
Let
Dy:={AeD:ANDeDV DecD}.

Then D is a A—class (as you should check) which, by the above paragraph, contains
C. As above this implies that D = D», i.e. we have shown that D is closed under
finite intersections.

Since A — classes are closed under complementation, D is an algebra which is
closed under increasing unions and hence is closed under arbitrary countable unions,
i.e. Dis a o — algebra. Since C C D we must have o(C) C D and in fact o(C) = D.
u

Using this theorem we may strengthen Theorem 8.5 to the following.

Theorem 8.8 (Uniqueness). Suppose that C C P(X) is a m — class such that
M =0(C). If p and v are two measures on M and there exists X,, € C such that
Xn TX and u(X,) =v(X,) < oo for each n, then p=v on M.

Proof. As in the proof of Theorem 8.5, it suffices to consider the case where
and v are finite measure such that u(X) = v(X) < oo. In this case the reader may
easily verify from the basic properties of measures that

D={AeM:uA) =uv(A)}
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is a A — class. By assumption C C D and hence by the 7— A theorem, D contains
M=0c(C). =

As an immediate consequence we have the following corollaries.

Corollary 8.9. Suppose that (X, T) is a topological space, Bx = o(7) is the Borel
o — algebra on X and p and v are two measures on Bx which are o — finite on T.
If u=v onTt then u=v on Bx, i.e. 4 =v.

Corollary 8.10. Suppose that p and v are two measures on Bgrn which are finite
on bounded sets and such that u(A) = v(A) for all sets A of the form

A= ((I,b] = (alvbl] XX (anvbn]
with a,b € R™ and a < b, i.e. a; < b; for all i. Then . =v on Bgn.

To end this section we wish to reformulate the @ — A theorem in a function
theoretic setting.

Definition 8.11 (Bounded Convergence). Let X be a set. We say that a se-
quence of functions f,, from X to R or C converges boundedly to a function f if
lim,, .o fn(z) = f(z) for all z € X and

sup{|fn(@)|:z € X and n=1,2,...} < o0.

Theorem 8.12. Let X be a set and H be a subspace of B(X,R) — the space of
bounded real valued functions on X. Assume:

(1) 1 € H, i.e. the constant functions are in H and
(2) H is closed under bounded convergence, i.e. if {f,}ro; C H and f, — f
boundedly then f € H.

If C € P(X) is a multiplicative class such that 14 € H for all A € C, then H
contains all bounded o(C) — measurable functions.

Proof. Let D := {A C X : 14 € H}. Then by assumption C C D and since
1 € H we know X € D. If A, B € D are disjoint then 14,5 = 14+ 15 € H so
that AUB € Dandif A,B € Dand A C B, then 1p\ 4 = 1 — 14 € H. Finally
if A, € Dand A, T Aasn — oo then 14, — 14 boundedly so 14 € H and
hence A € D. So D is A — class containing C and hence D contains ¢(C). From this
it follows that H contains 14 for all A € o(C) and hence all o(C) — measurable
simple functions by linearity. The proof is now complete with an application of
the approximation Theorem 7.12 along with the assumption that H is closed under
bounded convergence. m

Corollary 8.13. Suppose that (X,d) is a metric space and Bx = o(74) is the
Borel 0 — algebra on X and H is a subspace of B(X,R) such that BC(X,R) C H
(BC(X,R) — the bounded continuous functions on X) and H is closed under
bounded convergence. Then H contains all bounded Bx — measurable real val-
ued functions on X. (This may be paraphrased as follows. The smallest vector
space of bounded functions which is closed under bounded convergence and contains
BC(X,R) is the space of bounded Bx — measurable real valued functions on X.)

Proof. Let V € 74 be an open subset of X and for n € N let
fn(x) ;== min(n - dy(x),1) for all z € X.

Notice that f,, = ¢, o dye where ¢, (t) = min(nt, 1) which is continuous and hence
fn € BC(X,R) for all n. Furthermore, f, converges boundedly to 1y as n — oo
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and therefore 1y, € ‘H for all V' € 7. Since 7 is a m — class the corollary follows by
an application of Theorem 8.12. m
Here is a basic application of this corollary.

Proposition 8.14. Suppose that (X, d) is a metric space, p and v are two measures
on Bx = o(14) which are finite on bounded measurable subsets of X and

(8.3) /X fdp = /X Fdu

for all f € BCy(X,R) where
BCy(X,R) = {f € BC(X,R) : supp(f) is bounded}.
Then p = v.
Proof. To prove this fix a 0 € X and let
Yr(z)=([R+1—-d(z,0)]A1)VO0

so that ¥ € BCy(X,[0,1]), supp(¢r) C B(o,R+2) and g 1 1 as R — oo. Let
‘Hr denote the space of bounded measurable functions f such that

(8.4) /X b fdu = /X bnfdv.

Then Hp is closed under bounded convergence and because of Eq. (8.3) contains
BC(X,R). Therefore by Corollary 8.13, Hg contains all bounded measurable func-
tions on X. Take f = 14 in Eq. (8.4) with A € Bx, and then use the monotone
convergence theorem to let R — oo. The result is p(A) = v(A) forall A € Bx. m

Corollary 8.15. Let (X,d) be a metric space, Bx = o(74) be the Borel o — algebra
and p : Bx — [0,00] be a measure such that p(K) < oo when K is a compact
subset of X. Assume further there exists compact sets Ky, C X such that K7 T X.
Suppose that H is a subspace of B(X,R) such that C.(X,R) C H (C.(X,R) is the
space of continuous functions with compact support) and H is closed under bounded

convergence. Then H contains all bounded Bx — measurable real valued functions
on X.

Proof. Let k and n be positive integers and set 9, ;(z) = min(1,n - d(K;;)C(w))'
Then ¢, € Co(X,R) and {¢,r # 0} C Kp. Let H,, 1 denote those bounded
Bx — measurable functions, f : X — R, such that ¢, ;f € H. It is easily seen
that H,,  is closed under bounded convergence and that H,,  contains BC(X,R)
and therefore by Corollary 8.13, 1, xf € H for all bounded measurable functions
J+ X — R. Since ¢k f — lkpf boundedly as n — oo, 1y f € ‘H for all k and
similarly 1xo f — f boundedly as k — oo and therefore f € H. ®

Here is another version of Proposition 8.14.

Proposition 8.16. Suppose that (X, d) is a metric space, j and v are two measures
on Bx = o(14) which are both finite on compact sets. Further assume there exists
compact sets Ky, C X such that K T X. If

(8.5) /X fdu = /X fdv

for all f € C.(X,R) then p = v.
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Proof. Let 1, be defined as in the proof of Corollary 8.15 and let H,, ; denote
those bounded Bx — measurable functions, f : X — R such that

/X Fim il = /X Fibn v

By assumption BC(X,R) C H,, ; and one easily checks that H,, j is closed under
bounded convergence. Therefore, by Corollary 8.13, H, , contains all bounded
measurable function. In particular for A € By,

/ 14 Ynrdp =/ 14 Y pdv.
X X

Letting n — oo in this equation, using the dominated convergence theorem, one

shows
/ 1A1K;3d,u:/ 1A1Kgdu
X X

holds for k. Finally using the monotone convergence theorem we may let k — oo
to conclude

M(A):/ 1Ad,u:/ 1adv =v(A)
X X
forall Ac Bx. m

8.2. Fubini-Tonelli’s Theorem and Product Measure. Recall that (X, M, u)
and (Y, N,v) are fixed measure spaces.

Notation 8.17. Suppose that f: X — C and g : Y — C are functions, let f ® g
denote the function on X x Y given by

f@g(z,y) = f(z)g(y).

Notice that if f,g are measurable, then f ® g is (M ® N, Bc) — measurable.
To prove this let F(z,y) = f(z) and G(z,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F = f o m where
m X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

Theorem 8.18. Suppose (X, M, ) and (Y,N,v) are o-finite measure spaces and
[ is a nonnegative (M @ N, Br) — measurable function, then for each y €Y,

(8.6) x — f(x,y) is M — Bjg o) measurable,

for each x € X,

(8.7) y — f(z,y) is N — Bjo,oc] measurable,

(8.8) x H/ f(z,y)dv(y) is M — Bjg,oc) measurable,
Y

(8.9) y H/ f(z,y)du(z) is N~ B o) measurable,
X

and

(3.10) [ au@) [ avsa) = [ avt) [ duta)s..
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Proof. Suppose that E=A x B€ £ := M x N and f = 1g. Then

f(xay) = ]-AXB(xay) = ]-A(:L')lB(y)
and one sees that Eqgs. (8.6) and (8.7) hold. Moreover

/ f(z,y)dv(y / A@)5W)dv(y) = 1a(2)(B),

so that Eq. (8.8) holds and we have

(8.11) /X dyu(z) /Y dv(y) f(z,y) = v(B)u(A).

Similarly,
/X F(y)du(x) = u(A)Lp(y) and
[ avt) [ dut@rste.s) = vB)uca)

from which it follows that Eqgs. (8.9) and (8.10) hold in this case as well.

For the moment let us further assume that p(X) < co and v(Y) < oo and let H
be the collection of all bounded (M ® N, Bg) — measurable functions on X xY such
that Eqgs. (8.6) — (8.10) hold. Using the fact that measurable functions are closed
under pointwise limits and the dominated convergence theorem (the dominating
function always being a constant), one easily shows that H closed under bounded
convergence. Since we have just verified that 1 € H for all E in the 7w — class, &,
it follows that H is the space of all bounded (M ® N, Bgr) — measurable functions
on X x Y. Finally if f: X XY — [0,00] is a (M ® N, Bg) — measurable function,
let far = M A f so that far 7 f as M — oo and Egs. (8.6) — (8.10) hold with f
replaced by fas for all M € N. Repeated use of the monotone convergence theorem
allows us to pass to the limit M — oo in these equations to deduce the theorem in
the case p and v are finite measures.

For the o — finite case, choose X, € M, Y, € N such that X,, T X, Y, 1Y,
w(Xy) < ooand v(Y,) < oo for all m,n € N. Then define p,,(A) = u(X,m N A) and
vn(B) = v(Y, N B) for all A € M and B € N or equivalently du,, = 1x, du and
dv, = 1y, dv. By what we have just proved Eqgs. (8.6) — (8.10) with x replaced by
pm and v by v, for all (M ® N, Bg) — measurable functions, f: X x Y — [0, 00].
The validity of Eqs. (8.6) — (8.10) then follows by passing to the limits m — oo
and then n — oo using the monotone convergence theorem again to conclude

[ tatn = [ cudnt [ fdpasm— oo
X X X

/gdun:/glynduT/gd,uasnﬁoo
Y Y Y

forall f€ LT(X,M) and g € LT(Y,N). m

and

Corollary 8.19. Suppose (X, M,u) and (Y,N,v) are o-finite measure spaces.
Then there exists a unique measure T on M @ N such that 7(A x B) = pu(A)v(B)
for all A € M and B € N. Moreover  is given by

(812)  n(E)= /X dy(z) /Y dv(y)Ls(z,y) = /Y du(y) /X dj(a)1p(z.y)
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forall E € M QN and 7 is o — finite.

Notation 8.20. The measure 7 is called the product measure of 1 and v and will
be denoted by p ® v.

Proof. Notice that any measure 7 such that 7(Ax B) = u(A)v(B) for all A € M
and B € N is necessarily o — finite. Indeed, let X,, € M and Y,, € N/ be chosen
so that u(X,) < oo, v(¥,) < oo, X, 1 X and Y,, 7Y, then X,, xY,, € M N,
X, xY, T X xY and n(X, xY,) < oo for all n. The uniqueness assertion is
a consequence of either Theorem 8.5 or by Theorem 8.8 with £ = M x N. For
the existence, it suffices to observe, using the monotone convergence theorem, that
7 defined in Eq. (8.12) is a measure on M ® N. Moreover this measure satisfies
(A x B) = p(A)v(B) for all A€ M and B € N from Eq. (8.11

|

Theorem 8.21 (Tonelli’s Theorem). Suppose (X, M, ) and (Y,N,v) are o-finite
measure spaces and T = p @ v is the product measure on M QN If f € LT (X x
Y, M@N), then f(-,y) € LT (X, M) forally €Y, f(z,) € L™ (Y,N) for allx € X,

/ o p)du(y) € LH(X, M), / f(, () € LH(Y, N)
Y X

and
(3.13) | sin= [ ) [ avt s
(3.14) - [ @) [ au@ ().

Proof. By Theorem 8.18 and Corollary 8.19, the theorem holds when f = 1
with £ € M ® N. Using the linearity of all of the statements, the theorem is
also true for non-negative simple functions. Then using the monotone convergence

theorem repeatedly along with Theorem 7.12, one deduces the theorem for general
fELT(X XY, MRN). u

Theorem 8.22 (Fubini’s Theorem). Suppose (X, M, u) and (Y,N,v) are o-finite
measure spaces and ™ = v be the product measure on MQN. If f € L*(r) then
for w a.e. x, f(z,-) € L'(v) and for v a.e. y, f(-,y) € L*(u). Moreover,

/fxydv( ) and h(y /fa:ydu

are in L' (u) and L' (v) respectively and Eq. (8.14) holds.
Proof. If f € L'(X x Y) N L* then by Eq. (8.13),

/x (/y f(x’y)dl/(y)> dp(z) < oo

so [y flz,y)dv(y) < oo for pa.e. z, ie. for pae. z, f(z,-) € L*(v). Similarly for
vae.y, f(-,y) € L'(u). Let f be a real valued function in f € L'(X x Y) and let
f = f+ — f—. Apply the results just proved to fi to conclude, fi(x,-) € L*(v) for
w a.e. z and that

/Y fi(oy)dv(y) € L ().
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Therefore for u a.e. .x,

f(xa) = f—‘-(xa') - f—(xa') € Ll(’/)

m—>/fmydu /f+ Ydu(y /f

is a p — almost everywhere defined function such that [ f(-,y)dv(y) € L*(p). Be-

o /fi(x,y)d(M®V) :/d’u(x)/dy(y)fi(x’y),

[tawen = [ fdwen - [ 1duey
:/dp/duﬁr—/du/dz/f,
:/du (/f+dy—/fdu>
— [an vt =1y = [an [ avs,

[tawen = [aw [au i)

is analogous. As usual the complex case follows by applying the real results just
proved to the real and imaginary parts of f. m

and

The proof that

Notation 8.23. Given F C X XY and z € X, let
E:={yeY:(z,y) € E}.
Similarly if y € YV is given let
E,:={zeX:(z,y) € E}.

If f: X xY — Cis a function let f, = f(z,-) and f¥ := f(-,y) so that f, : Y — C
and f¥: X — C.

Theorem 8.24. Suppose (X, M,u) and (Y,N,v) are complete o-finite measure
spaces. Let (X x Y, L, \) be the completion of (X x Y MRN,u®@v). If fis
L-measurable and (a) f >0 or (b) f € L*(\) then f, is N'-measurable for ui a.e.
x and fY is M-measurable for v a.e. y and in case (b) f, € L' (v) and fY € L' (u)
for u a.e. x and v a.e. y respectively. Moreover,

w—>/fxdy andy—>/fyd,u

/fd/\ /dy/duf /d,u/du

Proof. f Fe M@ N isa p®v null set ((u® v)(E) =0), then

0—<u®v><>/ E)dp(z :/u ) (y

X

are measurable and
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This shows that

n({z: v(.B) #0}) = 0 and v({y : p(E,) # 0}) = 0,

ie. v(;E) =0 for pa.e. z and u(E,) =0 for v a.e. y.

If h is £ measurable and h = 0 for \- a.e., then there exists £ ¢ M@ N >
{(z,y) : h(z,y) # 0} C E and (p ® v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and
(n®v)(F)=0. Since

{he #0} ={y €Y : h(z,y) #0} C ,E and
{hy #0} = {z € X : bz, ) #0} C F,

we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hy # 0}) =0 and a.e. and p({hy, # 0}) = 0. This implies

for v a.e. v, /h(aj,y)du(y) exists and equals 0

and

for p a.e. x, /h(:c,y)du(y) exists and equals 0

o~ o= (fr) = (f )

For general f € L*(\), we may choose g € L*(M @ N, u ® v) such that f(z,y) =
g(z,y) for \— a.e. (x,y). Define h = f — g. Then h = 0, \— a.e. Hence by what
we have just proved and Theorem 8.21 f = g + h has the following properties:

(1) For pae. x, y— f(x,y) = g(x,y) + h(z,y) is in L1 (v) and

[t@may) = [ sepav)

(2) For v ae. y, x — f(x,y) = g(z,y) + h(x,y) is in L' (1) and

/f z,y)dp(z /g(:r,y)du(x)

From these assertions and Theorem 8.21, it follows that

[nte) [ at)se. = [ duta) [avwgton
- [ [ aviaigtay)

=/ﬂ%@ﬂu®ﬂ@w)
=/}uwmxaw

Therefore

and similarly we shows

[ av) [ dnta) @) = [ famire.y
| |

The previous theorems have obvious generalizations to products of any finite
number of o — compact measure spaces. For example the following theorem holds.
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Theorem 8.25. Suppose {(X;, M;, p;)}i, are o — finite measure spaces and X :=
X1 x+-+xX,. Then there exists a unique measure, w, on (X, M1 ® --- ® M,,) such
that w(Ay X -+ X Ap) = p1(A1) ... un(Ay) for all A; € M;. (This measure and its

completion will be denote by p1 @ -+ @ pp.) If f + X — [0,00] is a measurable
function then

fd']'r = H/ d'U,o—(l) (-7:0—(7,)) f(xly e 7mn)
w/)v( i=1 Xa(i)

where o is any permutation of {1,2,...,n}. This equation also holds for any [ €
LY(X,7) and moreover, f € LY(X, ) iff

H X dy’a(i)(xa'(i)) |f($1a7xn)‘ <0
i=1 o (i)

for some (and hence all) permutation, o.

This theorem can be proved by the same methods as in the two factor case.
Alternatively, one can use induction on n, see Exercise 8.6.

Example 8.26. We have

(8.15) / ST Ay = 37~ arctan A for all A >0
0 x

and forA, M € [0, c0),

efMA

(8.16) <C

M
1
/ smﬂﬁefAmdx — =7 + arctan A

o Z 2

where C' = max;>g fj—wﬂ = 2\/%_2 2 1.2. In particular,

M gin g

(8.17) lim

dr =m/2.
M —oo 0 x v 7T/

To verify these assertions, first notice that by the fundamental theorem of cal-

culus,
x xr x
/ cosydy‘ < ‘/ |Cosy|dy‘ < '/ ldy’ = ||
0 0 0

SO ’%| <1 for all z # 0. Making use of the identity

/ e dt =1/x
0

[sinz| =
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and Fubini’s theorem,

M . M s}
sinx
/ e*AIdx*/ dxsinxe*Az/ et
0 x 0
o0
/ dt/ dx sinx e~ (At
0

7/°° 1- cosM+(A+t)51nM) (AH)dt
0 (A+1)°+1
:/oo 1 dt—/ cosM + (A + )SlnM —M(A+) g
o (A+t)?+1 0 (A+1)°+1

(8.18) = %w —arctan A — e(M, A)
where

G(M,A):/ CObM+(A+t)SlnM M(A+t)d

0 (A+t)2+1

Since

(A+t)2+1 T A+ +1

o0 e~ MA
(M, A)] < / M) gy —
0

This estimate along with Eq. (8.18) proves Eq. (8.16) from which Eq. (8.17)

follows by taking A — oo and Eq. (8.15) follows (using the dominated convergence
theorem again) by letting M — oo.

cosM+(A+t)51nM'< L+(A+t) o,

8.3. Lebesgue measure on RY.

Notation 8.27. Let

d times d times
e N —N——
m?=m®- - ®@mon Bra = Br ® - @ Br

be the d — fold product of Lebesgue measure m on Br. We will also use m? to denote
its completion and let L4 be the completion of Bra relative to m. A subset A € Ly
is called a Lebesgue measurable set and m? is called d — dimensional Lebesgue
measure, or just Lebesgue measure for short.

Definition 8.28. A function f : R? — R is Lebesgue measurable if f~1(Bg) C
L.
Theorem 8.29. Lebesque measure m® is translation invariant. Moreover m? is
the unique translation invariant measure on Bra such that m?((0,1]%) = 1.
Proof. Let A=J; x -+ x Jy with J; € Bg and = € R%. Then
r+A=(x1+J1) X (2 + Jo) x - X (24 + Jg)
and therefore by translation invariance of m on Br we find that
mi(z+ A) =m(zy + 1) ...m(zg + Jg) = m(h) ... m(Jg) = m?(A)

and hence mé(x + A) = m (A) for all A € Bga by Corollary 8.10. From this fact
we see that the measure m?(x + -) and m?(-) have the same null sets. Using this
it is easily seen that m(z + A) = m(A) for all A € L4. The proof of the second
assertion is Exercise 8.7. ®

d
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Notation 8.30. I will often be sloppy in the sequel and write m for m? and dx
for dm(z) = dm?(x). Hopefully the reader will understand the meaning from the
context.

The following change of variable theorem is an important tool in using Lebesgue
measure.

Theorem 8.31 (Change of Variables Theorem). Let Q@ C, RY be an open set and
T:Q—T(Q) Co R? be a C* ~ diffeomorphism*S. Then for any Borel measurable
function, f:T() — [0,00],
(8.19) /f oT|detT'|dm = / f dm,

Q

()

where T'(x) is the linear transformation on R defined by T'(x)v := & | T(z + tv).
Alternatively, the ij — matriz entry of T (x) is given by T (x);; = 0T;(x)/dx; where
T(x) = (Ty(z), ..., Ta(x)).

We will postpone the full proof of this theorem until Section 27. However we will
give here the proof in the case that T is linear. The following elementary remark
will be used in the proof.

Remark 8.32. Suppose that
QL @) 3 s(T@)

are two C'! — diffeomorphisms and Theorem 8.31 holds for T and S separately, then
it holds for the composition S o T'. Indeed

/fOSOT|det(SOT)/|dm:/fOSOT\det(S’OT)T’Mm

/(\detS’|foS)oT|detT’\dm

)
= / |det S’| f o Sdm = / fdm.
() S(1()

Theorem 8.33. Suppose T € GL(d,R) = GL(R?) - the space of d x d invertible
matrices.

(1) If f : R* — R is Borel — measurable then so is foT and if f >0 or f € L*
then

(8.20) /f dy—\detT\/ foT(x
(2) If E € L4 then T(E) € Lq and m(T(E)) = |det T| m(E).

Proof. Since f is Borel measurable and T : R? — R? is continuous and hence
Borel measurable, f oT is also Borel measurable. We now break the proof of Eq.
(8.20) into a number of cases. In each case we make use Tonelli’s theorem and the
basic properties of one dimensional Lebesgue measure.

6That is T : Q — T(R) Co R? is a continuously differentiable bijection and the inverse map
T—1:7T(Q) — Q is also continuously differentiable.
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(1) Suppose that i < k and
T(x1,Z2. ., Tq) = (T1y -y Tim1y Thy Tkl « -+ The1y Tiy Tht 1y« - - Td)

then by Tonelli’s theorem,

foT(xy,...,zq) = flxe, .o @py. o Xy xg)dTy ... dzg
R R

= df(xl,...,.’ljd)d.’lﬁl...d.’lid
R

which prove Eq. (8.20) in this case since |det T'| = 1.
(2) Suppose that ¢ € R and T(x1,...2Tk,...,xq) = (21,...,Tk,...Tq), then

foT(xl,...md)dm:/ flz1, ... cxp,...,xq)dzy ... deg ... dxg
R4 R4

:\c|_1/ fz1,...,xq)dzy ... dxg
R4
:\detT\—l/ fdm

R4

which again proves Eq. (8.20) in this case.
(3) Suppose that

i’'th spot
T(x1,29...,2q) = (T1, .-, Ti + CThy -« - They . .. Tq).
Then
foT(xy,...,zq)dm = flzy, .., xi+cxpy .. Ty ... xg)dry .. dx; .. dxg .. dzg
R4 R4

:/df(xl,...,mi,...xk,...xd)d:ﬂl...dxi...dack...dacd
R,

= f(xl,...,ﬂsd)dibl...dﬂfd
Rd

where in the second inequality we did the x; integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (8.20) in this
case since det(T) = 1.

Since every invertible matrix is a product of matrices of the type occurring in
steps 1. — 3. above, it follows by Remark 8.32 that Eq. (8.20) holds in general. For
the second assertion, let E € Bga and take f = 1p in Eq. (8.20) to find

| det T‘m(Tﬁl(E)) = |det T / lT—l(E)dm = |det T / 1goTdm = 1gdm = m(E).
Rd Rd Rd
Replacing T' by 7! in this equation shows that
m(T(E)) = |det T| m(E)

for all E € Bga. In particular this shows that m o1 and m have the same null sets
and therefore the completion of Bra is Ly for both measures. Using Proposition
7.6 one now easily shows

m(T(E)) = |det T|m(E) ¥ E € Lq.
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8.4. Polar Coordinates and Surface Measure. Let
d

St ={zeR: 2]’ =) 2 =1}
i=1
be the unit sphere in R%. Let ® : R?\ (0) — (0,00) x S9! and ®~! be the inverse
map given by

(8.21) D(x) = (Jo],

;—‘) and @1 (r,w) = rw

respectively. Since ® and ®~! are continuous, they are Borel measurable.
Consider the measure ®.m on B(g o) ® Bga-1 given by

O,.m(A):=m (@_1(14))
for all A € B(O,oo) ® Bga—1. For E € Bga-1 and a > 0, let
E,:={rw:r€(0,a] and w € B} = ®'((0,a] x E) € Bga.

Noting that E, = aF;, we have for 0 < a < b, E € Bga—1,E and A = (a,b] X E
that

(8.22) O 1A)={rw:r e (a,b and w € E}
(823) = bE1 \aEl.
Therefore,

(®.m) ((a,b] x E) =m (bE1 \ aEy) = m(bEy) — m(aEr)

= bim(Ey) — a’m(E;)
(8.24) =d-m(E;) /b rd=Ldr.

Let p denote the unique measure on B ) such that

(8.25) p(J) = /, ri=Ldr

for all J € B(g o), i-e. dp(r) =r*"tdr.

Definition 8.34. For F € Bga-1, let o(E) := d - m(E;). We call o the surface
measure on S.

It is easy to check that o is a measure. Indeed if £ € Bgs-1, then E; =
@1 ((0,1] x E) € Bga so that m(Ey) is well defined. Moreover if E = [[;2, E;,
then Ey = [[2, (E;), and

o(E)=d-m(E) =Y m((E),) =Y o(E).
i=1 i=1
The intuition behind this definition is as follows. If E C S?! is a set and € > 0 is
a small number, then the volume of
(LL14+¢ - E={rw:re(l,1+¢ andw € E}
should be approximately given by m ((1,1+ €| - E) = o(FE)e, see Figure 16 below.
On the other hand

m((1,14 €E) =m(Eiye \ Er) = {(1+¢)? — 1} m(E).
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E

.
w0

FIGURE 16. Motivating the definition of surface measure for a sphere.

Therefore we expect the area of E should be given by

o(E) =lim {(1 e’ - 1} m(E)
€l0 €

According to these definitions and Eq. (8.24) we have shown that
(8.26) o,m((a,8] x E) = pl(a,b]) - o(E).
Let
E={(a,b) x E:0<a<bFE € Bga1},
then £ is an elementary class. Since 0(&) = B(g,o0) ® Bga-1, we conclude from Eq.
(8.26) that
dPm=pRoc
and this implies the following theorem.

Theorem 8.35. If f : R? — [0, 0] is a (Bga, B)-measurable function then
(8.27) / F(@)dm(z) = / F(r w) do(w)ri—tdr.
Rd [0,00) X Sd—1
Let us now work out some integrals using Eq. (8.27).

Lemma 8.36. Let a > 0 and

Ii(a) == /e_“lw‘2dm(x).
Rd
Then I4(a) = (7/a)??.
Proof. By Tonelli’s theorem and induction,
I4(a) :/ e*aly‘Qe*“tzmd_l(dy) dt
Ri—1 xR
(8.28) = Ii-1(a)1(a) = I{(a).
So it suffices to compute:
Ir(a) = /e‘“lw‘2dm(x) = / e_“(“f"’wg)dajldxg.

R2 R2\{0}
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We now make the change of variables,
x1 =rcosf and x5 = rsinf for 0 <r < oo and 0 < 6 < 2.

In vector form this transform is

o= T(r0) = ( r cos 0 )

rsin 6

and the differential and the Jacobian determinant are given by

T'(r,0) = ( (S:I);g ;gosslge ) and det T"(r,0) = rcos® 6 + rsin® 0 = r.

Notice that T : (0,00) x (0,27) — R?\ ¢ where ¢ is the ray, ¢ := {(x,0): 2 > 0}
which is a m? — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function f : R? — [0, 00] we have

2m o5}
f(z)dz = / / f(rcosf,rsinf) rdrdd.
R2 o Jo

In particular,

[e%s) 27 3 [e’s) s
Ig((l):/ dr r/ do e :277/ re” " dr
0 0 0

M

_ M

. _ar? . e 2w

=27 lim re " dr =27 lim =— =7/a.
M—oo [ M—oco —2a 0

This shows that Iz(a) = 7/a and the result now follows from Eq. (8.28). m
Corollary 8.37. The surface area o(S%~1) of the unit sphere ST~ C R? is
2md/2
I'(d/2)

(8.29) o(84h =

where T" is the gamma function given by

(8.30) [(x) := / u® e vdr
0

Moreover, T'(1/2) = /m, I'(1) =1 and I'(z + 1) = 2I'(x) for x > 0.

Proof. We may alternatively compute I4(1) = 7%/2 using Theorem 8.35;

Id(l):/ dr o=t / do
0

gd—1
o 2

= O’(Sd_l)/ rd=le="" dr.
0

We simplify this last integral by making the change of variables u = 72 so that
r=u? and dr = %u_l/zdu. The result is

(8.31) = 3T(d/2).
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Collecting these observations implies that
1
T2 = I(1) = §J(Sd*1)1“(d/2)

which proves Eq. (8.29).
The computation of I'(1) is easy and is left to the reader. By Eq. (8.31),

I'(1/2) :2/000 e_rzdr:/_o; e dr
=I(1) =

The relation, I'(z + 1) = «I'(x) is the consequence of the following integration by

parts:
r 1) = —u T+l —:/ Tl —— e " )d
(z+1) /0 e tu " ; u 70 € u

= x/ u" e " du =z I'(x).
0
]

8.5. Regularity of Measures.

Definition 8.38. Suppose that £ is a collection of subsets of X, let &, denote
the collection of subsets of X which are finite or countable unions of sets from &.
Similarly let £ denote the collection of subsets of X which are finite or countable
intersections of sets from £. We also write £,5 = (£5); and &5, = (&5),, , ete.

Remark 8.39. Notice that if A is an algebra and C' = UC; and D = UD; with
C;, Dj € A,, then

CﬂD:Ui,j (ClﬂDJ) c A,
so that A, is closed under finite intersections.

The following theorem shows how recover a measure p on o(A) from its values
on an algebra A.

Theorem 8.40 (Regularity Theorem). Let A C P(X) be an algebra of sets, M =
o(A) and p : M — [0,00] be a measure on M which is o — finite on A. Then for
all A e M,

(8.32) w(A) =inf{u(B): AC Be€ A,}.
Moreover, if A € M and e > 0 are given, then there exists B € A, such that A C B
and w(B\ A) <e.

Proof. For A C X, define

pw (A)=inf{u(B): ACBe A,}.

We are trying to show p* = p on M. We will begin by first assuming that p is a
finite measure, i.e. u(X) < co.

Let

F={BeM:pu" (B)=uB)} ={BeM:u" (B)<pubB)}

It is clear that A C F, so the finite case will be finished by showing F is a monotone

class. Suppose B,, € F, B,, T B as n — oo and let € > 0 be given. Since pu*(B,) =
w1(By,) there exists A,, € A, such that B, C A,, and pu(4,) < u(Bn) +€27" ie.

(A \ By) < 27,
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Let A=U,A, € A,, then B C A and

WA\ B) = u(U, (A, \ B)) Z (A, \ B))

o0

i (A, \ Bpn)) 262_n:6.

n=1

Therefore,

1 (B) < u(A) < u(B) + ¢
and since € > 0 was arbitrary it follows that B € F.

Now suppose that B,, € F and B,, | B as n — 0o so that

w(B) | n(B) as n — .

As above choose A,, € A, such that B,, C A, and
0 < u(An) = p(Bn) = p(An \ Bn) <277

Combining the previous two equations shows that lim, . u(A,) = p(B). Since
p*(B) < p(A,) for all n, we conclude that p*(B) < u(B), i.e. that B € F.

Since F is a monotone class containing the algebra A, the monotone class theo-
rem asserts that

M=oc(A)CcFCcM
showing the F = M and hence that p* = p on M.
For the o — finite case, let X,, € A be sets such that u(X,) < co and X, T X as
n — o0. Let u,, be the finite measure on M defined by p,(A) := u(AN X,) for all
A € M. Suppose that € > 0 and A € M are given. By what we have just proved,
for all A € M, there exists B,, € A, such that A C B,, and

B ((Ba N Xa) \ (AN X)) = n(Ba \ 4) < 27
Notice that since X,, € A,, B, N X,, € A, and

B:=U;2, (B,NX,) €A,
Moreover, A C B and

p((Bn N Xn) \ (AN X5))

Mz

w(B\ A) < Z“ (BN X,)\ A) <

< Z 2" =
n=1

Since this implies that

3
I
—

m(A) < p(B) < p(A) + e
and e > 0 is arbitrary, this equation shows that Eq. (8.32) holds. m

Corollary 8.41. Let A C P(X) be an algebra of sets, M = o(A) and p : M —
[0, 00] be a measure on M which is o — finite on A. Then for all A € M and e >0
there exists B € As such that B C A and

w(A\ B) < e.

Furthermore, for any B € M there exists A € As, and C € Ays such that A C
B CC and p(C\ A) =0.
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Proof. By Theorem 8.40, there exist C' € A, such that A° C C and u(C'\ A%) <
€. Let B = C° C A and notice that B € As and that C\ A°=B°NA= A\ B, so
that

A\ B) = p(C\ A%) <.
Finally, given B € M, we may choose A4,, € As and C,, € A, such that A, C B C
C, and p(C,\B) < 1/n and u(B\ A,,) < 1/n. By replacing Ay by UM_, A,, and Cy

n=1

by NM_, C,,, we may assume that A,, T and C,, | as n increases. Let A = UA,, € As,
and C =NC, € A5, then A C B C C and

p(CN\NA) = uw(C\B)+ u(B\ A) < p(Co\ B) + p(B\ Ap)
<2/n—0asn— oo.
]

Corollary 8.42. Let A C P(X) be an algebra of sets, M = o(A) and p : M —
[0,00] be a measure on M which is o — finite on A. Then for every B € M such
that (B) < oo and € > 0 there exists D € A such that u(BAD) < e.

Proof. By Corollary 8.41, there exists C' € A, such B C C and u(C \ B) < e.
Now write C' = U2, C,, with C,, € A for each n. By replacing C,, by U}_,C}, € A
if necessary, we may assume that C,, T C' as n — oo. Since C,, \ B 1 C' \ B and
B\C, | B\C=0asn— ooand u(B\C1) < u(B) < 0o, we know that

lim u(Cp \ B) = up(C\ B) <eand lim u(B\C,)=uB\C)=0
Hence for n sufficiently large,
w(BAC,) = (W(Cn \ B) + n(B\ Cy) <.
Hence we are done by taking D = C,, € A for an n sufficiently large. m

Remark 8.43. We have to assume that u(B) < oo as the following example shows.
Let X =R, M = B, u =m, A be the algebra generated by half open intervals of
the form (a,b], and B = U2 ;(2n,2n+1]. It is easily checked that for every D € A,
that m(BAD) = co.

For Exercises 8.1 — 8.3 let 7 C P(X) be a topology, M = o(7) and p : M —
[0, 00) be a finite measure, i.e. u(X) < oo.
Exercise 8.1. Let
(8.33) F={AeM:pA)=inf{u(V):ACV er}}.

(1) Show F may be described as the collection of set A € M such that for all
€ > 0 there exists V' € 7 such that A C V and p(V \ 4) <e.
(2) Show F is a monotone class.

Exercise 8.2. Give an example of a topology 7 on X = {1,2} and a measure x on
M = o(7) such that F defined in Eq. (8.33) is not M.

Exercise 8.3. Suppose now 7 C P(X) is a topology with the property that to
every closed set C C X, there exists V,, € 7 such that V,, | C as n — oo. Let
A = A(7) be the algebra generated by .
(1) With the aid of Exercise 6.1, show that A C F. Therefore by exercise 8.1
and the monotone class theorem, F = M, i.e.
w(A) =inf{pu(V): ACVer}.
(Hint: Recall the structure of A from Exercise 6.1.)
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(2) Show this result is equivalent to following statement: for every e > 0 and
A € M there exist a closed set C and an open set V such that C C ACV
and p(V'\ C) < e. (Hint: Apply part 1. to both A and A€.)

Exercise 8.4 (Generalization to the o — finite case). Let 7 C P(X) be a topology
with the property that to every closed set F' C X, there exists V,, € 7 such that
Vo | Fasn — oo. Also let M = o(7) and p : M — [0, 0] be a measure which is
o — finite on 7.

(1) Show that for all e > 0 and A € M there exists an open set V € 7 and a
closed set F' such that F C ACV and p(V \ F) <e.

(2) Let F, denote the collection of subsets of X which may be written as a
countable union of closed sets. Use item 1. to show for all B € M, there
exists C' € 75 (75 is customarily written as Gs) and A € F, such that
ACBCCand u(C\A)=0.

Exercise 8.5 (Metric Space Examples). Suppose that (X, d) is a metric space and
T4 is the topology of d — open subsets of X. To each set F' C X and € > 0 let

F.={ze€ X :dpr(zr) < €} =UzecrB,(€) € 14.
Show that if F'is closed, then F, | F as € | 0 and in particular V,, := Fy/, € 74 are

open sets decreasing to F. Therefore the results of Exercises 8.3 and 8.4 apply to
measures on metric spaces with the Borel o — algebra, B = o(74).

Corollary 8.44. Let X C R"™ be an open set and B = Bx be the Borel o — algebra
on X equipped with the standard topology induced by open balls with respect to the
FEuclidean distance. Suppose that u : B — [0, 0] is a measure such that u(K) < oo
whenever K is a compact set.

(1) Then for all A € B and € > 0 there exist a closed set F' and an open set V

such that F CACV and p(V\ F) <e.
(2) If u(A) < o0, the set F in item 1. may be chosen to be compact.
(3) For all A € B we may compute pu(A) using

(8.34) w(A) =inf{u(V): ACV and V is open}

(8.35) =sup{u(K): K C A and K is compact}.
Proof. For k € N, let

(8.36) Ky ={reX:|z| <kanddx-(z)>1/k}.

Then Kj is a closed and bounded subset of R™ and hence compact. Moreover
K;TXask— o0 since!”

{r € X :|z| <kand dxe(x) > 1/k} C K}

and {z € X :|z| < k and dxe(z) > 1/k} T X as k — 00.This shows p is o — finite
on 7x and Item 1. follows from Exercises 8.4 and 8.5.

If p(A) <ooand FC ACV asinitem 1. Then Ky NF T F as k — oo and
therefore since (V) < oo, (VN KrNF) | p(V\ F) as k — co. Hence by choosing
k sufficiently large, u(V \ Ky N F) < € and we may replace F' by the compact set
F N K}, and item 1. still holds. This proves item 2.

Item 3. Item 1. easily implies that Eq. (8.34) holds and item 2. implies Eq.
(8.35) holds when p(A) < oo. So we need only check Eq. (8.35) when u(A) = co.

17In fact this is an equality, but we will not need this here.
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By Item 1. there is a closed set F' C A such that u(A\ F) < 1 and in particular
w(F) = oo. Since K,, N F 1 F, and K,, N F is compact, it follows that the right side
of Eq. (8.35) is infinite and hence equal to u(A). m

8.6. Exercises.

Exercise 8.6. Let (X;, M, u;) for j = 1,2,3 be o — finite measure spaces. Let
F:X1 X X2 X Xg — (X1 XXQ) XX3 be defined by
F((z1,22),23) = (1, T2, 73).
(1) Show F is (M1 ® M) ® M3, M1 ® My ® M3) — measurable and F~! is
(M1 R My @ Ms, (./\/11 X ./\/lz) ® Mg) — measurable. That is
F: ((X1 X XQ) X X3, (M1 ®M2) ®M3) — (Xl X Xo X X3, M1 ® Msy ®M3)

is a “measure theoretic isomorphism.”

(2) Let A == Fi [(1n @ p2) ® s, ie. M(A) = [(u1 ® p2) @ ps] (F~1(A)) for all
A e M;® My ® Ms. Then ) is the unique measure on M1 ® My ® M3z
such that

A(Ar x Az x Az) = pa (A1) p2(Az2)ps(As)
for all A; € M;. We will write A := 1 ® o ® 3.

(3) Let f: X1 x X3 x X3 — [0,00] be a (M ® My ® Ms, Bg) — measurable

function. Verify the identity,

/ fin=[ [ [ forsm)duinte)dus(en)dua o)
X1xXax X3 X3 J X2 J X

makes sense and is correct. Also show the identity holds for any one of the

six possible orderings of the iterated integrals.
Exercise 8.7. Prove the second assertion of Theorem 8.29. That is show m? is
the unique translation invariant measure on Bga such that m?((0,1]¢) = 1. Hint:

Look at the proof of Theorem 7.10.

Exercise 8.8. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1], M = By
be the Borel o — field on X, m be Lebesgue measure on [0,1] and v be counting
measure, v(A) = #(A). Finally let D = {(z,x) € X? : € X} be the diagonal in
X?2. Show

| [ o drying) # [ [ 1p@ydn@io
xJx xJx

by explicitly computing both sides of this equation.

Exercise 8.9. Folland Problem 2.48 on p. 69. (Fubini problem.)

Exercise 8.10. Folland Problem 2.50 on p. 69. (Note the M x Bg should be
M ® Bz in this problem.)

Exercise 8.11. Folland Problem 2.55 on p. 77. (Explicit integrations.)
Exercise 8.12. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm), g(z) =
N @dt for z € (0,a), show g € L1((0,a),dm) and

A " o) dz = Oa F(t)dt.
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Exercise 8.13. Show [/ |®2£|dm(z) = oo. So 2L ¢ [1([0,00),m) and
Jo7 222 dm(x) is not defined as a Lebesgue integral.

Exercise 8.14. Folland Problem 2.57 on p. 77.

Exercise 8.15. Folland Problem 2.58 on p. 77.

Exercise 8.16. Folland Problem 2.60 on p. 77. Properties of I' — functions.
Exercise 8.17. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 8.18. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on S” L.

Exercise 8.19. Folland Problem 2.64 on p. 80. On the integrability of |z|* [log |||’
for x near 0 and z near co in R™.
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9. LP-SPACES

Let (X, M, 1) be a measure space and for 0 < p < oo and a measurable function
f: X —>Clet

(9.1) 1£ll = ( / FIPdp) .
When p = oo, let
(9.2) 1flloc = inf {a > 0: pu(|f] > a) = 0}

For 0 < p < o0, let
LP(X, M,p) ={f: X — C: f is measurable and || f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g|, =0 iff f ~ g and if f ~ g then
I fll, = llgllp- In general we will (by abuse of notation) use f to denote both the
function f and the equivalence class containing f.

Remark 9.1. Suppose that ||f|lcc < M, then for all a > M, u(|f] > a) = 0 and
therefore p(|f| > M) = lim, oo pt(|f| > M +1/n) =0, ie. |f(z)] < M for p -
a.e. x. Conversely, if |[f| < M a.e. and a > M then pu(|f| > a) = 0 and hence
I/ llco < M. This leads to the identity:

lflloc =inf{a >0:|f(x)| < a for p—a.e. x}.

Theorem 9.2 (Holder’s inequality). Suppose that 1 < p < oo and q := ;ﬁ'—l, or
1

equivalently p~' + ¢ ' = 1. If f and g are measurable functions then

(9:3) 1fglle < 1F1lp - llgllg-

Assuming p € (1,00) and ||f|lp - |g9llq < o0, equality holds in Eq. (9.3) iff | f|” and
lg|? are linearly dependent as elements of L'. If we further assume that || f|, and
llgllq are positive then equality holds in Eq. (9.3) iff

(9-4) 911 F15 = Nlgliglf1P a-e.

Proof. The cases where || f||; = 0 or oo or ||g||, = 0 or oo are easy to deal with
and are left to the reader. So we will now assume that 0 < || fl|4,[lgll, < co. Let
s=1fl/lIfll, and t = |g|/|lgllq then Lemma 2.27 implies

p q
ifgl 1 1fP 1 gl

(9.5) <
Ifllpllglle = 2 A1 a llgll
with equality iff |g/llgllsl = IFP7/IF15" = 1P/ 1R, Lee lallf1 =
llgllé[f|P. Integrating Eq. (9.5) implies
1 1
ol 1,1,
Ifllpllglly — p

with equality iff Eq. (9.4) holds. The proof is finished since it is easily checked that
equality holds in Eq. (9.3) when |f|” = c|g|? of |g|? = c|f[" for some constant c. ®
The following corollary is an easy extension of Holder’s inequality.

Corollary 9.3. Suppose that f; : X — C are measurable functions fori=1,...,n
and p1,...,pn and r are positive numbers such that Z;;l pi_1 =7~ then

n n n
I17 <TLWsll, where S pit=r"
r i=1 =1
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Proof. To prove this inequality, start with n = 2, then for any p € [1, o0,

1 fll” = / Frarn < |71, o

P
where p* = ﬁ is the conjugate exponent. Let p; = pr and ps = p*r so that
pfl + Py ! = =1 as desired. Then the previous equation states that

£l < I1f1l,, lgll,,

as desired. The general case is now proved by induction. Indeed,
n+1

n
H i H Ji fnt1
i=1 i=1
where ¢! +p;i1 = r~!. Since S p;l =g

hypothesis to conclude
n n
11 <ITns,,
=1 |lg =1

which combined with the previous displayed equation proves the generalized form
of Holder’s inequality. m

n

117

i=1

= < I frtallp, .,

q

T T

1 we may now use the induction

Theorem 9.4 (Minkowski’s Inequality). If 1 < p < oo and f,g € L? then
(9.6) 1f =+ gllp < £l + llgllp-
Moreover if p < 0o, then equality holds in this inequality iff
sgn(f) = sgn(g) whenp =1 and
f=cg org=cf for some c >0 when p > 1.

Proof. When p = oo, |f| < ||f]l,, a-e. and |g| < ||g]/,, a.e. so that [f+g| <
1+ 19] <1 fllo + 9]l a-e. and therefore

1f + 9lloe < 1flloc + 191l -
When p < o0,

[f + 9" < 2max (|f],[g])" = 2" max (|f", [g") < 2" (|f" + l9]") ,
1+ gl <22 (IF1I5 + llgllp) < oo

||f+g|\1=/X|f+g\du§/x\f|du+/xlgldu

with equality iff |f| 4 |g| = |f + g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p € (1,00), we may assume || f+g||p, || f[|, and [|g||, are all positive since
otherwise the theorem is easily verified. Now

[f +al” = 1f +gllf +gP7 < (1f| +lgDIf + g~
with equality iff sgn(f) = sgn(g). Integrating this equation and applying Holder’s
inequality with ¢ = p/(p — 1) gives

/ 1+ glPdp < / LI+ g tdu+ / gl 1/ + gIPdu
X X X

(9.7) < (£ s+ Ngllp) 1 + 91" g

In case p =1,
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with equality iff
sgn(f) = sgn(g) and

SN f gl g\’
) (i) - treoe - () =
Therefore
(9.9 7+ ol = [ (1 +ap™du= [ 1+ gPd
Combining Egs. (9.7) and (9.9) implies
(9.10) 17+ gl < IFlIl1F + gl + llallpllf + gllz/?

with equality iff Eq. (9.8) holds which happens iff f = ¢g a.e. with ¢ > 0.. Solving
for || f + g[l, in Eq. (9.10) gives Eq. (9.6). m
The next theorem gives another example of using Hoélder’s inequality

Theorem 9.5. Suppose that (X, M, ) and (Y,N,v) be o-finite measure spaces,
pe[l,o0],g=p/(p—1) and k: X XY — C be a M QN - measurable function.
Assume there exist finite constants C and Cs such that

/ |k(z,y)| du(x) < Cy forv a.e. y and
X
/Y |k(z,y)| dv(y) < Cy for u a.e. x.
If f € LP(v), then
/\kxy y)| dv(y) < oo for p — a.e. x,
x— Kf(x) = [k(z,y)f(y)dv(y) € LP (1) and

1
(9.11) 1K Fll oy < CPCY N F oo

Proof. Suppose p € (1,00) to begin with and let ¢ = p/(p—1), then by Holder’s
inequality,

/wmy )] dv(y) /Ikxyl”qlk(xy)ll/plf( )| dv(y)

<[/ alan] v [ e aw) v

</t | [ el av)] "

Therefore, using Tonelli’s theorem,

| sl ch;’/q [ vt [ vty el
eyt [ av) f)F [ duto) k(ap)

<cple, /X () |F @) = Gy A1
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From this it follows that © — K f(z) := [k(z,y)f(y)dv(y) € LP(p) and that Eq.
(9.11) holds.

Similarly, if p = oo,

/\kzmy W) dv(y) < 1]l /IknydV()<Cz||f|| for 1~ ae. .

so that | K fll ey < C2llfll L= - I p=1, then

/X dpu(z) /y duy) |k(z,y) ()] = /Y dv(y) | F ()] /X dyu(z) [K(z, y)|

<C [ a1
Wthh ShOWS ||Kf||L1(F") S Cl Hf”Ll(z/) .
9.1. Jensen’s Inequality.

Definition 9.6. A function ¢ : (a,b) — R is convex if for all a < zg < 1 < b and
t €10,1] ¢(zy) <tp(x1) + (1 —t)p(xo) where zy = txy + (1 — t)zo.

The following Proposition is clearly motivated by Figure 17.

S

FIGURE 17. A convex function along with two cords corresponding
toxg=—2and x;1 =4 and o = —5 and z; = —2.

Proposition 9.7. Suppose ¢ : (a,b) — R is a convex function, then
(1) For all u,v,w,z € (a,b) such that u < z, w € [u,z) and v € (u, 2],

(9.12) Pv) = d(w) _ 9(z) — d(w)

vV —Uu - zZ—w

(2) For each ¢ € (a,b), the right and left sided derivatives ¢!, (c) ezists in R
and if a < u < v < b, then ¢/, (u) < ¢'_(v) < ¢, (v).
(3) The function ¢ is continuous.

(4) For allt € (a,b) and B € [¢_(t), ¢! ()], ¢(z) > o(t) + Bz —t) for all
€ (a,b). In particular,

o(x) > o(t) + ¢ (t)(z —t) for all z,t € (a,b).
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Proof. 1a) Suppose first that v < v = w < z, in which case Eq. (9.12) is
equivalent to

(@(v) = d(w)) (z = v) < (¢(2) = 6(v)) (v —u)

which after solving for ¢(v) is equivalent to the following equations holding:
B(v) < 6(2) 2=

But this last equation states that ¢(v) < ¢(2)t + ¢(u) (1 —t) where t = == and
v =tz + (1 — t)u and hence is valid by the definition of ¢ being convex.
1b) Now assume u = w < v < z, in which case Eq. (9.12) is equivalent to

(¢(v) = d(w)) (z — u) < ($(2) = ¢(u)) (v —u)

which after solving for ¢(v) is equivalent to

¢(v) (z —u) < B(2) (v = u) + ¢(u) (2 —v)

which is equivalent to

U_Z+¢(U)Z_U.

Z—U

v—Uu zZ—0

+ ¢(u)

z—u z—u

p(v) < o(2)

Again this equation is valid by the convexity of ¢.
lc) u < w < v = z, in which case Eq. (9.12) is equivalent to

(¢(2) — ¢(u)) (z —w) < (¢(2) — d(w)) (z — u)
and this is equivalent to the inequality,
p(w) < ¢(2)

which again is true by the convexity of ¢.
1) General case. If u < w < v < z, then by la-1c)

w—u zZ—w

+ ¢(u)

Z—U Z—U

6(2) = 0(w) | B(0) = ow) | 9(v) — 6(w)
andifu<v<w<z
¢(2) — d(w) > P(w) — $(v) > $(w) — é(u)

We have now taken care of all possible cases.

2) On the set a < w < z < b, Eq. (9.12) shows that (¢(z) — ¢(w)) / (z —w) is a
decreasing function in w and an increasing function in z and therefore ¢/, (x) exists
for all z € (a,b). Also from Eq. (9.12) we learn that

(9.13) ¢ (u) < Wﬁ’or ala<u<w<z<b,
(9.14) M§¢L(z)f0ralla<u<v<z<b,

V=1
and letting w T z in the first equation also implies that

¢\ (u) < ¢ () foralla <u <z <b.

/

The inequality, ¢’ (z) < ¢/, (2), is also an easy consequence of Eq. (9.12).
3) Since ¢(z) has both left and right finite derivatives, it follows that ¢ is con-
tinuous. (For an alternative proof, see Rudin.)
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4) Given t, let 3 € [¢/_(t), ¢, (t)], then by Eqs. (9.13) and (9.14),

Y AUEY EYACEL U

forall a < u <t < z<b. Item 4. now follows. m

Corollary 9.8. Suppose ¢ : (a,b) — R is differential then ¢ is convex iff ¢’ is non
decreasing. In particular if ¢ € C?(a,b) then ¢ is convex iff ¢ > 0.

Proof. By Proposition 9.7, if ¢ is convex then ¢’ is non-decreasing. Conversely
if ¢’ is increasing then by the mean value theorem,

$@) = dle) _ ¢’ (&1) for some &; € (¢, z1)
xrp —C
and
9(0) ~dlzo) _ ¢'(&2) for some & € (20, ¢).
C— X
Hence
Blar) — 0(e) _ 6(e) — B(zo)
xr1—¢C - c— o
for all zp < ¢ < 1. Solving this inequality for ¢(c) gives
CcC— X Ir1 —C
o)< — - $lon) + - ¢(zo)

showing ¢ is convex. ®

Example 9.9. The functions exp(x) and —log(z) are convex and z? is convex iff
p>1.

Theorem 9.10 (Jensen’s Inequality). Suppose that (X, M, p) is a probability space,
i.e. u is a positive measure and u(X) = 1. Also suppose that f € L*(u), f: X —
(a,b), and ¢ : (a,b) — R is a convex function. Then

¢( /. fdu) < [ ot

where if pof ¢ LY(u), then ¢o f is integrable in the extended sense and Jx o(f)dpu =
00.

Proof. Let t = [, fdu € (a,b) and let 3 € R be such that ¢(s) —¢(t) > B(s—t)
for all s € (a,b). Then integrating the inequality, ¢(f) — ¢(¢t) > B(f — t), implies

that
0</¢ Y — (1) /¢ )i — ¢/fdu

Moreover, if ¢(f) is not integrable, then ¢(f) > ng( — t) which shows that
negative part of ¢(f) is integrable. Therefore, [ ¢ d,u 00 in this case. m

Example 9.11. The convex functions in Example 9.9 lead to the following inequal-
ities,

(9.15) exp </X fdu> g/Xefdu,
| tost11)d < tog ( /. IfIdu) < log ( /. fdu)
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‘/deupﬁ</X|f|du>p§/x|f|pdlu_

The last equation may also easily be derived using Holder’s inequality. As a special
case of the first equation, we get another proof of Lemma 2.27. Indeed, more
generally, suppose p;,s; > 0fori=1,2,...,nand > ., 1% =1, then

and for p > 1,

n
n ) n 1y gPe 1 P S
(9.16) S1... 8y = eXim Wi = gz M8 < E Zelnsit = E i
Y23 ‘ Pi
= =1

where the inequality follows from Eq. (9.15) with p = 377, --4;,. Of course Eq.
(9.16) may be proved directly by directly using the convexity of the exponential

function.

9.2. Modes of Convergence. As usual let (X, M, u) be a fixed measure space
and let {f,} be a sequence of measurable functions on X. Also let f: X — C be
a measurable function. We have the following notions of convergence and Cauchy
sequences.

Definition 9.12. (1) fn — f a.e. if thereis a set E € M such that u(E°) =0
and lim, o, 1gf, = 1gf.
(2) fn — fin p—measure if lim,, oo p(|fn — f| > €) =0 for all e > 0. We will

abbreviate this by saying f, — f in L° or by f,, & f.
(3) fn— finLPiff f € LP and f,, € LP for all n, and lim,, . [ | f,— f|Pdp = 0.

Definition 9.13. (1) {fn} is a.e. Cauchy if there is a set E € M such that
w(E) =0 and{lg f,} is a pointwise Cauchy sequences.
(2) {f.}is Cauchy in p — measure (or LY — Cauchy) if limy, n— oo (| fr — fin| >
€) =0 for all € > 0.
(3) {fn}is Cauchy in LP if limy, p—oo [ |fr — fin|Pdp = 0.

Lemma 9.14 (Chebyshev’s inequality again). Let p € [1,00) and f € LP, then
1
p(lfl =€ < _p”ng for all € > 0.
€

In particular if { f} C LP is LP — convergent (Cauchy) then {f,} is also convergent
(Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.12),
1 1
n(f1 20 =p(rP =) < 5 [ 17 du= 101
and therefore if {f,} is LP — Cauchy, then

1
M(‘f’n - fm‘ Z 6) S é_prn - mep — 0 as m,n — o0

showing {f,} is L° — Cauchy. A similar argument holds for the L? — convergent
case. W

o0
Lemma 9.15. Suppose a, € C and |apt1 — an| < €, and > €, < co. Then
n=1

o0
lim a, =a € C exists and |a — an| < 5, = Y €.

n— oo k—n
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F1GURE 18. Modes of convergence examples. In picture 1. f,, — 0
a.e., fn - 01in L', f, 5 0. In picture 2. f, — 0 a.e., f, - 0 in
L', f, % 0. In picture 3., f, — 0 a.e., f, — 0 but f, - 0 in L.

m

In picture 4., f, — 0in L', f, - 0 a.e., and f, = 0.

Proof. Let m > n then

m—1

> (ag+1 — ax)

k=n

m—1 o]
< S ek —ap| < D) e =0, -

(9.17) |am —an| =
k=n k=n

S0 [am — an| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo in
(9.17) to find |a — an| < 0,,. W

Theorem 9.16. Suppose {f,} is L°-Cauchy. Then there evists a subsequence

nw
9; = fn, of {fu} such that limg; = f exists a.e. and f, — f as n — oo.
Moreover if g is a measurable function such that fy, -4 g asn — oo, then f =g

a.e.

Proof. Let ¢, > 0 such that > €, < oo (¢, = 27" would do) and set d,, =
n=1

[ee]

>~ €x. Choose g; = fy,; such that {n;} is a subsequence of N and

k=n

p{lgj+1 — gi1 > €;}) <¢;.
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Let Ej = {|gj+1 — gj| > €},

o0 o0
Fv= Bi= U g1 — g5l > ¢}
j=N j=N

and
E= ﬂ Fy = ﬂ U E; ={lgj+1 — gj] > ¢; i.0.}.
N=1 N=1j=N
Then p(E) = 0 since

WE) <Y u(E;) <> e =06y —0as N — oo
j=N j=N

For z ¢ Fy, |gj+1(x) — gj(z)] < ¢; for all j > N and by Lemma 9.15, f(z) =
lim g;(z) exists and | f(z)—g;(z)| <, for all j > N. Therefore, lim g,(z) = f(x)
j—oo j—oo

exists for all x ¢ E. Moreover, {z : |f(z) — f;(z)| > §;} C Fj for all j > N and
hence
w(|f — gl > 6;) < pu(F;) <6 — 0as j— oo.

Therefore g; £ fas j — .

Since
{fn = fI1>e={f—9;+9; — ful > €}
CAlf — g5l > €e/2 U {lgj — ful > €/2},
n{[fn = fI>€}) < p{lf —g;1 > €/2}) + nullg; — fal > €/2)
and

p{lfa = fI>€}) < jligsupu(|gj — ful > €/2) = 0 as n — oo.

If also f, 4 g as n — 00, then arguing as above

pllf =gl > €) < p(lf = ful > €/2}) + pllg = ful > €/2) = 0 as n — oo

Hence
pllf =gl > 0) = w(UEA {1 gl > ~1) < S plf — gl > ) =0,
n=1

ie. f=gae ®
Corollary 9.17 (Dominated Convergence Theorem). Suppose {fn}, {gn}, and g
are in L' and f € L° are functions such that
|fn| < gn ae., fpn L’fv In L)ga and /gn_)/g asn — oo.
Then f € L' and lim,—o ||f = full, = 0, ice. fn, — f in L. In particular

Proof. First notice that |f| < g a.e. and hence f € L! since g € L'. To see that
|f] < g, use Theorem 9.16 to find subsequences {f,, } and {gn,} of {f.} and {g,}
respectively which are almost everywhere convergent. Then

‘fl = kli_)l?élo |fnk| < kh—g)lo gn;, = g a.€.
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If (for sake of contradiction) lim, o ||f — fnll; # O there exists € > 0 and a
subsequence {fp,} of {fn} such that

(9.18) /|f — fn,| > € for all k.

Using Theorem 9.16 again, we may assume (by passing to a further subsequences
if necessary) that f,, — f and g,, — ¢ almost everywhere. Noting, |f — fn,| <
9+ 9n, — 2g and [ (9 + gn,) — | 2g, an application of the dominated convergence
Theorem 7.38 implies limy, . [ |f — fn,| = 0 which contradicts Eq. (9.18). m

Exercise 9.1 (Fatou’s Lemma). If f, > 0 and f, — f in measure, then [ f <
liminfn_,ooffn.

Theorem 9.18 (Egoroff’s Theorem). Suppose u(X) < oo and f,, — f a.e. Then
for all € > 0 there exists E € M such that u(E) < € and f, — f uniformly on E°.
In particular f, = f as n — cc.

Proof. Let f, — f a.e. Then p({|fn, — f| > £ i.0. n}) =0 for all k > 0, i.e.

1 = 1
Jim | J A= 11> 23 =0 () Ul —f1> 2] =0

n>N N=1n>N
Let B, :== | {|fn — f| > £} and choose an increasing sequence {Nj};-; such
n> Ny

that pu(Fy) < 27" for all k. Setting E := UEy, u(E) <>, 2 F =candifz ¢ E,
then |f, — f| < % for all n > N, and all k. That is f,, — f uniformly on E¢. m

Exercise 9.2. Show that Egoroff’s Theorem remains valid when the assumption
(X)) < oo is replaced by the assumption that |f,| < g € L! for all n.

9.3. Completeness of LP — spaces.

Theorem 9.19. Let ||| be as defined in Eq. (9.2), then (L>°(X, M, u),|||l.o) s
a Banach space. A sequence {f,},, C L™ converges to f € L* iff there exists
E € M such that u(E) = 0 and f,, — [ uniformly on E°. Moreover, bounded
simple functions are dense in L.

Proof. By Minkowski’s Theorem 9.4, ||-|| satisfies the triangle inequality. The
reader may easily check the remaining conditions that ensure ||| is a norm.

Suppose that {f,} —; C L* is a sequence such f,, — f € L™=, ie. ||f — fal . —
0 as n — oo. Then for all k € N, there exists N < oo such that

1 (| f = fal > k") =0 for all n > Nj.
Let
E= Uzozl Un>nN, {|f - fn' > k_l} .

Then pu(E) = 0 and for z € E¢, |f(z) — fo(z)| < k7! for all n > Nj. This shows
that f,, — f uniformly on E¢. Conversely, if there exists F € M such that u(F) =0
and f, — f uniformly on E° then for any € > 0,

p(f = fulZ€) =pn{lf = fol Z e} NE) =0

for all n sufficiently large. That is to say limsup,,_, . ||f — fall,, < € for all e > 0.
The density of simple functions follows from the approximation Theorem 7.12.



ANALYSIS TOOLS WITH APPLICATIONS 163

So the last item to prove is the completeness of L*>° for which we will use Theorem
3.66. Suppose that {f,},-, C L> is a sequence such that Y >~ || fn]|, < 0o. Let
M, = | fnllo s En = {|fnul > My}, and E := U2 | E,, so that u(£) = 0. Then

Z sup |fn(x)] < ZM" < 0o
n=1 zeEe n=1

which shows that Sy (z) = 25:1 [n(2) converges uniformly to S(z) :=>"°7; fu(z)

on E¢ ie. lim, o [|S — Syl =0.

Alternatively, suppose €y, = ||fm — fnlloo — 0 as m,n — oo. Let E,,,, =
{Ifn — fm| > €mn}tand E := UE,, ,, then u(E) = 0 and || f, — anEFu =é€mn — 0
as m,n — oo. Therefore, f :=lim,,_ f, exists on £° and the limit is uniform on
E¢. Letting f = limsup,,_,, fn, it then follows that || f,, — f|l., = 0asm — oco. m

Theorem 9.20 (Completeness of LP(u)). For 1 <p < oo, LP(u) equipped with the
LP — norm, |||, (see Eq. (9.1)), is a Banach space.

Proof. By Minkowski’s Theorem 9.4, ||-||, satisfies the triangle inequality. As
above the reader may easily check the remaining conditions that ensure |-, is a
norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the case
p = oo being done in Theorem 9.19. By Chebyshev’s inequality (Lemma 9.14),
{fn} is L%-Cauchy (i.e. Cauchy in measure) and by Theorem 9.16 there exists a
subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s Lemma,

llg; = flIp = /klijolo inf |g; — gulPdp < klggoinf/ |95 — gk|"dp

= lim inf|/g; — gx|h — 0 as j — oc.
k—o0

In particular, |[fll, < llg; — fllp + llgjllp < oo so the f € L” and g, L, f. The
proof is finished because,

1fr = Fllp < 11fn = gillp + g5 = fllp = 0 as j,n — oo

]

The LP(1) — norm controls two types of behaviors of f, namely the “behavior at
infinity” and the behavior of local singularities. So in particular, if f is blows up at
a point g € X, then locally near z it is harder for f to be in LP(u) as p increases.
On the other hand a function f € LP(u) is allowed to decay at “infinity” slower and
slower as p increases. With these insights in mind, we should not in general expect
LP(p) C L9(pw) or L(u) C LP(u). However, there are two notable exceptions. (1) If
1(X) < oo, then there is no behavior at infinity to worry about and L9 () C LP(u)
for all ¢ < p as is shown in Corollary 9.21 below. (2) If u is counting measure, i.e.
u(A) = #(A), then all functions in LP(u) for any p can not blow up on a set of
positive measure, so there are no local singularities. In this case LP(u) C L9(u) for
all ¢ < p, see Corollary 9.25 below.

Corollary 9.21. If u(X) < oo, then LP(u) C Li(p) for all0 < p < ¢ < o0 and
the inclusion map is bounded.

Proof. Choose a € [1,00] such that

1 1
= -+ - i.e.a:ﬂ

1
p a q q—p
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Then by Corollary 9.3,

11, = 17 1l < 11l - I1Llla = 1O £lly = n(XO)F D) 1]l

The reader may easily check this final formula is correct even when ¢ = oo provided
we interpret 1/p — 1/0c0 to be 1/p. m

Proposition 9.22. Suppose that 0 < p < g < r < o0, then LY C LP + L", i.e.
every function f € L1 may be written as f = g+ h with g € LP and h € L". For
1<p<r<ooandfe&LP+L"let

11 = inf {ligl, + Il : f =g +h}.

Then (LP 4+ L, ||-||) 4s a Banach space and the inclusion map from L7 to L + L"
is bounded; in fact || f|| < 2|/ f[l, for all f € L.

Proof. Let M > 0, then the local singularities of f are contained in the set
E :={|f| > M} and the behavior of f at “infinity” is solely determined by f on
E°. Hence let g = flg and h = flge so that f = g + h. By our earlier discussion
we expect that g € LP and h € L" and this is the case since,

/
lgll” = ||f1f|>M||§:/f|p1f>M:Mp/‘M

< [

IIhI:—Hf1|fSMH:_/|fT1|fSM_MT/‘£

o

Moreover this shows

p
Ligi>m

q
Lo < MPTOY|fIE < oo

and

T
Lipi<m

q
Lgj<ar S MO FIIT < o0

£l < M2 || f 9P 4+ M=ol | 19T
Taking M = || f||, then gives

1Al < (A9 X |

and then taking A = 1 shows || f|| < 2||f]|,. The the proof that (L + L", [|-||) is a
Banach space is left as Exercise 9.7 to the reader. m

Corollary 9.23. Suppose that 0 <p < g <r < oo, then LPNL" C LY and

PRTIFTE
(9.19) 1Al < LI T
where A € (0,1) is determined so that
1 A 1-=2A
—==—+ with A = p/q if r = .
q p r

Further assume 1 <p < qg<r <oo, and for f € LPNL" let

1A= 111, + 1AL
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Then (LP N L™, ||-|) is a Banach space and the inclusion map of LP N L" into LY is
bounded, in fact

(9.20) 11, < maxx (A1, (1 =271 (1, + 171, )
where
1 1
i v _plr—9
I

The heuristic explanation of this corollary is that if f € LPNL", then f has local
singularities no worse than an L" function and behavior at infinity no worse than
an LP function. Hence f € LY for any q between p and r.

Proof. Let A\ be determined as above, a = p/\ and b = r/(1 — A), then by
Corollary 9.3,

71, = U =2 < (|, =], = s e

It is easily checked that ||-|| is a norm on LP N L". To show this space is complete,
suppose that {f,} C LPNL" is a ||-|| — Cauchy sequence. Then {f,} is both LP and
L" — Cauchy. Hence there exist f € LP and g € L" such that lim,, oo [[f — full, =0
and lim,, oo |lg — full, = 0. By Chebyshev’s inequality (Lemma 9.14) f, — f and
fn — g in measure and therefore by Theorem 9.16, f = g a.e. It now is clear that
lim, oo ||f — frll = 0. The estimate in Eq. (9.20) is left as Exercise 9.6 to the
reader. m

Remark 9.24. Let p = p1, r = po and for A € (0,1) let p) be defined by

1 1—A A
(9.21) — = + —.
P Do P1

Combining Proposition 9.22 and Corollary 9.23 gives
LPoNLPL C LP» C LPo + P
and Eq. (9.19) becomes
=X £
1y < W1y = A1, -

Corollary 9.25. Suppose now that p is counting measure on X. Then LP(u) C
L9(31) for all 0 < p < g < o0 and |[f],, < |f1],-

Proof. Suppose that 0 < p < ¢ = oo, then

12 = sup {|f(@) sz € X3 < D7 F @)1 = |I£1I},

zeX

Le. [|flloo < [I£l, for all 0 < p < oo. For 0 < p < g < 00, apply Corollary 9.23 with
r = 00 to find

I£Il, < UFIE NI < WA 1AL = £, -
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9.3.1. Summary:
(1) Since u(|f] > €) < e P ||f||} it follows that LP — convergence implies L° —
convergence.
(2) L° - convergence implies almost everywhere convergence for some subse-
quence.
(3) If u(X) < oo, then L7 C LP for all p < ¢ in fact
1

171, < ONE=3 1y,

i.e. L1 — convergence implies LP — convergence.
(4) LPo N LPr C LP» C LPo 4 LP* where
I 1-X A

P Do P1 '

(5) 7 Ct?if p <gq.Infact [|f][, < [|f][, in this case. To prove this write
1A 1-A
LA -y

qg P o0
then using || f||, < [ f]l, for all p,

1, < WA AN < UFI IFI, = 11, -

(6) If u(X) < oo then almost everywhere convergence implies LY — convergence.

i

9.4. Converse of Hoélder’s Inequality. Throughout this section we assume
(X, M, p) is a o-finite measure space, ¢ € [1,00] and p € [1,00] are conjugate
exponents, i.e. p~' +¢ ' =1. For g € L4, let ¢, € (LP)* be given by

(9.22) 60(f) = / of du.

By Holder’s inequality

(9.23) 16(F)] < / o f\du < lgllal 1l
which implies that

(9.24) égll Ly = sup{log ()] : [I£1l, = 1} < [lgllg-

Proposition 9.26 (Converse of Holder’s Inequality). Let (X, M, pu) be a o-finite
measure space and 1 < p < oo as above. For all g € L,

(9.25) lolle = 6Nz = sup {|og(1)] - 171, =1}

and for any measurable function g : X — C,

(9.26) ol =suw{ [ 1a £ 11, =1 ana £ > 0f
X

Proof. We begin by proving Eq. (9.25). Assume first that ¢ < oo so p > 1.
Then

164(f)] = \ [t au] < [1ar1du< lallol 71y

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 9.2, when |f|” = ¢|g|? for some constant
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¢> 0. So let f :=sgn(g)|g|?? which for p = oo is to be interpreted as f = sgn(g),
ie. |g|q/OO =1
When p = o,

|¢g(f)|=/ gsen(g)dp = llgll sy = gl 11l

which shows that |[¢g||(ze)+ > [|g]l1. If p < oo, then

1l = / S = / 1917 = lglle

while
00(5) = [ atdn= [ lglll"/7dn = / gltdn = gl

Hence

9N _ _llgllg q(1-

b glls" ) = gl

Il gl

This shows that ||¢g]| > ||g|| which combined with Eq. (9.24) implies Eq. (9.25).
The last case to consider is p = 1 and ¢ = oo. Let M := ||g|lcoc and choose

X, € M such that X,, T X as n — oo and p(X,) < oo for all n. For any
e>0, u(lgl >M—¢€ >0and X, N{|lg| > M —¢€} T {lg| > M — €}. Therefore,
w(X, N{lg| > M — €}) > 0 for n sufficiently large. Let
[ =sgn(9)lx,n{g/>M—e}s
then
£l = m(Xn 0 {lg] = M — €}) € (0,00)

and

— n du = d
169(F)] /X g T /X N
> (M — (X, 1 {Jg] = M — e}) = (M — )| ]|

Since € > 0 is arbitrary, it follows from this equation that ||¢y||(L1)« > M = ||g]|oc-

We now will prove Eq. (9.26). The key new point is that we no longer are
assuming that g € L9. Let M (g) denote the right member in Eq. (9.26) and set
In = 1x,n{lg/<n}9- Then |g,| T |g] as n — oo and it is clear that M (g, ) is increasing
in n. Therefore using Lemma 2.10 and the monotone convergence theorem,

Jim M (gn) = sup M(gn) = sup sup {/X |9n| fdp || f]l, =1 and f = 0}

= sup {Sup/X lgn| fdp < || f]l, =1 and f > 0}

sup{ lim / gn| fdp: [|f]l, =1 and f > O}
n—oo X

—sup{ [ lal e 171, = 1 and £ > 0} = br(g),

Since gn, € L7 for all n and M(gn) = ||@g, || 1)~ (as you should verify), it fol-
lows from Eq. (9.25) that M(gn) = |[|gnll,- When ¢ < oo, by the monotone
convergence theorem, and when ¢ = oo, directly from the definitions, one learns
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that limp, oo [|gnll, = [l9]l, - Combining this fact with lim, ..o M(gn) = M(g) just
proved shows M(g) = [[g[|,. ®

As an application we can derive a sweeping generalization of Minkowski’s inequal-
ity. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough discussion of
complex interpolation theory.)

Theorem 9.27 (Minkowski’s Inequality for Integrals). Let (X, M, u) and (Y,N,v)
be o-finite measure spaces and 1 < p < oco. If f is a M @ N measurable function,
then y — || f(;y)llLr(u) is measurable and

(1) if f is a positive M @ N measurable function, then

(9.27) || /Y S )@ < /Y 17 Co ) oy do(w).

(2) If f : XxY — C is a MRN measurable function and [y || f(-,y)||rmdv(y) <
oo then

(a’) fO’I",LL - a.c T, f(xv ) € Ll(y)a
(b) the p —a.e. defined function, x — [, f(z,y)dv(y), is in LP(u) and
(c) the bound in Eq. (9.27) holds.

Proof. For p € [1,00], let F,(y) := || f(-,9)|lr(u)- If p € [1,00)

B = 6ol = [ 15w du)

is a measurable function on Y by Fubini’s theorem. To see that F,, is measurable,
let X,, € M such that X,, T X and pu(X,,) < oo for all n. Then by Exercise 9.5,

Foo(y) = lim lim [[f(,y)1x, |20

which shows that Fo, is (Y, N)) — measurable as well. This shows that integral on
the right side of Eq. (9.27) is well defined.

Now suppose that f > 0, ¢ = p/(p — 1)and g € L9(p) such that g > 0 and
lgll ra(u) = 1. Then by Tonelli’s theorem and Holder’s inequality,

[ [ 10 va) stwrinte = [ avts) [ aorsta.mato
<ol [ 15Cldvty)

_ /Y £ G o oy dv ().

Therefore by Proposition 9.26,

I [ st =swf [ | [ vt st - Lol =1 and g > 0}
< [ 15 Clrivty)

proving Eq. (9.27) in this case.
Now let f: X XY — C be as in item 2) of the theorem. Applying the first part
of the theorem to |f| shows

/ |f(z,y)| dv(y) < oo for pu—a.e. x,
Y
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Le. f(z,-) € L'(v) for the p —a.c. z. Since | [, f(z,y)dv(y)| < [ |f(z, )| dv(y) it
follows by item 1) that

H /Y S @) g < | /Y PO dv@) oy < /Y £ oy ().

Hence the function, z € X — [,, f(x,y)dv(y), is in LP(u) and the bound in Eq.
(9.27) holds. m

Here is an application of Minkowski’s inequality for integrals.

Theorem 9.28 (Theorem 6.20 in Folland). Suppose that k : (0,00) x (0,00) — C
is a measurable function such that k is homogenous of degree —1, i.e. k(A Az, \y) =
A k(x,y) for all X > 0. If

Cp:= / |k(z,1)| 2~ YPdz < oo
0

for some p € [1,00], then for f € LP((0,00),m), k(z,-)f(-) € LP((0,00),m) for m
— a.e. x Moreover, the m — a.e. defined function
(9:29) (KD = [ ke f)dy
is in LP((0,00),m) and
K SN Lo ((0,00).m) < Coll Fll o ((0,00),m)-
Proof. By the homogeneity of k, k(x,y) = yilk(ﬁ, 1). Hence

| selay = [ o oo sl dy
0 0
:/ m*1|k(1,z)f(xz)|xdz:/ |k(1, 2) f(xz)| dz.

0 0

Since - - p
T
G o = [ 1F@oPdy = [ 1P L,
0 0

z

Hf( Z)HLT’((O,OO),’NL) = Zﬁl/p“f”l/p((o,oo),m)-
Using Minkowski’s inequality for integrals then shows

H / )| dy < [T A0y 82

Lr((0,00),m)

= Wlerooorm [ (12| =7

= CpllfllLr((0,00),m) < 00

This shows that K f in Eq. (9.28) is well defined from m — a.e. z. The proof is
finished by observing

1 Pl oy < H [ ewswlay

for all f € LP((0,00),m). m

The following theorem is a strengthening of Proposition 9.26. which will be used
(actually maybe not) in Theorem G.49 below. (WHERE IS THIS THEOREM
USED?)

< Cpll fll e ((0,00),m)

Lr((0,00),m)
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Theorem 9.29 (Converse of Holder’s Inequality IT). Assume that (X, M, ) is a
o - finite measure space, q,p € [1,00] are conjugate exponents and let Sy denote the
set of simple functions ¢ on X such that (¢ # 0) < oo. For g : X — C measurable
such that ¢g € L* for all ¢ € Sy, 18 Jet

(9.29) (o) =sup{| [ oua] 0 € 5 wien 161, =1}
If My(g) < oo then g € L7 and My(g) = |9, -

Proof. Let X,, € M be sets such that u(X,) < oo and X,, T X as n | oc.
Suppose that ¢ = 1 and hence p = co. Choose simple functions ¢,, on X such that
|¢n| < 1 and sgn(g) = lim,_. ¢, in the pointwise sense. Then 1x, ¢, € Sy and

therefore
‘ / lx,, ¢ngdp
X

for all m,n. By assumption 1x, g € L'(1z) and therefore by the dominated conver-
gence theorem we may let n — oo in this equation to find

/ 1x,, lgl di < M,(g)
X

for all m. The monotone convergence theorem then implies that

/ lgldp = lim / Ly, gl du < M, (g)
X m—00 X

showing g € L'(p) and ||g|, < M,(g). Since Holder’s inequality implies that
M,(g) < |lgll; , we have proved the theorem in case ¢ = 1.

For ¢ > 1, we will begin by assuming that g € L%(u). Since p € [1,00) we know
that Sy is a dense subspace of LP () and therefore, using ¢, is continuous on LP(p),

My(g) = sup{ / ¢gdu' . p € LP(u) with 6], = 1} — lgll,

where the last equality follows by Proposition 9.26.

So it remains to show that if ¢g € L' for all ¢ € Sy and M,(g9) < oo then
g € Li(p). For n € N, let g, = 1x,149/<ng. Then g, € L(p), in fact ||g,|y <
nu(X,)"1 < co. So by the previous paragraph,

lgul, = M, (g,) = sup{ / ¢1X,L1|g|<ngdu} 6 € LP(4) with [], = 1}

< Mq(g) ||¢1Xn1\g\§n”p < Mq(g) 1= Mq(g)

wherein the second to last inequality we have made use of the definition of M(g)
and the fact that ¢1x, 1j4<, € Sy. If ¢ € (1,00), an application of the monotone
convergence theorem (or Fatou’s Lemma) along with the continuity of the norm,
I, - implies

< M,(9)

lgll, = Tim flgall, < M,(g) < oc.

If ¢ = oo, then ||gnlloo < My(g) < oo for all n implies |g,| < My(g) a.e. which
then implies that |g| < M,(g) a.e. since |g| = lim,, .o |gn|. That is g € L>°(u) and
9lloc < Moo(g)- m

18This is equivalent to requiring 149 € L (1) for all A € M such that p(A) < co.
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9.5. Uniform Integrability. This section will address the question as to what
extra conditions are needed in order that an L° — convergent sequence is LP —
convergent.

Notation 9.30. For f € L'(u) and E € M, let

plf: E) = /Efdu-

and more generally if A, B € M let

pw(f A B):= fdp.
ANB
Lemma 9.31. Suppose g € L'(11), then for any € > 0 there exist a § > 0 such that
(gl : E) < € whenever u(E) < 0.

Proof. If the Lemma is false, there would exist ¢ > 0 and sets E,, such that
w(Ey,) — 0 while u(|g| : E,) > € for all n. Since |1g, 9| < |g| € L' and for any § €
0,1), p(1g, |g| > ) < u(E,) — 0 as n — oo, the dominated convergence theorem
of Corollary 9.17 implies lim,, o (|g| : Er) = 0. This contradicts u(|g| : E,) > €
for all n and the proof is complete. m

Suppose that {f,} -, is a sequence of measurable functions which converge in
L'(u) to a function f. Then for E € M and n € N,

[1(fo s E) < Aulf = S s B+ 1S = E) < AIf = Fully + |p(F = E)]
Let en :=sup,, y ||f — full;, then ex | 0 as N 1 oo and

(9-30)  sup |u(fn : B} < sup (1 fn s E)V (en + |u(f : E)]) S en +plgn t E),

where gy = |f| + 25:1 |fnl € L. From Lemma 9.31 and Eq. (9.30) one easily
concludes,

(9.31) Ve>038>0 > sup|u(fn: E)| <ewhen u(E) <6.

Definition 9.32. Functions {f,}.—, C L'(u) satisfying Eq. (9.31) are said to be
uniformly integrable.

Remark 9.33. Let {f,} be real functions satisfying Eq. (9.31), E be a set where
w(E) < ¢ and E, = EN{f,>0}. Then pu(E,) < § so that u(f, : E) = u(fn :
E,) < € and similarly p(f, : E) < e. Therefore if Eq. (9.31) holds then

(9.32) sup (| fn] : E) < 2¢ when u(E) < 4.

Similar arguments work for the complex case by looking at the real and imaginary
parts of f,,. Therefore {f,}--, C L'(u1) is uniformly integrable iff

n=1

(9.33) Ve>03d>0 > supu(|fn|: E) <ewhen pu(E) <.

Lemma 9.34. Assume that u(X) < oo, then {f,} is uniformly bounded in L* (i)
(i.e. K =sup, ||fnll; <o0) and {f,} is uniformly integrable iff

(9.34) A}@OOSUPN(UM | fal 2 M) =0.
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Proof. Since {f,} is uniformly bounded in L(u), p(|f.| > M) < K/M. So
if (9.33) holds and ¢ > 0 is given, we may choose M sufficeintly large so that
w(|fn] = M) < §(¢) for all n and therefore,

Supﬂ(|fn| : |fn| > M) <e

Since € is arbitrary, we concluded that Eq. (9.34) must hold.
Conversely, suppose that Eq. (9.34) holds, then automatically K = sup,, u(|fn]) <
oo because

B fal) = B0l < 1l = M)+ ([ ful + 1ful < M)
< sup (| ful : [ ful = M) + Mu(X) < ox.

Moreover,

w(|fol 2 B) = p(|fal = [ful = M, E) + p(|fo] = | fol < M, E)
< Slrllpu(lfnl D fal = M)+ Mp(E).

So given € > 0 choose M so large that sup,, u(|fn| : |fn] = M) < €/2 and then take
o=¢/(2M). m

Remark 9.35. Tt is not in general true that if {f,,} C L'(u) is uniformly integrable
then sup,, u(| fn]) < co. For example take X = {x} and pu({*}) = 1. Let f,(x) = n.
Since for 6 < 1 a set E C X such that u(E) < § is in fact the empty set, we see
that Eq. (9.32) holds in this example. However, for finite measure spaces with out

“atoms”, for every § > 0 we may find a finite partition of X by sets {Eg}ile with
1(Eg) < 6. Then if Eq. (9.32) holds with 2e = 1, then

k
=1

showing that pu(]f,]) <k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions for
verifying a sequence of functions is uniformly bounded and uniformly integrable.

Lemma 9.36. Suppose that i(X) < oo, and A C L°(X) is a collection of functions.

(1) If there exists a non decreasing function ¢ : Ry — Ry such that
lim, 00 ¢(x)/x = 00 and

(9.35) K = sup p(o(|f])) < o0
feA
then

9.36 lim su 1 =0.
(9.36) M%Ofeliﬂ(|f| 1f12M)

(2) Conwversely if Eq. (9.36) holds, there exists a mon-decreasing continuous
function ¢ : Ry — Ry such that ¢(0) = 0, lim,_,o ¢(x)/z = 00 and Eq.
(9.35) is valid.



ANALYSIS TOOLS WITH APPLICATIONS 173

Proof. 1. Let ¢ be as in item 1. above and set ¢j; := SUpP,> pf % — 0 as
M — oo by assumption. Then for f € A

W(lf1: 1) = M) = u( '({}) UFD : 11 2 M) < enrpu(o (D) : 1] = M)

< emp(o (If1)) < Kenm

and hence
I 1 < I K =Y
Mo ?22” (1f1512m) < Mbe M 0

2. By assumption, €ps 1= supysep pt (\f| 1|f\ZM) — 0 as M — oo. Therefore we
may choose M,, T oo such that
Z(n—&—l)eMn < 00
n=0
where by convention My := 0. Now define ¢ so that ¢(0) = 0 and

@)= (n+1) Lag, a1, (@),

n=0

_ /OI¢>’(y)dy: S (1) (3 A Myys — 3 A M)

By construction ¢ is continuous, ¢(0) = 0, ¢’(z) is increasing (so ¢ is convex)
and ¢'(x) > (n+ 1) for © > M,,. In particular
o(z) _ G(M,) + (n+
x T

from which we conclude lim, o ¢(z)/z = co. We also have ¢'(z) < (n+ 1) on
[0, M,,11] and therefore

>n+1for x> M,

o(x) < (n+ Dz for ¢ < My,44.

So for f € A,
(|£1) Zu S D1 a1, 2401 (1))
< Z n+1) p (1f1 a1, (1 F])
<Z (m+ D) u(fL5>m,) Z (n+1)e
and hence
sup u (o(|f n+1)ep, < oo.
feEA | | Z Mo
| |

Theorem 9.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose that 1 <
p < co. A sequence {fn,} C LP is Cauchy iff

(1) {fu} is IO - Cauchy,
(2) {|fal?} - is uniformly integrable.
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(3) For all € > 0, there exists a set E € M such that p(E) < oo and
Jie | ful” dp < € for all n. (This condition is vacuous when p(X) < c0.)

Proof. (=) Suppose {f,} C L? is Cauchy. Then (1) {f,} is LY — Cauchy by
Lemma 9.14. (2) By completeness of LP, there exists f € L such that [|f, — f||, —
0 as n — oo. By the mean value theorem,

1P =1 £al?] < p(oax(| 1 1) = fall < O+ LD)PH LA = 1l
and therefore by Holder’s inequality,

/I\fl” —\fulPldp < p/(lfl F 1Ll 1] = |l < p/(\fl F 1P S — Fuldp

<plf = FallplAS1+ £ D2 g = DU+ Ul B = Fully
<p(Ifllp + I £allp)?/ 2N f = Fully

where ¢ := p/(p — 1). This shows that [ ||f[? — |fn|P|dp — 0 as n — 00.'? By the
remarks prior to Definition 9.32, {|f,|"} is uniformly integrable.

To verify (3), for M > 0 and n € Nlet Epy = {|f| > M} and Ep(n) = {|fn] >
M}. Then pu(Ey) < 575|115 < 0o and by the dominated convergence theorem,

[ 1sdn= 17 1crdie — 0 as 21 0.
B,
Moreover,
937) ([ falpg [, < [[£1eg, (1, + [[Fa = DLeg, (|, < [1£185, (], + 1o = £II, -

So given € > 0, choose N sufficiently large such that for all n > N, [|f — fu[[} <.

Then choose M sufficiently small such that [, |f[" du < eand [, () |fIP dp <€
M M

foralln=1,2,...,N — 1. Letting E = Epf UEy (1)U ---U Ep (N — 1), we have

w(E) < oo, E'|fn|p dp <eforn<N-1
and by Eq. (9.37)
/E |fulP dp < (€Y/P + €/P)P < 2P¢ for n > N.
Therefore we have found E € M such that u(E) < co and
sup [ 11, dp < 27

n

which verifies (3) since € > 0 was arbitrary.
(«<=) Now suppose{ f,,} C LP satisfies conditions (1) - (3). Let ¢ > 0, E be as
in (3) and
Apn = {2 € E|fm(z) — fa(2)] = €}
Then
”(fn - fm) 1ECHp < anlECHp + ||fm 1EC”P < 261/p

19Here is an alternative proof. Let hn = ||fal? — |£IP| < |fn|? +|f|P =: gn € L' and g = 2|f|P.
Then gp L g, hn £ 0 and fgn — fg. Therefore by the dominated convergence theorem in
Corollary 9.17, lim [ hp du =0.
n—oo
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and
1 fn = fnllp = 1(fo = fr)Leellp + 1(fr — fm)lm\A,,
+1(fn = Fm) L llp
(9.38) <= Fr) Lo\ llp + 1o = fon) Ll + 2€77-
Using properties (1) and (3) and 1gngs, —f.j<et|fm — fal? < €?1p € L, the

dominated convergence theorem in Corollary 9.17 implies

[(fr = fm) 1o |lh = /1Eﬁ{\f,ﬂ,—fﬂ,\<e} |fon = ful? — 0.

m,n—0o0

p

which combined with Eq. (9.38) implies
limsup || fn — fmllp < limsup [|(fn — fin)la,,, llp + 217,

m,n— o0

Finally

” (fn - fm)lAmn

P < an]‘A'nLn

pF 1fm 1a,..llp < 26(e)

where
6(€) =sup sup{ [|fn 1ellp: E € M 3 pu(E) <€}

By property (2), 6(¢) — 0 as € — 0. Therefore
lmsup || fr — fmllp < 26?7 +0+25(e) =0 ase] 0

m,n— o0

and therefore {f,} is LP-Cauchy. m
Here is another version of Vitali’s Convergence Theorem.

Theorem 9.38 (Vitali Convergence Theorem). (This is problem 9 on p. 133 in
Rudin.) Assume that p(X) < oo, {fn} is uniformly integrable, f, — f a.e. and
|f| < o0 a.e., then f € L*(p) and f, — f in L*(p).

Proof. Let € > 0 be given and choose 6 > 0 as in the Eq. (9.32). Now use
Egoroff’s Theorem 9.18 to choose a set E° where {f,} converges uniformly on E°
and pu(E) < 0. By uniform convergence on E°, there is an integer N < oo such that
|fn — fin] <1 on E€ for all m,n > N. Letting m — oo, we learn that

|fv — fI < 1on E°.
Therefore |f| < |fn|+ 1 on E° and hence
pfD) = w1 E9) + pdlf] - E)

S ([N +p(X) + pdlf] - E).

Now by Fatou’s lemma,
p(lf1: B) <lim inf p(]fa]: B) <26 < o0
by Eq. (9.32). This shows that f € L. Finally
w(f = ful) = ullf = fol - E9) + pllf = ful : E)

S plf = fal - E9) + pllf] + 1 ful - E)

S pllf = ful - E) + de
and so by the Dominated convergence theorem we learn that

lim sup pu(|f — ful) < de.

n—oo
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Since € > 0 was arbitrary this completes the proof. m

Theorem 9.39 (Vitali again). Suppose that f,, — f in p measure and Eq. (9.34)
holds, then f, — f in L.

Proof. This could of course be proved using 9.38 after passing to subsequences
to get {fn} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f € L'(u). Now let

oK (x) = 2l <k + Kljg> k-
then ¢ (fn) = ¢ (f) because |¢x (f) — dx(fa)l < |f — ful and since

we have that

plf = ol < plf = o (DI + plox(f) = dx(fo)l + 1wldx (fo) = fal
= wlf1: 11 =2 K) + plor (f) = ¢x (fu)l + pllful = 1 fnl = K).

Therefore by the dominated convergence theorem
lim sup plf — fol < p(If]: 1f] > K) +lim sup plfal : [ful > K).

This last expression goes to zero as K — oo by uniform integrability. m
9.6. Exercises.

Definition 9.40. The essential range of f, essran(f), consists of those A € C
such that u(|f — A| <€) >0 for all € > 0.

Definition 9.41. Let (X, 7) be a topological space and v be a measure on Bx =
o(7). The support of v, supp(v), consists of those z € X such that v(V) > 0 for
all open neighborhoods, V, of z.

Exercise 9.3. Let (X,7) be a second countable topological space and v be a
measure on By — the Borel o — algebra on X. Show

(1) supp(v) is a closed set. (This is true on all topological spaces.)

(2) v(X \ supp(v)) = 0 and use this to conclude that W := X \ supp(v) is the
largest open set in X such that v(W) = 0. Hint: U C 7 be a countable
base for the topology 7. Show that W may be written as a union of elements
from V € V with the property that u(V) = 0.

Exercise 9.4. Prove the following facts about essran(f).
(1) Let v = fou:= po f~! — a Borel measure on C. Show essran(f) = supp(v).
(2) essran(f) is a closed set and f(z) € essran(f) for almost every z, i.e. u(f ¢
essran(f)) = 0.
(3) If F C C is a closed set such that f(z) € F for almost every x then
essran(f) C F. So essran(f) is the smallest closed set F such that f(z) € F
for almost every x.

(4) [Ifllc = sup{|Al : A € essran(f)}.

Exercise 9.5. Let f € LP N L for some p < oo. Show | f[|, = limg—co [|f]l, -
If we further assume p(X) < oo, show | f[,, = limg—oo || f[|, for all measurable
functions f : X — C. In particular, f € L iff lim, o || f[|, < oo
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Exercise 9.6. Prove Eq. (9.20) in Corollary 9.23. (Part of Folland 6.3 on p. 186.)
Hint: Use Lemma 2.27 applied to the right side of Eq. (9.19).

Exercise 9.7. Complete the proof of Proposition 9.22 by showing (LP + L", ||-||)
is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 9.8. Folland 6.5 on p. 186.

Exercise 9.9. Folland 6.6 on p. 186.

Exercise 9.10. Folland 6.9 on p. 186.

Exercise 9.11. Folland 6.10 on p. 186. Use the strong form of Theorem 7.38.
Exercise 9.12. Let (X, M, u) and (Y, N, ) be o-finite measure spaces, f € L*(v)
and k € L?(u ® v). Show

/|kacy y)| dv(y) < oo for p — a.e. .

Let Kf(x) = [, k( (y)dv(y) when the integral is defined. Show K f € L?(u)
and K : L2( ) — L2( ) is a bounded operator with [|K|[,, < [[kll12(,e.) -

Exercise 9.13. Folland 6.27 on p. 196.
Exercise 9.14. Folland 2.32 on p. 63.
Exercise 9.15. Folland 2.38 on p. 63.
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10. LocALLy COMPACT HAUSDORFF SPACES

In this section X will always be a topological space with topology 7. We are now
interested in restrictions on 7 in order to insure there are “plenty” of continuous
functions. One such restriction is to assume 7 = 74 — is the topology induced from
a metric on X. The following two results shows that (X, 74) has lots of continuous
functions. Recall for A C X, da(x) = inf{d(x,y) : y € A}.

Lemma 10.1 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a metric space,
V Co X and F C X such that ' C V. Then

ch (ZC)
10.1 )= — 7“7
defines a continuous function, f : X — [0,1], such that f(z) = 1 for x € F and
f(z) =0 if x ¢ V. (This may also be stated as follows. Let A (A = F) and B
(B =V°) be two disjoint closed subsets of X, then there exists f € C(X,[0,1]) such
that f =1 on A and f =0 on B.)

forze X

Proof. By Lemma 3.5, dr and dy . are continuous functions on X. Since F’ and
Ve are closed, dp(z) > 0 if x ¢ F and dy<(z) > 0 if x € V. Since FNV*¢ = (),
dp(x)+dye(x) > 0 for all z and (dp + dye) " is continuous as well. The remaining
assertions about f are all easy to verify. m

Theorem 10.2 (Metric Space Tietze Extension Theorem). Let (X,d) be a metric
space, D be a closed subset of X, —co < a <b< oo and f € C(D,|a,b]). (Here we
are viewing D as a topological space with the relative topology, Tp, see Definition
3.17.) Then there exists F € C(X,[a,b]) such that F|p = f.

Proof.

(1) By scaling and translation (i.e. by replacing f by %), it suffices to prove
Theorem 10.2 with a =0 and b = 1.

(2) Suppose o € (0,1] and f : D — [0,a] is continuous function. Let A :=
710, 4a]) and B := f7'([3,1]). By Lemma 10.1 there exists a function
g € C(X,[0,c/3]) such that g =0 on A and g = 1 on B. Letting g := £,
we have g € C(X, [0, «/3]) such that g =0 on A and g = «/3 on B. Further
notice that

2
0< f(z)—g(z) < goz for all z € D.

(3) Now suppose f : D — [0,1] is a continuous function as in step 1. Let
g1 € C(X,[0,1/3]) be as in step 2. with &« =1 and let f1 := f —g1|p €
C(D,[0,2/3]). Apply step 2. with a = 2/3 and f = f; to find g5 €
C(X,[0,%2]) such that fy := f — (g1 + g2) |p € C(D, |0, (%)2]) Continue
this way inductively to find g, € C(X, [0, 3 (%)n_l}) such that

N N
(10.2) f=2 gulp =t fv € C(D, 0, (g) -

(4) Define F :=>"> | g,. Since

o) oo1 2 n—1 1 1
<N 2 (=2 == =1
Sl 5(5)  =5rg=t

n=1
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the series defining F' is uniformly convergent so F' € C(X,[0,1]). Passing
to the limit in Eq. (10.2) shows f = F|p.
]

The main thrust of this section is to study locally compact (and o — compact)
Hausdorff spaces as defined below. We will see again that this class of topological
spaces have an ample supply of continuous functions. We will start out with the
notion of a Hausdorff topology. The following example shows a pathology which
occurs when there are not enough open sets in a topology.

Example 10.3. Let X = {1,2,3} and 7 = {X,0,{1,2},{2,3},{2}} and z,, = 2
for all n. Then z,, — « for every x € X!

Definition 10.4 (Hausdorff Topology). A topological space, (X, 7), is Hausdorff
if for each pair of distinct points, z,y € X, there exists disjoint open neighborhoods,
U and V of x and y respectively. (Metric spaces are typical examples of Hausdorff
spaces.)

Remark 10.5. When 7 is Hausdorff the “pathologies” appearing in Example 10.3
do not occur. Indeed if 2, — © € X and y € X \ {z} we may choose V € 7, and
W e 1, such that VW = . Then x,, € V a.a. implies z,, ¢ W for all but a finite
number of n and hence x,, - y, so limits are unique.

Proposition 10.6. Suppose that (X, 7) is a Hausdor(f space, K CC X andx € K°.
Then there exists U,V € 7 such that UNV =0, x € U and K C V. In particular
K is closed. (So compact subsets of Hausdorff topological spaces are closed.) More
generally if K and F are two disjoint compact subsets of X, there exist disjoint
open sets U,V € 7 such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V, € 7, and Uy, € 7,
such that V, NUy, = 0. The cover {V,,} - of K has a finite subcover, {V,} ., for
some A CC K. Let V = UyeaV, and U = NyealUy, then U,V € 7 satisfy = € U,
K CV and UNV = . This shows that K¢ is open and hence that K is closed.

Suppose that K and F are two disjoint compact subsets of X. For each z € F
there exists disjoint open sets U, and V, such that K C V, and x € U,. Since
{Us},cp is an open cover of F, there exists a finite subset A of F' such that F' C
U := UgzeaU,. The proof is completed by defining V' := NycpV,. B

Exercise 10.1. Show any finite set X admits exactly one Hausdorff topology 7.

Exercise 10.2. Let (X,7) and (Y, 7y) be topological spaces.
(1) Show 7 is Hausdorff iff A := {(z,2) : € X} is a closed in X x X equipped
with the product topology 7 ® 7.
(2) Suppose 7 is Hausdorff and f,g : ¥ — X are continuous maps. If
{f:g}Y:Ythenf:g. Hint: make use of themap fxg:Y — X x X
defined by (f x 9) (y) = (f (), 9(v))-

Exercise 10.3. Given an example of a topological space which has a non-closed
compact subset.

Proposition 10.7. Suppose that X is a compact topological space, Y is a Hausdorff
topological space, and f : X — Y is a continuous bijection then f is a homeomor-
phism, i.e. f~1:Y — X is continuous as well.
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Proof. Since closed subsets of compact sets are compact, continuous images of
compact subsets are compact and compact subsets of Hausdorff spaces are closed,
it follows that (f‘l)_1 (C) = f(C) is closed in X for all closed subsets C' of X.
Thus f~! is continuous. m

Definition 10.8 (Local and o — compactness). Let (X, 7) be a topological space.
(1) (X,7) is locally compact if for all z € X there exists an open neigh-
borhood V' C X of z such that V is compact. (Alternatively, in light of
Definition 3.19, this is equivalent to requiring that to each x € X there
exists a compact neighborhood N, of z.)
(2) (X,7)is 0 — compact if there exists compact sets K,, C X such that X =
U2, K,,. (Notice that we may assume, by replacing K,, by K1UKsU---UK,,
if necessary, that K, 7 X.)

Example 10.9. Any open subset of X C R" is a locally compact and ¢ — compact
metric space (and hence Hausdorff). The proof of local compactness is easy and is
left to the reader. To see that X is ¢ — compact, for £ € N, let

K :={r e X :|z| <kand dxe(z) > 1/k}.
Then Kj is a closed and bounded subset of R™ and hence compact. Moreover
K;TXask— o0 since?’
K D>{ze X :|z|<kand dxe(z) > 1/k} 1 X as k — oo.

Exercise 10.4. Every separable locally compact metric space is ¢ — compact.
Hint: Let {2, },—, C X be a countable dense subset of X and define

1
€n = 5 Sup {e>0:C,, (€) is compact} A 1.

Exercise 10.5. Every o — compact metric space is separable. Therefore a locally
compact metric space is separable iff it is o — compact.

Exercise 10.6. Suppose that (X, d) is a metric space and U C X is an open subset.
(1) If X is locally compact then (U, d) is locally compact.
(2) If X is 0 — compact then (U,d) is 0 — compact. Hint: Mimick Example
10.9, replacing Cy(k) by compact set K CC X such that Kj T X.

Lemma 10.10. Let (X, 1) be a locally compact and o — compact topological space.
Then there exists compact sets K, T X such that K,, C K, C K11 for all n.

Proof. Suppose that C C X is a compact set. For each z € C'let V; C, X be
an open neighborhood of = such that V, is compact. Then C C UyccV, so there
exists A CC C such that

C C UIGAV:E C U:EGAV:E = K.

Then K is a compact set, being a finite union of compact subsets of X, and C' C
UzeAVm C KO.

Now let C,, C X be compact sets such that C,, T X as n — oo. Let K1 = C}
and then choose a compact set K5 such that Co C K§. Similarly, choose a compact
set K3 such that Ky UCs3 C K§ and continue inductively to find compact sets K,
such that K, UCyq1 C K2, for all n. Then {K,},~, is the desired sequence. m

201n fact this is an equality, but we will not need this here.
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Remark 10.11. Lemma 10.10 may also be stated as saying there exists precompact
open sets {G,,,},,OLO:1 such that G,, ¢ G,, C Gn+l for all n and G,, T X as n — oo.
Indeed if {G,,}.., are as above, let K,, := G,, and if {K,} -, are as in Lemma
10.10, let Gy, := K2.

The following result is a Corollary of Lemma 10.10 and Theorem 3.59.

Corollary 10.12 (Locally compact form of Ascoli-Arzela Theorem ). Let (X, T)
be a locally compact and o — compact topological space and {f,} C C(X) be a
pointwise bounded sequence of functions such that { fm|k} is equicontinuous for any
compact subset K C X. Then there exists a subsequence {m,} C {m} such that
{gn = finn }rey C C(X) is a sequence which is uniformly convergent on compact
subsets of X.

Proof. Let {K,},>, be the compact subsets of X constructed in Lemma 10.10.
We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences

{fm} 2 {gh} S{gm o {gm o

such that the sequence {gy,}~_, C C(X) is uniformly convergent on K,. Using
Cantor’s trick, define the subsequence {h,} of {fin} by h, = ¢?. Then {h,} is
uniformly convergent on K; for each [ € N. Now if K C X is an arbitrary compact
set, there exists | < oo such that K C K7 C K and therefore {h,} is uniformly
convergent on K as well. m

The next two results shows that locally compact Hausdorff spaces have plenty
of open sets and plenty of continuous functions.

Proposition 10.13. Suppose X is a locally compact Hausdorff space and U Co, X
and K C”C U. Then there exists V C, X such that K CV CV CcUCX andV is
compact.

Proof. By local compactness, for all € K, there exists U, € 7, such that U,
is compact. Since K is compact, there exists A CC K such that {U,},, is a cover
of K. The set O = U N (UzeaU,) is an open set such that K C O C U and O
is precompact since O is a closed subset of the compact set UyepUs. (UpenUs,. is
compact because it is a finite union of compact sets.) So by replacing U by O if
necessary, we may assume that U is compact.

Since U is compact and U = U NU® is a closed subset of U, OU is compact.
Because OU C U¢, it follows that OU N K = (), so by Proposition 10.6, there exists
disjoint open sets V and W such that K C V and 0U C W. By replacing V by
V N U if necessary we may further assume that K C V' C U, see Figure 19.

Because U N W¢ is a closed set containing V and UsNU NW®e =0U NW*¢ =),

VcUnWe=UnwecUcU.
Since U is compact it follows that V is compact and the proof is complete. m

Exercise 10.7. Give a “simpler” proof of Proposition 10.13 under the additional
assumption that X is a metric space. Hint: show for each z € K there exists
Ve := Bg(e:) with €, > 0 such that B,(e;) C Cy(e;) C U with C,(e;) being
compact. Recall that C,(€) is the closed ball of radius e about z.

Definition 10.14. Let U be an open subset of a topological space (X, 7). We will
write f < U to mean a function f € C.(X, [0, 1]) such that supp(f) := {f # 0} C U.
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FI1GURE 19. The construction of V.

Lemma 10.15 (Locally Compact Version of Urysohn’s Lemma). Let X be a locally
compact Hausdorff space and K CC U C, X. Then there exists f < U such that
f=1onK. In particular, if K is compact and C is closed in X such that KNC = (),
there exists f € C.(X,[0,1]) such that f =1 on K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g := 1 — f
rather than f. To motivate the proof, suppose g € C(X,[0,1]) such that g = 0
on K and g =1 on U° For r > 0, let U, = {g <r}. Then for 0 < r < s < 1,
U, C {g <r} C Uy and since {g < r} is closed this implies

KcU.cU.c{g<r}cU,CU.

Therefore associated to the function g is the collection open sets {U.},., C 7 with
the property that K C U, C U, C U, C U forall 0 < r < s < 1 and U, = X if
r > 1. Finally let us notice that we may recover the function g from the sequence
{U+},<¢ by the formula

(10.3) g(z) =inf{r >0:2 € U,}.
The idea of the proof to follow is to turn these remarks around and define g by Eq.
(10.3).

Step 1. (Construction of the U,.) Let
D={k2":k=12,....2""n=12,..}

be the dyadic rationales in (9, 1]. Use Proposition 10.13 to find a precompact open
set U; such that K C Uy C Uy C U. Apply Proposition 10.13 again to construct an
open set Uy /o such that

K C U1/2 C U:[/Q C Ul
and similarly use Proposition 10.13 to find open sets Uj /3, Uz /4 Co X such that
K C U1/4 C U1/4 C U1/2 C Ul/Q C U3/4 C U3/4 c Uy.
Likewise there exists open set Uy g, Us/s, Us /g, U7 /g such that
K C U1/8 C Ul/g C U1/4 C [71/4 C Ug/g - Ug/g - U1/2
C 01/2 C U5/g C US/S C U3/4 C Ug/4 - U7/8 - U7/g c U;.
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Continuing this way inductively, one shows there exists precompact open sets
{U:},cp C 7 such that

KcU,cU,cU,cU, cU, cU

forall m,s e D with 0 <r < s <1.
Step 2. Let U, = X if » > 1 and define

g(z) =inf{r e DU(1,00) : x € U},
see Figure 20. Then g(x) € [0,1] forallz € X, g(x) = 0for x € K sincex € K C U,

FIGURE 20. Determining ¢ from {U,}.

for all » € D. If z € UY, then « ¢ U, for all € D and hence g(z) = 1. Therefore
f:=1-gisafunctionsuchthat f =lon Kand {f #0}={g#1}cU, cU, CcU
so that supp(f) = {f # 0} C U; C U is a compact subset of U. Thus it only remains
to show f, or equivalently g, is continuous.

Since £ = {(, ), (=00, @) : a € R} generates the standard topology on R, to
prove g is continuous it suffices to show {g < a} and {g > a} are open sets for all
a € R. But g(z) < « iff there exists 7 € DU (1,00) with r < « such that x € U,.
Therefore

{g<a}:U{UT:r€]D)U(1,oo) >r<al

which isopenin X. Ifa > 1, {g>a}=0andif a <0, {g >a} =X. Ifa € (0,1),
then g(z) > o iff there exists r € I such that r > a and x ¢ U,.. Now if r > o and
x ¢ U, then for s € DN (a,r), x ¢ Us C U,. Thus we have shown that

{g>a}:U{(Ug)C:s€]D) > s>o¢}
which is again an open subset of X. m

Exercise 10.8. mGive a simpler proof of Lemma 10.15 under the additional as-
sumption that X is a metric space.
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Theorem 10.16 (Locally Compact Tietz Extension Theorem). Let (X,7) be a
locally compact Hausdorff space, K CC U C, X, f € C(K,R), a = min f(K) and
b = max f(K). Then there exists F € C(X,]a,b]) such that F|x = f. Moreover
given ¢ € [a,b], F' can be chosen so that supp(F —c¢) = {F # ¢} C U.

The proof of this theorem is similar to Theorem 10.2 and will be left to the
reader, see Exercise 10.11.

Lemma 10.17. Suppose that (X, T) is a locally compact second countable Hausdorff
space. (For example any separable locally compact metric space and in particular
any open subsets of R™.) Then:

(1) every open subset U C X is o0 — compact.

(2) If F C X is a closed set, there exist open sets V,, C X such that V,, | F' as
n — 00.

(3) To each open set U C X there exists fp, < U such that lim,,_, f, = 1y.

(4) The o — algebra generated by C.(X) is the Borel ¢ — algebra, Bx.

Proof.
(1) Let U be an open subset of X, V be a countable base for 7 and

V.= {W e V:W CU and W is compact}.

For each = € U, by Proposition 10.13, there exists an open neighborhood V
of & such that V' C U and V is compact. Since V is a base for the topology
7, there exists W € V such that z € W C V. Because W C V, it follows
that W is compact and hence W € VY. As x € U was arbitrary, U = UVY.

Let {W,} 2, be an enumeration of VY and set K,, := Uy_, Wj. Then
K, T U as n — oo and K, is compact for each n.

(2) Let {K,},2, be compact subsets of F' such that K, T F© as n — oo and
set V,, := K¢ = X \ K,,. Then V,, | F and by Proposition 10.6, V,, is open
for each n.

(3) Let U C X be an open set and {K,},., be compact subsets of U such
that K,, T U. By Lemma 10.15, there exist f,, < U such that f,, = 1 on K,,.
These functions satisfy, 1y = lim, o fn-

(4) By Item 3., 1y is o(C.(X,R)) — measurable for all U € 7. Hence 7 C
o(C.(X,R)) and therefore Bx = o(r) C 0(C.(X,R)). The converse inclu-
sion always holds since continuous functions are always Borel measurable.

Corollary 10.18. Suppose that (X, 7) is a second countable locally compact Haus-
dorff space, Bx = o(7) is the Borel o — algebra on X and H is a subspace of
B(X,R) which is closed under bounded convergence and contains C.(X,R). Then
‘H contains all bounded Bx — measurable real valued functions on X.

Proof. Since H is closed under bounded convergence and C.(X,R) C H, it
follows by Item 3. of Lemma 10.17 that 1y € H for all U € 7. Since 7 is a m — class
the corollary follows by an application of Theorem 8.12. =

10.1. Locally compact form of Urysohn Metrization Theorem.
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Notation 10.19. Let @ := [0,1]N denote the (infinite dimensional) unit cube in
RN. For a,b € Q let

— 1
(10.4) d(a,b) := Z o |an — byl .

n=1
The metric introduced in Exercise 3.27 would be defined, in this context, as

d(a,b) := 3, %%%‘7 Since 1 < 1+|a, — bn| < 2, it follows that d < d < 2d.

So the metrics d and d are equivalent and in particular the topologies induced by
d and d are the same. By Exercises 6.15, the d — topology on @ is the same as the
product topology and by Exercise 3.27, (Q, d) is a compact metric space.

Theorem 10.20 (Urysohn Metrization Theorem). Every second countable locally
compact Hausdorff space, (X,T), is metrizable, i.e. there is a metric p on X such
that T = 7,. Moreover, p may be chosen so that X is isometric to a subset Qo C Q
equipped with the metric d in Eq. (10.4). In this metric X is totally bounded and
hence the completion of X (which is isometric to Qo C Q) is compact.

Proof. Let B be a countable base for 7 and set
I'={(U,V)eBxB|UCV and U is compact}.

To each O € 7 and & € O there exist (U,V) € ' such that x € U C V C O.
Indeed, since B is a basis for 7, there exists V € B such that x € V C O. Now
apply Proposition 10.13 to find U’ C, X such that z € U’ C U’ C V with U’
being compact. Since B is a basis for 7, there exists U € B such that x € U C U’
and since U C U’, U is compact so (U,V) € T. In particular this shows that
B :={U € B: (U, V) el for some V € B} is still a base for 7.

If T is a finite, then B’ is finite and 7 only has a finite number of elements as
well. Since (X, 7) is Hausdorff, it follows that X is a finite set. Letting {wn}i\;l be
an enumeration of X, define T': X — Q by T'(z,) = e, for n = 1,2,..., N where
en = (0,0,...,0,1,0,...), with the 1 ocurring in the n'" spot. Then p(z,y) :=
d(T(x),T(y)) for z,y € X is the desired metric. So we may now assume that T is
an infinite set and let {(U,, V,,)},~; be an enumeration of I'.

By Urysohn’s Lemma 10.15 there exists fy,yv € C(X,[0,1]) such that fyv =0
on U and fyy =1on Ve Let F = {fyv | (U, V) €T} and set f, := fu, v, — an

enumeration of . We will now show that
o0

1
n=1
is the desired metric on X. The proof will involve a number of steps.

(1) (p is a metric on X.) It is routine to show p satisfies the triangle inequal-
ity and p is symmetric. If z,y € X are distinct points then there exists
(Unys Vo) € T such that x € Uy, and V,,, C O := {y}°. Since f,, () =0
and fp,(y) = 1, it follows that p(x,y) > 27" > 0.

(2) (Let 1o = 7(fn :n€N), then 7 = 79 = 7,.) As usual we have 79 C 7.
Since, for each x € X, y — p(x,y) is 70 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B,(e) :=
{ye X :p(x,y) <e} €1 forall z € X and € > 0. Thus 7, C 79 C 7.

Suppose that O € 7 and z € O. Let (Uy,, Vy,) € T be such that x € U,,
and V,, C O. Then f,,(z) =0 and f,, = 1 on O°. Therefore if y € X and
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fno(y) < 1, then y € O so x € {fn, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 1y. So 7 C 79 and
hence 7 = 79. Moreover, if y € B, (27™0) then 27" > p(z,y) > 27" f,,. (y)
and therefore z € B,(27"°) C {fn, <1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.

(3) (X is isometric to some Qo C @Q.) Let T': X — @ be defined by T(x) =
(fr(x), fa(z),..., fu(z),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qg := T'(X). Since Qg is a subset
of the compact metric space (@, d), Qo is totally bounded and therefore X
is totally bounded.

10.2. Partitions of Unity.

Definition 10.21. Let (X, 7) be a topological space and Xy C X be a set. A
collection of sets {By},c 4 C 2% is locally finite on Xj if for all z € X, there is
an open neighborhood N, € 7 of x such that #{a € A: B, NN, # 0} < oo.

Lemma 10.22. Let (X, 7) be a locally compact Hausdorff space.

(1) A subset E C X is closed iff EN K is closed for all K CC X.

(2) Let {Ca}oca be a locally finite collection of closed subsets of X, then C =
UaecaCly is closed in X. (Recall that in general closed sets are only closed
under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, E N K
is closed if E' is closed and K is compact. Now suppose that £ N K is closed for
all compact subsets K C X and let x € E°. Since X is locally compact, there
exists a precompact open neighborhood, V, of x.2! By assumption £ NV is closed
sox € (E N I_/)c — an open subset of X. By Proposition 10.13 there exists an open

set U such that z € U C U C (Eﬁ V)C, see Figure 21. Let W := U N V. Since

FIGURE 21. Showing E* is open.

WNE=UNVNECUNVNE =,

211f X were a metric space we could finish the proof as follows. If there does not exist an open
neighborhood of z which is disjoint from E, then there would exists z,, € E such that x, — x.
Since ENV is closed and x, € ENV for all large n, it follows (see Exercise 3.4) that z € ENV
and in particular that « € E. But we chose x € E°.
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and W is an open neighborhood of x and x € E¢ was arbitrary, we have shown FE°
is open hence F is closed.

Item 2. Let K be a compact subset of X and for each z € K let N, be an
open neighborhood of z such that #{a € A : C, N N, # @} < oo. Since K
is compact, there exists a finite subset A C K such that K C UgeaN,. Letting
Ao:={ae€A:CyNK #0}, then

#(Mo) <Y #laeA:CanN N, # 0} < 00
TEA
and hence K N (UaecaCo) = KN (Uaep,Co) - The set (Ugep,Co) is a finite union
of closed sets and hence closed. Therefore, K N (UyeaCl) is closed and by Item (1)
it follows that UacaCy, is closed as well. m

Definition 10.23. Suppose that U is an open cover of Xy C X. A collection
{¢:3¥, € C(X,[0,1]) (N = oo is allowed here) is a partition of unity on X,
subordinate to the cover U if:
(1) for all ¢ there is a U € U such that supp(¢;) C U,
(2) the collection of sets, {supp(¢;)}¥ ;, is locally finite on X, and
(3) Zf;l ¢; =1 on Xy. (Notice by (2), that for each = € X there is a neigh-
borhood N, such that ¢;|x, is not identically zero for only a finite number
of terms. So the sum is well defined and we say the sum is locally finite.)

Proposition 10.24 (Partitions of Unity: The Compact Case). Suppose that X is
a locally compact Hausdorff space, K C X is a compact set and U = {Uj};."zl 18
an open cover of K. Then there exists a partition of unity {hj}?zl of K such that
hj = Uj forallj=1,2,...,n.

Proof. For all z € K choose a precompact open neighborhood, V, of x such
that V, C U;. Since K is compact, there exists a finite subset, A, of K such that

Kc | Vg Let
TEA

F; :U{Vm:xGAandvm CUj}.
Then Fj is compact, F; C Uj for all j, and K C U}_, F;. By Urysohn’s Lemma
10.15 there exists f; < U; such that f; = 1 on F};. We will now give two methods
to finish the proof.
Method 1. Let hl = fl; hg = f2(1 — hl) = f2(1 - fl),

hs = f3(1—hi —h2) = fs(1 = fi — (1= f1)f2) = fs(L = f1)(1 — f2)
and continue on inductively to define
k—1

(10.5) he=(1—hy——h ) fe=fi [JA-F)VE=23,....n

j=1

and to show

(10.6) (I—hy—--—hy) =[O = £)-

j=1
From these equations it clearly follows that h; € C.(X, [0, 1]) and that supp(h;) C
supp(f;) C Uj, i.e. hy < Uj. Since [[7_,(1~ f;) =0on K, 377 h; = 1 on K and
{h; }?:1 is the desired partition of unity.
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Method 2. Let g := Y f; € C.(X). Then g > 1 on K and hence K C {g > 1}.
j=1
Choose ¢ € C.(X,[0,1]) such that ¢ =1 on K and supp(¢) C {g > 3} and define
fo=1—¢. Then fo =0on K, fo =1if g < 1 and therefore,

fo+rfit+t-+fa=fo+g>0

on X. The desired partition of unity may be constructed as

o fi(z)
hj(z) = fox)+ -+ fulz)
Indeed supp (h;) = supp (f;) C U;, hj € Cc(X,[0,1]) and on K,
httfh A4t
f0+f1 ot fa fitt fa

hi -+ hy, =1

Proposition 10.25. Let (X,7) be a locally compact and o — compact Hausdorff
space. Suppose that U C T is an open cover of X. Then we may construct two
locally finite open covers V = {V;}¥.; and W = {W;}¥.; of X (N = oo is allowed
here) such that:

(1) W; ¢ W; € V; CV; and V; is compact for all i.

(2) For each i there exist U € U such that V; C U.

Proof. By Remark 10.11, there exists an open cover of G = {G,,}22; of X such
that G,, € G, C Gpi1. Then X = U;fil(é’k \ Gr_1), where by convention G_; =
Go = 0. For the moment fix k > 1. For each z € (_}’k\Gk,l, let U, € U be chosen so
that x € U, and by Proposition 10.13 choose an open neighborhood N, of = such
that N, C UyN(Gry1\Gr—2), see Figure 22 below. Since {Ny},cg,\q,_, 1S an open

G b O G
br

FIGURE 22. Constructing the {Wi}lN:l.

cover of the compact set Gy, \ Gx_1, there exist a finite subset T’y C {NatoeG\Gra
which also covers G, \ Gk—1. By construction, for each W € Ty, there is a U € U
such that W C UN(Gga1 \ Gx—2). Apply Proposition 10.13 one more time to find,
for each W € 'y, an open set Vi such that W C Vi C Vi C U N (Gry1 \ Gr_2).
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We now choose and enumeration {W;}¥; of the countable open cover U Ty, of
X and define V; = Vjy,. Then the collection {W;}}¥.| and {V;}}, are easily checked
to satisfy all the conclusions of the proposition. In particular notice that for each
k that the set of i’s such that V; N Gy # 0 is finite. m

Theorem 10.26 (Partitions of Unity in locally and o — compact spaces). Let (X, T)
be a locally compact and o — compact Hausdorff space and U C T be an open cover
of X. Then there exists a partition of unity of {h;}., (N = oo is allowed here)
subordinate to the cover U such that supp(h;) is compact for all i.

Proof. Let V = {V;}Y¥, and W = {W;}Y, be open covers of X with the
properties described in Proposition 10.25. By Urysohn’s Lemma 10.15, there exists
fi < V; such that f; = 1 on W; for each i.

As in the proof of Proposition 10.24 there are two methods to finish the proof.

Method 1. Define hy = fi, hj by Eq. (10.5) for all other j. Then as in Eq.
(10.6)

N

N
1->"h=JJa-f)=0
j=1 j=1
since for € X, fj(xz) = 1 for some j. As in the proof of Proposition 10.24, it is
easily checked that {hi}ilil is the desired partition of unity.

Method 2. Let f = Ziil fi, a locally finite sum, so that f € C(X). Since
{W;};2, is a cover of X, f > 1 on X so that 1/f € C (X)) as well. The functions
hi=f;/f fori=1,2,..., N give the desired partition of unity. m

Corollary 10.27. Let (X, 1) be a locally compact and o — compact Hausdorff space
andU = {Uq}4ca C 7 be an open cover of X. Then there exists a partition of unity
of {ha}taca subordinate to the cover U such that supp(hy) C U, for all a € A.
(Notice that we do not assert that h, has compact support. However if U, is
compact then supp(hq) will be compact.)

Proof. By the o — compactness of X, we may choose a countable subset, {a;};«n
(N = oo allowed here), of A such that {U; = U,, },_ y is still an open cover of X. Let
{9;}j<n be a partition of unity subordinate to the cover {U;};«n as in Theorem

10.26. Define Ty, = {j : supp(g;) C Ui} and Ty = Tk \ (U?;llf‘k), where by
convention 'y = (. Then
k=1 k=1

If Ty = 0 let hy = 0 otherwise let hy = > jer, 9j» @ locally finite sum. Then
Sopeq bk = Zszl g; =1 and the sum >~ hy is still locally finite. (Why?) Now
for a = ay, € {a;}Y,, let hy == hy, and for a ¢ {a;}¥, let h, = 0. Since

{hx # 0} = Ujer, {g; # 0} C Ujer,supp(g;) C Uy
and, by Item 2. of Lemma 10.22, Ujcr, supp(g;) is closed, we see that

supp(hx) = {hx # 0} C Ujer,supp(g;) C Us.

Therefore {hq},c 4 is the desired partition of unity. m
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Corollary 10.28. Let (X, 1) be a locally compact and o — compact Hausdorff space
and A, B be disjoint closed subsets of X. Then there exists f € C(X,[0,1]) such
that f =1 on A and f =0 on B. In fact f can be chosen so that supp(f) C B€.

Proof. Let Uy = A° and Uy = B¢, then {U;,Us} is an open cover of X. By
Corollary 10.27 there exists hi, ho € C(X, [0, 1]) such that supp(h;) C U; fori = 1,2
and hy + hy =1 on X. The function f = hy satisfies the desired properties. m

10.3. Cp(X) and the Alexanderov Compactification.

Definition 10.29. Let (X,7) be a topological space. A continuous function f :
X — C is said to vanish at infinity if {|f| > €} is compact in X for all € > 0.
The functions, f € C(X), vanishing at infinity will be denoted by Cy(X).

Proposition 10.30. Let X be a topological space, BC(X) be the space of bounded
continuous functions on X with the supremum norm topology. Then
(1) Co(X) is a closed subspace of BC(X).
(2) If we further assume that X is a locally compact Hausdorff space, then
Co(X) = C(X).

Proof.

(1) If f € Co(X), K1 := {|f] > 1} is a compact subset of X and therefore f(K7)
is a compact and hence bounded subset of C and so M := sup,c g, |f(z)] <
oo. Therefore || f||,, < M V1 < oo showing f € BC(X).
Now suppose f, € Co(X) and f, — f in BC(X). Let € > 0 be given
and choose n sufficiently large so that || f — fy]|,, < €/2. Since

|f‘ S ‘fn| + |f_ fn| S |fn‘ + Hf_anu S |fn| +€/2a
{Ifl = e} C{lful +€/2 = €} = {[ful = €/2}.

Because {|f| > €} is a closed subset of the compact set {|f.| > €/2},
{|f] > €} is compact and we have shown f € Cy(X).

(2) Since Cy(X) is a closed subspace of BC'(X) and C.(X) C Cy(X), we always
have C.(X) C Cy(X). Now suppose that f € Cy(X) and let K,, = {|f| >
1} £ X. By Lemma 10.15 we may choose ¢, € Cc(X,[0,1]) such that
¢n =1 on K,,. Define f,, = ¢,,f € Cc(X). Then

1f = Fallw = 10 = 6u) Fllu < % 0 asn— oo,

This shows that f € C.(X).
|
Proposition 10.31 (Alexanderov Compactification). Suppose that (X, ) is a non-

compact locally compact Hausdorff space. Let X* = X U{oo}, where {oo} is a new
symbol not in X. The collection of sets,

™ =7U{X"\K:KCC X} CP(X"),

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover f € C(X)
extends continuously to X* iff f = g+ c with g € Co(X) and ¢ € C in which case
the extension is given by f(o0) = c.
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Proof. 1. (7% is a topology.) Let F:={F C X*: X*\ F € 7t*},ie. F e Fiff
F' is a compact subset of X or F' = Fy U {oo} with Fy being a closed subset of X.
Since the finite union of compact (closed) subsets is compact (closed), it is easily
seen that F is closed under finite unions. Because arbitrary intersections of closed
subsets of X are closed and closed subsets of compact subsets of X are compact,
it is also easily checked that F is closed under arbitrary intersections. Therefore F
satisfies the axioms of the closed subsets associated to a topology and hence 7* is
a topology.

2. ((X*,7*) is a Hausdorff space.) It suffices to show any point € X can be
separated from oco. To do this use Proposition 10.13 to find an open precompact
neighborhood, U, of x. Then U and V := X* \ U are disjoint open subsets of X*
such that x € U and oo € V.

3. ((X*,7*) is compact.) Suppose that U C 7* is an open cover of X*. Since U
covers 0o, there exists a compact set KX C X such that X*\ K € Y. Clearly X is
covered by Uy := {V \ {o0} : V € U} and by the definition of 7* (or using (X*, 1)
is Hausdorff), Uy is an open cover of X. In particular Uy is an open cover of K and
since K is compact there exists A CC U such that K C U{V \ {oco}: V € A}. Tt is
now easily checked that A U {X*\ K} C U is a finite subcover of X*.

4. (Continuous functions on C'(X™*) statements.) Let i : X — X™* be the inclusion
map. Then 4 is continuous and open, i.e. i(V) is open in X* for all V open in X.
If f € C(X*), then g = f|x — f(00) = foi— f(00) is continuous on X. Moreover,
for all € > 0 there exists an open neighborhood V' € 7* of oo such that

lg(z)] = |f(x) — f(o0)] < € for all z € V.

Since V' is an open neighborhood of co, there exists a compact subset, K C X, such
that V = X* \ K. By the previous equation we see that {z € X : |g(z)| > €} C K,
so {|g| > €} is compact and we have shown g vanishes at co.

Conversely if g € Cy(X), extend g to X* by setting g(oco) = 0. Given € > 0, the
set K = {|g| > €} is compact, hence X*\ K is open in X*. Since g(X*\ K) C (—¢,€)
we have shown that ¢ is continuous at oco. Since g is also continuous at all points
in X it follows that g is continuous on X*. Now it f = g + ¢ with ¢ € C and
g € Cy(X), it follows by what we just proved that defining f(oo) = ¢ extends f to
a continuous function on X*. m

10.4. More on Separation Axioms: Normal Spaces. (The reader may skip
to Definition 10.34 if he/she wishes. The following material will not be used in the
rest of the book.)

Definition 10.32 (T, — T» Separation Axioms). Let (X, 7) be a topological space.
The topology 7 is said to be:

(1) Tp if for  # y in X there exists V € 7 such that z e Vandy ¢ Vor V
such that y € V but = ¢ V.

(2) Ty if for every x,y € X with x # y there exists V' € 7 such that € V and
y ¢ V. Equivalently, 7 is Ty iff all one point subsets of X are closed.??

(3) T3 if it is Hausdorff.

221f one point subsets are closed and  # y in X then V := {z}° is an open set containing y
but not x. Conversely if 7 is T1 and = € X there exists V;; € 7 such that y € V;, and = ¢ V}, for
all y # x. Therefore, {x}® = Uy2,Vy € 7.
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Note T, implies 77 which implies Ty. The topology in Example 10.3 is Ty but
not 7. If X is a finite set and 7 is a T} — topology on X then 7 = 2X. To prove this
let x € X be fixed. Then for every y # = in X there exists V,, € 7 such that x € V,
while y ¢ V. Thus {z} = Nyx,V,, € 7 showing 7 contains all one point subsets of
X and therefore all subsets of X. So we have to look to infinite sets for an example
of T7 topology which is not T5.

Example 10.33. Let X be any infinite set and let 7 = {A C X : #(A¢) < co}U{0}
— the so called cofinite topology. This topology is T because if  # y in X, then
V = {z}° € 7 with « ¢ V while y € V. This topology however is not T5. Indeed if
U,V € 7 are open sets such that x € U,y € V and UNV = () then U C V°. But
this implies #(U) < oo which is impossible unless U = () which is impossible since
zel.

The uniqueness of limits of sequences which occurs for Hausdorff topologies (see
Remark 10.5) need not occur for T; — spaces. For example, let X = N and 7 be
the cofinite topology on X as in Example 10.33. Then z,, = n is a sequence in X
such that z,, — z as n — oo for all x € N. For the most part we will avoid these
pathologies in the future by only considering Hausdorff topologies.

Definition 10.34 (Normal Spaces: Ty — Separation Axiom). A topological space
(X, 7) is said to be normal or Ty if:
(1) X is Hausdorff and
(2) if for any two closed disjoint subsets A, B C X there exists disjoint open
sets V,WW C X such that A C V and B C W.

Example 10.35. By Lemma 10.1 and Corollary 10.28 it follows that metric space
and locally compact and o — compact Hausdorff space (in particular compact Haus-
dorff spaces) are normal. Indeed, in each case if A, B are disjoint closed subsets of
X, there exists f € C(X,[0,1]) such that f =1 on A and f = 0 on B. Now let
U={f>31}and V={f <1}

Remark 10.36. A topological space, (X, 7), is normal iff for any C C W C X with
C being closed and W being open there exists an open set U C,, X such that

CcUcUcCW.

To prove this first suppose X is normal. Since W€ is closed and C N W€ = (),
there exists disjoint open sets U and V such that C C U and W€ C V. Therefore
CcUcCVeCW andsince Veisclosed, CCU CcU C Ve cCW.

For the converse direction suppose A and B are disjoint closed subsets of X.
Then A C B¢ and B¢ is open, and so by assumption there exists U C, X such
that A C U c U C B° and by the same token there exists W C, X such that
UC W Cc W C B¢ Taking complements of the last expression implies

BcWecWwecU-.
Let V=W Then ACUC, X,BCVC, XandUNV CcUNWe®=.

Theorem 10.37 (Urysohn’s Lemma for Normal Spaces). Let X be a normal space.
Assume A, B are disjoint closed subsets of X. Then there exists f € C(X,][0,1])
such that f =0 on A and f =1 on B.

Proof. To make the notation match Lemma 10.15, let U = A and K = B.
Then K C U and it suffices to produce a function f € C(X,[0,1]) such that f =1
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on K and supp(f) C U. The proof is now identical to that for Lemma 10.15 except
we now use Remark 10.36 in place of Proposition 10.13. =

Theorem 10.38 (Tietze Extension Theorem). Let (X, 7) be a normal space, D be
a closed subset of X, —0o < a < b < oo and f € C(D,la,b]). Then there exists
F e C(X,la,b]) such that F|p = f.

Proof. The proof is identical to that of Theorem 10.2 except we now use The-
orem 10.37 in place of Lemma 10.1. m

Corollary 10.39. Suppose that X is a normal topological space, D C X is closed,
F € C(D,R). Then there exists F' € C(X) such that F|p = f.

Proof. Let g = arctan(f) € C(D,(—%,%)). Then by the Tietze exten-
sion theorem, there exists G € C(X,[-%,%]) such that G|p = g. Let B =
G '({-%,5}) C X, then BN D = 0. By Urysohn’s lemma (Theorem 10.37) there
exists h € C(X,[0,1]) such that h =1 on D and h = 0 on B and in particular
hG € C(D,(-%,%)) and (hG)|p = g. The function F' = tan(hG) € C(X) is an

extension of f. m

Theorem 10.40 (Urysohn Metrization Theorem). Every second countable normal
space, (X, T), is metrizable, i.e. there is a metric p on X such that T = 7,. More-
over, p may be chosen so that X is isometric to a subset Qy C Q equipped with
the metric d in Eq. (10.4). In this metric X is totally bounded and hence the
completion of X (which is isometric to Qy C Q) is compact.

Proof. Let B be a countable base for 7 and set
r={{UV)eBxB|UcV}
To each O € 7 and & € O there exist (U,V) € " such that x € U C V C O.
Indeed, since B is a basis for 7, there exists V_€ B such that x € V C O. Because
{z} N V¢ = (), there exists disjoint open sets U and W such that z € U, V¢ C W

and UNW = (. Choose U € B such that x € U C U. Since U ¢ U C we,
U cC We¢CV and hence (U, V) € T'. See Figure 23 below. In particular this shows

F1GURE 23. Constructing (U, V) € T.

that {U € B: (U,V) €T for some V € B} is still a base for 7.
If T is a finite set, the previous comment shows that 7 only has a finite number
of elements as well. Since (X,7) is Hausdorff, it follows that X is a finite set.
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Letting {mn}gzl be an enumeration of X, define T : X — Q by T(z,) = e, for
n = 1,2,...,N where e, = (0,0,...,0,1,0,...), with the 1 ocurring in the n'®
spot. Then p(z,y) := d(T(x),T(y)) for x,y € X is the desired metric. So we may
now assume that I' is an infinite set and let {(U,, V,,)},—, be an enumeration of I.

By Urysohn’s Lemma (Theorem 10.37) there exists fy,v € C(X, [0, 1]) such that
fuov = 0on U and fyy = 1 on Ve Let F = {fuv | (U, V) € T} and set
fn = fu, v, — an enumeration of . We will now show that

)= 3 ale) = 1)

is the desired metric on X. The proof will involve a number of steps.

(1) (p is a metric on X.) It is routine to show p satisfies the triangle inequal-
ity and p is symmetric. If z,y € X are distinct points then there exists
(Unys Vo) € T such that x € Uy, and V,,, C O := {y}°. Since f,,(z) =0
and fp,(y) = 1, it follows that p(x,y) > 270 > 0.

(2) (Let 1o = 7(fn :n€N), then 7 = 79 = 7,.) As usual we have 79 C 7.
Since, for each x € X, y — p(x,y) is 70 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B,(e) :=
{ye X :p(z,y) <e} € forall z € X and € > 0. Thus 7, C 79 C 7.

Suppose that O € 7 and z € O. Let (Uy,, Vy,) € I be such that x € U,,
and V,, C O. Then f,,(z) =0 and f,, = 1 on O°. Therefore if y € X and
fro(y) < 1, then y € O so x € {fn, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 9. So 7 C 79 and
hence 7 = 79. Moreover, if y € B, (27"0) then 27" > p(z,y) > 27" f,, (y)
and therefore € B, (27™) C {fn, <1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.

(3) (X is isometric to some Qo C @Q.) Let T : X — @ be defined by T'(z) =
(f1(z), f2(z),..., fa(z),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qg := T'(X). Since Q) is a subset
of the compact metric space (Q, d), Qo is totally bounded and therefore X
is totally bounded.

10.5. Exercises.

Exercise 10.9. Let (X, 7) be a topological space, A C X, i4 : A — X be the
inclusion map and 74 := i;'(7) be the relative topology on A. Verify 74 = {ANV :
V € 7} and show C C A is closed in (A, 74) iff there exists a closed set F' C X
such that C = AN F. (If you get stuck, see the remarks after Definition 3.17 where
this has already been proved.)

Exercise 10.10. Let (X, 7) and (Y,7’) be a topological spaces, f : X — Y be a
function, U be an open cover of X and {F} };'L:1 be a finite cover of X by closed
sets.
(1) fAC Xisanysetand f: X — Y is (7,7') — continuous then f|4 : A =Y
is (74,7’) — continuous.
(2) Show f : X — Y is (7,7') — continuous iff fly : U — Y is (1y,7') —
continuous for all U € U.
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(3) Show f : X — Y is (7,7') — continuous iff f|p, : F; — Y is (75;,7") —
continuous for all j =1,2,...,n.

(4) (A baby form of the Tietze extension Theorem.) Suppose V € 7 and
f:V — C is a continuous function such supp(f) C V, then F : X — C

defined by
| fl=) if reV
Fe) = { 0  otherwise
is continuous.

Exercise 10.11. Prove Theorem 10.16. Hints:

(1) By Proposition 10.13, there exists a precompact open set V such that K C
V C V C U. Now suppose that f : K — [0, ] is continuous with « € (0, 1]
and let A := f71([0, 3a]) and B := f~!([3,1]). Appeal to Lemma 10.15
to find a function g € C(X, [0, «/3]) such that g = /3 on B and supp(g) C
V\ A
(2) Now follow the argument in the proof of Theorem 10.2 to construct F' €
C(X,[a,b]) such that F|x = f.
(3) For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F by
F.:=¢F + (1 - ¢)c.
Exercise 10.12 (Sterographic Projection). Let X = R™, X* := X U {o0} be the
one point compactification of X, S™ := {y € R™"™! : |y| = 1} be the unit sphere
in R"*! and N = (0,...,0,1) € R**"!. Define f : S — X* by f(N) = oo, and
for y € 8™\ {N} let f(y) = b € R™ be the unique point such that (b,0) is on
the line containing N and y, see Figure 24 below. Find a formula for f and show
f 8™ — X* is a homeomorphism. (So the one point compactification of R™ is
homeomorphic to the n sphere.)

FIGURE 24. Sterographic projection and the one point compacti-
fication of R™.

Exercise 10.13. Let (X, 7) be a locally compact Hausdorff space. Show (X, 1) is
separable iff (X*,7*) is separable.

Exercise 10.14. Show by example that there exists a locally compact metric
space (X,d) such that the one point compactification, (X* := X U {cc},7*), is
not metrizable. Hint: use exercise 10.13.
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Exercise 10.15. Suppose (X,d) is a locally compact and o — compact metric
space. Show the one point compactification, (X* := X U {oco},7*), is metrizable.
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11. APPROXIMATION THEOREMS AND CONVOLUTIONS
Let (X, M, 1) be a measure space, A C M an algebra.

Notation 11.1. Let S;(A, 1) denote those simple functions ¢ : X — C such that
“1({\}) € Afor all A € C and u(¢ # 0) < co.

For ¢ € Sy(A, p) and p € [1,00), |¢[" = 3. 4 |2[P1{4=-) and hence

/ 67 dp = S 2P (6 = 2)

z#0
so that Sy(A, ) C LP(n).

Lemma 11.2 (Simple Functions are Dense). The simple functions, Sy(M, 1), form
a dense subspace of LP(u) for all 1 < p < 0.

Proof. Let {¢,},-, be the simple functions in the approximation Theorem
7.12. Since |¢y,| < |f] for all n, ¢, € S§(M, p) (verify!) and
[f = éul? < (If1 +16a)? <27 |f” € L.

Therefore, by the dominated convergence theorem,

lim /\f—¢n|pdu:/ lim |f — ¢, |Pdu = 0.
]

Theorem 11.3 (Separable Algebras implies Separability of LP — Spaces). Suppose
1<p<ooand AC M is an algebra such that o(A) = M and p is o-finite on
A. Then S¢(A, p) is dense in LP(n). Moreover, if A is countable, then LP(u) is
separable and

D= {Zale ta; € Q+1iQ, Aj € A with p(A;) < oo}
is a countable dense subset.

Proof. First Proof. Let X}, € A be sets such that p(Xj) < oo and Xj, T X as
k — oo. For k € N let ‘Hj, denote those bounded M — measurable functions, f, on

X such that 1x, f € Sy(A, M)LP(H). It is easily seen that Hy, is a vector space closed

under bounded convergence and this subspace contains 14 for all A € A. Therefore

by Theorem 8.12, Hy, is the set of all bounded M — measurable functions on X.
For f € LP(u), the dominated convergence theorem implies 1 Xm{l f\gk} f—=17f

in LP(u) as k — oo. We have just proved Lxonqri<kyf € Sy(A, u) " for all k

and hence it follows that f € S f(A 1) i . The last assertion of the theorem is
a consequence of the easily verified fact that I is dense in Sy(A, ) relative to the
LP(p) — norm.

Second Proof. Given ¢ > 0, by Corollary 8.42, for all £ € M such that
w(E) < oo, there exists A € A such that p(EAA) < e. Therefore

(11.1) /|1E —14lPdp = p(EAA) < .

This equation shows that any simple function in S;(M, 1) may be approximated
arbitrary well by an element from D and hence D is also dense in LP(u). m
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Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that f € L'(R,m), then

Jim / F@)e ™ dm(z) =

A—too Jp
Proof. Let A denote the algebra on R generated by the half open intervals, i.e.

A consists of sets of the form .

[1(ax bl nR

k=1
where ay,b, € R. By Theorem 11.3given ¢ > 0 there exists ¢ = ZZ=1 kL (ay, by]
with ay, b € R such that

/ If — dldm < e
R
Notice that

/¢ )e e dm(z /chl(ak,bk ) dm(x)
_ch/ Ma:dm ch)\ 1 z)\:v‘

=)t ch (ei)‘b"‘ - ei)‘“’“) — 0 as |\ — oc.
Combining these two equations with

[ (¢@) = ole) ¥dma \ [ e in(z)

< [ 17~ olam+ ' [ st@peim(a)

z)edm(z)| <

<e+ /qﬁ(x)ei)‘zdm(x)
R
we learn that
lim sup z)edm(z)| < e+ lim sup z)e ™ dm(z)| =
[A| =00 [A|—o0

Since € > 0 is arbitrary, we have proven the lemma. =

Theorem 11.5 (Continuous Functions are Dense). Let (X, d) be a metric space,
Ta be the topology on X generated by d and Bx = o(74) be the Borel o — algebra.
Suppose 1 : Bx — [0,00] is a measure which is o — finite on 74 and let BCy(X)
denote the bounded continuous functions on X such that u(f # 0) < oo. Then
BCy(X) is a dense subspace of LP(p) for any p € [1,00).

Proof. First Proof. Let X; € 74 be open sets such that X3 T X and pu(Xx) <
0. Let k and n be positive integers and set

Y,k () = min(1,n - dxg (2)) = dn(dxg(2)),
and notice that v, , — ldxg >0 = lx, as n — 00, see Figure 25 below.

Then ¢, € BCy(X) and {¢,r # 0} C Xj. Let H denote those bounded

I
M — measurable functions, f : X — R, such that ¥, ,f € BCf(X) (ﬂ). It is

easily seen that H is a vector space closed under bounded convergence and this
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0757

057

0257

FIGURE 25. The plot of ¢, for n =1, 2, and 4. Notice that ¢, — 1(0,00)-

subspace contains BC(X,R). By Corollary 8.13, H is the set of all bounded real

valued M — measurable functions on X, i.e. ¢, 1 f € BCf(X)L * for all bounded
measurable f and n,k € N. Let f be a bounded measurable function, by the

dominated convergence theorem, ¥, f — lx,f in LP(u) as n — oo, therefore

1x,f € BO;x) W

BCrx) " = Lr(u).

Second Proof. Since S¢(M, p) is dense in LP(p) it suffices to show any ¢ €
S¢(M, ) may be well approximated by f € BCy(X). Moreover, to prove this it
suffices to show for A € M with p(A) < oo that 14 may be well approximated
by an f € BCy(X). By Exercises 8.4 and 8.5, for any ¢ > 0 there exists a closed
set F' and an open set V such that FF C A C V and u(V \ F) < e. (Notice that
p(V) < w(A) + € < 00.) Let f be as in Eq. (10.1), then f € BCf(X) and since

1a — fI < 1wn\p,

(11.2) Jia=sPaus [1pdu =\ P <

or equivalently

. It now follows as in the first proof of Theorem 11.3 that

I1a— £l < /7.

Since € > 0 is arbitrary, we have shown that 14 can be approximated in LP(u)
arbitrarily well by functions from BCf(X)). m

Proposition 11.6. Let (X,7) be a second countable locally compact Hausdorff
space, Bx = o(1) be the Borel o — algebra and p : Bx — [0,00] be a measure
such that p(K) < oo when K is a compact subset of X. Then C.(X) (the space of
continuous functions with compact support) is dense in LP(u) for all p € [1,00).

Proof. First Proof. Let {K}},-, be a sequence of compact sets as in Lemma
10.10 and set X} = K. Using Item 3. of Lemma 10.17, there exists {¢nx} -, C
C.(X) such that supp(¢, 1) C Xi and lim, o0 ¥k = 1x,. As in the first proof of

Theorem 11.5, let H denote those bounded By — measurable functions, f : X — R,
—LP(pn
such that i, xf € C.(X) ( ). It is easily seen that H is a vector space closed

under bounded convergence and this subspace contains BC(X,R). By Corollary
10.18, H is the set of all bounded real valued Bx — measurable functions on X, i.e.
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Ynif € CC(X)L ) for all bounded measurable f and n, k € N. Let f be a bounded
measurable function, by the dominated convergence theorem, ¥, f — 1lx,f in

LP(u) as k — oo, therefore 1x, f € CC(X)LP(M)

of Theorem 11.3 that CC(X)LP(H) = LP(u).

Second Proof. Following the second proof of Theorem 11.5, let A € M with
p(A) < oo. Since limg oo [[1anky — 1allp = 0, it suffices to assume A C K} for
some k. Given € > 0, by Item 2. of Lemma 10.17 and Exercises 8.4 there exists a
closed set F' and an open set V such that F C A C V and u(V '\ F) < e. Replacing
V by VN K} we may assume that V C K7 C Kj. The function f defined in Eq.
(10.1) is now in C.(X). The remainder of the proof now follows as in the second
proof of Theorem 11.5. m

. It now follows as in the first proof

Lemma 11.7. Let (X, 7) be a second countable locally compact Hausdorff space,
Bx = o(7) be the Borel o — algebra and p : Bx — [0,00] be a measure such that
w(K) < oo when K is a compact subset of X. If h € L}, .(u) is a function such that

(11.3) /X fhdp =0 for all f € C.(X)

then h(x) =0 for u — a.e. .

Proof. First Proof. Let dv(xz) = |h(z)|dz, then v is a measure on X such
that v(K) < oo for all compact subsets K C X and hence C.(X) is dense in L!(v)
by Proposition 11.6. Notice that

(11.4) /X fsgn(h)dv = /X fhdp =0 for all f € C.(X).

Let {Kj},—, be a sequence of compact sets such that Kj 1 X as in Lemma 10.10.

Then 1g,sgn(h) € L'(v) and therefore there exists f,, € C.(X) such that f,, —
1g,sen(h) in LY(v). So by Eq. (11.4),

V(Kk):/ 1k, dv = lim /fmsgn(h)dz/:O.
X m—00 X

Since Kj, T X as k — o0, 0 =v(X) = [ |hldp, ie. h(z) =0 for pu - a.e. .

Second Proof. Let Kj be as above and use Lemma 10.15 to find x €
C.(X,[0,1]) such that x = 1 on Kj. Let H denote the set of bounded measur-
able real valued functions on X such that f « Xfhdp = 0. Then it is easily checked
that H is linear subspace closed under bounded convergence which contains C.(X).
Therefore by Corollary 10.18, 0 = [ « Xfhdp for all bounded measurable functions
f: X — R and then by linearity for all bounded measurable functions f : X — C.
Taking f = sgn(h) then implies

o:/xwduz/ 11 dy
X Ky,

and hence by the monotone convergence theorem,

0= lim |h|du:/ Ih] dp.
k—oo K X
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Corollary 11.8. Suppose X C R" s an open set, Bx is the Borel o — algebra on
X and p is a measure on (X, Bx) which is finite on compact sets. Then C.(X) is
dense in LP(u) for all p € [1,00).

11.1. Convolution and Young’s Inequalities.

Definition 11.9. Let f,g: R™ — C be measurable functions. We define
frg(@) = A flz—y)g(y)dy

whenever the integral is defined, i.e. either f(z—-)g(-) € L*(R™,m) or f(z—-)g(-) >
0. Notice that the condition that f(z —-)g(-) € L*(R", m) is equivalent to writing

|f1*]g] (z) < oo
Notation 11.10. Given a multi-index a € Z7, let |a| = a1 + - - - + ap,

N n o N 8 [e% n a (e
% = ijj, and 0F = (%> = H (a—xj) .
j=1 j=1
Remark 11.11 (The Significance of Convolution). Suppose that L =}~ | <; aa0® is
a constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = ¢ in the form

u(z) = Kg() ::/ k(x,y)g(y)dy

where k(z,y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since 7,L = L, for all z € R™, (this is another way to characterize
constant coefficient differential operators) and L1 = K weshould have ., K = K,.
Writing out this equation then says

[ bl = 20)aw)dy = (Kg) (@ - 2) = 7. Kg(o) = (K7.9) (2)

= / k(x,y)g(y — 2)dy = / k(z,y + 2)g(y)dy.

Since g is arbitrary we conclude that k(z — z,y) = k(z,y + 2). Taking y = 0 then
gives

k(z,z) = k(x — 2,0) =: p(z — 2).
We thus find that Kg = p % g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals, Theorem 9.27.

Proposition 11.12. Suppose q € [1,00|, f € L' and g € L4, then f * g(x) exists
for almost every x, f xg € L1 and

1+ gll, < WAl Mgl -
For z€ R™ and f: R" — C, let 7. f : R™ — C be defined by 7, f(z) = f(x — 2).

Proposition 11.13. Suppose that p € [1,00), then 7, : LP — LP is an isometric
isomorphism and for f € LP, z € R® — 1, f € LP is continuous.
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Proof. The assertion that 7, : LP — LP is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that 7_, o 7, = id.
For the continuity assertion, observe that

|7 f — Tnyp =7y (7 - Tyf)Hp = [|7emy f — f”p
from which it follows that it is enough to show 7, f — f in LP as z — 0 € R™.
When f € C.(R"), 7.f — f uniformly and since the K := U, |<isupp(7. f) is
compact, it follows by the dominated convergence theorem that 7,f — f in LP as
z — 0 € R™. For general g € LP and f € C.(R"),
729 — g”p <9 - TZpr + = f = f”p +f - ng =|rf - pr +2|f - g”p
and thus

lim sup [7:9 — gll, < lim sup (7o f = fll, +20f = gll, =2f - gll,-
g z—

Because C¢(R") is dense in L?, the term ||f — g||, may be made as small as we
please. m

Definition 11.14. Suppose that (X, 7) is a topological space and u is a measure
on Bx = (7). For a measurable function f : X — C we define the essential support
of f by
(11.5)

supp,(f) ={z € U: p({y € V : f(y) # 0}}) > 0 for all neighborhoods V" of x}.

It is not hard to show that if supp(u) = X (see Definition 9.41) and f € C(X)
then supp,,(f) = supp(f) := {f # 0}, see Exercise 11.5.
Lemma 11.15. Suppose (X, 7) is second countable and f : X — C is a measurable
function and p is a measure on Bx. Then X := U \ supp,(f) may be described

as the largest open set W such that fly (z) = 0 for p — a.e. x. Equivalently put,
C :=supp,,(f) is the smallest closed subset of X such that f = flc a.e.

Proof. To verify that the two descriptions of supp,,(f) are equivalent, suppose
supp,,(f) is defined as in Eq. (11.5) and W := X \ supp,,(f). Then
W={ze X :u{yeV:f(y) #0}}) =0 for some neighborhood V of z}

=U{V C, X : u(f1ly #0) =0}

=U{VC, X: fly=0for p—ae}.
So to finish the argument it suffices to show p (f1ly # 0) = 0. To to this let U be
a countable base for 7 and set

Up :={V el : fly =0 ae.}.

Then it is easily seen that W = Ul and since Uy is countable p(fly #0) <
ZVeuf p(fly #0)=0. =

Lemma 11.16. Suppose f,g,h : R" — C are measurable functions and assume
that = is a point in R™ such that |f| *|g| (x) < oo and | f|* (|g] * |h|) (x) < oo, then
(1) fxg(x) =gxf(z)
(2) [ (gxh)(x) =(f*g)*h(x)
(3) If z € R and (| f] * [g])(z) = |f] * |g| (x — 2) < o0, then

T.(f*xg)(x) =T f*xg(x) = f*7.9(x)
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(4) I ¢ suppyy(f) +5uppoy(9) then f+g(z) = 0 and in particular, supp,,(/ »
g) C supp,, (f) + supp,, (g) where in defining supp,,, (f * g) we will use the
convention that “f x g(x) # 0”7 when |f| *|g| (z) = oco.

Proof. For item 1.,

1% 19l (=) :/Rn 1 (z =) lgl (y)dy:/w 1) gl (y — 2)dy = lg| * [ f] (z)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y — = — y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.

Item 4. Since fxg(z) = f*g(x) if f = f and g = § ae. we may,
by replacing f by flsupp, (r) and g by glgupp (g if necessary, assume that
{f #0} C supp,,(f) and {g # 0} C supp,,(g). So if ¢ (supp,,(f) + supp,,(9))

then x ¢ ({f #0}+{g#0}) and for all y € R", ecither x —y ¢ {f #0} or
y ¢ {g #0}. That is to say either x —y € {f =0} or y € {g =0} and hence

f(z —y)g(y) =0 for all y and therefore f * g(x) = 0. This shows that f * g =0 on
R™\ (suppm(f) + supp,, (g)) and therefore

R\ (Supp,, (F) + 5upp,,(9)) € R™\ supp,, (f * 9).

i.e. supp,,(f *g) C supp,,(f) + supp,,(g). ®

Remark 11.17. Let A, B be closed sets of R™, it is not necessarily true that A + B
is still closed. For example, take

A={(z,y):x>0andy >1/z} and B={(z,y):z <0and y > 1/|x|},

then every point of A 4+ B has a positive y - component and hence is not zero. On
the other hand, for z > 0 we have (z,1/z) + (—z,1/x) = (0,2/x) € A+ B for all
x and hence 0 € A+ B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A 4+ B is closed again. Indeed, if A is compact and
Ty = ap + b, € A+ B and x, — = € R"™, then by passing to a subsequence if
necessary we may assume lim,, .. a, = a € A exists. In this case

lim b, = lim (¢, —a,) =2z—a€ B

n—oo n—0o0

exists as well, showing t =a+b € A+ B.

Proposition 11.18. Suppose that p,q € [1,00] and p and q are conjugate expo-
nents, f € LP and g € L%, then f*g € BC(R"), |f=*gll, < Ifll,llgll, and if
p,q € (1,00) then f* g € Co(R™).

Proof. The existence of f* g(z) and the estimate |f x g[ () < | f[l, [lg]|, for all
x € R™ is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows || f = g|[, < [|f[, 9], - By relabeling
p and ¢ if necessary we may assume that p € [1,00). Since

7= (f*9) = frgll, = llm=f*g = f*gll, < llm=f = Fl, lgll, = 0as z2—0

it follows that f % ¢ is uniformly continuous. Finally if p,q € (1,00), we learn
from Lemma 11.16 and what we have just proved that f,, * g, € C.(R™) where
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Jm = fLf1<m and gm = gl|g/<m- Moreover,
1f*g = fn*gmll, Nf*9— fmnxglly + | fm* 9= frn * gmll,,
< = fmlly lglly + 1 fmll, llg = gmll,
< = fmlly lglly + 11, lg = gmlly — 0 as m — oo
showing, with the aid of Proposition 10.30, f * g € Co(R"™). m

Theorem 11.19 (Young’s Inequality). Let p,q,r € [1,00] satisfy

11 1
(11.6) S S=1+4-=.
P oq r

If f € LP and g € L9 then |f| % |g| (x) < oo for m - a.e. x and
(11.7) 1S *gll, < [1f1l, lgllq -

In particular L' is closed under convolution. (The space (L', *) is an example of a
“Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq. (11.6)
by the following scaling argument. For A > 0, let fy(z) := f(A\x), then after a few
simple change of variables we find

I £xll, = AP U]l and (f * g)x = Afx * ga-
Therefore if Eq. (11.7) holds for some p, q,r € [1, 0], we would also have

£ gl = XN @)l < ATANAL llgall, = AT ==ty g ig]l,
for all A > 0. This is only possible if Eq. (11.6) holds.

Proof. Let o, 8 € [0,1] and py,p2 € [0,00] satisfy p; ' +p;t + 7~ = 1. Then
by Holder’s inequality, Corollary 9.3,

f*g(a)] = / f(z— y)g)dy| < / @ =) @) @ — ) o) dy

(1—a) (1-8) 1/r 1/p1 8 1/p2
< </|f(w—y)| " g(y)| Tdy) (/f(w—y)la’” dy) (/g(y) P dy)
) ) 1/r
= ([ 1=l g ) 11, ol
Taking the r*" power of this equation and integrating on x gives
If * g7 < / ( / @ —y)| 7" |g<y>|“5”dy) dz - || flop, 19155,
—a)r —B)r ar r
(11.8) = UG gl = I, HgliG, -

Let us now suppose, (1 — a)r = ap; and (1 — 8)r = Bpe, in which case Eq. (11.8)
becomes,

1f gl < 11, Nl9ll,
which is Eq. (11.7) with
(11.9) p:=(1—a)r=ap; and q:= (1 — B)r = fps.

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, o]
satisfying p~! +¢ 1 =1+7r"1.
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If o, B, p1, p2 satisfy the relations above, then

T r

n =
T+ p1 b T+ p2

and

p q p1 T p27’_p117_27"

Conversely, if p, ¢, satisfy Eq. (11.6), then let o and g satisfy p = (1 — a)r and
qg=(1-pB)r, ie.

11 lr4p 1o+ 112 1
e L - .

oz::7ﬂ_p:1—£§1and6:u:1—g
r r r r

<1.

From Eq. (11.6), o = p(1 — %) >0and 8 =q(1-— %) >0, so that a, 8 € [0,1]. We
then define p; := p/a and ps := ¢/f, then

as desired. ®
Theorem 11.21 (Approximate § — functions). Let p € [1,00], ¢ € LY}(R"), a :=
Jon f(@)dx, and for t > 0 let ¢y(x) =t~ "¢(x/t). Then

(1) If f € LP with p < oo then ¢y x f — af in LP ast | 0.

(2) If f € BC(R™) and f is uniformly continuous then |¢y x f — f|l.. — 0 as
t]0.

(3) If f € L*™® and f is continuous on U C, R™ then ¢ * f — af uniformly on
compact subsets of U ast | 0.

Proof. Making the change of variables y = tz implies

dorf@)= [ S —)owdy= | fla—12)0(:)dz

Rn
so that

b f(z) - af(z) = / (@ —t2) — f(2)] d(2)dz

(11.10) — / e f (@) - f@)] (e)de.

Hence by Minkowski’s inequality for integrals (Theorem 9.27), Proposition 11.13
and the dominated convergence theorem,

05 £ =afll, < [ lred = £l o)l dz — 0 ast L.

n

Item 2. is proved similarly. Indeed, form Eq. (11.10)

o041 =afll < [ et = flllo(o)]dz

which again tends to zero by the dominated convergence theorem because
limy|o || 72 f — fllo. = 0 uniformly in z by the uniform continuity of f.



206 BRUCE K. DRIVER

Item 3. Let Bg = B(0, R) be a large ball in R” and K CC U, then

sup |¢; * f(z) —af(z)| <

rzeK

_|_

/ @ —t2) — [(2)] S(=)dz
Br

/ (@ —t2) — f(2)] (2)dz
B

c
R

< /B ol s (=) = )]+ 2 / 16(2)] d

zeK,z€BRr

BR
<lelly - sup [f(z —t2) = f(2)] +2||f\|oo/ ¢(2)| dz
x€K,z€BRr |z|>R
so that using the uniform continuity of f on compact subsets of U,

lim sup sup |¢; * f(x) —af(x)] <2 Hf||oo/ |p(2)]dz — 0 as R — oo.
t|0 z€K [z|>R

]
See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.
Exercise 11.1. Let 1/t
| e if ¢t>0
f(t)_{ 0 if t<0.
Show f € C>*(R,[0,1]).

Lemma 11.22. There exists ¢ € C2°(R",[0,00)) such that ¢(0) > 0, supp(¢) C
B(0,1) and [, ¢(x)dz = 1.

Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 11.1. Then
h € C(R,[0,1]), supp(h) C [—1,1] and h(0) = e~2 > 0. Define ¢ = [, h(|z|*)dz.
Then ¢(z) = ¢ 'h(|z|?) is the desired function. m
Definition 11.23. Let X C R"™ be an open set. A Radon measure on By is a
measure y which is finite on compact subsets of X. For a Radon measure u, we let

L}, (p) consists of those measurable functions f : X — C such that [} |f|du < oo
for all compact subsets K C X.

The reader asked to prove the following proposition in Exercise 11.6 below.

Proposition 11.24. Suppose that f € L}, (R",m) and ¢ € CL(R™), then f*¢ €
CHR™) and 0;(f * ¢) = f * ;. Moreover if p € C(R™) then f* ¢ € C(R™).
Corollary 11.25 (C* — Uryhson’s Lemma). Given K CC U C, R", there exists
f e Cx(R™[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 11.22, ¢,(z) =t~ "¢(z/t) be as in Theorem 11.21,
d be the standard metric on R™ and e = d(K,U°). Since K is compact and U° is
closed, € > 0. Let Vs = {z € R" : d(z, K) < 6} and f = ¢¢/3 * 1y, ,, then
supp(f) C supp(¢e/3) + Vesz C Vaeys C UL
Since Va3 is closed and bounded, f € C°(U) and for z € K,

1@) = [ Tagacrcers G =iy = [ bualo =)y =1.

The proof will be finished after the reader (easily) verifies 0 < f < 1. m
Here is an application of this corollary whose proof is left to the reader, Exercise
11.7.
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Lemma 11.26 (Integration by Parts). Suppose f and g are measurable functions

onR™ such thatt — f(x1,...,Ti—1,t,Tix1,.--,&pn) andt — g(T1, ..., Ti—1,t, Tig1,- .-
are continuously differentiable functions on R for each fized x = (x1,...,x,) € R™.
Moreover assume f - g, % -g and f - 8%% are in L*(R™,m). Then
of 9y
-gdm = — dm
Rn axi g Rn f aml

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 11.27. For f € LY(R",m) let
f(&) = @m)=/? f(x)efig'wdm(x)

be the Fourier transform of f. Then f € CO(R" ) and Hf” 2m)""2||flly- (The

n/2

choice of the normalization factor, (2m)~"/%, in f is for later convenience.)

Proof. The fact that f is continuous is a simple application of the dominated
convergence theorem. Moreover,

O] < [ 1@l dmiz) < 2m) /2 11,
so it only remains to see that f(&) — 0 as |¢] — occ.
First suppose that f € C°(R") and let A = ZJ 1 8 97 be the Laplacian on R".
Notice that a%je’lg'm = —i;e T and Ae™ %" = |§|2 it *, Using Lemma 11.26
repeatedly,

[ Ak s@e < am(o) = [ f@ake S dmia) = - |5 [ ) am(o)

— (om 2 e fe)
for any k € N. Hence (277)"/2)f(§)) < |§\_2kHAka1 — 0 as |¢] — oo and

f € Co(R™). Suppose that f € L'(m) and fi € C>°(R") is a sequence such that
limj—oo |f — fill, = 0, then limy_ Hf—fk.) = 0. Hence f € Cy(R") by an
application of Proposition 10.30. m ‘

Corollary 11.28. Let X C R™ be an open set and i be a Radon measure on By .

(1) Then C°(X) is dense in LP(p) for all 1 < p < 0.
( ) ]fh € le‘( ) Sa’tisﬁes

(11.11) / fhdp =0 for all f € C°(X)
b's
then h(z) =0 for u — a.e. z.

Proof. Let f € C.(X), ¢ be as in Lemma 11.22, ¢; be as in Theorem 11.21 and
set 1 := ¢ * (f1x). Then by Proposition 11.24 ¢); € C°°(X) and by Lemma 11.16
there exists a compact set K C X such that supp(¢;) C K for all ¢ sufficiently
small. By Theorem 11.21, ¢ — f uniformly on X ast¢ | 0

(1) The dominated convergence theorem (with dominating function being

| fllo 1K), shows ¢y — f in LP(u) as t | 0. This proves Item 1., since
Proposition 11.6 guarantees that C.(X) is dense in LP(u).



208 BRUCE K. DRIVER

(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f||, |k| 1) implies

0 =lim hdp = | limyhdp = hdjs.
tlo/X% K /thwt w /Xf 2
The proof is now finished by an application of Lemma 11.7.

11.1.1. Smooth Partitions of Unity. We have the following smooth variants of
Proposition 10.24, Theorem 10.26 and Corollary 10.27. The proofs of these re-
sults are the same as their continuous counterparts. One simply uses the smooth
version of Urysohn’s Lemma of Corollary 11.25 in place of Lemma 10.15.

Proposition 11.29 (Smooth Partitions of Unity for Compacts). Suppose that X
is an open subset of R*, K C X is a compact set and U = {Uj}?zl s an open
cover of K. Then there exists a smooth (i.e. h; € C*(X,[0,1])) partition of unity
{hj}?zl of K such that hy < U; for all j =1,2,...,n.

Theorem 11.30 (Locally Compact Partitions of Unity). Suppose that X is an open
subset of R™ and U is an open cover of X. Then there exists a smooth partition of
unity of {h;}_, (N = oo is allowed here) subordinate to the cover U such that
supp(h;) is compact for all i.

Corollary 11.31. Suppose that X is an open subset of R" and U = {Ua}pcn C T
is an open cover of X. Then there exists a smooth partition of unity of {ha}aca
subordinate to the cover U such that supp(hy) C Uy for all « € A. Moreover if U,
is compact for each a € A we may choose hy so that hy < Ul,.

11.2. Classical Weierstrass Approximation Theorem. Let Z := NU {0}.

Notation 11.32. For z € R? and a € Z% let 2 = Hle z{" and |a| = Z?Zl Q.
A polynomial on R? is a function p : R? — C of the form

p(x) = Z Pax® with p, € Cand N € Z,..
aila|<N

If po # 0 for some « such that || = N, then we define deg(p) := N to be the

degree of p. The function p has a natural extension to z € C¢, namely p(z) =
d )
Za:‘alngaz“ where 2% = [[;_; 2.

Remark 11.33. The mapping (z,y) € R xR? — 2z = x+iy € C? is an isomorphism
of vector spaces. Letting z = = — iy as usual, we have z = ZJQFZ and y = 5=,
Therefore under this identification any polynomial p(z, i) on R xR? may be written

as a polynomial ¢ in (z, Z), namely

Z2+2zZ z—Z

2 7 % )
Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in (z,y),
namely p(z,y) = q(z + iy, x — iy).
Theorem 11.34 (Weierstrass Approximation Theorem). Let a,b € R? with a < b
(i.e. a; <b; fori=1,2,...,d ) and set [a,b] := [a1,b1] X -+ X [ag,bq]. Then for
f € C([a,b],C) there exists polynomials p, on R? such that p, — f uniformly on
[a,b].

Q(Z, 2) = p(
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We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate § — functions.

Corollary 11.35. Suppose that K C R? is a compact set and f € C(K,C). Then
there exists polynomials p, on R? such that p, — f uniformly on K.

Proof. Choose a,b € R% such that a < band K C (a,b) := (a1, b1)x---x(aq,bq).
Let f : K U (a,b)° — C be the continuous function defined by f|x = f and
f l(a,p)c = 0. Then by the Tietze extension Theorem (either of Theorems 10.2 or
10.16 will do) there exists F € C(R%,C) such that f = F|gu(ap)e- Apply the
Weierstrass Approximation Theorem 11.34 to F|j, ) to find polynomials p,, on R4

such that p, — F uniformly on [a,b]. Clearly we also have p,, — f uniformly on
K m

Corollary 11.36 (Complex Weierstrass Approximation Theorem). Suppose that
K C C% is a compact set and f € C(K,C). Then there exists polynomials p,(z, 2)
for z € C? such that sup,c g |pn(z,2) — f(2)] — 0 as n — oc.

Proof. This is an immediate consequence of Remark 11.33 and Corollary 11.35.
u

Example 11.37. Let K = S' = {z € C: |z| = 1} and A be the set of polynomials
in (z, z) restricted to S'. Then A is dense in C(S').?% Since Z = 27! on S', we have
shown polynomials in z and 27! are dense in C(S'). This example generalizes in
an obvious way to K = (S’l)d c C.

11.2.1. First proof of the Weierstrass Approximation Theorem 11.34. Proof. Let
0: =(0,0,...,0) and 1: = (1,1,...,1). By considering the real and imaginary
parts of f separately, it suffices to assume f is real valued. By replacing f by
g(z) = flag + z1(b1 — a1),...,aq + z4(bg — aq)) for = € [0,1], it suffices to prove
the theorem for f € C([0,1]).

For z € [0,1], let v, be the measure on {0,1} such that v, ({0}) = 1 — 2 and
vy ({1}) = 2. Then

(11.12) / ydvg(y) =0-(1—2z)+ 1 -z =z and
{0,1}

(11.13) /{o 1}(y —2)dv,(y) =2*(1—z)+ (1 —2)? -z = 2(1 — 2).

For z € [0,1] let py = vy, ®- - - @y, be the product of vy, ..., vy, on Q= {0,1}%.
Alternatively the measure u, may be described by
d

(1114 e ({eh) = [L (1~ ' a

i=1
for € € Q. Notice that p, ({€}) is a degree d polynomial in = for each e € Q. For
n € N and z € [0,1], let p” denote the n — fold product of p, with itself on Q"
Xi(w) =w; € QCR? for w € Q" and let

Sp=(S:,..., 8 = (X1 +Xo 4+ X,,)/n,

23Note that it is easy to extend f € C(S?) to a function F € C(C) by setting F(z) = zf(ﬁ)

for z # 0 and F(0) = 0. So this special case does not require the Tietze extension theorem.
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s0 Sy, 1 " — RY. The reader is asked to verify (Exercise 11.2) that

(11.15) SMWZ—(/ Sldu”, ..., Sﬁduﬁ)—(ml,...,xd)—x
Qn Qn Qn
and
d
11.1 o — P dpt = = (=) < =
(11.16) [ 180l du Zx <2

From these equations it follows that S, is concentrating near = as n — oo, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(11.17) pn(T) == o S(Sn)dpy

should approach f(x) as n — oo.
Let € > 0 be given, M = sup {|f(z)| : = € [0,1]} and

de =sup{|f(y) — f(z)| : 2,y € [0,1] and |y — x| < €}.

By uniform continuity of f on [0, 1], lim. ¢ é. = 0. Using these definitions and the
fact that p2(Q") =1,

[f (@) = pn(2)] =

| @) = 75 du

< [ 15@ - sl du

< / F(@) — F(Su)| diil + / F(@) — F(Sa)]dpe”
{|Sn—z|>€} {|Sn—z|<e}
(11.18) <2Mul (1S, — x| > €) + 6.

By Chebyshev’s inequality,

1
(S —al > 9 < 5 [ (S, - afdu = =
Qn

ne2’
and therefore, Eq. (11.18) yields the estimate
2dM

If = pall, <

€

and hence

limsup||f —pnl, <6 —0ase 0.

n—oo

This completes the proof since, using Eq. (11.14),

= > [Sa@)upw}) = Y f(S Hum({wz‘}),

UJGQ”’ UJEQ"’
is an nd — degree polynomial in z € RY). m

Exercise 11.2. Verify Egs. (11.15) and (11.16). This is most easily done using
Egs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over Kkill since these are only finite sums after all. Nevertheless it
is convenient to use this formulation.)
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11.2.2. Second proof of the Weierstrass Approximation Theorem 11.834. For the
second proof we will first need two lemmas.

Lemma 11.38 (Approximate § — sequences). Suppose that {Q,} —, is a sequence
of positive functions on R% such that

(11.19) Qn(x) de =1 and
Rd

(11.20) lim Qn(x)dz =0 for all e > 0.
|z|>e
For f € BC(R?), Q, * f converges to f uniformly on compact subsets of RY.
Proof. Let x € RY, then because of Eq. (11.19),

|Qn x f(z) — flz)] = ‘/ Qn(y) (f(z—y) — f(z))dy S/ Qu) f(x—y) — f(z)|dy.
R4 Rd
Let M = sup {|f(x)| cx € ]Rd} and € > 0, then by and Eq. (11.19)

|Qn * f(z) = f(z)] < Qn) f(z —y) — f(x)ldy

ly|<e
+ Qn(y) |f(z—y) — f(2)|dy
ly|>e
< sup |f(z+2) — f(x)| +2M Qn(y)dy.
|z <e ly|>e

Let K be a compact subset of R%, then
sup |Qn x f(z) — f(z)| < sup |f(z+2) — f(z)]+2M @Qn(y)dy
reEK |z|<e,zeK ly|>e€
and hence by Eq. (11.20),
lim sup sup [Qu + f(&) — f(@)| < swp |f(@+2)— f(x)].
n—oo reK |z|<e,z€ K

This finishes the proof since the right member of this equation tends to 0 as € | 0
by uniform continuity of f on compact subsets of R™. m
Let gy, : R —[0,00) be defined by
1

1
(11.21) gn(z) = —(1 - xz)"1|x|<1 where ¢, := / (1 —z?)"dz.
Cp, - _1
Figure 26 displays the key features of the functions g,.
Define
(11.22) Qn : R" = [0,00) by Qun(z) = gn(z1) - .- gn(za)-

Lemma 11.39. The sequence {Qn},,of:l is an approximate § — sequence, i.e. they
satisfy Eqs. (11.19) and (11.20).

Proof. The fact that @), integrates to one is an easy consequence of Tonelli’s
theorem and the definition of ¢,. Since all norms on R¢ are equivalent, we may
assume that |z| = max {|z;| : 4 =1,2,...,d} when proving Eq. (11.20). With this
norm

{xGRd:|x|26}:uf:1{m€Rd:|xi\Ze}
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‘—R:

0 0.5 1

X

FIGURE 26. A plot of ¢1, ¢s50, and g199. The most peaked curve is
q100 and the least is q;. The total area under each of these curves
is one.

and therefore by Tonelli’s theorem and the definition of ¢,

x)dx < i / Qn(z)dz =d / qn(x)dx.

{le]>e} e >e) {c€R]x|>c}
Since

1 n
/ 4o (@) = 2 [7(1—a®)"dx
n -
|z|>e 2 [ (1 —a?)ndx + 2f (1 —22)"dx
f L1 —a®)de  (1—2?)" L (1- )t
S A= yde (e T (-

— 0 as n — oo,

the proof is complete. m

We will now prove Corollary 11.35 which clearly implies Theorem 11.34.

Proof. Proof of Corollary 11.35. As in the beginning of the proof already given
for Corollary 11.35, we may assume that K = [a,b] for some a < b and f = F|k
where F' € C(R4,C) is a function such that F|x. = 0. Moreover, by replacing F(z)
by G(z) = F(a; + z1(b1 — a1),...,aq + za(bg — aq)) for x € R™ we may further
assume K = [0,1].

Let Q. (z) be defined as in Eq. (11.22). Then by Lemma 11.39 and 11.38,
() := (Qn *x F)(z) — F(z) uniformly for = € [0,1] as n — oo. So to finish the
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proof it only remains to show p,,(z) is a polynomial when z € [0, 1]. For z € [0, 1],

pala) = [ Qula =) f)dy
1

= — ()

En J[0,1] i=1

—=
—
o
S
—
—~
—_
|
—~
8
ISk
|
N
N
~
[V
~
3
=
&
|
<
IN
—
R
I
<

d
1
=— fly e (1= (2 — y:)*)"] dy.
e Jo )L[l[ (1= %)
Since the product in the above integrand is a polynomial if (z,y) € R™ x R", it
follows easily that p,(x) is polynomial in z. =

11.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 11.34
to more general topological spaces. We will first need some definitions.

Definition 11.40. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

(1) A is said to separate points if for all distinct points x,y € X there exists
f € Asuch that f(z) # f(y).

(2) A is an algebra if A is a vector subspace of C'(X) which is closed under
pointwise multiplication.

(3) Ais called a lattice if fV g := max(f,g) and f A g = min(f,g) € A for all
f,geA

(4) A C C(X) is closed under conjugation if f € A whenever f € A.%4

Remark 11.41. If X is a topological space such that C(X,R) separates points then
X is Hausdorft. Indeed if z,y € X and f € C(X,R) such that f(z) # f(y), then
f71(J) and f~1(I) are disjoint open sets containing z and y respectively when I
and J are disjoint intervals containing f(x) and f(y) respectively.

Lemma 11.42. If A C C(X,R) is a closed algebra then |f| € A for all f € A and
A is a lattice.
Proof. Let f € A and let M = sup |f(z)|. Using Theorem 11.34 or Exercise
reX
11.8, there are polynomials p, (¢) such that

lim sup [[t] —pn(t)] = 0.
N0 <M

By replacing p,, by p, — pn(0) if necessary we may assume that p,(0) = 0. Since
A is an algebra, it follows that f, = p,(f) € A and |f| € A, because |f| is the
uniform limit of the f,,’s. Since
1
fvg=5 (f+g+If—gl)and
1
frg=5(f+g=If gl

we have shown A is a lattice. m

24This is of course no restriction when C(X) = C(X, R).
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Lemma 11.43. Let A C C(X,R) be an algebra which separates points and x,y € X
be distinct points such that

(11.23) 3 f,ge A > f(z)#0 and g(y) #0.
Then
(11.24) Vim {(F@), J) : € Ap=R2.

Proof. It is clear that V is a non-zero subspace of R? If dim(V) = 1, then V =
span(a,b) with a # 0 and b # 0 by the assumption in Eq. (11.23). Since (a,b) =
(f(z), f(y)) for some f € Aand f? € A, it follows that (a?,b?) = (f%(z), f2(y)) € V

as well. Since dimV =1, (a,b) and (a?,b?) are linearly dependent and therefore

2
O—det( " b2 )—abQ—baQ—ab(b—a)

which implies that a = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2,ie. V=R2 =

Theorem 11.44 (Stone-Weierstrass Theorem). ppose X is a compact Hausdorff
space and A C C(X,R) is a closed subalgebra which separates points. For x € X
let

A, ={f(x): f € A} and
I. ={f € C(X,R) : f(z) =0}.
Then either one of the following two cases hold.
(1) A, =R for all x € X, i.e. for all x € X there exists f € A such that
F) £0
(2) There exists a unique point xo € X such that Ay, = {0}.

Moreover in case (1) A= C(X,R) and in case (2) A=1,, = {f € C(X,R):
f(zo) = 0}

Proof. If there exists z such that A,, = {0} (x¢ is unique since A separates
points) then A C Z,,. If such an z( exists let C = Z,, and if A, = R for all z, set
C = C(X,R). Let f € C, then by Lemma 11.43, for all z,y € X such that z # y
there exists g5y € A such that f = g5, on {x,y}.25 The basic idea of the proof is
contained in the following identity,

(11.25) f(2) = inf sup g, (2) for all z € X.
zeX yex

To prove this identity, let g, := sup,c y gz and notice that g, > f since g, (y) =
f(y) for all y € X. Moreover, g,(z) = f(z) for all z € X since ggy(z) = f(x) for all
x. Therefore,

inf su = 1nf = f.
it yeg Gy = gz = [

The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (11.25) becoming only an approximate
identity.

251f A contains the constant function 1, then this hypothesis holds.
267¢ Az, = {0} and © = ¢ or y = xo, then gy exists merely by the fact that A separates
points.
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Claim 2. Given € > 0 and © € X there exists g, € A such that g,(x) = f(z) and
f<gs+eonX.

To prove the claim, let V,, be an open neighborhood of y such that |f — gay| < €
on Vy, so in particular f < € 4 gz, on V,. By compactness, there exists A CC X

such that X = |J V,,. Set
yEA

9x(2) = max{g.y(2) 1 y € A},

then for any y € A, f < €+ gy < € + g, on V, and therefore f < € + g, on X.
Moreover, by construction f(z) = g,(x), see Figure 27 below.

Fuy

F1GURE 27. Constructing the funtions g,.

We now will finish the proof of the theorem. For each z € X, let U, be a
neighborhood of z such that |f — ¢g.|] < € on U,. Choose I' CC X such that
X = |J U, and define

zel’
g=min{g, :x €T} € A.
Then f <g+eon X and for z €T', g, < f 4+ € on U, and hence g < f + € on U,.

Since X = |J Uy, we conclude
zel

f<g+eandg< f+eon X,
i.e. |f —g| < eon X. Since € > 0 is arbitrary it follows that f € A= A. =

Theorem 11.45 (Complex Stone-Weierstrass Theorem). Let X be a compact
Hausdorff space. Suppose A C C(X,C) is closed in the uniform topology, sep-
arates points, and is closed under conjugation. Then either A = C(X,C) or

A=1I5 ={f € C(X,C): f(zxg) =0} for some ¢ € X.

Proof. Since

|
|

f+
2

ff

Re f = =7
ef %

and Im f =
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Re f and Im f are both in A. Therefore
Ar ={Re f,Im f : f € A}

is a real sub-algebra of C(X,R) which separates points. Therefore either Agx =
C(X,R) or Ax = I, N C(X,R) for some z and hence A = C(X,C) or IT,
respectively. m

As an easy application, Theorems 11.44 and 11.45 imply Corollaries 11.35 and
11.36 respectively.

Corollary 11.46. Suppose that X is a compact subset of R™ and p is a finite
measure on (X, Bx), then polynomials are dense in LP(X, u) for all 1 < p < oo.

Proof. Consider X to be a metric space with usual metric induced from R™.
Then X is a locally compact separable metric space and therefore C.(X,C) =
C(X,C) is dense in LP(u) for all p € [1,00). Since, by the dominated convergence
theorem, uniform convergence implies LP(u) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in LP(u). ®

Here are a couple of more applications.

Example 11.47. Let f € C([a,b]) be a positive function which is injective. Then
functions of the form ZIJLI arf* with a;, € C and N € N are dense in C([a,b)]).

For example if = 1 and b = 2, then one may take f(z) = x® for any o # 0, or
f(x) = e*, etc.

Exercise 11.3. Let (X, d) be a separable compact metric space. Show that C(X)
is also separable. Hint: Let £ C X be a countable dense set and then consider the

algebra, A C C(X), generated by {d(z,-)},cp -

11.4. Locally Compact Version of Stone-Weierstrass Theorem.

Theorem 11.48. Let X be non-compact locally compact Hausdorff space. If A is
a closed subalgebra of Co(X,R) which separates points. Then either A = Cy(X,R)
or there exists xg € X such that A= {f € Co(X,R) : f(zo) = 0}.

Proof. There are two cases to consider.

Case 1. There is no point zg € X such that A C {f € Co(X,R) : f(zg) = 0}.
In this case let X* = X U {00} be the one point compactification of X. Because of
Proposition 10.31 to each f € A there exists a unique extension f € C(X*R)
such that f = f| x and moreover this extension is given by f(oo) = 0. Let
A:={f € C(X*,R) : f € A}. Then A is a closed (you check) sub-algebra
of C(X*,R) which separates points. An application of Theorem 11.44 implies
A={F e C(X*,R) 3F(c0) =0} and therefore by Proposition 10.31 A = {F|x :
Fe A} = Cy(X,R).

Case 2. There exists zp € X such A C {f € Co(X,R) : f(zo) = 0}. In this
case let Y := X \ {zo} and Ay := {f|y : f € A}. Since X is locally compact,
one easily checks Ay C Cp(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that Ay = Cy(Y,R). So if f € Cop(X,R) and f(zo) = 0,
fly € Co(Y,R) =Ay, i.e. there exists g € A such that gly = f|y. Since g(zo) =
f(zo) = 0, it follows that f = g € A and therefore A = {f € Co(X,R) : f(zo) = 0}.
n

Example 11.49. Let X = [0,00), A > 0 be fixed, A be the algebra generated by
t — e . So the general element f € A is of the form f(t) = p(e™**), where p(z)
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is a polynomial. Since A C Cy(X,R) separates points and e~ € A is pointwise

positive, A = Cy(X,R).
As an application of this example, we will show that the Laplace transform is
injective.

Theorem 11.50. For f € L([0,00),dz), the Laplace transform of f is defined by

LA = /OO e f(z)dx for all X > 0.
0
If Lf(N) =0 then f(z) =0 for m -a.e. x.

Proof. Suppose that f € L([0,00),dz) such that £f(\) = 0. Let g €
Co([0,0),R) and € > 0 be given. Choose {a}r>o such that # ({A > 0: ay # 0}) <
oo and

lg(x) — Zaw”‘ﬂ < eforall z > 0.
A>0
Then

[ s@is@as

0

AOO (g(x) — Z a,\e_m> f(z)dz

A>0
oo
= /
0

Since € > 0 is arbitrary, it follows that [;° g(x)f(z)dz = 0 for all g € Cy([0, 00), R).
The proof is finished by an application of Lemma 11.7. =

g(z) — Z are

A>0

[f (@) dz < €| f]]x-

11.5. Dynkin’s Multiplicative System Theorem. This section is devoted to
an extension of Theorem 8.12 based on the Weierstrass approximation theorem. In
this section X is a set.

Definition 11.51 (Multiplicative System). A collection of real valued functions @
on a set X is a multiplicative system provided f - g € @) whenever f,g € Q.

Theorem 11.52 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of B(X,R) which contains the constant functions and is closed under bounded
convergence. If Q C H is multiplicative system, then H contains all bounded real
valued o(Q)-measurable functions.

Theorem 11.53 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of B(X,C) such that: 1 € H, H is closed under complex conjugation,
and H is closed under bounded convergence. If Q C H is multiplicative system
which is closed under conjugation, then H contains all bounded complex valued
o(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
(11.26) B:={xeX: fi(z) €Ry,..., fm(z) € Rp}

where m = 1,2,..., and for k = 1,2,...,m, fir € Q and Ry is an open interval if
F = R or Ry is an open rectangle in C if F = C. The family C is easily seen to be
a 7 — system such that ¢(Q) = o(C). So By Theorem 8.12, to finish the proof it
suffices to show 1 € H for all B € C.
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It is easy to construct, for each k, a uniformly bounded sequence of continuous
functions{¢f }° | on F converging to the characteristic function 1g,. By Weier-
strass’ theorem, there exists polynomials pf, (x) such that |pk(z) — ¢F(z)| < 1/n
for |z| < ||¢kl in the real case and polynomials p¥ (2,z) in z and z such that
pE(2,2) — ¢k (2)| < 1/n for || < ||¢x]lc in the complex case. The functions

Fo =sb(FOR2(f2) - P (fm)  (real case)
Fn ::pi(flfl)pgz(f% f_z) .. 'p:?(fWH f_m) (complex Ca‘se)

on X are uniformly bounded, belong to H and converge pointwise to 15 as n — oo,
where B is the set in Eq. (11.26). Thus 15 € H and the proof is complete. ®

Remark 11.54. Given any collection of bounded real valued functions F on X,
let H(F) be the subspace of B(X,R) generated by F, i.e. H(F) is the smallest
subspace of B(X,R) which is closed under bounded convergence and contains F.
With this notation, Theorem 11.52 may be stated as follows. If F is a multiplicative
system then H(F) = By(7)(X,R) — the space of bounded o (F) — measurable real
valued functions on X.

11.6. Exercises.

Exercise 11.4. Let (X, 7) be a topological space, 1 a measure on Bx = o(7) and
f:+ X — C be a measurable function. Letting v be the measure, dv = |f| dy, show
supp(v) = supp,,(f), where supp(v) is defined in Definition 9.41).

Exercise 11.5. Let (X, 7) be a topological space, u a measure on Bx = o(7) such
that supp(p) = X (see Definition 9.41). Show supp,,(f) = supp(f) = {f # 0} for
all f e C(X).

Exercise 11.6. Prove Proposition 11.24 by appealing to Corollary 7.43.

Exercise 11.7 (Integration by Parts). Suppose that (z,y) € R x R"™* — f(z,y) €
Cand (z,y) € R x R" ™' — g(z,y) € C are measurable functions such that for each
fixed y € R" ! o — f(z,y) and x — g(x,y) are continuously differentiable. Also
assume f - g, O, f - g and f - 0,¢g are integrable relative to Lebesgue measure on
R x R™™!, where 9, f(z,y) := %f(x +t,y)|t=0. Show

(11.27) /R Rnflaxf(x,y) -g(z,y)dzdy = —/ f(@,y) - 0:9(x, y)dzdy.

RxRn—1

(Note: this result and Fubini’s theorem proves Lemma 11.26.)

Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of 0 € R and
set () = ¢(ex). First verify Eq. (11.27) with f(x,y) replaced by t.(z) f(x,y) by
doing the x — integral first. Then use the dominated convergence theorem to prove
Eq. (11.27) by passing to the limit, € | 0.

Exercise 11.8. Let M < oo, show there are polynomials p,,(t) such that

lim sup ||t| —pn(t)] =0

as follows. Let f(t) = /1 —t for |[¢| < 1. By Taylor’s theorem with integral re-
mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
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constants®” «,, > 0 for n € N such that /T —z =1 — Yoo apa™ for all x| < 1.
m

Use this to prove Y ~° | o, = 1 and therefore ¢,,,(z) :=1— 3" | a,a™

lim sup |[vV1—z— ¢n(z)] =0.

m—00 |41<]
Let 1 —a =t2/M? ie. x=1—t>/M?, then
lim sup M qm(1 —12/M?)| =0
m—oo g < | M
so that py,(t) :== Mg (1 — t*/M?) are the desired polynomials.
Exercise 11.9. Given a continuous function f : R — C which is 27 -periodic and

n )
¢ > 0. Show there exists a trigonometric polynomial, p(6) = > a,e’?, such that
n=—N

|f(0) — P(0)| < € for all § € R. Hint: show that there exists a unique function
F € C(S") such that f(0) = F(e) for all § € R.

Remark 11.55. Exercise 11.9 generalizes to 27 — periodic functions on R<, i.e. func-
tions such that f(0+2me;) = f(0) foralli = 1,2,...,d where {ei}le is the standard
basis for R%. A trigonometric polynomial p(#) is a function of § € R? of the form
9) _ Z anein~9
nel’

where T' is a finite subset of Z?. The assertion is again that these trigonometric
polynomials are dense in the 27w — periodic functions relative to the supremum
norm.

Exercise 11.10. Let u be a finite measure on Bga, then I := span{ei*® : A € R4}
is a dense subspace of LP(u) for all 1 < p < oco. Hints: By Proposition 11.6, C.(R%)
is a dense subspace of LP(u). For f € C.(R?) and N € N, let

x) = Z f(x +27Nn).
nezd

Show fy € BC(RY) and x — fy(Nz) is 2m — periodic, so by Exercise 11.9, x —
fn(Nz) can be approximated uniformly by trigonometric polynomials. Use this
fact to conclude that fy € DE*(®). After this show fy — f in LP(p).

Exercise 11.11. Suppose that y and v are two finite measures on R? such that

(11.28) /Rd e dp(z) = /Rd e dy(x)

for all A € R%. Show i = v.

Hint: Perhaps the easiest way to do this is to use Exercise 11.10 with the
measure p being replaced by p+v. Alterna‘cively7 use the method of proof of Exercise
11.9 to show Eq. (11.28) implies [, fdu(z) = [ga fdv(z) for all f € C.(R?).
Exercise 11.12. Again let pu be a ﬁnlte measure on BRd. Further assume that
Cy = [pae®ldp(z) < oo for all M € (0,00). Let P(RY) be the space of
polynomials, p(z) = >, <y Paz® With po € C, on R<. (Notice that |p(z)[P <
C(p,p, M)eMI#l so that P(R?) ¢ LP(u) for all 1 < p < 00.) Show P(R?) is dense
in LP(p) for all 1 < p < oo. Here is a possible outline.

(2n=3)!!
2nn!

2Ty fact ap = , but this is not needed.
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Outline: For A € R? and n € Nlet f{(z) = (A-z)" /n!
(1) Use calculus to verify sup,sqt®e™ " = (a/M)* e~ for all & > 0 where
(O/M)O := 1. Use this estimate along with the identity

A-af”™ < AP [l = (Jaf?™ e Mol AP e

to find an estimate on [ f{]|, .
(2) Use your estimate on || f{||, to show > 131l < oo and conclude

N
-2 B
n=0 P

(3) Now finish by appealing to Exercise 11.10.

lim =0.
N—oo

Exercise 11.13. Again let y be a finite measure on Bra but now assume there
exists an € > 0 such that C := [, e?®ldp(z) < co. Also let ¢ > 1 and h € L9(y)
be a function such that [p, h(z)z*du(z) = 0 for all & € NZ. (As mentioned in
Exercise 11.13, P(RY) C LP(p) for all 1 < p < oo, so & — h(z)z® is in L'(u).)
Show h(z) = 0 for u— a.e. x using the following outline.
Outline: For A € R? and n € Nlet f)(z) = (A-2)" /n! and let p = q/(q — 1)
be the conjugate exponent to q.
(1) Use calculus to verify sup,sot®e™ = (a/e)* e for all @ > 0 where
(0/€)? := 1. Use this estimate along with the identity

A < AP faf™ = (Jopr emelel) A el

to find an estimate on Hff;”p .

(2) Use your estimate on Hf;L\Hp to show there exists § > 0 such that
S Hf")l\Hp < oo when || < § and conclude for || < & that e*® = LP(u)-
S o [ (). Conclude from this that

/ h(z)e*®du(z) = 0 when |X| < 6.
Rd

(3) Let A € R? (|A] not necessarily small) and set g(t) := [pa € h(z)du(z)
for t € R. Show g € C*°(R) and

g™ (t) = /]Rd i\ - x) e T h(2)du(x) for all n € N.
(4) Let T'=sup{r > 0: gljo,; = 0}. By Step 2., T'> 4. If T' < o0, then
0 = g™(T) = /R (i @) (@) dp() for all n € N
Use Step 3. with h replaced by e7**h(z) to conclude
o(T +1) = /R TN ) () = 0 for all £ < 6/ A

This violates the definition of T" and therefore T" = 0o and in particular we
may take T'=1 to learn

/ h(z)e* ®du(z) = 0 for all A € RY.
Rd
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(5) Use Exercise 11.10 to conclude that

/ h(e)g()du(z) = 0
R4

for all g € LP(u). Now choose g judiciously to finish the proof.
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12. HILBERT SPACES

12.1. Hilbert Spaces Basics.
Definition 12.1. Let H be a complex vector space. An inner product on H is a
function, (-,-) : H x H — C, such that

(1) (ax+by,z) = alz,z) + bly, z) i.e. x — (x, z) is linear.

(2) (z,y) = (y, ).

(3) ||z||* = (z,z) > 0 with equality ||z||?> =0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z,z) is anti-linear for
fixed z € H, i.e.

<27 ax + by> = d(z,x) + B<Zvy>
We will often find the following formula useful:
lz +yl* = (@ +y,2 +y) = ll=lI* + lyl* + (@, 9) + g, 2)
(12.1) = lll* + [lylI* + 2Re(z, )

Theorem 12.2 (Schwarz Inequality). Let (H, (-,-)) be an inner product space, then
for all x,y € H

[z, 9)| < llz[lllyll
and equality holds iff © and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0. First off notice
that if 2 = oy for some a € C, then (z,y) = a||y||* and hence

2
(@ 9)l = lel lyl™ = llzllyl-

Moreover, in this case a := ﬁzz

Now suppose that x € H is arbitrary, let z = x — |ly]|=%(z,9)y. (So z is the
“orthogonal projection” of = onto y, see Figure 28.) Then

X

SMZ= X~ (*l"’)a
: hyn®

3. t {7 4

[PYTES
FicURE 28. The picture behind the proof.

[{z, )|

lyll*

(x,y>y
Iyl

_ HxHQ . ‘<$,y>‘2

lylI>

from which it follows that 0 < |y||?||z||*> — |(z,y)|* with equality iff = = 0 or
equivalently iff z = ||y|| ~%(z,y)y. =

<x,y>>

lyll* = 2Re(z, 7=y
lyl?

2
0<|l2]* = = [l=lI* +

T —
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Corollary 12.3. Let (H,{-,-)) be an inner product space and ||x|| := /{(z,x). Then
I -1l is @ norm on H. Moreover (-,-) is continuous on H x H, where H is viewed as
the normed space (H, ||-||).

Proof. The only non-trivial thing to verify that ||-|| is a norm is the triangle
inequality:
Iz +yl* = llzlI* + [lyl|* + 2Re(z,y) < [l2]* + [lyl* + 2]z [ly]
= (l=ll + lly)*

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows |z + y|| < ||z|| + ||y||. For the continuity assertion:

|<f13,y> - <$17yl>‘ = |<‘(Ij - xlay> + <mlvy - y/>|

< lyllle =2l + 12 [Hly — ¥/l

< lyllle = 2"l + (il + [l = 2'I) lly = /|

= [lyllllz — 2"l + lzlllly = ¥/l + lle = "y — ¢/l
from which it follows that (-,-) is continuous. m
Definition 12.4. Let (H,(-,-)) be an inner product space, we say x,y € H are
orthogonal and write z L y iff (x,y) = 0. More generally if A C H is a set,
x € H is orthogonal to A and write x L A iff (z,y) = 0 for all y € A. Let
At ={x € H:x L A} be the set of vectors orthogonal to A. We also say that a
set S C H is orthogonal if z 1 y for all z,y € S such that x # y. If S further
satisfies, ||z|| = 1 for all z € S, then S is said to be orthonormal.
Proposition 12.5. Let (H,{-,-)) be an inner product space then

(1) (Parallelogram Law)

(12.2) lz +yl1* + o = yl* = 2]z + 2l|y]|*

forall x,y € H.
(2) (Pythagorean Theorem) If S C H is a finite orthonormal set, then

(12.3) 1> 21?2 =Y ll=]*
zeS €S
(3) If AC H is a set, then A+ is a closed linear subspace of H.

Remark 12.6. See Proposition 12.40 in the appendix below for the “converse” of
the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

Iz +l* + llz = ylI* = ll=* + llyll* + 2Re(z, ) + [l2[|* + [ylI* — 2Re(z, y)

= 2] + 2]y,
and
I 2lP=0"2> =Y (=
z€eS zeS yeSs z,yeS

D wa) =) el

zES zeS
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Item 3. is a consequence of the continuity of (-, ) and the fact that
At = Ngeaker((-,z))
where ker({-,z)) = {y € H : (y,x) = 0} — a closed subspace of H. ®

Definition 12.7. A Hilbert space is an inner product space (H, (-,-)) such that
the induced Hilbertian norm is complete.

Example 12.8. Let (X, M, p) be a measure space then H := L?(X, M, u) with

inner product
9) = / [ gdp
X

is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv-
alent” to a Hilbert space of this form.

Definition 12.9. A subset C of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] := {tx+ (1 —¢t)y:0 <t <1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.10. Suppose that H is a Hilbert space and M C H be a closed convex
subset of H. Then for any x € H there exists a unique y € M such that

lz =yl = d(e, M) = inf [lz - 2|

Moreover, if M is a vector subspace of H, then the point y may also be characterized
as the unique point in M such that (x —y) L M.

Proof. By replacing M by M — z := {m —xz : m € M} we may assume z = 0.
Let 6 :=d(0, M) = inf,,cps ||m|| and y, z € M, see Figure 29.

FIGURE 29. The geometry of convex sets.

By the parallelogram law and the convexity of M,

y+z||2

(12.4) 2llyl*+2[1]1* = lly+=2I*+lly—2]* = 4] +lly—2z[* > 46>+ |ly—z||°.

Hence if ||y|| = ||z|| = &, then 202 + 202 > 462 + ||y — 2|2, so that |ly — z[|> = 0
Therefore, if a minimizer for d(0, )| exists, it is unique.
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Existence. Let y,, € M be chosen such that ||y,| = 6, — § = d(0, M). Taking
Y = ym and z = y,, in Eq. (12.4) shows 202, + 202 > 462 + ||yn — ym|*. Passing to

m

the limit m,n — oo in this equation implies,

202 4 262 > 46 4 limsup ||y — ym |-
m,n— 00
Therefore {y,},.; is Cauchy and hence convergent. Because M is closed, y :=
lim y, € M and because ||| is continuous,

n—o0

lyll = T |yl = 6 = d(0, M).

So y is the desired point in M which is closest to 0.

Now for the second assertion we further assume that M is a closed subspace of
H and x € H. Let y € M be the closest point in M to x. Then for w € M, the
function

9(t) = llo = (y + tw)|* = |z - ylI* - 2tRe(z — y,w) + ¢*||w||?

has a minimum at ¢ = 0. Therefore 0 = ¢'(0) = —2Re(x — y,w). Since w € M is
arbitrary, this implies that (z —y) L M. Finally suppose y € M is any point such
that (x —y) L M. Then for z € M, by Pythagorean’s theorem,

lz =2l = llz —y+y—2I” =z =yl + ly — 2* = [l= -y

which shows d(z, M)? > ||z — y||?>. That is to say y is the point in M closest to z.
u

Definition 12.11. Suppose that A : H — H is a bounded operator. The adjoint
of A, denote A*, is the unique operator A* : H — H such that (Az,y) = (z, A*y).
(The proof that A* exists and is unique will be given in Proposition 12.16 below.)
A bounded operator A: H — H is self - adjoint or Hermitian if A = A*.

Definition 12.12. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that for
x € H, Py(z) is the unique element in M such that (z — Py(x)) L M.

Proposition 12.13. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection Py satisfies:

1) Py is linear (and hence we will write Pyrx rather than Py (z).
2) P} = Py (P is a projection,).

3) Pi; = Py, (Par is self-adjoint).

4) Ran(Pyr) = M and ker(Pyr) = M*.

Proof.
(1) Let x1,22 € H and o € F, then Ppzq + aPyze € M and
Pyxy + aPyxa — (21 + axe) = [Py — 1 + a(Pyze — x2)] € M+

showing Pprx1 + aPyas = Py(z1 + axs), i.e. Py is linear.
(2) Obviously Ran(Py) = M and Pyx = z for all z € M. Therefore P3, =
Pyy.
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(3) Let z,y € H, then since (z — Pyx) and (y — Pyry) are in M+,

(Pyw,y) = (Pyx, Pyy +y — Puy)
= (Pux, Pypy)
= (Pyz + (z — Pur), Puy)
= (z, Pmy).

(4) Tt is clear that Ran(Pys) C M. Moreover, if € M, then Pyx =  implies
that Ran(Py) = M. Now x € ker(Py) iff Pyz =0iff =2 —0¢€ ML,

Corollary 12.14. Suppose that M C H is a proper closed subspace of a Hilbert
space H, then H =M & M*.

Proof. Given z € H, let y = Pyz so that z —y € M+. Thenx =y + (z —y) €
M+ M=+ Ifz € MO ML, then z Lz, ie. ||z||> = (z,2) = 0. So M N M+ = {0}.
]

Proposition 12.15 (Riesz Theorem). Let H* be the dual space of H (Notation
3.63). The map

(12.5) ze H-L (,z) e H*
is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for z,z € H,

[{(x, 2)| < ||z|| ||2]] for all z € H

with equality when x = z. This implies that ||jz|| ;. = ||(-, 2)|| = = ||2]| . Therefore
j is isometric and this shows that j is injective. To finish the proof we must show
that j is surjective. So let f € H* which we assume with out loss of generality is
non-zero. Then M = ker(f) — a closed proper subspace of H. Since, by Corollary
1214, H = M ® M*, f : H/M = M* — F is a linear isomorphism. This
shows that dim(M<) = 1 and hence H = M & Fzo where zo € M=+ \ {0}.®
Choose z = Azg € M+ such that f(zo) = (x0,2). (So A = f(z0)/ ||lzo]”.) Then for
T =m+ Axg with m € M and X € F,

f(@) = Af (o) = Mzo, 2) = (Ao, 2) = (m + Azo, 2) = (2, 2)
which shows that f = jz. m

Proposition 12.16 (Adjoints). Let H and K be Hilbert spaces and A : H — K
be a bounded operator. Then there exists a unique bounded operator A* : K — H
such that

(12.6) (Az,y)x = (x, A"y for allz € H and y € K.
Moreover (A+ AB)* = A* + AB*, A* := (A*)* = A, ||A*| = | A|| and |A*A| =
|A||? for all A,B € L(H,K) and X\ € C.

28 Alternatively, choose g € M-\ {0} such that f(zo) = 1. For z € ML we have f(z—Azo) = 0
provided that A := f(z). Therefore z — Azg € M N M+ = {0}, i.e. * = Azp. This again shows
that M- is spanned by xg.
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Proof. For each y € K, then map z — (Az,y)k is in H* and therefore there
exists by Proposition 12.15 a unique vector z € H such that
(Az,y) g = (z,z) g for all z € H.

This shows there is a unique map A* : K — H such that (Az,y)x = (z, A*(y))
for all x € H and y € K. To finish the proof, we need only show A* is linear and
bounded. To see A* is linear, let y1,y2 € K and A € C, then for any « € H,

(Az, 1+ Ay2) k. = (Az,y1) i + MAzZ, o)
= (2, A" (1)) i + Mo, A™(y2))
= (@, A%(y1) + A" (y2)) &
and by the uniqueness of A*(y; + Ay2) we find
A% (y1 + Ay2) = A%(y1) + AA™ (2).
This shows A* is linear and so we will now write A*y instead of A*(y). Since
(A%, 2)m = (x, Ay)u = (Az,y)x = (y, Az)

it follows that A** = A. he assertion that (A + AB)" = A* 4+ AB* is left to the
reader, see Exercise 12.1.
The following arguments prove the assertions about norms of A and A* :

[A*[[= sup [[Ak[|= sup sup  |[(A"k, h)|
keK:|k|=1 keK:||k||=1 he H:|[h]|=1
= sup sup  [(k,Ah)[ = sup [|Ah| = [[A]],
heH:||h||=1 keK:|[k||=1 heH:|[h]|=1

1A A|l < AT ]| All = | AI* and

IAIP = sup  [{(Ah,AR)| = sup  |(h, A*AR)]
heH:||h||=1 heH:||h||=1
< sup  [[A"AR[ = [|AA].
heH:||h||=1

Exercise 12.1. Let H, K, M be Hilbert space, A, B € L(H, K), C € L(K, M) and
A€ C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 12.2. Let H = C" and K = C™ equipped with the usual inner products,
ie. (z,w)g =z -w for z,w € H. Let A be an m x n matrix thought of as a linear
operator from H to K. Show the matrix associated to A* : K — H is the conjugate
transpose of A.

Exercise 12.3. Let K : L?(v) — L?(p) be the operator defined in Exercise 9.12.
Show K* : L%(1) — L?(v) is the operator given by

K*g(y) = /X Bz, y)g()du(z).

Definition 12.17. {uq}aca C H is an orthonormal set if u, L ug for all a # 8
and |jus| = 1.
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Proposition 12.18 (Bessel’s Inequality). Let {uq taca be an orthonormal set, then
(12.7) > Kz ua)? < |la|? for all & € H.

acA
In particular the set {a € A : (x,uy) # 0} is at most countable for all x € H.

Proof. Let I' C A be any finite set. Then

0< ||z — Z(x U)o | = ||z]|? — 2Rez T, Ug) (Ua, T) + Z T, Ug,)|

acl acl acl
=llz* = > {z, ua)|®
ael
showing that
D ua) P < .
acl’
Taking the supremum of this equation of I' CC A then proves Eq. (12.7). =

Proposition 12.19. Suppose A C H is an orthogonal set. Then s = > _,v

exists in H iff >, c 4 |v]|* < co. (In particular A must be at most a countable set.)
Moreover, if 3, 4 |[v]|* < 0o, then

@) [IsII” = X pea vl and
(2) (s,z) =>,calv,x) for all x € H.

o0
Similarly if {v,}52, is an orthogonal set, then s = > v, exists in H iff

n=1

Z v | < 0o. In particular if Zl vy, exists, then it is independent of rearrange-
n

ments of {va}3,.

Proof. Suppose s =) _, v exists. Then there exists I' CC A such that

Dol ={> 2

vEA vEA

for all A cC A\T" ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such A shows that }-, ¢ 4\ |v]|* < 1 and therefore

ool <14+ |olf* < oo
vEA vel

Conversely, suppose that Y, 4 [[v]|* < co. Then for all € > 0 there exists ' CC A
such that if A cC A\ T,

2
(12.8) > | =

vEA

Z v||? < €%

veEA

Hence by Lemma 3.72, »  , v exists.
For item 1, let T'c be as above and set s := Z”En v. Then

sl = llselll < lls = sell <€
and by Eq. (12.8),

2
0< S Il2 —llscl? = 3 Jlofl? <

vEA vél.
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Letting € | 0 we deduce from the previous two equations that |s.|| — |s|| and
Isell* = 3= ,ea lvl” as e | 0 and therefore [ls[|* = 32, 4 [|]1*-

Item 2. is a special case of Lemma 3.72.
N
For the final assertion, let sy = > v, and suppose that limy_. sy = s exists
n=1

in H and in particular {sx}x_,; is Cauchy. So for N > M.
N
Z an||2 = ||5N - SMH2 —0as M,N — o0
n=M+1

[ee] [ee]
which shows that > |lv,||? is convergent, i.e. > ||v,]|? < oo.
n=1 n=1

Remark: We could use the last result to prove Item 1. Indeed, if 3~ 4 [[v]|* <

00, then A is countable and so we may writer A = {vn},zo:l . Then s = limy_,o SN
with sy as above. Since the norm ||-|| is continuous on H, we have
N 2 N oo
sl = Jim s = Jim S vn| = Jim 3 fall? = 3 foall? = 3 ol
n=1 n=1 n=1 veEA
| |

Corollary 12.20. Suppose H is a Hilbert space, 8 C H is an orthonormal set and
M = span 3. Then

(12.9) Py = Z(x,u)u,

uep
(12.10) > [, u)® = [|Pyz|* and
u€p
(12.11) > (@ u)(u,y) = (Pya,y)
u€p

for all xz,y € H.

Proof. By Bessel’s inequality, >, .5 [(z,u)]* < ||z||® for all z € H and hence
by Proposition 12.18, Pz := 3" s(z,u)u exists in H and for all z,y € H,

(1212) (P y) = 3wy y) = 3w ).
u€p uep

Taking y € B8 in Eq. (12.12) gives (Px,y) = (z,y), i.e. that (x — Px,y) = 0
for all y € 8. So (x — Px) L span 8 and by continuity we also have (z — Pz) L
M = span (. Since Px is also in M, it follows from the definition of P; that
Pz = Pyx proving Eq. (12.9). Equations (12.10) and (12.11) now follow from
(12.12), Proposition 12.19 and the fact that (Py,y) = (P, y) = (Pyuz, Payy)
forallz,y€c H. m

12.2. Hilbert Space Basis.

Definition 12.21 (Basis). Let H be a Hilbert space. A basis 8 of H is a maximal
orthonormal subset 5 C H.

Proposition 12.22. FEvery Hilbert space has an orthonormal basis.
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Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If & C F is linearly ordered then U® is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element 5 € F. ®

An orthonormal set 3 C H is said to be complete if 3+ = {0} . That is to say
if (z,u) =0 for all w € 8 then z = 0.

Lemma 12.23. Let 8 be an orthonormal subset of H then the following are equiv-
alent:

(1) B is a basis,

(2) B is complete and

(3) span = H.

Proof. If 3 is not complete, then there exists a unit vector x € A+ \ {0}.
The set 8 U {x} is an orthonormal set properly containing 3, so /3 is not maximal.
Conversely, if 8 is not maximal, there exists an orthonormal set §; C H such that
B & Bi. Then if © € 51\ B, we have (z,u) = 0 for all v €  showing 3 is not
complete. This proves the equivalence of (1) and (2). If 3 is not complete and
x € B+ \ {0}, then span 8 C z* which is a proper subspace of H. Conversely

if span 8 is a proper subspace of H, 3+ = span BL is a non-trivial subspace by
Corollary 12.14 and f is not complete. This shows that (2) and (3) are equivalent.
u

Theorem 12.24. Let 5 C H be an orthonormal set. Then the following are
equivalent:

(1) B is complete or equivalently a basis.

(2) x %:ﬁ(x ,uyu for all x € H.
(3) (z,y) = %(Js,w {(u,y) for all z,y € H.
4) ||lz||* = Z |(z,u)|? for all x € H.

Proof. Let M =span § and P = Py;.

(1) = (2) By Corollary 12.20, " (x,u)u = Pyx. Therefore
uef

x—Z(m,u)uzx—PMxeML =t ={0}.
uef

(2) = (3) is a consequence of Proposition 12.19.

(3) = (4) is obvious, just take y = x.

(4) = (1) If x € B+, then by 4), ||z|| = 0, i.e. = = 0. This shows that 3 is
complete. m

Proposition 12.25. A Hilbert space H is separable iff H has a countable ortho-
normal basis 3 C H. Moreover, if H is separable, all orthonormal bases of H are
countable.

Proof. Let D C H be a countable dense set D = {u,}>° ;. By Gram-Schmidt
process there exists 8 = {v,}2; an orthonormal set such that span{v, : n =
1,2...,N} Dspan{u, : n=1,2...,N}. Soif (z,v,) = 0 for all n then (z,u,) =0
for all n. Since D C H is dense we may choose {wy} C D such that = limy_, o wg
and therefore (x,z) = limg_, o0 (z, wr) = 0. That is to say x = 0 and S is complete.
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Conversely if § C H is a countable orthonormal basis, then the countable set

Zauu:aue(@+i@:#{u:au#0}<oo

ucpf

is dense in H.
Finally let 8 = {u,}52; be an orthonormal basis and 81 C H be another ortho-
normal basis. Then the sets

B, ={v € p1: (v,u,) # 0}
are countable for each n € N and hence B : U B,, is a countable subset of 5.

=1
Suppose there exists v € f1 \ B, then (v,u,) = O for all n and since 8 = {u, }>2
is an orthonormal basis, this 1mphes v = 0 which is impossible since |[v|| =
Therefore 81 \ B = () and hence 31 = B is countable. ®

nl

Definition 12.26. A linear map U : H — K is an isometry if ||Uz|, = ||z] 4
for all x € H and U is unitary if U is also surjective.

Exercise 12.4. Let U : H — K be a linear map, show the following are equivalent:
(1) U: H — K is an isometry,
(2) (Uz,Ux) g = (z,2')g for all z,2’ € H, (see Eq. (12.21) below)
(3) U*U =idy.

Exercise 12.5. Let U : H — K be a linear map, show the following are equivalent:
(1) U: H — K is unitary
(2) U*U =idy and UU* = idk.
(3) U is invertible and U~ = U*.

Exercise 12.6. Let H be a Hilbert space. Use Theorem 12.24 to show there exists
a set X and a unitary map U : H — (?(X). Moreover, if H is separable and
dim(H) = oo, then X can be taken to be N so that H is unitarily equivalent to

2 = (2(N).

Remark 12.27. Suppose that {u,}>2 is a total subset of H, i.e. span{u,} =
Let {v,, }22; be the vectors found by performing Gram-Schmidt on the set {un}nzl
Then {v, }°2; is an orthonormal basis for H.

Example 12.28. (1) Let H = L*([~m,7],dm) = L*(—m,m),dm) and
en(8) = \/LQ—We"”‘g for n € Z. Simple computations show 3 := {e,}, o4 is an
orthonormal set. We now claim that ( is an orthonormal basis. To see this
recall that C.((—m,n)) is dense in L?((—m,7),dm). Any f € C.((—m,n))
may be extended to be a continuous 27 — periodic function on R and hence
by Exercise 11.9), f may uniformly (and hence in L?) be approximated by
a trigonometric polynomial. Therefore 3 is a total orthonormal set, i.e.
is an orthonormal basis. The expansion of f in this basis is the well known
Fourier series expansion of f.

(2) Let H = L*([-1,1],dm) and A := {1,2,2% 2%...}. Then A is total in
H by the Stone-Weierstrass theorem and a sunllar argument as in the first
example or directly from Exercise 11.12. The result of doing Gram-Schmidt
on this set gives an orthonormal basis of H consisting of the “Legendre
Polynomials.”
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(3) Let H = L*(R, e~ 37" dz).Exercise 11.12 implies A := {1,z,2% 2%...} is
total in H and the result of doing Gram-Schmidt on A now gives an ortho—
normal basis for H consisting of “Hermite Polynomials.”

Remark 12. 29 (An Interesting Phenomena). Let H = L?*([-1,1],dm) and B :=
{1,23,25,2% ... }. Then again A is total in H by the same argument as in item 2.
Exarnple 12. 28 This is true even though B is a proper subset of A. Notice that A
is an algebraic basis for the polynomials on [—1,1] while B is not! The following
computations may help relieve some of the reader’s anxiety. Let f € L?([—1,1],dm),
then, making the change of variables 2 = 3'/2, shows that

(12.13) /1 £ () do = /11 ‘f(yl/?’)‘2 %y’z/gdy = /11 ’f(yl/g)fdu(y)

-1
where du(y) = 2y=2/3dy. Since p([-1,1)) = m([-1,1]) = 2, u is a finite mea-
sure on [—1,1] and hence by Exercise 11.12 A := {1,z,2%,23...} is a total in
L?([-1,1],dp). In particular for any € > 0 there exists a polynormal p(y) such that

/_11 ‘f(yl/‘”’) —p(y))zdu(y) _ e

However, by Eq. (12.13) we have
1 2 1
€2 1/3y _ _ 3?2 de.
> [ 56 =s)] dutw) = [ 15@) =) da

Alternatively, if f € C([—1,1]), then g(y) = f(y'/3) is back in C([—1, 1]). There-
fore for any € > 0, there exists a polynomial p(y) such that

€>|lg—pll, =sup{lg(y) —p(y)| : y € [-1,1]}
= sup{|g(:lc3) —p(m3)| cxel-1,1]} = sup{|f(:lc) —p(az3)| xe[-1,1]}.

3

This gives another proof the polynomials in x* are dense in C([—1,1]) and hence

in L2([-1, 1)).

12.3. Fourier Series Considerations. (BRUCE: This needs work and some stuff
from Section 18.1 should be moved to here.) In this section we will examine item
1. of Example 12.28 in more detail. In the process we will give a direct and

constructive proof of the result in Exercise 11.9.
For a € C, let dy, () :=>p_ . Since ad,(a) — dn(a) = o™t —a™™,

n n+1 —n
. g Q —«
dp(a) == kz af = ———
=—n
with the convention that
an+1 —a " an+1
la=1 = lim ———— 1= 21’“
a—1 a—1 it
Writing o = €, we find

) i0(n+1) __ —ifn 0(n+1/2) _ —if(n+1/2)
D, (0) :=d, (") = c I = : .
et _ 1 eit/2 _ g—i0/2
sin(n + 1)6

1
sin 50
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Definition 12.30. The function

n

(12.14) D, (0) := M — Z oik0

1
sin 50 P
is called the Dirichlet kernel.

By the L? — theory of the Fourier series (or other methods) one may shows that
D, — g as n — oo when acting on smooth periodic functions of . However this
kernel is not positive. In order to get a positive approximate § — function sequence,
we might try squaring D,, to find

2
102 1 0 n n n
IR U S I R R
2

k=—n k,l=—n k,=—n
2n 2n 7
= Z Z 1k:+l m,k,l€[ nn]a Z Z 1|m k:\<na
m=-=2nk,l=—n m=—2nk=—n
2n 2n
= Z n+14+n—|m|]a™ = Z 2n+4+1—|m|]a
m=—2n m=—2n
2n
= Z 2n + 1 — |m]|] e™?.
m=—2n

In particular this implies
2n

1 sin®(n+3)0 |m] y
12.15 2 = 1— ———|e™?,
(12.15) 2n+1 sin?lp 2 [ m+1)°

m=—2n
We will show in Lemma 12.32 below that Eq. (12.15) is valid for n € N.
Definition 12.31. The function
1 sin?(2H)e
n+1 sin?2lg

(12.16) Kn(0) :=

N[N

is called the Fejér kernel.

Lemma 12.32. The Fejér kernel K,, satisfies:

(1)

(12.17) K, (0) := Zn {1 — n|i+|1] e,

Kot 50) = 5 [ 5,0~ ) fe)da
S

and K,, x f(0) — f(0) uniformly in 0 as n — oo.
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Plots of K,,(0) for n =2, 7 and 13.
Proof. 1. Using

L1 0i0/2 _ o—i0/2 2 9 Tl _e=i0 9 _ if _ ,—if
sin® =0 = = =
2 21 —4 4
we find
ol & |m| .
4 1 2 -y 1— imb
(n+1)sin 5 Z { n+1]e

m=—n

_ (2 — e e—w) Z 1|m|§n [n +1— |m|] eimo

— Z 21\m|§n [n +1- |m|] - 1\m—1\§n [’n’ +1- |m - 1” eima
_1\m+1|§n [n+ 1- |m + 1”

- ¥ { jmi<n [0+ 1 = [mf] = Ln_yj<n [0+ 1 = |m —1]] }eime

-1 1-— 1
me{0,—n—1,n+1} jmei<n [+ [+ 11]

n+1

—92_ ei(n+1)9 _ efi(n+1)‘9 _ 4sin2( )9
which verifies item 1.

2.- 4. Clearly K,,(6) > 0 being the square of a function and item 3. follows by
integrating the formula in Eq. (12.17). Item 4. is elementary to check and is clearly
indicated in Figure 12.3.

5. Items 2-4 show that K, (f) has the classic properties of an approximate
0 — function when acting on 27 — periodic functions. Hence it is standard that
K, * f(0) — f(0) uniformly in 6 as n — oco. Eq. (12.18) is a consequence of the
simple computation,

K, f(0) = % _ﬁ K,(0 —a)f(a)da
= Z [1— TJZ_”J (%/ eimo‘f(a)da) em,

12.4. Weak Convergence. Suppose H is an infinite dimensional Hilbert space
and {z, },., is an orthonormal subset of H. Then, by Eq. (12.1), ||z, — z||* =2



ANALYSIS TOOLS WITH APPLICATIONS 235

for all m # n and in particular, {z,},-; has no convergent subsequences. From
this we conclude that C := {x € H : ||z|| < 1}, the closed unit ball in H, is not
compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C' is compact.

Definition 12.33. Let (X, ||-||) be a Banach space and X* be its continuous dual.
The weak topology, 7, on X is the topology generated by X*. If {z,} —, C X
is a sequence we will write z,, — = as n — oo to mean that z,, — x in the weak
topology.

Because 7, = 7(X*) C 7. := 7({l[|]x — || : € X'}, it is harder for a function
f+ X — F to be continuous in the 7, — topology than in the norm topology, 7.
In particular if ¢ : X — F is a linear functional which is 7,, — continuous, then ¢ is
7). — continuous and hence ¢ € X*.

Proposition 12.34. Let {mn}zozl C X be a sequence, then z,, — x € X asn — 0o
iff &(x) = limy,— o d(xy,) for all p € X*.

Proof. By definition of 7, we have z,, LreXiffforallT cCc X* and e >0
there exists an N € N such that |¢(x) — ¢(z,)| < € for all n > N and ¢ € T.
This later condition is easily seen to be equivalent to ¢(z) = lim, . ¢(z,,) for all
peX* m

The topological space (X, 7,) is still Hausdorff, however to prove this one needs
to make use of the Hahn Banach Theorem 18.16 below. For the moment we will
concentrate on the special case where X = H is a Hilbert space in which case
H* ={¢,:=(,z):z € H}, see Propositions 12.15. If z,y € H and z := y—x # 0,
then

0<e:= HZH2 = (bz(z) = ¢z(y) - ¢z(x)
Thus V, :={w € H : |¢p,(x) — p.(w)| < e/2}and V}, :={w € H : |¢.(y) — ¢.(w)]| <
are disjoint sets from 7, which contain x and y respectively. This shows that (H, 7,,)
is a Hausdorff space. In particular, this shows that weak limits are unique if they
exist.

Remark 12.35. Suppose that H is an infinite dimensional Hilbert space {x,}, ; is
an orthonormal subset of H. Then Bessel’s inequality (Proposition 12.18) implies
z, — 0 € H as n — co. This points out the fact that if z,, — z € H as n — oo, it
is no longer necessarily true that ||z|| = lim,_ ||z,| - However we do always have
lz]] < liminf, . ||zn| because,

l2l|* = lim {2, ) < liminf [l {|]]] = [|]| lim inf ||z,
n—00 n—00 n—oo

Proposition 12.36. Let H be a Hilbert space, B C H be an orthonormal basis for
H and {x,},—, C H be a bounded sequence, then the following are equivalent:

w

(1) &, =z € H as n — .
(2) (z,y) =lim,—oo(zp,y) for ally € H.
(3) (z,y) =limp— oo (Tn,y) for ally € 5.
Moreover, if ¢, := lim, .o (n, y) exists for all y € B, then 3 4 |cy|2 < oo and

w

Tn =X =) 50y € H asn — oo.

Proof. 1. = 2. This is a consequence of Propositions 12.15 and 12.34. 2. —
3. is trivial.

€/2}
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3. = 1. Let M := sup,, ||z,|| and Hy denote the algebraic span of 5. Then for
y € H and z € Hy,

(2 = 2n, y)| < (@ — 2, 2)| + (@ — 2,y — 2)| < (2 — 20, 2) [+ 2M ||y — 2]

Passing to the limit in this equation implies lim sup,, . [(x — zn,y)| < 2M ||y — z||
which shows limsup,, . [( — Zn,y)| = 0 since Hy is dense in H.

To prove the last assertion, let I' CC . Then by Bessel’s inequality (Proposition
12.18),

E le,[? = lim E (2, y))* < liminf ||z,||* < M2
n—0oo n—oo
yel’ yer

Since I' CC 3 was arbitrary, we conclude that Zye 3 |cy|2 < M < oo and hence we

may define z := )" _,c,y. By construction we have

yep

(z,y) = ¢, = lim (z,,y) forall y € 8

and hence z,, — x € H as n — oo by what we have just proved. m

Theorem 12.37. Suppose that {z,},.; C H is a bounded sequence. Then there
exists a subsequence yi 1= T, of {xn}zo:l and x € X such that y, — x as k — o0o.

Proof. This is a consequence of Proposition 12.36 and a Cantor’s diagonalization
argument which is left to the reader, see Exercise 12.14. m

Theorem 12.38 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that H is a
separable Hilbert space, C := {x € H : ||z|| < 1} is the closed unit ball in H and
{en}or | is an orthonormal basis for H. Then

(12.19) plz,y) =Y 2% (z =y, en)l

defines a metric on C which is compatible with the weak topology on C, ¢ =
(Tw)e ={V NC:V er,}. Moreover (C,p) is a compact metric space.

Proof. The routine check that p is a metric is left to the reader. Let 7, be
the topology on C' induced by p. For any y € H and n € N, the map x € H —
(x —y,en) = (x,en) — (y,€n) is 7, continuous and since the sum in Eq. (12.19) is
uniformly convergent for x,y € C, it follows that + — p(z,y) is 7¢ — continuous.
This implies the open balls relative to p are contained in 7¢ and therefore 7, C
7c. For the converse inclusion, let z € H, x — ¢.(z) = (z,2) be an element of
H*, and for N € N let zy = Zg:1<z,en>en. Then ¢, = ZnN:1<z,en><;$en is p
continuous, being a finite linear combination of the ¢., which are easily seen to be
p — continuous. Because zy — z as N — oo it follows that

sup |¢=(x) — ¢z ()] = ||z — 2n || — 0 as N — oo.
x€

Therefore ¢.|c is p — continuous as well and hence 7¢ = 7(¢.|c : 2 € H) C 7.
The last assertion follows directly from Theorem 12.37 and the fact that sequen-
tial compactness is equivalent to compactness for metric spaces. m

Theorem 12.39 (Weak and Strong Differentiability). Suppose that f € L*(R™)
and v € R™\ {0} . Then the following are equivalent:
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(1) There exists {t,},-, C R\ {0} such that lim, . t, =0 and

f( + tnv) — f() < o0.

tn 9
(2) There exists g € L2(R™) such that {f,0,¢) = —(g,¢) for all p € C=(R™).
(3) There exists g € L*(R™) and f,, € C®(R™) such that f, 5 fand 0, fy, A g

as n — o0o.
(4) There exists g € L* such that

fl+t) = f()
t
(See Theorem 19.18 for the LP generalization of this theorem.)

sup
n

2
L—>g ast— 0.

Proof. 1. = 2. We may assume, using Theorem 12.37 and passing to a
w

subsequence if necessary, that ﬂﬂ”fiw = g for some g € L?*(R"). Now for
¢ € C(R™),

fE+tav) = fO) P = tnt) = 60),

tg.0) = tim (=IO g i g7, Xt
- <f7 nlLH;O QS( - tn;)) — ¢()> = 7<f7 81)¢>7

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.

2. = 3. Let ¢ € C(R™,R) such that [;, ¢(x)dz = 1 and let ¢, (z) =
m"¢(mzx), then by Proposition 11.24, h,, := ¢, * f € C°(R™) for all m and

Ot (@) = 06+ 1) = [ 06l = ) F @)y = (.0, 6 (2 = )

= (9:bm (¥ =) = dm * g(2).

By Theorem 11.21, h,, — f € L?*(R") and Oyhy, = ¢m x g — g in L?*(R") as
m — 00. This shows 3. holds except for the fact that h,, need not have compact
support. To fix this let ¢ € C°(R™,[0,1]) such that ¢) = 1 in a neighborhood of 0
and let 9. (x) = 1p(ex) and (0,9), (x) := (0v¥) (ex). Then

81) (wehm) == avwehm + 7;Z)ea1zhm =€ (81)7/})6 hm + 7;Z)ea1zhm
so that ¥chy, — hy, in L? and 0y, (Wehim) — Ophu, in L? as € | 0. Let fo, = e, him
where €,, is chosen to be greater than zero but small enough so that
e i = B lg + 100 (Ve hin) = Ovhimly < 1/m.
Then f’rn S CSO(Rn)v f'rn - f and avf'rn -9 in L2 as m — oo.
3. = 4. By the fundamental theorem of calculus

Tftvfm(m) — fm(x) _ fm<x + t’U) - fm(w)

t 4

(12.20) = % /01 disfm(x + stv)ds = /01 (Op fm) (x + stv)ds.

Let ) )
Gi(z) == / T_stog(T)ds = / g(x + stv)ds
0 0



238 BRUCE K. DRIVER'

which is defined for almost every x and is in L?(R") by Minkowski’s inequality for
integrals, Theorem 9.27. Therefore

Tftvfm(xz - fm(x) i Gt(x) — /1 [(avfm) (:U + St’U) — g(m + stv)} ds
0

and hence again by Minkowski’s inequality for integrals,

Tftvfm - fm
t

— G,

1 1
< / 1 stw (Do) = T—stuglly ds = / 100 fm — gll, ds.
2 0 0

Letting m — oo in this equation implies (7_¢, f — f) /t = G; a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

T_tof — f _
n g

1
G —gll, = H [ g =gpas
2 0

2

1
< / Im—etog — gll, ds.
0

By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as t — 0 and this proves 4. The proof is now complete since 4. = 1. is trivial.
]

12.5. Supplement 1: Converse of the Parallelogram Law.

Proposition 12.40 (Parallelogram Law Converse). If (X, ||-||) ¢s a normed space
such that Eq. (12.2) holds for all x,y € X, then there exists a unique inner product
on (-,-) such that ||z|| := \/(z,x) for all x € X. In this case we say that ||-|| is a
Hilbertian norm.

Proof. If ||-|| is going to come from an inner product (,-), it follows from Eq.
(12.1) that

2Re(z,y) = [lz +y|I* = [|=]* — lly[|?
and
—2Re(z,y) = [lz — y|I* — [|=[I* — ly[|*.
Subtracting these two equations gives the “polarization identity,”
ARe(z,y) = [lz +y|* - |z — y[*.
Replacing y by 4y in this equation then implies that
Am(z, y) = [z +iy|* — |z —ay]?
from which we find
1
(12.21) (z,9) = § ;el\m +eyl?
€

where G = {£1,4i} — a cyclic subgroup of S' C C. Hence if (-,-) is going to exists
we must define it by Eq. (12.21).
Notice that

1
(@20) = 3 X el ealf = JalP + i+ if? — o — el
€

. . . . 2
= Il + i [+ i fll® =i |1 =Pl = [|l=]*
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So to finish the proof of (4) we must show that (z,y) in Eq. (12.21) is an inner
product. Since

My, a) =Y elly+exl =) elely +eo)|?

eeG eeG

= elley +aff?

ecG
=y + 2l + || =y +zl* +illiy — z)|* ]| — iy — |
= |z +yll” + lle = yl* +illz — iyl — iz +ay]?

=4z, y)

it suffices to show & — (x,y) is linear for all y € H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity from
Eq. (12.2). To do this we make use of Eq. (12.2) three times to find

o +y+ 2] = =[x +y — 2[1> + 2|z + y[|* + 2[|2]|?
=z —y =2l = 2}z — 2| = 2|ly|* + 2]z + y||* + 2| 2>
= lly + 2 —z|® = 2llz — 2l = 2/|ylI* + 2]}z + y|* + 2||=]?
= —lly + 2 +zl” + 2lly + 2> + 2[|z[|* — 2llz — 2| = 2[lyl1* + 2[lx + y[* +2||2*.
Solving this equation for ||z +y + z||? gives
(1222) lz+y+2]? =y + 20 + llz +ylI* =l — 2> + || + |2]* ~ 9>
Using Eq. (12.22), for z,y,z € H,
ARe(z +2,9) = |z + 2 +y[* — llz + 2 -y
= lly +2l1” + llz + yll* = llz = 2l* + [l2]* + [|2]|* = [ly]|*
— (2 =9l + lz = yl* = lle = 201> + ll=[* + [I2l1* — lly]*)
= llz+yll” = llz = yI* + llz + yl|* - llz — y||?
(12.23) = 4Re(z,y) + 4Re(z, 7).
Now suppose that § € G, then since |§| = 1,

1 1 _
Wor,y) = 1 S elldr+ eyt = 73 ello+ ey

ecG eeG
1 2
(12.24) = deéﬂx—i—éeyﬂ = 46{x,y)

where in the third inequality, the substitution ¢ — ¢§ was made in the sum. So Eq.
(12.24) says (+iz,y) = Li(iz,y) and (—z,y) = —(x,y). Therefore

Im(z,y) = Re (—i(z,y)) = Re(—iz,y)
which combined with Eq. (12.23) shows
Im(z + z,y) = Re(—iz — iz,y) = Re(—iz,y) + Re(—iz,y)
= Im(z,y) + Im(z, y)
and therefore (again in combination with Eq. (12.23)),
(x+ z,y) = (x,y) + (z,y) for all x,y € H.
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Because of this equation and Eq. (12.24) to finish the proof that x — (x,y) is
linear, it suffices to show (Az,y) = A(z,y) for all A > 0. Now if A =m € N, then

(mz,y) = (z + (m — Dz,y) = (z,y) + ((m — 1)z,y)
so that by induction (mz,y) = m(z,y). Replacing z by x/m then shows that
(x,y) = m(m~ 'z, y) so that (m~1x,y) = m~{x,y) and so if m,n € N, we find
n 1 n
(—a,y) = n{—z,y) = —(z,9)
so that (Az,y) = Az, y) for all A > 0 and A € Q. By continuity, it now follows that
Az, yy = Mz,y) forall A > 0. =

12.6. Supplement 2. Non-complete inner product spaces. Part of Theorem
12.24 goes through when H is a not necessarily complete inner product space. We
have the following proposition.

Proposition 12.41. Let (H, (-,-)) be a not necessarily complete inner product space
and B C H be an orthonormal set. Then the following two conditions are equivalent:
(1) = > {x,u)u for allx € H.
u€eS
(2) ||l=* = Z [(z, u)[? for all z € H.

Moreover, ezther of these two conditions implies that § C H is a mazimal ortho-
normal set. However f C H being a mazximal orthonormal set is not sufficient to
conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.24, 1) implies 2). For 2) implies 1) let
A CC 8 and consider

x— Z(m,u)u =

u€eEA

lzl|* =2 [z, w)* + ) e, u)l®

u€eEA u€EA

= Jlall* = Ka,w)?.

u€EA
Since ||z||? = Z |(x,u)|?, it follows that for every € > 0 there exists A, CC 3 such

that for all A CC [ such that A, C A,

2
e Y| =2l - Y ) <
ueA u€EA
showing that z = > (z,u)u.
uef

Suppose * = (1, T2, ..., Tn,-..) € BF. If2) is valid then ||z||*> = 0, i.e. = 0. So
[ is maximal. Let us now construct a counter example to prove the last assertion.

Take H = Span{e; }32; C ¢? and let @,, = e; — (n+1)enqq forn =1,2.... Apply-
ing Gramn-Schmidt to {un} ~_, we construct an orthonormal set § = {un}n 1 C H.
I now claim that 8 C H is maximal. Indeed if z = (21, %2,...,Zpn,...) € B+ then
z 1 u, for all n, ie.

0= (z,8,) =21 — (n+ D)xpis.
Therefore 41 = (n+ 1)z for all n. Since = € Span{e;}2°,, zx = 0 for some
N sufficiently large and therefore 1 = 0 which in turn implies that x,, = 0 for all
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n. So z = 0 and hence § is maximal in H. On the other hand, § is not maximal

in £2. In fact the above argument shows that 8+ in £? is given by the span of v =

(1, %, %, i, %, ...). Let P be the orthogonal projection of £2 onto the Span(8) = v+.

Then

S (z,v)
Z(m,un>un =Pr=x—- -5,
i=1 [[v]l

so that > (z,up)u, = =z iff z € Span(B) = vt C (2. For example if z =
i=1

(1,0,0,...) € H (or more generally for z = e; for any i), z ¢ v and hence

Sz, up)un, . W
i=1

12.7. Supplement 3: Conditional Expectation. In this section let (2, F, P)
be a probability space, i.e. (Q, F, P) is a measure space and P(Q) =1. Let G C F
be a sub — sigma algebra of F and write f € G if f : Q@ — C is bounded and f is
(G, Bc) — measurable. In this section we will write

Ef ::/QfdP.

Definition 12.42 (Conditional Expectation). Let Eg : L*(Q, F, P) — L?(Q,G, P)
denote orthogonal projection of L?(Q, F, P) onto the closed subspace L?(Q, G, P).
For f € L?(Q,G, P), we say that Egf € L?>(Q, F, P) is the conditional expecta-
tion of f.

Theorem 12.43. Let (2, F, P) and G C F be as above and f,g € L?(Q, F, P).

(1) If f >0, P — a.e. then Egf >0, P — a.e.
(2) If f > g, P — a.e. there Egf > Egg, P — a.e.
(3) |Egf| < Eglf], P — a.e.
4) |1Egfller <\ fllpr for all f € L2 So by the B.L.T. Theorem 4.1, Eg extends
uniquely to a bounded linear map from L' (2, F, P) to L*(Q, G, P) which we
will still denote by Eg.

(5) If f € LY(Q, F,P) then F = Egf € LY(Q,G, P) iff

E(Fh) = E(fh) for all h € Gy.
(6) If g€ Gy and f € LY(Q, F, P), then Eg(gf) =g- Egf, P — a.e.
Proof. By the definition of orthogonal projection for h € Gy,
E(fh) = E(f - Egh) = E(Egf - h).

So if f,h > 0 then 0 < E(fh) < E(Egf-h) and since this holds for all h > 0 in Gy,
Egf >0, P—a.e. This proves (1). Item (2) follows by applying item (1). to f —g.
If fisreal, +f <|f| and so by Item (2), £FEgf < Egl|f|, i.e. |Egf| < Eg|f|, P —
a.e. For complex f, let h > 0 be a bounded and G — measurable function. Then

E[|Egf|h) = E |Egf -sen(Egfh| = E |f -sgn (Bg /)h]
< B|fln) = E[Eg|f|-h).

Since h is arbitrary, it follows that |Egf| < Eg|f|, P — a.e. Integrating this
inequality implies

[Egfller < E|Egf| < E[Eg|f|-1] = E[lfl} = [ -
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Item (5). Suppose f € LY(Q,F,P) and h € G,. Let f, € L*(Q,F,P) be a

sequence of functions such that f,, — f in L'(Q, F, P). Then
E(Egf-h) = E(lim Egf, -h)= lim E(Egfu-h)
n—0oo n—oo
(12.25) = lim E(f, h) = B(f - h).
This equation uniquely determines Eg, for if ' € L'(Q, G, P) also satisfies E(F-h) =
E(f - h) for all h € Gy, then taking h = sgn (F — Egf) in Eq. (12.25) gives
0=E((F - Egf)h) = E(|F — Egfl).

This shows F' = Egf, P — a.e. Item (6) is now an easy consequence of this charac-
terization, since if h € Gy,

E[(gEgf)h] = E[Egf -hgl = E[f -hg]l = E[gf - h] = E[Eg (9f) - ] .
Thus Eg (gf) =g - Egf, P —ae. m
Proposition 12.44. If Gy C Gy C F. Then
(12.26) Eg,Eg, = Eg, Eg, = Eg

0-

Proof. Equation (12.26) holds on L?(€), F, P) by the basic properties of or-
thogonal projections. It then hold on L'(£2, F, P) by continuity and the density of
L*(Q,F,P)in LY(Q,F,P). m

Example 12.45. Suppose that (X, M, ) and (Y, N, v) are two o — finite measure
spaces. Let Q@ = X x Y, F = M ®N and P(dz,dy) = p(z,y)u(dzx)v(dy) where
p € LY, F,n @ v) is a positive function such that [ , pd(p®v) = 1. Let
mx :  — X be the projection map, 7x(z,y) = z, and

G=o(rx)=nx' (M) ={AxY :Aec M}.

Then f: Q — R is G — measurable iff f = F o 7wx for some function F : X — R
which is N/ — measurable, see Lemma 6.62. For f € L'(2, F, P), we will now show
Egf = F onmx where

1
—1 plz -/frc,ypa:,yvdy,
S om @) [ fay)o )
p(x) = [y p(z,y)v(dy). (By convention, [, f(z,y)p(x,y)v(dy) := 0if [, |f(z,y)| plz,y)v(dy) =
00.)

By Tonelli’s theorem, the set

Bim o e X:p(e) =0 Ude e X [ [l ooy = oo}

F(x) =

is a p — null set. Since

BFomx] = [ dutw) [ o) F@Iptay) = [ dutw) Pl

- [ duta)

g[gmwﬁwwwuwwmw<m

AW@WMM@ﬂ
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Fornx € LY(Q,G, P). Let h = Honx be a bounded G — measurable function, then

E[Fomny h] = /X dyu(z) /Y dv(y)F () H (z)p(z, y)

_ / dp(z) F(z) H (z)p(x)
X

~ [ u@H@) [ vidy) s vpte.y)
b'e Y
= E[hf]
and hence Egf = F omx as claimed.
This example shows that conditional expectation is a generalization of the notion
of performing integration over a partial subset of the variables in the integrand.

Whereas to compute the expectation, one should integrate over all of the variables.
See also Exercise 12.8 to gain more intuition about conditional expectations.

Theorem 12.46 (Jensen’s inequality). Let (2, F,P) be a probability space and
¢ : R — R be a convex function. Assume f € L'(Q,F, P;R) is a function such
that (for simplicity) o(f) € L*(Q, F, P;R), then p(Egf) < Eg [o(f)], P - a.e.

Proof. Let us first assume that ¢ is C' and f is bounded. In this case
(12.27) o(x) — p(zg) > @' (z0)(x — xp) for all o,z € R.
Taking 2o = Egf and = = f in this inequality implies

o(f) = p(Egf) > ¢ (Egf)(f — Eg f)
and then applying Fg to this inequality gives
Eg[p(N)] —(Egf) = Egle(f) — ¢(Egf)] = ¢'(Egf)(Egf — EgEgf) =0

The same proof works for general ¢, one need only use Proposition 9.7 to replace

Eq. (12.27) by
o(z) — o(z0) > @' (x0)(z — mo) for all g,z € R

where ¢’ (x¢) is the left hand derivative of ¢ at zg.

If f is not bounded, apply what we have just proved to f¥ = f151<m, to find
(12.28) Eg [p(f*)] = o(Eg fM).

Since Eg : LY(Q, F, P;R) — LY(Q,F, P;R) is a bounded operator and fM — f
and p(fM) — ¢(f) in L(Q,F, P;R) as M — oo, there exists {M},},-, such that
My, T oo and fMe — f and o(fMr) — ¢(f), P — a.e. So passing to the limit in Eq.
(12.28) shows Eg [p(f)] > ¢(Egf), P —a.e. m

12.8. Exercises.

Exercise 12.7. Let (X, M, 1) be a measure space and H := L?(X, M, u). Given
f € L>®(u) let My : H— H be the multiplication operator defined by Mg = fg.
Show M? = My iff there exists A € M such that f =14 a.e.

Exercise 12.8. Suppose (Q,F, P) is a probability space and A := {4;}°, C F
is a partition of Q. (Recall this means Q@ = [[;°, A;.) Let G be the o — algebra
generated by A. Show:

(1) Be G iff B=U;cpA; for some A C N.
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(2) g: Q2 — Ris G — measurable iff g = > "7, A\;14, for some \; € R.
(3) For f € LY(Q,F,P), let E(f|A;) := E[la,f]/P(A;) if P(A;) # 0 and
E(f|A;) = 0 otherwise. Show

Egf =Y E(f|Ai)la,.
i=1
Exercise 12.9. Folland 5.60 on p. 177.

Exercise 12.10. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 12.11. Folland 5.67 on p. 178 regarding the mean ergodic theorem.

Exercise 12.12 (Haar Basis). In this problem, let L? denote L?([0, 1],m) with the
standard inner product,

V() = 1j0,1/2)(®) = Lj1/2,1)(2)
and for k,j € Ny := NU{0} with 0 < j < 2% let
Ui () = 26/ 2p(2k 2 — §).

The following pictures shows the graphs of g0, ¥1.0,%1,1,%2,1,%2,2 and 123 re-
spectively.

Plot of 1y, 0.

Plot of ¢1 0. Plot of ¢1 1.

Plot of ¢20 Plot of wgl
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3 0
{ 0z 05 075 1 J{ 025 05 075 i
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2 — 2 _—

Plot of 152. Plot of 193.

Show g := {1} U {1/1;@ :0<kand 0<j< 2’“} is an orthonormal set, 1
denotes the constant function 1.
For n € N, let M, := span ({1} U {¢; :0 <k <nand0<j<2F}).
Show

M, = span ({1[j2771’(j+1)27n) rand 0 < j < 2”’) .

Show U2 ; M, is a dense subspace of L? and therefore /3 is an orthonormal
basis for L2. Hint: see Theorem 11.3.
For f € L?, let

n—12%—1

Hyof == (F 1014 > (frtng) g

k=0 j=0

Show (compare with Exercise 12.8)

21 (G+1)27"
an = Z 2m /2 f(x)d:r 1[j2—n,(j+1)2—n)
=0 gz

and use this to show || f — H,, f||, — 0 as n — oo for all f € C([0,1]).

Exercise 12.13. Let O(n) be the orthogonal groups consisting of n x n real
orthogonal matrices O, i.e. OO = I. For O € O(n) and f € L?*(R") let
Uof(z) = f(O~1x). Show

(1)
2)

3)

Uo f is well defined, namely if f = g a.e. then Upf = Upg a.e.

Uo : L}(R") — L2(R") is unitary and satisfies Up,Up, = Uop,0, for all
01,02 € O(n). That is to say the map O € O(n) — U(L?*(R™)) — the
unitary operators on L?(R") is a group homomorphism, i.e. a “unitary
representation” of O(n).

For each f € L?(R"), the map O € O(n) — Upf € L*(R"™) is continuous.
Take the topology on O(n) to be that inherited from the Euclidean topology
on the vector space of all n xn matrices. Hint: see the proof of Proposition
11.13.

Exercise 12.14. Prove Theorem 12.37. Hint: Let Hy := span{z, :n € N} —
a separable Hilbert subspace of H. Let {\,},._; C Hp be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yj := ,, such
that ¢, := limg_ o0 (Yk, Amm) exists for all m € N. Finish the proof by appealing to
Proposition 12.36.

Exercise 12.15. Suppose that {z,}-, C H and z,, = = € H as n — oco. Show
Tp — xasn — oo (e lim, o ||z — 2] = 0) iff im, o ||Jzn]| = |2 -

Exercise 12.16. Show the vector space operations of X are continuous in the weak
topology. More explicitly show



246 BRUCE K. DRIVER

(1) (z,y) e X x X sx+ye€ X is (Ty ® Ty, Tw) — continuous and
(2) Mx)eFxX — A xe X is (17 @ T, Tw) — continuous.

Exercise 12.17. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 12.18. Spherical Harmonics.
Exercise 12.19. The gradient and the Laplacian in spherical coordinates.
Exercise 12.20. Legendre polynomials.

Exercise 12.21. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be more
precise, suppose H is an infinite dimensional Hilbert space and m is a count-
ably additive measure on By which is invariant under translations and satisfies,
m(Bg(e)) > 0 for all € > 0. Show m (V') = oo for all non-empty open subsets V' C H.

12.9. Fourier Series Exercises.

Notation 12.47. Let C%, (R?) denote the 27 — periodic functions in C*(R?),

per
ck (RY) .= {fe C*(RY) : f(z + 2me;) = f(z) for all z € RY and i = 1,2,...,d}.

per

Also let (-, -) denote the inner product on the Hilbert space H := L?([—7, 7]%) given

by d
(fi9) = (%) /[_mr]d f(z)g(z)dz.

Recall that {Xk (z) =e*e ke Zd} is an orthonormal basis for H in particular
for f € H,

(12.29) F= " (foxm)xe
kezd

where the convergence takes place in L%([—m,7]?). For f € LY([—m,7]9), we will
write f(k) for the Fourier coefficient,

d
(1230) fw =t =(g5) [ et
Lemma 12.48. Let s > 0, then the following are equivalent,
1 1
(12.31) kgd e < 00, kg{i W < 00 and s > d.
Proof. Let Q := (0,1]? and k € Z. For x =k +y € (k + Q),

2+ k| =24z —y| <2+ |z|+|y| <3+ |z| and

241kl =2+ |z —yl =2+ [z[ - |y[ = |z| +1
and therefore for s > 0,

11 1
B+lz)” = @+ k)~ A +[x)™

Thus we have shown

1 1 1
= < lgtk(z) < ———— for all z € RY.
(3+al) kZ @+ k) 7" (1+ 2]y
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Integrating this equation then shows
1 1 1
————=dz < — < / —=dr
T 2 T S S TTD

from which we conclude that

1
(12.32 ——— < o0 iff s >d.
) 2 Ty

Because the functions 1+¢, 2+¢, and v/1 + t2 all behave like ¢t as ¢ — oo, the sums
in Eq. (12.31) may be compared with the one in Eq. (12.32) to finish the proof. m

Exercise 12.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f €
LY([—m,7]4) that f € co(Z%), i.e. f:Z% — C and limg_, f(k) = 0. Hint: If
f € H, this follows form Bessel’s inequality. Now use a density argument.

Exercise 12.23. Suppose f € L'([—m,7]?) is a function such that f € £!(Z?) and
set

Z f(k)e™™ (pointwise).

kezd

(1) Show g € Cpe,(R?). )
(2) Show g(z) = f(x) for m — a.e. x in [—7,7w]¢. Hint: Show §(k) = f(k) and
then use approximation arguments to show

/ F@)h(z)dz = / 9@ h(@)dz ¥ b e C([—m, 7).
[—m,m]d

[77T77r]d

(3) Conclude that f € L!([-m, x]%) N L®([—m,7]?) and in particular f €
LP([—m,7]%) for all p € [1, ).

Exercise 12.24. Suppose m € Ny, « is a multi-index such that |a| < 2m and
f c CQm (Rd)QQ

per

(1) Using integration by parts, show

(ik)* f (k) = (0 f, xx)-

Note: This equality implies
7] < 2 10 Fllr < o 191,
(2) Now let Af = Zf.l:l 02 f/0x2, Working as in part 1) show

(12.33) (X = 2)™f,x) = (1 +|K[P)™ F(K).

29We view Cper(R) as a subspace of H by identifying f € Cper(R) with f|j_r ) € H.
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Remark 12.49. Suppose that m is an even integer, « is a multi-index and f €
crm el (R9), then

> kL (R)

2 2

D O™ o) (L kP2 (1 + [k[?)~ /2

kezd kezd
2
_ Z ‘ m/anzf Xk>‘ (1 + |k|2)7’m/2
keZd
< Y- ayro s - X (e w
kezd kezd

2
cufja-srron]

H
where Cy, := > cpa(1+ k[*)~™ < oo iff m > d/2. So the smoother f is the faster
[ decays at infinity. The next problem is the converse of this assertion and hence
smoothness of f corresponds to decay of f at infinity and visa-versa.

Exercise 12.25. Suppose s € R and {c;C eC:ke Zd} are coeflicients such that
> ferl® (1 + [K[*)* < oo,
kezd
Show if s > % + m, the function f defined by
= 3 et
kezd

is in C7 (R?). Hint: Work as in the above remark to show

Z lex| [k < oo for all |a| < m.
kezZd

Exercise 12.26 (Poisson Summation Formula). Let F € L!(R%),

E:={zcR%: Z |F(z + 27k)| =
kezd

and set

F(k) = (2m) ™2 / F(z)e **dz.
Rd
Further assume F € (*(Z4).

(1) Show m(E) = 0 and E + 27k = E for all k € Z? Hint: Compute
f[,mﬂ]d Zkezd |F($ + 27T]€)| dx.
(2) Let
fz) = Zkezd F(z+2nk) for xz¢F
o 0 if zek.

Show f € L'([-m,7]%) and f(k) = (27)" "% F(k).
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(3) Using item 2) and the assumptions on F, show f € LY([-m,7]%) N
L ([~7,7]?) and

= Z fll)e™ o = Z (27r)7d/2 F(k)e™*® for m — a.e. x,

kezZd keZd
ie.
(12.34) Z (x4 27k) = (27)~ d/2 Z F(k)e™™® for m — a.e. z.
ez kezd

(4) Suppose we now assume that F' € C(RY) and F satisfies 1) |F(x)| < C(1+
|z[)~* for some s > d and C' < oo and 2) F' € £}(Z%), then show Eq. (12.34)
holds for all = € R? and in particular

S F(erk) = 2m) S Fk).
kezd kezd
For simplicity, in the remaining problems we will assume that d = 1.
Exercise 12.27 (Heat Equation 1.). Let (¢,z) € [0,00) X R — u(t, x) be a contin-
uous function such that u(t, ) € Cper(R) for all ¢ > 0, @ := uy, Uy, and ug, exists
and are continuous when ¢t > 0. Further assume that u satisfies the heat equation

U = Fuge. Let @(t, k) = (u(t,-), xx) for k € Z. Show for t > 0 and k € Z that
a(t, k) is differentiable in t and La(t, k) = —kgﬂ(t, k)/2. Use this result to show

(12.35) =Y e f(k)ettn
kEZ
where f(z) := u(0,z) and as above
F) = (00 = 5= [ ey
’ 2 ’
Notice from Eq. (12.35) that (¢,2) — u(t,x) is C* for ¢t > 0.

Exercise 12.28 (Heat Equation 2.). Let q;(z) := 5= > o7 e~ ¢ikr Show that
Eq. (12.35) may be rewritten as

utta) = [ " gz — ) f)dy

—T

and
x) = Zpt(az + k27)
keZ
where py(z) := —A=e~2:*". Also show u(t,z) may be written as

ut.a) = po f(a) = [ pla =)

Hint: To show ¢:(z) = >, c;pt(z + k2m), use the Poisson summation formula
along with the Gaussian integration formula

R 1 oz .. 1
pt(w)z\/—z_w/Rpt(a:)e dz = \/ﬂe
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Exercise 12.29 (Wave Equation). Let u € C?(RxR) be such that u(t,-) € Cper(R)
for all t € R. Further assume that u solves the wave equation, u;; = Ug.. Let
f(x) := u(0,2) and g(x) = 4(0,x). Show a(t, k) := (u(t,), xx) for k € Z is twice

continuously differentiable in ¢ and %ﬂ(t, k) = —k%a(t, k). Use this result to show
~ in kt .
(12.36) u(t,w) =3 (f(k) cos(kt) + (k) SH; > etk
keZ

with the sum converging absolutely. Also show that u(t,z) may be written as
t

1 1
(12.37) u(t,z) = 5 [flz+1) + flz - )] + 5/ g(a +7)dr.
—t
Hint: To show Eq. (12.36) implies (12.37) use
ikt | —ikt ikt _ —ikt
coskt = l, and sinkt = L
2 27

and

Pt gr,

ik 4
12.10. Dirichlet Problems on D.
Exercise 12.30 (Worked Example). Let D := {z € C : |z| < 1} be the open
unit disk in C =2 R?, where we write z = 2 + iy = re'? in the usual way. Also let

A= 8‘9—; + 66_; and recall that A may be computed in polar coordinates by the
formula,

eik($+t) _ eik($—t) /t

1
Au=7r"19, (rilaru) + T—2892u.
Suppose that u € C(D) N C?(D) and Au(z) =0 for z € D. Let g = u|sp and

iy == [

2 ) .

(We are identifying S' = D = {z € D : |z| = 1} with [-m, 7]/ (7 ~ —7) by the
map 0 € [-m, 7] — e € St.) Let

g(eik’e)e—ikﬂda.

1 4 . .
(12.38) a(r k) := 2—/ u(re’®)e= " dg
)7

then:
(1) a(r, k) satisfies the ordinary differential equation
=10, (royi(r,k)) = Tiszﬁ(r, k) for r € (0,1).
(2) Recall the general solution to
(12.39) rd, (ropy(r)) = ky(r)

may be found by trying solutions of the form y(r) = r* which then implies
a? = k? or a = +k. From this one sees that @(r,k) may be written as
u(r k) = Arl*l + Byr—Ikl for some constants Aj; and Bj, when k # 0. If
k = 0, the solution to Eq. (12.39) is gotten by simple integration and the
result is @(r,0) = Ag + BpInr. Since a(r, k) is bounded near the origin for
each k, it follows that By = 0 for all k € Z.
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(3) So we have shown
1 [ . X
Akr|k| =1d(r, k) = 27T/ u(reze)e—zkede

and letting r T 1 in this equation implies

1T i
A = Py u(e?®)e*0dp = (k).
Therefore,
(12.40) u(re’?) = Zg(k’)rlkleike

kEZ
for 7 < 1 or equivalently,
u(z) = Y gk)F + Y-
keNp keN

(4) Inserting the formula for (k) into Eq. (12.40) gives

u(re?) / (Zrk k(60— O‘)> u(e)da for all r < 1.

keZ
Now by simple geometric series considerations we find, setting § = 0 — «,
that

o0
Zr‘“e’“ ZT ik ZTk —iké :2Rezrke¢k571
k=0

kez
1 1+ re®®
= 22— 1| = —_—
Re[ 1 —retd } Re[l—re“s]
(1 + rei‘;) (1 — re’i‘s) 1 — 72+ 2irsind
12.41 =R =R
(240 ‘ 11— reid)? “lT=2rcoso+ 12
_ 1—7r2
T 1—2rcosd 412’
Putting this altogether we have shown
, 1 (7 .
u(re'®) = 2— PT(O —a)u(e')da =: P, x u(e?)
e
T 1 4 ret@-a) i
where

1—r2
P.()) i = ——m—m—m—m—m
(9) 1—2rc085+r2

is the so called Poisson kernel. (The fact that 5- Re f P.(0)df = 1 follows
from the fact that

QL P.(6)dg = Re — Zrlk‘eiwdﬂ
T T kel

= Re— Z/ rikleh?dp = 1.)

kEZ
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Writing z = re?, Eq. (12.42) may be rewritten as
T 14 zeTi®

_ T iy g

u(2) o Re/Tr T _Ze_mu(e )do
which shows © = Re ' where
1 (™ 14ze i .
F(z):=— ——u(e'Y)da.
(2) 27 /7, 1—ze @ u(e™)da

Moreover it follows from Eq. (12.41) that

oy _ 1 rsin(f — «) io
Im F(re*) = Im/ T 2rcos(d _a)+r2u(e )da
= Q, *u(e")
where )
Q. (0) = 7 sin(d)

1—2rcos(8) +72°
From these remarks it follows that v is the harmonic conjugate of u and
P.= Qr~
Exercise 12.31. Show Y ;- k=2 = 7?/6, by taking f(z) = z on [—7, 7] and
computing || f ||§ directly and then in terms of the Fourier Coefficients f of f.
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13. CONSTRUCTION OF MEASURES

Now that we have developed integration theory relative to a measure on a o —
algebra, it is time to show how to construct the measures that we have been using.
This is a bit technical because there tends to be no “explicit” description of the
general element of the typical o — algebras. On the other hand, we do know how
to explicitly describe algebras which are generated by some class of sets £ C P(X).
Therefore, we might try to define measures on o(€) by there restrictions to A(E).
Theorem 8.5 shows this is a plausible method.

So the strategy of this section is as follows: 1) construct finitely additive mea-
sure on an algebra, 2) construct “integrals” associated to such finitely additive
measures, 3) extend these integrals (Daniell’s method) when possible to a larger
class of functions, 4) construct a measure from the extended integral (Daniell —
Stone construction theorem).

13.1. Finitely Additive Measures and Associated Integrals.

Definition 13.1. Suppose that & C P(X) is a collection of subsets of a set X and
w: € — [0,00] is a function. Then

(1) pis additive on € if u(E) = >""" , u(E;) whenever E = [[I"_, E; € £ with
E,effori=1,2,...,n < o0.

(2) pis o — additive (or countable additive) on & if Item 1. holds even
when n = oo.

(3) w is subadditive on & if u(E) < Y | u(E;) whenever E =[[I", E; € £
with E; € £ and n € NU{co} .

(4) p is o — finite on & if there exist E, € £ such that X = U,E, and
w(Ey) < oc.

The reader should check if £ = A is an algebra and p is additive on A, then u
is 0 — finite on A iff there exists X,, € A such that X,, T X and pu(X,,) < oo for
all n.

Proposition 13.2. Suppose £ C P(X) is an elementary family (see Definition
6.11) and A = A(E) is the algebra generated by E. Then every additive function
w: € — [0,00] extends uniquely to an additive measure (which we still denote by )

on A.

Proof. Since by Proposition 6.12, every element A € A is of the form A =[], E;
with F; € £, it is clear that if 4 extends to a measure the extension is unique and
must be given by

(13.1) n(A) =D (B,

To prove the existence of the extension, the main point is to show that defining
1(A) by Eq. (13.1) is well defined, i.e. if we also have A = [[; F; with F; € £, then

we must show

(13.2) DB =D ).
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But E; = [[; (E; N F}) and the property that u is additive on & implies p(E;) =
>_;j W(E; N F}) and hence

S H(E) = Y S BN E) = Y uE N F)
i i 0,J
By symmetry or an analogous argument,
D ou(Fy) =Y u(EiN Fy)
J 0,J

which combined with the previous equation shows that Eq. (13.2) holds. It is now
easy to verify that p extended to A as in Eq. (13.1) is an additive measure on A.
u

Proposition 13.3. Let X =R and £ be the elementary class
E={(a,b]NR: —c0 <a<b< o0},

and A = A(E) be the algebra of disjoint union of elements from E. Suppose that
p s A — [0,00] is an additive measure such that p°((a,b]) < oo for all —o00 < a <
b < co. Then there is a unique increasing function F : R — R such that F(0) = 0,
F71({~o00}) C {—o0}, F'({o0}) C {00} and

(13.3) 1 ((a,b] NR) = F(b) — F(a) YV a<binR.

Conversely, given an increasing function F : R — R such that F~'({—o00}) C
{—o0}, F71({oo}) C {oo} there is a unique measure pu° = p% on A such that
the relation in Eq. (13.83) holds.

So the finitely additive measures ;° on A(E) which are finite on bounded sets
are in one to one correspondence with increasing functions F' : R — R such that
F(0) =0, F~({-o00}) C {—o0}, F}({oo}) C {o0}.

Proof. If F is going to exist, then

#2((0,]NR) = F(b) — F(0) = F(b) if b € [0, 00],
1°((a,0]) = F(0) — F(a) = —F(a) if a € [~00,0]
from which we learn

. —p2((z,0)) if <0
F(z) { uo(léo,x] NR) if z>0.

Moreover, one easily checks using the additivity of u° that Eq. (13.3) holds for this
F.

Conversely, suppose F' : R — R is an increasing function such that F~!({—o00}) C
{—oc}, F71({oo}) C {oo}. Define p° on £ using the formula in Eq. (13.3). I claim
that u is additive on £ and hence has a unique extension to A which will finish
the argument. Suppose that

(a, b] = H(ai, bl]
i=1

By reordering (a;, b;] if necessary, we may assume that

a=a1>by=ay<by=a3<---<a,<b, =0.
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Therefore,

(b)) = F(0) = Fla) = 3" (F () — Fa)] = 3 ((as, i)
as desired. m

13.1.1. Integrals associated to finitely additive measures.

Definition 13.4. Let u be a finitely additive measure on an algebra A C P(X),
S =Sy (A, ) be the collection of simple functions defined in Notation 11.1 and for
f €S defined the integral I(f) = I,(f) by

(13.4) L(f) = unlf =)

yeR

The same proof used for Proposition 7.14 shows I, : S — R is linear and positive,
ie. I(f) > 0if f > 0. Taking absolute values of Eq. (13.4) gives

(13.5) IO <D Myl p(f =) < [ flloo w(f #0)

y€ER

where | f||., = sup,ex [f(z)]. For A € A, let Sy :={f € S: {f # 0} C A}. The
estimate in Eq. (13.5) implies

(13.6) ()] < w(A) [[fll for all f € Sa.

The B.L.T. Theorem 4.1 then implies that I has a unique extension I4 to S4 C
B(X) for any A € A such that pu(A4) < co. The extension 14 is still positive. Indeed,
let f € Sa with f > 0 and let f, € S be a sequence such that ||f — f,||., — 0 as
n — o0o. Then f,, VO € S4 and

lf = Ffa VOl <I|If— fall, — 0 asn— oo

Therefore, T4(f) = lim, oo La(fn V0) > 0.

Suppose that A, B € A are sets such that u(A)+u(B) < oo, then SyUSp C Saun
and so S4 USp C Saup. Therefore I4(f) = Iaup(f) = Ip(f) for all f € S4NSg.
The next proposition summarizes these remarks.

Proposition 13.5. Let (A, 1,1 = 1,,) be as in Definition 13.4, then we may extend
I to

S:=U{Sa: A € A with u(A) < oo}
by defining I(f) = I4(f) when f € Sa with u(A) < co. Moreover this extension is
still positive.

Notation 13.6. Suppose X = R, A=A(€), F and p° are as in Proposition 13.3.
For f €S, we will write I(f) as [*_ fdF or [~ f(z)dF(z) and refer to [~ fdF
as the Riemann Stieljtes integral of f relative to F.

Lemma 13.7. Using the notation above, the map f € S —>ffooo fdF s linear,
positive and satisfies the estimate

(13.7) \ /- de\ < (F() - F(@) /]

if supp(f) C (a,b). Moreover C.(R,R) C S.
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Proof. The only new point of the lemma is to prove C.(R,R) C S, the remaining
assertions follow directly from Proposition 13.5. The fact that C.(R,R) C S has
essentially already been done in Example 7.24. In more detail, let f € C.(R,R)
and choose a < b such that supp(f) C (a,b). Then define f; € S as in Example
7.24, i.e.

ni—1
fl) = 3 min {f(@) s af <o < ab)} Lo (@)
1=0
where 7 = {a = af < af < - < ap =b}, for k =1,2,3,..., is a sequence of

refining partitions such that mesh(wg) — 0 as k — oo. Since supp(f) is compact
and f is continuous, f is uniformly continuous on R. Therefore ||f — fi| ., — 0 as
k — oo, showing f € S. Incidentally, for f € C.(R,R), it follows that

oo nk—l
(13.8) / fdF = klim Z min {f(z) : af <z <af,} [F(aéﬁrl) - F(af)] .
]
The most important special case of a Riemann Stieljtes integral is when F(x) =
in which case [*_ f(z)dF(z) = [*_ f(2)dx is the ordinary Riemann integral. The
following Exercise is an abstraction of Lemma 13.7.

Exercise 13.1. Continue the notation of Definition 13.4 and Proposition 13.5.
Further assume that X is a metric space, there exists open sets X,, C, X such
that X,, 7 X and for each n € N and 6 > 0 there exists a finite collection of
sets {Ai}le C A such that diam(4;) < 6, u(A;) < oo and X, C U, A;. Then
C.(X,R) C S and so I is well defined on C.(X,R).

Proposition 13.8. Suppose that (X, 7) is locally compact Hausdorff space and I
is a positive linear functional on C.(X,R). Then for each compact subset K C X
there is a constant Cx < oo such that |I(f)| < Ck || fll,, for all f € Co(X,R) with
supp(f) C K. Moreover, if f, € C.(X,[0,00)) and f, | 0 (pointwise) as n — oo,
then I(fn) 1 0 as n — oc.

Proof. Let f € C.(X,R) with supp(f) C K. By Lemma 10.15 there exists
g < X such that g =1 on K. Since || f|| . ¥x £ f >0,

0 < I([[flloe ¥rc £ f) = [[fllo T(¥r) £ I(f)

from which it follows that [I(f)| < I(¢k) || f|l« - So the first assertion holds with
Ck = I(T/)K) < 0.

Now suppose that f,, € C.(X,[0,00)) and f,, | 0 as n — oo. Let K = supp(f1)
and notice that supp(f,) C K for all n. By Dini’s Theorem (see Exercise 3.11),
|| frllo | 0 as m — oo and hence

0< I(fn) <Ck ”anoo l0asn — oco.

|

This result applies to the Riemann Stieljtes integral in Lemma 13.7 restricted to
C.(R,R). However it is not generally true in this case that I(f,) | 0 for all f,, €S
such that f,, | 0. Proposition 13.10 below addresses this question.

Definition 13.9. A countably additive function x on an algebra A C 2% is called
a premeasure.



ANALYSIS TOOLS WITH APPLICATIONS 257

As for measures (see Remark 7.2 and Proposition 7.3), one easily shows if p is a
premeasure on A, {A,}°, C Aand if A, T A € A then p(A,) T u(A) as n —
or if p(A;1) < oo and A, | @ then pu(A4,) | 0 as n — oo Now suppose that p in
Proposition 13.3 were a premeasure on A(€). Letting A, = (a,b,] with b, | b as
n — oo we learn,

F(by) — Fa) = p((a,ba]) | p((a,b]) = F(b) — F(a)
from which it follows that lim, |, F'(y) = F(b), i.e. F is right continuous. We will
see below that in fact u is a premeasure on A(E) iff F' is right continuous.

Proposition 13.10. Let (A, p,S = S¢(A,p), I = 1,) be as in Definition 13.4. If
1 is a premeasure on A, then

(13.9) YV fn €S with fr, | 0= I(f,) | 0 as n — oc.
Proof. Let ¢ > 0 be given. Then
fro = fulpsep + falfu<en < filg,sen +€f1,
I(fa) T (Ailpsen) +€l(f1) =Y ap(fr = a, fn > ea) + €l (f1),

a>0
and hence
(13.10) limsup I(fp) < Zalimsup,u (fi =a, fn > ea) +el(fr).

a>0
Because, for a > 0,

As{fi=a, fa>e}:={fi=a}N{fn>ea}|Dasn— o0

and p(fi =a) < oo, limsup,,_, 1 (f1 =a, fn > €ea) = 0. Combining this with
Eq. (13.10) and making use of the fact that e > 0 is arbitrary we learn
limsup,, . I(fn)=0. =

13.2. The Daniell-Stone Construction Theorem.

Definition 13.11. A vector subspace S of real valued functions on a set X is a
lattice if it is closed under the lattice operations; fV g = max(f,g) and f A g =

min(f,g).

Remark 13.12. Notice that a lattice S is closed under the absolute value operation
since |f| = f VO — f A0. Furthermore if S is a vector space of real valued functions,
to show that S is a lattice it suffices to show f* = fVv 0 € S for all f € S. This is
because

fl= 1+ (=T
FVg=5(f+g+1f—gl) and

1
frng=5(F+g=If—d).
Notation 13.13. Given a collection of extended real valued functions C on X, let
Ct:={fe€C:f>0}- denote the subset of positive functions f € C.

Definition 13.14. A linear functional I on S is said to be positive (i.e. non-
negative) if I(f) > 0 for all f € S*. (This is equivalent to the statement the

I(f) <I(g)if f,gcSand f <g.)
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Definition 13.15 (Property (D)). A non-negative linear functional I on S is said
to be continuous under monotone limits if I(f,,) | 0 for all {f,,}.-, C ST satisfying
(pointwise) f,, | 0. A positive linear functional on S satisfying property (D) is
called a Daniell integral on S. We will also write S as D(I) — the domain of I.

Example 13.16. Let (X, 7) be a locally compact Hausdorff space and I be a
positive linear functional on S := C.(X,R). It is easily checked that S is a lattice
and Proposition 13.8 shows [ is automatically a Daniell integral. In particular if
X = R and F is an increasing function on R, then the corresponding Riemann
Stieljtes integral restricted to S := C.(R,R) (f € Co(R,R) — [, fdF) is a Daniell
integral.

Example 13.17. Let (A, p,S = S¢(A, ), I = I,,) be as in Definition 13.4. It is
easily checked that S is a lattice. Proposition 13.10 guarantees that I is a Daniell
integral on S when p is a premeasure on A.

Lemma 13.18. Let I be a non-negative linear functional on a lattice S. Then
property (D) is equivalent to either of the following two properties:

Di: If ¢,¢n € S satisfy; ¢n < Ppy1 for all n and ¢ < lim, o ¢y, then
Dy: Ifu; €ST and ¢ €S is such that ¢ <3772, uy then I(¢) < 377 I(uy).

Proof. (D) = (D) Let ¢, ¢, € Sbe asin Dy. Then ¢A ¢, T ¢ and p—(dAd,) |
0 which implies
1(¢) = 1(¢ N o) =1(p = (¢ A ) L O
Hence
I(¢) = nILH;O I(¢ A gn) < nILH;O I(¢n).
(D1) = (D2) Apply (D) with ¢, = Z?Zl U
(D2) = (D) Suppose ¢, € S with ¢, | 0 and let u,, = ¢, — dpy1. Then
SN L Un = ¢1 — dni1 1 ¢1 and hence

N

I(¢1) SZ Up) = lfloozf Up) = hm I(¢1 — ¢N+1)—I(¢1)— hm I(¢n+1)

from which it follows that limy o I(¢pn41) < 0. Since I(dnyy1) > 0 for all N we
conclude that limy_e0 I(dn41) =0. B

In the remainder of this section, S will denote a lattice of bounded real valued
functions on a set X and I : S — R will be a Daniell integral on S.

Lemma 13.19. Suppose that {fn},{gn} CS.
(1) If fo 1 f and gn T g with f,g: X — (—o00, 00| such that f < g, then

(13.11) lim I(f,) < lim I(gn,).

(2) If fo l f and g, | g with f,g: X — [—00,00) such that f < g, then Eq.
(18.11) still holds.

In particular, in either case if f = g, then limy, .o I(fn) = limy, 00 I(gn)-

Proof.
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(1) Fix n € N, then gx A fr, T fn as k — oo and gi A fr, < gi and hence
I(fn) = lim I(ge A fn) < lim I(gy).
Passing to the limit n — oo in this equation proves Eq. (13.11).

(2) Since —f, 1 (—f) and —g,, T (—g) and —g < (—f), what we just proved
shows

— lim I(g,) = lim I(—g,) < lim I(—f,) =— lim I(f,)
which is equivalent to Eq. (13.11).
|
Definition 13.20. Let
St ={f:X — (—00,00] : 3 f,, € S such that f,, T f}
and for f € Sy let I(f) = limy,—oo I(frn) € (—00, 00].
Lemma 13.19 shows this extension of I to S; is well defined and positive, i.e.
I(f) <I(g)if f <g.

Definition 13.21. Let S| = {f : X — [—00,00) : 3 f,, € S such that f,, | f} and
define I(f) = lim, oo I(fn) on S,.

Exercise 13.2. Show S| = —S; and for f € S| US; that I(—f) = —I(f) € R.

We are now in a position to state the main construction theorem. The theorem
we state here is not as general as possible but it will suffice for our present purposes.
See Section 14 for a more general version and the full proof.

Theorem 13.22 (Daniell-Stone). Let S be a lattice of bounded functions on a set
X such that 1A ¢ € S and let I be a Daniel integral on S. Further assume there
exists x € Sy such that I(x) < oo and x(x) > 0 for all x € X. Then there exists a
unique measure i on M := o (S) such that

(13.12) I(f) = / fdp for all f €S.
X
Moreover, for all g € L*(X, M, ),
(13.13) sup{I(f):S; > f<g}= /ngu:inf{l(h) g <heS$;}.

Proof. Only a sketch of the proof will be given here. Full details may be found
in Section 14 below. -
Existence. For g : X — R, define

I(g) :==inf{I(h): g <h €S},
I

g
(9) =sup{I(f):S; > f < g}
and set

LYI):={g: X = R:I(g) = I(g9) € R}.
For g € L*(I), let 1(g) = I(g9) = I(g). Then, as shown in Proposition 14.10, L*(I)
is a “extended” vector space and I : LY(I) — R is linear as defined in Definition
14.1 below. By Proposition 14.6, if f € S; with I(f) < oo then f € L(I).
Moreover, I obeys the monotone convergence theorem, Fatou’s lemma, and the
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dominated convergence theorem, see Theorem 14.11, Lemma 14.12 and Theorem
14.15 respectively.
Let
R:={ACX:1aAfeL'(I)foral feS}

and for A € R set (A) := I(14). It can then be shown: 1) R is a o algebra (Lemma
14.23) containing o(S) (Lemma 14.24), p is a measure on R (Lemma 14.25), and
that Eq. (13.12) holds. In fact it is shown in Theorem 14.28 and Proposition 14.29
below that L'(X, M,u) C LY(I) and

I(g) = / gdu for all g € L*(X, M, ).
X

The assertion in Eq. (13.13) is a consequence of the definition of L'(I) and I and
this last equation.
Uniqueness. Suppose that v is another measure on o(S) such that

I(f):/del/ for all f €S.

By the monotone convergence theorem and the definition of I on Sy,

I(f) :/dez/ for all f € S;.

Therefore if A € o(S) C R,
w(A) =1(14) =inf{I(h): 14 < h € S}

=inf{/ hdu:lAgheST}Z/ ladv =v(A)
X b

which shows v < p. If A € o(S) C R with pu(A) < oo, then, by Remark 14.22 below,
14 € LY(I) and therefore

p(A) = I(1a) = I(1a) = I(14) = sup{I(f) : S 3 f < 1a}
:sup{/del/ 1S3 f<1a} <v(A).

Hence u(A) < v(A) for all A € o(S) and v(A) = pu(A) when p(A) < cc.
To prove v(A) = p(A) for all A € o(S), let X,, :== {x >1/n} € o(S). Since
]-Xn <ny,

p(X) = [ Lxdi< [ mdu=ni(o <o,
X X
Since x > 0 on X, X,, T X and therefore by continuity of v and p,
v(A) = lim v(ANX,) = lim p(ANX,)=u(A)

forall A€ o(S). m
The rest of this chapter is devoted to applications of the Daniell — Stone con-
struction theorem.

Remark 13.23. To check the hypothesis in Theorem 13.22 that there exists x € Sy
such that I(x) < oo and x(z) > 0 for all z € X, it suffices to find ¢, € ST such
that > 02 | ¢n > 0 on X. To see this let M, := max (||¢y], ,I(¢n),1) and define
X::Zleﬁqbn,thenxe&, 0<x<land I(y) <1< 0.
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13.3. Extensions of premeasures to measures I. In this section let X be a
set, A be a subalgebra of 2% and g : A — [0, 00| be a premeasure on A.

Definition 13.24. Let £ be a collection of subsets of X let £, denote the collection
of subsets of X which are finite or countable unions of sets from £. Similarly let &5
denote the collection of subsets of X which are finite or countable intersections of
sets from €. We also write £,5 = (£5)5 and E5, = (Es), , etc

Remark 13.25. Let po be a premeasure on an algebra A. Any A = U2 A € A,
with A € A may be written as A = [] 4,, with A, € A by setting 4,
n=1

AN (AU---UA ). If we also have A = ][ B,, with B, € A, then 4, =
n=1
[172; (A, N By) and therefore because y is a premeasure,

:U'O(An) == Z,LLO(AW, N Bk)
k=1

Summing this equation on n shows,

ZMO ZZ,UJO(Antk)
1k=1

n=1 n=

By symmetry (i.e. the same argument with the A’s and B’s interchanged) and
Fubini’s theorem for sums,

Zm(Bk) =3 uo(An N Bi) = > > po(An N By)

k=1n=1 n=1k=1

and hence Y 07 | po(A,) = >7—; po(Bg). Therefore we may extend pg to A, by
setting

o0

if A= ] A,, with A, € A. In future we will tacitly assume this extension has
n=1

been made.

Theorem 13.26. Let X be a set, A be a subalgebra of 2% and pg be a premeasure
on A which is o — finite on A, i.e. there ezists X, € A such that po(X,) < 0o
and X, T X as n — oo. Then ug has a unique extension to a measure, (1, on
M = o(A). Moreover, if A € M and € > 0 is given, there exists B € A, such that
A C B and u(B\ A) < e. In particular,

(13.14) p(A) = inf{uo(B): AC B e Ay}
(13.15) =inf{> po(An): AC J] An with A, € A}.
n=1 n=1

Proof. Let (A, po, I = I,,,) be as in Definition 13.4. As mentioned in Example
13.17, I is a Daniell integral on the lattice S = S¢(A, po). It is clear that 1A ¢ €S
for all ¢ € S. Since 1x, € St and > 7, 1x, > 0 on X, by Remark 13.23 there
exists x € Sy such that I(x) < oo and x > 0. So the hypothesis of Theorem 13.22
hold and hence there exists a unique measure y on M such that I(f) = [, fdu for
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all f € S. Taking f = 14 with A € A and po(A4) < oo shows p(A) = po(A). For
general A € A, we have

w(A) = lim p(ANX,) = lim u(ANX,)=pu(4).

n—oo

The fact that p is the only extension of pg to M follows from Theorem 8.5 or
Theorem 8.8. It is also can be proved using Theorem 13.22. Indeed, if v is another
measure on M such that v = pon A, then I,, = I on S. Therefore by the uniqueness
assertion in Theorem 13.22, y = v on M.

By Eq. (13.13), for A € M,

w(A) = I(14) = inf {I(f): f € S; with 14 < f}
—inf{/ fdp : f €Sy with 1A§f}.
X

For the moment suppose p1(A) < oo and € > 0 is given. Choose f € S; such that
14 < f and

(13.16) / fdp=I(f) < p(A) +e.
X
Let f, € S be a sequence such that f,, T f as n — oo and for a € (0,1) set

wi={f>a} =02 {fn>a} e A,.
Then A C {f > 1} C B, and by Chebyshev’s inequality,

ol /X fdp = oV I(f)

which combined with Eq. (13.16) implies p(B,) < p(A)+e for all « sufficiently close
to 1. For such « we then have A C B, € A, and (B, \ A) = u(By) — 1(A) < e.

For general A € A, choose X,, T X with X,, € A. Then there exists B,, € A,
such that u(B,, \ (4, N X,,)) < e27™. Define B := U2, B, € A,. Then

p(B\A) = p(UpZy (Ba\ 4)) < Zu((Bn\A))

i ((Bn \ (AN X)) <

Eq. (13.14) is an easy consequence of this result and the fact that u(B) = uo(B).
]

Corollary 13.27 (Regularity of ). Let A C P(X) be an algebra of sets, M = o(A)
and p : M — [0, 00] be a measure on M which is o — finite on A. Then

(1) For all Ae M,
(13.17) w(A) =inf{u(B): AC Be A,}.

(2) If A€ M and e > 0 are given, there exists B € A, such that A C B and
w(B\ A) <e.

(3) For all A € M and € > 0 there exists B € As such that B C A and
uw(A\ B) <e.

(4) For any B € M there exists A € As, and C € Ays such that AC BC C
and u(C'\ A) = 0.
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(5) The linear space S := S¢(A, ) is dense in LP(u) for all p € [1,00), briefly

7[})( )
put, Sp(A )" " = L ().

Proof. Items 1. and 2. follow by applying Theorem 13.26 to po = p|4. Items
3. and 4. follow from Items 1. and 2. as in the proof of Corollary 8.41 above.

Item 5. This has already been proved in Theorem 11.3 but we will give yet
another proof here. When p = 1 and g € L'(y;R), there exists, by Eq. (13.13),
h € Sy such that g < h and ||h—gll, = [y(h—g)du < e. Let {h,};Z, C S be
chosen so that h, T h as n — oo. Then by the dominated convergence theorem,
|hn —glly = Ik —g|l;, < € as n — oco. Therefore for n large we have h,, € S with

1
lhn — gll; < €. Since € > 0 is arbitrary this shows, Sz(A, u)L W _ LY ().

Now suppose p > 1, g € LP(u;R) and X,, € A are sets such that X,, 7 X and
(X)) < co. By the dominated convergence theorem, 1x, - [(g An)V (—n)] — ¢ in
LP(p) as n — o0, so it suffices to consider g € L?(u;R) with {g # 0} C X,, and
lg] < n for some large n € N. By Holder’s inequality, such a g is in L'(u). So if
€ > 0, by the p = 1 case, we may find h € S such that ||k — g||; < e. By replacing
h by (hAn)V (—n) €S, we may assume h is bounded by n as well and hence

Ik — gl =/ Ih—g\”du=/ h— gl |h — gl du
X X

< (20! / Ih— gldp < (2n)" .
X
Since € > 0 was arbitrary, this shows S is dense in LP(y;R). m

Remark 13.28. If we drop the o — finiteness assumption on pg we may loose unique-
ness assertion in Theorem 13.26. For example, let X = R, Bgr and A be the algebra
generated by € := {(a,b)) "R : —0o < a < b < 0}. Recall Bg = o(€). Let D C R
be a countable dense set and define pp(A) := #(D N A). Then pp(A) = oo for
all A € A such that A # ). So if D’ C R is another countable dense subset of R,
wpr = pp on A while up # ppr on Bg. Also notice that pp is o — finite on Br but
not on A.

It is now possible to use Theorem 13.26 to give a proof of Theorem 7.8, see sub-
section 13.8 below. However rather than do this now let us give another application
of Theorem 13.26 based on Example 13.16 and use the result to prove Theorem 7.8.

13.4. Riesz Representation Theorem.

Definition 13.29. Given a second countable locally compact Hausdorff space
(X, 7), let M} denote the collection of positive measures, u, on By := o(7) with the
property that u(K) < oo for all compact subsets K C X. Such a measure p will be
called a Radon measure on X. For n € M and f € Co(X,R) let I,(f) == [y fdp.

Theorem 13.30 (Riesz Representation Theorem). Let (X, 7) be a second count-
able®® locally compact Hausdorff space. Then the map j — 1,, taking Mt to positive
linear functionals on C.(X,R) is bijective. Moreover every measure j € My has
the following properties:

30The second countability is assumed here in order to avoid certain technical issues. Recall from
Lemma 10.17 that under these assumptions, o(S) = Bx. Also recall from Uryshon’s metrizatoin
theorem that X is metrizable. We will later remove the second countability assumption.
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(1) For all e > 0 and B € Bx, there exists F C B C U such that U is open
and F is closed and p(U \ F) < e. If u(B) < oo, F may be taken to be a
compact subset of X.

(2) For all B € Bx there exists A € F, and C € 15 (15 is more conventionally
written as Gs) such that AC B C C and u(C'\ A) = 0.

(3) For all B € By,

)
(13.18) w(B) =inf{u(U): BCU and U is open}
(13.19) =sup{u(K): K C B and K is compact}.
(4)
(13200 (V) =swp{ [ fdus f <X} =sup{L,(1) £ < X,

(5) For all compact subsets K C X,
(13.21) w(K) =inf{I,(f) : 1xg < f < X}

(6) If [[1,]| denotes the dual norm on C.(X,R)*, then ||1,| = u(X). In partic-
ular I, is bounded iff p(X) < oo.
(7) C.(X,R) is dense in LP(u; R) for all 1 < p < 0.

For all open subsets, U C X,

Proof. First notice that I, is a positive linear functional on S := C.(X,R) for
all p € M, and S is a lattice such that 1 A f € S for all f € S. Example 13.16
shows that any positive linear functional, I, on S := C.(X,R) is a Daniell integral
on S. By Lemma 10.10, there exists compact sets K,, C X such that K,, T X. By
Urysohn’s lemma, there exists ¢, < X such that ¢, = 1 on K,,. Since ¢,, € ST
and Y7 | ¢, > 0 on X it follows from Remark 13.23 that there exists x € Sy such
that x > 0 on X and I() < co. So the hypothesis of the Daniell — Stone Theorem
13.22 hold and hence there exists a unique measure p on o(S) =Bx (Lemma 10.17)
such that I = I,,. Hence the map u — I, taking M to positive linear functionals
on C.(X,R) is bijective. We will now prove the remaining seven assertions of the
theorem.

(1) Suppose € > 0 and B € By satisfies u(B) < co. Then 15 € L' (1) so there
exists functions f, € C.(X,R) such that f, T f, 1 < f, and

(13.22) /X fdp=1(f) < p(B) + €.

Let a € (0,1) and U, = {f >a} S, {fn > a} € 7. Since 15 < f,
B c {f>1} C U, and by Chebyshev’s inequality, u(Us) < ! [ fdpu =
a~'I(f). Combining this estimate with Eq. (13.22) shows u(U, \ B) =
w(U,) — p(B) < e for « sufficiently closet to 1.

For general B € Bx, by what we have just proved, there exists open sets
U, C X such that BN K,, C U, and p(U, \ (BN K,)) < €27 for all n.
Let U = U2, U, then B C U € 7 and

o0

p(U\ B) = pu(Up2, (Un \ B)) Z (Un\ B)

o0

Z (U, \ (BNKy)) §262_”—
n=1
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Applying this result to B shows there exists a closed set F' C X such
that B¢ C F¢ and

W(B\F) = u(F*\ B°) <.

So we have produced F' C B C U such that u(U\F) = p(U\B)+u(B\F) <
2e.

If 4(B) < o0, using B\ (K, NF) 1 B\ F as n — oo, we may choose n
sufficiently large so that u(B\ (K, N F)) < e. Hence we may replace F' by
the compact set F'N K, if necessary.

Choose F,, C B C U, such F, is closed, U, is open and pu(U, \ F,,) < 1/n.
Let B=U,F, € F, and C :=NU,, € 75s. Then A ¢ B C C and

w(C\A) < pu(Fu\Uy,) < % — 0 asn— oo.
From Item 1, one easily concludes that
w(B)=inf {u(U): BCU C, X}
for all B € Bx and
u(B) = sup {u(K) : K CC B}

for all B € Bx with u(B) < co. So now suppose B € By and u(B) = .
Using the notation at the end of the proof of Item 1., we have u(F) = oo and
w(FNK,) T ocoasn— oo. This shows sup {u(K) : K CC B} = 0o = pu(B)
as desired.

For U C, X, let

v(U) :=sup{l,(f): f<U}.

It is evident that v(U) < u(U) because f < U implies f < 1y. Let K be a
compact subset of U. By Urysohn’s Lemma 10.15, there exists f < U such
that f =1 on K. Therefore,

W) < [ fip <o)
and we have
wK) <vU) < pU) foral U C, X and K CC U.
By Item 3.,
u(U) = sup{u(K) : KcC U} <v(U) < p(U)

which shows that u(U) = v(U), i.e. Eq. (13.20) holds.
Now suppose K is a compact subset of X. From Eq. (13.23),

p(K) <inf{I,(f) : 1x < f < X} < p(U)
for any open subset U such that K C U. Consequently by Eq. (13.18),

p(K) <inf{l,(f) :1xg < f < X} <inf{p(U): K CU C, X} = u(K)

which proves Eq. (13.21).
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(6) For f € Co(X,R),

(13.25) [.(P] < /X |fldp < [[f1l, u(supp(f)) < [[f]], n(X)

which shows ||,|| < p(X). Let K CC X and f < X such that f =1 on K.
By Eq. (13.23),

W(K) < / S = 1L(F) < | 11 = ]
X
and therefore,
u(X) = sup{p(K) : K CC X} < ||L]|.

(7) This has already been proved by two methods in Proposition 11.6 but we
will give yet another proof here. When p = 1 and g € L'(u;R), there
exists, by Eq. (13.13), h € S; = C(X,R); such that g < h and ||h — g||, =
Jx(h—g)dpu < e. Let {h,,},~; CS = C.(X,R) be chosen so that h,, T h as
n — o00. Then by the dominated convergence theorem (notice that |h,| <
|hi] + |R]), |hn — gll; = [|R — gll; < € as n — oo. Therefore for n large we
have hy, € C.(X,R) with ||k, — g||; < €. Since € > 0 is arbitrary this shows,

1
S " =L ().

Now suppose p > 1, g € LP(u;R) and {K,,} -, are as above. By the
dominated convergence theorem, 1x, (g An)V (—n) — g in LP(u) as n —
00, so it suffices to consider g € LP(u;R) with supp(g) C K,, and |g| < n
for some large n € N. By Holder’s inequality, such a g is in L'(u). So if
e > 0, by the p = 1 case, there exists h € S such that ||h —g||; < e. By
replacing h by (hAn)V (—n) € S, we may assume h is bounded by n in
which case

I — gl =/ Ih—g\deZ/ h— gl |h — gl du
X X

< (2n)p—1/ Ih— gldp < (2n)" .
X

Since € > 0 was arbitrary, this shows S is dense in LP(u; R).
[
Remark 13.31. We may give a direct proof of the fact that ;1 — I, is injective. In-
deed, suppose p, v € My satisfy 1,,(f) = I,(f) for all f € C.(X,R). By Proposition
11.6, if A € By is a set such that u(A) + v(A4) < oo, there exists f,, € C.(X,R)
such that f,, — 14 in L'(p + v). Since f,, — 14 in L'(p) and L(v),

w(A) = lim I,(fn) = lim I, (f,) = v(A).
n—oo n—oo
For general A € By, choose compact subsets K,, C X such that K,, T X. Then
p(A) = lim p(ANK,) = lim v(ANK,)=rv(A)
n—oo n—oo
showing p = v. Therefore the map u — I, is injective.

Theorem 13.32 (Lusin’s Theorem). Suppose (X, T) is a locally compact and second
countable Hausdorff space, Bx is the Borel o — algebra on X, and p is a measure on
(X, Bx) which is finite on compact sets of X. Also let € > 0 be given. If f : X — C
is a measurable function such that p(f # 0) < oo, there exists a compact set
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K C {f # 0} such that f|k is continuous and pu({f # 0} \ K) < e. Moreover there
exists ¢ € C.(X) such that u(f # ¢) < € and if f is bounded the function ¢ may
be chosen so that ||¢], < ||f]l,, :=sup,ex |f(x)].

Proof. Suppose first that f is bounded, in which case

[\ < 1t #0) < .

By Proposition 11.6 or Item 7. of Theorem 13.30, there exists f,, € C.(X) such
that f, — fin L'(u) as n — oo. By passing to a subsequence if necessary, we may
assume || f — full; < en™'27" for all n and thus p (|f — fu| > n™') < €27 for all
n. Let B := U2, {|f — ful > n7'}, so that u(E) <e. On E°, |f — fu| < 1/n, ie.
fn — f uniformly on E° and hence f|g- is continuous.

Let A := {f # 0}\ E. By Theorem 13.30 (or see Exercises 8.4 and 8.5) there exists
a compact set K and open set V such that K € A C V such that u(V \ K) < e.
Notice that

u({f # 01\ K) < (AN K) + u(E) < 2,

By the Tietze extension Theorem 10.16, there exists F' € C(X) such that f =
F|k. By Urysohn’s Lemma 10.15 there exists ¢ < V such that ¢» = 1 on K. So
letting ¢ = YF € C.(X), we have ¢ = f on K, ||¢[|, < |/f|l, and since {¢ # f} C
EU(V\K), u(¢ # f) < 3e. This proves the assertions in the theorem when f is
bounded.

Suppose that f : X — C is (possibly) unbounded. By Lemmas 10.17 and
10.10, there exists compact sets {Kn}x_, of X such that Ky T X. Hence By :=
KnNn{0<|f|<N} 1 {f#0} as N — oo. Therefore if ¢ > 0 is given there
exists an N such that p({f # 0} \ By) < e. We now apply what we have just
proved to 1p, f to find a compact set K C {1p, f # 0}, and open set V C X and
¢ € Ce(V) C Co(X) such that p(V\K) <€, u({lpyf #0}\K) <eand ¢ = f on
K. The proof is now complete since

{o7 fc{f 703\ By)U({lsyf# 0} \ K)U(V\ K)

so that u(¢ # f) < 3e. ®

To illustrate Theorem 13.32, suppose that X = (0,1), u = m is Lebesgue measure
and f = 1(g,1)ng- Then Lusin’s theorem asserts for any € > 0 there exists a compact
set K C (0, 1) such that m((0,1)\K) < e and f|k is continuous. To see this directly,
let {r,},—, be an enumeration of the rationales in (0,1),

Jp=(rp—€27"r,+e27")N(0,1) and W = U2, J,,.

n=1

Then W is an open subset of X and u(W) < e. Therefore K,, := [1/n,1—1/n]\ W
is a compact subset of X and m(X \ K,) < 2 + p(W). Taking n sufficiently large
we have m(X \ K,,) < e and f|g, =0 is continuous.

13.4.1. The Riemann — Stieljtes — Lebesque Integral.

Notation 13.33. Given an increasing function F' : R —R, let F(z—) =
limy, F(y), F(z+) = limy), F(y) and F(foo) = lim, ,4o F(z) € R. Since F'
is increasing all of theses limits exists.

Theorem 13.34. Let F : R — R be increasing and define G(x) = F(z+). Then

(1) The function G is increasing and right continuous.
(2) Forz € R, G(z) = lim, |, F'(y—).
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(3) The set {x € R: F(z+) > F(x—)} is countable and for each N > 0, and
moreover,

(13.26) > [F(z+) - F(z=)] < F(N) = F(-N) < 0.
z€(—N,N]
Proof.
(1) The following observation shows G is increasing: if x < y then
(13.27)  F(a-) < F(2) < Fa+) = G(z) < F(y-) < F(y) < Fy+) = G(y).
Since G is increasing, G(z) < G(z+). If y > = then G(z+) < F(y) and
hence G(z+) < F(z+) = G(z), i.e. G(z+) = G(z).
(2) Since G(z) < F(y—) < F(y) for all y > =z, it follows that

G(w) < lim F(y-) < lim F(y) = G(z)
ylx ylx
showing G(z) = lim, |, F'(y—).
(3) By Eq. (13.27), if  # y then
(F(z=), F(z+)] N (F(y=), F(y+)] = 0.
Therefore, {(F(z—), F'(x+)]},cp are disjoint possible empty intervals in R.
Let N € Nand a CC (—N, N) be a finite set, then

[T (F@=), Fla+)] € (F(=N), F(N)]

TEQ

and therefore,

> [F(z+) — F(z—)] < F(N) = F(=N) < 0.

TrEx
Since this is true for all @ CC (=N, N], Eq. (13.26) holds. Eq. (13.26)
shows
Iy :={zx € (-N,N)|F(z+) — F(z—) > 0}
is countable and hence so is
I'={z eR|F(z+) - F(z—) >0} = U¥_,T'n.
]

Theorem 13.35. If F : R — R is an increasing function, there exists a unique
measure g = pp on Br such that

(13.28) /OO fdF = / fdu for all f € C.(R,R),
—00 R

where ffooo fdF is as in Notation 13.6 above. This measure may also be character-
ized as the unique measure on Br such that

(13.29) u((a,b]) = F(b+) — F(a+) for all —oo < a <b< oo.
Moreover, if A € By then

©
I
A

MF(A) = inf {Z(F(bz—f') - F(ari-)) A C Ufil(ai, bl]}

= inf {Z(F(bz—k) — F(aﬁ-)) cAC H(ai, bl]} .
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Proof. An application of Theorem 13.30 implies there exists a unique measure
p on Br such Eq. (13.28) is valid. Let —oco < a < b < 00, € > 0 be small and
¢c(x) be the function defined in Figure 30, i.e. ¢, is one on [a + 2¢,b + €], linearly
interpolates to zero on [b+ €, b+ 2¢] and on [a+ €, a 4 2¢] and is zero on (a, b+ 2¢)°.

Je

}

]
b bie bilE

F1GURE 30. The function ¢. used to compute v((a, b]).

Since ¢ — 1(4,p) it follows by the dominated convergence theorem that

(13.30) mwngémngémw

On the other hand we have 1(412¢ b4 < @ < L(atept2q and therefore,
Fo-+0) = Fla+20 = [ LraiaadF
R

< / PedF < / Liatebr2e)dF = F(b+2¢) — Fa+¢).
R R

Letting € | 0 in this equation and using Eq. (13.30) shows
F(b+) — F(at) < p((a,b]) < F(b+) — F(at).
The last assertion in the theorem is now a consequence of Corollary 13.27. m

Corollary 13.36. The positive linear functionals on C.(R,R) are in one to one
correspondence with right continuous non-decreasing functions F such that F(0) =
0.

13.5. Metric space regularity results resisted.

Proposition 13.37. Let (X,d) be a metric space and p be a measure on M = Bx
which is o — finite on T := 74.

(1) For all e > 0 and B € M there exists an open set V € 7 and a closed set
F such that F C BCV and u(V\ F) <e.

(2) For all B € M, there exists A € F, and C € Gs such that AC B C C and
uw(C\ A) =0. Here F, denotes the collection of subsets of X which may be
written as a countable union of closed sets and Gs = Ts is the collection of
subsets of X which may be written as a countable intersection of open sets.

(3) The space BC¢(X) of bounded continuous functions on X such that p(f #
0) < oo is dense in LP ().
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Proof. Let S := BCy(X), I(f) := [y fdp for f € S and X,, € 7 be chosen
so that pu(X,) < oo and X, T X asn — oco. Then 1 A f € S for all f € S and
if ¢, = 1A (ndxﬁ) € St, then ¢, T 1 as n — oo and so by Remark 13.23 there
exists x € Sy such that x > 0 on X and I(x) < oo. Similarly if V' € 7, the function
gn = 1A (nd(Xan)c) €S and g, — 1y as n — oo showing o(S) =Bx. If f,, € S*
and f, | 0 as n — o0, it follows by the dominated convergence theorem that
I(fn) | 0 as m — 0. So the hypothesis of the Daniell — Stone Theorem 13.22 hold
and hence p is the unique measure on Bx such that I = I, and for B € By and

w(B) =I(1g) =inf {I(f): f € S; with 15 < f}
—inf{/ fdu : f €Sy with 1B§f}.
X

Suppose € > 0 and B € Bx are given. There exists f, € BC¢(X) such that f, T
[, 1 < f, and p(f) < w(B) + €. The condition 15 < f, implies 1p < 1{y>13 < f
and hence that

(13.31) w(B) < p(f > 1) < p(f) < u(B) +e

Moreover, letting V,,, := US2, {fn, > 1—1/m} € 74, we have V,,, | {f > 1} D B
hence u(Vi,) | p(f > 1) > u(B) as m — oo. Combining this observation with Eq.
(13.31), we may choose m sufficiently large so that B C V;,, and

p(Vin \ B) = p(Vin) — u(B) < e.

Hence there exists V' € 7 such that B C V and u(V \ B) < e. Applying this result
to B¢ shows there exists F' C X such that B¢ C F¢ and

w(B\ F) = p(F°\ BY) <e.

So we have produced F C B C V such that u(V\ F) = u(V\ B) + u(B\ F) < 2e.
The second assertion is an easy consequence of the first and the third follows in
similar manner to any of the proofs of Item 7. in Theorem 13.30. m

13.6. Measure on Products of Metric spaces. Let {(X,,d,)}nen be a se-
quence of compact metric spaces, for N € Nlet Xy := H 1 Xpand7y 1 X — Xy
be the projection map 7y (z) = z[{1,2,...,n}- Recall from Exerc1se 3.27 and Ex-

ercise 6.15 that there is a metric d on X := [[ X, such that 74 = ®22 74,
neN

(= 7(my, : n € N) — the product topology on X) and X is compact in this topology.

Also recall that compact metric spaces are second countable, Exercise 10.5.

Proposition 13.38. Continuing the notation above, suppose that {{n} ey are
given probability measures® on By = Bx, satisfying the compatibility conditions,
(), par = pn for all N < M. Then there exists a unique measure {1 on Bx =
o(rq) = o(m, :n € N) such that (wn), p = un for all N € N, i.e.

(13.32) | fen @it / @)y

for all N € N and f: Xy — R bounded a measurable.

31A typical example of such measures, pV, is to set puV := p1 ® --- ® uy where p, is a
probablity measure on By, for each n € N.
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Proof. An application of the Stone Weierstrass Theorem 11.44 shows that
D={feC(X): f=Fomy with F € C(Xy) and N € N}
is dense in C(X). For f = Fony € D let
1(f)= [ Formy(@)du ().
XN
Let us verify that I is well defined. Suppose that f may also be expressed as

f=Gomy with M € N and G € C(X)y). By interchanging M and N if necessary
we may assume M > N. By the compatibility assumption,

G(2)dpin (2) = /X Formy(@)dun(@) = [ Fd[(rx), pu]

XM XN

= Fo 7TNd,uN.
XN
Since [I(f)] < || fllcos the B.L.T. Theorem 4.1 allows us to extend I uniquely to
a continuous linear functional on C(X) which we still denote by I. Because I was
positive on D, it is easy to check that I is positive on C(X) as well. So by the Riesz
Theorem 13.30, there exists a probability measure p on Bx such that I(f) = [ fdp
b'e

for all f € C(X). By the definition of I in now follows that

/Fd(mv)*u: /Fodeuz I(Fomy) = /quN

XN XN XN
for all FF € C(Xn) and N € N. It now follows from Theorem 11.44he uniqueness
assertion in the Riesz theorem 13.30 (applied with X replaced by Xy ) that wn«p =
pn. B
Corollary 13.39. Keeping the same assumptions from Proposition 13.38. Further
assume, for eachn € N, there exists measurable set'Y,, C X, such that un(Yn) =1
with Yy :=Yy x --- x Yy. Then p(Y) =1 where Y =[[;2,Y; C X.

Proof. Since Y = NF_;75" (Yn), we have X \ 'Y = US_ ;75 (X \ Ya) and

therefore,

pX\Y) <> p(ry (Xn \YN)) = ) pv (Xn \ Ya) =0.
N=1 N=1
]
Corollary 13.40. Suppose that {jin},cn are probability measures on Bga for all

neN, X = (Rd) and B := @22, (Bra). Then there exists a unique measure [
on (X, B) such that

(13.33) /Xf(xl,xg,..., /fml,:rg, can)dpr(zr) .. dun ()
RN

for all N € N and bounded measurable functions f : (Rd)N — R.

Proof. Let (Rd)* denote the Alexandrov compactification of R?. Recall form
Exercise 10.12 that (Rd)* is homeomorphic to S% and hence (Rd)* is a compact
metric space. (Alternatively see Exercise 10.15.) Let fi,, := Gufiy, = fin, © i~1 where
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i:RY— (Rd)* is the inclusion map. Then fi,, is a probability measure on Bga)-
such that fi,, ({o0}) = 0. An application of Proposition 13.38 and Corollary 13.39
completes the proof. m

Exercise 13.3. Extend Corollary 13.40 to construct arbitrary (not necessarily
countable) products of R

13.7. Measures on general infinite product spaces. In this section we drop
the topological assumptions used in the last section.

Proposition 13.41. Let {(Xo, Ma, tta) taca be a collection of probability spaces,

that is pe(Xe) =1 for alla € A. Let X = [] Xo, M = 0(my : a € A) and for
acA

AcCC Alet Xp :=[[oepn Xa and mp : X — X, be the projection map ma(z) = s

and pp = HaeA e, be product measure on My := ®qecaMeq. Then there exists a

unique measure [t on M such that (mp), = pa for all A CC A, ie. if f: Xy — R

i a bounded measurable function then

(13.34) / Fra(@))dp(z / F)dpa(y

Proof. Let S denote the collection of functions f : X — R such that there exists
A CC A and a bounded measurable function F' : X4 — R such that f = F o my.
For f=Fom €8, let I(f) = [, Fdua.

Let us verify that I is well defined. Suppose that f may also be expressed as
f=Gomp withT' CC A and G : Xr — R bounded and measurable. By replacing
I" by TUA if necessary, we may assume that A C I'. Making use of Fubini’s theorem
we learn

/ G(2) dur(z) = / Foma(x) dua(z)dpra(y)
Xr XaXXp\a

= Fomp(x)dup(x) - / d,UF\A(y)

Xa Xr\a

= fir\A (XF\A) / Fomp(z)dus(z) = / Fomp(z)dua(x),
XA XA

wherein we have used the fact that pa(Xa) =1 for all A CC A since po(Xo) =1
for all @ € A. It is now easy to check that I is a positive linear functional on the
lattice S. We will now show that I is a Daniel integral.

Suppose that f,, € ST is a decreasing sequence such that inf, I(f,) = ¢ > 0.
We need to show f :=lim, ., f, is not identically zero. As in the proof that I is
well defined, there exists A,, CC A and bounded measurable functions F}, : X, —
[0,00) such that A, is increasing in n and f, = F,, o, for each n. For k < n, let
F%: X,, —[0,00) be the bounded measurable function

Fl(x) = / Fo(z X y)dpp,\a, (y)
XA!L\Ak
where x Xy € Xp, is defined by (z x y) (o) = z(a) if & € A and (z x y) (@) = y(«a)

for E Ay \ Ag. By convention we set F" = F,,. Since f,, is decreasing it follows
that F¥ , < F¥ for all k and n > k and therefore F* := lim,,_.o F} exists. By
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Fubini’s theorem,
k _ k+1
Fn (l‘) - / Fn (33 X y)d/'[/Ak+1\Ak (y) when k + 1 <n
XAn\Ak

and hence letting n — oo in this equation shows

(13.35) Fa)= [ P gdus )
Xan\Ay
for all k. Now
Fl(x)duA1 (z) = lim F,%(x)du/\l ()= lim I(f,)=€¢>0
Xa, n=00 Xy, n— o0

so there exists
o1 € Xy, such that F*(z;) > e
From Eq. (13.35) with k =1 and = = 1 it follows that

e< / F?(z1 X y)dpaa, (v)
XAag\Aq

and hence there exists
T3 € Xp\a, such that F2?(z1 X 22) > €.

Working this way inductively using Eq. (13.35) implies there exists

z; € Xp\A,_, such that F™(xy X @3 X - X 2,) > €
for all n. Now F}! > F™ for all £ < n and in particular for & = n, thus

Fo(zy X xa X -+ X xp) = Fy(T1 X T X+ X Xy,)
(13.36) >F"(xg XTg X oo XTp) > €
for all n. Let x € X be any point such that

A, () = T1 X g X -+ X Ty,
for all n. From Eq. (13.36) it follows that
folx) =Fyomp () = F(z1y X Tg X - X xp) > €

for all n and therefore f(z) := lim;,,— o fn(x) > € showing f is not zero.
Therefore, I is a Daniel integral and there exists by Theorem 13.30 a unique
measure p on (X, o(S) = M) such that

I(f) :/ fdu for all f €S.
X
Taking f = 14 oy in this equation implies
pa(A) = I(f) = pomy'(A)
and the result is proved. m

Remark 13.42. (Notion of kernel needs more explanation here.) The above theorem
may be Jazzed up as follows. Let {(Xn, Ma)}laca be a collection of measurable
spaces. Suppose for each pair A C I' CC A there is a kernel pup r(z,dy) for z € X,
and y € Xp\, such that if A CT'C K CC A then

pa,x (z,dy x dz) = par(z, dy)pr x (x X y,dz).
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Then there exists a unique measure p on M such that

/f?TA )du(z /f )dpig (Y

for all A CC A and f: X5 — R bounded and measurable. To prove this assertion,
just use the proof of Proposition 13.41 replacing pir\ A (dy) by pa,r(z, dy) everywhere
in the proof.

13.8. Extensions of premeasures to measures II.

Proposition 13.43. Suppose that A C P(X) is an algebra of sets and p : A —

[0,00] is a finitely additive measure on A. Then if A,A; € A and A =[] A; we
i=1
have

(13.37) i (A
=1

(1) (+04)

we find using the finite additivity of u that

Zu +M<A\UA> >§;/~L(A)

i=1

Proof. Since

Letting N — oo in this last expression shows that Z w(A;) < u(A). m

Because of Proposition 13.43, in order to prove that 1 is a premeasure on A, it
suffices to show p is subadditive on 4, namely

(13.38) p(A) < Z#(A

whenever A = H A; with A € A and each {4;};2, C A.

=1

Proposition 13.44. Suppose that £ C P(X) is an elementary family (see Def-
inition 6.11), A = A(E) and p : A — [0,00] is an additive measure. Then the
following are equivalent:

(1) u is a premeasure on A.
(2) p is subadditivity on &, i.e. whenever E € £ is of the form E =1[,_, E; € £
with E; € £ then

(13.39) w(E) < iu E

Proof. Ttem 1. trivially implies item 2. For the converse, it suffices to show,
by Proposition 13.43, that if A = J] A, with A € A and each A, € A then Eq.
n=1
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(13.38) holds. To prove this, write A = [[;_, E; with E; € £ and A, = ]_[fvz"l E,.;
with E, ; € £. Then

S oo Np
E;=AnE;=[[AnnE; = [[[[ EninE;
n=1 n=11i=1
which is a countable union and hence by assumption,
oo N
p(E) <30S p(B,inEy).
n=1 i=1
Summing this equation on j and using the additivity of u shows that
n n oo N, oo N, n
pA) = wE) <Y DY w(BaiNE) =33 > w(BainE))
j=1 Jj=1n=1:i=1 n=1i=1 j=1
oo N, oo
= Z 1 (Eni) = ZM(An)
n=1i=1 n=1

as desired. m
The following theorem summarizes the results of Proposition 13.3, Proposition
13.44 and Theorem 13.26 above.

Theorem 13.45. Suppose that £ C P(X) is an elementary family and uo : € —
[0, 00] is a function.
(1) If po is additive on &, then pg has a unique extension to a finitely additive
measure o on A= A(E).
(2) If we further assume that po is countably subadditive on &, then po is a
premeasure on A.
(3) If we further assume that pg is o — finite on &, then there exists a unique
measure i on o(E) such that ple = po. Moreover, for A € o(£),

p(A) =inf{uy(B): AC B € Ay}

=inf{>_ po(En): AC [] En with E, € £}.
n=1 n=1

13.8.1. “Radon” measures on (R, Br) Reuvisited. Here we will use Theorem 13.45
to give another proof of Theorem 7.8. The main point is to show that to each
right continuous function F' : R — R there exists a unique measure pp such that
pur((a,b]) = F(b) — F(a) for all —oo < a < b < co. We begin by extending F'
to a function from R — R by defining F(£00) := lim, .+, F(z). As above let
E={(a,b)NR : —c0 < a < b < oo} and set pg ((a,b]) = F(b) — F(a) for all a,b € R
with a < b. The proof will be finished by Theorem 13.45 if we can show that pg is
sub-additive on &.

First suppose that —oo < a < b < o0, J = (a,b], J, = (an,b,] such that
J = ]I Jn. We wish to show

n=1

(13.40) po(J) < ZMO(Ji)-
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To do this choose numbers @ > a, by, > b, and set I = (a,b] C J, Ty = (an, Bn] D J,
and J° = (an, b,). Since I is compact and I ¢ J C |J J? there exists N < oo

n=1

such that

IcC

N
~0
n

ﬁCz

Hence by finite sub-additivity of py,

F(b) = F(a) = po(1) <> o) <D po(J

Using the right continuity of F' and letting a | a in the above inequality shows that

pol(a.b]) = F(b) = F(a) < 3 po (Ju)

(13.41) i )+ Z po(Jn \ Jp)

Given € > 0 we may use the right continuity of F' to choose by, so that
p0(Jn \ Jn) = F(b,) — F(b,) < €27 Vn.
Using this in Eq. (13.41) show

po(J) = po((a,b]) < ZNO (J,

and since € > 0 we have verified Eq. (13.40).
We have now done the hard work. We still have to check the cases where a = —oo
or b = oo or both. For example, suppose that b = co so that

J = (a,00) = In
=1

with J,, = (an,b,] NR. Then let I := (a, M], and notice that

Iy=JNIy= HJnﬂIM

n=1

So by what we have already proved,
F(M) — F(a) = po(In) < Z“O W NIy < imu
Now let M — oo in this last inequality to find that
po((a, 00)) = F(o0) — F(a) < iuo J.
n=1

The other cases where ¢« = —oo and b € R and a = —oco and b = oo are handled
similarly.



ANALYSIS TOOLS WITH APPLICATIONS 277

13.9. Supplement: Generalizations of Theorem 13.35 to R".
Theorem 13.46. Let A C P(X) and B C P(Y) be algebras. Suppose that
p:AxB—-C
s a function such that for each A € A, the function
BeB—uAxB)eC
is an additive measure on B and for each B € B, the function
Ae A— u(AxB)eC
is an additive measure on A. Then i extends uniquely to an additive measure on
the product algebra C generated by A x B.
Proof. The collection
E=AxB={AxB:AcAand B € B}

is an elementary family, see Exercise 6.2. Therefore, it suffices to show p is additive
on £. To check this suppose that A x B € £ and

k=1
with Ay x By € £. We wish to shows

(A x B)=> " u(Ag x By).
k=1
For this consider the finite algebras A" C P(A) and B’ C P(B) generated by
{Ag}i_, and {By};_, respectively. Let B C A" and G C B’ be partition of 4 and
B respectively as found Proposition 6.18. Then for each k we may write

A, = H «a and By = H 5.

a€EF,aCAy BEG,BC By
Therefore,
p(AR X B) = (A x| B) = D nlAx x B)
BC By BCBy
= > u(( U a) xB)= > wulaxp)
BC B aCAy aCAy,BCBy
so that
Z Ak X Bk Z Z M(Oz X ﬂ) = Z [},(Oé X ﬁ)
k k «aCAy,BCBy aCA,BCB
= 5" u(Ax B) = p(A x B)
BCB

as desired. m

Proposition 13.47. Suppose that A C P(X) is an algebra and for each t € R,
e+ A — C is a finitely additive measure. Let Y = (u,v] C R be a finite interval
and B C P(Y) denote the algebra generated by € := {(a,b] : (a,b] C Y}. Then there
18 a unique additive measure i on C, the algebra generated by A x B such that

w(A x (a,b]) = up(A) — pa(A) ¥V (a,b] € € and A € A.
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Proof. By Proposition 13.3, for each A € A, the function (a,b] — (A x (a, b))
extends to a unique measure on B which we continue to denote by u. Now if B € B,
then B =[], I, with I € &, then

w(A x B) ZquIk

from which we learn that A — p(A x B) is still finitely additive. The proof is
complete with an application of Theorem 13.46. m
For a,b € R, write a < b (a < b) if a; < b; (a; < b;) for all 4. For a < b, let (a,b]
denote the half open rectangle:
(a, b] = ((Zl,bl] X (G,Q,bg] X oo X (an,bn],
& ={(a,b] : a < b} U{R"}
and A (R™) C P(R™) denote the algebra generated by £. Suppose that F': R" — C

is a function, we wish to define a finitely additive complex valued measure pp on
A(R™) associated to F. Intuitively the definition is to be

wr((a,b]) = F(dty, dta, ..., dt,)
(a,b]

:/ (010 ... O0F) (11, tr . 1)1, dbo, . db
(a,b]

tn=bn dty,dts,...,dt,_1,

tn=an

:/( (0102...0n—1F) (t1,t2,...,tn)

a,b]
where
(@,b] = (a1,b1] x (a2, bo] X -+ X (@p—1,bp_1].
Using this expression as motivation we are led to define pp by induction on n. For
n=1,let
pr((a,b]) = F(b) — F(a)

and then inductively using

pr((a, b)) = ppe (@, B[t b,L

Proposition 13.48. The function up extends uniquely to an additive function on
A(R™). Moreover,

(13.42) pr((a,0]) = Y (=DM F(ap x bae)
ACS
where S ={1,2,...,n} and
N Joa@@) if i€l
@xi 0= 50§ IEh
Proof. Both statements of the proof will be by induction. For n = 1 we
have pp((a,b]) = F(b) — F(a) so that Eq. (13.42) holds and we have already
seen that pp extends to a additive measure on A (R). For general n, notice that
A(R") = AR" 1) @ A(R). For t € R and A € A(R"™1), let
pi(A) = ppep(A)
where pp(. ) is defined by the induction hypothesis. Then

pr(A X (a,b]) = pp(A) — pa(A)
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and by Proposition 13.47 has a unique extension to A(R"~!) @ A(R) as a finitely
additive measure.
For n =1, Eq. (13.42) says that

pr((a,b]) = F(b) - F(a)

where the first term corresponds to A = () and second to A = {1}. This agrees with
the definition of pp for n = 1. Now for the induction step. Let T'= {1,2,...,n—1}
and suppose that a,b € R™, then

pr((a,b]) = (0 (@ B) =

= Z |A‘F aA X bA(‘ )iiz’;
ACT

= Z |A‘F anbAc b )— Z(—l)‘AlF(dAX?)Ac,an)
ACT ACT

= > (DMF(aaxba)+ > (=)™ F(an x bae)
ACS:meAe ACS:neA

=Y (=DM F(an x bae)
ACS

as desired. m

13.10. Exercises.

) be as in Definition 13.4 and Proposition 13.5, Y be a
Banach space and S(Y ) S#(X, A, 1;Y) be the collection of functions f: X —Y
such that #(f(X)) < oo, f7*({y}) € Afor ally € Y and u(f # 0) < co. We may
define a linear functlonal :S(Y) =Y by

H=> yu(f=

yeyYy

Exercise 13.4. Let (X, A,

Verify the following statements.
(1) Let || fll.. = sup,ex |lf(2)]ly be the sup norm on ¢*°(X,Y’), then for f €
S(Y),
H(Hlly < [ flloo w(f # 0).
Hence if 4(X) < oo, I extends to a bounded linear transformation from
S(Y)Ce*(X,Y) to Y.
(2) Assuming (X, A, u) satisfies the hypothesis in Exercise 13.1, then C(X,Y) C

S(Y).

(3) Now assume the notation in Section 13.4.1, i.e. X = [-M, M] for some
M € R and p is determined by an increasing function F. Let 7 = {—M =
to <t; < -+ <tp, =M} denote a partition of J := [-M, M| along with a

choice ¢; € [t;,t;11] for i =0,1,2...,n — 1. For f € C([-M, M],Y), set

n—1
fﬂ' = f(co)l[to,t1] + Z f(ci)l(ti,ti+1]'
i=1

Show that f, € S and
lf — fxll7 — 0 as |7| = max{(t;x1 — ;) :4=0,1,2...,n — 1} — 0.
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Conclude from this that

= lim Zf i) (F(tiv1) — F(t:)).

|7r\~>0

As usual we will write this integral as LM fdF and as fin F®)dtif F(t) =
t.

Exercise 13.5. Folland problem 1.28.

Exercise 13.6. Suppose that F' € C'(R) is an increasing function and pr is the
unique Borel measure on R such that pp ((a,b]) = F(b) — F(a) for all @ < b. Show
that dur = pdm for some function p > 0. Find p explicitly in terms of F.

Exercise 13.7. Suppose that F'(z) = ely>3 + mly>7 and pp is the is the unique
Borel measure on R such that pp ((a,b]) = F(b) — F(a) for all a < b. Give an
explicit description of the measure pp.

Exercise 13.8. Let E € Bgr with m(E) > 0. Then for any « € (0, 1) there exists
an open interval J C R such that m(E N J) > am(J).>* Hints: 1. Reduce to
the case where m(FE) € (0,00). 2) Approximate E from the outside by an open set
V C R. 3. Make use of Exercise 3.43, which states that V may be written as a
disjoint union of open intervals.

Exercise 13.9. Let (X, 7) be a second countable locally compact Hausdorff space
and I : Cy(X,R) — R be a positive linear functional. Show I is necessarily bounded,
i.e. there exists a C' < oo such that |I(f)] < C| fl|, for all f € Co(X,R). Hint:
Let p be the measure on Bx coming from the Riesz Representation theorem and for
sake of contradiction suppose p(X) = ||I]| = oo. To reach a contradiction, construct
a function f € Cy(X,R) such that I(f) = .

Exercise 13.10. Suppose that I : C*(R,R) — R is a positive linear functional.
Show

(1) For each compact subset K CC R there exists a constant Cx < oo such
that

()] < CrIfI,

whenever supp(f) C K.
(2) Show there exists a unique Radon measure p on Br (the Borel o — algebra
on R) such that I(f) = [ fdu for all f € C*(R,R).

13.10.1. The Laws of Large Number Exercises. For the rest of the problems of this
section, let v be a probability measure on By such that [, |z|dv(z) < oo, pn = v
for n € N and p denote the infinite product measure as constructed in Corollary
13.40. So p is the unique measure on (X := RN, B := Bgn) such that

(13.43) / flz1,29,...,x /f X1, Lo, ..., xn)dv(zy) ... dv(zN)

328ee also the Lebesgue differentiation Theorem 16.13 from which one may prove the much
stronger form of this theorem, namely for m -a.e. © € E there exits ro(x) > 0 such that m(E N
(z—r,x+7r)) >am((z—r,z+r)) for all r < rqo(zx).
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for all N € N and bounded measurable functions f : RY — R. We will also use the
following notation:

1 n

— Z xy, for x € X,
n

k=1

Sp(x) ==

m = / xdv(z) the average of v,
R

o? = /(m —m)?dv(z) the variance of v and
R

v = /R(x —m)tdv(z).

The variance may also be written as 02 = [, z*dv(z) — m?.

Exercise 13.11 (Weak Law of Large Numbers). Suppose further that o2 < oo,
show [ Spdp =m,

IS0 = ml3 = [ (8= m)?du="
X
and p(|S, —m| >¢€) < o forall e >0 and n € N.

— ne?

Exercise 13.12 (A simple form of the Strong Law of Large Numbers). Suppose
now that v := [ (z — m)*dv(z) < co. Show for all € > 0 and n € N that

1
15, = mlly = [ (Su=m)*du = 7 (n7+ 3nln = 1))
1 _ _
=3 [n 17—&—3(1—71 1)04] and
n~ly+3 (1 — n’l) ot
€in? '
Conclude from the last estimate and the first Borel Cantelli Lemma 7.22 that
lim;, 00 Sp(x) =m for p —ae. z € X.

p([Sn —m| > €) <

Exercise 13.13. Suppose v := [, (z—m)*dv(z) < coand m = [ (z—m)dv(z) # 0.
For A > 0 let T\ : RY — RN be defined by Tx(x) = (A\w1,A\xa,..., ATy, ... ),
[y = O T/\_1 and

1 n
Xy = N. o lim = =
A rzeR nlirréoanJ A
Jj=1
Show ; )
1 if A=A
pa(Xx) = o n = { 0 if AN
and use this to show if A # 1, then duy # pdu for any measurable function p :
RN — [0, o0].
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14. DANIELL INTEGRAL PROOFS

(This section follows the exposition in Royden and Loomis.) In this section we
let X be a given set. We will be interested in certain spaces of extended real valued
functions f : X — R on X.

Convention: Given functions f,g : X — R, let f + g denote the collection of
functions h : X — R such that h(z) = f(z) + g(z) for all x for which f(z) + g(x)
is well defined, i.e. not of the form oo — co. For example, if X = {1,2,3} and
f(1) = o0, f(2) = 2 and f(3) = 5 and ¢g(1) = ¢g(2) = —c0 and ¢(3) = 4, then
he f+giff h(2) = —oco and h(3) = 7. The value h(1) may be chosen freely. More
generally if a,b € R and f,g : X — R we will write af + bg for the collection
of functions h : X — R such that h(z) = af(z) + bg(z) for those x € X where
af(x)+ bg(x) is well defined with the values of h(x) at the remaining points being
arbitrary. It will also be useful to have some explicit representatives for af + bg
which we define, for o € R, by

(14.1) (af +bg)a(z) = { af(z) ;: bg(z) w(})f}rllefvifiisr:d

We will make use of this definition with o« = 0 and « = oo below.

Definition 14.1. A set, L, of extended real valued functions on X is an extended
vector space (or a vector space for short) if L is closed under scalar multiplication
and addition in the following sense: if f,g € L and A € R then (f + A\g) C L. A
vector space L is said to be an extended lattice (or a lattice for short) if it is
also closed under the lattice operations; fV g = max(f,g) and f A g = min(f, g).
A linear functional [ on L is a function I : L — R such that

(14.2) I(f+Xg)=I(f)+ XM (g) forall f,ge L and X € R.

Eq. (14.2) is to be interpreted as I(h) = I(f) + M (g) for all h € (f + Ag), and
in particular I is required to take the same value on all members of (f + Ag). A
linear functional I is positive if I(f) > 0 when f € L*, where L™ denotes the
non-negative elements of L as in Notation 13.13.

Remark 14.2. Notice that an extended lattice L is closed under the absolute value
operation since |f| = fVO0O—f A0 = fV (—f). Also if I is positive on L then
I(f) < I(g) when f,g € L and f < g. Indeed, f < g implies (g — f), > 0, so
0=1(0) =1((g — f)o) = 1(g9) — I(f) and hence I(f) < I(g).

In the remainder of this chapter we fix a lattice, S, of bounded functions, f :
X — R, and a positive linear functional I : S — R satisfying Property (D) of
Definition 13.15.

14.1. Extension of Integrals.

Proposition 14.3. The set St and the extension of I to Sy in Definition 13.20
satisfies:
(1) (Monotonicity) I(f) < I(g) if f,g € Sy with f <g.
(2) Sy is closed under the lattice operations, i.e. if f,g € Sy then fAg € S;
and fV g € Sy. Moreover, if I(f) < oo and I(g) < oo, then I(fV g) < oo
and I(f A g) < o0.
(3) (Positive Linearity) I (f +Ag) =I(f)+ M (g) for all f,g € Sy and A > 0.
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(4) f e ST iff there exists ¢, € ST such that f =" ¢,. Moreover, I(f) =
Zrn 1 (¢m) o
(5) If fn € ST cthen Y fn=:f¢€ S+ and I(f)=>",_11(fn)-
Remark 14.4. Similar results hold for the extension of I to S| in Definition 13.21.

Proof.

(1) Monotonicity follows directly from Lemma 13.19.

(2) If fn,gn €S are chosen so that f, T f and g, T g, then f, Ag, T f Ag and
faoVan T fVg. If we further assume that I(g) < oo, then f A g < g and
hence I(f Ag) < I(g) < oco. In particular it follows that I(f A0) € (—o0, 0]
for all f € Sy. Combining this with the identity,

IfHY=T(fAO+fVO)=T(fA0)+I(fVO0),

shows I(f) < oo iff I(f V0) < oo. Since f Vg < fVO0+gVDO0, if both
I(f) < oo and I(g) < oo then

I(fvg) <I(fVv0)+1I(gV0)<occ.

(3) Let fn,gn € S be chosen so that f, T f and g, T g, then (fn, +Agn) 1
(f + A\g) and therefore

I(f+Ag) = lim I(fu+Agn) = lim I(fn)+ A lim I(g,)
=1(f)+ M(9g).

(4) Let f € S?' and f, € S be chosen so that f, T f. By replacing f, by f, V0
if necessary we may assume that f,, € ST. Now set ¢,, = f,, — fu_1 € S for
n = 1,2,3,... with the convention that fo =0 € S. Then Y -, ¢, = f

and
I(f) = lim I(f,) = lim I( Z Om) = lm D 1(6m) = D 1(¢m)-
m=1 m=1

Conversely, if f = >°_| ¢ with ¢, € ST, then f,, ;==Y 0 ém T f as
n — oo and f, € ST.

5) Using Item 4., fr, = S°°°_ . ¢nm With ¢y € ST. Thus
( ) g ’ m=1 ; ;

fzzz¢n,m:]\;gnw Z (f)nvaST

n=1m=1 m,n<N

and

I(f)y= lim I( Y ¢nm)= Jim > I(bnm)

m,n<N m NN

= Z Z I((bn,m) = Z I(fn)-
n=1m=1 n=1

]
Definition 14.5. Given an arbitrary function g : X — R, let
I(g) =inf{I(f): g < f€S;} €Rand

I(g) =sup{I(f):S; > f < g} eR.
with the convention that sup ) = —oco and inf § = +oo0.
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Proposition 14.6. Given functions f,g: X — R, then:
(1) I(\f) = M(f) for all X > 0.
(2) (Chebyshev’s Inequality.) Suppose f : X — [0,00] is a function and o €
(0,00), then I(1{s>ay) < ZI(f) and if I(f) < oo then I(1{;—s}) = 0.
(3) I is subadditive, i.e. if I(f) + I(g) is not of the form oo — co or —oc + 0o,
then

(14.3) I(f +9) < I(f) + I(9).
This inequality is to be interpreted to mean,

I(h) <I(f)+1(g) for allh € (f+g).

(4) L(

(5) L( . _

(6) If f < g then I(f) < I(g) and I(f) < I(g). _

(7) Ifg € <ooorg €Sy and I(g) > —oo then I(g) = I(g) = I(g).

Proof.
(1) Suppose that A > 0 (the A = 0 case being trivial), then

IO =inf {I(h) : \f <heS;}=inf {I(h): f <A"'hes;}
—inf{I(\g): f < g€} = Ainf{I(9): f < g €51} = M().
(2) For a € (0,00), alys>qy < f and therefore,

al(lrzay) = I(algs>ay) < I(f).
Since Nlff—o) < f for all N € (0,00),

NI(L{j=co}) = I(N1{f=oc}) < I(f).

So if I(f) < oo, this inequality implies I(1{—o}) = 0 because N is arbi-
trary.

(3) If I(f) + I(g) = oo the inequality is trivial so we may assume that
I(f),I(g) € [—00,00). If I(f) + I(g) = —oco then we may assume, by inter-
changing f and g if necessary, that I(f) = —oo and I(g) < oo. By definition
of I, there exists f,, € Sy and g, € St such that f < f,, and g < g, and
I(fn) | —co and I(g,) | I(g). Since f+g < fu+9n €Sy, (ie. A < fn+gn
for all h € (f + g) which holds because f,,, g, > —o0) and

I(fn+gn) = 1(fu) +1(gn) | _OO""I_(Q) = =00,

it follows that I(f+g) = —ooc, i.e. I(h) = —oc for all h € f+g. Henceforth
we may assume I(f),I(g) € R. Let k € (f+g¢g) and f < hy € Sy and
g < hy € Sq. Then k < hy + hy € S} because if (for example) f(z) = oo
and g(z) = —oo, then hq(z) = 0o and ho(x) > —oo since hy € Sy. Thus
hi(z) + h2(x) = co > k(z) no matter the value of k(z). It now follows
from the definitions that I(k) < I(hi) + I(ho) for all f < h; € Sy and
g < hg € S. Therefore,
j(k) < 1nf{I(h1) +I(h2) : f <h € ST and g < hg € ST}
=I(f)+1(g)

and since k € (f + ¢) is arbitrary we have proven Eq. (14.3).
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) From the definitions and Exercise 13.2,
I(—g) =sup{I(f): f < —g €8} =sup{I(f) : g < -f €51}
=sup{I(—h):g<heS;}=—inf{I(h):g<heS}=—-I(g).

(5) The assertion is trivially true if I(g) = I(g) = oo or I(g) = I(g) = —oc0. So
we now assume that /(g) and I(g) are not both oo or —oco. Since 0 € (g9—g)
and I(g — g) < I(g) + 1(—g) (by Item 1),

0=1(0) < I(g)+ I(—g) = I(g9) — I(9)

provided the right side is well defined which it is by assumption. So again
we deduce that I(g) < I(g).
(6) If f < g then

I(f)y=inf{I(h): f<heS;}<inf{I(h):g<heS;}=1I(g)
and
I(f) =sup{I(h):S; 3 h < f} <sup{I(h):S > h<g}=1I(g).
(7) Let g € Sy with I(g) < oo and choose g, € S such that g, T g. Then
I(9) = L(9) = I(gn) — I(g) as n — oc.
Combining this with
I(g) =inf{I(f): g < f €St} =1I(g)

(4

shows B

I(g) = L(g) = 1(g9) = I(g)

and hence I(g) = I(g) = I(g). If g € S| and I(g) > —o0, then by what we
have just proved,

I(—g) = 1(—g) = I(-g).
This finishes the proof since I(—g) = —1I(g) and I(—g) = —I(g).
|

Lemma 14.7. Let f, : X — [0,00] be a sequence of functions and F := 3> | fn.
Then

(14.4) I(F)=10)_ fa) ZI (fn)-

Proof. Suppose > oo, I(f,) < oo, for otherwise the result is trivial. Let € > 0
be given and choose g, € S? such that f, < g, and I(g,) = I(f.) + €, where
> €n < e (For example take €, < 27"¢.) Then > >° g, =: G € S?, F<@

and so
o0

I_(F) I_ Zlgn —Z (fn)+€n)§

n=1 n=1 n

I(fn) +e€

NE

1

Since € > 0 is arbitrary, the proof is complete. m

Definition 14.8. A function g : X — R is integrable if I(g) = I(g) € R. Let
L'(I):={g: X = R:1I(g) =1I(g) € R}

and for g € L'(I), let I(g) denote the common value I(g) = I(g).
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Remark 14.9. A function g : X — R is integrable iff there exists f € S| N LY(I) and
h € St N LY(I)** such that f < g < h and I(h — f) < €. Indeed if g is integrable,
then I(g) = I(g) and there exists f € S| N LY(I) and h € S; N LY(I) such that
f<g<hand0<I(g9)—I(f) <e¢/2and 0 < I(h)—I(g) < ¢/2. Adding these
two inequalities implies 0 < I(h) — I(f) = I(h — f) < e. Conversely, if there exists
f €S NLYI)and h € Sy N LY(I) such that f < g <hand I(h— f) <e, then

I(g) < I(h) = I(h) and
I(g) < I(h) = I(h)
and therefore B

0<1I(g) = Llg) < I(h) = I(f) = I(h = f) <e
Since € > 0 is arbitrary, this shows I(g) = I(g).

Proposition 14.10. The space L'(I) is an extended lattice and I : L*(I) — R is
linear in the sense of Definition 14.1.

Proof. Let us begin by showing that L!(I) is a vector space. Suppose that
g1,92 € LY(I), and g € (g1 + g2). Given € > 0 there exists fi € S; N L'(I) and
h; € Sy N LY(I) such that f; < g; < h; and I(h; — f;) < €/2. Let us now show

(14.5) fi(x) + fa(x) < g(z) < hy(x) + ha(z) Vo € X.
This is clear at points € X where g1(z) + g2(z) is well defined. The other case to
consider is where g1 () = 00 = —ga(x) in which case hi(x) = oo and fa(z) = —o0

while , ha(z) > —oo and fi(z) < oo because hy € Sy and f; € S|. Therefore,
fi(x) + fa(x) = —o0 and hy(x) + he(x) = oo so that Eq. (14.5) is valid no matter
how ¢(z) is chosen.
Since f1 + f2 S Sl ﬂLl(I), hi+ hse € ST ﬂLl(I) and
Hgi) < I(fi) +¢/2 and —€/2+I(h:) < I(g5),
we find
H(g1) + 1(g2) = e S I(f1) + 1(fo) = I(f1 + fo) < L(9) < I(9)
< I(hy + ho) = I(hy) + I(ha) < I(g1) + I(g2) + €.

Because € > 0 is arbitrary, we have shown that g € L*(I) and I(gy) +1(g2) = I(g),
ie. I(g1 +g2) =1(g1) + I(g2)- ) A

It is a simple matter to show A\g € L'(I) and I(\g) = M (g) for all g € L'(I) and
A € R. For example if A\ = —1 (the most interesting case), choose f € S| N L(1)
and h € Sy N LY(I) such that f < g < h and I(h — f) < e. Therefore,

SiNLYI) > ~h < —g< —feSnLYI)
with I(—f — (=h)) = I(h — f) < € and this shows that —g € L*(I) and I(—g) =

—1I(g). We have now shown that L'(I) is a vector space of extended real valued
functions and I : LY(I) — R is linear.

To show L'(I) is a lattice, let g1,92 € L'(I) and f; € Sy N LY(I) and h; €
Sy N LY(I) such that f; < g; < h; and I(h; — f;) < €/2 as above. Then using
Proposition 14.3 and Remark 14.4,

SINLYI) 3 fihfo< g1 Ago <hi Ahy €Sy NLY(T).

33Equivalently, f € S| with I(f) > —oo and h € S; with I(h) < oo.
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Moreover,
0<hiNhy— fiNfa<hi—fi+hs— fo,
because, for example, if hy A he = hy and fi1 A fo = fo then
hi ANhe — fi A fa =h1 — fa < hs — fo.
Therefore,
I(hl/\hgffl/\fz) SI(h1*f1+h2*f2) <€
and hence by Remark 14.9, g1 A g2 € L1(I). Similarly
0 < hiVhe — fiVfe < hi — fi + ha — fo,
because, for example, if h1Vhy = h; and f1V fo = fo then
hiVhe — fiVfa = h1 — fa < hi — f1.
Therefore,
I(hl\/hg - fl\/fz) S I(hl - fl +h2 - f2) <€
and hence by Remark 14.9, g;Vge € L*(I). m
Theorem 14.11 (Monotone convergence theorem). If f,, € L(I) and f, T f, then
f e LY) iff limy,— oo I(fn) = sup,, I(fn) < 0o in which case I(f) = limy, o0 I(fn)-
Proof. If f € L'(I), then by monotonicity I(f,) < I(f) for all n and therefore
lim,, oo I(fr) < I(f) < oo. Conversely, suppose £ := lim,, o I(f,) < oo and let

g =Y o 1(fa+1 — fn)o- The reader should check that f < (f1 + ¢)oo € (f1 +9)-
So by Lemma 14.7,

I(f) < I((fr + 9)oc) < I(f1) +1(g)

<I(f1) +Z ((fns1 = fn)o) Zf fnt1 —
(14.6) = 1(8) + Y [1(Furn) = 1) = 1(F0) + L= (1) =

Because f,, < f, it follows that I(f,) = I(f,) < L(f) which upon passing to limit
implies ¢ < I(f). This inequality and the one in Eq. (14.6) shows I(f) < £ < I(f)
and therefore, f € L1(I) and I(f) = ¢ = lim,, oo [(f,,). ®

Lemma 14.12 (Fatou’s Lemma). Suppose {f,} C [L* (I)]+, then inf f,, € LY(I).
If liminf, f(fn) < 00, then liminf, . f, € L*(I) and in this case

f(liminf fr) < liminf I(f,).

Proof. Let gy := fiN--- A fr € Ll( ), then gi | ¢g := inf,, f,. Since —gi T —g,
—gr € L(I) for all k and I( %) < I(0) = 0, it follow from Theorem 14.11 that
—g € L*(I) and hence so is inf,, f,, = g € L*().

By what we have just proved, uy := inf,>y f, € L'(I) for all k. Notice that
u 7 liminf,_ o fn, and by monotonicity that I(uz) < I(fi) for all k. Therefore,

klim I(uy) = likminff(uk) < likminf I(fn) < o0
and by the monotone convergence Theorem 14.11, liminf, .. fr, = limg_o0 up €
LY(I) and
(hmlnf fn) = hm I(uk) < liminf I(fn)

n—oo n—oo
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|

Before stating the dominated convergence theorem, it is helpful to remove some
of the annoyances of dealing with extended real valued functions. As we have
done when studying integrals associated to a measure, we can do this by modifying
integrable functions by a “null” function.

Definition 14.13. A function n : X — R is a null function if I(|n]) = 0. A
subset E' C X is said to be a null set if 1 is a null function. Given two functions
fr9: X — R we will write f = g a.e. if {f # g} is a null set.

Here are some basic properties of null functions and null sets.

Proposition 14.14. Suppose that n : X — R is a null function and f : X — R is
an arbitrary function. Then

(1) ne L*(I) and I(n) = 0.

(2) The function n - f is a null function.

(3) The set {z € X : n(x) # 0} is a null set.

(4) If E is a null set and f € L'(I), then 1p<f € L'(I) a f(f) I(1gef).
(5) If g € L*(I) and f = g a.e. then f € L*(I) and I(f) = I(g).
(6) If f € LY(1), then {|f| = oo} is a null set.

Proof.

(1) If n is null, using +n < |n| we find I(£n) < I(|n|) = 0, i.e. I(n) <0 and
—I(n) = I(-n) < 0. Thus it follows that I(n) < 0 < l( ) and therefore
n e L*(I) with I (n) = 0.

(2) Since |n- f| < oo |n|, I(In-f|]) < I(cc-|n|). For k € N, k|n| € L'(I)
and I(k|n|) = kI (Jn]) = 0, so k|n| is a null function. By the monotone
convergence Theorem 14.11 and the fact k|n| T oo - |n| € LY(I) as k T oo,
I (00 -|n|) = limg_o0 I (k|n|) = 0. Therefore oo - |n| is a null function and
hence so is n - f.

(3) Since 1{,20p < 00 Linzoy = 00+ |n|, I (1{nz0y) < I (00 |n|) =0 showing
{n # 0} is a null set.

(4) Since 1pf € L'(I) and I (1pf) =0,

flge = (f=1pf)o € (f —1pf) C L'(1)

and [(flge) = I(f) = I(1af) = 1(f).
(5) Letting E be the null set {f # g}, then 1gef = 1gcg € L(I) and 1gf is a
null function and therefore, f = 1gf + 1gcf € L*(I) and
() =10pf) +1(flg:) = I(1p-f) = I(1geg) = I(g).
(6) By Proposition 14.10, |f| € L'(I) and so by Chebyshev’s inequality (Item
2 of Proposition 14.6), {|f| = oo} is a null set.
|
Theorem 14.15 (Dominated Convergence Theorem). Suppose that {f, : n € N} C

LY(I) such that f := lim f,, exists pointwise and there exists g € L*(I) such that
|fnl < g for allm. Then f € L'(I) and

nh_)néoj(fn) = j(nh_{go fn) = j(f)
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Proof. By Proposition 14.14, the set E := {g = oo} is a null set and I(1gf,,) =
I(f,) and I(1geg) = I(g). Since
[(1ge(g % fn)) < 21(1peg) = 21(g) < o0,
we may apply Fatou’s Lemma 14.12 to find 1g. (g £ f) € L*(I) and

I(1pe (g% /) < liminf I(1pe (g £ fa))

— lim inf {f(lEcg) + f(1chn)} — lim inf {f(g) + f(fn)} .

Since f = 1 f a.e. and lgef = 31 (9+ f — (9 + f)) € L*(I), Proposition 14.14

implies f € L'(I). So the previous inequality may be written as

I(g) £ I(f) =1(1peg) £ I(1gef)

. N liminf,,_ f(fn)
— I(1pe + <] T
(1ge (g £ f)) < (9)+{ —limsup,, .. I(fn),
wherein we have used liminf,, . (—a,) = —limsup a,,. These two inequalities im-

ply limsup, .. I(fn) < I(f) < liminf,_ o I(fn) which shows that lim I(f,)

n— 00

exists and is equal to 1(f). m

14.2. The Structure of L'(I). Let S;; denote the collections of functions f :
X — R for which there exists f, € Sy N L1(I) such that f, | f as n — oo and

limy, oo I (fn) > —oo. Applying the monotone convergence theorem to fi — f, it
follows that f; — f € L'(I) and hence —f € L'(I) so that Sy, C L*(I).

Lemma 14.16. Let f : X — R be a function. If I(f) € R, then there exists g € S|
such that f < g and I(f) = I(g). (Consequently, n: X — [0,,00) is a positive null
function iff there exists g € Sy| such that g > n and I(g) = 0.) Moreover, f € L*(I)
iff there exists g € S| such that g > f and f =g a.e.

Proof. By definition of I(f) we may choose a sequence of functions gy € Sy N
LY(I) such that gz > f and I(gx) | I(f). By replacing gx by g1 A- - - A gy if necessary
(g1A--Agr € S;NL(I) by Proposition 14.3), we may assume that gy is a decreasing
sequence. Then limy_oo g =: g > f and, since limy_oo I(gr) = I(f) > —o0,
g € St|. By the monotone convergence theorem applied to g1 — gx,

I(g1—9) = klggof(gl —gi) = I(g1) — I(f),

so I(g) = I(f).
Now suppose that f € L(I), then (g — f)o > 0 and

1((g—flo) =1(9) = 1(f) = I(9) — I(f) = 0.
Therefore (g — f)o is a null functions and hence so is 0o - (g — f)o. Because
Ligzgy = Ls<gy S 00 (9= fo,

{f # g} is anull set so if f € L'(I) there exists g € Sy such that f = g a.e. The
converse statement has already been proved in Proposition 14.14. =
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Proposition 14.17. Suppose that I and S are as above and J is another Daniell
integral on a vector lattice T such that S C T and I = J|s. (We abbreviate this by
writing I C J.) Then L*(I) ¢ L*(J) and I = J on LY(I), or in abbreviated form:
if I CJ thenlcCJ.

Proof. From the construction of the extensions, it follows that S; C T and the
I = J on S;. Similarly, it follows that St C Ty, and I =J onS;,. From Lemma
14.16 we learn, if n > 0 is an I — null function then there exists g € S| C Tt} such
that n < g and 0 = I(g) = J(g). This shows that n is also a J — null function and in
particular every I — null set is a J — null set. Again by Lemma 14.16, if f € L'(I)
there exists g € Sy; C T4, such that {f # g} is an I — null set and hence a J — null
set. So by Proposition 14.14, f € L*(J) and I(f) = I(g9) = J(9) = J(f). =

14.3. Relationship to Measure Theory.

Definition 14.18. A function f : X — [0, 0] is said to measurable if fAg € L(I)
for all g € L1(I).

Lemma 14.19. The set of non-negative measurable functions is closed under pair-
wise minimums and maximums and pointwise limits.

Proof. Suppose that f,g: X — [0, 0] are measurable functions. The fact that
fAgand fVg are measurable (i.e. (f Ag)Ahand (fVg)Vh arein L'(I) for all
h € LY(I)) follows from the identities

(fAg)Nh=FN(gAh)and (fVg)Ah=(fANR)V(gAh)

and the fact that L1(I) is a lattice. If f,, : X — [0,00] is a sequence of measurable
functions such that f = lim,, . f, exists pointwise, then for h € L1(I), we have
h A fn — hAf. By the dominated convergence theorem (using |h A f,| < |h|)
it follows that h A f € LY(I). Since h € L(I) is arbitrary we conclude that f is
measurable as well. m

Lemma 14.20. A non-negative function f on X is measurable iff ¢ A f € L (I)
for all ¢ € S.

Proof. Suppose f : X — [0,00] is a function such that ¢ A f € L}(I) for all
¢ €S and let g € Sy N LY(I). Choose ¢,, € S such that ¢, T g as n — oo, then
én A f € L}(I) and by the monotone convergence Theorem 14.11, ¢, A f T gA f €
LY(I). Similarly, using the dominated convergence Theorem 14.15, it follows that
g f € LY I) for all g € Sy,. Finally for any h € L'(I), there exists g € Sy| such
that h = g a.e. and hence h A f = g A f a.e. and therefore by Proposition 14.14,
h A f € L*(I). This completes the proof since the converse direction is trivial. m

Definition 14.21. A set A C X is measurable if 1, is measurable and A inte-
grable if 14 € L!(I). Let R denote the collection of measurable subsets of X.

Remark 14.22. Suppose that f > 0, then f € L'(I) iff f is measurable and I(f) <
oo. Indeed, if f is measurable and I(f) < oo, there exists g € Sy N L*(I) such that
f < g. Since f is measurable, f = f A g € L'(I). In particular if A € R, then A is
integrable iff I(14) < oo.

Lemma 14.23. The set R is a ring which is a o — algebra if 1 is measurable.
(Notice that 1 is measurable iff 1 A ¢ € LY(I) for all ¢ € S. This condition is
clearly implied by assuming 1\ ¢ € S for all ¢ € S. This will be the typical case in
applications.)
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Proof. Suppose that A, B € R, then ANB and AU B are in R by Lemma 14.19
because

lanB=1aAN1lpand 14y =14V 1p.
If Ax € R, then the identities,

fomaae = i opan and gz, 4, = i Tog 4

along with Lemma 14.19 shows that U2 ; A and N2, Ay are in R as well. Also if
A,BeR and g €8S, then

(14.7) gA1Iap=9A1la—gAlanp+gA0€ L)

showing the A\ B € R as well.>* Thus we have shown that R is a ring. If 1 = 1y
is measurable it follows that X € R and R becomes a o — algebra. m

Lemma 14.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.

(1) If fe [Ll(l)]+ then, for all a € R, the set {f > a} is measurable. More-
over, if o> 0 then {f > a} is integrable and f(l{f>a}) < a 'I(f).
(2) o(S) C R.
Proof.

(1) f a <0, {f >a} = X € R since 1 is measurable. So now assume that
a>0.Ifa=01let g=f e L) andifa>Oletg:oF1f—(oflf)/\l.
(Notice that g is a difference of two L*(I) — functions and hence in L!(T).)
The function g € [L'()] * has been manufactured so that {g>0}={f>

a}. Now let ¢, := (ng)A1 € [Ll(l)}—|r then ¢, T 1{f>qa} as n — oo showing
l{f>q} is measurable and hence that {f > a} is measurable. Finally if
a >0,

sap = Lrsay A (071 f) € LH(1)
showing the {f > a} is integrable and
j(l{f>a}) = j(l{f>a} A (Oéilf)) < j(ailf) = ailf(f)'

(2) Since f € S, is R measurable by (1) and S =S, — S, it follows that any
f €S is R measurable, o(S) C R.

|
Lemma 14.25. Let 1 be measurable. Define py : R — [0,00] by
o (A) = I(L4) and jo_(A4) = I(1)

Then py are measures on R such that p— < py and p—(A) = py(A) whenever
fi4-(A) < oo

34Indeed, forx € ANB,x € A\ B and = € A°, Eq. (14.7) evaluated at x states, respectively,
that

gNO0=gA1—gA1+gANO0,
gAN1=gA1—gA0+gA0and
gANO=gA0—gAO0O+gADO,

all of which are true.
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Notice by Remark 14.22 that

(4) = I(1,) if A is integrable

B+ B oo if A€ R but A is not integrable.

_ Proof. Since 1y =0, pu1.(#) = 1(0) = 0 and if A, B € R, A C B then p (A) =
1(14) < I(1g) = pus+(B) and similarly, p_(A) = I(14) < I(1p) = p—(B). Hence
p+ are monotonic. By Remark 14.22 if py (A) < oo then A is integrable so

0 (A4) = L) = 1(1a) = I(La) = e (A).
Now suppose that {E; } _, C R is a sequence of pairwise disjoint sets and let
E = U, E; € R.If py (E;) = oo for some 4 then by monotonicity ., (E) = oo

as well. If jy (Ej) < oo for all j then f, := Y0 15, € [L'()] " with f, 1 1p.
Therefore, by the monotone convergence theorem, 1 is integrable iff

lim I(f,) = Zu+

in which case 1z € L'(I) and lim, .o I(f,) = I(1g) = pi(E). Thus we have
shown that p4 is a measure and p_(E) = py(E) whenever py (E) < co. The fact
the p_ is a measure will be shown in the course of the proof of Theorem 14.28. m

Example 14.26. Suppose X is a set, S = {0} is the trivial vector space and
I1(0) = 0. Then clearly I is a Daniel integral,

= + [ oo if g(xz)> 0 for some x
I(g) = { 0 if g<0

and similarly,

(g) = —oo if g(x) <0 for some x
=1 o it g>0.

Therefore, L' (I) = {0} and for any A C X we have 14 A0 =0 € S so that R = 2X.
Since 14 ¢ L'(I) = {0} unless A = () set, the measure y4 in Lemma 14.25 is given
by pt(A) =oc0if A# D and py(0) =0, i.e. uy(A) =1(14) while u_ = 0.

Lemma 14.27. For A€ R, let
a(A) :=sup{p+(B) : BER, BC A and p4(B) < oo},

then o is a measure on R such that a(A) = py(A) whenever puy(A) < oo. If v
is any measure on R such that v(B) = py(B ) when pi(B) < oo, then a < v.
Moreover, o < .

Proof. Clearly a(A) = py(A) whenever p;(A) < co. Now let A = U2, A,
with{A4,} 7, C R being a collection of pairwise disjoint subsets. Let B, C A,
with gy (B,) < oo, then BY := UN_ | B,, C A and p, (B") < oo and hence

a(A) > py (BY) = Zu+

and since B, C A, with py(B,) < oo is arbitrary it follows that a(A) >
25:1 a(A,) and hence letting N — oo implies a(A4) > > | (A, ). Conversely,
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if B C A with u4(B) < oo, then BN A4,, C A, and (BN A,) < co. Therefore,

pi(B) = py(BNA,) <Y a4

for all such B and hence a(A) < >°7, a(A4,).
Using the definition of @ and the assumption that v(B) = u+(B) when py(B) <
007
a(A) =sup{v(B): BE€ R, BC A and p4(B) < o0} < v(A),
showing a < v. Similarly,
a(A) =sup{I(1p): B€R, BC A and pu,(B) < oo}
=sup{l(lp): BER, BC Aand py(B) < oo} <I(1la)=pu_(4).
]
Theorem 14.28 (Stone). Suppose that 1 is measurable and py and p_ are as
defined in Lemma 14.25, then:
(1) LYI) = LY X, R, puy) = Ll(,u+ and for integrable f € L' (uy),

(143) n= [ sdu..
(2) If v is any measure on R such that S C L'(v) and
(14.9) I(f) :/ fdv for all f €S
X

then pu_(A) < v(A) < py(A) for all A € R with p_(A) = v(A) = p(A)
whenever u4(A) < oco.

(3) Letting v be as defined in Lemma 14.27, u— = o« and hence p_ is a measure.
(So py is the mazimal and p— is the minimal measure for which Eq. (14.9)
holds.)

(4) Conversely if v is any measure on o(S) such that v(A) = py(A) when
A€ o(S) and pi(A) < oo, then Eq. (14.9) is valid.
Proof.

(1) Suppose that f € [Ll (I)]+, then Lemma 14.24 implies that f is R mea-
surable. Given n € N, let

22n 22n
k
(14.10) On =Y guligrarciity = Z Lk <ry
k=1

Then we know {£ < f} € R and that Liscepy= 1{%<f}/\(2%f) e LY(I),
ie. g (2n < f) < oo. Therefore ¢, € [Ll(l)]+ and ¢,, T f. Suppose that
v is any measure such that v(A4) = 4 (A) when pi(A) < oo, then by the
monotone convergence theorems for I and the Lebesgue integral,

2211, 2211,

f(f): lim I((ﬁn)—nhm 2- "ZI 1{k<f} = lim 2~ Z,u_,_ (2ﬁn<f)

n—oo n—0o0

22n
k
(14.11) = lim 27" (— <f> = lim dmdv:/ fdv.
Nn—o00 Z 2’” n—oo [y X

k=1
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This shows that f € [Ll(l/)]+ and that f(f) = fX fdv. Since every f €
LY(I) is of the form f = f* — f~ with f* ¢ [Ll(I)]+, it follows that
LYI) c LY(uy) € L' (v) C L' («) and Eq. (14.9) holds for all f € L'(I).

Conversely suppose that f € [Ll(,u+)]+. Define ¢,, as in Eq. (14.10).
Chebyshev’s inequality implies that ,u+(2% < f) < oo and hence { zﬁn < f}
is I —integrable. Again by the monotone convergence for Lebesgue integrals
and the computations in Eq. (14.11),

so> [ fduy = lim 1(6,)
X n—oo
and therefore by the monotone convergence theorem for I, f € LY(I) and

/X fduy = Tim (6,) = 1()).

n—oo

Suppose that v is any measure such that Eq. (14.9) holds. Then by the
monotone convergence theorem,

I(f):/xfdy for all f € S;US;.

Let A € R and assume that p(A) < 0o, i.e. 14 € L1(I). Then there exists
f €Sy NLYI) such that 14 < f and integrating this inequality relative to
v implies

u(A):/XlAdug/dey:f(f).

Taking the infinum of this equation over those f € S; such that 14 < f
implies v(A) < I(14) = py(A). If py(A) = oo in this inequality holds
trivially.

Similarly, if A € R and f € S| such that 0 < f <14, then

I/(A):/XlAdz/z/dey:f(f).

Taking the supremum of this equation over those f € S| such that 0 < f <
14 then implies v(A) > p_(A). So we have shown that p_ <v < pg.

By Lemma 14.27, v = « is a measure as in (2) satisfying o < p_ and
therefore u_ < « and hence we have shown that « = p_. This also shows
that u_ is a measure.

This can be done by the same type of argument used in the proof of (1).

Proposition 14.29 (Uniqueness). Suppose that 1 is measurable and there exists a
function x € L*(I) such that x(z) > 0 for all x. Then there is only one measure
on o(S) such that

I(f) = /X fdu for all f €S.

Remark 14.30. The existence of a function x € L!(I) such that x(z) > 0 for all z is

equivalent to the existence of a function x € Sy such that I(x) < oo and x(z) > 0
for all x € X. Indeed by Lemma 14.16, if xy € L'(I) there exists x € Sy N L*(1)
such xy > x.
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Proof. As in Remark 14.30, we may assume x € Sy N L'(I). The sets X,, :=
{x > 1/n} € o(S) C R satisfy u(X,) < nl(x) < co. The proof is completed using
Theorem 14.28 to conclude, for any A € o(S), that

pr(A) = lim py(ANX,) = lim p_(ANX,) = pu_(A).

Since p— < p<puy =p_ weseethat p=ppr =p_.
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15. COMPLEX MEASURES, RADON-NIKODYM THEOREM AND THE DUAL OF LP

Definition 15.1. A signed measure v on a measurable space (X, M) is a function
v: M — R such that

(1) Either v(M) C (=00, 00] or ¥(M) C [—00, 00).

(2) v is countably additive, this is to say if £ = ]_[jil E; with E; € M, then

v(E) = 3 v(E;)P

3) v(0) = 0.

If there exists X,, € M such that |v(X,,)| < oo and X = U2, X,,, then v is said
to be o — finite and if ¥(M) C R then v is said to be a finite signed measure.
Similarly, a countably additive set function v : M — C such that v(f)) = 0 is called
a complex measure.

A finite signed measure is clearly a complex measure.

Example 15.2. Suppose that gy and p_ are two positive measures on M such
that either 4 (X) < oo or p_(X) < oo, then v = iy — pu_ is a signed measure. If
both py(X) and p—(X) are finite then v is a finite signed measure.

Example 15.3. Suppose that ¢ : X — R is measurable and either / 5 gtdu or
Sz 9~ dp < oo, then

(15.1) v(A) = / gdpvVA e M
A

defines a signed measure. This is actually a special case of the last example with
ue(A) = fA gTdp. Notice that the measure p4 in this example have the property
that they are concentrated on disjoint sets, namely puy “lives” on {g > 0} and u_
“lives” on the set {g < 0}.

Example 15.4. Suppose that p is a positive measure on (X, M) and g € Lll(u),
then v given as in Eq. (15.1) is a complex measure on (X, M). Also if {p, ply } is
any collection of four positive measures on (X, M), then

(15.2) vi=pl =l 4 (ph — pt)
is a complex measure.

If v is given as in Eq. 15.1, then v may be written as in Eq. (15.2) with
dp = (Reg), dp and dpy = (Img), dp.

Definition 15.5. Let v be a complex or signed measure on (X, M). A set E € M is
a null set or precisely a v — null set if v(A) = 0 for all A € M such that A C E, i.e.
V|mp = 0. Recall that Mp := {ANE:A€e M} =i," (M) is the “trace of M on
E.

o0
351 v(E) € R then the series Y v(FEj) is absolutely convergent since it is independent of
j=1
rearrangements.
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15.1. Radon-Nikodym Theorem I. We will eventually show that every complex
and o — finite signed measure v may be described as in Eq. (15.1). The next theorem
is the first result in this direction.

Theorem 15.6. Suppose (X, M) is a measurable space, p is a positive finite mea-
sure on M and v is a complex measure on M such that |v(A)| < p(A) for all
A € M. Then dv = pdu where |p| < 1. Moreover if v is a positive measure, then
0<p<l

pO < S lal v(f =)l < 3 lal u(f = a) = / \Fldu
acC acC X

So, by the B.L.T. Theorem 4.1, v extends to a continuous linear functional on L* ()
satisfying the bounds

e /X Fldp < /u(X) |l o for all f € LY (u).

The Riesz representation Theorem (Proposition 12.15) then implies there exists a
unique p € L?(u) such that

v(f) = /Xfpdu for all f € L?(p).

Taking f = sgn(p)l4 in this equation shows

[ 1ol = visgatoita) < ) = [ 1
A A

from which it follows that |p| <1, u — a.e. If v is a positive measure, then for real
£, 0 =Tm[v(f)] = [y Impfdu and taking f = Imp shows 0 = [ [Im p]* dp, i.e.
Im(p(z)) = 0 for p — a.e. = and we have shown p is real a.e. Similarly,

0§V(R€p<0):/ pdp <0,
{Re p<0}

shows p >0 ae m

Definition 15.7. Let p and v be two signed or complex measures on (X, M). Then
w1 and v are mutually singular (written as p L v) if there exists A € M such
that A is a v — null set and A¢ is a g — null set. The measure v is absolutely
continuous relative to u (written as v < p) provided v(A) = 0 whenever A is a
w — null set, i.e. all g — null sets are v — null sets as well.

Remark 15.8. If p11, po and v are signed measures on (X, M) such that yq L v and
po L vand p1 + po is well defined, then (p1 + po) L v If {g;} 2, is a sequence of

positive measures such that p; L v for all ¢ then g = 0, p; L v as well.

Proof. In both cases, choose A; € M such that A; is v — null and A{ is p;-null
for all 4. Then by Lemma 15.17, A := U; A; is still a v —null set. Since

A® =N A7 C A7, for all m

m

we see that A is a y; - null set for all ¢ and is therefore a null set for pp = >"77; ;.
This shows that ¢ L v. m
Throughout the remainder of this section p will be always be a positive measure.
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Definition 15.9 (Lebesgue Decomposition). Suppose that v is a signed (complex)
measure and g is a positive measure on (X, M). Two signed (complex) measures
v, and vg form a Lebesgue decomposition of v relative to p if
(1) If v = v, + vs where implicit in this statement is the assertion that if v
takes on the value co (—o0) then v, and v do not take on the value —oo
(00).

(2) vo < pand v L p.

Lemma 15.10. Let v is a signed (complex) measure and p is a positive measure on
(X, M). If there exists a Lebesgue decomposition of v relative to u then it is unique.
Moreover, if v is a positive measure and v = vs + v, is the Lebesque decomposition
of v relative to p then:

(1) if v is positive then vs and v, are positive.
(2) If v is a 0 — finite measure then so are vy and v,.

Proof. Since vs; L p, there exists A € M such that pu(A4) = 0 and A€ is vy —
null and because v, < p, A is also a null set for v,. So for C € M, v,(CNA)=0
and v, (C'N A°) = 0 from which it follows that

v(C)=v(CNA)+v(CNA®) =v,(CNA)+ v, (CN A%
and hence,

vs(C) =vs,(CNA)=v(CNA) and
(15.3) Ve(C) = 1v,(CNAS) =v(C N AS).

Item 1. is now obvious from Eq. (15.3). For Item 2., if v is a o — finite measure
then there exists X,, € M such that X = U2, X, and |v(X,,)| < oo for all n. Since
v(Xp) = vo(Xn) + vs(X,), we must have v,(X,,) € R and v4(X,,) € R showing v,
and v, are o — finite as well.

For the uniqueness assertion, if we have another decomposition v = v, + s with
s L fi and 7, < fi we may choose A € M such that p(A) =0 and A€ is 7 — null.
Letting B = AU A we have

w(B) < pu(A) + p(A) =0

and B¢ = A°N A¢ is both a v, and a 7 null set. Therefore by the same arguments
that proves Eqgs. (15.3), for all C € M,

vs(C) =v(CNB) =1,(C) and
v,(C) = v(C' N B°) = 1,(C).

Lemma 15.11. Suppose i is a positive measure on (X, M) and f,g: X — R are
extended integrable functions such that

(15.4) / fdu = / gdp for all A € M,
A A

Jx f=dp < 0o, [y g—dp < oo, and the measures |f|dp and |g|dp are o — finite.
Then f(x) = g(x) for p — a.e. x.
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Proof. By assumption there exists X,, € M such that X,, T X and [ x, [fldp <
oo and an lg| dp < oo for all n. Replacing A by AN X, in Eq. (15.4) implies

/1xnfdu=/ fdu=/ gdu=/ 1x,9dp
A ANX, ANX, A

for all A € M. Since 1x, f and 1x,g are in L!(u) for all n, this equation implies
1x,f =1x,9, it — a.e. Letting n — oo then shows that f =g, x —a.e. B

Remark 15.12. Suppose that f and g are two positive measurable functions on
(X, M, ) such that Eq. (15.4) holds. It is not in general true that f = g, u —
a.e. A trivial counter example is to take M = P(X), u(A) = oo for all non-empty
AeM, f=1x and g =2-1x. Then Eq. (15.4) holds yet f # g.

Theorem 15.13 (Radon Nikodym Theorem for Positive Measures). Suppose that
w,v are o — finite positive measures on (X, M). Then v has a unique Lebesque
decomposition v = v, + vy relative to p and there exists a unique (modulo sets of
w — measure 0) function p : X — [0,00) such that dv, = pdp. Moreover, vy = 0 iff
v M.

Proof. The uniqueness assertions follow directly from Lemmas 15.10 and 15.11.

Existence. (Von-Neumann’s Proof.) First suppose that p and v are finite
measures and let A = p+ v. By Theorem 15.6, dv = hdX with 0 < h < 1 and this
implies, for all non-negative measurable functions f, that

(15.5) v(f) = A(fh) = p(fh) +v(fh)
or equivalently
(15.6) v(f(1 = h)) = u(fh).

Taking f = 1gp—1y and f = glg<1y(1 — k)~ with g > 0 in Eq. (15.6)

p({h=1}) = 0 and v(glgney) = p(glinary (1 = h)~'h) = u(pg)

where p := 1{h<1}1Thh and v,(g) := v(gl{p=1y). This gives the desired decomposi-
tion®% since
v(g9) = v(glin=1y) + v(91l{n<1y) = vs(g) + u(pg)
and
vs (h #1) =0 while u(h=1) = p({h # 1}°) = 0.
If v < p, then p(h=1) = 0 implies v (h =1) = 0 and hence that v, = 0. If
vs = 0, then dv = pdp and so if u(A) =0, then v(A) = u(pla) =0 as well.

30Here is the motivation for this construction. Suppose that dv = dvs + pdp is the Radon-
Nikodym decompostion and X = AJ] B such that vs(B) =0 and u(A) = 0. Then we find

vs(f) + ulof) = v(f) = Mfg) = v(fg) + u(fg).
Letting f — 14 f then implies that

vs(1af) =v(1afyg)
which show that g =1 v —a.e. on A. Also letting f — 1p f implies that
wplef(1—9)) =v(pf(1—9)) = u(lpfg) = p(f9)
which shows that
p(l—g)=plp(l—g)=gp—ae.
This shows that p = 1—f—g - a.e.
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For the o — finite case, write X = ]_[Zozl X,, where X,, € M are chosen so that
w(X,) < oo and v(X,) < oo for all n. Let du, = 1x,dp and dv, = 1x, dv. Then
by what we have just proved there exists p,, € L' (X, 1,,) and measure v such that
dvy, = ppdy, + dvs with v L p,, i.e. there exists A,, B, € Mx, and p(A,) =0
and vi(B,,) = 0. Define v, := >, v5 and p:=> ", 1x, pn, then

[e'S) 9] [eS)
v=> vn= (puim+vy) =D (pulx,pu+v}) = pp+vs
n=1 n=1 n=1

and letting A := U2, A, and B := U2, B,,, we have A = B¢ and

w(A) = Z,u(An) =0and v(B) = Z v(B,,) = 0.
]

Theorem 15.14 (Dual of L? — spaces). Let (X, M,pn) be a o — finite measure
space and suppose that p,q € [1,00] are conjugate exponents. Then for p € [1,00),
the map g € LY — ¢4 € (LP)* is an isometric isomorphism of Banach spaces.
(Recall that ¢4(f) = [ fgdp.) We summarize this by writing (LP)* = L7 for all
1<p<oo.

Proof. The only point that we have not yet proved is the surjectivity of the
map g € LY — ¢4 € (LP)*. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that p(X) < oo in
which cased bounded functions are in LP(p) for all p. So let ¢ € (LP)". We need
to find g € L9(u) such that ¢ = ¢,. When p € [1,2], L?(u) C LP(u) so that we
may restrict ¢ to L?(u) and again the result follows fairly easily from the Riesz
Theorem, see Exercise 15.1 below.

To handle general p € [1,00), define v(A) := ¢(14). If A = [][22,A4, with
A, € M, then

N

1a =) 1a,

n=1

1
r = [p(UpZ N1 AR)]” — 0as N — oo.

e = [[luse A,

Therefore
v(A) =6(1a) = > ¢(la,) =Y v(An)

showing v is a complex measure.?”

For A € M, let |v| (A) be the “total variation” of A defined by
V[ (A) :==sup {[¢(fla)| : [f| < 1}
and notice that
(15.7) W(A)] < [v](A) < [16]l oy 1(A)/P for all A€ M.

You are asked to show in Exercise 15.2 that |v| is a measure on (X, M). (This can
also be deduced from Lemma 15.31 and Proposition 15.35 below.) By Eq. (15.7)
|v| < p, by Theorem 15.6 dv = hd|v| for some |h| < 1 and by Theorem 15.13

371t is at this point that the proof breaks down when p = co.
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d|v| = pdu for some p € L'(p). Hence, letting g = ph € L'(p), dv = gdu or
equivalently

(15.8) ¢(1A) = / gladp ¥V A e M.
X
By linearity this equation implies
(15.9) o) = [ ardn
X
for all simple functions f on X. Replacing f by 1y4<aryf in Eq. (15.9) shows
¢(fLiigi<ary) =/Xl{\g\§M}9fd/~L

holds for all simple functions f and then by continuity for all f € LP(u). By the
converse to Holder’s inequality, (Proposition 9.26) we learn that

”1{|g|§M}9Hq = Sup |¢(f1{|g|§M})| < SUP_1 ||¢H(Lp)* f1{|g|§M}||p < ||¢H(Lp)* )

ll£1,=1 el

Using the monotone convergence theorem we may let M — oo in the previous equa-
tion to learn ||g[|, < [|@|[ - -With this result, Eq. (15.9) extends by continuity to
hold for all f € L?(p) and hence we have shown that ¢ = @,.

Case 2. Now suppose that p is o — finite and X,, € M are sets such that u(X,,) <
oo and X, T X as n — oo. We will identify f € LP(X,,p) with flx, € LP(X, )
and this way we may consider LP(X,, ) as a subspace of LP(X, ) for all n and
p € [1,00].

By Case 1. there exists g, € LY(X,,, 1) such that

o) = [ gnfduforall § € L7(X,.10)

n

and

lgnllq = sup {|6(f)] : f € LP(Xn, 1) and [|fllzo(x, 00 = 1} < [6llzogay--

It is easy to see that g, = g, a.e. on X,, N X,, for all m,n so that g :=lim,, ., g,
exists 4 — a.e. By the above inequality and Fatou’s lemma, ||gllq < [|0|{zr(u)* < 00
and since ¢(f) = [ gfdp for all f € LP(X,, p) and n and U2, LP(X,,, 1) is dense
in LP(X,p) it follows by continuity that ¢(f) = [ gfdu for all f € LP(X, p),ie.
=0, W

Example 15.15. Theorem 15.14 fails in general when p = co. Consider X = [0, 1],
M = B, and = m. Then (L>)* # L.

Proof. Let M := C([0,1])“ € "L°([0, 1], dm). It is easily seen for f € M, that
Ifllco =sup{|f(x)|: z € [0,1]} for all f € M. Therefore M is a closed subspace of
L*°. Define ¢(f) = f(0) for all f € M. Then ¢ € M* with norm 1. Appealing to
the Hahn-Banach Theorem 18.16 below, there exists an extension L € (L*°)* such
that L =/¢ on M and ||L|| = 1. If L # ¢, for some g € L', i.e.

LS =0)= | fodm for all f € L,
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then replacing f by fn(z) = (1 — nx) 1,<,-1 and letting n — oo implies, (using the
dominated convergence theorem)

1= lim L(f,) = lim fngdm = gdm = 0.

From this contradiction, we conclude that L # ¢, for any g € L'. m

15.2. Signed Measures.

Definition 15.16. Let v be a signed measure on (X, M) and E € M, then

(1) E is positive if for all A € M such that A C E, v(A) >0, i.e. v|pm, > 0.
(2) E is negative if for all A € M such that A C E, v(A4) <0, i.e. v|p, <O0.

Lemma 15.17. Suppose that v is a signed measure on (X, M). Then
(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-
ative or null).
(3) Let us now further assume that v(M) C [—o00,00) and E € M is a set
such that v (E) € (0,00). Then there exists a positive set P C E such that
v(P) > v(E).

Proof. The first assertion is obvious. If P; € M are positive sets, let P =

U P,. By replacing P,, by the positive set P, \ U P) we may assume that
n=1 j=1

the {P,} -, are pairwise disjoint so that P = ]_[ P,.Now if EC P and F € M,

n=1
E= ]_[ (ENP,)sov(E)=>%,",v(ENP,) > 0.which shows that P is positive.

The proof for the negative and the null case is analogous.

The idea for proving the third assertion is to keep removing “big” sets of negative
measure from E. The set remaining from this procedure will be P. We now proceed
to the formal proof.

For all A € M let n(A) =1 Asup{—v(B) : B C A}. Since v() =0, n(4) >0
and n(A) = 0 iff A is positive. Choose Ay C E such that —V(AO) > in(E) and
set By = E\ Ay, then choose A; C Ej such that —v(A;) > In(E;) and set
Ey; = E\ (Ag U A;y). Continue this procedure inductively, namely if Ag,..., Ax_1

k—1
have been chosen let Ep, = E'\ ( 11 Ai) and choose Ay C Ej such that —v(Ag) >
i=0

in(Ey). Let P:=E\ [[ Ay = () Ej, then E = PU ][ A and hence

k=0 k=0 k=0
o0
(15.10) (0,00) > v(E +Z (Ar) =v(P) =Y —v(Ay) < v(P).
k=0
From Eq. (15.10) we learn thatzkzo —v(A;) < oo and in particular that
limg oo (—v(A4x)) = 0. Since 0 < 3In(Ey) < —v(Ay), this also implies

limg_oon(Ey) = 0. If A C P, then A C Ej for all k and so, for k large so
that n(Ey) < 1, we find —v(A) < n(Ey). Letting k& — oo in this estimate shows
—v(A) <0 or equivalently v(A4) > 0. Since A C P was arbitrary, we conclude that
P is a positive set such that v(P) > v(F).

u
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15.2.1. Hahn Decomposition Theorem.

Definition 15.18. Suppose that v is a signed measure on (X, M). A Hahn de-
composition for v is a partition {P, N} of X such that P is positive and N is
negative.

Theorem 15.19 (Hahn Decomposition Theorem). Every signed measure space
(X, M, v) has a Hahn decomposition, { P, N}. Moreover, if {P, N} is another Hahn
decomposition, then PAP = NAN is a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that v(M) C [—o0,00). If
not just consider —v instead. Let us begin with the uniqueness assertion. Suppose
that A € M, then

v(A) =v(ANP)+v(ANN) < v(ANP) < v(P)
and similarly v(A) < V(ﬁ’) for all A € M. Therefore

v(P) < v(PUP) <v(P)and v(P) < v(PUP) < v(P)

which shows that

Since
s =v(PUP)=v(P)+v(P)—v(PNP)=2s—v(PNP)
we see that v(P N P) = s and since
s=v(PUP)=uv(PNP)+v(PAP)

it follows that ~1/(15AP) = 0. Thus NAN = PAP is a positive set with zero measure,
i.e. NAN = PAP is a null set and this proves the uniqueness assertion.
Let

s =sup{r(A4): Ae M}

which is non-negative since v()) = 0. If s = 0, we are done since P = ) and
N = X is the desired decomposition. So assume s > 0 and choose A, € M such
that v(A,,) > 0 and lim,, .o ¥(A,) = s. By Lemma 15.17here exists positive sets
P, C A, such that v(P,) > v(A,). Then s > v(P,) > v(A,) — sasn —
implies that s = lim, .o v¥(P,). The set P = U2, P, is a positive set being the
union of positive sets and since P, C P for all n,

v(P) > v(P,) — s asn — 0.

This shows that v(P) > s and hence by the definition of s, s = v(P) < oc.

We now claim that N = P¢ is a negative set and therefore, { P, N} is the desired
Hahn decomposition. If N were not negative, we could find £ C N = P¢ such that
v(E) > 0. We then would have

v(IPUE)=v(P)+v(E)=s+v(E)>s

which contradicts the definition of s. ®
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15.2.2. Jordan Decomposition.
Definition 15.20. Let X = PU N be a Hahn decomposition of v and define
vi(E)=v(PNE)andv_(F)=—-v(NNE)V E € M.

Suppose X = PUN is another Hahn Decomposition and v are define as above
with P and N replaced by P and N respectively. Then

U (E)=v(ENP)=v(ENPNP)+v(ENPNN)=v(ENPNP)
since N N P is both positive and negative and hence null. Similarly v, (E) =

v(E N PN P) showing that v, = 77y and therefore also that v_ = I_.

Theorem 15.21 (Jordan Decomposition). There exists unique positive measure
vy such that vy L v_ andv=vy —v_.

Proof. Existence has been proved. For uniqueness suppose v = v, —v_ is a
Jordan Decomposition. Since v4 L v_ there exists P, N = P¢ € M such that
v4(N) =0 and v_(P) = 0. Then clearly P is positive for v and N is negative for
v. Now v(ENP) = vy(E) and v(ENN) = v_(E). The uniqueness now follows
from the remarks after Definition 15.20. =

Definition 15.22. |v|(F) = v4(E) + v_(E) is called the total variation of v. A
signed measure is called o — finite provided that |v| := vy + v_ is a o finite
measure.

(BRUCE: Use Exercise 15.7 to prove the uniqueness of the Jordan decomposi-
tions, or make an exercise.)

Lemma 15.23. Let v be a signed measure on (X, M) and A € M. If v(A) € R
then v(B) € R for all B C A. Moreover, v(A) € R iff |v|(A) < oo. In particular, v
is o finite iff |v| is o — finite. Furthermore if P,N € M is a Hahn decomposition
forv and g =1p — 1y, then dv = gd|v], i.e.

v(A) = /Agd|u| for all A e M.
Proof. Suppose that B C A and |v(B)| = oo then since v(A) = v(B)+v(A\ B)
we must have |v(A4)| = co. Let P, N € M be a Hahn decomposition for v, then
v(A)=v(ANP)+v(ANN) = |v(ANP)| — [v(ANN)| and

(15.11) v (A) =v(ANP)—v(ANN)=|v(ANP)|+ |v(ANN)|.
Therefore v(A) e Riff (AN P) € R and v(ANN) € Riff |v| (A) < co. Finally,

v(A)=v(ANP)+v(ANN)

= [Y|(ANnP) = V(AN N)

- / (Lp — 1y)d
A

which shows that dv = gd|v|. =

A
A

Definition 15.24. Let v be a signed measure on (X, M), let
L'(v) = L'(v") N LY (v7) = L (Iv])
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and for f € L'(v) we define

/deuz/xfdy+—/deu,.

Lemma 15.25. Let pu be a positive measure on (X, M), g be an extended integrable
function on (X, M, u) and dv = gdu. Then L*(v) = L*(|g|dyp) and for f € L*(v),

/dev:/xfgdu-

Proof. We have already seen that dvy = gdu, dv_ = g_du, and d|v| = |g|du
so that L!'(v) = L'(|v]) = L'(|g| dp) and for f € L*(v),

/deV=/deV+—/delL=/ng+du—/xfgfdu

=/Xf(g+—gf)du=/xf9du-

Lemma 15.26. Suppose that p is a positive measure on (X, M) and g : X — R
is an extended integrable function. If v is the signed measure dv = gdu, then
dvy = gidp and d|v| = |g| dp. We also have

(15.12) |V|(A) = sup{/Af dv: |f] < 1} for all A € M.

Proof. The pair, P = {g > 0} and N = {g < 0} = P° is a Hahn decomposition
for v. Therefore

V+(A)=V(A0P)=/A Pgdu=A1{g>o}gdu=Ag+du,
n

v_(4) =-v(ANN) = */ gdp = */ Lg<oygdp = */ g—dp.
ANN A A

and

V] (A) = vy (A) + v_(4) = /A grdps — /A g-dp

=/A(g+—gf)du:/A\g|d/~t~

If Ae M and |f| <1, then
/fdl/+
A

/Afdy /Afdl/+—/Ade* +‘/,4de'

< [ Aflav+ [ 1o = [ i1 dwi < 1wl ).

For the reverse inequality, let f = 1p — 1y then

<

/Af dv=v(ANP)—v(ANN)=v(A) +v (A) = |v|(A).
]

Lemma 15.27. Suppose v is a signed measure, p is a positive measure and v =
Vg + Vs s a Lebesgue decomposition of v relative to p, then |v| = |v,| + |vs] .
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Proof. Let A € M be chosen so that A is a null set for v, and A° is a null
set for vs. Let A = P/ [ N’ be a Hahn decomposition of vs|a, and A° = P[[N
be a Hahn decomposition of v4|a,.. Let P =P UP and N = N’ UN. Since for
CeM,

v(CNP)=v(CNP)+v(CNP)

vs(CN P+, (CNP)>0

and
v(CNN)=v(CNN')+v(CNN)
= v (CNN') 4+, (CNN)<0

we see that {P, N} is a Hahn decomposition for v. It also easy to see that {P, N}
is a Hahn decomposition for both v, and v, as well. Therefore,

lv| (C)=v(CNP)—v(CNN)
=vs(CNP)—vs(CNN)+v,(CNP)—1v,(CNN)
w5 (C) + [va] (C).

Lemma 15.28. 1) Let v be a signed measure and p be a positive measure on
(X, M) such that v < p and v L p, then v = 0. 2) Suppose that v = > 2, v;
where v; are positive measures on (X, M) such that v; < u, then v < u. Also if 1y
and vo are two signed measure such that v; < p fori=1,2 and v = vy + 1o is well
defined, then v < p.

Proof. (1) Because v L y, there exists A € M such that A is a v — null set and
B = A¢is a y - null set. Since B is g — null and v < p, B is also v — null. This
shows by Lemma 15.17 that X = AU B is also v — null, i.e. v is the zero measure.
The proof of (2) is easy and is left to the reader. m

Theorem 15.29 (Radon Nikodym Theorem for Signed Measures). Let v be a o —
finite signed measure and p be a o — finite positive measure on (X, M). Then v has
a unique Lebesque decomposition v = v, + v, relative to p and there exists a unique
(modulo sets of p — measure 0) extended integrable function p : X — R such that
dv, = pdu. Moreover, vs =0 iff v < u, i.e. dv = pdu iff v < p.

Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.

Existence. Let v = v, —v_ be the Jordan decomposition of v. Assume, without
loss of generality, that v (X) < oo, i.e. ¥(A) < oo for all A € M. By the Radon
Nikodym Theorem 15.13 for positive measures there exist functions f1 : X — [0, 00)
and measures A4 such that vy = py, + A+ with AL L p. Since

00 > vi(X) = /j’f+(X) + A+ (X),
f+ € LY () and A\ (X) < oo so that f = fy — f_ is an extended integrable function,
dvg = fdp and vy = Ay — A_ are signed measures. This finishes the existence proof
since
v=vy —vo =g, + A — (uﬁ —|—/\_) = Vg + Vs

and vs = (Ay — A_) L u by Remark 15.8.

For the final statement, if v; = 0, then dv = pdp and hence v < u. Conversely
if v < p, then dvs = dv — pdp < p, so by Lemma 15.17, vg = 0. Alternatively just
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use the uniqueness of the Lebesgue decomposition to conclude v, = v and vs; = 0.
Or more directly, choose B € M such that pu(B¢) = 0 and B is a vs — null set.
Since v < pu, B¢ is also a v — null set so that, for A € M,

v(A)=v(ANDB)=v,(ANB)+v;(ANB) =v,(ANB).
|

Notation 15.30. The function f is called the Radon-Nikodym derivative of v
relative to p and we will denote this function by g—

15.3. Complex Measures II. Suppose that v is a complex measure on (X, M),
let v, := Rev, v; :==Imv and p := |v;| + |v4]|. Then p is a finite positive measure
on M such that v, < p and v; < p. By the Radon-Nikodym Theorem 15.29, there
exists real functions h, k € L'(u) such that dv, = h du and dv; = k du. So letting
g:=h+ike L' (p),

dv = (h+ik)dp = gdp

showing every complex measure may be written as in Eq. (15.1).

Lemma 15.31. Suppose that v is a complex measure on (X, M), and for i =1,2
let pi; be a finite positive measure on (X, M) such that dv = g;du; with g; € L*(p;).
Then

/\91\d/~01 =/ 92| dpa for all A € M.
A A

In particular, we may define a positive measure |v| on (X, M) b

lv| (A / lg1| dpy for all A € M.

The finite positive measure |v| is called the total variation measure of v.

Proof. Let A = p1 + pe so that pu; < A Let p; = dp;/d\ > 0 and h; = p;g;.
Since

v(A) = / gidpi = / gipidA = / hidX for all A € M,
A A A
h1 = ho, X —a.e. Therefore

/|gl|du1:/ |gl|p1dA=/ |h1|dA=/ |h2|dA=/ \92|P2d)\=/ g2l dpa.
A A A A A A
| |

Definition 15.32. Given a complex measure v, let v, = Rev and v; = Imv so
that v, and v; are finite signed measures such that

v(A) = v, (A) + iv;(A) for all A e M.
Let L'(v) := L'(v,) N L*(v;) and for f € L*(v) define

/fdy —/ fdu,+z/ fdv;.

Example 15.33. Suppose that y is a positive measure on (X, M), g € L*(u) and
= [, gdpas in Example 15.4, then L'(v) = L*(|g|dp) and for f € L'(v)

(15.13) /dey:/xfgdu.
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To check Eq. (15.13), notice that dv,. = Reg dp and dy; = Img dp so that
(using Lemma 15.25)

L'(v) = L' (Regdp) N L'(Im gdu) = L*(|Reg|dp) N L ([Im g| dp) = L*(|g| dps).
If f € L'(v), then

/del/::/XfRegduH/Xflmgdu:/ngdu-

Remark 15.34. Suppose that v is a complex measure on (X, M) such that dv = gdu
and as above d |v| = |g| du. Letting
o i gl #0
- S

p=sen(p): { 1 it |gl=0

we see that
dv = gdp = plg|dp = pd|v|

and |p| = 1 and p is uniquely defined modulo |v| — null sets. We will denote p by
dv/d|v|. With this notation, it follows from Example 15.33 that L(v) := Lt (|v])

and for f € L1(v),
J v = [ i,

Proposition 15.35 (Total Variation). Suppose A C P(X) is an algebra, M =
o(A), v is a complex (or a signed measure which is o — finite on A) on (X, M)
and for E € M let

E):sup{Z|1/(Ej)|:Ej € Ag 2 E;NE; =0;E;, n=1,2,...}
{Z|l/ EjEME BEiﬂEjZ(SijEi,n:l,Q,...}

zsup{ By e Mg BEﬁE—émE}

_ Sup{
pa(E) = Sup{‘/E fdv

then po = p1 = pg = p3 = pa = || .

Proof. Let p = dv/d|v| and recall that |p| = 1, |v| — a.e. We will start by
showing |v| = pg = ug. If f is measurable with |f| < 1 then

[ 1 =‘/Ef pdlvl| < [ 171 dbl < [ 1av] = pi(B)

from which we conclude that py < us < |v|. Taking f = p above shows

Jra=[soavi= [ vaw =11

which shows that |v| < ps and hence |v| = pg. To show |v| = pg as well let X,,, € A
be chosen so that |v|(X,,) < co and X,, T X as m — oo. By Theorem 11.3 of

de/

f is measurable with |f| < 1}

 f € Sp(A ) with |f] < 1}.
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Corollary 13.27, there exists p, € S;(A, ) such that p, — plx, in L'(|v|) and

each p, may be written in the form

m

N
(15.14) pn =Y zla,
k=1
where 2z, € C and Ay € Aand Ay NA; =0 if k # j. I claim that we may assume
that |z;| <1 in Eq. (15.14) for if |2, > 1 and x € Ay,
Ip(w) = 2l = o) = |n ™" 2
This is evident from Figure 31 and formally follows from the fact that

d 12 -1
= |p(@) — t|z] lzk’ :2[t*Re(|Zk| 1zkp(x))} 20
when ¢t > 1.

F1GUrEe 31. Sliding points to the unit circle.

Therefore if we define

-1 .
wy = |z 2 1f |zi| > 1
2k if |z <1

N
and p, = Y wila, then
k=1

p(x) = pn(@)| = |p(2) = pn(2)]
and therefore p, — ply,, in L*(|v|). So we now assume that p,, is as in Eq. (15.14)
Now

/ﬁndu—/ﬁlxmdl/
E E

and hence

s/mn—mxmwd\wwasneoo
E

< \ [ v = p1, ) pile
E

/ plx, dv
E

Letting m 1 oo in this equation shows py > |v|.

wa(E) > = |v| (EN X,,) for all m.
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We will now show o = p1 = pe = |v|. Clearly po < 11 < po. Suppose E; € Mg
such that E,L' N Ej = (SijEi, then

> lw(E)l = ZI/ pdlv] <Y IVI(E)) = VI(VE;) < |v] (B)

which shows that po < || = 4. So it suffices to show pg < p1o. But if f € S¢(A, |v|)
with |f| < 1, then f may be expressed as f = Zszl zila, with |zx| < 1 and
Ap M A; = 6;;Ar. Therefore,

oo

Since this equation holds for all f € S¢(A, |v|) with |f| <1, pa < p1o as claimed. m

N

szll AkﬂE
k=1

N
<Z\zk|| V(A N E)| <Y [(Ax N E)| < po(A).
k=1 k=1

Theorem 15.36 (Radon Nikodym Theorem for Complex Measures). Let v be a
complex measure and p be a o — finite positive measure on (X, M). Then v has a
unique Lebesque decomposition v = v, + vs relative to o and there exists a unique
element p € L' (u) such that such that dv, = pdu. Moreover, vy = 0 iff v < p, i.e.
dv = pdu iff v < p.

Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.

Existence. Let g : X — S' C C be a function such that dv = gd|v|. By
Theorem 15.13, there exists h € L'(x) and a positive measure |v|, such that [v|, L p
and d|v| = hdp + d|v|, . Hence we have dv = pdp + dvs with p := gh € L*(u) and
dvs := gd|v|, . This finishes the proof since, as is easily verified, vy L . ®

15.4. Absolute Continuity on an Algebra. The following results will be useful
in Section 16.4 below.

Lemma 15.37. Let v be a complex or a signed measure on (X, M). Then A € M
is a v — null set iff |v| (A) = 0. In particular if 1 is a positive measure on (X, M),
v piff lv] < p.

Proof. In all cases we have |v(A)| < |v| (A) for all A € M which clearly shows
that |v| (A) = 0 implies A is a v — null set. Conversely if A is a v — null set, then,
by definition, v|r, = 0 so by Proposition 15.35

lv| (A —sup{Z| B e My3 Ky ﬁE—émE}zo.

since E; C A implies u(E;) = 0 and hence v(E;) = 0.

Alternate Proofs that A is v — null implies |v| (A) = 0.

1) Suppose v is a signed measure and {P, N = P°} C M is a Hahn decomposition
for v. Then

lv|(A) =v(ANP)—v(ANN) =0.
Now suppose that v is a complex measure. Then A is a null set for both v, := Rev
and v; := Imwv. Therefore |v| (A) < |v | (A) + |vi] (A) = 0.
2) Here is another proof in the complex case. Let p = d‘
of A being v — null,

then by assumption

1/|’

O:V(B):/pdh/\ for all B € M4.
B
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This shows that pl4 = 0, |v| — a.e. and hence
] <A>=/ \p\d\w:/ 1alpl dlv] = 0.
A X

Theorem 15.38 (e — ¢ Definition of Absolute Continuity). Let v be a complex
measure and p be a positive measure on (X, M). Then v < p iff for all e > O there
exists a 6 > 0 such that |v(A)| < € whenever A € M and u(A) < 4.

Proof. (<) If u(A) = 0 then |v(A)| < € for all ¢ > 0 which shows that
v(A) =0, ie v<p.

(=) Since v <« p iff |v| <« p and |v(A4)] < |v|(A) for all A € M, it suffices to
assume v > 0 with v(X) < oco. Suppose for the sake of contradiction there exists
e >0and A, € M such that v(4,) > e > 0 while u(A4,) < 5. Let

A={4A,io}= ) | 4x

N=1n>N

so that

T : i -(N-1) _
p(A) = Jim p(Upz>nAn) < lim ;‘Vu(fln) < lim 2 =0.
On the other hand,

v(A) = lim v(Up>nAn) > lim infr(A4,) >e>0

N—o0 n— 00
showing that v is not absolutely continuous relative to p. ®
Corollary 15.39. Let u be a positive measure on (X, M) and f € L'(du). Then

for all € > 0 there exists § > 0 such that |[ f du' < € for all A € M such that
A

u(A) < 6.
Proof. Apply theorem 15.38 to the signed measure v(A) = [ f duforall A € M.
A

Theorem 15.40 (Absolute Continuity on an Algebra). Let v be a complex measure
and p be a positive measure on (X, M). Suppose that A C M is an algebra such
that o(A) = M and that 1 is o — finite on A. Then v < p iff for all € > 0 there
exists a 6 > 0 such that [v(A)| < € for all A € A with p(A) < 6.

Proof. (=) This implication is a consequence of Theorem 15.38.

(«<=) Let us begin by showing the hypothesis [v(A)| < € for all A € A with
w(A) < § implies |v| (A) < 4e for all A € A with pi(A) < 6. To prove this decompose
v into its real and imaginary parts; v = v, + iv;.and suppose that A = ]_[?‘:1 A;
with A; € A. Then

n

Z lvr(4;)] = Z vr(4;) — Z vr(4;)

ji=1 Jjiwr(A;)>0 jiwr(A;)<0
= Vr(Uju,(45)2045) = vr(Ujiw,(a)<04;)
< (U ay)2049)] + [(Uj,a5)<045) |
< 2¢
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using the hypothesis and the fact (Uj:ur(Aj)zoAj) <u(A) < dand p (Uj:ur(Aj)goAj) <
1(A) < 6. Similarly, 337, [vi(A;)| < 2¢ and therefore

S AN <Y (A + D i A))] < de.
j=1 j=1 j=1

Using Proposition 15.35, it follows that

W] (A) =supq > [v(4;)]: A= ] A; with A; € Aand n € N § < 4e.
j=1 j=1

Because of this argument, we may now replace v by |v| and hence we may assume
that v is a positive finite measure.

Let € > 0 and § > 0 be such that v(A) < € for all A € A with p(A) < 0. Suppose
that B € M with u(B) < §. Use the regularity Theorem 8.40 or Corollary 13.27 to
find A € A, such that B C A and u(B) < u(A) < 6. Write A = U, A,, with A4,, € A.
By replacing A, by Uj_;A; if necessary we may assume that A, is increasing in
n. Then u(A,) < p(A) < § for each n and hence by assumption v(4,,) < e. Since
B C A =U,A, it follows that v(B) < v(A) = lim, .o ¥(A,) < €. Thus we have
shown that v(B) < ¢ for all B € M such that u(B) <. =

15.5. Dual Spaces and the Complex Riesz Theorem.

Proposition 15.41. Let S be a vector lattice of bounded real functions on a set
X. We equip S with the sup-norm topology and suppose I € S*. Then there exists
I, € S* which are positive such that then I =1, —1_.

Proof. For f € ST, let

L.(f):=sup{I(9):geStand g < [}.
One easily sees that |1 (f)| < [[I||||f]| for all f € ST and I (cf) = cl(f) for all
f €St and ¢ > 0. Let fi, fo € ST. Then for any g; € ST such that g; < f;, we have
St 3 g1+ g2 < fi + f2 and hence
I(g1) +1(g2) = L(g1 + g2) < L1 (f1 + f2).
Therefore,
(15.15)  Ly(f1) + I (f2) = sup{I(g1) + I(g2) : ST 3 g; < fi} < I (fi + fa).
For the opposite inequality, suppose g € ST and g < f1 + fa. Let g1 = f1 A g, then
0 if g<fi
0<goi=g—gi=g—fihg= )
Sgi=g-g=9-hiNg {g—fl it 9> f
0 if g<hfi
< . < f5.
—{ fitfomf if g>h =P
Since g = g1 + g2 with ST 3 ¢g; < f;,
I(g) = 1(g91) + 1(g2) < I+ (f1) + 1+(f2)
and since ST 3 g < f; + fo was arbitrary, we may conclude
(15.16) L (fr+ f2) < Te(f1) + Lo (f2)-
Combining Eqs. (15.15) and (15.16) shows that

(1517) I+(f1 + f2) = I+(f1) + I+(f2) for all fz S S+.
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We now extend I, to S by defining, for f €S,

I (f) = L (f+) = I+ (f-)

where f = fVvO0and f_ =—(fA0)=(—f) V0. (Notice that f = f, — f_.) We
will now shows that I is linear.
If ¢ > 0, we may use (cf), = cf+ to conclude that

I (cf) = Li(efy) — Li(ef-) = el (fy) — el (f-) = Ly (f).

Similarly, using (—f)+ = f+ it follows that I (—f) = I (f-) — I+ (fy) = —I1:(f).
Therefore we have shown

Ii(cf)=cli(f) forallce Rand f €S.
If f =u—v with u,v € ST then
v+ fr=u+f_ €St
and so by Eq. (15.17), I+ (v) + I+ (f+) = I+ (u) + I+ (f-) or equivalently
(15.18) L (f) = L (f+) = I (f-) = I (u) = T4 (v).
Now if f,g € S, then
L(f+9) = L(f++9+— (f- +9-))

=1 (f+ +9+) — I+(f- +9-)

=L (f4) + I (9+) — I (f-) — I(9-)

= L.(f) +1I+(9),

wherein the second equality we used Eq. (15.18).
The last two paragraphs show I, : S — R is linear. Moreover,

L () = [+ (f+) = Le(f-)] < max (|1 (f4)], [+ (f-)])
< ([ [ max (| £+ [/~ 1) = [IZIH]|f1]

which shows that || I|| < ||]|. That is I} is a bounded positive linear functional
on S. Let I_ = I, —I € S*. Then by definition of I, (f), I_(f) = I+(f) = I(f) >0
for all S 5 f > 0. Therefore I = I, — I_ with I being positive linear functionals
onS. m

Corollary 15.42. Suppose X is a second countable locally compact Hausdorff space
and I € Co(X,R)", then there exists i = iy — ju— where p is a finite signed measure
on Br such that I(f) = [, fdp for all f € Co(X,R). Similarly if I € Co(X,C)"
there exists a complex measure p such that I(f) = [, fdp for all f € Co(X,C).
TODO Add in the isometry statement here.

Proof. Let I = I, — I_ be the decomposition given as above. Then we know
there exists finite measure p4 such that

I:l:(f) = /dep,i for all f € C()(X,R).

and therefore I(f) = [y fdu for all f € Co(X,R) where p = piy — p—. Moreover the
measure 4 is unique. Indeedif I(f) = [ « fdu for some finite signed measure p1, then
the next result shows that I (f) = [ « fdp+ where py is the Hahn decomposition
of u. Now the measures uy are uniquely determined by /.. The complex case is a
consequence of applying the real case just proved to Re/ and Im /. m
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Proposition 15.43. Suppose that 1 is a signed Radon measure and I = 1I,,. Let ji4
and (i be the Radon measures associated to Ii, then p = py — p— is the Jordan
decomposition of p.

Proof. Let X = PU P¢ where P is a positive set for p and P€ is a negative set.
Then for A € By,

(15.19) p(PNA) =p (PNA)—p(PNA) < pyp(PNA) < py(A)
To finish the proof we need only prove the reverse inequality. To this end let € > 0
and choose K CC PNA CU C, X such that |u| (U\K) < e. Let f,g € C.(U,[0,1])
with f < g, then

I(f) = pu(f) = p(f - K)+p(f: U\ K) < p(g: K)+ O(e)

< p(K) +0(e) < (PN A)+Ofe).

Taking the supremum over all such f < g, we learn that I (g) < u(PNA)+ O(e)
and then taking the supremum over all such g shows that

1+ (U) < p(P 0 A)+ O(e).
Taking the infimum over all U C, X such that PN A C U shows that
(15.20) pr(PNA) <u(PNA)+0(e)
From Egs. (15.19) and (15.20) it follows that pu(P N A) = u (PN A). Since

I_(f) = sup I(g) = I(f) = sup I(g—f)= sup —I(f—g)= sup —I(h)
0<g<f 0<g<f 0<g<f 0<h<f

the same argument applied to —I shows that
—uw(P°NA)=pu_(P°NA).

Since

wA) =p(PNA) +puP°NA) =pr(PNA) —u_(P°NA) and

1(A) = py(A) — p—(A)
it follows that

(AN P) = p(A\ P%) = p_(ANP).

Taking A = P then shows that p_(P) = 0 and taking A = P° shows that uy (P°) =
0 and hence

P NA)=p(PNA) = pi(A) and
—u(P°NA)=p_(P°NA)=p_(A)
as was to be proved. m
15.6. Exercises.

Exercise 15.1. Prove Theorem 15.14 for p € [1,2] by directly applying the Riesz
theorem to @b‘LQ(M)-

Exercise 15.2. Show |v| be defined as in Eq. (15.7) is a positive measure. Here is
an outline.

(1) Show
(15.21) v[ (A) + v (B) < |[v] (AU B).
when A, B are disjoint sets in M.
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(2) f A= ]_[OO A,, with A,, € M then

(15.22) v (A Z V| (A

(3) From Eqgs. (15.21) and (15.22) it follows that v is finitely additive, and
hence

vl (A Z W] (An) + V] (Un>nAn) Z vl (A

Letting N — oo in this inequality shows |v]|(A) > > | |v[(A,) which
combined with Eq. (15.22) shows |v| is countable additive.

Exercise 15.3. Suppose u;,v; are o — finite positive measures on measurable
spaces, (X;, M;), for i = 1,2. If v; < p; for i = 1,2 then 11 @ vy K 1 @ a2
and in fact
d(l/l (24 1/2)
d(p1 @ pa)
where p; := dv;/dp; for i = 1,2.

Exercise 15.4. Folland 3.13 on p. 92.

(w1, 22) = p1 @ pa(w1,22) := p1(w1)pa(w2)

Exercise 15.5. Let v be a o — finite signed measure, f € L!(|v|) and define

/deu:/dequ—/deu,.

Suppose that p is a o — finite measure and v < u. Show
d
(15.23) / fdv = / <.
X x " dp

Exercise 15.6. Suppose that v is a signed or complex measure on (X, M) and
A, € M such that either A, T A or A, | A and v(4;) € R, then show v(A4) =
lim,, 00 V(Ay).

Exercise 15.7. Suppose that p and A are positive measures and pu(X) < oo. Let
v:=\— pu, then show A > v, and p > v_.

Exercise 15.8. Folland Exercise 3.5 on p. 88 showing |11 + va| < |v1] + |v2].
Exercise 15.9. Folland Exercise 3.7a on p. 88.

Exercise 15.10. Show Theorem 15.38 may fail if v is not finite. (For a hint, see
problem 3.10 on p. 92 of Folland.)

Exercise 15.11. Folland 3.14 on p. 92.
Exercise 15.12. Folland 3.15 on p. 92.
Exercise 15.13. Folland 3.20 on p. 94.
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16. LEBESGUE DIFFERENTIATION AND THE FUNDAMENTAL THEOREM OF
CALCULUS

Notation 16.1. In this chapter, let B = Brn denote the Borel o — algebra on R"
and m be Lebesgue measure on B. If V is an open subset of R, let L} (V) :=

loc
L} .(V,m) and simply write L} . for L} .(R"). We will also write |A| for m(A) when
AeB.

Definition 16.2. A collection of measurable sets {E}, ., C B is said to shrink

nicely to € R™ if (i) E, C By(r) for all r > 0 and (ii) there exists & > 0 such that
m(Ey) > am(B(r)). We will abbreviate this by writing F, | {«} nicely. (Notice
that it is not required that = € F, for any r > 0.

The main result of this chapter is the following theorem.

Theorem 16.3. Suppose that v is a complex measure on (R™, B), then there exists
g € LY(R™,m) and a complex measure vs such that vy L m, dv = gdm + dvs, and
form - a.e. x,

o v(E)

for any collection of {E,}, ., C B which shrink nicely to {x} .

Proof. The existence of g and v, such that v L m and dv = gdm + dvs is a
consequence of the Radon-Nikodym Theorem 15.36. Since
v(E,) 1 / vs(E,)
= g(z)dm(z) +
m(E,) m(E;) E, m(E,)

Eq. (16.1) is a consequence of Theorem 16.13 and Corollary 16.15 below. =
The rest of this chapter will be devoted to filling in the details of the proof of
this theorem.

16.1. A Covering Lemma and Averaging Operators.

Lemma 16.4 (Covering Lemma). Let £ be a collection of open balls in R™ and

U =UpgeeB. If c <m(U), then there exists disjoint balls By, ..., By € € such that
k
c< 3" > m(By).

j=1

Proof. Choose a compact set K C U such that m(K) > ¢ and then let & C €
be a finite subcover of K. Choose B; € & to be a ball with largest diameter in &;.
Let & = {A € & : ANB; = 0}. If & is not empty, choose By € & to be a ball with
largest diameter in &. Similarly let &3 = {4 € & : AN By = 0} and if & is not
empty, choose Bs € &3 to be a ball with largest diameter in £s. Continue choosing
B, € £ fori=1,2,... k this way until &1 is empty, see Figure 32 below.

If B = B(xo,r) C R, let B* = B(x¢,3r) C R", that is B* is the ball concentric
with B which has three times the radius of B. We will now show K C UX_, BY. For
each A € &; there exists a first ¢ such that B; N A # . In this case diam(A4) <
diam(B;) and A C Bj. Therefore A C U¥_ By and hence K C U{A: A€ &} C
Uk, Bf. Hence by subadditivity,

k k
c<m(K) < Zm(B:‘) < 3"Zm(Bi).
i=1 i=1
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)
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S

F1GURE 32. Picking out the large disjoint balls.

Definition 16.5. For f € L} , z € R" and r > 0 let

loc?

(16.2) (A,f)(x):|BI—1(T)| / fdm
B, (r)

where B,(r) = B(z,r) C R", and |A] := m(A).
Lemma 16.6. Let f € L}, then for each x € R™, (0,00)such that r — (A, f)(z)

locy
is continuous and for each r > 0, R"™ such that x — (A, f) (x) is measurable.

Proof. Recall that |B,(r)] = m(E1)r™ which is continuous in 7. Also
lim, ry 15, () (%) = 1B,(ro)(¥) if ly| # 70 and since m ({y : |y| #r0}) = 0 (you
prove!), lim, ., 15, (¥) = 1B, (r,)(y) for m -a.e. y. So by the dominated conver-
gence theorem,

lim fdm = / fdm

=70

B, (7') B ("'0)

1
(AN)@) = e [ pm
By (r)

is continuous in 7. Let g,(z,y) := 1p,(+)(¥) = ljz—y|<r- Then g, is B® B — mea-
surable (for example write it as a limit of continuous functions or just notice that
F : R" x R® — R defined by F(z,y) := |z —y| is continuous) and so that by
Fubini’s theorem

and therefore

v / Fdm — / gr () F()dm(y)
By (r) By (r)

is B — measurable and hence so is x — (4, f) (z). m
16.2. Maximal Functions.

Definition 16.7. For f € L!(m), the Hardy - Littlewood maximal function H f is
defined by

(Hf)(z) = §1>113Ar|f|(x)-
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Lemma 16.6 allows us to write

(Hf)(x) = sup Ar|f|(z)
€Q, r>0

T

and then to concluded that H f is measurable.

Theorem 16.8 (Maximal Inequality). If f € L'(m) and o > 0, then
37'L
m(Hf > 0) < 2| 7|

This should be compared with Chebyshev’s inequality which states that

m(f] > ) < et
«
Proof. Let E, = {Hf > a}. For all x € E, there exists r, such that
A |fl(2) > o, ie.

(0%

1
| B, (r2)| < —/ fdm.
B, (ry)

Since Fo, C Ugep, Bx(ry), if ¢ < m(Ey) < m(Ugep, B (r:)) then, using Lemma
16.4, there exists z1, ...,z € E, and disjoint balls B; = B, (ry,) fori =1,2,...,k
such that

k
. 3n 3n 3n
e< 03Bl <= [ irlm < [ idm =
i=1 i "

This shows that ¢ < 3"a™!||f|p: for all ¢ < m(E,) which proves m(E,) <
3rat|f]. w

Theorem 16.9. If f € L . then lifl(}(Arf)(a:) = f(z) form — a.e. z € R™.
Proof. With out loss of generality we may assume f € L!(m). We now begin
with the special case where f = g € L!(m) is also continuous. In this case we find:

(Arg) (@) — g(x)] < ﬁ [ o) = g(@lam(y)

sup |g9(y) —g(z)| = 0asr —0.
yEB, (1)

IN

In fact we have shown that (A,¢)(x) — g(z) as r — 0 uniformly for = in compact
subsets of R"™.
For general f € L'(m),

[Arf(z) = f(@)] < [Arf(z) = Arg(2)] + [Arg(z) — g(2)| + |g(z) — f(2)]
= A (f = 9)(@)| + [Arg(z) — g(@)| + [g(z) — f(2)]
< H(f = g)(2) +[Arg(z) — g(2)| + |g(x) — f ()]
and therefore,

%IATJ‘(JJ) —f(@)] < H(f = 9)(x) + |g(x) — f(2)]

So if & > 0, then

Ea = {TlA @) - @] > o < {117 - 0) > 5} 0{lo - 11> 5}

[\
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and thus

m(Ea)Sm(H(f—9)>g)""m(w—f' >%)
/2||f gl + /QHf gl

< 23" + Da | f — gl

where in the second inequality we have used the Maximal inequality (Theorem 16.8)
and Chebyshev’s inequality. Since this is true for all continuous g € C(R™)N L (m)
and this set is dense in L!(m), we may make ||f — g||;1 as small as we please. This
shows that

o ({o T 0) = 001> 0}) = i) < i) =
]

Corollary 16.10. If du = gdm with g € L},, then

1(Ba(r))
| B (r)]
16.3. Lebesque Set.

Definition 16.11. For f € L}, .(m), the Lebesgue set of f is

= A,g(x) — g(x) for m —a.e. z.

L;={zeR '158|B /\f )|dy = 0

~{eer im0 - f@) ) - 0} -

Theorem 16.12. Suppose 1 < p < oo and f € L} (m), then m (Rd\ﬁ;) =0
where

n 1 P —
=locr 17}{51|B()B[)|f(y)—f(x)|dy—0

Proof. For w € Cdefine g,,(z) = |f(z)—w[P and E,, = {x : lim, o (A;g) (z) # gu(z)}.
Then by Theorem 16.9 m(E,,) = 0 for all w € C and therefore m(E) = 0 where

By definition of E, if # ¢ E then.
Hm(Ar] f() = wl’)(@) = |f(z) — wl?
for all w € Q 4 iQ. Letting q := 2~ we have
1fC) = F@)P < (If() —w] + Iw — f@))" <27(|f() —w" + [w — f(2)]"),

(Arlf() = f@)P) (@) <27 (A [ () = w]”) (2) + (Apw = f(2)]") (x)
=27 (A [f() —wl’) (z) + 27w — f(z)|
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and hence for x ¢ E,
lm(A /() = f(@)P) (@) < 27| (@) = w]” + 2w = f(2)|]” = 22| f () — w]".

Since this is true for all w € Q + iQ, we see that

%(Aﬁf(') — f(@)P)(x) =0for all x ¢ E,

i.e. B¢ C L% or equivalently ([2’})0 C E.Som (Rd \ [l?) <m(E)=0. m

Theorem 16.13 (Lebesque Differentiation Theorem). Suppose f € L} . for all
x € Ly (so in particular form — a.e. x)

1

lim ) [, 1)~ @iy =0

and

. 1
lim iy [, 0y =1

rl0 m(

when E,. | {x} nicely.

Proof. For all x € Ly,

1 1
‘m(ET) /Erf(y)dy—f(w) = ‘m(ET) /E (f(y) —f(w))dy’
1
< iy I = ey
1
Sy | - f@la

which tends to zero as r | 0 by Theorem 16.12. In the second inequality we have

used the fact that m(B;(r) \ Bx(r)) =0. =
BRUCE: ADD an LP — version of this theorem.

Lemma 16.14. Suppose \ is positive o — finite measure on B = Bgrn such that
A L m. Then for m — a.e. z,

o A= (1))
710 m(Bg (1))

Proof. Let A € B such that A(A) = 0 and m(A°) = 0. By the regularity theorem
(Corollary 13.27 or Exercise 8.4), for all € > 0 there exists an open set V. C R"
such that A C V. and A(V.) < e. Let

F = {x e A: T8l l}

rlom(Bg(r)) = k

=0.

the for x € F}, choose r, > 0 such that B, (r,) C V¢ (see Figure 33) and % >
1

% i.e.

m(By(ry)) < k AM(Bg(rs)).
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U= K}{ B )

F1cUure 33. Covering a small set with balls.

Let & = {By(rs)}zer, and U = |J By(r:) C Ve. Heuristically if all the balls
x€EF},
in £ were disjoint and £ were countable, then

m(Fy) < Y m(Ba(re)) <k Y MBu(ra))

TEF}, T EF),
=kAU) <k MV.) < ke.
Since € > 0 is arbitrary this would imply that m(Fy) = 0.
To fix the above argument, suppose that ¢ < m(U) and use the covering lemma
to find disjoint balls By, ..., By € £ such that

N N
c<3"y m(B) <k3" Y AB)
=1 i=1

< k3"AU) < k3"A(V.) < k3"

Since ¢ < m(U) is arbitrary we learn that m(Fy) < m(U) < k3"e and in particular
that m(Fy) < k3"e. Since ¢ > 0 is arbitrary, this shows that m(Fy) = 0 and
therefore, m(Fo) = 0 where

_ = ABx(r)) _ o0
Fo = {.’13 cA: I,IF(}W > O} = Uk:le~

Since

A(Ba(r))
(Ba(

R™ : lim Foo U A°
{z € TlflolmBm 7 >0} C U

and m(A°) = 0, we have shown

n _/\<BL(T)) _
m({z € R" : 1:?01—771(3,@(7")) >0}) =0.

Corollary 16.15. Let A be a complex or a o — finite signed measure such that
A L m. Then form — a.e. x,
AE;)

710 m(E,) =0
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whenever E, | {z} nicely.

Proof. Recalling the A L m implies |A| L m, Lemma 16.14 and the inequalities,

IMNE,)| IN(E:) IA|(Bx(r)) I\[(Bz(2r))
m(Ey) = am(Bu() = am(Ba(r)) = a2 "m(B,(21)

proves the result. m

Proposition 16.16. TODO Add in almost everywhere convergence result of con-
volutions by approximate § — functions.

16.4. The Fundamental Theorem of Calculus. In this section we will restrict
the results above to the one dimensional setting. The following notation will be in
force for the rest of this chapter: m denotes one dimensional Lebesgue measure on
B := Bg, —00 < a < 8 < o0, A= A, p denote the algebra generated by sets of
the form (a,d] N [a, B] with —co < a < b < o0, A, denotes those sets in A which
are bounded, and By, g is the Borel o — algebra on [a, 3] N R.

Notation 16.17. Given a function F : R—R or F : R —=C, let F(z—) =
limy, F(y), F(z+) = limy |, F(y) and F(+o0) = limg,_, 4o F(2) whenever the
limits exist. Notice that if F' is a monotone functions then F(+oo0) and F(z+)
exist for all .

Theorem 16.18. Let F': R — R be increasing and define G(x) = F(xz+). Then

(1) {z eR: F(z+) > F(z—)} is countable.

(2) The function G increasing and right continuous.

(3) Form — a.e. x, F'(x) and G'(x) exists and F'(z) = G'(z).

(4) The function F' is in Li,.(m) and there exists a unique positive measure

vs on (R, Br) such that

b
F(b+)—F(a+):/ F'dm + vs((a,b]) for all —oo < a <b< oo.

a

Moreover the measure vy is singular relative to m.

Proof. Properties (1) and (2) have already been proved in Theorem 13.34.

(3) Let vg denote the unique measure on B such that vg((a,b]) = G(b) — G(a)
for all @ < b. By Theorem 16.3, for m - a.e. w, for all sequences {E.} ., which
shrink nicely to {z}, lriFOl(VG(ET) /m(E;)) exists and is independent of the choice

of sequence {E,}, ., shrinking to {z}. Since (z,z + 7| | {z} and (z —r,2] | {z}
nicely,

vg(z,z+7r]) Gz +71)—G(z) d

(16.3) lrlfl(} m((z,z + 7)) - lrlﬁ)lf - da:—"’G(x)

and

(16.4)
lim va((x —rx]) lim G(x) -G —r) lim Glz—r)—G) d ()
r10 m((z —r,2])  rlo r T o —r da—

exist and are equal for m - a.e. z, i.e. G'(x) exists for m -a.e. z.
For z € R, let

H(z) =G(z) — F(z) = F(z+) — F(z) > 0.
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Since F'(z) = G(x)— H (), the proof of (3) will be complete once we show H'(z) =0
for m — a.e. .
From Theorem 13.34,

Ai={zeR:F(z+) > F(z)} C{z e R: F(z+) > F(z—)}
is a countable set and

Y. H@= ) (Fat)-F@)< Y (Fla+)-F-)) <o
z€(—N,N) z€(—N,N) z€(—N,N)
for all N < co. Therefore A := ) H(x)d, (i.e. AN(A) =) ., H(z) forall A € Bg)
z€R
defines a Radon measure on Bg. Since A\(A°) = 0 and m(A) = 0, the measure A L m.

By Corollary 16.15 for m - a.e. z,
H(@+r) - H(x)| _ [H(+r)|+|H(z)| _ Hz+|r]) + H(z - |r]) + H(z)
r - 7] - 7|
< Ml Irl @ 1)

- 21r|
and the last term goes to zero as r — 0 because {[z — 7,z + r]},_, shrinks nicely
to {z} asr | 0 and m([x — |r|,z + |r|]) = 2|r|. Hence we conclude for m — a.e. x
that H'(z) = 0.

(4) From Theorem 16.3, item (3) and Eqgs. (16.3) and (16.4), F' = G’ € L}, .(m)
and dvg = F'dm + dvs where vs is a positive measure such that vs 1 m. Applying

this equation to an interval of the form (a, b] gives

F(b+) — Fla+) = ve((a,B]) = / Fldm + vs((a, B]).

The uniqueness of v such that this equation holds is a consequence of Theorem
8.8. m
Our next goal is to prove an analogue of Theorem 16.18 for complex valued F.

Definition 16.19. For —oco < a < b < 00, a partition P of [a, ] is a finite subset
of [a,b] N R such that {a,b} "R C P. For z € P\ {b}, let zy = min{y € P:y > x}
and if x =blet zy =b.

Proposition 16.20. Let v be a complex measure on Br and let F be a function
such that

F(b) — F(a) = v((a,b]) for all a < b,
for example let F(x) = v((—o0,x]) in which case F(—o0) = 0. The function F is
right continuous and for —oo < a < b < 0,

(16.5) |v|(a, b] —supZ| v(x, x4 —supZ|F x4) — F(x)]

zeP zeP

where supremum is over all partitions P of [a,b]. Moreover v < m iff for all e > 0
there exists § > 0 such that

(16.6) Z|V ai, b \fZ|F F(a;)| < e

whenever {(a;,b;) N (a,b]};_, are disjoint open intervals in (a,b] such that Y (b; —

i=1
ai) < 0.
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Proof. Eq. (16.5) follows from Proposition 15.35 and the fact that B = o(A)
where A is the algebra generated by (a,b] "R with a,b € R. Equation (16.6) is a
consequence of Theorem 15.40 with A being the algebra of half open intervals as
above. Notice that {(a;,b;) N (a,b]}!_, are disjoint intervals iff {(a;,b;] N (a,b]}i,

are disjoint intervals, Y (b; —a;) = m ((a,b] N UM (a;, b;]) and the general element
i=1
A€ Aqp is of the form A = (a,b] VU, (a;,b;]. m

Definition 16.21. Given a function F' : RN[«, 5]— C let v be the unique additive
measure on A, such that vg ((a,b]) = F(b) — F(a) for all a,b € [a, 5] with a < b
and also define

Te((a,b) = sup Y- v, as]] = sup 3 [Fla) = Fl@)
zelP zelP

where supremum is over all partitions P of [a,b]. We will also abuse notation and
define Tr(b) := Tr([a, b]). A function F : RN [a, f]— C is said to be of bounded
variation if Tr(5) := Tr([o, 8]) < oo and we write F' € BV ([a, f]). If @« = —o0
and 5 = +oo, we will simply denote BV ([—o0, +o¢]) by BV.

Definition 16.22. A function F' : R — C is said to be of normalized bounded
variation if ' € BV, F is right continuous and F(—o00) := lim,_,_o F(z) = 0.
We will abbreviate this by saying F' € NBV. (The condition: F(—o0) = 0 is not
essential and plays no role in the discussion below.)

Definition 16.23. A function F': RN [a, f]— C is absolutely continuous if for
all € > 0 there exists § > 0 such that

(16.7) Z |F(b;) — F(a;)| <€

whenever {(a;,b;)}!_, are disjoint open intervals in RN[a, 3] such that Z( i— ;) <
J.

1=

Lemma 16.24. Let F': RN [a, 5]— C be any function and and a < b < ¢ with
a,b,c € RN [a, f] then

(1)
(16.8) Tr(la, c]) = Tp([a,b]) + Tr([b, d]).
(2) Letting a = « in this expression implies
(16.9) Tp(c) =Tr(b) + Tr([b,c])
and in particular Ty is monotone increasing.
(3) If Tp(b) < o for some b € RN [a, 8] then
(16.10) Tr(a+) — Tr(a) < limsup |F(y) - F(a)

yla
for all a € RN [a,b). In particular Tr is right continuous if F is right
continuous.
(4) If a = —00 and Tr(b) < oo for some b € (—o0, B NR then Trp(—o0) =
hmblfoo TF(b) =0.
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Proof. (1 - 2) By the triangle inequality, if P and P’ are partition of [a, c] such

that P C I, then
Yo IF(@y) = F(2)| <) |F(zy) = F(z)].
zEP xzEP’

So if P is a partition of [a, |, then P C P’ := PU {b} implies

Do IF(@y) = Fl@)| < ) |F(zy) = F(z)]

el el
= Y |Flay)-F@)l+ Y |F(ay)~F(z)
z€P'N[a,b) z€P'Nb,c]

< Tr([a,b]) + Tr([b; c]).

Thus we see that Tr([a,c]) < Tr([a,b]) + Tr([b, c]). Similarly if P is a partition of
[a,b] and P, is a partition of [b, ¢|, then P =P; UPs is a partition of [a, ¢] and

Y IF(@y) = F(@) + ) |F(zy) = Fa)| = ) |F(as) = F(2)| < Te([a, ).

xelPy x€Ps zeP
From this we conclude Tr([a,b]) + Tr([b, c]) < Tr([a,c]) which finishes the proof of
Egs. (16.8) and (16.9).

(3) Let a € RN[e, b) and given € > 0 let P be a partition of [a,b] such that
(16.11) Tp(b) — Tr(a) = Tr([a,b]) <> |F(zy) — F(z)| +e.

zelP

Let y € (a,a4), then

SIF@y) - F@)+e< Y |Fley) - F(@)] +c

z€P xePU{y}
=|F(y)~ Fla)l+ Y [Fley)—F(x)|+e
zeP\{y}
(16.12) < |F(y) - F(a)l + Tr(ly, b]) + €.

Combining Egs. (16.11) and (16.12) shows
Tr(y) — Tr(a) + Tr([y,b]) = Tr(b) — Tr(a)
< [F(y) = Fla)l + Tr([y, b)) +e.
Since y € (a, a4 ) is arbitrary we conclude that

Tp(a+) — Tr(a) = limsup Tr(y) — Tr(a) < limsup [F(y) — F(a)| +e.
yla yla
Since € > 0 is arbitrary this proves Eq. (16.10).
(4) Suppose that Tr(b) < oo and given € > 0 let P be a partition of [«, b] such

that
) < Z |F(zy) — F(z)| +e
xzeP
Let xp = min P then by the previous equation
Tr(xo) + Tr([wo, b)) () <Y |F(xy) = F(@)] + e < Tr([xo, b)) + €
z€eP

which shows, using the monotonicity of Tr, that Tr(—oc0) < Tr(xzg) < e. Since
€ > 0 we conclude that Tp(—o00) =0. m
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The following lemma should help to clarify Proposition 16.20 and Definition
16.23.

Lemma 16.25. Let v and F' be as in Proposition 16.20 and A be the algebra
generated by (a,b) "R with a,b € R.. Then the following are equivalent:

(1) vm

(2) v <m

(3) For all € > 0 there exists a 6 > 0 such that Tp(A) < € whenever m(A) < 4.
(4) For all e > 0 there exists a 6 > 0 such that [vp(A)| < € whenever m(A) < 0.

Moreover, condition 4. shows that we could replace the last statement in Propo-
sition 16.20 by: v < m iff for all € > 0 there exists 6 > 0 such that

= |3 PG - Fla)

> (ot
whenever {(a;, b;) N (a,b]};_, are disjoint open intervals in (a,b] such that > (b; —
i=1
aﬁ < 6.

Proof. This follows directly from Lemma 15.37 and Theorem 15.40. m

<e€

Lemma 16.26.

(1) Monotone functions F : RN [, B]— R are in BV ([, 5]).

(2) Linear combinations of functions in BV are in BV, i.e. BV is a vector
space.

(3) If F : RN [a, f]— C is absolutely continuous then F is continuous and
F € BV([a, 8]).

(4) If —co < a< B <ooand F: RN [a,Bf]— R is a differentiable function
such that sup,cp |[F'(z)] = M < oo, then F is absolutely continuous and
Tr(la,b]) < M(b—a) foralla<a<b<p.

(5) Let f € LY(RN[a, B8], m) and set

(16.13) F(z) = fdm

(cv,z]

forz € [a,b] NR. Then F : RN [a, B]— C is absolutely continuous.
Proof.

(1) If F is monotone increasing and P is a partition of (a,b] then

Y F(ay) = F(a)l =) (F(xy) = F(x)) = F(b) - F(a)

zcP z€eP
so that Tr([a,b]) = F (b) — F(a). Also note that F € BV iff F(c0) —
F(—00) < 0.

(2) Item 2. follows from the triangle inequality.
(3) Since F' is absolutely continuous, there exists § > 0 such that whenever
a <b<a+ 4 and P is a partition of (a, b],

S |F(as) - Fla)| < 1.
zeP

This shows that Tr([a,b]) <1 for all a < b with b — a < ¢. Thus using Eq.
(16.8), it follows that Tr([a,b]) < N < o0 if b—a < No for an N € N.
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(4) Suppose that {(a;, b;)};—; C (a,b] are disjoint intervals, then by the mean
value theorem,

Z |F'(bi) — F(a;)| < Z |F'(ci)| (b — ai) < Mm (Ui (as, b))

SMi(bl—az)gM(b—a)

form which it clearly follows that F' is absolutely continuous. Moreover we
may conclude that Tr([a,b]) < M(b— a).
(5) Let v be the positive measure dv = |f|dm on (a,b]. Let {(a;,b;)}_, C (a,b]

be disjoint intervals as above, then
S 1F(e) - Fla)l =3 | [ fam
i=1 i=1 |V (@i;bi]

< d
_2_3/( |l dm

a;,bi]

n n

(16.14) -/ [ dm = vy as, bi]).
Uiy (ai,bi]
Since v is absolutely continuous relative to m for all € > 0 there exist
0 > 0 such that v(A) < e if m(A) < §. Taking A = U (a;,b;] in Eq.
(16.14) shows that F' is absolutely continuous. It is also easy to see from
Eq. (16.14) that Tr([a,b]) < f(a,b] | f| dm.

Theorem 16.27. Let F': R — C be a function, then

(1) F € BV iff ReF € BV and Im F € BV.

(2) If F : R — R is in BV then the functions Fy := (Tr £ F) /2 are bounded
and increasing functions.

(3) F:R—Risin BV iff F = F. — F_ where Fy are bounded increasing
functions.

(4) If F € BV then F(x+) exist for all x € R. Let G(x) := F(z+).

(5) F € BV then{z :lim, ., F(y) # F(z)} is a countable set and in particular
G(z) = F(x+) for all but a countable number of x € R.

(6) If F € BV, then for m — a.e. x, F'(x) and G'(x) exist and F'(z) = G'(z).

Proof.

(1) Ttem 1. is a consequence of the inequalities
|F(b) — F(a)] <|ReF(b) — Re F(a)| + Im F(b) — Im F(a)| < 2|F(b) — F(a)|.
(2) By Lemma 16.24, for all a < b,
(16.15) Tr(b) = Tr(a) = Tr(la,b]) = [F(b) — F(a)]

and therefore
T (b) + F(b) > Tio(a) = F(a)
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which shows that Fy are increasing. Moreover from Eq. (16.15), for b > 0
and a <0,
[F(b)] < |F(b) = F(0)] + [F(0)] < Tr(0,0] + [F(0)]
< Tr(0,00) + | F(0)]
and similarly
[F(a)| < [F(0)] 4 Trp(—00,0)
which shows that F' is bounded by |F(0)|+7#(c0). Therefore F. is bounded
as well.
(3) By Lemma 16.26 if F = F, — F_, then
Tr([a,b]) < TF, ([a,b]) + Tr_([a,b]) = [F1(b) = Fy(a)| + |[F-(b) — F_(a)|
which is bounded showing that F' € BV. Conversely if F' is bounded varia-
tion, then F' = Fy — F_ where F are defined as in Item 2.
Items 4. — 6. follow from Items 1. — 3. and Theorem 16.18. =

Theorem 16.28. Suppose that F': R — C is in BV, then

(16.16) Tr(z+) = Tr(z)| < |F(a+) — F(2)]

for all x € R. If we further assume that F is right continuous then there exists a
unique measure v on B = Bg. such that

(16.17) v((—o0,z]) = F(z) — F(—00) for all z € R.

Proof. Since F' € BV, F(x+) exists for all € R and hence Eq. (16.16) is a
consequence of Eq. (16.10). Now assume that F is right continuous. In this case
Eq. (16.16) shows that Tw(z) is also right continuous. By considering the real
and imaginary parts of F' separately it suffices to prove there exists a unique finite
signed measure v satisfying Eq. (16.17) in the case that F' is real valued. Now
let Fyx = (Tr £ F) /2, then Fy are increasing right continuous bounded functions.
Hence there exists unique measure vy on B such that

vi((—00,z]) = Fi(z) — Fi(—o0) Vz € R.

The finite signed measure v = v, — v_ satisfies Eq. (16.17). So it only remains to
prove that v is unique.

Suppose that 7 is another such measure such that (16.17) holds with v replaced
by 7. Then for (a,b],

V] (a,b] = sup Y _ |F(24) — F(a)| = 7] (a,1]
z€eP

where the supremum is over all partition of (a,b]. This shows that |v| = |7| on
A C B — the algebra generated by half open intervals and hence |v| = |P|. It now
follows that |v| + v and |P| 4+ U are finite positive measure on B such that

(v +v) ((a,0]) = [v] ((a, b]) + (F(b) — F(a))
= [7]((a,6]) + (F(b) — F(a))
= (|71 +7) ((a, b))
from which we infer that |v|+v = |D| 4+ 0 = |v| + ¥ on B. Thus v = .

Alternatively, one may prove the uniqueness by showing that C := {4 € B :
v(A) =v(A)} is a monotone class which contains A or using the 7 — A theorem. m
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Theorem 16.29. Suppose that F € NBV and vg is the measure defined by Fq.
(16.17), then

(16.18) dvp = F'dm + dv,
where vs L m and in particular for —oo < a < b < 00,

b
(16.19) F(b) — F(a) = / Fldm + v,((a, b]).

a

Proof. By Theorem 16.3, there exists f € L'(m) and a complex measure v
such that for m -a.e. z,

1 V(ET)
(16.20) o) = i A2,

for any collection of { £}, C B which shrink nicely to {z}, vs L m and
dveg = fdm + dvs.
From Eq. (16.20) it follows that

 Fla+h)—F@) . vel@o+h)

lhl?& W 7}1% L . = f(z) and
. Fle—h)—F() . ve(l@—ha])
T mT e

for m — a.e. z, ie. 74 F(z) = 72 F(z) = f(z) for m ~a.e. z. This implies that F
is m — a.e. differentiable and F'(z) = f(x) for m —a.e. . =
Corollary 16.30. Let F': R — C be in NBV, then

D vrPlmif "=0 m ae.

(2) vP <m iff vs =0 iff

(16.21) vr((a,b]) = / F'(z)dm(zx) for all a <b.
(a;b]
Proof.

(1) If F'(x) =0 for m a.e. z, then by Eq. (16.18), vp = vs L m. If vp L m,
then by Eq. (16.18), F'dm = dvp —dv,s L dm and by Remark 15.8 F'dm =
0,ie. I/ =0m -a.e.

(2) If vp < m, then dvs = dvp — F'dm < dm which implies, by Lemma 15.28,
that vs = 0. Therefore Eq. (16.19) becomes (16.21). Now let

p(4) = /F'(m)dm(m) for all A € B.
A
Recall by the Radon - Nikodym theorem that [, [F’(z)|dm(z) < oo so
that p is a complex measure on B. So if Eq. (16.21) holds, then p = vp on
the algebra generated by half open intervals. Therefore p = v as in the
uniqueness part of the proof of Theorem 16.28. Therefore dvp = F’dm and
hence v, = 0.

Theorem 16.31. Suppose that F' : [a,b] — C is a measurable function. Then the
following are equivalent:
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(1) F is absolutely continuous on [a,b].
(2) There exists f € L'([a,b]),dm) such that

(16.22) Flz) = Fla) = / " fdm v € [0,
(3) F' exists a.e., F' € L'([a,b],dm) and
(16.23) F(x)—F(a):/IF'di%E [a, b].

Proof. In order to apply the previous results, extend F' to R by F(x) = F(b) if
x>band F(z) = F(a) if z < a.

1. = 3. If F is absolutely continuous then F' is continuous on [a,b] and
F —F(a) = F — F(—o0) € NBV by Lemma 16.26. By Proposition 16.20, vp < m
and hence Item 3. is now a consequence of Item 2. of Corollary 16.30. The assertion
3. = 2. is trivial.

2. = 1. If 2. holds then F is absolutely continuous on [a,b] by Lemma 16.26.
u

Corollary 16.32 (Integration by parts). Suppose —o0o < a < b < oo and F,G :
[a,b] — C are two absoutely continuous functions. Then

b b
/ F'Gdm = —/ FG'dm + FG.

Proof. Suppose that {(a;,b;)}.—, is a sequence of disjoint intervals in [a, b], then

n

Z\F(bi)G(b) G(ai)| < Z\F )IG(bi) — Glas \+Z\F F(ai)||G(ai)]

< [1#1l,, ZIG Glai)| + 1G]], Z\F Flaq)]-

From this inequality, one easily deduces the absolutely continuity of the product
FG from the absolutely continuity of F' and G. Therefore,

b b
FGb = / (FG)'dm = / (F'G + FG")dm
|

16.5. Alternative method to the Fundamental Theorem of Calculus. For
simplicity assume that o = —o00, 8 = 0o and F' € BV. Let v° = 1% be the finitely
additive set function on A, such that 1%((a,b]) = F(b) — F(a) for all —co < a <
b < 00.As in the real increasing case (Notation 13.6 above) we may define a linear
functional, Ir : S.(A) — C, by

=Y N(f =),

AeC

If we write f = val Aila, b, With {(a;, Z]}f\il pairwise disjoint subsets of A,
inside (a, b] we learn
(16.24)

N

F(f)] = ZM(F(bi) — F(a;)

N
< D INlIE®) = Fai)| < |11l Tr((a, b]).
i=1
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In the usual way this estimate allows us to extend Ir to the those compactly
supported functions S.(A) in the closure of S.(A). As usual we will still denote
the extension of Ir to S.(A) by Ir and recall that S.(A) contains C.(R,C). The
estimate in Eq. (16.24) still holds for this extension and in particular we have
[I(f)] < Tr(oco)-| fll, for all f € C.(R,C). Therefore I extends uniquely by conti-
nuity to an element of Co(R,C)*. So by appealing to the complex Riesz Theorem

(Corollary 15.42) there exists a unique complex measure v = vg such that

(16.25) Ie(f) = /Rfdy for all f € Co(R).

This leads to the following theorem.

Theorem 16.33. To each function F € BV there exists a unique measure v = vp
on (R, Bgr) such that Eq. (16.25) holds. Moreover, F(z+) = limy,|, F(y) exists for
all x € R and the measure v satisfies

(16.26) v((a,b]) = F(b+) — F(a+) for all —oco <a<b< .

Remark 16.34. By applying Theorem 16.33 to the function © — F(—x) one shows
every F' € BV has left hand limits as well, i.e F(z—) = limy, F(y) exists for all
reR.

Proof. We must still prove F' (z+) exists for all z € R and Eq. (16.26) holds.
To prove let 1, and ¢, be the functions shown in Figure 34 below. The reader
should check that 1, € S.(A). Notice that

Pe

-

§

t /
\o\-é \>-\-‘L‘_‘

T |
( & o L

Yo

FIGURE 34. A couple of functions in S.(A).

IF("pb-&-e) = IF(T/}O/ + 1(a,b+e]) = IF(’l/)a) + F(b + 6) - F(Oé)
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and since ||¢e — Yptel,
|I(¢e) - IF(wb+e)| = |IF(¢6 - wb+e)|
S Tr([b+€b+2€¢]) = Tr(b+2¢) — Tr(b+¢),

which implies O(e) := I(¢c) — Ir(¢p1e) — 0 as € | 0 because Tr is monotonic.
Therefore,

(16.27) 1(¢ec) = Ir(Yvre) + 1(¢e) = Ir(Yite) = Ip(Ya) + F(b+€) — Fa) + O(e).

Because ¢, converges boundedly to 1, as € | 0, the dominated convergence theorem
implies

lim I(¢.) = lim/ pedv = / Ypdy = / Yadv + v((a, b]).
€l0 el0 Jr R R
So we may let € | 0 in Eq. (16.27) to learn F(b+) exists and

/Rzpadu + (b)) = Ir(da) + F(b+) — F(a).
Similarly this equation holds with b replaced by a, i.e.

/Rq/;adz/ +v((a,a]) = Ip(Ya) + F(a+) — F(o).
Subtracting the last two equations proves Eq. (16.26). =

16.5.1. Proof of Theorem 16.29. Proof. Given Theorem 16.33 we may now prove
Theorem 16.29 in the same we proved Theorem 16.18. m

16.6. Examples: These are taken from I. P. Natanson,“Theory of functions of a
real variable,” p.269. Note it is proved in Natanson or in Rudin that the fundamen-
tal theorem of calculus holds for f € C([0,1]) such that f'(z) exists for all z € [0, 1]
and f’ € L'. Now we give a couple of examples.

Example 16.35. In each case f € C([-1,1]).

(1) Let f(z) = |z|** sin L with f(0) = 0, then f is everywhere differentiable
but f’ is not bounded near zero. However, the function f’ € L'([-1,1]).

(2) Let f(x) = x* cos & with f(0) = 0, then f is everywhere differentiable but
¢ Ll (—¢€). Indeed, if 0 ¢ (o, 8) then

/a f'(x)dz = f(B) — f(a) = B* cos — — a2 cos %.

32
Now take a, = 1/ 525 and (3, = 1/v/2n. Then
fn 2 dn+1) 1
f(x)de = yrow) cos m( n2+ ) _ o cos2nm = o

Qn

and noting that {(cn,8,)}a.; are all disjoint, we find [; |f/(z)|dz =

Example 16.36. Let C' C [0, 1] denote the cantor set constructed as follows. Let
Cy =10,1]\ (1/3,2/3), Cy := C1 \ [(1/9,2/9) U (7/9,8/9)], etc., so that we keep
removing the middle thirds at each stage in the construction. Then

C:=n2,C,=(x= ZajS_j aj € 40,2}
=0
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and
1 2 22
m(C)— —<§+§+3—3+ )
1= /2\" 1 1
:1—— _— = _——_——— ———
52 (5) =151

Associated to this set is the so called cantor function F(x) := lim,_,o fn(z) where
the {f,,} -, are continuous non-decreasing functions such that f,,(0) =0, f,(1) =1
with the f,, pictured in Figure 35 below. From the pictures one sees that {f,} are

1
- _5;‘
4
&
A =2 \
© Z =
2z ’Qz
=1
=
A
n

//
i \ LA +
My 19 T F A ~

F1cUurE 35. Constructing the Cantor function.

uniformly Cauchy, hence there exists F' € C([0, 1]) such that F(x) := lim, o fn(2).
The function F' has the following properties,

(1) F is continuous and non-decreasing.

(2) F'(x) =0for m —a.e. z € [0,1] because F is flat on all of the middle third
open intervals used to construct the cantor set C' and the total measure of
these intervals is 1 as proved above.

(3) The measure on Bjg 1) associated to F, namely v([0,b]) = F(b) is singular
relative to Lebesgue measure and v ({z}) = 0 for all = € [0, 1]. Notice that
v ([0,1]) = 1.

16.7. Exercises.
Exercise 16.1. Folland 3.22 on p. 100.
Exercise 16.2. Folland 3.24 on p. 100.
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Exercise 16.3. Folland 3.25 on p. 100.
Exercise 16.4. Folland 3.27 on p. 107.
Exercise 16.5. Folland 3.29 on p. 107.
Exercise 16.6. Folland 3.30 on p. 107.
Exercise 16.7. Folland 3.33 on p. 108.
Exercise 16.8. Folland 3.35 on p. 108.
Exercise 16.9. Folland 3.37 on p. 108.
Exercise 16.10. Folland 3.39 on p. 108.
Exercise 16.11. Folland 3.40 on p. 108.
Exercise 16.12. Folland 8.4 on p. 239.

Solution. 16.12Notice that
1
—1
T‘f |BO( )‘ Bo(’r)*f

and there for x — A, f(x) € Co(R™) for all » > 0 by Proposition 11.18. Since

1 1
ATf(x)_f(x) |BO( )| Bo( )f(x+y)_f(x)dy |BO( )| Bo(r)( —yf_f) (x)dy

it follows from Minikowski’s inequality for integrals (Theorem 9.27) that

1
A f— o _
” Tf f”oo = ‘B ( )| Bo(r) ”T yf f”oody < |3SJ]|J§pr HTyf fHoo

and the latter goes to zero as r | 0 by assumption. In particular we learn that
[Arf = Apfll, < NAvf = Fllo +1F = Apfllc = O asm,p—0

showing {A,f},., is uniformly Cauchy as r | 0. Therefore lim, o A, f(z) = g(x)
exists forallz €e R" and g = f a.e. m
Solution.
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17. MoORE PoINT SET TOPOLOGY

17.1. Connectedness. The reader may wish to review the topological notions and
results introduced in Section 3.3 above before proceeding.

Definition 17.1. (X, 7) is disconnected if there exists non-empty open sets U
and V of X such that UNV = @ and X = UUV. Wesay {U, V} is a disconnection
of X. The topological space (X, 7) is called connected if it is not disconnected,
i.e. if there are no disconnection of X. If A C X we say A is connected iff (A4, 74)
is connected where 74 is the relative topology on A. Explicitly, A is disconnected
in (X,7) iff there exists U,V € 7 such that UNA# D, UNA#D, AnNUNV =0
and ACUUVW.

The reader should check that the following statement is an equivalent definition
of connectivity. A topological space (X, 7) is connected iff the only sets A C X
which are both open and closed are the sets X and ().

Remark 17.2. Let ACY C X. Then A is connected in X iff A is connected in Y.

Proof. Since
TA=S{VNA:VCX}={VNANY . VCX}={UnNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topology on
A inherited from Y. Since connectivity is a statement about the relative topologies
on A, A is connected in X iff A is connected in Y. m

The following elementary but important lemma is left as an exercise to the reader.

Lemma 17.3. Suppose that f : X — Y is a continuous map between topological
spaces. Then f(X) CY is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 17.4. Suppose that f : X — Y is a continuous map between topological
spaces, X is connected, Y is Hausdorff, and f is locally constant, i.e. for all x € X
there exists an open neighborhood V' of = in X such that f|y is constant. Then f
is constant, i.e. f(X) = {yo} for some yo € Y. To prove this, let yo € f(X) and
let W := f~1({yo}). Since Y is Hausdorff, {yo} C Y is a closed set and since f is
continuous W C X is also closed. Since f is locally constant, W is open as well
and since X is connected it follows that W = X, i.e. f(X) = {yo}.

Proposition 17.5. Let (X, 1) be a topological space.

(1) If B C X is a connected set and X is the disjoint union of two open sets
U and V, then either BC U or BC V.

(2) a. If A C X is connected, then A is connected.

b. More generally, if A is connected and B C acc(A), then AU B s

connected as well. (Recall that acc(A) — the set of accumulation points of
A was defined in Definition 3.19 above.)

(3) If {Ea}oca 15 a collection of connected sets such that [
Y :=Upecn Ea is connected as well.

(4) Suppose A, B C X are non-empty connected subsets of X such that ANB #
(0, then AU B is connected in X.

wea Ba # 0, then
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(5) Ewery point x € X is contained in a unique maximal connected subset C,, of
X and this subset is closed. The set C,, is called the connected component

of x.
Proof.

(1) Since B is the disjoint union of the relatively open sets BNU and BNV, we
must have BNU = B or BNV = B for otherwise {BNU,B NV} would
be a disconnection of B.

(2) a. Let Y = A equipped with the relative topology from X. Suppose that
UV C, Y form a disconnection of Y = A. Then by 1. either A C U or
A C V. Say that A C U. Since U is both open an closed in Y, it follows that
Y = A C U. Therefore V = ) and we have a contradiction to the assumption
that {U,V} is a disconnection of Y = A. Hence we must conclude that
Y = A is connected as well.

b. Now let Y = AU B with B C acc(A), then
AY = ANY = (AUacc(A)NY = AUB.

Because A is connected in Y, by (2a) Y = AU B = AY is also connected.

(3) Let Y := |J,eca Fo- By Remark 17.2, we know that E, is connected in Y’
for each o € A. If {U,V} were a disconnection of Y, by item (1), either
E,CUorE,CVforalla.Let A={a€ A: E, CU}then U = Uyep E,
and V' = Ugea\a Eo. (Notice that neither A or A\ A can be empty since U
and V are not empty.) Since

0=UNV = UaEA,ﬂEAC (EaﬂEﬁ) D ﬂ FE, 75 0.
acA

we have reached a contradiction and hence no such disconnection exists.
(4) (A good example to keep in mind here is X =R, A = (0,1) and B = [1,2).)

For sake of contradiction suppose that {U, V'} were a disconnection of Y =

AUB. By item (1) either A C U or A C V,say A C U in which case B C V.

Since Y = AU B we must have A = U and B = V and so we may conclude:

A and B are disjoint subsets of Y which are both open and closed. This

implies

A=A =AnY =AN(AUB)=AU(ANB)

and therefore
0+£ANBCANB=,
which gives us the desired contradiction.

(5) Let C denote the collection of connected subsets C' C X such that = € C.
Then by item 3., the set C, := UC is also a connected subset of X which
contains = and clearly this is the unique maximal connected set containing
x. Since C,, is also connected by item (2) and C,, is maximal, C, = C,, i.e.
C'; is closed.

[
Theorem 17.6. The connected subsets of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with
a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—o0,¢) N A and
V := (¢,00)N A would form a disconnection of A. Hence (a,b) C A. Let o := inf(A)
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and 8 := sup(A) and choose a,,, 5, € A such that «,, < 8, and «, | « and
Bn 1 B as n — co. By what we have just shown, (ay,, 5,) C A for all n and hence
(o, B) = USZ (e, Brn) C A. From this it follows that A = (o, §), [, B), («a, 5] or
[a, 8], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction, suppose
that {U,V} is a disconnection of A with a € U, b € V. After relabeling U and
V if necessary we may assume that a < b. Since A is an interval [a,b] C A. Let
p = sup ([a, b)) N U), then because U and V are open, a < p < b. Now p can not
be in U for otherwise sup ([a,b]NU) > p and p can not be in V for otherwise
p < sup ([a,b] NTU). From this it follows that p ¢ U UV and hence A # U UV
contradicting the assumption that {U,V'} is a disconnection. m

Definition 17.7. A topological space X is path connected if to every pair of
points {zg,x1} C X there exists a continuous path o € C([0,1], X) such that
o(0) = zp and o(1) = x1. The space X is said to be locally path connected if for
each © € X, there is an open neighborhood V' C X of z which is path connected.

Proposition 17.8. Let X be a topological space.

(1) If X is path connected then X is connected.
(2) If X is connected and locally path connected, then X is path connected.
(3) If X is any connected open subset of R™, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 17.1 — 17.3
below. m

17.2. Product Spaces. Let {(X4,7a)},c4 be a collection of topological spaces

(we assume X, # 0) and let X4 = J] X,. Recall that 2 € X, is a function
acA

z:A— H X,
acA
such that z, := z(a) € X, for all & € A. An element z € X4 is called a choice
function and the axiom of choice states that X4 # () provided that X, # ( for

each o € A. If each X, above is the same set X, we will denote X4 = [] X, by
a€cA

X4, So z € X4 is a function from A to X.

Notation 17.9. For a € A, let 7, : X4 — X, be the canonical projection map,
7o () = . The product topology 7 = Quc a7, is the smallest topology on X 4
such that each projection 7, is continuous. Explicitly, 7 is the topology generated
by

(17.1) E={m'(Va):a€ AV, €74}
A “basic” open set in this topology is of the form
(17.2) V={zeXs:m(z) eV, for a € A}

where A is a finite subset of A and V,, € 7, for all @ € A. We will sometimes write
V above as
V=] Vax [ X =Va x Xa\a.
a€EA agA
Proposition 17.10. Suppose Y is a topological space and f:Y — X4 is a map.
Then f is continuous iff mo 0 f 1Y — X, is continuous for all o € A.
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Proof. If f is continuous then m, o f is the composition of two continuous
functions and hence is continuous. Conversely if 7, o f is continuous for all o € A,
the (mo0 f) "t (Vo) = f~ (7,1 (V,)) is open in Y for all a € A and V,, C, X,,. That
is to say, f1(€) consists of open sets, and therefore f is continuous since £ is a
sub-basis for the product topology. m

Proposition 17.11. Suppose that (X, T) is a topological space and {f,} C X4 is
a sequence. Then f, — f in the product topology of X2 iff fn(a) — f(a) for all
a € A

Proof. Since 7, is continuous, if f,, — f then f,(a) = 1o (fn) = ma(f) = f(a)
for all @ € A. Conversely, fn(a) — f(a) for all & € A iff w,(f,) — 7a(f) for all
a € A. Therefore if V = 71(V,,) € £ and f € V, then 74 (f) € Vi, and 7o (fn) € Va
a.a. and hence f,, € V a.a.. This shows that f, — fasn —o00. m

Proposition 17.12. Let (X,, 74 ) be topological spaces and X 4 be the product space
with the product topology.

(1) If X is Hausdorff for all « € A, then so is X 4.
(2) If each X, is connected for all o € A, then so is X 4.

Proof.

(1) Let =,y € X4 be distinct points. Then there exists a € A such that
Ta(T) = Za # Yo = Ta(y). Since X, is Hausdorff, there exists disjoint open
sets U,V C X, such 7, (z) € U and 74 (y) € V. Then 7,1 (U) and 71 (V)
are disjoint open sets in X 4 containing x and y respectively.

(2) Let us begin with the case of two factors, namely assume that X and Y are
connected topological spaces, then we will show that X x Y is connected
as well. To do this let p = (xp,50) € X X Y and E denote the connected
component of p. Since {zo} XY is homeomorphic to Y, {z¢} xY is connected
in X xY and therefore {zo} xY C E, ie. (z0,y) € Eforally € Y. A
similar argument now shows that X x {y} C E for any y € Y, that is to
X xY = E. By induction the theorem holds whenever A is a finite set.

For the general case, again choose a point p € X4 = X4 and let C =
Cp be the connected component of p in X 4. Recall that C,, is closed and
therefore if C, is a proper subset of X4, then X4 \ C, is a non-empty
open set. By the definition of the product topology, this would imply that
X4\ Cp contains an open set of the form

V= Naeamy ' (Va) = Va X Xa\a

where A CC A and V, € 7, for all & € A. We will now show that no such

V can exist and hence X4 = C), i.e. X4 is connected.
Define ¢ : X5 — X4 by ¢(y) = = where

Yo M a€eA
Lo = Do if a ¢ A

Ifael mood(y) =ya = ma(y) and if & € A\ A then 7, 0 ¢(y) = pa
so that in every case m, 0 ¢ : XA — X, is continuous and therefore ¢ is
continuous.

Since X, is a product of a finite number of connected spaces it is con-
nected by step 1. above. Hence so is the continuous image, ¢(Xp) =
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X)X {pa}aeA\A’ of Xx. Now p € ¢(Xp) and ¢(X,) is connected implies
that ¢(Xx) C C. On the other hand one easily sees that

D#£VNop(Xp)CcVNC

contradicting the assumption that V' C C°.
|

17.3. Tychonoff’s Theorem. The main theorem of this subsection is that the
product of compact spaces is compact. Before going to the general case an arbitrary
number of factors let us start with only two factors.

Proposition 17.13. Suppose that X and Y are non-empty compact topological
spaces, then X XY is compact in the product topology.

Proof. Let U be an open cover of X x Y. Then for each (z,y) € X xY
there exist U € U such that (z,y) € U. By definition of the product topology,
there also exist V, € Tf and W, € T;/ such that V, x W, C U. Therefore V :=
{Ve x W, : (z,y) € X X Y} is also an open cover of X x Y. We will now show that
V has a finite sub-cover, say Vy CC V. Assuming this is proved for the moment,
this implies that I/ also has a finite subcover because each V' € V) is contained in
some Uy € U. So to complete the proof it suffices to show every cover V of the form
V={Vy x W, :a € A} where V,, C, X and W,, C, Y has a finite subcover.

Given z € X, let f : Y — X x Y be the map f,(y) = (z,y) and notice that
f= is continuous since mx o f;(y) = = and 7wy o f(y) = y are continuous maps.
From this we conclude that {z} x Y = f,(Y) is compact. Similarly, it follows that
X x {y} is compact for all y € Y.

Since V is a cover of {z} x Y, there exist I'y CC A such that {z} x Y C

U (Vo x W,,) without loss of generality we may assume that I', is chosen so that
a€ely,

xeV,forallael,. Let U, = [\ Vi Co X, and notice that
ael'y

(17.3) U Vaxwa) o | (U x W) =U, x Y,

acl'y acl,

see Figure 36 below.

Since {Us } ;¢ x is now an open cover of X and X is compact, there exists A CC X
such that X = U,caU,. The finite subcollection, Vy := {V, X W, : @ € Ugeal's},
of V is the desired finite subcover. Indeed using Eq. (17.3),

UVO = UweA U(XEFJ; (Va X Wa) > UweA (U_L X Y) =X xY.

|
The results of Exercises 3.27 and 6.15 prove Tychonoff’s Theorem for a countable
product of compact metric spaces. We now state the general version of the theorem.

Theorem 17.14 (Tychonoff’s Theorem). Let {X,}aca be a collection of non-

empty compact spaces. Then X := X, = [] X is compact in the product space
acA

topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom of
choice, see Theorem B.7 of Appendix B below. For a € A let 7, denote the
projection map from X to X,. Suppose that F is a family of closed subsets of X
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Y kx\xi

F1GURE 36. Constructing the open set U,.

which has the finite intersection property, see Definition 3.25. By Proposition 3.26
the proof will be complete if we can show NF # (.

The first step is to apply Zorn’s lemma to construct a maximal collection Fy
of (not necessarily closed) subsets of X with the finite intersection property. To
do this, let I' := {G C 2* : F C G} equipped with the partial order, G; < G if
G1 C Go. If @ is a linearly ordered subset of T', then G:= U® is an upper bound for
I" which still has the finite intersection property as the reader should check. So by
Zorn’s lemma, I" has a maximal element Fy.

The maximal F( has the following properties.

(1) If {F;}!, C Fo then N?, F; € Fy as well. Indeed, if we let (Fo); denote
the collection of all finite intersections of elements from Fo, then (Fo) ; has
the finite intersection property and contains Fg. Since Fy is maximal, this
implies (Fo),; = Fo.

(2) f AC X and ANF # Q for all F € Fy then A € Fy. For if not Fo U
{A} would still satisfy the finite intersection property and would properly
contain Fy. this would violate the maximallity of F.

(3) For each o € A, m,(Fp) := {ma(F) C X4 : F' € Fy} has the finite intersec-
tion property. Indeed, if {F;}\_, C Fo, then N 7o (F;) D mo (NI, F;) # 0.

Since X, is compact, item 3. above along with Proposition 3.26 implies
Nper,To(F) # 0. Since this true for each o € A, using the axiom of choice,
there exists p € X such that p, = 7, (p) € Nper,ma(F) for all a« € A. The
proof will be completed by showing p € NF, hence NF is not empty as desired.
Since ﬂ{F‘:Fefo} C NJF, it suffices to show p € C := ﬂ{F‘:Fefo}. For
this suppose that U is an open neighborhood of p in X. By the definition of the
product topology, there exists A CC A and open sets U, C X, for all & € A such
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that p € Naean, (Uy) C U. Since py € Nper,ma(F) and py € U, for all a € A,
it follows that Uy, N7y (F) # 0 for all F € Fy and all @ € A and this implies
7,1 (Us ) NE # 0 for all F € Fo and all @ € A. By item 2. above we concluded

[0}

that m; ! (Us) € Fo for all @ € A and by then by item 1., Naean, ' (Us) € Fo. In
partlcular 0# FN(Naeama! (Ua)) € FNU for all F € Fy which shows p € F for
each F € Fp. m

17.4. Baire Category Theorem.

Definition 17.15. Let (X, 7) be a topological space. A set E C X is said to be
nowhere dense if (E)O = () i.e. E has empty interior.

Notice that E is nowhere dense is equivalent to
X =((B)) = (B) =®)"
That is to say F is nowhere dense iff £ has dense interior.
17.5. Baire Category Theorem.
Theorem 17.16 (Baire Category Theorem). Let (X, p) be a complete metric space.
(1) If {Vi},2, is a sequence of dense open sets, then G := ﬂ Vi, is dense in

n=1
X.
(2) If {En}z<> L s a sequence of mnowhere dense sets, then ;o
Ur—i En & X and in particular X # ;-

n=1

E, C
n= 1
Proof. 1) We must shows that G = X which is equivalent to showing that

W NG # 0 for all non-empty open sets W C X. Since V; is dense, W NV; # () and
hence there exists 1 € X and ¢; > 0 such that

B(Jil, 61) cwnv.
Since Vs is dense, B(x1,€1)NVa # () and hence there exists o € X and ez > 0 such
that
B(l‘g, 62) C B(Jil, 61) N Vs.
Continuing this way inductively, we may choose {z,, € X and €, > 0} -, such that

B(.Z‘n, €n) - B(xn—la €n—1) N ‘/n vn.

Furthermore we can clearly do this construction in such a way that €, | 0 as
n 1 co. Hence {z,}52, is Cauchy sequence and = = lim z, exists in X since X

n—oo
is complete. Since B(zy,¢€,) is closed, x € B(xp,€,) C V,, so that x € V,, for all
n and hence x € G. Moreover, x € B(z1,e1) C W NV, implies z € W and hence
x € W NG showing W NG # ).
2) The second assertion is equivalently to showing

o0 ¢ o0 o0
0 7& (U En) = ﬂ (En)c = ﬂ (E:z)o
n=1 n=1 n=1
As we have observed, E, is nowhere dense is equivalent to (E¢)° being a dense

open set, hence by part 1), (),—, (E%)° is dense in X and hence not empty. m
Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Proposition 17.17. Let X be a locally compact Hausdorff space.
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(1) If {V,.},2, is a sequence of dense open sets, then G := ﬂ Vi is dense in

n=1
X.
(2) If{E,},2, is a sequence of nowhere dense sets, then X # J,—, Ep,

Proof. As in the previous proof, the second assertion is a consequence of the
first. To finish the proof, if suffices to show G NW = () for all open sets W C X.
Since V; is dense, there exists z1 € V3 N W and by Proposition 10.13 there exists
U, C, X such that z; € U; € Uy € ViNW with U; being compact. Similarly, there
exists a non-empty open set Us such that Us C Us C UL N Vs Working inductively,
we may find non-empty open sets {Uy},-; such that Uy C U, C Up—_1 NV Since
Mp— 1U1<: = U, # 0 for all n, the finite intersection characterization of U; being
compact implies that

0D#N2 U CGNW.
]

Definition 17.18. A subset £ C X is meager or of the first category if F =
oo
U E, where each E,, is nowhere dense. And a set R C X is called residual if R®

n=1

is meager.

Remarks 17.19. The reader should think of meager as being the topological ana-
logue of sets of measure 0 and residual as being the topological analogue of sets of
full measure.

(1) R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {E,}
such that

R°=U,E, CUX L E,.
Taking complements of this equation shows that
N By C R,

i.e. R contains a set of the form N, V, with each V,, (= E¢) being an
open dense subset of X.
Conversely, if N52,V,, C R with each V,, being an open dense subset of

X, then R® C UsZ V¢ and hence R® = U2 E,, where each E,, = R° NV,
is a nowhere dense subset of X.

(2) A countable union of meager sets is meager and any subset of a meager set
is meager.

(3) A countable intersection of residual sets is residual.

Remarks 17.20. The Baire Category Theorems may now be stated as follows. If X
is a complete metric space or X is a locally compact Hausdorff space, then

Remark 17.21. (1) all residual sets are dense in X and
(2) X is not meager.

It should also be remarked that incomplete metric spaces may be meager. For ex-
ample, let X C C([0,1]) be the subspace of polynomial functions on [0, 1] equipped
with the supremum norm. Then X = U2, E,, where E,, C X denotes the subspace
of polynomials of degree less than or equal to n. You are asked to show in Exercise
17.7 below that F, is nowhere dense for all n. Hence X is meager and the empty
set is residual in X.
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Here is an application of Theorem 17.16.

Theorem 17.22. Let N' C C([0,1],R) be the set of nowhere differentiable func-
tions. (Here a function f is said to be differentiable at 0 if f'(0) := limy|o M
exists and at 1 if f'(1) := limyqo f(l) f(t) exists.) Then N is a residual set so the
“generic” continuous functions is nowhere differentiable.

Proof. If f ¢ N, then f’(zg) exists for some zo € [0,1] and by the defi-
nition of the derivative and compactness of [0,1], there exists n € N such that
|f(z) = f(zo)| < n|x —xo| V x €]0,1]. Thus if we define

E,={feC(0,1]): Jz9€[0,1] 3 |f(z) — f(z0)| < n|z — 20| V z € [0,1]},

then we have just shown N¢ C E := U, E,. So to finish the proof it suffices to
show (for each n) E, is a closed subset of C([0,1],R) with empty interior.

1) To prove E,, is closed, let { f,,} -, C E, be a sequence of functions such that
there exists f € C([0,1],R) such that | f — fn.||, — 0 as m — oo. Since f,, € E,,
there exists x,, € [0,1] such that

(17.4) |fm (@) = fm(2Zm)| < 0l — 2| V2 e [0,1].

Since [0, 1] is a compact metric space, by passing to a subsequence if necessary, we
may assume o = lim,, 0o T € [0, 1] exists. Passing to the limit in Eq. (17.4),
making use of the uniform convergence of f,, — f to show lim,, e frm(zm) = f(20),
implies

[f (@) = f(zo)| < nlw—zo| Vzel0,1]
and therefore that f € E,,. This shows E,, is a closed subset of C([0,1],R).

2) To finish the proof, we will show E? = ) by showing for each f € E,, and
e > 0 given, there exists g € C([0,1],R) \ E, such that ||f —g|, < e. We now
construct g.

Since [0,1] is compact and f is continuous there exists N € N such that
|f(z) — f(y)| < €/2 whenever |y —z| < 1/N. Let k denote the piecewise linear
function on [0, 1] such that k(%) = f(%) for m = 0,1,..., N and k"(z) = 0 for
x &y :={m/N:m=0,1,...,N}. Then it is easily seen that ||f — k||, < €/2
and for z € (%, 2) that

m+1 m
N

We now make k “rougher” by adding a small wiggly function A which we define
as follows. Let M € N be chosen so that 4¢eM > 2n and define h uniquely by
h(%F) = (=1)"¢/2 for m = 0,1,..., M and h"(x) = 0 for = ¢ mp;. Then [[h[|, < €
and |h/(z)| = 4eM > 2n for x ¢ mps. See Figure 37 below.

Finally define g := k + h. Then

If =gl <[ =Kl +1Ipll, <e/2+e/2=¢
and
lg' ()| > P (z)] — |k (z)| >2n —n=nVz ¢ mp Urn.
It now follows from this last equation and the mean value theorem that for any

o € [07 1],

EOETCIA

T — X
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FicUrg 37. Constgructing a rough approximation, g, to a contin-
uous function f.

for all x € [0,1] sufficiently close to xg. This shows g ¢ E,, and so the proof is
complete. m
Here is an application of the Baire Category Theorem in Proposition 17.17.

Proposition 17.23. Suppose that f : R — R is a function such that f'(x) exists
for all x € R. Let

lyl<e

U::U€>0{xER: sup |f’($+y)|<oo}.

Then U is a dense open set. (It is not true that U = R in general, see Example
16.35 above.)

Proof. It is easily seen from the definition of U that U is open. Let W C, R be
an open subset of R. For k£ € N| let

Ey = {x€W3|f(y)_f($)|<k|y_$| when y—x|<l}

k
= () {zeW:lfz+2) - fl@)] <k},
zi|z|<k—1
which is a closed subset of R since f is continuous. Moreover, if x € W and
M = |f'(x)], then

|f(y) = f(@)| = [f'(z) (y —2) +o(y — )|
< (M +1) |y —

for y close to x. (Here o(y—) denotes a function such that lim,_., o(y—z)/(y—z) =
0.) In particular, this shows that = € Ej for all k sufficiently large. Therefore
W= U;2, E}), and since W is not meager by the Baire category Theorem in Propo-
sition 17.17, some E} has non-empty interior. That is there exists xg € Ey, C W
and € > 0 such that
J = (LL'()—G,ZC()-FE) Cc By, CcW.

For x € J, we have |f(z + z) — f(z)| < k|z| provided that |z| < k~! and therefore
that |f'(x)| < k for € J. Therefore g € U N W showing U is dense. m
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Remark 17.24. This proposition generalizes to functions f : R™ — R in an obvious
way.

For our next application of Theorem 17.16, let X := BC* ((—1,1)) denote the
set of smooth functions f on (—1,1) such that f and all of its derivatives are
bounded. In the metric

_ (k)H
e L

X becomes a complete metric space.

Theorem 17.25. Given an increasing sequence of positive numbers {M,} >, , the

set
I <o>' . 1}
Vi =

n

n=1"

z{fEX:limsup

n—oo

is dense in X. In particular, there is a dense set of f € X such that the power
series expansion of f at O has zero radius of convergence.

Proof. Step 1. Let n € N. Choose g € C2°((—1,1)) such that |g[, < 27"
while ¢’(0) = 2M,, and define

x th—1 to
:/ dtnfl/ dtn,Q . / dtlg(tl).
0 0 0
Then for k < n,

. x th—k—1 to
fﬁb )(:E) = / dtn—k—l / dtn_k_g .. / dtlg(tl),
0 0 0

f™(z) = ¢'(z), f,(]")(o) = 2M,, and f,(Lk) satisfies

2

Consequently,
=

ST

k=0 1+’

n—1
<y 272 ”+Z2 Fal<2(2 2 ) =427
k=0 k=n
Thus we have constructed f,, € X such that lim, . p(fn,0) = 0 while fy (”)( 0) =
2M,, for all n.
Step 2. The set

Gy = Um>n {f €X: ‘f“’”(o)‘ > Mm}

is a dense open subset of X. The fact that G,, is open is clear. To see that G, is
dense, let g € X be given and define g,, := g + €, fm where €, := sgn(g(™(0)).
Then

gty (0)} - ] g™ (0)} +| fﬁ;”>(0)‘ > 9M,, > My, for all m.

Therefore, g,, € G, for all m > n and since

P(gm,g) = ,D(fm, O) —0asm — o0



346 BRUCE K. DRIVER'

it follows that g € G,,.
Step 3. By the Baire Category theorem, NG, is a dense subset of X. This
completes the proof of the first assertion since

n—oo

(n)
fz{feX:Iimsup’fT(m’ 21}

o0 Fm(0) o0
=Ny s feX: L > 1 for somen >my DNyl Gp.
Step 4. Take M,, = (n')2 and recall that the power series expansion for f near
0 is given by > > ,O) x". This series can not converge for any f € F and any
x # 0 because
0 0
lim sup fn—()ac” = lim sup Inl Q)n'x = lim sup In 2) - lim n!|2"| =0
n—o0 n! n—o0 n! n—o0 n') n—0o0
where we have used lim,,_,o, n! |2"| = co and limsup,, {;Lf)%) >1l. m

Remark 17.26. Given a sequence of real number {a,}, -, there always exists f € X
such that f(™(0) = a,. To construct such a function f, let ¢ € C°(—1,1) be a
function such that ¢ = 1 in a neighborhood of 0 and €, € (0,1) be chosen so that
en ] 0asn — oo and > 7 |an| €l < co. The desired function f can then be defined
by

(17.5) f(z) = Z —a:"¢ (z/en) = Zgn

n= O

The fact that f is well defined and continuous follows from the estimate:

900 = |2 a6 )| < s g e

and the assumption that Y7 |a,| €’ < co. The estimate

g ()| =

( ”> ”*1¢<x/en>+“—"x"¢/<x/en>
Igll.. IWH
= -1
< (Illoe + 16 1l.0) lan] €2

and the assumption that Y~ ,|a,|€? < oo shows f € C'(—1,1) and f'(z) =
S, gh(z). Similar arguments show f € C¥(—1,1) and f®(z) = 300 Ogy(lk)( )
for all x and k € N. This completes the proof since, using ¢(z/€,) = 1 for z in a

lan| et +

OO n
lan| €

neighborhood of 0, g,(Lk) (0) = g nax and hence

Zg(k) = Q-

17.6. Exercises.

Exercise 17.1. Prove item 1. of Proposition 17.8. Hint: show X is not connected
implies X is not path connected.
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Exercise 17.2. Prove item 2. of Proposition 17.8. Hint: fix zp € X and let W
denote the set of x € X such that there exists o € C([0, 1], X) satisfying o(0) = z¢
and o(1) = z. Then show W is both open and closed.

Exercise 17.3. Prove item 3. of Proposition 17.8.
Exercise 17.4. Let
X = {(w,y) eR?:y= sin(m_l)} U {(0,0)}

equipped with the relative topology induced from the standard topology on RZ.
Show X is connected but not path connected.

Exercise 17.5. Prove the following strong version of item 3. of Proposition 17.8,
namely to every pair of points zg,x; in a connected open subset V of R™ there
exists 0 € C°(R, V) such that ¢(0) = z¢ and o(1) = z;. Hint: Use a convolution
argument.

Exercise 17.6. Folland 5.27. Hint: Consider the generalized cantor sets discussed
on p. 39 of Folland.

Exercise 17.7. Let (X, |]|) be an infinite dimensional normed space and E C X
be a finite dimensional subspace. Show that £ C X is nowhere dense.

Exercise 17.8. Now suppose that (X, ||-||) is an infinite dimensional Banach space.
Show that X can not have a countable algebraic basis. More explicitly, there is
no countable subset S C X such that every element x € X may be written as a
finite linear combination of elements from S. Hint: make use of Exercise 17.7 and
the Baire category theorem.
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18. BANACH SPACES II

Theorem 18.1 (Open Mapping Theorem). Let X,Y be Banach spaces, T €
L(X,Y). If T is surjective then T is an open mapping, i.e. T(V) is open in
Y for all open subsets V C X.

Proof. For all @ > 0 let BY = {zeX:|z|y<a} C X, BY =
{yeY:|yly <a} C Y and E, = T(BX) C Y. The proof will be carried out
by proving the following three assertions.

(1) There exists § > 0 such that BY C E, for all a > 0.

(2) For the same § > 0, BY C E,, i.e. we may remove the closure in assertion
1.

(3) The last assertion implies T' is an open mapping.

o0
1. Since Y = |J FE,, the Baire category Theorem 17.16 implies there exists

n—1
n such that ESL # (), i.e. there exists y € E,, and € > 0 such that BY (y,¢) C E,,.
Suppose ||y’|| < € then y and y + 3’ are in BY (y,¢) C E, hence there exists
2',x € BX such that | T2’ — (y +¢')|| and ||Tx — y|| may be made as small as we
please, which we abbreviate as follows

[T2" — (y + )| =0 and [Tz — y| ~ 0.
Hence by the triangle inequality,
IT(x" —2) =yl = 1T2" = (y + ) — (Tz —y)||
<|NTa' = (y+ )|+ 1Tz =yl = 0

with 2/ — z € B3\,. This shows that 3’ € E», which implies BY (0,¢) C E»,. Since
the map ¢, : Y — Y given by ¢,(y) = 55y is a homeomorphism, ¢n(E2,) = Eq
and ¢o(BY (0,€)) = BY (0, 2%), it follows that BY, C E, where § = = > 0.

2. Let ¢ be as in assertion 1., y € BY and a; € (||y[| /d,1). Choose {a, }resy C

(0,00) such that 377, ay, < 1. Since y € BY 5 C Eq, = T (BZ,) by assertion 1.
there exists x1 € By, such that ||y — Tz1|| < azd. (Notice that ||y — T1|| can be
made as small as we please.) Similarly, since y—T'z; € BOZ(; CE,, =T (Bo)é) there
exists 2 € By, such that ||y — Twy — Txs|| < ad. Continuing this way inductively,
there exists z,, € Bfﬂ such that

n
(18.1) lly — ZTZI?/C” < ap410 for all n € N.
k=1

Since Y ||lznll < X an <1, z= Y 7, exists and |z < 1, i.e. z € B;¥. Passing
n=1 n=1 n=1

to the limit in Eq. (18.1) shows, ||y — Tx|| = 0 and hence y € T(B{) = Ej.

Therefore we have shown B C Ej. The same scaling argument as above then

shows B C E, for all a > 0.

3. Ifx € V C, X and y = Tex € TV we must show that TV contains a
ball BY (y,e) = Tz + BY for some ¢ > 0. Now BY (y,¢) = Tz + BY C TV iff
BY c TV —Tx = T(V — ). Since V —  is a neighborhood of 0 € X, there exists
a > 0 such that BX C (V —z) and hence by assertion 2., BYs ¢ TBX c T(V —x)
and therefore BY (y,¢) C TV with € := af. m
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Corollary 18.2. If X,Y are Banach spaces and T € L(X,Y) is invertible (i.e. a
bijective linear transformation) then the inverse map, T~', is bounded, i.e. T~ €
L(Y, X). (Note that T~ is automatically linear.)

Theorem 18.3 (Closed Graph Theorem). Let X and Y be Banach space T : X —
Y linear is continuous iff T is closed i.e. T'(T) C X X Y is closed.

Proof. If T continuous and (z,,Txz,) — (z,y) € X XY as n — oo then
Tx, — Tx =y which implies (z,y) = (z,Tz) € I'(T).
Conversely: If T is closed then the following diagram commutes

I(T)
r T2

X T Y

where I'(z) := (z,Tz).

The map 73 : X x Y — X is continuous and 7 |pp) : ['(T) — X is continuous
bijection which implies 771\1?(17,) is bounded by the open mapping Theorem 18.1.
Hence T' = m5 o 771|1?(1T) is bounded, being the composition of bounded operators.
u

As an application we have the following proposition.

Proposition 18.4. Let H be a Hilbert space. Suppose that T : H — H is a linear

(not necessarily bounded) map such that there exists T* : H — H such that
(Tx,Y) = (2, T*Y)V 2,y € H.

Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that x,, € H such
that (z,,Tz,) — (x,y) € H x H. Then for any z € H,

(Tap,z) = (xp,T*2) — (x,T*z) = (Tz,z) asn — 0.
On the other hand lim, oo (T, 2) = (y, z) as well and therefore (T'z, z) = (y, z)

for all z € H. This shows that Tz = y and proves that T is closed. m
Here is another example.

Example 18.5. Suppose that M C L2([0,1],m) is a closed subspace such that
each element of M has a representative in C(][0, 1]). We will abuse notation and
simply write M C C(][0, 1]). Then

(1) There exists A € (0,00) such that || f]leo < Al f]|z2 for all f € M.

(2) For all z € [0,1] there exists g, € M such that

f(x) = (f, g.) for all fe M.

Moreover we have ||g.|| < A.
(3) The subspace M is finite dimensional and dim(M) < A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, ] - ||) is & complete space. To prove this it suffices to show M
is a closed subspace of C([0,1]). So let {f,} € M and f € C([0,1]) such that
1o = fllos = 0 a5 1 — c0. Then Ilfn — fonllzs < I — foullos — 0 25 1,7 — 00,
and since M is closed in L2([0,1]), L? — lim,, . fn = g € M. By passing to a
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subsequence if necessary we know that g(x) = lim, . fn(z) = f(z) for m - a.e. z.
So f=ge M.

DLet i : (M, || - [|loo) = (M, || - ||2) be the identity map. Then 4 is bounded and
bijective. By the open mapping theorem, j = i~! is bounded as well. Hence there
exists A < oo such that || f|| ., = |lj(f)|| < Al f|l, for all fe M.

ii) Let j : (M, || ]l2) = (M, || - |lo) be the identity map. We will shows that j is
a closed operator and hence bounded by the closed graph theorem. Suppose that
fn € M such that f, — fin L? and f, = j(fn) — g in C([0,1]). Then as in the
first paragraph, we conclude that g = f = j(f) a.e. showing j is closed. Now finish
as in last line of proof i).

2) For z € [0, 1], let e, : M — C be the evaluation map e, (f) = f(z). Then

e () < [f(@)] < [ flloo < Allf] 12
which shows that e, € M*. Hence there exists a unique element g, € M such that
f(.’L') = em(f) = <f;gm> for all f € M.

Moreover Hgm||Lz = |lex|lm+ < A.
3) Let {f;}}—, be an L* — orthonormal subset of M. Then

A% > lea e = llgallZe = D [f5 92017 =D 1fi (@)
j=1 j=1

and integrating this equation over z € [0, 1] implies that
223 [lnepir=31 =
=1

which shows that n < A2%. Hence dim(M) < A?. =

Remark 18.6. Keeping the notation in Example 18.5, G(z,y) = g.(y) for all z,y €
[0,1]. Then

f(x) /f G(z,y)dy for all f e M.
The function G is called the reproducing kernel for M.
The above example generalizes as follows.

Proposition 18.7. Suppose that (X, M, u) is a finite measure space, p € [1,00)
and W is a closed subspace of LP (1) such that W C LP(p)NL>®(u). Then dim(W) <
0.

Proof. With out loss of generality we may assume that u(X) = 1. As in Example
18.5, we shows that W is a closed subspace of L>° (1) and hence by the open mapping
theorem, there exists a constant A < oo such that [|f| < A[/f], for all f € W.
Now if 1 < p < 2, then

[flloe < AllSI, < AllFI,
and if p € (2,00), then |[f|2 < ||fI2]If]°s? or equivalently,

_ 1-2/p
171, < WA 1A < 115 (Alf,)
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from which we learn that |f|, < A'"2/?|f|l, and therefore that |f|,, <
AA'72/P|f|l, so that in any case there exists a constant B < oo such that

[flloe < BIfIl; -

Let {fn}g:1 be an orthonormal subset of W and f = 25:1 cn frn with ¢, € C,
then
2 N
<B*) lenl* < B?|ef

0o n=1

N
> enfa

n=1

where |c|® := 25:1 len|? . For each ¢ € CN, there is an exception set E, such that
for « ¢ E.,
2

< B%|¢|*.

N
> enfu(z)
n=1

Let D := (Q+iQ)" and E = NeepE.. Then p(E) = 0 and for = ¢ E,
25:1 cnfn(x)’ < B? |c\2 for all ¢ € D. By continuity it then follows for = ¢ E
that

2
< B?|cf? forall ce CV.

N
Z Cnfn(x)
n=1

Taking ¢, = fn(z) in this inequality implies that

N 2

D fal@))®

n=1

N

<B? Z |fu(2)]? forall z ¢ E

n=1

and therefore that
N

Z ‘fn(flf)|2 < B?for all z ¢ L.

n=1

Integrating this equation over  then implies that N < B2, i.e. dim(W) < B2, m

Theorem 18.8 (Uniform Boundedness Principle). Let X andY be a normed vector
spaces, A C L(X,Y) be a collection of bounded linear operators from X to'Y,

F=Fjy={zeX:sup |Az|| < oo} and
AcA
(18.2) R=Rs=F¢={x € X : sup |Az| = oo}
AcA
(1) If sup ||A]] < oo then F = X.
AeA

(2) If F is not meager, then sup ||Al < oco.

AcA
(3) If X is a Banach space, F' is not meager iff sup |A|| < co. In particular,

AeA

if sup ||Az|| < oo for all x € X then sup ||A] < .
AcA AcA

(4) If X is a Banach space, then sup ||A]| = oo iff R is residual. In particular
AcA

if sup ||A|| = oo then sup ||Az|| = oo for x in a dense subset of X.
AeA AcA
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Proof. 1. If M := sup ||A]| < oo, then sup ||Az|| < M ||z]| < oo for all x € X
AcA AcA

showing F' = X.
2. For each n € N, let F,, C X be the closed sets given by
B, ={z: sup |[Az| <n} = () {z: | Az| <n}.
AcA AcA
Then F' = U2, E, which is assumed to be non-meager and hence there exists
an n € N such that F,, has non-empty interior. Let B,(d) be a ball such that
B,(6) C E,. Then for y € X with |ly|| = ¢ we know x —y € B,(d) C E,, so that
Ay = Az — A(xz — y) and hence for any A € A,
[Ayll < [[Az]| + |A(z — )| < n+n =2n.

Hence it follows that ||A|| < 2n/d for all A € A, i.e. sup ||A]| < 2n/§ < .
AeA

3. If X is a Banach space, F' = X is not meager by the Baire Category Theorem
17.16. So item 3. follows from items 1. and 2 and the fact that FF = X iff
sup ||Az|| < oo for all z € X.

AcA

4. Ttem 3. is equivalent to F' is meager iff sup ||A|| = co. Since R = F°, R is
AcA

residual iff F' is meager, so R is residual iff sup ||A]| = occ. =
AeA

Remarks 18.9. Let S C X be the unit sphere in X, fa(x) = Az for x € S and
Aec A

(1) The assertion sup ||Az| < oo for all z € X implies sup ||4| < oo may
AcA AcA
be interpreted as follows. If supyc 4 || fa (z)]] < oo for all z € S, then
Sup [[£all, < oo where [ fall, = supses [[fa (@) = |l
€

(2) If dim(X) < oo we may give a simple proof of this assertion. Indeed
if {en}f:/:l C S is a basis for X there is a constant ¢ > 0 such that

2 e
implies

> 625:1 |An| and so the assumption sup 4¢ 4 || fa (z)]| < oo

N
Anl || A

< sup sup Zonca Pl e
ACANAD €y 1 | A

[
sup ||Al| = sup sup “—————
AcA ACANAD Hznzl Anén

< e ! sup sup||Ae,|| = e L sup sup [|Ae,| < oo.
AcA n n AeA

Notice that we have used the linearity of each A € A in a crucial way.

(3) If we drop the linearity assumption, so that f4 € C(S,Y) for all A € A
— some index set, then it is no longer true that sup ey [|fa (z)]| < oo
for all x € S, then sup || fal|, < oo. The reader is invited to construct a

AcA

counter example when X = R? and Y = R by finding a sequence {f,} -,
of continuous functions on S! such that lim, .. f.(z) = 0 for all z € St
while lim,, oo ”fn”C(Sl) = 0.

(4) The assumption that X is a Banach space in item 3.of Theorem 18.8 can
not be dropped. For example, let X C C([0, 1]) be the polynomial functions
on [0, 1] equipped with the uniform norm |-, and for t € (0,1], let f;(x) :=
(z(t) — 2(0)) /t for all x € X. Then lim;_¢ fi(z) = %|ox(t) and therefore
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SUPye(0,1] | fe(@)] < oo for all @ € X. If the conclusion of Theorem 18.8 (item
3.) were true we would have M := sup,¢ (g1 [|f¢|| < oo. This would then
imply

z(t) —2(0) < M|z, forall z € X and ¢ € (0, 1].

Letting ¢ | 0 in this equation gives, |£(0)| < M |[jz|, for all z € X. But
taking z(t) = t" in this inequality shows M = co.

Example 18.10. Suppose that {c,} -, C C is a sequence of numbers such that

N
lim Z ancy, exists in C for all a € ¢*.

N—oco 1
n=
Then c € £°.

Proof. Let fy € (El)* be given by fy(a) = 22[21 anc, and set My =
max {|c,| :n=1,...,N}. Then

[fn(a)] < My lla]l

and by taking a = ej, with k such My = |cx|, we learn that || fx] = My. Now by
assumption, limy ., fn(a) exists for all a € £* and in particular,

sup | fx(a)| < oo for all a € £*.
N
So by the Theorem 18.8,
oo > sup || fn|| = sup My =sup{lcn| :m=1,2,3,...}.
N N
|

18.1. Applications to Fourier Series. Let T = S! be the unit circle in S' and m
denote the normalized arc length measure on T'. So if f : T'— [0, 00) is measurable,

then
/f dw—/fdm L f()

Also let ¢, (2z) = 2" for all n € Z. Recall that {¢n}nez is an orthonormal basis for
L3(T). For n € N let

snl£,2) = 32 (F bubn(z) = Z (f, 6n)2 :,M ( / Fw kdw)

k=—n k=—
/f (Z w2 )dw = / flw
k=—n
where d,,(a) :==>"1_  aF. Now ad,(a) — d,(a) = o™ —a™", so that
n an-‘rl —a "
dp(a) == Z ok = Q1
k=—n

with the convention that
anJrl —a " anJrl a~ "
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Writing o = €, we find
) 6i9(n+1) — e~ ibn eiG(n+1/2) _ efiﬂ(nJrl/Q)
Dy (6) :=d, (") = 5 = = —
el — 1 ei0/2 _ —i0/2

sin(n + £)6

sin %9 ’
Recall by Hilbert space theory, L2(T) — lim,, .o s, (f,-) = f for all f € L*(T). We
will now show that the convergence is not pointwise for all f € C(T) c L*(T).

Proposition 18.11. For each z € T, there exists a residual set R, C C(T) such
that sup,, |sn(f, 2)| = oo for all f € R,. Recall that C(T) is a complete metric space,
hence R, is a dense subset of C(T).

Proof. By symmetry considerations, it suffices to take z = 1 € T. Let A, :
C(T) — C be given by

Mof = sulF 1) = [ f(wid,
From Corollary 15.42 we know that

MH—MM—/M )| duw
sin(n + 3)0
271' sin %9

which can also be proved dlrectly as follows. Since

Aol =| [ (@ dﬁ [ wds@ldw <11 [ i) du.

we learn ||Ay|| < [ ]dn(w)] dw. Since C(T) is dense in L*(T), there exists fj, €
C(T,R) such that fi(w) — sgndy(w) in L. By replacing fix by (fx A1)V (=1) we
may assume that || fz|| . < 1. It now follows that

|Anfk‘ B
il = /Tfk(w)dn(w)dw'

and passing to the limit as k — oo implies that [|[Ay|| > [} |dy(@)] dw.
Since

1 —i6 "
(18.3) |d )| do = o /

,

[An]l =

T xr
sinz = / cosydy < |cosy|dy < x
0 0

for all x > 0. Since sinz is odd, [sinz| < |z| for all z € R. Using this in Eq. (18.3)
implies that

1T sin(n+5)0] 2 [T 1. |do
9 [T (n+3)
2;/0 sm(n—|—2)t9 d; /0 \siny|%—>ooasn—>oo

and hence sup,, ||Ay|| = 00. So by Theorem 18.8,
Ry ={f € C(T) : sup A f| = oo}

is a residual set. m
See Rudin Chapter 5 for more details.
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Lemma 18.12. For f € LY(T), let
Fo i= (f60) = [ fw)ardw,
T

Then f € co := Co(Z) (i.e lim,—o0 f(n) = 0) and the map f € LN(T) — f € cq is
a one to one bounded linear transformation into but not onto cgy.

2
Proof. By Bessel’s inequality, >, ., ’f(n)’ < oo for all f € L*(T) and in
particular limj, o ’f(n)‘ =0. Given f € LY(T) and g € L?(T) we have

[Fn) = g(n)| =

| 1w = gtw) w”dw' <1 gl

and hence
lim sup | f(n)| =lim sup |F(n) — g(m)| < I = gl

for all g € L?(T). Since L?(T) is dense in L!(T'), it follows that lim sup,, _, ., ‘f(n)) =
0 for all fe L, ie. f€c.

Since ‘f(n)‘ < [Iflly , we have Hpr < ||fIl, showing that Af := f is a bounded
linear transformation from L*(T) to COQ )

To see that A is injective, suppose f = Af = 0, then [ f(w)p(w,®)dw = 0

for all polynomials p in w and w. By the Stone - Wierestrass and the dominated
convergence theorem, this implies that

/T F(w)g(w)dw = 0

for all g € C(T). Lemma 11.7 now implies f = 0 a.e.
If A were surjective, the open mapping theorem would imply that A=! : ¢y —
LY(T) is bounded. In particular this implies there exists C' < oo such that

(18.4) £l <C Hf for all f € LY(T).

co

Taking f = d,,, we find d, = 1 while lim,,_. ||dyn|| ;1 = oo contradicting Eq.
co

(18.4). Therefore RanA) # ¢o. m

18.2. Hahn Banach Theorem. Our next goal is to show that continuous dual
X* of a Banach space X is always large. This will be the content of the Hahn —
Banach Theorem 18.16 below.

Proposition 18.13. Let X be a complex vector space over C. If f € X* and
u = Ref € Xy then

(18.5) f(z) = u(x) —iu(iz).

Conversely if u € Xy and f is defined by Eq. (18.5), then f € X* and ||lul|x; =
I fllx+. More generally if p is a semi-norm on X, then

Ifl <piff u<p.
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Proof. Let v(z) =Im f(x), then
v(iz) =Im f(iz) = Im(if(z)) = Ref(z) = u(z).
Therefore
f(z) = u(x) +iv(z) = u(z) + iu(—iz) = u(x) — iu(iz).
Conversely for v € X let f(z) = u(x) — iu(iz). Then
f((a+ib)z) = u(az + ibx) — iu(iax — bz) = au(x) + bu(ix) — i(au(iz) — bu(x))
while
(a+1b) f(x) = au(z) + bu(iz) + i(bu(z) — au(iz)).
So f is complex linear.

Because |u(z)| = |Ref(x)| < |f(z)], it follows that ||u|| < ||f||- For z € X choose
A € S' C C such that |f(z)| = Mf(z) so

|f (@) = f(Az) = u(Az) < |lull [[Az]] = llu]lllz]-
Since = € X is arbitrary, this shows that || f|| < |Ju|| so ||f]| = [Ju[].*®
For the last assertion, it is clear that |f| < p implies that v < |u| < |f] < p.
Conversely if u < p and = € X, choose A € S* C C such that |f(z)| = A\f(x). Then

[f(2)] = Af(z) = f(Az) = u(Az) < p(Az) = p(z)
holds for allz € X. m

Definition 18.14 (Minkowski functional). p: X — R is a Minkowski functional if

(1) p(z+vy) <p(z)+p(y) for all z,y € X and
(2) p(cx) =cp(z) for all c > 0 and = € X.

Example 18.15. Suppose that X =R and
p(z) =inf{\ >0:2 € \[-1,2] = [-),2)\]}.
Notice that if z > 0, then p(z) = z/2 and if < 0 then p(z) = —z, i.e.
_foz/2 if >0
ple) = { | i z<0.

From this formula it is clear that p(cx) = cp(z) for all ¢ > 0 but not for ¢ < 0.
Moreover, p satisfies the triangle inequality, indeed if p(z) = A and p(y) = u, then
x € A\[—1,2] and y € u[—1,2] so that

z+yeAN-1,2]4+p[-1,2] C (A +p) [-1,2]

38
Proof. To understand better why || f|| = ||u||, notice that
I£17 = sup |f(@) = sup (lu(@)® + |u(iz)]*).
llzll=1 llzll=1
Supppose that M = sup |u(z)| and this supremum is attained at zg € X with ||zo] = 1.

llzll=1
Replacing zg by —xo if necessary, we may assume that wu(xg) = M. Since u has a maximum at

Z0,
< xo + itxg )
U\ ——m—
o \llzo +itzoll
1
{ T (u(zo) + tu(imo))} = u(izo)
since = |0|1 +it| = & 4 15+/1 + t2 = 0.This explains why || f|| = [jul. =

4
dt
d
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which shows that p(z +y) < A+ p = p(z) + p(y). To check the last set inclusion
let a,b € [—1,2], then

Aa+pb= (A4 p) (La—kiub) € (A+p)[-1,2]

A4 p A+
since [—1,2] is a convex set and A—/i\ru +5x =1

TODO: Add in the relationship to convex sets and separation theorems, see Reed
and Simon Vol. 1. for example.

Theorem 18.16 (Hahn-Banach). Let X be a real vector space, M C X be a
subspace f : M — R be a linear functional such that f < p on M. Then there
exists a linear functional F: X — R such that F|py = f and F < p.

Proof. Step (1) We show for all x € X \ M there exists and extension F to
M @ Rz with the desired properties. If F' exists and o = F(z), then for all y € M
and A € R we must have f(y)+Aa = F(y+Az) < p(y+Ax) ie. Aa < p(y+Aiz)—f(y).
Equivalently put we must find o € R such that

) — 1)
- A
p(z — pz) — f(2)
7
So if @ € R is going to exist, we have to prove, for all y,z € M and A, u > 0 that
f(z) —p(z = pa) _ ply +Az) — f(y)
I - A

forally e M and A > 0

o>

for all z € M and p > 0.

or equivalently

(18.6) Sz 4+ py) < pp(y + Az) + Ap(z — p)
= p(py + pAz) + p(Az — Auz).
But by assumtion and the triangle inequality for p,

fOz + py) < p(Az + py) = p(Az + pAz + Az — Auz)
< p(Az + pAz) + p(Az — Auz)

which shows that Eq. (18.6) is true and by working backwards, there exist an a € R
such that f(y) + Ao < p(y + Ax). Therefore F(y + Az) := f(y) + A« is the desired
extension.

Step (2) Let us now write F : X — R to mean F is defined on a linear subspace
D(F)Cc X and F : D(F) — R is linear. For F,G : X — R we will say F' < G if
D(F) C D(G) and F = G|p(r), that is G is an extension of F. Let

F={F:X—>R:f<Fand F<pon D(F)}.

Then (F, <) is a partially ordered set. If ® C F is a chain (i.e. a linearly ordered
subset of F) then ® has an upper bound G € F defined by D(G) = | D(F)
FEd

and G(z) = F(z) for x € D(F). Then it is easily checked that D(G) is a linear
subspace, G € F, and F < G for all F' € ®. We may now apply Zorn’s Lemma
(see Theorem B.7) to conclude there exists a maximal element F' € F. Necessarily,
D(F) = X for otherwise we could extend F by step (1), violating the maximality
of F. Thus F is the desired extension of f. ®
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The use of Zorn’s lemma in Step (2) above may be avoided in the case that
X may be written as M @ span(8) where 8 := {z,}, -, is a countable subset of
X. In this case f : M — R may be extended to a linear functional F' : X — R
with the desired properties by step (1) and induction. If p(z) is a norm on X and
X = M @ span(f) with 8 as above, then this function F' constructed above extends
by continuity to X.

Corollary 18.17. Suppose that X is a complex vector space, p : X — [0,00) is a
semi-norm, M C X is a linear subspace, and f : M — C is linear functional such
that |f(z)| < p(x) for all x € M. Then there exists F € X' (X' is the algebraic
dual of X) such that F|y = f and |F| < p.

Proof. Let u = Ref then u < p on M and hence by Theorem 18.16, there exists
U € Xj such that Uly = w and U < p on M. Define F(z) = U(z) — ¢U(iz) then
as in Proposition 18.13, FF= f on M and |F| <p. m

Theorem 18.18. Let X be a normed space M C X be a closed subspace and
x € X\ M. Then there exists f € X* such that ||f|| =1, f(z) =3 =d(z, M) and
f=0o0nM.

Proof. Define h: M & Cz — C by h(m+Az) = Mo for allm € M and X € C.
Then
Ald ) ]
= sp sup

O = L ]_
meM and A£0 ||M+Az||  men and ax0 [z +m/A|| 0

and by the Hahn-Banach theorem there exists f € X* such that f|ygc. = b and
[If]l <1.Since 1 = ||h]| < ||f|| <1, it follows that || f|| =1. =

Corollary 18.19. The linear map x € X — & € X*™* where &(f) = f(z) for all
x € X is an isometry. (This isometry need not be surjective.)

Proof. Since |2(f)| = |f(x)] < |[fllx- llz]lx for all f € X*, it follows that
|Z]| e <llz|| - Now applying Theorem 18.18 with M = {0}, there exists f € X*
such that [|f|| = 1 and |2(f)| = f(z) = ||=||, which shows that ||Z| v.. > |lz] y -
This shows that € X — & € X™** is an isometry. Since isometries are necessarily
injective, we are done. m

Definition 18.20. A Banach space X is reflexive if the map x € X — & € X** is
surjective.

Example 18.21. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem, Proposition 12.15.

Example 18.22. Suppose that p is a o — finite measure on a measurable space
(X, M), then LP(X, M, p) is reflexive for all p € (1, 00), see Theorem 15.14.

Example 18.23 (Following Riesz and Nagy, p. 214). The Banach space X :=
C(]0,1]) is not reflexive. To prove this recall that X* may be identified with complex
measures g on [0,1] which may be identified with right continuous functions of
bounded variation (F') on [0, 1], namely

1
F—>MF—>(f€X—>/[Ol]fduF=/0 far).
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Define A € X** by

A = > p{z}) = Y (F2) - Fla-)),
z€[0,1] z€[0,1]
5o A(u) is the sum of the “atoms” of u. Suppose there existed an f € X such that
AMp) = fo 1] fdu for all u € X*. Choosing p = §, for some x € (0,1) would then
imply that
flz) = fo: =A0) =1
[0,1]
showing f would have to be the constant function,1, which clearly can not work.

Example 18.24. The Banach space X := L!([0,1],m) is not reflexive. As we
have seen in Theorem 15.14, X* = L*°([0, 1], m). The argument in Example 15.15
shows (L>([0,1],m))" 2 L*(]0,1],m). Recall in that example, we show there exists
L e X** 22 (L*([0,1],m))" such that L(f) = f(0) for all f in the closed subspace,
C([0,1]) of X*. If there were to exist a g € X such that ¢ = L, we would have

(18.7) F(0) = L(f) = 9(éy) = / fa

for all f € C(]0,1]) € L*([0,1],m). Taking f € C.((0,1]) in this equation and
making use of Lemma 11.7, it would follow that g(z) = 0 for a.e. x € (0,1]. But
this is clearly inconsistent with Eq. (18.7).

18.3. Weak and Strong Topologies.

Definition 18.25. Let X and Y be be a normed vector spaces and L(X,Y) the
normed space of bounded linear transformations from X to Y.

(1) The weak topology on X is the topology generated by X*, i.e. sets of
the form
N =ni{z € X : [fi(z) — fi(zo)| <€}
where f; € X* and € > 0 form a neighborhood base for the weak topology
on X at xg.
(2) The weak-* topology on X* is the topology generated by X, i.e.
N=nii{ge X7 [f(zi) — g(wi)] < e}
where z; € X and € > 0 forms a neighborhood base for the weak—x topology
on X* at f € X*.
(3) The strong operator topology on L(X,Y) is the smallest topology such
that T € L(X,Y) — Tz €Y is continuous for all z € X.

(4) The weak operator topology on L(X,Y) is the smallest topology such
that T € L(X,Y) — f(Tx) € C is continuous for all z € X and f € Y*.

Theorem 18.26 (Alaoglu’s Theorem). If X is a normed space the unit ball in X*
18 weak - * compact.

Proof. For all z € X let D, = {z € C: |z|] < |z|}. Then D, C Cis a

compact set and so by Tychonoff’s Theorem Q@ = [] D, is compact in the product
zeX

topology. If f € O := {f € X" : ||f| < 1}, |£(@)| < |I£]| ]l < |lz]| which implies

that f(z) € D, for all z € X, i.e. C* C Q. The topology on C* inherited from

the weak—* topology on X™ is the same as that relative topology coming from the

product topology on €. So to finish the proof it suffices to show C* is a closed
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subset of the compact space 2. To prove this let 7,(f) = f(x) be the projection
maps. Then

C*={fef: fislinear}
={feQ: flx+cy)— f(x)—cf(y) =0 for all z,y € X and ¢ € C}
= () N{fe: fle+ey) - flz) —cf(y) = 0}

z,yeX ceC

ﬂ ﬂ (Totey — 7o — Cﬂy)_l ({0})

z,yeX ceC

which is closed because (Tyyey — Ty — cmy) : @ — C is continuous. m

Theorem 18.27 (Alaoglu’s Theorem for separable spaces). Suppose that X is a
separable Banach space, C* := {f € X* : ||f|| < 1} is the closed unit ball in X* and
{zn}.2 | is an countable dense subset of C:={x € X : ||z|| < 1}. Then

(18.) p(1,0) = 3 5 | (wa) = glan)

defines a metric on C* which is compatible with the weak topology on C*, To+ =
(Tw)or ={V NC :V € 1y }. Moreover (C*, p) is a compact metric space.

Proof. The routine check that p is a metric is left to the reader. Let 7, be
the topology on C* induced by p. For any g € X and n € N, the map f € X* —
(f(xn) — g(xy)) €C is T+ continuous and since the sum in Eq. (18.8) is uniformly
convergent for f € C*, it follows that f — p(f, g) is 7¢+ — continuous. This implies
the open balls relative to p are contained in 7¢~ and therefore 7, C 7¢-.

We now wish to prove 7¢~ C 7,. Since 7o+ is the topology generated by
{Z|¢c+ : © € C}, it suffices to show & is 7, — continuous for all z € C. But given z € C
there exists a subsequence y;, := ,, of {mn}zo:l such that such that x = limy_ o Y-
Since

sup [2(f) — gr(f)] = sup [f(z—ye)| < [z =yl = 0 as k — oo,
fec* fec*

Ur — & uniformly on C* and using g is 7, — continuous for all £ (as is easily
checked) we learn & is also 7, continuous. Hence 7¢+ = 7(Z|c+ : x € X) C 7.

The compactness assertion follows from Theorem 18.26. The compactness as-
sertion may also be verified directly using: 1) sequential compactness is equivalent
to compactness for metric spaces and 2) a Cantor’s diagonalization argument as in
the proof of Theorem 12.38. (See Proposition 19.16 below.) =

18.4. Weak Convergence Results. The following is an application of theorem
3.48 characterizing compact sets in metric spaces.

Proposition 18.28. Suppose that (X, p) is a complete separable metric space and
 is a probability measure on B = o(7,). Then for all € > 0, there exists K. CC X
such that p(Ke¢) > 1 —e.

Proof. Let {z;},—, be a countable dense subset of X. Then X = U;Cy, (1/n)
for all n € N. Hence by continuity of u, there exists, for all n € N, V,, < oo such
that u(F,) > 1 —e2~" where Fy, := Up", Cy, (1/n). Let K := N2, F,, then
X\ K) = p(U, F9) < SO p(Fe) =S (- p(F)) < S e =
n=1 n=1

n=1
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so that u(K) > 1—e. Moreover K is compact since K is closed and totally bounded;
K C F, for all n and each F), is 1/n — bounded. m

Definition 18.29. A sequence of probability measures {P, } ~_, is said to converge
to a probability P if for every f € BC(X), P,(f) — P(f). This is actually weak-*
convergence when viewing P, € BC(X)*.

Proposition 18.30. The following are equivalent:

(1) P, 2 Pasn— o

(2) P,(f) — P(f) for every f € BC(X) which is uniformly continuous.
(3) limsup,, o Pn(F) < P(F) for ol F C X.

(4) liminf, .o P,(G) > P(G) for all G C, X

(5) limy,— 00 Po(A) = P(A) for all A € B such that P(bd(A)) = 0.

Proof. 1. = 2. is obvious. For 2. — 3.,

1 if t<0
(18.9) op(t):=¢ 1—t if 0<¢t<1

0 if t>1
and let f,(z) := ¢(nd(z, F)). Then f, € BC(X,][0,1]) is uniformly continuous,
0<1p < f, for all n and f,, | 1p as n — oo. Passing to the limit n — oo in the
equation

0< Pu(F) < Pu(fm)
gives
0 <lim sup Pn(F) < P(fm)

and then letting m — oo in this inequality implies item 3.
3. <= 4. Assuming item 3., let F' = G¢, then
1—1lim inf P,(G) =lim sup (1 — P,(G@)) = lim sup P,(G°)

< P(G%) = 1- P(G)
which implies 4. Similarly 4. = 3.
3. <= 5. Recall that bd(A4) = A\ A°, so if P(bd(A)) =0 and 3. (and hence
also 4. holds) we have
lim sup P,(A) <lim sup P,(A) < P(A) = P(A) and

n—oo n—oo

lim inf P,(A) >lim inf P,(A%) > P(A°) = P(4)

from which it follows that lim,,_,, P,(A) = P(A). Conversely, let F' C X and set
Fs:={x e X :p(z,F) <§}. Then
bd(Fs) C Fs\{z e X :p(z,F) <dé}={x e X :p(z,F) =0} =: As.

Since {45}, are all disjoint, we must have

Y P(45) < P(X)<1

6>0
and in particular the set A := {§ > 0: P(As) > 0} is at most countable. Let d,, ¢ A
be chosen so that §, | 0 as n — oo, then

P(Fs,) = lim P,(Fs, ) > lim sup P,(F).

n—o0

Let m — oo this equation to conclude P(F) > limsup,,_., ., P,(F) as desired.
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To finish the proof we will now show 3. = 1. By an affine change of variables
it suffices to consider f € C(X, (0,1)) in which case we have

k

. k.
(i-1) i
(18.10) ZTl{(izl)Sf<%}§f§2E1{LIcU§f<%}.

i=1

Let F; := {% < f} and notice that Fj, = ), then we for any probability P that

k . .
(18.11) Z U (P~ PR) < PP < 3 L [P(F) - PR

~.
—

Now
. k. k
; (4 ; 1) [P(Fi—1) — P(Fy)] = ; ( ; 1)P(szl) - ; ( ; 1)P(F2)
=y Eoi =
= 2 PR~ PR = p 2 PR
and

i=1 i=1
k—1
= P i —
> PF)+ 2
i=1
so that Eq. (18.11) becomes,
= 1 k—
- P(F; - 1/k.
SWLERVE WY
Using this equation with P = P,, and then with P = P we find
lim sup P,(f) <lim sup ZP )+ 1/k
=
<= PF)+1/k<P 1/k.
_k; (F) +1/k < P(f) +1/
<

Since k is arbitary,
lim sup P, (f) < P(f).

n—oo
This inequality also hold for 1 — f and this implies liminf, . P,(f) > P(f) and
hence lim,, . P,(f) = P(f) as claimed. m
Let Q := [0,1]N and for a,b € Q let
=1
d(a,b) := — |a, — by,
@) =3 g fan =0
as in Notation 10.19 and recall that in this metric (@, d) is a complete metric space
that 74 is the product topology on @), see Exercises 3.27 and 6.15.
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Theorem 18.31. To every separable metric space (X, p), there exists a continuous
injective map G : X — @ such that G : X — G(X) C Q is a homeomorphism. In
short, any separable metrizable space X is homeomorphic to a subset of (Q,d).

Remark 18.32. Notice that if we let p'(z,y) := d(G(z), G(y)), then p’ induces the
same topology on X as p and G : (X, p') — (@, d) is isometric.

Proof. Let D = {z,,} —, be a countable dense subset of X and for m,n € N let

n=1

frn,7z<x) =1-9 (mp(xn,x)),

where ¢ is as in Eq. (18.9). Then f,,, = 0if p(z,z,) < 1/m and f,,,, = 1 if
p(x,zy) > 2/m. Let {gi}re; be an enumeration of {f,,, : m,n € N} and define
G: X —Qby
G(z) = (91(2), g2(2),...) € Q.

We will now show G : X — G(X) C @ is a homeomorphism. To show G is injective
suppose =,y € X and p(x,y) =0 > 1/m. In this case we may find z,, € X such that
plx,x,) < ﬁ, ply,xy) > 06— ﬁ > ﬁ and hence fam n(y) = 1 while fa,.,(y) = 0.
From this it follows that G(z) # G(y) if  # y and hence G is injective.

The continuity of G is a consequence of the continuity of each of the components
gi of G. So it only remains to show G=! : G(X) — X is continuous. Given
a=G(z) € G(X) CQ and € > 0, choose m € N and z,, € X such that p(z,,z) <
7 < £. Then fun(z) =0 and for y ¢ B(z,, 2), fmn(y) = 1. So if k is chosen so
that g, = fm.n, we have shown that for

d(C(y).C(x)) > 27 for y ¢ Blan,2/m)
or equivalently put, if
d(G(y),G(x)) < 27% then y € B(z,,2/m) C B(z,1/m) C B(z,e¢).

This shows that if G(y) is sufficiently close to G(x) then p(y,z) < €, i.e. G71is
continuous at a = G(z).

Definition 18.33. Let X be a topological space. A collection of probability mea-
sures A on (X, Bx) is said to be tight if for every € > 0 there exists a compact set
K, € Bx such that P(K.) > 1—e€ for all P € A.

Theorem 18.34. Suppose X is a separable metrizable space and A = {P,},7_,
is a tight sequence of probability measures on Bx. Then there exists a subsequence
{Py, }ie, which is weakly convergent to a probability measure P on Bx.

Proof. First suppose that X is compact. In this case C'(X) is a Banach space
which is separable by the Stone — Weirstrass theorem. By the Riesz theorem,
Corollary 15.42, we know that C'(X)* is in one to one correspondence with complex
measure on (X, Bx). We have also seen that C(X)* is metrizable and the unit ball
in C(X)* is weak - * compact. Hence there exists a subsequence {P,, }7- ; which is
weak -* convergent to a probability measure P on X. Alternatively, use the cantor’s
diagonalization procedure on a countable dense set I' C C'(X) so find {P,,, },-, such
that A(f) := limg_co Pp, (f) exists for all f € I'. Then for g € C(X) and f € T,

we have

[Py, (9) = Py (9)] < Py (9) = Py (F) + [Py (f) = Py ()] + | P, (f) — Py (9)]
< 2(lg = flloo + [Pri (f) = P (f)]
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which shows
lim sup [Py, (9) — Pn(9)] <2]lg — fll

k,l—o0

Letting f € A tend to g in C(X) shows limsupy ;.. [P, (9) — Pn,(g9)] = 0 and
hence A(g) := limy_o Py, (g) for all g € C(X). It is now clear that A(g) > 0 for all
g > 0 so that A is a positive linear functional on X and thus there is a probability
measure P such that A(g) = P(g).

For the general case, by Theorem 18.31 we may assume that X is a subset of
a compact metric space which we will denote by X. We now extend P, to X by
setting P, (A) := P,(AN X) for all A € Bg. By what we have just proved, there
is a subsequence {P,é = Pnk}iozl such that P,; converges weakly to a probability
measure P on X. The main thing we now have to prove is that “P(X) = 1,” this
is where the tightness assuption is going to be used.

Given € > 0, let K. C X be a compact set such that P,(K.) > 1 — ¢ for all n.
Since K, is compact in X it is compact in X as well and in particular a closesd
subset of X. Therefore by Proposition 18.30

P(K.) > lim sup P,;(Ke) =1-e
k—o0
Since € > 0 is arbitary, this shows with Xy = U2, Ky, satisfies P(X) =
Because Xg € Bx N By, we may view P as a measure on By by letting P(A) =

P(AN X,) for all A € By. . )
Given a closed subset F' C X, choose F' T X such that F = F'N X. Then
lim sup Pj(F) =lim sup P,(F) < P(F) = P(FnXy) = P(F),

k—o0 k—oo

which shows P;, SZP m

18.5. Supplement: Quotient spaces, adjoints, and more reflexivity.

Definition 18.35. Let X and Y be Banach spaces and A : X — Y be a linear
operator. The transpose of A is the linear operator A" : Y* — X* defined by
(ATf) () = f(Ax) for f € Y* and = € X. The null space of A is the subspace
Nul(A) :={x € X : Az =0} C X. For M C X and N C X* let

M°:={f e X*: flar =0} and
ti={reX:f(z)=0forall f € N}.

Proposition 18.36 (Basic Properties). (1) [|All = ||AT]| and ATTE = Az for
all v € X.
2) M° and Nt are always closed subspace of X* and X respectively.

(2)

(3) (M°)" =1r.

(4) N ( ) with equality when X is reflexive.

(5) Nul(A) = RanA")‘ and Nul(AT) = Ran(A)°. Moreover, Ran(A) =
Nul(A")* and if X is reflezive, then Ran(Af) = Nul(4)°.

(6) X is reflexive iff X* is reflexive. More generally X*** = X+ @ XO.

Proof.
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(1)
[All = sup [|Az| = sup sup |f(Az)|
llzll=1 llzll=11fll=1
= supsup [A7f(z)| = sup [[47] = |47
IFI=1 J|lz|l=1 Ilfll=1

(2) This is an easy consequence of the assumed continuity off all linear func-

tionals involved. N
(3) If # € M, then f(z) = 0 for all f € M° so that € (M) . Therefore

M C (MO)L. If x ¢ M, then there exists f € X* such that f|y; = 0 while
f(z) #0,ie fe M°yet f(z) # 0. This shows z ¢ (MO)L and we have
shown (MO)L C M.

(4) It is again simple to show N C (NL)O and therefore N C (NL)O . Moreover,
as above if f ¢ N there exists ¢ € X** such that |5 = 0 while ¢(f) # 0.

If X is reflexive, ¢ = & for some » € X and since g(z) = ¥(g) = 0 for
all g € N, we have # € N+. On the other hand, f(z) = ¥(f) # 0 so

fé (NL)O. Thus again (NL)O C N.

()
Nul(A) ={z e X: Az =0}={z e X: f(Ax) =0V fe X"}
={zeX :Alf(z)=0V fe X"}
={z € X :g(z) =0V g € Ran(A")} = Ran(A")*.
Similarly,

Nu(A) = {fey :Alf=0}={feY*: (ATf)(z) =0Vaze X}
={feY": f(Az) =0V 2z e X}
= {f € Y™ : flran(a) = O} = Ran(A)O.
(6) Let ¢ € X** and define f, € X* by fy(z) = (&) for all z € X and set
Y =1 — fy. For x € X (so & € X**) we have
(@) = (@) = fu(@) = ful@) = 2(fs) = fo(@) = ful) = 0.
This shows 7" € X© and we have shown X = X* 4+ X0 If NS X+ N X,
then ¢ = f for some f € X* and 0 = f(2) = &(f) = f(z) for all z € X,
ie. f=0s0v = 0. Therefore X** = X* @ X0 as claimed. If X is
reflexive, then X = X** and so X° = {0} showing X*** = X* ie. X*
is reflexive. Conversely if X* is reflexive we conclude that X° = {0} and
Ao\ L -
therefore X** = {0} = (XO) = X, so that X is reflexive.
Alternative proof. Notice that f, = J'1, where J : X — X** is given
by Jx = &, and the composition
N T
fex —fexLytfex
is the identity map since (JT f) (2) = f(Jz) = f(&) = &(f) = f(z) for all

z € X. Thus it follows that X* — X*** is invertible iff J1 is its inverse
which can happen iff Nul(J) = {0}. But as above Nul(JT) = RanJ)°
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which will be zero iff Ran(J) = X** and since J is an isometry this is
equivalent to saying RanJ) = X**. So we have again shown X* is reflexive
iff X is reflexive.

Theorem 18.37. Let X be a Banach space, M C X be a proper closed subspace,
X/M the quotient space, m : X — X/M the projection map ©(xz) = x + M for
x € X and define the quotient norm on X/M by

17w (@)lx/ar = llz + Mllxnr = inf lz+m]y.

Then
(1) [Illx/ar s @ norm on X/M.
(2) The projection map 7 : X — X/M has norm 1, ||r|| = 1.
(3) (X/M, ||l x/as) is a Banach space.
(4) If'Y is another normed space and T : X — 'Y is a bounded linear transfor-

mation such that M C Nul(T), then there exists a unique linear transfor-
mation S : X/M —Y such that T = S ox and moreover ||T|| = ||S]| .

Proof. 1) Clearly ||z + M| > 0 and if ||z + M|| = 0, then there exists m,, € M
such that ||z +my| — 0 as n — oo, i.e. z = lim m, € M = M. Since x € M,

n—oo

r+M=0¢€ X/M.If c e C\{0}, x € X, then
ez + M| = inf ez +m| = |¢[ nf [lz+m/c|| = |c] |z + M|

meM meM
because m/c runs through M as m runs through M. Let 21,22 € X and my,mq € M
then

|21 4+ 22 + M| < ||z1 + 22 + My +ma|| < [z + ma| + |22 + ma|.
Taking infinums over my, my € M then implies
1 + @2 + M| < |21 + M| + [lz2 + M]|.

and we have completed the proof the (X/M, || - ||) is a normed space.
2) Since ||7(2)| = infpmenr || +m|| < ||z|| forallz € X, ||«|| < 1. To see ||| =1,
let € X \ M so that 7(z) # 0. Given « € (0,1), there exists m € M such that

|z +m| < o™ ()]
Therefore,
[m(z+m)l| _ =@  elzt+m] _
le+ml  Jlz+m| — [lz+m]|
which shows ||| > «. Since « € (0,1) is arbitrary we conclude that ||7(z)| = 1.

3) Let m(z,,) € X/M be a sequence such that > ||7(z,)| < co. As above there
exists m, € M such that ||7(z,)|| > %|lz, + m,| and hence Y ||z, + m,| <

25 ||m(zn)]| < oo. Since X is complete, z := > (z,,+m,,) exists in X and therefore
n=1

by the continuity of m,

m(@) =Y wlwn +mn) =Y m(wn)

n=1 n=1

showing X /M is complete.
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4) The existence of S is guaranteed by the “factor theorem” from linear algebra.
Moreover ||S|| = ||T|| because

1T = IS oxl| < [[S] lI=]l = [IS]

and
|5 (m ()]l [T ||
[S] = sup ——~7— = sup
egm  |Im(@)]l o¢M ||T(@)]]
a1 _ T
cgm 2l a0 |2
| ]

Theorem 18.38. Let X be a Banach space. Then

(1) Identifying X with X C X**, the weak — % topology on X** induces the
weak topology on X. More explicitly, the map x € X — & € X is a homeo-
morphism when X is equipped with its weak topology and X with the relative
topology coming from the weak-* topology on X**.

(2) X C X** is dense in the weak-* topology on X**.

(3) Letting C and C** be the closed unit balls in X and X** respectively, then
C = {& € C** : 2 € C} is dense in C** in the weak — * topology on X**.

(4) X is reflexive iff C is weakly compact.

Proof.
(1) The weak — * topology on X** is generated by

{Firex}=fwex™ =y fext.
So the induced topology on X is generated by
{reX—-2eX™>a(f)=f(x): feX}=X"

and so the induced topology on X is precisely the weak topology.
(2) A basic weak - * neighborhood of a point A € X** is of the form

(18.12) N =0 {y € X7 1 [(fi) = A(fk)| < €}

for some {f;},_; C X* and € > 0. be given. We must now find € X such
that £ € N, or equivalently so that

(18.13) #(f) = Al = [fe(@) = A(fo)| < e for k=1,2,...,m.
In fact we will show there exists z € X such that \(fy) = fr(z) for
k = 1,2,...,n. To prove this stronger assertion we may, by discard-

ing some of the fi’s if necessary, assume that {f;},_, is a linearly in-
dependent set. Since the {fx},_, are linearly independent, the map
z € X — (fi(z),..., fa(x)) € C™ is surjective (why) and hence there
exists © € X such that

(18.14) (fi(@), .o fu(2) =Tz = (A(f1), -, AMfn))
as desired.
(3) Let A € C** C X** and N be the weak - x open neighborhood of X as
in Eq. (18.12). Working as before, given ¢ > 0, we need to find z € C
such that Eq. (18.13). It will be left to the reader to verify that it suffices
again to assume { f;},_, is a linearly independent set. (Hint: Suppose that
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{f1,..., fm} were a maximal linearly dependent subset of {f},_;, then
each f with k& > m may be written as a linear combination {fi,..., fm}.)
As in the proof of item 2., there exists * € X such that Eq. (18.14)
holds. The problem is that z may not be in C. To remedy this, let N :=

h—1 Nul(fx) = Nul(T), 7 : X — X/N = C" be the projection map and fr
€ (X/N)" be chosen so that f, = fr o for k = 1,2,...,n. Then we have
produced z € X such that

A1) s A(fn)) = (fi(2), .., ful2)) = (fl(ﬂ(x)>v . 7f_n(7r(x)))
Since {f1,..., fn} is a basis for (X/N)" we find

iy ifi "o fi
@)= sp (D@ fE@E@ L el
accn(0)  [[Ei i aecriioy X0 eifil
A, aifi " fs
= Ssup M < ||A]]  sup Hi::fl—af” -1
aeCm\{0} ||Zz:1041fz|| a€eC\{0} szzlalfl”

Hence we have shown ||7(z)|| < 1 and therefore for any o > 1 there
exists y = ¢ +n € X such that ||y]| < a and (A(f1),...,A(fn)) =

(f1(y),-- -, fuly)). Hence
INFi) = fiw/a)l < [ fiy) — a7 fi(y)| < A= a7 | £i(y)]

which can be arbitrarily small (i.e. less than €) by choosing a sufficiently
close to 1.

Let C == {2 :2 € C} C C** C X**.If X is reflexive, C' = C** is weak
- % compact and hence by item 1., C is weakly compact in X. Conversely
if C' is weakly compact, then C c C* is weak — * compact being the
continuous image of a continuous map. Since the weak — % topology on
X** is Hausdorff, it follows that C is weak — x closed and so by item 3,

—weak—*

c*=C =C.Soif A € X**, M|\ € ¢** = C, Le. there exists
x € C such that £ = A/||A||. This shows A = (||\||z) and therefore
X = X"

18.6. Exercises.

18.6.1. More Examples of Banach Spaces.

Exercise 18.1. Let (X, M) be a measurable space and M (X) denote the space
of complex measures on (X, M) and for p € M(X) let ||p]] = |u|[(X). Show
(M(X), ||l) is a Banach space. (Move to Section 16.)

Exercise 18.2. Folland 5.9, p. 155.

Exercise 18.3. Folland 5.10, p. 155.

Exercise 18.4. Folland 5.11, p. 155.
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18.6.2. Hahn-Banach Theorem Problems.
Folland 5.17, p. 159.
Folland 5.18, p. 159.
Folland 5.19, p. 160.
Folland 5.20, p. 160.
Folland 5.21, p. 160.

Exercise 18.5.
Exercise 18.6.
Exercise 18.7.
Exercise 18.8.
Exercise 18.9.

Exercise 18.10. Let X be a Banach space such that X* is separable. Show X
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e. suppose
D c X*\ {0} is a countable dense subset of X*, for ¢ € D choose x; € X such that
lzell =1 and [€(ze)| > 514]]-

Exercise 18.11. Folland 5.26.
Exercise 18.12. Give another proof Corollary 4.10 based on Remark 4.8. Hint:

the Hahn Banach theorem implies

o) — f@l = sup 2EO)

AEX*, AA0

18.6.3. Baire Category Result Problems.

— Af(a))]
1Al '

Exercise 18.13.
Exercise 18.14.
Exercise 18.15.
Exercise 18.16.
Exercise 18.17.
Exercise 18.18.
Exercise 18.19.
Exercise 18.20.
Exercise 18.21.
Exercise 18.22.
Exercise 18.23.
Exercise 18.24.
Exercise 18.25.

Folland 5.29, p.
Folland 5.30, p.
Folland 5.31, p.
Folland 5.32, p.
Folland 5.33, p.
Folland 5.34, p.
Folland 5.35, p.
Folland 5.36, p.
Folland 5.37, p.
Folland 5.38, p.
Folland 5.39, p.
Folland 5.40, p.
Folland 5.41, p.

164.
164.
164.
164.
164.
164.
164.
164.
165.
165.
165.
165.
165.

18.6.4. Weak Topology and Convergence Problems.
Exercise 18.26. Folland 5.47, p. 171.

Definition 18.39. A sequence {z,},., C X is weakly Cauchy if for all V € 7,
such that 0 € V, z,, — z,,, € V for all m,n sufficiently large. Similarly a sequence
{fn}or, C X* is weak—x Cauchy if for all V € 7,» such that 0 € V, f,, — fr, € V.
for all m,n sufficiently large.
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Remark 18.40. These conditions are equivalent to {f(z,)},—, being Cauchy for all
f € X* and {f,(z)},-, being Cauchy for all z € X respectively.

Exercise 18.27. Folland 5.48, p. 171.

Exercise 18.28. Folland 5.49, p. 171.

Exercise 18.29. land 5.50, p. 172.

Exercise 18.30. Let X be a Banach space. Show every weakly compact subset of
X is norm bounded and every weak—« compact subset of X* is norm bounded.

Exercise 18.31. Folland 5.51, p. 172.
Exercise 18.32. Folland 5.53, p. 172.



ANALYSIS TOOLS WITH APPLICATIONS 371

19. WEAK AND STRONG DERIVATIVES

For this section, let  be an open subset of RY, p,q,7 € [1,00], LP(Q) =
LP(Q,Bg,m) and L} () = LY (Q,Bq, m), where m is Lebesgue measure on Bga

and Bq is the Borel o — algebra on Q. If Q = R?, we will simply write L and Ly
for LP(R?) and L} (R?) respectively. Also let

loc
g) = d

for any pair of measurable functions f,g : @ — C such that fg € L'(Q). For
example, by Holder’s inequality, if (f, g) is defined for f € LP(Q) and g € L9(2)
p

when ¢ = T

Definition 19.1. A sequence {u,},., C L} () is said to converge to u € LY ()

loc loc
if limy, o0 ||u — un||Lq(K) = 0 for all compact subsets K C .

The following simple but useful remark will be used (typically without further
comment) in the sequel.

Remark 19.2. Suppose r,p,q € [1,00] are such that ! = p~t + ¢! and f; — f
in LP(Q) and g; — ¢ in LI(Q) as t — 0, then f;g: — fg in L" (). Indeed,
1 frge = Fall,. = I(fe = f) ge + £ (9: = 9,
< \fe = fll, lgellq + Lf 1L, [lge — glly — 0 as £ — 0

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let v € R and u € LP(Q2) (u € Lt (Q))
then O,u is said to exist weakly in LP(Q) (L} (Q)) if there exists a function
g€ LP(Q) (g € LT (Q2)) such that

loc
(19.1) (4, 0,8) = (g, ) for all ¢ € C=(Q).

The function g if it exists will be denoted by 81(,w)u. Similarly if o € Nd and 9 is
as in Notation 11.10, we say 0%u exists weakly in LP(Q) (L} (€2)) iff there exists
g € LP(Q) (L? (Q)) such that

loc
(u,0°¢) = (=1)!*!(g, ) for all ¢ € C(R).
More generally if p(§) = Z\&ISN an,€” is a polynomial in £ € R™, then p(9)u exists
weakly in LP(Q) (LT (£2)) iff there exists g € LP(Q) (L7 .(9)) such that

loc loc

(19.2) (u,p(—=0)¢) = (g, ¢) for all ¢ € C°()
and we denote g by w—p(9)u.

By Corollary 11.28, there is at most one g € L}, .(2) such that Eq. (19.2) holds,
so w—p(0)u is well defined.

Lemma 19.4. Let p(€) be a polynomial on R%, k = deg (p) € N, and u € L}, ()
such that p(d)u exists weakly in L}, .(Q). Then
(1) supp,,(w—p(0)u) C supp,,(u), where supp,,(u) is the essential support of
u relative to Lebesgue measure, see Definition 11.14.
(2) Ifdegp =k andu|y € CF (U, C) for some open set U C Q, then w—p(0)u =
p(0)u a.e. onU.

Proof.
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(1) Since
(w=p(9)u, ¢) = —(u,p(=0)¢) = 0 for all ¢ € C(2\ supp,,(u)),
an application of Corollary 11.28 shows w—p(d)u = 0 a.e. on Q\
supp,, (v). So by Lemma 11.15, 2\ supp,,(u) C Q \ supp,,(w—p(9d)u), i.e.
supp,, (w—p(9)u) C supp,, (u).

(2) Suppose that u|y is CF and let 1 € C2(U). (We view 1 as a function
in C°(RY) by setting ¢ = 0 on R? \ U.) By Corollary 11.25, there exists
v € C () such that 0 <y <1 and v =1 in a neighborhood of supp(v).
Then by setting yu = 0 on R? \ supp(y) we may view yu € C¥(R9) and
so by standard integration by parts (see Lemma 11.26) and the ordinary
product rule,

(19.3) = (p(9) (yu) , ) = (p(I)u, ¥)
wherein the last equality we have ~ is constant on supp(¢). Since Eq.
(19.3) is true for all p € C°(U), an application of Corollary 11.28 with
h=w—p(0)u —p(0)u and p = m shows w—p(d)u = p (9) u a.e. on U.

]

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing p (9) u
for w—p(9)u. So in the sequel we will always interpret p(9)u in the weak or “dis-
tributional” sense.

Example 19.6. Suppose u(z) = |z| for z € R, then du(x) = sgn(z) in L}, (R)
while 9?u(z) = 26(z) so O*u(z) does not exist weakly in L . (R).

Example 19.7. Suppose d = 2 and u(x,y) = ly>,. Then u € L}, (Rz), while
Oply>s = —0 (y — ) and Oylys, = 0 (y — x) and so that neither d,u or Jyu exists
weakly. On the other hand (9, + 9y)u = 0 weakly. To prove these assertions,
notice u € C* (R?\ A) where A = {(z,) : = € R*}. So by Lemma 19.4, for any
polynomial p(£) without constant term, if p (9)u exists weakly then p(9)u = 0.
However,

(4, 0,6 — — @mwmwz—ém%wm

y>x

(4, —0, ) = — %@M®®=Adﬁﬂwmﬂ

y>x
from which it follows that J,u and d,u can not be zero while (9, + 0 )u =0.
On the other hand if p(¢) and ¢ (£) are two polynomials and u € L}, (Q) is a

function such that p(9)u exists weakly in Lloc( ) and ¢ (9) [p (0) u] exists weakly
in L}, () then (gp) (0) u exists weakly in L (). This is because

loc

(u, (qp) (=0) ¢) = (u,p (-0) ¢(=0)¢)
= (P (9)u,q(=0)$) = (¢(9)p (0) u, ¢) for all ¢ € CF ().
(

Example 19.8. Let u(z,y) = lys0 + 1yso in L}, (R?). Then dyu(z,y) = 6(z)
and dyu(z,y) = 6(y) so dyu(z,y) and dyu(x,y) do not exist weakly in L}, , (R?).
However 0,,0,u does exists weakly and is the zero function. This shows 0,0, u may
exists weakly despite the fact both d,u and d,u do not exists weakly in L}, (R?) .
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Lemma 19.9. Suppose u € L. () and p(£) is a polynomial of degree k such that
p (0) u exists weakly in L},.(Q) then

(19.4) (p(9)u, @) = (u,p(=0) ¢) for all ¢ € CZ ().
Note: The point here is that Eq. (19.4) holds for all ¢ € CF () not just ¢ €
C*(Q).

Proof. Let ¢ € C¥ (Q) and choose n € C2° (B (0,1)) such that [, n(z)dz =1
and let 7 (z) := e 9n(x/e). Then n. x ¢ € CX () for e sufficiently small and
p(=0)[ne*xd] =nexp(=0)¢p — p(=9)¢ and 7. * ¢ — ¢ uniformly on compact
sets as € | 0. Therefore by the dominated convergence theorem,

(90w, 6) = lin(p (0) v, ) = T, (~) (1 ) = . (~9) ).

Lemma 19.10 (Product Rule). Let u € L}, (Q), v € R? and ¢ € C*(Q). If "y
(), then (’“)Uw) (du) exists in L}, () and

loc

() (pu) = Dy - u+ ¢ a.e.

Moreover if ¢ € C1(Q) and F := ¢u € L' (here we define F on R? by setting F = 0
on R4\ Q ), then 0 F = 0,¢ - u + ¢85w)u exists weakly in L*(R?).

1
exists in L,

Proof. Let ¢ € C°(Q), then using Lemma 19.9,
7<¢U, aqﬂﬁ) = *(U, ¢61)1/}> = 7<ua Oy (fﬁ?/)) - 81,¢ : 7/}> = <61(;1U)ua ¢T/’> + <81J¢ U, 1/)>
= (605", 0} + (Dot - u, ¥).

This proves the first assertion. To prove the second assertion let v € C'°(£2) such
that 0 <+ < 1 and v = 1 on a neighborhood of supp(¢). So for ¢ € C>°(R%), using
O0yy = 0 on supp(¢) and v € C°(0), we find

(F,000) = (VF,0p0) = (F,y0u) = ((pu), 0y (y9) — Opy - )
= ((¢u), 8y (V1)) = — (05" (du) , (7))
= —(Dud - u+ ¢ u, y) = —(0u¢ - u+ IS u, ).
This show O F = Op - U+ ¢81(,w)u as desired. m

Lemma 19.11. Suppose q € [1,00), p(€) is a polynomial in & € R? andu € L} ().
If there exists {um} .y C Li (Q) such that p(0)uy, exists in Li (Q) for all m
and there exists g € Ll (Q) such that for all ¢ € C°(%),

i {0, 6) = (u.0) and T (p(0) ) = (9.)
then p (0) w exists in L}, () and p (8)u = g.

Proof. Since

(,p(9) ¢) = lim (um,p(9)¢) = = lim (p(0)um,9) = (g, 9)

m—0o0

for all ¢ € C°(Q), p(9) u exists and is equal to g € L] (). m
Conversely we have the following proposition.
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Proposition 19.12 (Mollification). Suppose q € [1,00), p1(£),...,pn(§) is a col-
lection of polynomials in & € R? and u € LY () such that p/(8)u exists weakly in
L] (Q) forl =1,2,...,N. Then there exists u, € C(Q) such that u, — u in
L () and p; (0) up, — p1 () w in L} (Q) forl=1,2,...,N.

Proof. Let n € C2°(B(0,1)) such that [, ndm = 1 and nc(z) = e In(x/e)
be as in the proof of Lemma 19.9. For any function f € L} .(Q), € > 0 and
x € Qe :={y € Q: dist(y, Q) > €}, let

fo(@) o= f o) == Tof *n(z) = /Q e — y)dy.

Notice that f. € C*°() and Q. T Q as e | 0.

Given a compact set K C Q let K. := {z € Q : dist(z, K) < €}. Then K, | K as
e | 0, there exists g > 0 such that Ky := K., is a compact subset of Qg := ¢, C Q
(see Figure 38) and for z € K,

f o) = /Q F@)ne(e — y)dy = /K F@)e( — y)dy.

Therefore, using Theorem 11.21,

FIGURE 38. The geomentry of K C Ky C Qp C Q.

”f *Me — f”LP(K) = ||(1K0f) *Ne — 1KOf||LP(K) < H(lKof) *Me — 1K0fHLP(Rd) —0asel0.
Hence, for all f € L} (), f*n. € C*(Q,) and

loc

(19.5) lim 1f % ne = fllLocrey = 0.

Now let p(¢) be a polynomial on R%, u € L{ () such that p(0)u € L (Q) and

loc loc

Ve :=1Ne xu € C°() as above. Then for z € K and € < ¢q,

p(Q)ve(x) = /Q u(y)p(0z)ne(x — y)dy = / u(y)p(=0y)ne(r — y)dy

Q

= /Qu(y)p(—ay)ne(w —y)dy = (u, p(O)nc(x — -))
(19.6) = (p(D)u,ne(z —+)) = (p(9)u), (v).
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From Eq. (19.6) we may now apply Eq. (19.5) with f = w and f = p;(9)u for
1 <1< N to find

N
loe = ull oy + D 121(@)ve = pe(O)ull oy — O as € | 0.
=1

For n € N, let
K,:={zeQ:|z| <nandd(z,Q° > 1/n}

(so K, C K1 C Ky forall n and K, T Q as n — oo or see Lemma 10.10)
and choose v, € C°(Ky,4,[0,1]), using Corollary 11.25, so that ¢, = 1 on a
neighborhood of K,,. Choose €, | 0 such that K, +; C Q. and

N
l[ve,, — uHLP(Kn) + Z [P (9)ve,, _pl(a)“HLp(Kn) <1/n.
=1

Then uy, := ¥, - v, € C°(N) and since u,, = v, on K,, we still have

N
(19.7) l[un — UHLP(KW) + Z [P (O)un — pl(a)uHLP(Kn) <1/n.

=1
Since any compact set K C §) is contained in K? for all n sufficiently large, Eq.
(19.7) implies

N
lim | (| =l o ey + D 1210)tn = pu(O)ull oy | = 0.

n—o00
=1

]
The following proposition is another variant of Proposition 19.12 which the
reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose q € [1,00), p1(§),...,pn(&) is a collection of poly-
nomials in € € RY and v € LI = L9 (Rd) such that p(0)u € LT forl=1,2,...,N.
Then there exists u, € C° (Rd) such that

N

nh_{go lun —ull g + Z [Pe(O)un — pi(O)ull s | = 0.

=1
Notation 19.14 (Difference quotients). For v € R? and h € R\ {0} and a function
u: Q) — C, let
u(z + hv) — u(x)
h

for those x € 2 such that z+ hv € 2. When v is one of the standard basis elements,
e; for 1 < i < d, we will write 0/u(x) rather than 0 u(x). Also let

V'u(z) == (0fu(z),...,0hu(z))

ohu(x) ==

be the difference quotient approximation to the gradient.

Definition 19.15 (Strong Differentiability). Let v € R? and u € L?, then d,u is
said to exist strongly in L? if the limj, o O"u exists in L. We will denote the limit

by &SS)U.
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It is easily verified that if u € LP, v € R% and 05 u € LP exists then 95" u exists
and aff”)u = 8£S)u. The key to checking this assetion is the identity,

B u(z + hv) — u(x)
(Ohu, ¢) = /Rd 5 o(z)dx

(198) = [ e == e — ot ),

Hence if 85" u = limy,_o Ol exists in LP and ¢ € C2°(R?), then

d
<81(}8)u, ¢> = }lblir%)@fu, ¢> = }lli)%<ua a}lv¢> = %|0<ua ¢ ( - h’U)> = —<U, 6v¢>

wherein Corollary 7.43 has been used in the last equality to bring the derivative
past the integral. This shows 61(,w)u exists and is equal to 81(,8)1;. What is somewhat
more surprising is that the converse assertion that if 81(,w)u exists then so does
8£S)u. Theorem 19.18 is a generalization of Theorem 12.39 from L? to LP. For the
reader’s convenience, let us give a self-contained proof of the version of the Banach
- Alaoglu’s Theorem which will be used in the proof of Theorem 19.18. (This is the
same as Theorem 18.27 above.)

Proposition 19.16 (Weak-x Compactness: Banach - Alaoglu’s Theorem). Let X
be a separable Bgnach space and {f,} C X* be a bounded sequence, then there exist
a subsequence { fn} C {fn} such that lim f,(z) = f(x) for allx € X with f € X*.

Proof. Let D C X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f,} C {f.} such that

Ay := lim f,,(z) exist for all x € D. Define f : span(D) — R by the formula

f(z axx) = Z Gz Az

zeD zeD

where by assumption # ({z € D : a; # 0}) < co. Then f : span(D) — R is linear
and moreover f,(y) — f(y) for all y € span(D). Now

[f(y)] = lim |fu(y)| < limsup||full [yl < Clly| for all y € span(D).
n—oo n— o0

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional
on X. We still denote the extension of f by f € X*. Finally, if z € X and y €
span(D)

/(@) = fal@)] < 1f (@) = F@)+ @) = Fa@)] + 1 ]ay) = ful@)]

<l =yl + 1Fall e =yl + 17 () = Fay)]
< 20|z = yll + |f(y) = fuly)] = 2C|lz —y| as n — oc.

Therefore limsup | f(z) — f(z)] <2C||z —y|| = 0asy — . m

n—oo

Corollary 19.17. Let p € (1,00] and g = ﬁ. Then to every bounded sequence
{un}o2y C LP(Q) there is a subsequence {ty,}, ., and an element u € LP(Q) such
that

lim (@, g) = (u,g) for all g € LT ().

n—oo
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Proof. By Theorem 15.14, the map
v € LP(Q) — (v,-) € (L1(Q))"
is an isometric isomorphism of Banach spaces. By Theorem 11.3, L(€) is separable
for all ¢ € [1,00) and hence the result now follows from Proposition 19.16. m

Theorem 19.18 (Weak and Strong Differentiability). Suppose p € [1,00), u €
LP(RY) and v € R4\ {0}. Then the following are equivalent:

(1) There exists g € LP(R?) and {h,}o—, C R\ {0} such that lim, oo h, = 0

and
lim (9, u, ¢) = (g,¢) for all p € C°(RY).
(2) Oy exists and is equal to g € LP(RY), d.e. {(u,0,0) = —(g,¢) for all
¢ € C(RY).

(3) There exists g € LP(R?) and u,, € C°(RY) such that u,, L% w and 8yun 5 g
asn — oo.
(4) 0Su exists and is is equal to g € LP(RY), i.e. O'u — g in LP as h — 0.
Moreover if p € (1,00) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.
1. There exists {hy }ne; C R\ {0} such thatlim, . hp, = 0 andsup,, |9 u
00.

[y <

Proof. 4. = 1. is simply the assertion that strong convergence implies weak
convergence.
1. = 2. For ¢ € C*(R%), Eq. (19.8) and the dominated convergence theorem
implies
(9.6) = lim (01w, ) = lim (u,0"30) = —(u,0,0).
2. = 3. Let n € CX(R%R) such that [p,n(z)de = 1 and let n,,(z) =
mdn(mz), then by Proposition 11.24, h,, := 1, * u € C=(R?) for all m and

avhm,(x) - 1)77m * U / av'rhn T — ( )dy - < 7 av [nm (.73 - )]>

= (g, (T =) = N * g().

By Theorem 11.21, h,,, — u € LP(R?) and 0,k = Nn*g — g in LP(RY) as m — oo.
This shows 3. holds except for the fact that h,, need not have compact support.
To fix this let 1 € C°(R%,[0,1]) such that ¢ = 1 in a neighborhood of 0 and let

Ye(x) = P(ex) and (0y7)), () := (0p) (ex). Then

81} (wehm) = avwehm + wea’uhm =€ (8vw)€ hm + wea’uhm
so that Yehy, — hy, in LP and 0y (Yehim) — Ophy, in LP as € | 0. Let wy, = e, A
where €,, is chosen to be greater than zero but small enough so that

%, Fom — hme + 100 (Ve hom) — avhme <1/m.
Then u,, € C2(R?), u,, — u and dyu,, — g in LP as m — oo.
3. = 4. By the fundamental theorem of calculus
U (T + hv) — U, ()
h

(‘33 U (x) =

1 1
(19.9) = 1 / ium(a: + shv)ds = / (Oytm) (x + shv)ds.
h 0 dS 0
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and therefore,

Ot (1) — Dyt () = /0 (Dot ( + 5hv) — Dyt (2)] ds.

So by Minkowski’s inequality for integrals, Theorem 9.27,

1
(|0 () — avume < / [(Qvum) (- + shv) — Oyunm ||, ds
0

and letting m — oo in this equation then implies

1
|60 — 9|, < /0 lg(: + shv) — g, ds.

By the dominated convergence theorem and Proposition 11.13, the right member
of this equation tends to zero as h — 0 and this shows item 4. holds.

(1. = 1. when p > 1) This is a consequence of Corollary 19.17 (or see Theorem
18.27 above) which asserts, by passing to a subsequence if necessary, that 9" u Zyg
for some g € LP(RY). m

Example 19.19. The fact that (1’) does not imply the equivalent conditions 1 —
4 in Theorem 19.18 when p = 1 is demonstrated by the following example. Let
u = 1jg 1], then
u(x + h) —u(x 1
/ u diL‘ = —/ |1[—h,1—h]($) — 1[071](x)| da: =2
R h h] Jr
for |h| < 1. On the other hand the distributional derivative of u is du(z) = §(x) —
d(x — 1) which is not in L.
Alternatively, if there exists g € L'(R, dm) such that
i U@+ D) — u(@)

n— o0 hn

=g(x) in L'

for some sequence {h,} -, as above. Then for ¢ € C:°(R) we would have on one
hand,

/]R ™ o(x)dx = /]R ™ u(x)dx

. / ¢/ (x)dz = (6(0) — 9(1)) as n — oo,

while on the other hand,

/R hn ¢(x)dr — /Rg(ﬂf)d)(w)dx.

These two equations imply
(19.10) /g(az)q&(w)dw = ¢(0) — ¢(1) for all ¢ € C°(R)
R

and in particular that [, g(x)¢(z)dz = 0 for all ¢ € C.(R\{0,1}). By Corollary
11.28, g(z) = 0 for m — a.e. z € R\ {0,1} and hence g(z) = 0 for m —a.e. x € R.
But this clearly contradicts Eq. (19.10). This example also shows that the unit ball
in L(R, dm) is not weakly sequentially compact. Compare with Example 18.24.

Corollary 19.20. If 1 < p < o0, u € LP such that O,u € LP, then H@[}u“m <
0vull ., for all h # 0 and v € R%.
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Proof. By Minkowski’s inequality for integrals, Theorem 9.27, we may let m —
oo in Eq. (19.9) to find

1
Ohu(x) = / (Dyu) (z + shw)ds for a.e. x € R?
0

and )
|6, < / 1Bvts) (- + sh) | ds = Byt
| |

Proposition 19.21 (A weak form of Weyls Lemma). If u € L*(R%) such that
f = Au e L*(R?) then 0*u € L? (RY) for |a| < 2. Furthermore if k € Ny and
O f e L* (RY) for all |B| <k, then 0°u € L? (R?) for |o| <k + 2.

Proof. By Proposition 19.13, there exists u,, € C° (R?) such that u,, — u and
Au, — Au= f in L? (R?) . By integration by parts we find

IV (un — um)|2 dm = (=A(tun—tm), (Up—um)) 2 = = (f = f,u —u) =0asm,n — oo
Rd

and hence by item 3. of Theorem 19.18, d;u € L? for each i. Since
[Vul|2, = lim / [Vun|? dm = (—Aup,up) 2 — —(f,u) as n — oo
n—oo [pd

we also learn that
2
(19.11) [Vullpe = =(f,u) < fllpe - llullpe -

Let us now consider

d d
Z /]Rd |8¢8jun|2dm =— Z /Rd 0jun020jundm

ij=1 i,j=1

d d
= — Z /Rd 0;un0j Aupdm = Z /Rd 8j2»unAundm
=1 j=1

- / | A [* dm = || Auin [

Replacing u,, by u,, — u,, in this calculation shows

d
Z / |0;0; (un — um)\2 dm = | A(u, — um)Hiz — 0as m,n— oo
Rd

4,j=1

and therefore by Lemma 19.4 (also see Exercise 19.4), 9;0;u € L? (Rd) for all 4, j
and

d
2 2 2
(19.12) S [ ooyl don = sl = 171
Q=1
Combining Egs. (19.11) and (19.12) gives the estimate
a, |12 2 2
S 10 ul2a < JulZa + 1l - ull 2 + 112
la| <2

2
(19.13) = ullze + I Aull 2 - [lull 2 + [ AulZ. .
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Let us now further assume 0;f = 0;Au € L? (R?). Then for h € R\ {0},
Oty € L2(RY) and Adtu = O Au = 9l f € L*(R?) and hence by Eq. (19.13) and
what we have just proved, 0“0 = 0l'0“u € L? and

o 12 2 2
> 10F0 ull o gy < (107 ull e + 1107 £ . - 9 ull 2 + 107 £

|| <2
2 2
< 10sullze +19: 1 2 - 10wl 2 + [10: f 1|2

where the last inequality follows from Corollary 19.20. Therefore applying Theorem
19.18 again we learn that 9;,0%u € L?(R?) for all |a| < 2 and

> 100 ul G gay < 105l + 10:f 1| 2 - 10sull L2 + 1103 f17-

lor]<2

< IVulze +110:f g2 - [Vl 2 + 10:£ 172

<N f e - Null e + 10:f Nz - /I Nz - Nl 2 + 103 f 172

The remainder of the proof, which is now an induction argument using the above
ideas, is left as an exercise to the reader. m

Theorem 19.22. Suppose that Q is a precompact open subset of RY and V is an
open precompact subset of €.
(1) If1 <p < oo, ue LP(Q) and diu € LP(2), then [|00ul| 1oy < 10iull 1o ()
for all 0 < || < dist(V, Q).
(2) Suppose that 1 < p < oo, u € LP(Q)) and assume there exists a constants
Cv < o0 and ey € (0, 3dist(V, Q°)) such that

|08 ul| Lo vy < Cy for all 0 < |h] < ey

Then O;u € LP(V) and || 0yu|| 1r(vy < Cv. Moreover if C := supy q Cv <
oo then in fact O;u € LP(Q) and ||0zul prq) < C.

Proof. 1. Let U C, Q such that V C U and U is a compact subset of Q. For
ue CH(Q)NLP(Q), z € B and 0 < |h| < idist(V,U°),

N 1
0

and in particular,
1
0hu(z)] < / Ou(a + the:)|dt.
0

Therefore by Minikowski’s inequality for integrals,

1
(19.14) [0l Lo vy < / |0u(- + the;)|| e (vydt < [|0;ull e (v)-
0

For general u € LP(Q) with d;u € LP(Q), by Proposition 19.12, there exists
u, € CX(Q) such that u, — u and du,, — du in LY (). Therefore we may

replace u by u, in Eq. (19.14) and then pass to the limit to find

00 ull Lo vy < 105wl Loy < 105ull Loy
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2. If ||0ul| r(vy < Cy for all h sufficiently small then by Corollary 19.17 there
exists h, — 0 such that 9" u % v € LP(V). Hence if ¢ € C°(V),

/ vedm = lim Gf"ucpdm = lim [ u0; " odm,

n—oo n—oo Q
—/u@iap dm = —/uaicp dm.
Q v

Therefore diu = v € LP(V) and ||0;ulprvy < [|vllzrvy < Cv. Finally if C =
supy o Cv < 00, then by the dominated convergence theorem,

l0iul| v () = ‘1}% l0iull v vy < C.

]
We will now give a couple of applications of Theorem 19.18.

Lemma 19.23. Let v € R%.
(1) If h e L' and d,h exists in L', then [, 0,h(x)dz = 0.
(2) Ifp,q,r € [1,00) satisfy r—' =p~ L +q7 ', f € LP and g € L9 are functions
such that 0, f and 0,9 exists in LP and L9 respectively, then 0,(fg) exists in
L™ and 0,(fg) = Oy f - g+ f - Oug. Moreover if r = 1 we have the integration
by parts formula,

(19.15) (Ouf,9) = —(f,0vg).

(3) If p=1, O,f ewists in L' and g € BCY(RY) (i.e. g € C*(RY) with g and
its first derivatives being bounded) then 0,(gf) ewists in L' and 0,(fg) =
Owf g+ f-0vg and again Eq. (19.15) holds.

Proof. 1) By item 3. of Theorem 19.18 there exists h,, € C°(R?) such that
hy,, — h and Oyh,, — Oyh in L'. Then

/ Ophin( dx——o/ hn(x—l-hv)dx:ik)/ by (z)dz =0
d dt R4

and letting n — oo proves the first assertion.

2) Similarly there exists f,,, g, € C°(R%) such that f,, — f and 9, f, — 0, f in
LP and g, — g and 9,9, — 0,¢g in L? as n — co. So by the standard product rule
and Remark 19.2, f,g, — fg € L" as n — oo and

av(fngn) = 8vfn'gn +fn ' avgn - avf'g+f ' avg in L" as n — oo.

It now follows from another application of Theorem 19.18 that 0,(fg) exists in L"
and 0,(fg) = 0y f - g+ f - Opg. Eq. (19.15) follows from this product rule and item
1. when r = 1.

3) Let f,, € C°(R?) such that f, — f and d,f, — O, f in L' as n — oco. Then
as above, gf, — gf in L' and 0,(9fn) — Ouvg - f + gOuf in L' as n — oo. In
particular if ¢ € C>°(R%), then

<gf, av¢> = nlggo@f”’ av¢> = nhlr;o«?v (gfn) 7¢>
= - 7}i_>120<8”g ’ fn + gavfna ¢> = _<avg ) f + gavf7 ¢>

This shows 9, (fg) exists (weakly) and 9,(fg) = Opf - g+ f - Opg. Again Eq. (19.15)
holds in this case by item 1. already proved. m
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Lemma 19.24. Let p,q,7 € [1,00] satisfy p™ ' + ¢t =1+r"1 fe LP ge L4
and v € R4

(1) If Oy f exists strongly in L, then 0,(f * g) exists strongly in LP and
O(f *g) = (Ouf) xg.
(2) If 0,9 exists strongly in L9, then O,(f * g) exists strongly in L" and
Ou(f *g) = [f*0ug.
(3) If O, f exists weakly in LP and g € C2°(R?), then fxg € C®(R%), 9,(f *9g)
exists strongly in L™ and
Ou(fxg)=fx0ug=(0uf)*g.

Proof. Ttems 1 and 2. By Young’s inequality (Theorem 11.19) and simple
computations:

Pl DT g gy g || TLEELET g p) g
. T—hvf_f

_ [T—wvf)]* T
—wf_f

which tends to zero as h — 0. The second item is proved analogously, or just make
use of the fact that f * g = g * f and apply Item 1.
Using the fact that g(z —-) € C2°(R?) and the definition of the weak derivative,

fdug(a / fy ~udy == | f) @ugla—) W)y
= /. O f(y)g(x —y)dy = O, f * g(x).

Item 3. is a consequence of this equality and items 1. and 2. =

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.25. Let Q = (o, 3) C R be an open interval and f € L}, () such
that 0™ f = 0 in L}, .(Q). Then there exists ¢ € C such that f = ¢ a.e. More

generally, suppose F : C°(Q) — C is a linear functional such that F(¢') =0 for
all ¢ € C2(Q), where ¢/ (z) = L p(z), then there exists ¢ € C such that

(19.16) F(¢) ={(c,¢) = / cop(x)dx for all ¢ € C°(2).
Q
Proof. Before giving a proof of the second assertion, let us show it includes the

first. Indeed, if F(¢) := [, ¢fdm and 9™) f = 0, then F(¢') = 0 for all ¢ € C°(1)
and therefore there exists ¢ € C such that

/Q pfdm = () = c(,1) = c /Q ofdm.

But this implies f = c a.e. So it only remains to prove the second assertion.
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Let n € C®(Q) such that [,ndm = 1. Given ¢ € C>*(Q) C C* (R), let
P(x) = [Z (¢(y) = n(y){6,1)) dy. Then ¢/ (z) = ¢(x) —n(x)(¢, 1) and ¢ € C(Q)
as the reader should check. Therefore,

0=F(¢) =F(o—(o.mn) = F(¢) — (¢, 1) F(n)
which shows Eq. (19.16) holds with ¢ = F(n). This concludes the proof, however
it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose f € Li (©) and 0™ f = 0
and fi, := f * 0, as is in the proof of Lemma 19.9. Then f/, =9 (W) £ s m,, = 0,

SO fim = ¢ for some constant ¢, € C. By Theorem 11.21, f,, — f in L}, () and
therefore if J = [a, ] is a compact subinterval of €2,

loc

1
\cmfck|:—/|fmffk|deOasm,kHoo.
b_a J

So {cm}zle is a Cauchy sequence and therefore ¢ := lim,, .o, ¢, exists and f =
limy, oo frn =cae. ®

Theorem 19.26. Suppose f € Li,.(Q). Then there exists a complex measure yu on
Bq such that

(19.17) (1) = (o) = | oy for all 6 € C2(@)

iff there exists a right continuous function F of bounded variation such that F' = f
a.e. In this case p = pp, i.e. p((a,b]) = F(b) — F(a) for all —co < a < b < oo.

Proof. Suppose f = F a.e. where F is as above and let 4 = pup be the
associated measure on Bg. Let G(t) = F(t) — F(—o00) = u((—00,t]), then using
Fubini’s theorem and the fundamental theorem of calculus,

0 =R ) = ~(6.) == [ 00| [ 1enauts)]

//¢:um]ﬁw /¢du (o).

Conversely if Eq. (19.17) holds for some measure p, let F(t) := p((—o0,t]) then
working backwards from above

(& /¢ )i //¢ ooy (8)dltdu(s) /¢

This shows ) (f — F) = 0 and therefore by Proposition 19.25, f = F +c a.e. for
some constant ¢ € C. Since F' + ¢ is right continuous with bounded variation, the
proof is complete. m

Proposition 19.27. Let Q2 C R be an open interval and f € Li,.(Q). Then 9% f
exists in L}, .
all compact subintervals of Q. Moreover, 0V f = f' a.e., where f'(z) is the usual

pointwise derivative.

(Q) iff f has a continuous version f which is absolutely continuous on

Proof. If f is locally absolutely continuous and ¢ € CS°(Q) with supp(¢) C
[a,b] C Q, then by integration by parts, Corollary 16.32,

/Qf'qﬁdm:/abf'¢dm:—Lbf¢’dm+f¢|g=—/(2f¢’dm.
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This shows 9% f exists and 0 f = f’ € L}, .(Q).
Now suppose that 0¥ f exists in L}, .(Q) and a € Q. Define F € C(Q) by
f 0" f(y)dy. Then F is absolutely continuous on compacts and therefore
by fundamental theorem of calculus for absolutely continuous functions (Theorem
16.31), F'(x) exists and is equal to 9" f(x) for a.e. x € Q. Moreover, by the first
part of the argument, 0% F' exists and 0¥ F = 9" f, and so by Proposition 19.25
there is a constant ¢ such that

f(x) := F(z) +c= f(x) for a.e. z € Q.
]
Definition 19.28. Let X and Y be metric spaces. A function u : X — Y is said
to be Lipschitz if there exists C' < oo such that
d¥ (u(z),u(z’)) < Cd¥(z,z’) for all z,2’ € X

and said to be locally Lipschitz if for all compact subsets K C X there exists
Ck < oo such that

d¥ (u(z),u(z")) < CxdX (z,2') for all z,2’ € K.

Proposition 19.29. Letu € LlOC(Q). Then there exists a locally Lipschitz function
@:Q — C such that & = u a.e. iff Ou € L, .(Q) exists and is locally (essentially)
bounded fori=1,2,...,d.

Proof. Suppose u = @ a.e. and 4 is Lipschitz and let p € (1,00) and V be
a precompact open set such that V' C W and let Ve := {z € Q : dist(z,V) < €} .

Then for € < dist(V,0°), V. C Q and therefore there is constant C(V,€) < oo such
that |@i(y) — @(z)| < C(V,e€)|y — x| for all z,y € V.. So for 0 < || <1 and v € R?

with |v| = 1,
/ u(z + hv) — u(x) pdx B / a(z + hv) — a(x) |
v h v h
Therefore Theorem 19.18 may be applied to conclude 0,u exists in LP and moreover,
lim a(z + hv) — a(x)
h—0 h
Since there exists {h,},.; C R\ {0} such that lim, . h, =0 and
Wz + hpv) — a(x)
hy
it follows that ||(9Uu||00 < C(V) where C(V) := lim,|o C(V,¢).
Convelrsely7 let Q. := {z € Q: dist(z, Q) > €} and n € C>(B(0,1), [0, 00)) such
that [;, n(z)dr = 1 Nm(z) = m™y(mz) and u,, = u * 1, as in the proof of

Theorem 19. 18. Suppose V C, Q with V C Q and € is sufficiently small. Then
U € C®(2), Oyt = Otk N, |Optin ()| < ||3Uu||Loo(vm_1) =:C(V,m) < oo and

therefore for x,y € V with |y — x| <,

/Oljt m(@ 4ty — ))dt‘ =

(19.18) g/o ly — 2| - [V (2 + £ty — )| dt < C(V,m) |y — 2

dr < C(V,e)|vl?.

= Oyu(x) for m —a.e. x € V.

|Opu(z)| = lim

n—oo

< C(V) for ae. z €V,

1
/o (y — ) Vug(x+tly — z))dt

[um (y) = um ()| =
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By passing to a subsequence if necessary, we may assume that lim, oo um(z) =
u(z) for m — a.e. x € V and then letting m — oo in Eq. (19.18) implies

(19.19) lu(y) —u(z)| < C(V) |y —z| forall z,y € V\ E and |y —z| < e

where E C V is a m — null set. DeﬁneﬂV:VﬁbeﬂV:_uon X_/\Ec and

ay(z) = limyzg u(y) if z € E. Then clearly 4y = u a.e. on V and it is easy to
Y

show @y is well defined and @y : V — C is continuous and still satisfies
ity (y) — i ()] < Cv ly — | for o,y € V with |y — | < e.
Since @y is continuous on V there exists My < oo such that |ty| < My on V.

Hence if z,y € V with |z — y| > ¢, we find
|av(y) —av ()] _ 2M

ly — x| G
and hence

2M; _
lay (y) — @y (x)] < max {CV, TV} ly — x| for xz,y e V

showing 1wy is Lipschitz on V. To complete the proof, choose precompact open sets
Vi, such that V,, C V,, C V41 C Q for all n and for € V,, let @(z) := dy, (). m
Here is an alternative way to construct the function 4y above. For z € V' \ E|

() — ()| = ] [ e =ty — ute)| - ] [ tute = /m) —u(@ )y

C
< [ tute = y/m) = u@ln)dy < 1 [ 1)y
% mJjv
wherein the last equality we have used Eq. (19.19) with V replaced by V; for some
small € > 0. Letting K := C [, ly|n(y)dy < co we have shown
[ —ull, < K/m —0asm— oo

and consequently

tm — Unll, = [[um — unll, < 2K/m — 0 as m — oo.

Therefore, u,, converges uniformly to a continuous function wy .
The next theorem is from Chapter 1. of Maz’ja [2].

Theorem 19.30. Let p > 1 and Q be an open subset of R, x € R? be written as
r = (y,t) € R xR,

Vi={yeR": ({y} xR)NQ £ 0}
andu € LP(Q2). Then Oyu exists weakly in LP () iff there is a version 4 of u such that

for a.e. y €Y the function t — u(y,t) is absolutely continuous, dyu(y,t) = %

a.e., and ||%||LP(Q) < 00.

Proof. For the proof of Theorem 19.30, it suffices to consider the case where
Q= (0,1)% Write z € Qas x = (y,t) € Y x (0,1) = (0,1)4"1 x (0,1) and dyu for
the weak derivative 0.,u. By assumption

/ Beuly, )] dydt = [Bvull, < By, < oo
Q
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and so by Fubini’s theorem there exists a set of full measure, Yy C Y, such that
/01 |0su(y, t)] dt < oo for y € Yo.

So for y € Yy, the function v(y,t) == fot Oru(y, 7)dr is well defined and absolutely

continuous in ¢ with Zv(y,t) = du(y,t) for a.e. ¢t € (0,1). Let £ € C(Y) and
ne Cx((0,1)), then 1ntegration by parts for absolutely functions implies

1
/ v(y,t) / t)dt for all y € Y.
0

Multiplying both sides of this equation by &(y) and integrating in y shows

/ v(z)n(t)E(y)dydt = / y)dydt = / Oru(y, t)n(t)€é(y)dydt.
Q
Using the definition of the weak derivative, this equation may be written as
/ u(x)n(t)E(y)dydt = / Opu(x (y)dydt
Q

and comparing the last two equations shows

/Q [v(z) — u(x)]n(t)E(y)dydt = 0.

Since £ € C2°(Y) is arbitrary, this implies there exists a set Y1 C Yp of full measure
such that

| 006) =ty )ity =0 for all y € Y3

from which we conclude, using Proposition 19.25, that u(y,t) = v(y,t) + C(y) for
t € J, where mq_; (Jy) = 1, here m;, denotes k — dimensional Lebesgue measure.
In conclusion we have shown that

(19.20)  u(y,t) = aly, / Oru(y, 7)dT + C(y) for all y € Y7 and t € J,,.

We can be more precise about the formula for @(y,t) by integrating both sides
of Eq. (19.20) on t we learn

C(y):/Oldt/otaTu(y,T)dT—/Olu(y,t)dt:/01 (1—T)@Tu(y,T)dT—/Olu(y,t)dt

1
- /O (1 —1) dyuly,t) — uly,t)] dt

and hence

_ / O,uly, T)dr + / (1= 1) Bruly, 7) — uly, 7)) dr

which is well defined for y € Yj.
For the converse suppose that such a @ exists, then for ¢ € C° (2),

[ wtw ot vt = [ 00000, 0dedy =~ [ FRED oy, atay

wherein we have used integration by parts for absolutely continuous functions. From
6u(y t)

this equation we learn the weak derivative dyu(y,t) exists and is given by
a.e. W
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19.3. Exercises.
Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use u, as defined in the proof
of Proposition 19.12 to show it suffices to consider the case where u € C*° (Rd) N
L (R?) with 0%u € L? (R?) for all @ € N§. 2. Then let ¢ € C°(B(0,1),]0,1])
such that ¢y = 1 on a neighborhood of 0 and let u,(z) := u(z)y(x/n).

Exercise 19.3. Suppose p(¢) is a polynomial in ¢ € R, p € (1,00), q : pf
u € LP such that p(0)u € LP and v € L7 such that p (—9) v € L9. Show (p (9) u,v)
(u,p (=0)v).

Exercise 19.4. Let p € [1,00), a be a multi index (if & = 0 let 3° be the identity
operator on L?),

D(0%) :={f € LP(R™) : 0“f exists weakly in LP(R")}
and for f € D(9%) (the domain of 9%) let 9 f denote the o — weak derivative of f.
(See Definition 19.3.)
(1) Show 0“ is a densely defined operator on LP, i.e. D(0%) is a dense linear

subspace of LP and 0% : D(0%) — L” is a linear transformation.
(2) Show 9% : D(9%*) — LP is a closed operator, i.e. the graph,
P(0°) = {(£.0°f) € P x L7 : f € D(@")},
is a closed subspace of LP x LP.

(3) Show 9% : D(9%) C L? — LP is not bounded unless o = 0. (The norm on
D(0%) is taken to be the L — norm.)

Exercise 19.5. Let p € [1,00), f € L? and « be a multi index. Show 9*f exists
weakly (see Definition 19.3) in LP iff there exists f, € C°(R") and g € L? such
that f, — f and 0%“f,, — g in LP as n — oo. Hints: See exercises 19.2 and 19.4.

Exercise 19.6. Folland 8.8 on p. 246.

Exercise 19.7. Assume n =1 and let d = §,, where e; = (1) € R = R.
(1) Let f(z) = |z|, show Of exists weakly in L}, .(R) and df(x) = sgn(z) for

m—a.e. .

(2) Show 9(0f) does not exists weakly in L} (R).

(3) Generalize item 1. as follows. Suppose f € C(R,R) and there exists a finite
set A= {t; <ty <--- <ty} C R suchthat f € C}Y(R\ A,R). Assuming
of € L}, (R), show 0f exists weakly and ") f(x) = 0f (z) for m — a.e. z.

Exercise 19.8. Suppose that f € L}, () and v € R? and {e; }?:1 is the standard

basis for R If 9; f := 9., f exists weakly in L}, (Q) for all j = 1,2,...,n then 8, f
exists weakly in Lloc( ) and 9, of =251 vi0; f.

Exercise 19.9. Suppose, f € L. _(R%) and 0,f exists weakly and 9,f = 0 in
L} (RY) for all v € RY. Then there exists A € C such that f(x) = \ for m — a.e.

loc

r € R% Hint: See steps 1. and 2. in the outline given in Exercise 19.10 below.

Exercise 19.10 (A generalization of Exercise 19.9). Suppose 2 is a connected
open subset of R? and f € L}, .(Q). If 8 f = 0 weakly for o € Z'} with |a| = N +1,
then f(z) = p(z) for m — a.e. & where p(z) is a polynomial of degree at most N.
Here is an outline.
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(1) Suppose zg € Q and € > 0 such that C := C,,(e) C © and let n, be a
sequence of approximate ¢ — functions such supp(n,) C Bo(1/n) for all n.
Then for n large enough, 0%(f xn,) = (0% f) *n, on C for |a| = N +1. Now
use Taylor’s theorem to conclude there exists a polynomial p,, of degree at
most N such that f, = p, on C.

(2) Show p := lim,, o Py, exists on C' and then let n — oo in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and ¢ are two polynomials on R¢ which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 19.11. Suppose  C, R? and v,w € R%. Assume f € L} (Q) and that

loc

0,0, f exists weakly in L} (Q), show 8,0, f also exists weakly and 0,0, f = 0,0, f.

loc

Exercise 19.12. Let d = 2 and f(z,y) = 1,>0. Show 911 f = 0 weakly in L}
despite the fact that 9; f does not exist weakly in L}, !
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20. FOURIER TRANSFORM

The underlying space in this section is R” with Lebesgue measure. The Fourier
inversion formula is going to state that

(20.1) fla) = (%) [ asess [ avsyes

If we let £ = 27, this may be written as
f@) = [ e [ aype e

and we have removed the multiplicative factor of (%)n in Eq. (20.1) at the expense
of placing factors of 27 in the arguments of the exponential. Another way to avoid
writing the 27’s altogether is to redefine dx and d§ and this is what we will do here.

Notation 20.1. Let m be Lebesgue measure on R™ and define:

dz = (\/%)n dm(z) and d¢ = (#)n dm(¢).

To be consistent with this new normalization of Lebesgue measure we will redefine

11, and (7.g) as
i, = ([ 1sras) = ((%)/ [ If(x)lpdm(w)>

(f,g) = . f(z)g(z)dz when fg € L.

1/p
and

Similarly we will define the convolution relative to these normalizations by f¥g :=
/2 )
(%)n fxg,ie.

1\™?
k(@) = [ fla—)gly)dy = f(w—y)g(y)< ) dm(y).

Rn Rn 2T

The following notation will also be convenient; given a multi-index a € Z, let
‘05| :a1+"'+an7

N n o N a « n a Q5
%= l_Ilmj , 0y = <%> = H <8_x]) and
j=

=1
|| @ @

o (1 0 _ (10

n-(3) () -(&) -

(@) = (1 +[2f*)'/?

Also let

and for s € R let
vs(z) = (1 + [z[)*.
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20.1. Fourier Transform.

Definition 20.2 (Fourier Transform). For f € L, let
(20.2) FQ =)= [ sy
(203) 9'(@) = Flgla) = [ egle)de = Fo(-)

The next theorem summarizes some more basic properties of the Fourier trans-
form.
Theorem 20.3. Suppose that f,g € L'. Then
) f e Con) and ||f]| <71,

2) Fory € R", (,f) (&) = eV f(€) where, as usual, 7, f(x) := f(z —y).
3) The Fourier tmrALsform takes convolution to products, i.e. (f¥g) = fg
4; For f,g € L', (f.9) = (.9)-
5

If T : R™ — R” is an invertible linear transformation, then
(FoT)" (&) =det T| " F((T)"€) and
(foT)" () = |det T| ™ fY((T7")"¢)
(6) If 1+ |z))F f(z) € L, then f € C* and 0*f € Cy for all |a) < k. Moreover,
(20.4) g f(6) = F [(—ia)® f(2)] (€)

for all |a| < k.
(7) If f € C* and 8°f € L' for all |o| < k, then (1 + €))% f(&) € Cy and
(205) (0°f) (&) = &) f(©)

for all |a| < k.
(8) Suppose g € LY(R*) and h € L*(R" %) and f = g® h, i.e.

flx)=g(x1,...,x6)h(Tps1, ..., Tn),
then f =§® h.

(1
(
(
(
(

*

Proof. Item 1. is the Riemann Lebesgue Lemma 11.27. Items 2. — 5. are
proved by the following straight forward computations:

)@ = [ e —pdo= [ @ = refie)

()= [ Fo@de = [ ago(e) [ dne s

- / dadgeEg(€) f(x) = / dz(a) () = {f.4),
R™ xR"™ R™ xR™

(ko) (© = [ e kgl = / 6( fa - ><>dy)dw

/dy/ dze < f(x —y) /dy/ dae T f(2)g(y)

= [ vt [ e @) = foa)

R™
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and letting y = Tz so that dz = |det 7| ' d
(Fo1) (€)= [ e fTndo= [ T AT dy
=|detT|"" f((T71)" ).

Item 6. is simply a matter of differentiating under the integral sign which is easily
justified because (1 + |z|)* f(x) € L.

Item 7. follows by using Lemma 11.26 repeatedly (i.e. integration by parts) to
find

n

f) = /]Rn 8;;Xf(.%‘)e_u§dx = (_1)|a\ f(w)a;e_i%'fdx

Rn

= (=Dl [ f@) (=i e ™ dw = (i) f(€).

Rn

Since 9 f € L* for all |a| < k, it follows that (i€)*f(€) = (8°f) (£) € Cy for all
|a| < k. Since

(1+|€| <1+Z|£t> = Z Ca |€7]

la|<k
where 0 < ¢, < 00,

A+ O] < D e

| <k

50‘ ‘—>Oas§—>oo

Item 8. is a simple application of Fubini’s theorem. m

Example 20.4. If f(z) = e~171°/2 then f(é) = e~1€°/2 in short

(20.6) Fele1?/2 — o~1€1/2 gnq F1e-161%/2 — o~lz?/2,
More generally, for ¢ > 0 let

(20.7) pi(w) =t 2wl

then

(20.8) P(6) = e 517 and (5,)Y(z) = pi(a).

By Item 8. of Theorem 20.3, to prove Eq. (20.6) it suffices to consider the 1 —
dimensional case because e~1717/2 = [Tr_, e=%i/2. Let g(¢) := (.7:6_””2/2> (€), then
by Eq. (20.4) and Eq. (20.5),

(20.9)
d

§(&) = F [(-iz)e %] (¢) = iF [_

dzr

2| (© = i) F [ () = ~a(6)
Lemma 8.36 implies

. 1 -
g(0) = / e 2dy = —— e_‘2/2dm(x) =1,
R 2m Jr

and so solving Eq. (20.9) with ¢g(0) = 1 gives F [e*"’”2/2] (&) = g(&) = e /2 as

desired. The assertion that F~1e~I6I°/2 = e=1#I°/2 follows similarly or by using Eq.
(20.3) to conclude,

FU e €] (@) = F 17 2] (@) = F [ 112) (@) = 1ol
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The results in Eq. (20.8) now follow from Eq. (20.6) and item 5 of Theorem 20.3.
For example, since p;(x) = t~"/?py(x/V/1),

(B)() =t/ (V) pa(Vig) = e 3I",
This may also be written as (p;)(£) = t‘"/Qp% (€). Using this and the fact that p;
is an even function,
(Dr)Y (z) = Fpe(—x) = t_"/zfp%(—m) =t 2p (—z) = pi(x).
20.2. Schwartz Test Functions.

Definition 20.5. A function f € C'(R",C) is said to have rapid decay or rapid
decrease if

sup (1+ |z))V | f(x)| < oo for N =1,2,....
TER™

Equivalently, for each N € N there exists constants Cy < oo such that |f(x)] <
Cn(1+ |z)~ for all z € R™. A function f € C(R",C) is said to have (at most)
polynomial growth if there exists N < oo such

sup (1+ [2]) ™ |f(@)] < oc,
i.e. there exists N € N and C < oo such that |f(z)] < C(1 + |z|)V for all z € R™.

Definition 20.6 (Schwartz Test Functions). Let S denote the space of functions
f € C*(R™) such that f and all of its partial derivatives have rapid decay and let

1l = sup [(1+[z)NO* f(2)|
TER™
so that
S= {f € C(R") : || .o < oo for all N and a}.

Also let P denote those functions g € C°°(R"™) such that g and all of its derivatives
have at most polynomial growth, i.e. g € C*°(R") is in P iff for all multi-indices
a, there exists N, < oo such

sup (1 + |z]) ™™ |0%g(x)| < oo.
(Notice that any polynomial function on R™ is in P.)
Remark 20.7. Since C2°(R™) C S C L% (R"), it follows that S is dense in L?(R").
Exercise 20.1. Let

(20.10) L= )" au(x)0"

loe| <k
with a, € P. Show L(S) C S and in particular 0*f and x®f are back in S for all
multi-indices o.

Notation 20.8. Suppose that p(z,&) = ¥|q)<na(2)§* where each function a,(x)
is a smooth function. We then set

p(z,Dy) := E|a‘gNaa(x)Dg
and if each a, () is also a polynomial in z we will let
p(=Dg, §) = Ejaj<Naa(—Dg) Mo

where Mo is the operation of multiplication by £“.
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Proposition 20.9. Let p(x,&) be as above and assume each a,(x) is a polynomial
in x. Then for f € S,

(20.11) (p(z, Do) f)" (€) = p(—De, &) f (€)
and
(20.12) p(&,De) f(€) = [p(Da, —2) £ ()] (€).

Proof. The identities (—Dg)® e7™¢ = %~ and D% = (%€ imply,
for any polynomial function g on R"”,

(2013)  q(~De)e ™ = gla)e "¢ and g(D,)e™ € = g(€)e"<.

Therefore using Eq. (20.13) repeatedly,

(p(z, D) / D aa(@)DS f(x) - e tdE

la| <N
/ Z Dy f(x) - an( Dg)efix'gdf
la| <N
= [ @ X (=D2)" [aa(=Dee ] ag
\a|<N
f@) > aa(=D¢) [*e™ €] d€ = p(—De, &) f (€)
R la]<N

wherein the third inequality we have used Lemma 11.26 to do repeated integration
by parts, the fact that mixed partial derivatives commute in the fourth, and in the
last we have repeatedly used Corollary 7.43 to differentiate under the integral. The
proof of Eq. (20.12) is similar:

P(&, De)f(€) = (€. De) nf(x)e*”fdm: nf(x)p(s,me%ﬁdx

=X aa(§)e " tda = Y ®aq (~ D, )" da

Rn Rn

la|<N la|<N
— Z ‘/n e*lwgao{(DT) [(7x)0‘f(x)} dx = [p(DZ’ 71,)]0(1,)]/\(5)
le|<N

]
Corollary 20.10. The Fourier transform preserves the space S, i.e. F(S) C S.

Proof. Let p(z,§) = Z‘a|<Nao,( x)€* with each a,(z) being a polynomial func-

tion in z. If f € S then p(D,,—x)f € S C L! and so by Eq. (20.12), p(§,D5)f(§)
is bounded in &, i.e.

sup [p(¢, D) f(€)] < Clp, f) < oc.
ceRr

Taking p(z, &) = (1 + |¢]*)Né™ with N € Z, in this estimate shows f(¢) and all of
its derivatives have rapid decay, i.e. fisin S. ®
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20.3. Fourier Inversion Formula .

Theorem 20.11 (Fourier Inversion Theorem). Suppose that f € L' and felLt
then

(1) there exists fo € Co(R™) such that f = fy a.e.

(2) fo=F'F [ and fo=FFf,

(3) f and f are in L' N L™ and

@ 1712 = ||, -

In particular, F : § — S is a linear isomorphism of vector spaces.

Proof. First notice that f € Cp (R™) C L and f € L' by assumption, so that
f e L'NL>®. Let py(x) = t=n/2¢= 312" he as in Example 20.4 so that pe(&) = e~ 5l
and pY = p;. Define fo := fV € Cy then

folw) = (1)Y@)= | FOrag=tim [ [ Pie)de

10

= lim F)es @v5,(&)de dy
t|0 n JRn

= lim / fWp(y)dy = f(z) ae
l,O R

wherein we have used Theorem 11.21 in the last equality along with the observations
that p(y) = p1(y/V1t) and [5, p1(y)dy = 1. In particular this shows that f €
L' N L. A similar argument shows that F~'F f = f; as well.

Let us now compute the L? — norm of f ,

1F2= [ Fei©de= [ acie) / daf(@)es
Rn

R” n

- / _dr f(a) / _dgf(ete
dz f(z)f(z) = |1 £13

n

because [, d&f(€)ei € = F~1f(z) = f(z) a.c. m

Corollary 20.12. By the B.L. T Theorem 4.1, the maps F|s and F~|s extend to
bounded linear maps F and F~' from L? — L2 These maps satisfy the following
properties:

5~

(1) F and F~! are unitary and are inverses to one another as the notation
suggests. ~ -
(2) For f € L? we may compute F and F~1 by

(20.14) Ff(€) =L* lim f(x)e®¢dx and
R=00 Jia|<r

(20.15) FLf(€) =L lim f(2)e™du.
R—o0 |z|<R
(3) We may further extend F to a map from L' + L? — Co + L? (still denote
by F) defined by Ff = h+Fg where f = h+g € L*+L2. For f € L* + L2,
Ff may be characterized as the unique function F € L} (R™) such that

(20.16) (F, ¢) = (f, @) for all ¢ € C°(R™).

loc
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Moreover if Eq. (20.16) holds then F € Cy+L* C L}, .(R") and Eq.(20.16)
is wvalid for all ¢ € S.

Proof. Item 1., If f € L? and ¢,, € S such that ¢, — f in L2, then Ff :=

lim,, o0 ¢n. Since (ﬁn € 8 C L', we may concluded that ‘ b , = |onll, for all n.
Thus - .
|75, = Jim |[dn = tim ligully = 11£1l,

which shows that F is an isometry from L? to L? and similarly F~! is an isometry.
Since F~1F = F~1F = id on the dense set S, it follows by continuity that F~1F =
id on all of L2. Hence FF ' = id, and thus F~! is the inverse of F. This proves
item 1.

Item 2. Let f € L? and R < oo and set fr(x) := f(x)15<gr- Then fr € L'NL?.
Let ¢ € C°(R™) be a function such that [,, ¢(z)dz = 1 and set ¢y (z) = k"¢ (kx).
Then frkor — fr € L' N L% with frkgr € C°(R™) C S. Hence

ﬁfR = sz khm ]:(fR*(bk) = ffR a.e.
where in the second equality we used the fact that F is continuous on L'. Hence
f‘w|<Rf(x)e*i"”"5dac represents Ffr(¢) in L2. Since fr — f in L%, Eq. (20.14)

follows by the continuity of F on L2.
Item 3. If f=h+g€ L'+ L? and ¢ € S, then

(h+ Fg,0) = (h,0) + (Fg,6) = (h.¢) + lim (F (91 <r) . ®)
(20.17) = (h, ) +1%ilnoo<gl|"33’$> =(h+9,9).

In particular if h + g = 0 a.e., then (h+ Fg,¢) = 0 for all ¢ € S and since
h+ Fg e L) it follows from Corollary 11.28 that i+ Fg = 0 a.e. This shows that
Ff is well defined independent of how f € L' + L? is decomposed into the sum
of an L' and an L? function. Moreover Eq. (20.17) shows Eq. (20.16) holds with

F=h+FgeCy+L?and ¢ € S. Now suppose G € Ll and (G, ) = (f, ¢) for

loc

all ¢ € C°(R™). Then by what we just proved, (G, ¢) = (F, ¢) for all ¢ € C°(R"™)
and so an application of Corollary 11.28 shows G = F € Cp + L?. m

Notation 20.13. Given the results of Corollary 20.12, there is little danger in
writing f or Ff for Ff when f € L' + L2.

Corollary 20.14. If f and g are L' functions such that f,f] € L', then
F(fg) = fhkg and F7'(fg) = [V Hkg".

Since S is closed under pointwise products and F : S — S is an isomorphism it
follows that S is closed under convolution as well.

Proof. By Theorem 20.11, f, g, f,§ € L' N L™ and hence f-g € L' N L* and
f%g € LN L>. Since

F(fwg) =F () F @ =fger!
we may conclude from Theorem 20.11 that
fhig=FF(f%g) = F(f -9
Similarly one shows F~1(fg) = fV%g’. =
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Corollary 20.15. Let p(x,&) and p(z, D,;) be as in Notation 20.8 with each func-
tion an () being a smooth function of x € R™. Then for f € S,

(20.19) P D)) = [ plaOF (O de.
Proof. For f € S, we have
P, D2) () = pla, Do) (F71F) (@) = pla, De) | (€)™ 4dle

- [ Hopapaertac = [ Fon e ac

If p(x,&) is a more general function of (z,&) then that given in Notation 20.8,
the right member of Eq. (20.18) may still make sense, in which case we may use it
as a definition of p(x, D;). A linear operator defined this way is called a pseudo
differential operator and they turn out to be a useful class of operators to study
when working with partial differential equations. m
Corollary 20.16. Suppose p(§) = Z\aISN ao€® 1s a polynomial in £ € R™ and

f € L2 Then p(d)f exists in L? (see Definition 19.3) iff ¢ — p(i€)f(¢) € L? in
which case

(P(@)f) (€) =p(E)F(€) for a.c. &
In particular, if g € L? then f € L? solves the equation, p(d)f = g iff p(i€)f(€) =
§(&) for a.e. &.

Proof. By definition p(9)f = g in L? iff
(20.19) (9,0) = (f,p(=0)¢) for all ¢ € C°(R").

If follows from repeated use of Lemma 19.23 that the previous equation is equivalent
to

(20.20) (9,0) = (f,p(—0)¢) for all ¢ € S(R").

This may also be easily proved directly as well as follows. Choose ¢ € C°(R"™)
such that ¢(x) = 1 for © € By(1) and for ¢ € S(R™) let ¢, (x) := (x/n)p(z). By
the chain rule and the product rule (Eq. A.5 of Appendix A),

0%pn(z) = « =18l (361/,) (x/n) - 3a76¢($)
=)

along with the dominated convergence theorem shows ¢,, — ¢ and 0%¢,, — 0“¢ in
L? as n — oo. Therefore if Eq. (20.19) holds, we find Eq. (20.20) holds because

(9.6) = lm (9.6,) = lim (£.p(~D)6,) = (£.p(~D)0).
To complete the proof simply observe that (g, ¢) = (g, ¢") and

(f,p(=0)0) = ([, [p(=0)d]") = (F(€), p(i€)8" (€))
= (p(i€) £(€), 8" (£))

for all ¢ € S(R™). From these two observations and the fact that F is bijective on
S, one sees that Eq. (20.20) holds iff £ — p(i€) (&) € L? and §(&) = p(i€) f(€) for
a.e £ m
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20.4. Summary of Basic Properties of F and F~!. The following table sum-
marizes some of the basic properties of the Fourier transform and its inverse.

f — for fv
Smoothness «— Decay at infinity
9« «—— Multiplication by (£i£)®
S — S
L2 (R") - L2 (R")
Convolution +«— Products.

20.5. Fourier Transforms of Measures and Bochner’s Theorem. To moti-
vate the next definition suppose that p is a finite measure on R™ which is absolutely
continuous relative to Lebesgue measure, du(z) = p(x)dz. Then it is reasonable to
require

(&) == p(&) = / e p(a)da = / e " dp(x)
and

(1) (z) == pkg(a) = /

Rn

ola =)o)z = [ gla—u)du(y)

when ¢g : R™ — C is a function such that the latter integral is defined, for example
assume g is bounded. These considerations lead to the following definitions.

Definition 20.17. The Fourier transform, i, of a complex measure p on Bgrn is
defined by

(20.21) (e = [ e aula)

and the convolution with a function g is defined by

(ukg) (z) = / oz — v)du(y)

n

when the integral is defined.

It follows from the dominated convergence theorem that fi is continuous. Also
by a variant of Exercise 11.11, if x4 and v are two complex measure on Bgn such
that it = 0, then p = v. The reader is asked to give another proof of this fact in
Exercise 20.4 below.

Example 20.18. Let o; be the surface measure on the sphere S; of radius ¢ centered
at zero in R3. Then

54(6) :4msmt|§\
€]
Indeed,
G+ (&) :/ e 8 do () :t2/ e~ o ()
52 52
2m ™
= t? / e lldo () = 12 / df / dg sin e o5 ?I¢]
52 0 0

sint |¢|
tlel

1
= 27rt2/ e~ MulEl dy = 2712 e ultlu=l | = amt?
—1

—it [¢]
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Definition 20.19. A function y : R" — C is said to be positive (semi) definite
iff the matrices A := {x(& — Ej)}Zszl are positive definite for all m € N and

{fj};-n:l C R™.
Lemma 20.20. If y € C(R",C) is a positive definite function, then
(1) x(0) = 0.
x(=&) = x(€) for all € € R™.

(2)
(3) Ix(&)] < x(0) for all £ € R™.
(4) For all f € S(RY),

(20.22) | xe=nr©Tamded > o.

Proof. Taking m = 1 and & = 0 we learn x(0)[A]*> > 0 for all A € C which
proves item 1. Taking m = 2, £&; = € and &; = n, the matrix

o x(0)  x(&—mn)
A= { x(n—=¢&  x(0) }

is positive definite from which we conclude x(£ —n) = x(n — &) (since A = A* by
definition) and

x(0)  x(&-mn) ] 2 2
0 < det = [v(0)|® — _ )
<dot | MO ] = ) - s
and hence |x(§)] < x(0) for all & This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (20.22) by Riemann sums,

/R e mOTmsdn = T |3 X6~ ()T 20

The details are left to the reader. m

Lemma 20.21. If p is a finite positive measure on Bgn, then x := i € C(R",C)
s a positive definite function.

Proof. As has already been observed after Definition 20.17, the dominated
convergence theorem implies i € C(R"™,C). Since p is a positive measure (and
hence real),

=6 = [ e duta) = [ emierduta) = R,
From this it follows that for any m € N and {@};n:l C R”, the matrix A =
{(& — &)}y =, is self-adjoint. Moreover if A € C™,
m m m

Z (fk_fg )\k/\ _/ Z e~ & —&;) I)\k/\ dﬂ( ) / Z e—iék-:c/\kefigj.a:/\jd'u(m)

n

k,j=1 k,j=1 k,j=1

2
/ Z 67251‘ .V

dp(x) = 0
k=1
showing A is positive definite. ®

Theorem 20.22 (Bochner’s Theorem). Suppose x € C(R™,C) is positive definite
function, then there exists a unique positive measure p on Brn such that x = [i.
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Proof. If x(§) = i(€), then for f € S we would have

fp = / ) du= [ FOnede
Rn R™ R™

This suggests that we define
1) = [ O ©d forall f € 5,

We will now show I is positive in the sense if f € S and f > 0 then I(f) > 0. For
general f € S we have

102 = [ @ (197) (@ = [ ) (a7 ©)de
= [ x@ (- nds = / (€)Y (€ — )T mdnde
R’Vl
X(€&=n)fY(€)fY(n)dnde > 0.

For t > 0 let py () := t—"/2¢~121*/2t ¢ S and define

Iepi(a) = I(py(x — - ’\/ptT’

which is non-negative by above computation and because y/pi(z —-) € S.
Using

n

[pe(z — )]V &)= / pe(x — y)eiy'gdy = /" pt(y)ei(y'*'””)'gdy

= elwgp;/(g) — eiw'567t|€|2/2,

(v} = [ 1oute = Do@)de = [ [ 3Ol =] ©vla)deda
= [ w1 a

which coupled with the dominated convergence theorem shows
(Ikpe, ¥ —>/ (&)dE=1(v) ast | 0.

Hence if ¢ > 0, then I(¢) = limy o (I %ps, 1) > 0.

Let K C R be a compact set and ¢ € C.(R,[0,00)) be a function such that
v =1on K. If f € C*(R,R) is a smooth function with supp(f) C K, then
0<|[fllo® — f €S and hence

0<{Lflloct = F) = 1flloo (L, 80) = (L, f)
and therefore (I,f) < | f|l. (I,¢). Replacing f by —f implies, —(I,f) <
| fll (I,%) and hence we have proved
(2023) {1.5] < Coupp(1) 1.

for all f € Dpn := C(R",R) where C(K) is a finite constant for each compact
subset of R™. Because of the estimate in Eq. (20.23), it follows that I|p,, has a
unique extension I to C.(R™,R) still satisfying the estimates in Eq. (20.23) and
moreover this extension is still positive. So by the Riesz — Markov theorem, there
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exists a unique Radon — measure p on R™ such that such that (I, f) = u(f) for all
f € C.(R"R).
To finish the proof we must show i(n) = x(n) for all n € R™ given

p(H) = [ (O ©de for all f € CE (R )

Let f € C°(R™,Ry) be a radial function such f(0) = 1 and f(z) is decreasing as
|z| increases. Let fe(z) := f(ex), then by Theorem 20.3,

§—n
€

FH e fe(@)] (&) = " fY(

and therefore
(20.24) /ne‘“’xfe(ar)du(m)Z/n x(§)e ‘”fv('E 77) d¢.

Because [g, fY(§)dé = FfY(0) = f(0) = 1, we may apply the approximate ¢ —
function Theorem 11.21 to Eq. (20.24) to find

(20.25) / e~ f(x)du(z) — x(n) as € | 0.

On the the other hand, when 7 = 0, the monotone convergence theorem implies

w(fe) T (1) = u(R™) and therefore p(R™) = p(1) = x(0) < co. Now knowing the

1 is a finite measure we may use the dominated convergence theorem to concluded
ple™™ fe(x)) — ple™) = (n) as e L 0

for all 7. Combining this equation with Eq. (20.25) shows fi(n) = x(n) for all

neR" m

20.6. Supplement: Heisenberg Uncertainty Principle. Suppose that H is a
Hilbert space and A, B are two densely defined symmetric operators on H. More
explicitly, A is a densely defined symmetric linear operator on H means there is
a dense subspace D4 C H and a linear map A : D4 — H such that (A¢,v) =
(¢, A) for all ¢, € Dy. Let Dap :={¢p € H: ¢ € Dp and Bp € D4} and for
¢ € Dap let (AB) ¢ = A(B¢) with a similar definition of D4 and BA. Moreover,
let Do :=Dap NDpa and for ¢ € D¢, let

Co = %[A, Bl — % (AB — BA) 6.
Notice that for ¢, € Do we have
(C6,) = = {(ABo, ¥) — (BAG, 1)} = = {(Bo, Av) — (A6, Bu)}
= = (6, BAY) — (6, ABY)} = (6,C9)

so that C' is symmetric as well.

Theorem 20.23 (Heisenberg Uncertainty Principle). Continue the above notation
and assumptions,

(20.26) 21,00 < 146 — (6, 4v) -/ IBYI — (v, BY)
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for all Y € De. Moreover if ||| = 1 and equality holds in Eq. (20.26), then
(A= (¢, AY))Y = iX(B — (¢, BY))¥ or

(20.27) (B = (¢, BY)) = iAp(A — (¢, AY))¢

for some \ € R.

Proof. By homogeneity (20.26) we may assume that [|¢[| = 1. Let a := (¢, Ay),
b= (1),B), A= A—al, and B = B — bl. Then we have still have

[A,B] = [A—al,B - bl =iC.
Now
,Bly) = (v, ABv) — (¢, BAY)

i1, CY) = (4,iCY) = (¥, [4
(BY, Ap) = 2ilm(Ay, By)

= (A, By) -
from which we learn
(0, )| = 2|tm(Ay, By)| < 2|(Ay, By)| < 2|4y |By|

with equality iff Re(Aw, By) = 0 and At and Bt are linearly dependent, i.e. iff
Eq. (20.27) holds.
The result follows from this equality and the identities

A = 14w — @ = 1412 + a® 0] ~ 20 Re( v )
= [[4¥]* +a? - 20* = [ AYI|* ~ (A4:,0)

and
|Be|| = 1ol - (Bo,v).
]
Example 20.24. As an example, take H = L*(R), A = 18 and B =
M, with Dy = {feH:f eH} (f is the weak derlvatlve) and Dp
{f €H: [ |of(x))*de < oo} . In this case,

Dec={feH:f zf and zf arein H}

and C' = —I on D¢. Therefore for a unit vector ¢ € D¢,

1 1
TR

IR
2
where a =i [ ¢/dm *? and b= [Lx [1(z)|> dm(z). Thus we have

1 1 . 2
@028 =1 [Wlan< [-ap [im)] db- [ @b ).

4 4 Jr R R

39The constant a may also be described as
a:i/Rth/Jdm: 27r7,/¢Y (&)d¢
N 2
= [e|o]" amie).
R
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Equality occurs if there exists A € R such that

1
iz —b)Y(x) = (;8;” —a)y(z) ae.
Working formally, this gives rise to the ordinary differential equation (in weak form),
(20.29) Ve = [-Ma —b) + ia] ¢

which has solutions (see Exercise 20.5 below)

(20.30) ¢ = Cexp (/R [~A(x — b) +ia] da:> = Cexp (—%(m —b)? + iax) .

Let A = & and choose C so that ||, =1 to find

1\ 1
Ytap(T) = <§> exp <—E(x —b)? + iax)

are the functions which saturate the Heisenberg uncertainty principle in Eq. (20.28).
20.6.1. Ezercises.

Exercise 20.2. Let f € L?(R") and « be a multi-index. If 9% f exists in L?(R")
then F(9°f) = (i€)* £(€) in L2(R™) and conversely if (5 Iy f(g)) € L*(R") then
0°f exists.
Exercise 20.3. Suppose p(¢) is a polynomial in ¢ € R? and v € L? such that
p(0)u € L% Show

F(p(9)u) (€) = p(i&)a(§) € L?.
Conversely if u € L? such that p(i€)d (£) € L?, show p (0) u € L.

Exercise 20.4. Suppose p is a complex measure on R™ and () is its Fourier
transform as defined in Definition 20.17. Show p satisfies,

() = / (e = (@) = [ ddpforal g€ S

R’Vl
and use this to show if p is a complex measure such that 4 = 0, then p = 0.

Exercise 20.5. Show that 1 described in Eq. (20.30) is the general solution to
Eq. (20.29). Hint: Suppose that ¢ is any solution to Eq. (20.29) and v is given
as in Eq. (20.30) with C = 1. Counsider the weak — differential equation solved by
o/Y.

20.6.2. More Proofs of the Fourier Inversion Theorem.

Exercise 20.6. Suppose that f € L}(R) and assume that f continuously differen-
tiable in a neighborhood of 0, show

° sin M

(20.31) A}im S xf(ac)dx =7f(0)

—0 ) _ o €T
using the following steps.

(1) Use Example 8.26 to deduce,
1 M
M
lim S xdw = lim Smxdw =7

M —oco 1 x M —o00 M T
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(2) Explain why

0= lim sin Mx - @daz and
M=e0 Jjz|21 r

0= lim sin Mx - Mdm.
M=o Jiz|<1 z

(3) Add the previous two equations and use part (1) to prove Eq. (20.31).

Exercise 20.7 (Fourier Inversion Formula). Suppose that f € L!(R) such that
f e LY(R).
(1) Further assume that f is continuously differentiable in a neighborhood of
0. Show that

A= /R f(&)de = £(0).

Hint: by the dominated convergence theorem, A := lim;_, o f\§|<M f(&)de.

Now use the definition of f(¢), Fubini’s theorem and Exercise 20.6.
(2) Apply part 1. of this exercise with f replace by 7, f for some y € R to
prove

(20.32) o) = [ ferema
provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier inversion
formula.

Notation 20.25. For L > 0, let C%¥(R) denote the space of C* — 27 L periodic
functions:
CiR):={feC*R): f(x+2rL) = f(z) for all z € R}.

Also let (-,-), denote the inner product on the Hilbert space Hy, := L*([-7L,7L])
given by
1

~ 2nL [-wL,wL]

(f,9)L: f(@)g(z)dz.

Exercise 20.8. Recall that {Xﬁ (z) == e/l k€ Z} is an orthonormal basis for
Hj and in particular for f € Hyp,

(20.33) =Y (X oxk
keZ

where the convergence takes place in L?([—mL,wL]). Suppose now that f €
C?(R)*. Show (by two integration by parts)

L2
|(fo.x@)L] < =l 1771,

where [|g||,, denote the uniform norm of a function g. Use this to conclude that the
sum in Eq. (20.33) is uniformly convergent and from this conclude that Eq. (20.33)
holds pointwise.

0We view C2(R) as a subspace of Hy, by identifying f € C2(R) with fli—=z,x1] € HL-
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Exercise 20.9 (Fourier Inversion Formula on S). Let f € S(R), L > 0 and

(20.34) fu(w) =) f(x+27kL).
keZ
Show:
(1) The sum defining f7, is convergent and moreover that fr € C°(R).

)

(2) Show (fr,xi)r = \/ﬁL (k/L)

(3) Conclude from Exercise 20.8 that
)

(20.35 fo(z) = > f(k/L)e™ /" for all z € R.

1
varL o
(4) Show, by passing to the limit, L — oo, in Eq. (20.35) that Eq. (20.32)
holds for all z € R. Hint: Recall that f € S.

Exercise 20.10. Folland 8.13 on p. 254.
Exercise 20.11. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 20.12. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution F.20 below.)

Exercise 20.13. Folland 8.16 on p. 255.
Exercise 20.14. Folland 8.17 on p. 255.

Exercise 20.15. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 20.16. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 20.17. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 20.18. Folland 8.31 on p. 263. (Poisson Summation formula problem.)
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21. CONSTANT COEFFICIENT PARTIAL DIFFERENTIAL EQUATIONS
Suppose that p(§) = Z‘a|<k ao,€* with a, € C and

(211) L= p(an) = E|a\§NaaDg = Z\a|§Nao¢ (%8T> .
Then for f € S
Lf(€) = p(€)f(©),

that is to say the Fourier transform takes a constant coefficient partial differential
operator to multiplication by a polynomial. This fact can often be used to solve
constant coefficient partial differential equation. For example suppose g : R — Cis
a given function and we want to find a solution to the equation Lf = g. Taking the

Fourier transform of both sides of the equation L f = g would imply p(§) f(£) = §(£)
and therefore f(£) = §(&)/p(§) provided p(&) is never zero. (We will discuss what
happens when p(&) has zeros a bit more later on.) So we should expect

@) =5 (ig0(©)) (@) =7 (515 ) oo

Definition 21.1. Let L = p(D,,) as in Eq. (21.1). Then we let o(L) :=Ran(p) C C
and call o(L) the spectrum of L. Given a measurable function G : o(L) — C, we
define (a possibly unbounded operator) G(L) : L*(R", m) — L?(R", m) by

G(L)f :=F "MgopF

where Mo, denotes the operation on L?(R™, m) of multiplication by G o p, i.e.

Meopf = (Gop) f
with domain given by those f € L? such that (G op) f € L%

At a formal level we expect
G(L)f =F ' (Gop)ky.

21.0.3. Elliptic ezamples. As a specific example consider the equation
(21.2) (-A+m?) f=g

where f,g : R® — C and A = Y7 | 8*/9x7 is the usual Laplacian on R". By
Corollary 20.16 (i.e. taking the Fourier transform of this equation), solving Eq.
(21.2) with f,g € L? is equivalent to solving

(21.3) (I€1* +m?) (&) = 4(&).

The unique solution to this latter equation is
7€) = (1gP +m?) " g(9)
and therefore,
@) =F (€2 +m) 7 9(0) (@) = (~A+m?) " g(a).
We expect

FH (2 +m?) " 9(9)) (@) = CGrkgla) = | Gle —y)gly)dy,

R™
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where

_ 1 )
G () = F~1(|E +m?) @) = /Rn melwdﬁ-

At the moment F~! (|£> + mg)fl only makes sense when n = 1,2, or 3 because
only then is (|£[*> +m?) Ye L2mn).

For now we will restrict our attention to the one dimensional case, n = 1, in
which case

(21.4) G (z

1 1 ,
) = / : _eiT e,
V2r Jr (§+mi) (§ —ma)
The function G,,, may be computed using standard complex variable contour inte-
gration methods to find, for z > 0,
i’ma

1 e 1
Gm = —2 ) = —\/2 —mz
(@) 2m g 2im 2m e

and since G, is an even function,

V2T —mla|
—¢ .

2m

(21.5) Gon(z) = F (|2 +m?) " (2) =

This result is easily verified to be correct, since

F l@emm] (€)= g—_jf/;”e”fdm

2m
1 0 ) 0 )
= — (/ e MTe T Iy —|—/ emze”'gdx)
2m 0 —00

IR U WS
S 2m \m+i€ m—if) m24E€2

Hence in conclusion we find that (—A + mQ) f = g has solution given by

f(x) = Gukg(z) = \;—_:T/Remy'g(y)dy = % /Re*m""“”y‘g(y)dy-

Question. Why do we get a unique answer here given that f(z) = Asinh(x) +
B cosh(z) solves
(-A+m?) f=0?
The answer is that such an f is not in L? unless f = 0! More generally it is worth
noting that Asinh(z) 4+ B cosh(z) is not in P unless A = B = 0.
What about when m = 0 in which case m? 4 2 becomes ¢2? which has a zero at
0. Noting that constants are solutions to Af = 0, we might look at

V2T V2T
1 — = 1i E— 7m‘w| — e —
}érl%(Gm(x) b }rlzrf(l) 2m (e 2 2 21

as a solution, i.e. we might conjecture that

@)= =5 [ o= vlau)dy

solves the equation — f” = g. To verify this we have

@) =3 [ @-nswar- [ -2

—0o0
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so that
f(z) = —% /_L 9(y)dy + % [Oo g(y)dy and
F(x) = ~39(a) — 50().

21.0.4. Poisson Semi-Group. Let us now consider the problems of finding a function
(zo,7) € [0,00) X R" — u(xp, z) € C such that

(21.6) <;22 —|—A> u =0 with u(0,-) = f € L*(R").

Let 4(xo,& fRn (xg,z)e*¢dx denote the Fourier transform of u in the 2 € R™
variable. Then Eq. (21.6) becomes

(217) (12 - 1) e €) = 0 with (0.6 = fi©)

and the general solution to this differential equation ignoring the initial condition
is of the form

(21.8) a0, €) = A(€)e ™l 4 B(&)e™

for some function A(§) and B(§). Let us now impose the extra condition that
u(zg, -) € L2(R™) or equivalently that 4(zo, ) € L*(R") for all 2 > 0. The solution
in Eq. (21.8) will not have this property unless B(£) decays very rapidly at co. The
simplest way to achieve this is to assume B = 0 in which case we now get a unique
solution to Eq. (21.7), namely

i(z0,€) = f(&)e ™l
Applying the inverse Fourier transform gives
u(wo,@) = F1 | f(©e ] (@) = (V5 ) (@)
and moreover
(e7V=5F) (@) = Poy # f ()
where P, (x) = (27r)7"/2 (F~te=20lél) (z). From Exercise 21.1,
Pry(@) = (2m) "2 (Flem0l) (2) = e,

To
(xf + |z[?)(n+1)/2

where
n2D((n+1)/2)  T((n+1)/2)
\/_271/2 ong(n+l)/2 -

Hence we have proved the following proposition.

cn:(Q)

Proposition 21.2. For f € L2(R"),
e TOVTAF — Py, x f for all zp > 0

and the function u(zg, ) = e~ *V=8f(x) is C* for (zg,x) € (0,00) x R™ and
solves Eq. (21.6).
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21.0.5. Heat Equation on R™. The heat equation for a function u : Ry x R* — C
is the partial differential equation

(21.9) <8t - %A) u =0 with u(0,2) = f(z),

where f is a given function on R™. By Fourier transforming Eq. (21.9) in the = —
variables only, one finds that (21.9) implies that

(21.10) (at + =[] > a(t, &) = 0 with @(0,¢) = £(£).

and hence that a(t, &) = e~16I°/2f(¢). Inverting the Fourier transform then shows
that

u(t,w) = F1 (P2 () (@) = (£ (7€) e f) (@) = 22 f (a).
From Example 20.4,

F1 (e—t\&\2/2> (2) = py(z) =t~ 2 Fll?
and therefore,
ut.a) = [ pue— )i @)y,
This suggests the following theorem.
Theorem 21.3. Let
(21.11) p(t,a,y) = (2mt) "7 e lomul/2
be the heat kernel on R™. Then

(21.12) <<9t - %Az) pt,z,y) =0 and ltifgp(t,x, y) = 02(y),

where §, is the § — function at x in R™. More precisely, z'ff s a contz’nuous bounded
(can be relaxed considerably) function on R™, then u(t,x) = [g. p(t,z,y) f(y)dy is
a solution to Eq. (21.9) where u(0,z) := hmtw u(t, x).

Proof. Direct computations show that (0; — 3A;) p(t,x,y) = 0 and an ap-
plication of Theorem 11.21 shows limyjg p(f,z,y) = d.(y) or equivalently that
limy | [gn p(t, 2, y) f(y)dy = f(z) uniformly on compact subsets of R™. This shows
that lim; o u(t,z) = f(x) uniformly on compact subsets of R". m

This notation suggests that we should be able to compute the solution to g to
(A —m?)g = f using

g(z) = (m* — A)71 flz) = /000 (e*(mLA)tf) (x)dt = /000 (e_m2tp2t*f) (x)dt

a fact which is easily verified using the Fourier transform. This gives us a method
to compute G,,(z) from the previous section, namely

Gm(x) = / eimztpmg(ﬂf)dt _ / (Qt)fn/Qemetfé‘m‘th.
0 0
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We make the change of variables, A = |z|? /4t (t = |z|* /4, dt = —%d)\) to find

* < ()" o
Gz :/ 2t *n/Qe*mrztfﬁ\z\?dt :/ Lhed IS efm2|a:\2/4/\f)\_d/\
( ) 0 ( ) 0 2)\ (2>\)2

n/2—2 0
9(n/ )/ /\’”/2_26_)‘6_7”2|x|2/4)\d)\-
0

||

In case n = 3, Eq. (21.13) becomes

ﬁ /Oo Le_)‘e_mz‘mlz/‘“‘d)\: \/7_7 o—mlzl

V2lz| Jo VX V2 |z

where the last equality follows from Exercise 21.1. Hence when n = 3 we have
found

Gm(z) =

Jr

-1

m?—A) f(z) = Gk f(z) = (2r) %/ —V = eyl f(y)dy
(m* - 2)" f(a) @) =m0 [ o )
1
21.14 = [ —————e ™Yl f(y)dy.
(21.14) /Rs47T|x_y|e f(y)dy
The function #‘zle””'w‘ is called the Yukawa potential.

Let us work out G,,(x) for n odd. By differentiating Eq. (21.26) of Exercise
21.1 we find

o k=1/2 —Aa? Am? ol e a\* .
dAX e T e = dA\—=e ¥ —— ] e pmme2
0 0 VA da

d g \/7_T —vazx —mx
- <_%) %6 _pm,k(x)e

where pp, 1 (x) is a polynomial in z with degp,, = k with

0= (‘i)ka‘”%_ma = VA(

13 2k —1

55 3 YA = 2R rok (2K —1)1.

da

Letting k —1/2 =n/2 -2 and m = 1 we find k = 252 —2 € Nfor n = 3,5,....
and we find

/ N/2=26=35" =N g = py i (2)e™" for all = > 0.
0

Therefore,

9(n/2-2)
= W
Now for even m, I think we get Bessel functions in the answer. (BRUCE: look

this up.) Let us at least work out the asymptotics of G,,(x) for  — oco. To this
end let

Y(y) = /oo AT/272e= (AT gy = g2 /Oo AP/2-2, (A gy
0 0

The function f,(\) := (y?X + A7!) satisfies,
Fi) = ("= A7%) and f;/(\) =212 and f]"(A) = —6A"*

Y Yy

9(n/2-2)
n—2 pl,n/272<m |.’L‘|)€

—m|z|

Gm (m)

)
22

/ )\77,/2—26—>\e—m, |z /4>\d)\ —

0 ]
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so by Taylor’s theorem with remainder we learn
fy(N) =22y + 3 (A —y )2 for all A > 0,

see Figure 21.0.5 below.

t t t t {
0 0.5 1 1.5 2 25

X

Plot of f; and its second order Taylor approximation.

So by the usual asymptotics arguments,

Y(y) =y"~ 2/ A/2=2= (AT gy
(—e+y 1+e)

1%

y”‘z/( 1 )A”/Q‘zexp (—2y =y’ (A —y™1)?) dA
ety t,yTtte

1

Yy 2e /]R NY/272 exp (—y?’()\ - y*1)2) dX (let A — xy~1h)
— 672yyn72y7n/2+1/R)\n/272 exp (_y()\ _ 1)2) d\
— e—2yyn—2y—n/2+l/()\+ 1)7L/2—26Xp (_y)\Q) d).

R

The point is we are still going to get exponential decay at oco.
When m = 0, Eq. (21.13) becomes
2(77,/272) oo d\ 2(77,/272)
Go(z) = 7/ A2l Al = = T(n/2 - 1)
0 A

‘x|n—2

where I'(z) in the gamma function defined in Eq. (8.30). Hence for “reasonable”
functions f (and n # 2)

(—A) f(z) = Gok f(x) = 22 DT(n/2 — 1)(2) " / — L wdy

R |2 — y\
1
= gt 02 1) [ ey
The function

1

~ 1
Go(z,y) == Wr(n/2 - UW
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is a “Green’s function” for —A. Recall from Exercise 8.16 that, for n = 2k, I'(§ —
H=T(k-1)=(k—2)!, and for n =2k + 1,

n 1-3-5--(2k—3)
I‘(§—1):F(k—1/2):F(k—1+1/2):\/7_r 2hT
2k —3
*\/_( T 1) where (—1)!! = 1.
Hence
- 1 1 Lk-2! if n=2k
Go@’y)zw{ R
and in particular when n = 3,
1 1
Go(z,y) = pryp—

which is consistent with Eq. (21.14) with m = 0.

21.0.6. Wave Equation on R™. Let us now consider the wave equation on R",
0= (07 — A) u(t,z) with

(21.15) u(0,2) = f(z) and (0, ) = g(x).

Taking the Fourier transform in the x variables gives the following equation
0=ty (t, €) + [€]* a(t, &) with

(21.16) a(0,€) = f(§) and @ (0,€) = §(&)-

The solution to these equations is

a(t,€) = f(&)cos (t|¢]) + g€ )Smt|§|

€]

and hence we should have

ultya) = F (f(é) cos (¢ [€]) + d(€ >SIT§§') (2)

1 sint|¢]

= F " cos (1 |¢]) K f(2) + F

iq
_d Sint|§|} = {sinﬂ{]
77 | wr@ e [T ka0,

The question now is how interpret this equation. In particular what are the inverse

Fourier transforms of F~!cos (¢|£]) and f‘lglrllgl‘g‘ Since dt.?-'_lglrllgﬂg‘*f(ﬂ?) =

F~Lcos (t|€])k f(x), it really suffices to understand F~1 {Lﬂgl} . The problem we

I€]
immediately run into here is that 5"‘1;“& € L*(R") iff n = 1 so that is the case we

should start with.
Again by complex contour integration methods one can show

*g (z)

(21.17)

™

(F~1¢ sint€) (z) = o (Lo4t>0 — La—t)>0)

™

0
— (lg>—t — 1, =—1/_
\/%( >—t >t) \/% [ t,t](l’)
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where in writing the last line we have assume that ¢ > 0. Again this easily seen to
be correct because

™ 1 —ié-x 1 —i&-x
F | =t @] © = 5 [ 1@ mds = ey,

= glf [e’ft — e*igt] = ¢ Lsinte.

Therefore,
(fflf smt§ * f(z / flz—y

and the solution to the one dimensional wave equation is

dw/ flz—y)dy + 5 /ttg(x—y)dy

t

s (a0 + far)+3 [ gla =)y

—t

T2
x+t

:%(f(x—t)—l—f(m—&-t))—&-%/L 9(y)dy.

—t
We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0= (07 = 02) u(t,z) = (9 — 0) (01 + 0y) u(t, ).
Let U(t,x) := (0 + 0x) u(t, ), then the wave equation states (9; — 9,,) U = 0 and
hence by the chain rule LU (t,z —t) = 0. So
Ult,z —t) =U(0,2) = g(z) + f'(z)
and replacing = by = + ¢ in this equation shows
(0 + 0p)ult,x) =U(t,x) = glx +t) + f(x + ).

Working similarly, we learn that

d
Eu(t, r+t)=g(z+2t) + f(z+ 2t)
which upon integration implies

uw(t,z +t) = u(0,2) —1—/0 {9(x +27) + f(x + 27)} dr

:f(x)—l—/o g(m+27’)d7’+%f(9€+27’)|6

1

=3 (f(z)+ f(z+2t)) +/0 g(x + 27)dr.

Replacing  — x — ¢ in this equation gives

u(t, ) :%(f(az—t)+f(x+t))+/o oz — 1+ 20)dr

and then letting y = © — ¢ 4+ 27 in the last integral shows again that
x+t

uta) =5 (e =+ fa+t)+5 [ gy

—t
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I€]
alized function,” see Section 30 below. So for now let us take n = 3, in which case

from Example 20.18 it follows that

When n > 3 it is necessary to treat F ! {m} as a “distribution” or “gener-

_ [sint|¢] t _
(2118) F |: |§‘ = 47Tt2 g = tO’t

where 7; is #at, the surface measure on S; normalized to have total measure
one. Hence from Eq. (21.17) the solution to the three dimensional wave equation
should be given by

d
(21.19) u(t,z) = pn (tor ke f(x)) + takg ().
Using this definition in Eq. (21.19) gives

{t ., flz— y)dat(y)} +t/s,, g(x — y)do(y)

u(t,z) =

{t [ fa-wpnefe [ ol = t)dor ()

S1

Sl &2 &l

(21.20) {t flz+ tw)d&l(w)} +t /S1 g(z + tw)do (w).

S1

Proposition 21.4. Suppose f € C3(R?) and g € C%(R3), then u(t,x) defined by
Eq. (21.20) is in C? (R X R?’) and is a classical solution of the wave equation in
Eq. (21.15).

Proof. The fact that v € C? (R x R?) follows by the usual differentiation under
the integral arguments. Suppose we can prove the proposition in the special case
that f = 0. Then for f € C3(R?), the function v(¢,z) = +t fSl g(x + tw)dd (w)
solves the wave equation 0 = (07 — A) v(¢t,z) with v(0,z) = 0 and v;(0,2) = g().
Differentiating the wave equation in ¢ shows u = v, also solves the wave equation
with u(0,z) = g(x) and u.(0, ) = v (0, 2) = —A,v(0,2) = 0.

These remarks reduced the problems to showing u in Eq. (21.20) with f =0
solves the wave equation. So let

(21.21) u(t,x) = t/s g(x + tw)do (w).

We now give two proofs the u solves the wave equation.

Proof 1. Since solving the wave equation is a local statement and u(t,x) only
depends on the values of ¢ in B(x,t) we it suffices to consider the case where
g € C? (R®) . Taking the Fourier transform of Eq. (21.21) in the z variable shows

i(t,€) :t[5 do(w) /Rg g(@ + tw)e™ " *dz

_ — —i-x itw-§ — 5 itw-€ 3=
t/s1 da(w) /]RS g(x)e et dr g(§)t/ e e day (w)

S1
sin (¢ |€])
€]

wherein we have made use of Example 20.18. This completes the proof since (¢, £)
solves Eq. (21.16) as desired.

in |tk
— (O = (0
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Proof 2. Differentiating

S(tz) = /S o + tw)do ()

in ¢t gives
1 1
St z) = - / V(e + tw) - wdo(w) = — / V. - V(o + tw)dm(w)
4m Js, 4 Jp(o,1)
t 1
=— Agaz+twdmw:—/ Ag(x + y)dm(y
i o S0t ) = 3 [ Agte+)im)

o
=—— [ drr Ag(x +y)do(y
w4 [ et oty

where we have used the divergence theorem, made the change of variables y = tw
and used the disintegration formula in Eq. (8.27),

R[ faan@ = [ frw) dotyndr = [ ar /ly_rf(y)da(y)

[0,00) X §7—1
Since u(t, ) = tS(t, ) if follows that

0

Ut (t, .’L’) =

9
ot

1 /t )
— dr r Ag(z + y)da(y)}
Art Jo Jyl=r

t

1 1
=Sita) =z [ [ Aga)in)+ o= [ Agat oty

ly|=r ly|=t

= Si(t,x) +

= Si(t,x) — S(t,z) + Ag(z + tw)do(w) = tAu(t, x)

t
At iyl
as required. m

The solution in Eq. (21.20) exhibits a basic property of wave equations, namely
finite propagation speed. To exhibit the finite propagation speed, suppose that
f = 0 (for simplicity) and g has compact support near the origin, for example
think of g = dp(z). Then x + tw = 0 for some w iff |z| = ¢t. Hence the “wave front”
propagates at unit speed and the wave front is sharp. See Figure 39 below.

The solution of the two dimensional wave equation may be found using
“Hadamard’s method of decent” which we now describe. Suppose now that f and
g are functions on R? which we may view as functions on R?® which happen not to
depend on the third coordinate. We now go ahead and solve the three dimensional
wave equation using Eq. (21.20) and f and g as initial conditions. It is easily seen
that the solution wu(¢,z,y, z) is again independent of z and hence is a solution to
the two dimensional wave equation. See figure 40 below.

Notice that we still have finite speed of propagation but no longer sharp propa-
gation. The explicit formula for u is given in the next proposition.

Proposition 21.5. Suppose f € C3(R?) and g € C?*(R?), then

= [ L+ L[] S
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Observer

Flash at t=0
and =0

FI1CURE 39. The geometry of the solution to the wave equation in
three dimensions. The observer sees a flash at t = 0 and x = 0
only at time ¢t = |z|. The wave progates sharply with speed 1.

‘ Effective line of

disturbance

\J

FI1CURE 40. The geometry of the solution to the wave equation in
two dimensions. A flash at 0 € R? looks like a line of flashes to the
fictitious 3 — d observer and hence she sees the effect of the flash
for t > |z| . The wave still propagates with speed 1. However there
is no longer sharp propagation of the wave front, similar to water
waves.
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is in C? (R X Rz) and solves the wave equation in Eq. (21.15).

Proof. As usual it suffices to consider the case where f = 0. By symmetry «
may be written as

utia) =2 [ glo =)o) =2t [ gle-+ 9oy

t t

where S, is the portion of S; with z > 0. The surface S;” may be parametrized by
R(u,v) = (u,v, Vt? —u? — v?) with (u,v) € Dy := {(u,v) : u® +v? <t} . In these

coordinates we have
Ant?de, = ‘ (—au\/ 12 —u2 — 02, -0, V12 —u2 — 02, 1) ) dudv

dudv

V2 —u2 — 02’ V82 — w2 — o2’

2 2 t
= \/& + ldudv = #dudv
t2 — V2 —u2 — 02

and therefore,

2t |t]
(t I’) Ar t2 / g(x—!—(u,v, 2 — u? _'UQ)) Ea— _deudU
1
= —sgn(t) Mdudv.
2 D, V2 —u? — 02

This may be written as

glx +w x—I—tw

t2)= g [, S sante) = amng ff, £t

—5et ],

21.1. Elliptic Regularity. The following theorem is a special case of the main
theorem (Theorem 21.10) of this section.

Theorem 21.6. Suppose that M C, R", v € C*°(M) and u € L}, (M) satisfies
Ay = v weakly, then u has a (necessarily unique) version @ € C*°(M).

Proof. We may always assume n > 3, by embedding the n = 1 and n = 2 cases
in the n = 3 cases. For notational simplicity, assume 0 € M and we will show wu is
smooth near 0. To this end let § € C°(M) such that § = 1 in a neighborhood of 0
and o € C°(M) such that supp(a) C {# =1} and o = 1 in a neighborhood of 0
as well. Then formally, we have with §:=1— «,

G x (0v) = G * (0Au) = G * (0A(au + fu))
=G x* (A(au) + 0A(Bu)) = au + G * (0A(Bu))
so that
u(z) = G* (6v) (x) — G x (0A(Bu))(z)
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for « € supp(«). The last term is formally given by

G (0A(Bu)(z) = | Gz —y)0(y)AB(y)uly))dy

Rn
=/ By)A, [G(z —y)(y)] - u(y)dy
which makes sense for x near 0. Therefore we find

u(z) = G * (6v) (z) — /Rn B(y)Ay [G(z —y)0(y)] - u(y)dy.

Clearly all of the above manipulations were correct if we know v were C? to begin
with. So for the general case, let u,, = u % d,, with {d,,}; — the usual sort of § —
sequence approximation. Then Awu,, = v * d,, =: v,, away from dM and

(21.22) un () = G x (Bvn) (z) — - BY)Ay [Glz —y)0(y)] - un(y)dy.

Since u, — u in L}, .(O) where O is a sufficiently small neighborhood of 0, we may
pass to the limit in Eq. (21.22) to find u(z) = a(x) for a.e. z € O where

u(z) == G (0v) (z) — /R By)Ay [G(z —y)0(y)] - uly)dy.
This concluded the proof since @ is smooth for  near 0. m

Definition 21.7. We say L = p(D,,) as defined in Eq. (21.1) is elliptic if py(§) :=
2 ja|=k @a” is zero iff { = 0. We will also say the polynomial p(¢) := |, < @al”
is elliptic if this condition holds. -

Remark 21.8. If p(§) = Z|a\gk ao&” is an elliptic polynomial, then there exists

A < oo such that inf|¢ > 4 [p(€)] > 0. Since py,(£) is everywhere non-zero for £ € §™~!
and S"~! C R™ is compact, € := infj¢=1 [pr(€)] > 0. By homogeneity this implies

Ipk(€)] > €|¢]F for all € € A,

Since

PO = |pe() + Y aal®| > PO — | D aal®

|a|<k |a|<k

k k—1
>elelf —C (1+¢*)
for some constant C' < oo from which it is easily seen that for A sufficiently large,

[p(©)] = 5 l¢l* for all [¢] > A

For the rest of this section, let L = p(D,) be an elliptic operator and M Cq R™.
As mentioned at the beginning of this section, the formal solution to Lu = v for
v € L? (R™) is given by

u=Ltv=Gxv

where

T) = Le”ﬁ'5
Cle) = /n 63 a

Of course this integral may not be convergent because of the possible zeros of p

and the fact ﬁ may not decay fast enough at infinity. We we will introduce
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a smooth cut off function x(¢) which is 1 on Cy(A) := {x e R" : |z] < A} and
supp(x) C Co(24) where A is as in Remark 21.8. Then for M > 0 let

(21.23) Gil(z) = /R (1- x(izé)x(f/M) T Edg,

(21.24) §(x) == x"(x) = /R x(€)e™ede, and 6y (x) = M"S(Mzx).
Notice [, 0(z)dz = F§(0) = x(0) =1, § € S since x € S and
LG (@) = [ (1= xO) e/ = [ [e/a) - () e
n R’VL

= b (z) —d(z)
provided M > 2.

Proposition 21.9. Let p be an elliptic polynomial of degree m. The function Gy
defined in Eq. (21.23) satisfies the following properties,
(1) Gy €S for all M > 0.
(2) LGp(z) = M™O(Mx) — 6(z).
(3) There exists G € CXP(R™ \ {0}) such that for all multi-indecies «,
limps 00 0%Gpr(x) = 0*G(x) uniformly on compact subsets in R™\ {0} .

Proof. We have already proved the first two items. For item 3., we notice that

(—QS)B DaGM(QS) _ / (1 B X(g)) X(g/M)fa (_D)g eig;.gdg

n p(§)

_ B (1 _ X(&)) ga €ix'£

~ [ 0[S (g e <ac

_ ﬁ(l_X(g))ga ] 2R .

= e Dy B GEE X(§/M)e'>d€ + Ry (x)
where

2) — B\ ypin-18 Z (= X©))E* s i
Rute) = 3 (D)arrie [ oy EXEE (o (¢/aneiag

Using

b} [% (1- x(ﬁ))] ‘ < C |g|lel=m=hl

and the fact that
supp((D°~7x) (§/M)) C{€ € R" : A< [¢[ /M <24} = {{ € R": AM < [¢] < 2AM}
we easily estimate

u el
P <O RVl \m/ el=m=hlq
| M( )| — Z (/‘y {6cR: AM<|E|<2AM} |£| g

v<B
<oy (’6>Mv—/3M|a—m—lvl+n _ O Mlel-1Bl=mn.
¥<B v

Therefore, Ry; — 0 uniformly in x as M — oo provided |3| > |a| —m+n. It follows
easily now that Gj; — G in C°(R™ \ {0}) and furthermore that

V8 D) — g (1—=x(§)) &~ it
(me)” D°C(w) " De p(§) a
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provided S is sufficiently large. In particular we have shown,

c(z) = 1 _ k (1 7X(£))€a . eia:~§
D= /Rn( T @

provided m — |a| + 2k > n, ie. k> (n—m+|a|) /2.
We are now ready to use this result to prove elliptic regularity for the constant
coefficient case. m

Theorem 21.10. Suppose L = p(Dg) is an elliptic differential operator on R™,
M C, R, v € C®°(M) and u € L} (M) satisfies Lu = v weakly, then u has a

loc
(necessarily unique) version 4 € C*°(M).

Proof. For notational simplicity, assume 0 € M and we will show « is smooth
near 0. To this end let § € C°(M) such that § = 1 in a neighborhood of 0 and
a € (M) such that supp(a) C {# =1}, and o = 1 in a neighborhood of 0 as
well. Then formally, we have with §:=1 — «,

G+ (0v) = Gy * (0Lu) = Gy * (OL(au + Bu))
= G * (L(au) + OL(Bu)) = dpr * (au) — 6 x (qu) + Gar * (0L(Bu))
so that
(21.25) Oar * (au) () = G x (0v) () — Gar * (OL(Bu))(x) + 0 * (au) .

Since
F(Gar + (0](©) = Garl€) (00) () = FXEIER 90 g
OO o e e 0t
) (0v) (&) as M
with the convergence taking place in L? (actually in S), it follows that

Gar # (00) — “G + (00)" (z) = / %

6
o [0 ]
7 XD ) @) @) e

So passing the the limit, M — oo, in Eq. (21.25) we learn for almost every z € R™,
u(z) = G* (6v) (z) — N}im Gy * (0L(Bu))(z) + d * (au) (x)

(Bv) (&)e™d¢

for a.e. x € supp(a). Using the support properties of § and 3 we see for x near 0
that (0L(Bu))(y) = 0 unless y € supp(d) and y ¢ {a =1}, i.e. unless y is in an
annulus centered at 0. So taking z sufficiently close to 0, we find = — y stays away
from 0 as y varies through the above mentioned annulus, and therefore

Gu # (OL(Bu))(z) = [ Gu(z —y)(OL(Bu))(y)dy

R

_ / Ly {0(y)Ga(a ~ )} - (Bu) (y)dy

= | L {0)G — )} (Bw) (r)dy o M — .
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Therefore we have shown,

u() = G+ (00) (x) / L2 {6(4)G(x — )} - (Bu) (y)dy + 6 * (o) ()

for almost every x in a neighborhood of 0. (Again it suffices to prove this equation
and in particular Eq. (21.25) assuming u € C?(M) because of the same convo-
lution argument we have use above.) Since the right side of this equation is the
linear combination of smooth functions we have shown u has a smooth version in a
neighborhood of 0. m

Remarks 21.11. We could avoid introducing Gps(x) if deg(p) > n, in which case

7(1_22()5)) € L' and so
p
1— .
G(a) = / = - (’g)(f))emfdg

is already well defined function with G € C*°(R™\ {0}) N BC(R"). If deg(p) < n,
we may consider the operator L* = [p(D,)]* = p*(D,) where k is chosen so that
k - deg(p) > n. Since Lu = v implies L*u = LF~v weakly, we see to prove the
hypoellipticity of L it suffices to prove the hypoellipticity of L¥.

21.2. Exercises.

Exercise 21.1. Using

0
the identity in Eq. (21.5) and Example 20.4, show for m > 0 and = > 0 that
oo
1 1
(21.26) e~ = %/0 d)\ﬁe*ﬂﬁew\m? (let A — A/m?)
> 1 Y —m—2x2
(21.27) = [ adx e ix

e
0 VT
Use this formula and Example 20.4 to show, in dimension n, that
F [e—m\ﬂ] (5) — 2n/2 F((’I’L + 1)/2) m
Vo e
where I'(x) in the gamma function defined in Eq. (8.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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22. L? — SOBOLEV SPACES ON R"

Recall the following notation and definitions from Section 20. TODO Introduce
S’ so that one may define negative Sobolev spaces here and do the embedding
theorems. Localize to open sets, add in trace theorems to hyperplanes and sub-
manifolds and give some application to PDE.

Notation 22.1. Let

dr — <\/%)ndm(x) and dg = (%)ndm(é)

where m is Lebesgue measure on R™. Also let (&) = /1 4+ [¢

9\ N o\ 109\
o —_— d Da = — —_— = _— .
Definition 22.2 (Fourier Transform). For f € L!, let

Q=71 = [ e fado
9'(a) = Flg(a) = [ e o(€de = Fo(-a)

22.1. Sobolev Spaces.
Definition 22.3. Toeach s € Rand f € S let

12= [17OPA+IePras = [1F©PE©> .
This norm may also be described by

/s = 111 = A)*/2f| 2
We call |-|, — the L? — Sobolev norm with s — derivatives.

It will sometime be useful to use the following norms,

1£]12 = / |F(6)2(1 + |€])%*d¢ for all s e R and f € S.
For each s € R, || - ||s is equivalent to ||, because

L+ ¢ < (146D <201+ [€).

Lemma 22.4. The Hilbert space L?(R", (1+ |£]2)%d¢) may be viewed as a subspace
of 8" under the map

g€ L*(R",(1+[€*)°de) — (v e S — [ g(©w(©)de) €S

R

Proof. Let g € L2(R", (1 + [£[*)*d¢) and ) € S, then

[ 19©w(©)1de = [ 10 @+ 16 [0l (1 + g2

< ||9||L2 e (141¢12)sde) * 1Pl L2 @n (141€12)-=ag) -
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Now

913 11w = [ WO 1+ IEF) e
< [ IR ) sup [j©) 1+ i)
= Cls+0)-sup [[W(©)F 1+ 1¢P']

where

Clst)i= [ (11eP) > de <o

provided s+t > n/2. So by choosing ¢ > n/2 — s, we have shown gy € L'(d¢) and
that

/ ) g(é)w(é)df‘ < Cls+0)sup [[WO) (1+16P)]
Therefore 1) € § — [, 9(£)¥(€)dE is an element of S’. m
Definition 22.5. The Sobolev space of order s on R" is the normed vector space
Hy(R") = F~HLAR", (1 + [¢[*)*d¢)) ¢ &'
or equivalently,
H,®") ={fes': fe L*®",(1+¢)de)}.
We make H(R"™) into a Hilbert space by requiring

]:_1|L2(R",(1+\5\2)5d£) : Lz(Rny (1+ |§|2)sd§) — H (R™)

to be a unitary map. So the inner product on Hy is given by

(22.1) /f V(1 +|€|?)%d€ for all f,g € Hy(R™)

and the associated norm is

(22.2) 2= /R FORA + |g2)d

Remark 22.6. We may also describe H(R™) as
Hy(R") = (1 — A)~/2L*(R", dx)
={feS :(1-A)/?fe L*(R" dx)}
and the inner product may be described as
(F,9)s = {(1 = 8)2f, (1 = 8)/%g) 1.

Here we define (1 — A)*/? acting on &’ as the transpose of its action on S which is
determined by

Fl=2)721] (€) = 1+ [Py 72 f(¢) for all f € S.
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It will be useful to notice later that A commutes with complex conjugation and

therefore so does (1 — A)*/2. To check this formally, recall that Ff(¢) = f(—¢€),
therefore,

FU=2)727] (§) = F(T = A)721(~) = (1L +|~€P) /2 f(=¢)
= (L+ |62 f(=6) = (L + [P FF ()
=7 ((1-272F) (©).

This shows that (1 — A)s/2f = (1 — A)*/2f for f € S and hence by duality for
f eS8 as well

Lemma 22.7. S is dense in Hs(R™) for all s € R and (1 — A)t/2 cH, — H,_4 1is
unitary for all s,t € R.

Proof. Because F : Hy(R") — L2(R", (1+£|?)%d€) is unitary and F(S) = S, it
suffices to show & is dense in L2(R™, (1 + |£[?)*d¢€). Since dv,(€) := (1 + [€[?)%d€ is
a Radon measure on R", we know that C°(R") is dense in L?(dv;) and therefore
by the virtue that C°(R™) C S, S is dense as well.

Because the map

J & LA®™,(1+ [€2)°de) — (1+ €)' (6) € IA(R™, (1 + ¢)*de)

is unitary, it follows that (1 — A)Y/?: Hy — H,_, is unitary for all 5, € R as well.
|

Lemma 22.8. For each multi-index «, the operator DS : 8'— S’ restricts to a
contraction from Hy — Hy_||. We also have the relation

(22.3) F (D) (€) =Ef (€) for all f € H,.
Proof. Recall the Eq. (22.3) holds for all f € &’ in the sense
(22.4) F(Dgf) =maf

where m(§) := £*. Now if f € Hy, f is represented by a tempered function,
therefore m,, f is represented by the tempered function & — &% f (&) . That is Eq.
(22.3) holds and therefore,
D212y = [le FOP+ ey lag

/|f (14 (€)1 jgo P de

< [1A©P@+ Iyl 1+ gyl dg

< [1F©Pa+ lgPyde = 171
wherein the third line we have used the estimate

[ e Y A (R

which follows from &2 < |¢ | for alli. m
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Lemma 22.9. Suppose s € N. Then H; may be characterized by
(22.5) H, = {f € L*(d¢) : D*f exists in L*(d€) for all |a| < s},

where D®f denotes the distributional or weak derivatives of f. (See Theorem 19.18
for other characterizations of these derivatives.) Also if we let

1£12= > ID*flz2 for f € H.,
|| <s
then ||-||, and ||, are equivalent norms on H,.
Proof. Let H, denote the right side of Eq. (22.5). If f € H, and |a| < s, then

Lemma 22.8,

D fl5 < [DFI2_ o < IfI2 < oo

s—|e

This shows that f € H, and
(22.6) 712 < S A2 < Calf2.

| <s

Conversely if f € H, (letting mq(€) := £ as above),

o> 2= S 10l = 3 |maf],, = X [ (e? o] ae
o <s oo <s o <s
(22.7) / D€ | } dé.

|| <s

Let &, = 1, then by the multinomial theorem

Wl = ey = X (e

=0 |a|=s
where a = (ag, o, . .., a,) € N**1 and
<s> B s!
« [T aj!
We may rewrite this using o = (a1, ..., a,) € N as follows
S
(il = 3 Je-
2 (s —lal,a)
lo]<s
so that
22.8 20 > o (14 [€]%)® with cs_1 ‘= max < y )
(228 Y €0 2e0+P) max (0

lo|<s
Using this estimate in with Eq. (22.7) implies
L2
(22.9) 0> IfI2 2 e [ (1+1P) |0 de =12

This shows that f € H, and Egs. (22.6) and (22.9) prove ||-||, and |-|, are equivalent.
m
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Definition 22.10. Let C§(R™) denote the Banach space of C* — functions on R"
for which D®f € Cy(R") for |a| < k. The norm on C§(R") is defined by

floow = D D8 flloe = sup Y |D2f].

la|<k T lal<k

Theorem 22.11 (Sobolev Embedding Theorem). Let k € N. If s > k+ & (or
k—s < —2) then every f € Hy has a representative i(f) € C§(R™) which is given
by

(22.10) i(N@) = [ fE)eds.

The map i : Hy — C§(R™) is bounded and linear.

Proof. For o € N

[ et dgr < [ a+iey
=21

fof - [ er s igpy i

Rn

where
C? .= @12 (1 2)=sde.
2im [l ey
If |a| < k, then
EP (L [E) 7 < L+ PR+ [E%) 7" = (L4 [€*)F* € L' (d€)
provided k — s < —n/2. So we have shown,
(22.11) £ f(€) e LY (de) for all |a] < k.

Using this result for « = 0, we deduce f € L' N L? and therefore the continuous

version of f is given by Eq. (22.10). Using the integrability of £% f(&) in Eq. (22.11)
we may differentiate this expression to find

D)) = | € f(&)e™ ¢ for all |af < k.

By the dominated convergence theorem and the Riemann Lebesgue lemma,
Dei(f) € Co(R™) for all |a| < k. Moreover,

i< [

This shows that |i(f)|, , < (const.)|f|,. m

oo,k —
Let us now improve the above result to get some Holder continuity for f, for this

|f(z) = fy)| = F(&) (e€ — &€ dg‘ < / ’f(g)’ i€ — €] de
R~ R™

- /
< ([ a+iepr

=1, Cs (ly — zl)

£ 7(€)]de < Cufl, for all Ja] < k.

FO| (o 1) L= 7| (1 ey /2ae

Fofae)" ([

_ 5 1/2
- el (g e
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where

= </R Lot s|2>8d£> :

_ (1t jg)ode)
(L. )

Making the change of variables £ — &/ |z| in the above formula gives

1/2
_ - 2
Cu(lal) = [ 21" / TR L S
Rn‘ ‘ (1_’.&2)5

) 1/2
sS—n ) 2
= |z| /2 (/ |1_ez£n| . 25d§>
R (™ + 1€]?)
1/2
_ . 1
< [a|* ™ (/ 1=’ QSdf)
R €]

: 2 > 2A 7"2 1/2
<o (S0 o' (/ Wrn_ldr) :
0

Supposing the s —n/2 =~ € (0,1), we find

© 2 A2 © 2 A2 © 2 A2
/ — r"Ldr 7/ zrnfldr:/ —12dr<oo
0 r2s 0 42y 0 rl+2y

2y—1

1 — etlwlén

since 2/r1*27 is integrable near infinity and r?/r1*27 = 1/r
0. Thus we have shown, for s —n/2 € (0,1) that

f(@) = f)| < K |f], |z —y* "

e’} 2 1/2
Ks:=+/o (5" 1) (/ 2 /\27" r”ldr> )
o T

Notation 22.12. In the sequel, we will simply write f for i¢(f) with the under-
standing that if f € L} .(R") has a continuous version, then we will identify f with
its (necessarily unique) continuous version.

is integrable near

where

Definition 22.13. In the future we will work with the following two subspaces of
S
Hoo = NgerHs = ﬂsons and
H—oo = USERHS = USZOH—S'

We also set

(22.12) (f,9) = | f(&g"(€)de

R’IL
for all f,g € H_o such that fg¥ € L*(d¢).
Notice that Ho, C Hy C L> C H_, C H_,, for all s € R. Also if f,g € Hy = L?,
then f,gV € L%(d¢) so that fg¥ € L'(d€) and

£)de = / F()5(€)de = / f@F@)ds = [ f(z)g(z)d

Rn
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Therefore, (-,-) is an extension of the pairing

frge L — [ fla)g(@)de =: (f,7)L2

Rn
Proposition 22.14. Let s € R. If f € H_; and g € Hg, then (f,g) is well defined
and satisfies

(fF,0) = (1= A)2f, (1= A) gy e = (1= A)*/2f, (1 - A)*/2).
If we further assume that g € S, then (f, g) = (f, g)s'xs where (-,-}s/xs denotes
the natural pairing between S’ and S. Moreover, if s > 0, the map

(22.13) feH  —(f)€H;

is a unitary map (i.e. a Hilbert space isomorphism) and the | f|_, may be computed

using
1(f:9)sxs] >5 xS

Proof. Let se R, fe H_sand g € HS7 then

F(©)9(€) = W+ €2 f(&) - (1 + [€°)*/2g"(¢) e L'

since (1-H[€]2)~/2 f(€) and (1+[€2)*/2g" (€) = (1+[¢[2)*/24(~€) are L?  functions
by definition of H_, and H, respectively. Therefore (f,g) is well defined and

Fah = [ (168 *2(0) - L+ €)Y (€

O;«égeS}.

= [ iy T e e
= (FHAH D) 2@, F U+ 1€ %5(€)) re
(2215) = (1= 2)7 2 (1= A)Pghre = (1= A)7/2f, (1= A) %),
If g € S, then by definition of the Fourier transform for tempered distributions,
| F©5"©d = (f19")sxs = (19" Jsrxs = (Fr)srxs:
By Eq. (22.15),
(F.9)] < | =2)7/2f] |(@=2)"2| =1fI_,-Igl,

with equality if (1 — A)*/2g = (1 — A)=*/2f, ie. if g = (1 — A)~5f € H,. This
shows that

s (L g} (UL )
9l lgl,
= 1 s
where the second equality is a consequence of S being dense in Hy. This proves Eq.
(22.14) and the fact the map, T, in Eq. (22.13) is isometric. So to finish the proof
we need only prove T is surjective.
By the Riesz theorem, every element of H; may be written in the form (-, F')

for a unique element F' € H. So we must find f € H_; such that (f,g) = (g9, F)s
for all g € Hy, i.e.

(1=2)72f,(1 = 8)*29)o = (f,9) = (9, F)s = (1-2)*?g,(1-A)*/*F)o Vg € H,
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from which we conclude
(1—A)"/2f = (1— A)3/2F.

So
fi=(1—A)2Q—A)$2F=(1-AyFeH_,

is the desired function. m

Lemma 22.15. Useful inequality: ||f * gll2 < ||fll1 llgll2. (Already proved some-
where else.)

Proof. We will give two the proofs, the first is
1f = gllz=[1fgll2 < Il llgllz < [[£lI1]lg]]2

and the second is

I1f * gll5 —/'/f(x—y)g(y)dy
</ ( [1s=w) g<y>dy)2dx
S//\f(x—y)\2 l9(y)ldy - (/12|g(y)ldy> da

= 1115 llgl3-

2
dx

Lemma 22.16 (Rellich’s). For s < t in R, the inclusion map i : Hy; — Hy; is
“locally compact” in the sense that if {fi};2, C Hs is a sequence of distributions
such that supp (f;) C K ”C R™ for alll and sup; |fi|s = C < oo, then there exists
a subsequence of {fi},=, which is convergent in Hy.

Proof. Recall for x € C°(R") C S, x € S and hence, for all k£ € N, there exists
C), < oo such that
(O] < Cr(1+ €D
Choose x € C°(R™) such that x =1 on a neighborhood of K CC R” so that
fi=x - fi for all [. We then have

(22.16) F()] = X Al(©) < / A 1RE = m)ldn

<c, / A+ 1)L+ 1)~ (1 + [ — n)~*dn

2

< Gilfils ( Jasmhoa - n|>—2kdn)

< Culfils ( Ja+ |77|)282’“d77)§ 1+l

wherein the last inequality we have used Peetre’s inequality (Lemma 30.31). Since
J(1+|n|)72*72*dn < oo if k is chosen so that 2s 4+ 2k > n, we have shown there

exists Cy < oo for all £ > 25 such that learn that

1F(&)] < Crl fils(1 + [€)* for all £ € R™.
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Because D; fy (€ )= fixD;x, the same argument shows (by increasing Cy, if necessary)
that there exists Cy < oo for all k > #5* such that

|Di f11(€) < Cr(1 + [€])* for all £ € R™.

The Ascolli-Arzela Theorem 3.59 now allows us to conclude there exists a subse-
quence f; which is convergent uniformly on compact subsets of R™. For notational
simplicity we will continue to denote this subsequence by {f;} . For any M € (0, c0),

/oM'fl‘f'U( + |¢*)de = / o= TP @)1+ [€[%)" (1 + [¢)' e

<2 = g
and
= ful? = / o= FulP©)(1 + [€2)de + / = FulP©)(1 + () de
|&|>M

[§1<M
Using these equations and the uniform convergence on compact just proved,

limsup |f; — fm|? < limsup / |fr = f2(©) (1 + [€%)1d

l,m—o0 l,m—o0
|€1>M

< 1
— (1 +M2)t—s

Therefore {f;},2, is Cauchy and hence convergent. m

If]? — 0as M — oo.

22.2. Examples.

Example 22.17. Let 6 € H_,, be given by 5(5) =1, then 6 € H_»_, for any
e>0and (0, f)= [ f €)d¢ = f(0). That is to say 0 is the delta distribution.
Example 22.18. (P(D,)8)"(§) = p(€). So (P(D.)5, f) = [P()f(—€)dé =
(P(=Dg) f)(0).

Example 22.19. Let g € H_o, & |J H}. Then DSg € H_,, and

s>0

(22.17) (Dgg, f) /50‘ &)d¢ = / &)d¢

= [0 " (-6)de

= <97 <_DL)af>
Note If € H_o,. Then ¢’ = § implies & = 1 or —i€0(€) = 1 implies 0(¢) = §Z
L} implies ¢ H_.. So (P(D,)g, f) = (g9, P(=D,)f) forallg € H_,, and f € 5.

General Idea Suppose £ € |J HZ, how do we compute {. Recall é(f) € H
s>0

and (0, f) = [0(&)f(=€)de = (4, f). Replace f — f implies (¢, f) = (¢, f). So if
le U H?, then the functlon f in £ is characterized by

s>0

(22.18) (0, f) =<1
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Example 22.20. Say (3, f> £(0). Then (8, f) = (6, f) = f(0) = [ f(¢
[6(€) f(x)de. implies 5(€) =

Example 22.21. Take n = 3. Consider ( \II ) = f & f(x)dz for f € S. “Claim”

I

A
(False) <W’ ) € H_o and (I ‘> &) = 47T|£|2 and Ai = —4md not zero.

||
Proof.

() -G 1) [

= lim dx = hm =
R oo |a:| @) /X' <R
|z|<R

1|f

lim (MKR@)A(@f@)ds

R,/o0

1\" 1
<X|m<R?|> (&) = / ° Sdg¢

|z|<R

—27r/ dr/ d cos PetirlElcost,,

eirlél — o—irlél R
:/ I S ——— 477/ dr sin(r|€|)
0 il 0

cosg2|§|) ‘: _ ‘§|2 (COS(RK‘) 1)

o ( ()" ) =4 ([ e s = i [ =050 m

R0

Now

= —4r

Claim 3.

(22.19) hm cos(R|¢]) (52) dg=0
—o0 Jgn iy

Proof. Let Ir :== [, COS(R|§|) mQ ) d¢ which in polar coordinates may be written
as

Ip = / cos(Rt) att, t07 ) t2dtd cos Odp

= / cos(Rt) f(t)dt
0
where f € L'. The result follows by Riemann Lebesgue Lemma. Rlim Ir =0. So

A
we have finally shown (ﬁ) &) = é% ¢ L?. As a Corollary

So Alyl‘ = —47md and not 0 as a naive direct calculation would show. m
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Example 22.22. Set g(z) = x[—1,1](®). Then [(g, f)| < 2[|fllec < C|f|s for s >

n/2. implies g € HY = H_, what are § and "7 Answer:
(2.1) = [€a©f-9 = [a©Dury @i
dx’ g g x

1
—{9.-Daf) = ~7 [ Fl@)dz = —1(70) = £
-1

Taking the Fourier transform of the equation D,g = i(d; — d—1) gives

i€ _ o€
§9(6) = 2i——— = —2sin(¢).
which shows
(22.20) (6) = 2812(5) € L? = H,.

Note D,g # 0.
Second Method of Computation. Let f;(z) € S = f; — g € L? then on one
hand

(Dafio f) = —fus Daf) — (g, Do f) = /Df

=i(f(1) = f(=1)) = i(6r = 6-1, f)
while on the other hand
<D:vfl7f> - <Dazg,f> € H71~
Combining these two equations shows that D,g = i(d; — d_1).

22.3. Summary of operations on H_

Example 22.23. (D%g, f) = (g,(—D,)*f) for all g € H_, and f € S. Suppose
h € C*° such that h and all its derivatives have at most polynomial growth then
My, : S — S and M), extends to H_,

Lemma 22.24. For all f € S the sum fo = > €"f(y)d, converges in H_s for
ytezm
all s > 5. Furthermore lir% |fe — fls =0.

Proof. Let A CC Z" be a finite set, put gn = > €"f(y)dy. Then
yeZ
2

(22.21) N DS
ye#

where dvs(x) = (1 + [€]?)%d€ for all s € R. Therefore f € S we know |F(y)| <

c(L+[yl)~™ so
2

9412 < cen / SO+l | dv(©)
€*
! 2

e |y (L+[yh)

yet
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Now > (14 ]y])™™ < oo if m > n. Therefore if ' and # are two finite subsets
NSFAL
of eZ™,

lgr — 9412 = lgray s — 0as T, 2 /7 eL™

So the sums exists. Now consider
£= 8P = 17O = S et v Pav-iic).
Set fe(x) = f(y) if |2 — Ylpox < £ where y € €Z". Then
TO =3 e flyre e,
So |f = fel2, = [1F(©) — F(O2dv_.(€). Now
£©) = 7o)l < [ 17(@) - Faldo — 0as e Lo,
So |f — f.]2, — 0 as € | 0 by dominated convergence theorem. m

Lemma 22.25. The map x € R — §, € H_; is C’kfor all s > % + k.

Proof. Since "~ : H_, — L*(dv_,) is a unitary map it suffices to prove that the
map

TERY - €= f(—a)(€) € L3(dv-,)

is C*. So we will show z — f(x)(-) = e is CF.

Consider
flo+ te;) — f(x) _ %/01 diif(a; + ster)ds
= %(—i&t) /01 f(x 4+ stey)dzx.
So (Fix)
(22.22)
fot te;} —I@ e g = / /O Lt eeya] an (o)

This shows %(m) exists, and this derivative is easily seen to be continuous in
L?(dv_,) norm. The other derivatives may be computed similarly. m

Proposition 22.26. Suppose K : H_, — H, is a bounded operator and s > 5 +k
for some K = 0,1,2,.... Then exists a C¥-function k(zx,y) such that (K f)(z) =
[ k(z,y)f(y)dy for all F € S. Furthermore

(22.23) |Flook < C() K| m_.— .-

Corollary 22.27. If K : H_, — Hy then k(x,y) is C*.
Proof. Define k(z,y) = (kdy, 0z)

Claim 4. k is C".
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Reasons:
Roxrr < B o xH., ¢S H.xH., S C
(az,y) — (51,531) — (K(;y:az) — <K5y:595>

so k(x,y) is the composition of two C* — maps and a C*-map. So k(z,y) is C¥.
Note |k(z,y)| < C’(S)HKH_g s- S0 k is bounded.

Claim 5. For F € S, Kf(z) = [k(z,y)f(y)dy. Indeed,

(22.24) /k:(gc,y)f( )dy = hme" Z k(x,y)d(y)

yeeZn
Kllmz €"(f(y)dy, 0z)
= (Kf,02) = (Kf)().
Finally:

(22.25) |D2 Dl k(x,y)| = (KDJs,, D25,)|

= (K (=D)8,, (~D)*4,)|

<K =s,5|D%8,y || D0y | - < C)IIK |-,
implies ’Dg‘ng(x,y)’OO < C(9)||K||=s,s if |af,|8] < k. m
22.4. Application to Differential Equations.

22.4.1. Dirichlet problem . Consider the following Dirichlet problem in one dimen-
sion written in Divergence form as

(2226)  Lf(2) == - (a(a) D (2)) = gl) where a € C((0,1],(0,00)),
f € C*([0,1],R) such that f(0) = f(1) = 0 and g € C°([0, 1], R).
Theorem 22.28. There exists a solution to (22.26).

Proof. Suppose f solves (22.26) and ¢ € C'([0,1]),R) such that ¢(0) = ¢(1) =
0. Then

(fa=— / a() ' (@)@ (x)dz = / o) d(a)dz = £,(9).
Define

H={f € AC([0,1],R) : £(0) = f(1) =0 and (f, f) /|f )P do < oo},

Since
= [ rwa] =| [ #oreawn| < 1710 < 171
)
we find conclude the following Poincaré inequality holds,

1£ll2 < W flloo < M1 ll2 = 111 = V(S )

In particular this shows that || - || is a norm. Since that map f € H — f' €
L2([0,1]) is unitary, it follows that H is complete, i.e. H is a Hilbert space. Also

15 (D) < llgll2 lI¢ll2 < llgll2 [0l
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which implies £, : H — R is bounded and linear. We also notice that (-,-), is an
equivalent inner product on H so by the Riesz theorem, there exists f € H such
that

—U¢M=M@=49@W@M
for all ¢ € H i.e.

1 1
(22.27) - [ a@r@d @i = [ g
0 0
At this pomt we have produced a so called weak solution of (22.26).
Let G(x fo y)dy so G'(x) = g(x) a.e. Then by integration by parts

(Justlﬁcatlon See Theorem 3.30 and Proposition 3.31),

Ag@mmm=ﬂamw /G

Using this in Eq. (22.27) we learn

1
/0 [a(z)f (r) — G(x)]¢'(x)dx =0 forall ¢ € H

By Lemma 22.29 below, this implies there is a constant C' such that a(z)f’(x) +
G(x) = C for almost every x. Solving this equation givesf’(z) = (C' — G(z)) /a(z)
a.e. or
-G e
flx) = / ——— € C*([0,1
@ = [ o ecto
showing f is in fact a strong solution. m

Lemma 22.29. Suppose h € L'([0,1],dz) and fol h(z)¢/'(x)dx = 0 for all ¢ €
C((0,1)) ten h = constant a.e.

Proposition 22.30. Suppose f is C?, f(0) = 0 = f(1) and f" = g € C°(]0,1])
then

where
_Jal-y) z<y
k(z,y) = { y(l—z) x>y
Proof. By the fundamental theorem of calculus, f'(z) = )+ Ji 9(y)dy and
therefore
f(@) =0+ 10 /dy/ dzg(y
FO+ [ (@2
0
Since
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we have )
£@) = [ [lesala = 2) — a1 = gl
0
—k(z,2)
[
So if we let

1
(Ko@) = [ kap)go)dy
0
then we have shown K (7%) =1.

Exercise 22.1. (See previous test) Show —%K =1
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23. SOBOLEV SPACES

Definition 23.1. For p € [1,00], k € N and Q an open subset of RY, let
Wit () :={f € IP(): 0°f € I},

loc

(Q) (weakly) for all |a| <k},

WhEP(Q) = {f € LP(Q) : 0°f € LP(Q) (weakly) for all |a| <k},

1/p
(23.1) [flwrn ) = Z HaafHLP(Q if p<oo
laf <k
and
(23.2) 1 lweny = D 10 fll (e ifp = o0,
laf <k

In the special case of p = 2, we write W/>2 (Q) =: Hf

loc

(Q) and WH2 (Q) =: H* (Q)

in which case [||[yr2(q) = Il gr(qy is a Hilbertian norm associated to the inner
product
(23.3) (Fo)ew = 3 [ 0T am.

la| <k

Theorem 23.2. The function, |||y k.p(q), i @ norm which makes WkP(Q) into a
Banach space.

Proof. Let f,g € W"P(Q), then the triangle inequality for the p — norms on
LP (Q) and 1P ({a : |o| < k}) implies

1/p
1f + gllwew) = Z Haaf+aa9||ZL)p(Q)
la|<k
1/p
p
<[ X [10°Flney + 1990 o
|o| <k
1/p 1/p
< DNy |+ | D 190l

lee| <k lo| <k

1 sy + gl

This shows [|-|yyr.» () defined in Eq. (23.1) is a norm. We now show completeness.

If {f,}o2, € WFP(Q) is a Cauchy sequence, then {9f,}"—, is a Cauchy
sequence in LP(Q) for all |o| < k. By the completeness of LP(2), there exists
go € LP(2) such that g, = LP— lim, o 0“f, for all |a| < k. Therefore, for all
¢ € C(Q),

(£,0%¢) = lim (f,,0%¢) = (-1 lim (9*f,,¢) = (~1)*! lim (g, 6).

This shows 0 f exists weakly and g, = 0“f a.e. This shows f € W*?(Q) and that
fo— fEWFP(Q)asn —oco. m
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Example 23.3. Let u(z) := |z|” for € R? and o € R. Then

, R R
/ u(@) dz = o (Sd_l) / — gy = (Sd_l) / rd—op=14,.
B(0,R) rop 0

0
d—ap .
(234) :J(Sd—l) . { d—ap if - d*Oép>0
00 otherwise

and hence u € L} (R?) iff & < d/p. Now Vu(z) = —a 2| 7> & where & := x/ |z|.

Hence if Vu(z) is to exist in L}  (R?) it is given by —a|z|”* "% which is in
LY (RY) iff a +1 < d/p, ie. if a < d/p—1 = d—;ﬂ. Let us not check that
ue WhP (R?) provided o < d/p — 1. To do this suppose ¢ € C°(R?) and € > 0,

then
—(u,8;¢) = — lim u(z)0;p(x)dw

€l0 |z|>€
= lim / Oyu(x)o(x)dx + / u(m)g{)(w)ﬁdo(m) .
€l0 |z|>e |z|=€ €
Since
|/ u(x)¢(x)%do(m) <éllwo (S e "> s 0asel 0
|z|=€
and dyu(z) = —a|z| " & - e; is locally integrable we conclude that

~(.00) = [ du(a)ola)do

showing that the weak derivative 0;u exists and is given by the usual pointwise
derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let 2 be an open subset of R%, k € Ny :=
NU{0}, p € [1,00) and u € Wl];f(Q) Then there ezists u, € C(Q) such that

Up — u in WEP(Q).

Proof. Apply Proposition 19.12 with polynomials, p, (§) = £%, for |a| < k. m
Proposition 23.5. C°(R?) is dense in W*P(R?) for all 1 < p < .

Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2
in place of Proposition 19.12. =

Proposition 23.6. Let Q be an open subset of RY, k € Ny := NU{0} and p > 1,
then
(1) for any o with |o| < k, 9% : Wk» (Q) — Wk=12l» (Q) is a contraction.
(2) For any open subset V' C ), the restriction map u — u|y is bounded from
WhP (Q) — Whk» (V).
(3) For any f € C*(Q) and u € W/Z’cp(Q), the fu € Wlﬁf (Q) and for |af < k,

(23.5) 8 (fu) = g} <g) o8 f 0o Py

where (g) = Wiﬁ)'
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(4) For any f € BC* (Q) and u € WEP(Q), the fu € WP (Q) and for o] < k

loc

Eq. (23.5) still holds. Moreover, the linear map u € WFP(Q) — fu €
WP (Q) is a bounded operator.

Proof. 1. Let ¢ € C°(Q) and u € WP (Q), then for B with |8| < k — |af,
(0%u, 0°¢) = (=D)1*N(u, 007 ¢) = (=1)1*N(u, 0°17¢) = (1)1 (9" u, )
from which it follows that 9% (0%u) exists weakly and 9°(9%u) = 9*+Pu. This shows
that 0%u € Wk=1el? (Q) and it should be clear that [0%ullyyi-ta10@) < Nullwro@) -

Item 2. is trivial.
3-4. Given u € W{Z’Cp (©), by Proposition 23.4 there exists u, € C2° () such

that u, — u in W/Z’cp (€2). From the results in Appendix A.1, fu, € C*(Q) C
WHP(Q) and

(23.6) 0 (fun) = > <a) 9P f . 0o By,

BLa p

holds. Given V C, € such that V is compactly contained in €2, we may use the
above equation to find the estimate

. o o
|0 (fun)”m(v) < Z <5) HaﬂfHLoo(v) Ha BU”HLP(V)

B

< Coé(fv V) Z Haa_ﬁunHLp(v) < COé(f? V) Hu"HW"HP(V)
B<a

wherein the last equality we have used Exercise 23.1 below. Summing this equation
on |a| < k shows

(23.7) HfunHwk,p(v) <C(f,V) ||UnHW1c,p(V) for all n

where C(f,V) = Z\a|§k C.(f,V). By replacing w, by u, — u,, in the above
inequality it follows that {fu,} -, is convergent in W*P?(V) and since V was

arbitrary fu, — fu in WZIZCP(Q) Moreover, we may pass to the limit in Eq. (23.6)
and in Eq. (23.7) to see that Eq. (23.5) holds and that

||fu||wk,p(v) <C(f.V) ||uHWk,p(V) <C(f,V) ||U||Wk,p(gz)

Moreover if f € BC (£2) then constant C(f, V) may be chosen to be independent
of V and therefore, if u € W*P(Q) then fu € WP (Q).

Alternative direct proof of 4. We will prove this by induction on |af. If
a = e; then, using Lemma 19.9,

—(fu, 0;0) = —(u, f0;¢) = —(u,0; [f$] — Oi.f - &)
= (0w, o) + (w, 0;f - ¢) = (fOu+ O;f - u,d)
showing 0; (fu) exists weakly and is equal to 0; (fu) = fOu+ 0;f -u € LP(Q).
Supposing the result has been proved for all o such that |o| < m with m € [1, k).

Let v = o + ¢; with |a] = m, then by what we have just proved each summand in
Eq. (23.5) satisfies 0; [65 f-0v8 u] exists weakly and

0; [0°f - 0% Pu) = 9°Feif. 07 Pu+ 9% f.9°Fteu e LP (Q).
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Therefore 07 (fu) = 9;0* (fu) exists weakly in L? (Q) and
7 (=Y @ (07 f - 9" Put 0 f ] = 3 <v> 07 - 7 5u]

Ba By p

For the last equality see the combinatorics in Appendix A.1. =

Theorem 23.7. Let Q be an open subset of R%, k € Ny := NU{0} and p € [1, ).
Then C>=(Q) N WkP(Q) is dense in WEP(Q).

Proof. Let Q, := {z € Q : dist(z,Q) > 1/n} N B(0,n), then

Q, C{z € Q:dist(z,Q) > 1/n} N B(0,n) C Ly,

is compact for every n and Q,, T Q as n — co. Let Vo = Qs, V; := Q;43\ Q; for

Qy,
j >1, Ky := )y and Kj = Qj+2 \ Qj+1 fOI‘j >1asin ﬁgure 41. Then K,, CC V,

FIGURE 41. Decomposing €2 into compact pieces. The compact
sets Ky, K7 and K> are the shaded annular regions while Vg, V
and V5 are the indicated open annular regions.

for all n and UK,, = Q. Choose ¢, € C*(V,,,[0,1]) such that ¢, = 1 on K,, and
set ¥y = ¢g and
j—1
V=== =) 6y =¢; [T (1)
k=1
for j > 1. Then ¢; € C°(V,,[0,1]),
n n
1—Z¢k=H(1—¢k)—>0asn—>oo
k=0 k=1
so that Y72 (¢, = 1 on Q with the sum being locally finite.
Let ¢ > 0 be given. By Proposition 23.6, u, = ¥,u € W+P(Q) with
supp(u,) CC V,,. By Proposition 23.4, we may find v, € C (V,,) such that
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lun = vallyes o) < /2" for all n. Let v := Y77 | v, then v € C*(£2) because
the sum is locally finite. Since

[oe] oo
Z l[un — 'UnHW’W(Q) < 26/2n+1 =<0,
n=0 n=0

the sum > 2 (un, — vy,) converges in WH? (). The sum, Y o (un, —vy,), also
converges pointwise to u — v and hence u — v = > o (u, — v,,) is in WEP (Q).
Therefore v € WP (Q) N C>(Q) and

o0
u—vf < Z l[tn — 'UnHWk,p(Q) Se

n=0

]
Theorem 23.8 (Density of W*? (Q) N C> (Q) in WP (Q)). Let Q C R? be a
manifold with C° — boundary, then for k € Ny and p € [1, 00), WP (QO) NnCce (Q)
is dense in WkP (QO). This may alternatively be stated by assuming Q C RY is
an open set such that Q = Q° and Q is a manifold with C° — boundary, then
WkEP (Q) N C> (Q) is dense in WP (Q).

Before going into the proof, let us point out that some restriction on the boundary
of  is needed for assertion in Theorem 23.8 to be valid. For example, suppose

Qo = {xERQ 21 < | <2} and Q := Qo \ {(1,2) x {0}}

and 0 : Q — (0,27) is defined so that x1 = |z|cosf(z) and xze = |z|sinf(z),
see Figure 42. Then § € BC> (Q) C Wk (Q) for all k € Ny yet 6 can not be

FIGURE 42. The region 2y along with a vertical in .

approximated by functions from C* (€2) C BC* (Qg) in W'» (Q). Indeed, if this
were possible, it would follows that 6 € WP (). However, § is not continuous
(and hence not absolutely continuous) on the lines {z1 = p} N Q for all p € (1,2)
and so by Theorem 19.30, 8 ¢ WP (Q).

The following is a warm-up to the proof of Theorem 23.8.

Proposition 23.9 (Warm-up). Let Q := H? := {z € R?: 24 >0} and C>(Q)
denote those u € C (Q) which are restrictions of C*° — functions defined on an open
neighborhood of Q. Then for p € [1,00), C>(2) N WFP (Q) is dense in WP ().
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Proof. Let u € W*? (Q) and for s > 0 let us(x) := u(z + seq). Then it is easily
seen that u, € WHP(Q — seq) and for o < k that 9%u, = (0%u), because for
¢p e Cx (02— seq),

(0 10,0) = (10, (<0)" 0) = [ (o +s00) (<0)° 9o
= /Rd u(z) (=0)" d(x — seq)dr = / 0%u(z)p(z — seq)dx
= [ 00 @+ seaota)da = (@), .0)

This result and by the strong continuity of translations in LP (see Proposition
11.13), it follows that limy o [[u — ws|[yys.» (o) = 0. By Theorem 23.7, we may choose

vs € C™ (Q — seq) C C™ (Q) such that |jv, — Us |l yrn(qy < s for all s > 0. Then

llvs = UHWk,p(Q) < lvs — USHWk,p(Q) + [Jus — u”Wk,p(Q) —0ass |0

23.1.1. Proof of Theorem 23.8. Proof. By Theorem 23.7, it suffices to show than
any u € C* (Q) N WFP (Q) may be approximated by C* () . To understand the
main ideas of the proof, suppose that 2 is the triangular region in Figure 43 and
suppose that we have used a partition of unity relative to the cover shown so that

u = u1 + uz + ug with supp(u;) C B;. Now concentrating on u; whose support is

FIGURE 43. Splitting and moving a function in C*° (2) so that
the result is in C> (Q2).

depicted as the grey shaded area in Figure 43. We now simply translate u; in the
direction v shown in Figure 43. That is for any small s > 0, let w,(z) := u1(x+ sv),
then vy lives on the translated grey area as seen in Figure 43. The function wy
extended to be zero off its domain of definition is an element of C'*° (Q) moreover
it is easily seen, using the same methods as in the proof of Proposition 23.9, that
ws — up in WEP(Q).

The formal proof follows along these same lines. To do this choose an at most
countable locally finite cover {V;}2, of Q such that Vo C © and for each i > 1,
after making an affine change of coordinates, V; = (—e¢, ¢)? for some ¢ > 0 and

VinQ={(y,2) € Vi:e>z> fi(y)}
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where f; : (—¢,€)?71 — (—¢,¢€), see Figure 44 below. Let {n;}., be a partition of

Za0

fi

F1GURE 44. The shaded area depicts the support of u; = un;.

unity subordinated to {V;} and let u; := un;, € C> (V; N Q). Given ¢ > 0, we choose
s so small that w;(z) := u;(z+seq) (extended to be zero off its domain of definition)
may be viewed as an element of C°°({2) and such that [[u; — willy e (q) < §/2t. For

i =0 we set wy := ug = ung. Then, since {V;};°, is a locally finite cover of Q, it
follows that w := Y :° w; € C* (Q) and further we have

(o) o0 )
=0 i=1

This shows

u—w= 2:(uZ —w;) € WEP(Q)
i=0
and [|u — wl|yykpq) < 0. Hence w € C*° (Q) NWkP(Q) is a § — approximation of
u and since § > 0 arbitrary the proof is complete. m

23.2. Difference quotients.

Theorem 23.10. Suppose k € Ny, Q is a precompact open subset of R and V is
an open precompact subset of (1.

(1) If 1 < p < oo u € WFP(Q) and O;u € WFP(Q), then
(23.8) 10 ullwrr vy < 10sullyyra(q)

for all 0 < || < dist(V, Q°).
(2) Suppose that 1 < p < oo, u € W*P(Q) and assume there exists a constant
C(V) < oo such that

1
[0l vy < C(V) for all 0 < |h| < Sdist(V, Q°).

Then d;u € WHRP(V) and |0;ullywrsny < C(V). Moreover if C :=
supyccq C(V) < oo then in fact d;u € WHP(Q) and there is a constant
¢ < oo such that

||8iuHWk,p(Q) <c (C + ”uHLP(Q)) :
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Proof. 1. Let |a| < k, then
Haaazhu”LP(V) = ”a;laau”LP(V) < HaiaauHLP(Q)
wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily
follows.
2. If |0Pullyyrs vy < C(V) then for all |a| <k,
10 0%ul| Lo vy = 08} ull Lo vy < C(V).

So by Theorem 19.22, 9;0%u € LP(V') and [|0;0%u|L»(vy < C(V). From this we
conclude that [|[0%ul| sy < C(V) for all 0 < |8] < k+1 and hence [|u|yr+1.0(1) <
c[C(V) + |Ju]| Lo (vy] for some constant c. m

23.3. Application to regularity.

Definition 23.11 (Negative order Sobolev space). Let H~1(Q) = H'(Q)* and
recall that

U,
lull 1) = sup NI
PEH(Q) ||S0HH1(Q)

When Q = R?, C° (R?) is dense in H'(R?) and hence
u?
lull -1 (ray ;= sup Mol
PeC> (RT) ||<P||H1(Rd)
and we may identify H~! (R?) with {u € D'(R?) : ul|yy-1(q) < oo} € D'(RY).
Theorem 23.12. Suppose u € H'(R?) and Au € H¥R?) for k € {0,1,2,...}
then u € HFF2(R?).

Proof. Fourier transform proof. Since (1 + [£]?) + [£[2(1 + [¢]*)* < (1 +
1€|2)F+2 we are given
() € L*((1+|§*)d8) and [¢[*a(€) € L2((1 + [¢]*)"dE).

But this implies u € H*+2(R9).
Proof with out the Fourier transform. For u € H!(R%),

Vu -V d
il = [ (V7 42y = sy eV TO e
Rd pEC (RY) ||80||H1(Rd)
—Au+ u,
(23.9) O L L TN T

pEC'(RY) HSDHHI(Rd)

which shows (—A + 1) : HY(R?) — H~1(R?) is an isometry.
Now suppose that u € H' and (—=A + 1)u € L2 € H~'(R?). Then

0Full = (=2 + 1)t ullg-2 = sup [(9'u, (=4 + 1))

[
= sup [0 (-A+ D)l = sup {(=A+1)u,9'¢)}
lell 1 =1 lell 1 =1
< swp (A4 Dullee 07" ¢lle = sup [[(=A+ Dullzz [V e
lell 1 =1 lell 1 =1

<=4+ DulfL2.
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Therefore by Theorem 23.10 d;u € H' and since this is true for i = 1,2,...,d,
u € H? and
IVullg < Cl(=A + 1ul| .

Combining this with Eq. (23.9) allows us to conclude
[ullez < CI(=A + Dul| 2.

The argument may now be repeated. For example if —Au € H', then v € H? and
OMu € H? and

|0Fullzrz < [[(=A + 1) ullz2 < OO} (=A + 1)ull 2 < Cll(=A + V)ull s
Therefore u € H? and ||Vul|gz < C|[(=A + Vul|gr and so ||lullgs < Cl[(=A +
Dullg:. =

23.4. Sobolev Spaces on Compact Manifolds.

Theorem 23.13 (Change of Variables). Suppose that U and V' are open subsets
of RY, x € C* (U, V) be a C* — diffeomorphism such that 10Xl pc(ry < oo for all
1 < |a| < k and € := infy |det x/| > 0. Then the map x* : WEP (V) — Wk (U)
defined by u € WFP (V) — x*u :=uox € WFP (U) is well defined and is bounded.
Proof. For u € W*? (V)N C> (V), repeated use of the chain and product rule
implies,
(wox)' = (v ox) ¥’
(wox)" = (uox) X'+ @ ox) X" = (" ox) X' ®x + (¥ ox)x"
(wox)® = (“(3) ° X) X @x @x + @ ox) (X ®x)
+ (U ox) X' @ X" + (u o x) x?

(23.10)

! times

y .
(uo X)(l) - (u(l) o X) YR ®X+ Z (U(J) o X) p; (X/, N 7X(H—l—ﬂ)) )

-1
j=1

This equation and the boundedness assumptions on ) for 1 < j < k implies there
is a finite constant K such that

l
(o) ®| <K Y [uPox| foral 1 <i<k
j=1

By Holder’s inequality for sums we conclude there is a constant K, such that
Yo 0% (wox)lP <K Y 107”0 x
la|<k la|<k
and therefore
oo Xy < K 3 [ 10ul? (x(o) o

|al<k
Making the change of variables, y = x(z) and using

dy = |det x'(z)| dx > edxz,
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we find
[uoxyuny <Ko Y [ 00l (x(o) do
lal<k U
K, . K,
(23.11) <22 30 [0l )y = T2

lo| <k

This shows that x* : WkP (V)N C® (V) — WP (U) N C*> (U) is a bounded
operator. For general u € W*? (V)| we may choose u,, € W*? (V)N C° (V) such
that u, — w in W*P? (V). Since x* is bounded, it follows that x*u, is Cauchy
in W& (U) and hence convergent. Finally, using the change of variables theorem
again we know,

X" = X tnlpp ) < e ju— Unl[ppry — 0 asn— oo

and therefore x*u = lim, . x*u, and by continuity Eq. (23.11) still holds for
ueWkP (V). m

Let M be a compact C* — manifolds without boundary, i.e. M is a compact
Hausdorff space with a collection of charts x in an “atlas” A such that x : D(z) C,
M — R(z) C, R? is a homeomorphism such that

zoy teCF(y(D(x)ND(y))),z (D(x)ND(y))) for all z,y € A.
Definition 23.14. Let {x;}Y, C A such that M = UN D(z;) and let {¢;}1,

be a partition of unity subordinate do the cover {D(;)}

i—1 - We now define u €
WkP(M) if u: M — C is a function such that

N
(23.12) ||UHW1~=,p(M) = Z H(@U) © xi_lHWk,p(R(zi)) < .
i=1

Since |||lyy k.0 (R (s, is a norm for all 7, it easily verified that ||-[ly ... (5 is a norm
on WkP(M).

Proposition 23.15. If f € C*(M) and u € W*P (M) then fu € WkP (M) and
(23.13) ||fu||Wk,p(M) <C ||uHWk‘vP(M)

where C' is a finite constant not depending on u. Recall that f : M — R is said to
be C7 with j <k if fox™! € CI(R(x),R) for all z € A.

Proof. Since [ fo x;l] has bounded derivatives on supp(¢; o azi_l), it follows
from Proposition 23.6 that there is a constant C; < oo such that

-1 —1 -1 -1

[(¢ifu) o ; ||W""1P(R(;ci)) = ||[f oai '] ($1u) 0 z; ||W’“v1’(R(w¢)) < Cil[(¢iu) o z; ||W""1P(R(wi))
and summing this equation on ¢ shows Eq. (23.13) holds with C' := max; C;. m

Theorem 23.16. If {yj}K C A such that M = UK, D(y;) and {%}f:l is a

j=1
partition of unity subordinate to the cover {D(yj)}jl.(:1 , then the norm

K
(23.14) [ulweson = D105 055 s re, )
P '

is equivalent to the norm in Eq. (23.12). That is to say the space W*P (M) along
with its topology is well defined independent of the choice of charts and partitions
of unity used in defining the norm on WkP (M) .
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Proof. Since |-\Wk,p(M) is a norm,

N
< Z ‘¢iu|wk,p(M)

Wk.p (M) i=1

|U‘Wk,p(M) =

] =

(piu) o y;

1

-
I

<
I
—

M- 7

W¥p(R(y;))

(23.15)

M=

1(561) 0 45 i sy, )

1:=1

J

and since xioy;1 and y;jox; ' are C* diffeomorphism and the sets y; (supp(¢;) N supp(t;))
and x; (supp(¢;) Nsupp(¢;)) are compact, an application of Theorem 23.13 and
Proposition 23.6 shows there are finite constants C;; such that

H(wﬂ’@“) Oyfl}’Wk,p(R(y_j)) < Cij || (¢5u) 0 $;1||Wk,p(R(zi)) < Gy H(b%“ Oxfl}lwk,p(R(zi))

which combined with Eq. (23.15) implies

K N

‘u|Wk»p(M) < ZZCZJ ||¢iuo$;1||wk,p(R(xi)) < C”uHWk,p(M

j=11i=1

where C' := max; Zszl Cj; < 0o. Analogously, one shows there is a constant K < co
such that [[ullyrnary < K ulyesns - ®

Lemma 23.17. Suppose x € A(M) and U C, M such that U C U C D(z), then
there is a constant C' < oo such that

(23.16) Hu o $71HW’%P($(U)) < Cllullyrsary for allu e WhP(M).

Conversely a function u : M — C with supp(u) C U is in WEP(M) iff
||u o x_1||Wk’P(a:(U)) < 0o and in any case there is a finite constant such that

(23.17) lellwrsany < Cllue ™ |y, -

Proof. Choose charts y1 := z, ya,...,yx € A such that {D (yl)}f , is an
open cover of M and choose a partition of unity {z/J]} _, subordinate to the cover
{D(yj)} , such that ¢; = 1 on a neighborhood of U. To construct such a partltlon
of unity choose Uj Co M such that U; C U; C D(y;), U C Uy and U\ U; =
and for each j let n; € CF(D(y;),[0,1]) such that n; = 1 on a nelghborhood of
Uj. Then define v; := n; (1 —1o)--- (1 —nj—1) where by convention 79 = 0. Then
{¥; }JK:1 is the desired partition, indeed by induction one shows

1—2% (L=m)-(1—m)
and in particular

1—2%— L=m)--(1=nx) =0
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Using Theorem 23.16, it follows that

leo o™ lwin ey = 1@10) 0™ i o)

~

< |[(¥ru) o xilnww(}z(yl Z )oy; ’W’”"P(R(yj))

= WWW(M) <C ||uHWk1P(M)

which proves Eq. (23.16).
Using Theorems 23.16 and 23.13 there are constants C; for j = 0,1,2..., N such
that

K K
ullyroary < Z )oy; ’wwmy,-)) =Co)_|(ww) oy opo ya'_1||ww<R<yj>>
j=1 j=1
K
Z H pju) Hwk P (R(y1)) COZC Hz% ox " x71|‘W’“*”(R(y1)) .

This inequality along with K — applications of Proposition 23.6 proves Eq. (23.17).
|

Theorem 23.18. The space (W*P(M), [l r.0(ar)) is @ Banach space.

Proof. Let {z;}.*, C Aand {(/52}1 , be as in Definition 23.14 and choose U; C,
M such that supp(¢;) C U; C U; C D(x;). If {u,}ro, € WFEP(M) is a Cauchy
sequence, then by Lemma 23.17, {u, o z; l}n | C WFP(z;(U;)) is a Cauchy se-
quence for all 4. Since W¥*»(z;(U;)) is complete, there exists v; € WP (x;(U;)) such
that u, o x;l — ¥; in WhP(z;(U;)). For each i let v; := ¢; (; o z;) and notice by
Lemma 23.17 that

il wepary < € v °$I1||Wk,p<miw,.>> = Cloillwrr(aywyy <0

so that u := Zfil v; € WFP(M). Since supp(v; — ¢iuy,) C Uy, it follows that

Z Vi — Z Pitn

le = wnllwrsany =

Wk.p (M)
N
< Z l|lvi — ¢z‘unHkaP(M) S OZ ”[(bl (Vi 0@ —un)] 0 x;lHW""*”(%‘(Ui))
i=1 i=1
—CZH giow; " (B; — up o x; )]’|W’*‘>P(z7¢(Ui))

HW’“*T’(mi(Ui)) —0asn— o0

i=1

wherein the last inequality we have used Proposition 23.6 again. m

23.5. Trace Theorems. For many more general results on this subject matter,
see E. Stein [7, Chapter VIJ.
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Lemma 23.19. Suppose k > 1, H? := {m eERY:2q > 0} Co R4, u e CF (W)

and D is the smallest constant so that supp(u) C RI~1 x [0, D). Then there is a
constant C = C(p, k,D,d) such that

(23.18) [ellr-r0omay < C0: D ks d) ([l gy -

Proof. Write z € H? as 2 = (y,2) € R4! x [0,00), then by the fundamental
theorem of calculus we have for any o € N&™! with o < k — 1 that

(23.19) 9y u(y,0) = 0yu(y, / 0y ue(y,t)

Therefore, for p € [1,00)

0 u(y, 0)ff < 27/ [|a;u<y,z>|” i ‘ /O O sy, )t

|
<o [l + [ 05t -2
0

D
<or-l. l|5§“U(y,z)}”+/ |8;”ut(y,t)|”dt-z“]
0

where g := 1{—1 is the conjugate exponent to p. Integrating this inequality over
R4=1 x [0, D] implies

o a+e br
D |0%ull} oy < 277 [Ila ull 7o ey + 1074wl agay 7}

or equivalently that

leY [ Dr— a+e
10wl 0 gy < 2P DTHIO U] ggay + 27— ||3 Fetull, )

from which implies Eq. (23.18).
Similarly, if p = oo, then from Eq. (23.19) we find

0% ull oo (oay = 10 ull oo gy + D [[0°F 0| o 510
and again the result follows. =

Theorem 23.20 (Trace Theorem). Suppose k > 1 and Q C, R? such that Q is
a compact manifold with C* — boundary. Then there exists a unique linear map
T : WhP (Q) — WELP (99Q) such that Tu = u|aq for all u € C* (Q).

Proof. Choose a covering {Vi}fio of  such that Vp C Q and for each i > 1,
there is C* — diffeomorphism z; : V; — R(w;) C, R? such that

z; (02 NV;) = R(x;) N bd(H?) and
z; (QNV;) = R(z;) NHY

as in Figure 45. Further choose ¢; € C° (V;,[0,1]) such that Zfio ¢; =1ona
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v

F1GURE 45. Covering €2 (the shaded region) as described in the text.

neighborhood of Q and set y; := Z;iloany; for i > 1. Given u € Cck (Q) , we compute

N
2 @) log o 57 lwi-sn(reyrwaga)

||U|BQ||Wk—1,p(aQ)

©
Il
-

I
M=

|| [(¢1u) o m;l} ‘bd(Hd) Hkal,p(R(xi)nbd(Hd))
=1

s
Il

-

«
I
—

Ci [[[(¢1) o2 [lyrkon gy

N
<maxCi > || [(#w) 27 lywnronyomay T 11000) © 55 lypnn (g
=1

< C lullyrray

where C' = max {1,Cy,.. o Cn}. The result now follows by the B.L.T. Theorem
4.1 and the fact that C* (Q) is dense inside W*? (Q). m

Notation 23.21. In the sequel will often abuse notation and simply write u) g for
the “function” Tu € WF~1P(9Q).

Proposition 23.22 (Integration by parts). Suppose @ C, R? such that Q is a

compact manifold with C* — boundary, p € [1,00] and q = ﬁ is the conjugate
exzponent. Then for u € W*P (Q) and v € Wk (Q),
(23.20) / O - vdm = —/ u - vdm + / Ulgq - v|ganido

Q Q a0

where n : O — R is unit outward pointing norm to 0.
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Proof. Equation 23.20 holds for u,v € C?(Q) and therefore for (u,v)
WP (Q) x W4 () since both sides of the equality are continuous in (u,v)
WkP () x Wk (Q) as the reader should verify. m

WhP(Q)

S
S

Definition 23.23. Let WP (Q) := C (Q)
Wk (Q).

Remark 23.24. Notice that if T : W*P (Q) — W*=17 (5Q) is the trace operator in
Theorem 23.20, then T (W(’f’p(ﬂ)) = {0} C Wh=1 (592)

all u € C°(Q).

be the closure of C'2° () inside

since Tu = u|gg = 0 for

Corollary 23.25. Suppose Q C, R? such that Q is a compact manifold with C* —
boundary, p € [1,00] and T : WP (Q) — LP(0) is the trace operator of Theorem
23.20. Then WyP () = Nul(T).

Proof. It has already been observed in Remark 23.24 that W, (Q) ¢ Nul(T).
Suppose u € Nul(T') and supp(u) is compactly contained in Q. The mollification
uc(z) defined in Proposition 23.4 will be in C2° () for € > 0 sufficiently small and
by Proposition 23.4, uc — u in W (). Thus u € Wy"* (Q). We will now give
two proofs for Nul(T') C W, ().

Proof 1. For u € Nul(T) C WP (Q) define

[ u(z) for z€Q
(x)—{ 0 for z¢Q.

Then clearly @ € L? (R?) and moreover by Proposition 23.22, for v € C°(R%),

/ ﬂ-@ivdm:/u-aﬂjdm:—/&u-vdm
Rd Q Q

from which it follows that 9;@ exists weakly in LP (Rd) and 0;u = 1q0;u a.e.. Thus
e Wwhr (Rd) with ||fLHW1,p(Rd) = Hu||W1,p(Q) and supp(@) C Q. )

Choose V € C} (R%,R?) such that V(z) - n(x) > 0 for all z € 9Q and define

te(z) = Toa(z) := o eV (z).

Notice that supp(i.) C e~V (Q) CC  for all e sufficiently small. By the change
of variables Theorem 23.13, we know that @, € WP (Q) and since supp(i,) is a
compact subset of ), it follows from the first paragraph that u. € WO1 Q).

To so finish this proof, it only remains to show @, — u in WP () as € | 0.

Looking at the proof of Theorem 23.13, the reader may show there are constants
0 > 0 and C' < oo such that

(23.21) Tl gay < C [0l gay for all v € W (RY).

By direct computation along with the dominated convergence it may be shown
that
(23.22) Tov — v in WH? (R?) for all v € C2°(RY).
As is now standard, Eqs. (23.21) and (23.22) along with the density of C2°(R) in
whp (Rd) allows us to conclude T.v — v in WP (Rd) for all v € WP (Rd) which
completes the proof that @, — u in WP (Q) as e — 0.

Proof 2. As in the first proof it suffices to show that any u € Wol’p (©2) may
be approximated by v € WP (Q) with supp(v) C Q. As above extend u to Q¢

]
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by 0 so that @ € W» (R?) . Using the notation in the proof of 23.20, it suffices
to show u; := ¢;i € W'P (R?) may be approximated by u; € W' (Q) with
supp(u;) C Q. Using the change of variables Theorem 23.13, the problem may be
reduced to working with w; = u; oa:i_1 on B = R(xz;). But in this case we need only
define w(y) := wi(y — eeq) for € > 0 sufficiently small. Then supp(w§) C H¢ N B
and as we have already seen w§ — w; in WP (H%) . Thus u§ := wfox; € WP (Q),
u§ — u; as € | 0 with supp(u;) C Q2. ®

23.6. Extension Theorems.

Lemma 23.26. Let R > 0, B := B(0,R) C RY, B* := {z € B: £x4 > 0} and
[:={z € B:xq=0}. Suppose that uw € C*(B\T)NC(B) and for each |a| < k,
0% extends to a continuous function v, on B. Then u € C*(B) and 0%u = v, for
all |o| < k.

Proof. For x € T and ¢ < d, then by continuity, the fundamental theorem of
calculus and the dominated convergence theorem,

A
u(z 4+ Ae;) —u(z) = lim [u(y + Ae;) —u(y)] = lim Ou(y + se;)ds
y—T Yy—T
yeB\T yEB\T
A A
= lim Ve, (Y + se;)ds = / Ve, ( + se;)ds
Yy—x
yeB\T' 0 0
and similarly, for i = d,
A
u(z+ Aeg) —u(z) = lim  [u(y+ Aeq) —u(y)]=  lim / Oqu(y + seq)ds
Yy—x Yy—x
y€Bsen(A\T y€Bsen(A\T
A A
= lim / Ve, (y + seq)ds = / Ve, (T + seq)ds.
y—w
y€Bsen(A)\T 0

These two equations show, for each i, d;u(x) exits and d;u(z) = ve, (x). Hence we
have shown u € C! (B).

Suppose it has been proven for some [ > 1 that 0%u(x) exists and is given by
vo(x) for all |a] <1 < k. Then applying the results of the previous paragraph to
0%u(zx) with || = I shows that 9;0%u(z) exits and is given by vy, (x) for all ¢
and x € B and from this we conclude that 0“u(z) exists and is given by v, (z) for
all || <1+ 1. So by induction we conclude 0%u(z) exists and is given by v, (x) for
all |o| < k,ie ueC¥B). m

Lemma 23.27. Given any k+1 distinct points, {ci}f:(] , in R\ {0}, the (k+1) x
(k + 1) matriz C with entries Ci;j == (¢;)” is invertible.

Proof. Let a € RF¥T! and define p(z) := Zj:o ajz’. If a € Nul(C), then

k
O:Z(Ci)jaj =pl(g) fori=0,1,... k.
j=0
Since deg (p) < k and the above equation says that p has k + 1 distinct roots, we
conclude that a € Nul(C') implies p = 0 which implies @ = 0. Therefore Nul(C) =
{0} and C is invertible. m
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Lemma 23.28. Let B, BY and T be as in Lemma 23.26 and {ci}fzo, be k+1
distinct points in (oo, —1] for example c; = — (i + 1) will work. Also let a € RF1
be the unique solution (see Lemma 23.27 to C*"a = 1 where 1 denotes the vector
of all ones in RFtL i.e. a satisfies

k
(23.23) 1= (¢;) a; forj=0,1,2... k.
j=0
For u € C*(H%) N C.(HY) with supp(u) C B and & = (y,z) € R? define
” _ 7 _ u(y, 2) if 220
(23.24) w(z) =uly, 2) = { Zf:o awuly,ci2) if <0,

Then @ € CFR?) with supp(@) C B and moreover there exists a constant M
independent of u such that

(23.25) [@llwesy < M lullyrn sy -
Proof. By Eq. (23.23) with j =0,

k k
Z aiu(yv Cio) = U(y, 0) Z a; = u(y, 0)
=0 =0

This shows that @ in Eq. (23.24) is well defined and that @ € C' (H?) . Let K~ :=
{(y,2) : (y,—z) € supp(w)}. Since ¢; € (oc0,—1], if 2 = (y,2) ¢ K~ and z < 0
then (y, ¢;z) ¢ supp(u) and therefore 4(z) = 0 and therefore supp(@) is compactly
contained inside of B. Similarly if o € Ng with |a| < k, Eq. (23.23) with j = ag4
implies
. (0%u) (y, 2) if z2>0

Va() = { Zf:o a;c;t (0%) (y,¢iz) if z<0.
is well defined and v, € C (R?) . Differentiating Eq. (23.24) shows u(z) = v (z)
for z € B\ T and therefore we may conclude from Lemma 23.26 that u € C*(B) C
C* (R?) and 9%u = v, for all |a| < k.

We now verify Eq. (23.25) as follows. For |a| <k,

p

M»

a;c; (0%) (y, ¢iz)| dydz

0% 5y = [ Loco
Rd =0
k

1, ,ci2)|P dyd
o D 1(0%w) (3, 2) | dydz

R =0

IA

5

C

E

1
[ 10 1@ 0) (2 dyd
Rd ‘ 2

i=
— (
i= ‘

p/q
where C := (ZZ o laic O‘”l|q) . Summing this equation on |a| < k shows there ex-

ists a constant M" such that [|@[lyy e, 5-) < M [[ullyyspp+) and hence Eq. (23.25)
holds with M =M’ +1. m

I
Q

||8O‘UHLP(B+

\/
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Theorem 23.29 (Extension Theorem). Suppose k > 1 and 2 C, R? “such that Q
is a compact manifold with C* — boundary. Given U C, R? such that Q2 C U, there
exists a bounded linear (extension) operator E : WEP (Q) — WkP (R?) such that

(1) Bu=wu a.e. in and
(2) supp(FEu) C U.

Proof. As in the proof of Theorem 23.20, choose a covering {Vi}il\io of Q) such
that Vo C Q, UN,V; C U and for each i > 1, there is C* — diffeomorphism z; :
V; — R(x;) Co R? such that

z; (00N V;) = R(x;) Nbd(H?) and z; (2N V;) = R(z;) NH? = BT

where BT is as in Lemma 23.28, refer to Figure 45. Further choose ¢; €
C* (V;,[0,1]) such that Zio ¢; = 1 on a neighborhood of ) and set y; := z;|s0nv;
for i > 1. Given v € C* (Q) and i > 1, the function v; := (¢;u) o z; ' may be
viewed as a function in C*(H?) N C..(H?) with supp(u) C B. Let ©; € C¥(B) be
defined as in Eq. (23.24) above and define @ := ¢ou + Zf\;l b om; € C° (R?) with
supp(u) C U. Notice that @ = u on 2 and making use of Lemma 23.17 we learn

N

Ha”W’“vP(Rd) < ||¢0u||Wk»P(Rd) + Z [[9; 0 xi”w’w(Rd)
i=1

N
< ||¢0u||Wk=P(Q) + Z ||7~]iHWka(R(wi))
i=1
N

< C(¢o) ||U||Wk,p(§z) + Z Hvz'HWk,p(Bﬂ

i=1

N
= C(¢0) lullwr.niq) + Z H(Q{)Z“) © x;1|}wk,p(3+)
i=1

N
<C (¢0) ||U||Wk,p(Q) + Zci ||U|‘Wk=,p(9) .
i=1

This shows the map u € C*(Q) — Eu := @ € C*(U) is bounded as map from
WP (Q) to WkP (U). As usual, we now extend E using the B.L.T. Theorem 4.1
to a bounded linear map from W (Q) to W*» (U). So for general u € WP (),
Eu = WkP(U) - lim,, o 1, where u, € C*(Q) and u = W*P (Q) — lim, o0 Up.
By passing to a subsequence if necessary, we may assume that @, converges a.e. to
Eu from which it follows that Fu = u a.e. on  and supp(Eu) C U. m

23.7. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

‘f|Wk=,p(Q) = Z ||aafHLP(Q) .

loe|<k
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Solution. 23.1This is a consequence of the fact that all norms on I? ({a : |a| < k})
are equivalent. To be more explicit, let a, = ||0*f|| Lr(Q) then

1/p 1/q
> laal < | Y laal” > v
|| <k [a| <k la| <k
while
1/p v p\ 1/p
1

Saal” | < Y 1Y lagl <[#{alo] < BN Jagl.
o<k la|<k | |BI<k 1BI<k
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24. HOLDER SPACES

Notation 24.1. Let Q be an open subset of R?, BC(£2) and BC(€2) be the bounded
continuous functions on €2 and 2 respectively. By identifying f € BC(2) with
fla € BC(Q), we will consider BC(2) as a subset of BC(Q2). For v € BC(Q) and
0< B <1 let

) gl

ully = sup |u(z)| and [u]g := sup{
Jul += sup [u(z)] and [u] B

z,ye

zH#Y

If [u]p < oo, then u is H6lder continuous with holder exponent*! 3. The collection
of § — Holder continuous function on 2 will be denoted by

C%P(Q) := {u € BC(Q) : [u]s < o0}
and for u € C%4(Q) let
(24.1) [ullco.sq) == llullu + [uls-
Remark 24.2. Tf u : Q@ — C and [u]g < oo for some 8 > 1, then u is constant on
each connected component of Q. Indeed, if z € Q and h € R? then
u(z + th) — u(z)

t

which shows dpu(x) =0 for all x € Q. If y € Q is in the same connected component
as x, then by Exercise 17.5 there exists a smooth curve o : [0,1] — Q such that

(0) = z and o(1) = y. So by the fundamental theorem of calculus and the chain
rule,

< [ulpt?Jt —0ast — 0

u(y)—u(x):/o %u(a(t))dt:/o 0 dt = 0.

This is why we do not talk about Holder spaces with Holder exponents larger than
1.

Lemma 24.3. Suppose u € C1(Q) N BC(Q) and d;u € BC(Q) fori=1,2,...,d,
then u € C%1(Q), i.e. [u]; < oo.

The proof of this lemma is left to the reader as Exercise 24.1.

Theorem 24.4. Let Q be an open subset of R%. Then

(1) Under the identification of u € BC () with ulo € BC(Q), BC(Q) is a
closed subspace of BC().

(2) Every element u € C%#(Q) has a unique extension to a continuous func-
tion (still denoted by u) on Q. Therefore we may identify C*P(Q) with
CYP(Q) c BC(D).

(3) The function u € COP(Q) — |ulcosq) € [0,00) is a norm on C*#(Q)
which make C%P(Q) into a Banach space.

Proof. 1. The first item is trivial since for u € BC({2), the sup-norm of u on Q
agrees with the sup-norm on 2 and BC(Q) is complete in this norm.

2. Suppose that [u]g < co and zp € IN. Let {z,,} -, C Q be a sequence such
that g = lim,, .o ,. Then

lu(xn) — w(@m)| < [ulg|zn — zm|” — 0 as m,n — oo

4lyg B =1, u is is said to be Lipschitz continuous.
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showing {u(z,)}, -, is Cauchy so that @(x¢) := lim,, .o u(x,) exists. If {y,} ~, C
Q) is another sequence converging to xg, then

[u(zn) = u(yn)| < [uls |20 = yal” — 0 as n — oo,
showing u(xg) is well defined. In this way we define @(z) for all x € 9Q and let
a(z) = u(x) for x € Q. Since a similar limiting argument shows
[a(z) —a(y)| < [uls|e —y|” for all 2.y € ©

it follows that @ is still continuous and [a]g = [u]g. In the sequel we will abuse
notation and simply denote @ by .
3. For u,v € C%P(Q),

[v+ulg = sup

{ [v(y) + uly) — v(z) — u(z)| }

z,yeN ‘37 - y|ﬁ
Y
lo(y) — v(@)] + Ju(y) - u(z)] }
< sup{ < o] + [u]s
:r,y#eQ |JI - y|6 ! !
sy

and for A € C it is easily seen that [Au]g = |A| [u]g. This shows [-]g is a semi-norm
on C%A(Q) and therefore || - ||co.5(q) defined in Eq. (24.1) is a norm.

To see that C%#(Q) is complete, let {u,} -~ be a C%#(Q)-Cauchy sequence.
Since BC(2) is complete, there exists u € BC(Q2) such that ||u — u,|, — 0 as
n — oo. For z,y € Q) with x # y,

[ulz) —u()] _ - Jun(@) —un ()] < limsuplu,]s < lim [|un[lcos o) < oo,
w—yl” e ey n—oo e
and so we see that u € C%5(Q). Similarly,
[u(z) — un(2) — (u(y) — un(y)) — lim |(Um — un)(®) = (um — un)(y)
|9:—y|B m— o0 |$—y|5

< limsup[um, — up)g — 0 as n — oo,

m—0o0

showing [u — un]s — 0 as n — oo and therefore lim,, oo || — tn | cos() =0. W

Notation 24.5. Since © and Q are locally compact Hausdorff spaces, we may
define Cy(€2) and Cp(R2) as in Definition 10.29. We will also let

COP () := C%P(Q) N Cp(Q) and CoP () := COP(Q) N Co(Q).

It has already been shown in Proposition 10.30 that Co(€2) and C(€) are closed
subspaces of BC(S2) and BC((2) respectively. The next proposition describes the
relation between Cy(£2) and Cy(€2).

Proposition 24.6. Each u € Cy(R2) has a unique extension to a continuous func-
tion on Q given by & =u on Q and 4= 0 on 0N and the extension i is in Co().
Conversely if u € Co(Q) and ulasq = 0, then ulg € Co(Q). In this way we may
identify Co(Q) with those u € Co(Q) such that u|pg = 0.

Proof. Any extension u € Cp(f2) to an element 4 € C(2) is necessarily unique,
since Q is dense inside Q. So define @ = u on Q and @ = 0 on 9Q. We must show %
is continuous on  and @ € Cp(Q).

For the continuity assertion it is enough to show @ is continuous at all points
in 9. For any € > 0, by assumption, the set K. := {x € Q: |u(z)| > €} is a
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compact subset of €. Since 9Q = Q\ Q, 92N K. = 0 and therefore the distance,
§ = d(K.,00), between K. and 99 is positive. So if z € 9Q and y € Q and
ly — x| < 6, then |ii(x) — i(y)| = |u(y)| < € which shows @ : Q2 — C is continuous.
This also shows {|@| > ¢} = {|u| > ¢} = K is compact in © and hence also in €.
Since € > 0 was arbitrary, this shows @ € Co(Q).

Conversely if u € Cp(Q) such that ulpg = 0 and € > 0, then K, :=
{z €Q:|u(z)] > €} is a compact subset of Q which is contained in Q since
0Q N K, = (). Therefore K, is a compact subset of {2 showing u|q € Co(2). m

Definition 24.7. Let  be an open subset of R?, k € NU{0} and 8 € (0, 1]. Let
BC*(Q) (BCk(€)) denote the set of k — times continuously differentiable functions
u on  such that 0% € BC(Q) (0%u € BC(Q))*? for all |a| < k. Similarly, let
BC*B(Q) denote those u € BC¥() such that [0%u]sz < oo for all |a| = k. For
u € BC*(Q) let

lullor@y = D 19%ullu and

|| <k
lullors@ = Y 0%l + Y [0%u]
la|<k la|=k

Theorem 24.8. The spaces BC*(Q) and BC*P(Q) equipped with || - lcx (@) and
Il - ||Ckﬁ respectively are Banach spaces and BC¥(QQ) is a closed subspace of
BC*(9) and BC*A(Q) c BC*(Q). Also

Co” () = Cy(Q) = {u € BC*#(Q) : 9°u € Co(Q) V |a| < k}
is a closed subspace of BC*P(Q).

Proof. Suppose that {u,} -, C BC*(Q) is a Cauchy sequence, then {0%u,} -,
is a Cauchy sequence in BC(Q) for |a| < k. Since BC(£) is complete, there exists
ga € BC(Q) such that lim, .« [[0%u, — gal|,, = 0 for all |a] < k. Letting u := go,
we must show u € C*(Q) and 9%u = g, for all |a| < k. This will be done by
induction on |a|. If |o| = 0 there is nothing to prove. Suppose that we have
verified u € C'(Q) and 9%u = g, for all |a| < [ for some | < k. Then for = € ,
i€ {1,2,...,d} and t € R sufficiently small,

t
O (x + te;) = 0%un(x) + / 0;0%Up (x + Te; )dT.
0

Letting n — oo in this equation gives

t
0u(x + te;) = 0%u(x) + / Gate, (T + Te;)dT
0

from which it follows that 9;0%u(x) exists for all x € Q and 9;0%u = gote,. This
completes the induction argument and also the proof that BC*(€) is complete.

It is easy to check that BC*(Q) is a closed subspace of BC*() and by using
Exercise 24.1 and Theorem 24.4 that that BC*?(Q) is a subspace of BC*(Q). The
fact that C'(])C () is a closed subspace of BC*# (1) is a consequence of Proposition
10.30.

4276 say 8*u € BC(Q) means that 8%u € BC(Q) and 8%u extends to a continuous function
on .
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To prove BC*P(Q) is complete, let {u,}ro, C BC*P(Q) be a | - lors@ —
Cauchy sequence. By the completeness of BC*(Q) just proved, there exists u €
BC*(Q) such that limy, e | —un||ck (o) = 0. An application of Theorem 24.4 then
shows limy, .o [[0%un — 0%ul| o5y = 0 for |a] = k and therefore limy, o [|u —
'U,nHC)c,g(ﬁ) = 0 | |

The reader is asked to supply the proof of the following lemma.

Lemma 24.9. The following inclusions hold. For any 3 € [0,1]

BC*10(Q) ¢ BCk1(Q) ¢ BC*P(Q)

BC*10(Q) ¢ BCH1(Q) ¢ BC*#(Q).
Definition 24.10. Let A : X — Y be a bounded operator between two (sep-
arable) Banach spaces. Then A is compact if A[Bx(0,1)] is precompact in ¥

or equivalently for any {z,}52,; C X such that ||a,|| < 1 for all n the sequence
Yn := Ax, € Y has a convergent subsequence.

Example 24.11. Let X = ¢2 =Y and ), € C such that lim,_,oc A\, = 0, then
A: X =Y defined by (Az)(n) = A,z(n) is compact.

Proof. Suppose {x;}32, C ¢ such that ||z;|* = 3 |gcj(n)|2 < 1 for all j. By
Cantor’s Diagonalization argument, there exists {jx} C {j} such that, for each n,
Zr(n) = xj, (n) converges to some Z(n) € C as k — co. Since for any M < oo,

M M
o lEm)PP = lim Y@ (n) <1
n=1 koo n=1

we may conclude that Y |Z(n)]? <1, ie. & € (2

n=1
Let y := A%y and y := AZ. We will finish the verification of this example by
showing yx, — y in ¢ as k — oo. Indeed if A}, = max |An|, then

o0

1AZ — AZ|* = Y |Aaf [Zk(n) — E(n)|?

3
—

M 0o
=Y aPlER(n) =) + Ny P Y [Er(n) — E(n)?
n=1 M+1

~ ~ * ~ ~ 12
Mal?lZ(n) = 2()* + [N |25 — 2]

M-

3
Il
-

Aal?|Zk(n) = Z(n)* + 4N, .

-

1

3
Il

Passing to the limit in this inequality then implies
lim sup ||AZ, — A%|* < 4|\ — 0 as M — oo.
k—o0
[

Lemma 24.12. If X 27 B, Z are continuous operators such the either A or
B is compact then the composition BA : X — Z is also compact.
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Proof. If A is compact and B is bounded, then BA(Bx(0,1)) C B(ABx(0,1))
which is compact since the image of compact sets under continuous maps are com-
pact. Hence we conclude that BA(Bx (0, 1)) is compact, being the closed subset of
the compact set B(ABx(0,1)).

If A is continuos and B is compact, then A(Bx(0,1)) is a bounded set and so
by the compactness of B, BA(Bx(0,1)) is a precompact subset of Z, i.e. BA is
compact. H

Proposition 24.13. Let Q2 C,)_Rd such that Q is compact and 0 < a < < 1.
Then the inclusion map i : C?(Q) — C*(2) is compact.

Let {u,}52, C CA(Q) such that |lu,|/cs < 1, ie. |Jun]oo <1 and
[t () — un(y)] < |z —y|? for all z,y € Q.

By Arzela-Ascoli, there exists a subsequence of {i,, }2; of {u,}5; and u € C°()
such that @, — v in CP. Since

fuf) — u(y)| = lim_fin(2) — ()| < |2~ yI?,

u € CP as well. Define g, := u — @, € C%, then ||g,|lcs <2 and g, — 0in C°. To
finish the proof we must show that g,, — 0 in C¢. Given § > 0,

‘gn(x) - gn(y)‘

SUp e <:A,+B,
Ty
where
_|_
A = sup |9 () — gn(y)|
n -—
T #y ‘CB _y‘a
|z —y| <8
1 2
< zsup [gn() — gn(¥)] < $llgnllec — 0 as n — o0

0wty )

and
B. — sup |gn($) _gn(y)|
n
T #Y ‘xiy‘a
|z —y| >6
_ B
< s ETW gy pogpecste

|z —y| <6 |z —y| <6

Therefore,

lim sup [gn]o < lim sup A, +1lim sup B, <0+ 8P~ 5 0asd | 0.
n—oo n—oo n—oo
This proposition generalizes to the following theorem which the reader is asked to
prove in Exercise 24.2 below.

Theorem 24.14. Let Q be a precompact open subset of RY, o, B € [0,1] and k,j €

1
No. If j + B > k + o, then C7+P (Q) is compactly contained in CF (Q) .
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24.1. Exercises.
Exercise 24.1. Prove Lemma 24.3.

Exercise 24.2. Prove Theorem 24.14. Hint: First prove C78 (Q) CC Che (Q) is
compact if 0 < o < < 1. Then use Lemma 24.12 repeatedly to handle all of the
other cases.
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25. SOBOLEV INEQUALITIES

25.1. Gagliardo-Nirenberg-Sobolev Inequality. In this section our goal is to
prove an inequality of the form:

(25.1) ullLa < CVull s ray for u € CHRY).
For A > 0, let ux(z) = u(Az). Then

O A
and hence |Juy| e = A=Y 9||u||za. Moreover, Vuy(z) = A(Vu)(Az) and thus
IVuallze = Al (Va)alle = AA~YP|[Vul|o.
If (25.1) is to hold for all u € C}(R?) then we must have
Al Lo = [Jurl|ze < CVur|l o @ay = CA=P|| V| v for all A > 0

which only possible if 1 — d/p+d/q =0, ie. 1/p =1/d+ 1/q. Let us denote the

solution, ¢, to this equation by p* so p* := dd—_’;).

Theorem 25.1. Letp=1s0 1* = ﬁ, then

(25.2) lulle = [lull_o <d~%|[Vul, for allu€ CHR?).

d
d—

Proof. To help the reader understand the proof, let us give the proof for d = 1,
d =2 and d = 3 first and with the constant d—'/2 being replaced by 1. After that
the general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (25.3) below.)

(d =1, p* = 00) By the fundamental theorem of calculus,

)l =| [ v < [ Wlds< [ Waas

Therefore ||u||pe < ||| L1, proving the d = 1 case.
(d = 2, p* = 2) Applying the same argument as above to y; — u(y;,x2) and
Y2 — u(xlva)w

o0

(e, 22)] < / Oyuly, 25)) dys < / Vulys, 22)|dyr and

— 00 — 0o
o0

fu(z, 22)] < / Byu(ar, y2)) dys < / V(e yo) dye

— 00 —0o0

and therefore

(e, 22) 2 < / 101 uyn, 22)|dys - / 101, y2)] dyo.

— 00 —00

Integrating this equation relative to x; and zo gives

ol = [ @i < ([~ ot de) ([ ool as )
< ([ 1vua dm>2

which proves the d = 2 case.
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(d=3,p*=3/2) Let 2! = (y1, 72, 73), 2% = (v1,y2,23), and x> = (z1, T2, y3) if
i = 3, then as above,

lu(z)] < / |81u(wz)|dyl fori=1,2,3

and hence

@it <I1( [ ot >|dyz-)%.

=1

Integrating this equation on z; gives,

/R|u(x)|%dw1§</ Ovu(e |dy1) /H(/ e )|dyi)édx1

< </_OO |81u(x)|dx1)% f[ (/_Z |8iu(mi)|dac1dyi)%

=2

wherein the second equality we have used the Holder’s inequality with p = ¢ = 2.
Integrating this result on x5 and using Holder’s inequality gives
1
3 2
(/ |O5u(z )|dm1dy3>
R2

[ ) Edrdos < </R |8gu(m)|dm1dm2)% /Rdxg (/_O; 81u(m)dx1>
< < 5 |82u(az)|da:1da:2)% < /R 2 |61u(x)|dx1dx2)% ( /R 3 63u(x)dx)%

One more integration of x3 and application of Holder’s inequality, implies

/R3 |u(z)|2 da < lljl </R3 |3¢u(m)|dm>% . </Rg |vu(x)dx>%

proving the d = 3 case. A
For general d (p* = d;fl), as above let 2* = (z1,...,%i,...,24). Then

jufw)| < ( /- |aiu<wi>|dyl-)

W=

and

(25.3) gH(/ |9;u(z )|dyi>ﬁ.

Integrating this equation relative to z; and making use of Holder’s inequality in
the form

d—1
(25.4) 15l <TT150.
j=1

= 1
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(see Corollary 9.3) we find

1

[ fooe)” fanf](fwra)

=2
1

< (/Rﬁlu(ac)da:l)_f[(/ Osu(z’ |dx1dyl>ﬁ

=2
d

- (/R 81u(m)dx1>d_il </R |a12u(g[;)|dgcldm)ﬁ 11 (/R |8,-u(a:i)|dx1dyi)ﬁ.

1=3

Integrating this equation on z2 and using Eq. (25.4) once again implies,

|U( )|d 1d,7,‘1d.7,‘2 (/ |82U, d.’]ﬁld.’E2> /dﬂ')g (/ 6111; d$1) i
X H </ |Osu(x |dw1dyl> )

< (/ |62u(x)dx1dx2> B (/ |81u(x)|dx1dx2> -
R2 R2

d . T
X H </ |8iu(ml)|d3:1d:r2dy,;>
i=3 \/R3

Continuing this way inductively, one shows

1

=1
|u(:r)\d_i1d:r1dx2 cdzy, < H </ |Oiu(z)|dzrdas .. dzk>

Rk

1

d—1
X H (/ |Oiu(z |dx1dm2 dzkdyk+1>

1=k+1

and in particular when k& = d,

=
(25.5) / |u(z)| T4 dg < </ |O;u(x)|dz1das . . dxd>

I
f[( Vu(z |dm> (/ Vu(z d:c) i

We can improve on this estimate by using Young’s inequality (see Exercise 25.1) in

I A

d
the form ] a; < 3 ZZ L ad. Indeed by Eq. (25.5) and Young’s inequality,
i=1

Jull ., < H (/. o) < é; ([, o)

/Zlau )|dz < /Rd\/E|Vu(:p)|dx
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wherein the last inequality we have used Holder’s inequality for sums,
1/2

d d 2,y
Z|ai|§<21> <Z|ai2> =Vdl|a|.

The next theorem generalizes Theorem 25.1 to an inequality of the form in Eq.
(25.1).

Notation 25.2. For p € [1,d), let p* 5 SO that 1/p*+1/d = 1/p. In particular
1 =4,
Theorem 25.3. Ifp € [1,d) then

(d

(25.6) |l pox < d~ 1/2pd—)\|Vu||Lp for all u € CHR?).

Proof. Let u € CHRY) and s > 1, then |ul’ € CHR?) and V|u|® =
slul*~tsgn(u)Vu. Applying Eq. (25.2) with u replaced by |u|® and then using
Holder’s inequality gives

(25.7) fllul*ll e, < d72 1V [ul*ll; = sd =2 [[ul* 7 Vull < —= |Vl o [Jul* | o

\/_

where ¢ = %. Let us now choose s so that

sl*—sd_l:(s—l)q:(S—l)p%l:ip*,
ie.
g4 _ 1 p(d—1) _pld—1)
g-1 -4 pd-1)-dp-1) d-p
and p* = p(dd:;) % = ded. Using this s in Eq. (25.7) gives

a1 pd—1) -
lully-™ < 72T [Vl ull

This proves Eq. (25.6) since

d—1 s s—1
P ey (50

Corollary 25.4. The estimate ||ullppr < %‘é:;) IVullz» holds for all u €
Whp(RY).

Corollary 25.5. Suppose U C R? is bounded with C*-boundary, then for all 1 <
p<dand1<q<p* there exists C = C(U) such that ||ul| ey < Cllullwir@)-

Proof. Let u € C*(U)NWP(U) and Eu denote an extension operator. Then
[ull Lo uy < [1Bullpor ey < CIV(EW) || Lo @ey < Clluflwre )
Therefore

(25.8) lull Lo 0y < Cllullwrewy
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Since C1(TU) is dense in WHP(U), Eq. (25.8) holds for all u € WP (U). Finally for
all 1 <g¢q < p*,
I

[ullze < fluflpes - IUlzr = [l o (AU))™
1

herel+ L =1 m
Weer—I—p* 7

Corollary 25.6. Suppose n > 2 then
2+4/d 4/d
lull ™ < CallVull3 flully’
for all u € CL.
Proof. Recall |jull2« < C||Vu|2 where 2* = . Now
lull2 < [lully IIUHH
where % + 1%19 = % Taking p = 2* and ¢ = 1 implies 2* +1-60 =3, ie

0 (2L - 1) = f% and hence

1 *
b= 1—§L :2(2*2—1) - (diZ) ' 2—d1—1
2% d—2
d d—2 d
“d-2drs ara™d

9

1_9: m.

Hence
[[ull2 < T < o7t | VuF ||

and therefore
lull,® < ClIVully ullf
and squaring this equation then gives
244/d 4
[l < ([ Vul3 Jullf.
]
25.2. Morrey’s Inequality.

Notation 25.7. Let S?~! be the sphere of radius one centered at zero inside R¢.
ForI' € S471, 2z € R?, and r € (0, 00), let

Ipr={r+sw:wel 3 0<s<r}.
Sol'y, =x+4+1), where I'y, is a cone based on I'.

Notation 25.8. If I' C S9! is a measurable set let || = o(T") be the surface
“area” of I'. If Q C R? is a measurable set, let

e 1
/Qf(x)dx = W /Q f(z)dz
By Theorem 8.35,

= x = g T+ tw) do(w
(25.9) fwdy= [ fty)dy / dtt / f(@ + tw) do(w)

Fz,yw FD,T‘

and letting f = 1 in this equation implies
(2510) m(Fw,r) = |F| Td/d'
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Lemma 25.9. Let T' C S9! be a measurable set. For u € C1(T,,.),

25.11 / u(y) — u(z)|d dy.
( ) ul Dldy < |I‘ |$ y|d Y

Proof. Write y = = + sw with w € S%~1, then by the fundamental theorem of
calculus,

w(z + sw) —u(x) = /OS Vu(z + tw) - wdt

and therefore,

/|ux+sw)—u( )| dor(w) / /\Vux+tw)\da( it

s
L
:/ 9= 1qt Mda(w)
0 r |2+ tw — x|

Ty, [ 1T
= —_—_— < —_—_—
| psm s [ g

wherein the second equality we have used Eq. (25.9). Multiplying this inequality
by s%~! and integrating on s € [0, 7] gives

[Vu(y _ mIs,) [Vu(y)|
u(y) — u(z)|d = : d
/' ol = /\ i = J T

x,r

which proves Eq. (25.11). m

Corollary 25.10. For d € N and p € (d, 0] there is a constant C = C(p,d) < oo
such that if u € C*(RY) then for all x,y € RY,

_d
(2612)  |uly) = u(@)| £ C [Vulloennse - 12—y
where r:== |z — y].
Proof. The case p = oo is easy and will be left to the reader. Let r := |z — g,

V = B,(r) N By(r) and T',A C S9! be chosen so that @ + rI' = 9B, (r) N B,(r)
and y +rA = 0B, (r) N By(r), i.e

- % (0B.(r) N By(r) —z) and A = = (9B, (r) N Ba(r) —y) = —T.

S|

Also let W =T, . N Ay, see Figure 46 below. By a scaling,

|FI,T N Ay,r| o ‘Fm,l N Ay,l‘

/Bd = =
‘]-—‘m,r| |ra:,1|

€(0,1)

is a constant only depending on d, i.e. we have |I'; | = |Ay | = 5|WWV|. Integrating
the inequality

lu(z) = u(y)] < fu(@) —u(z)] + |u(z) — u(y)]
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G

y+rA

“

\

NS

FIGURE 46. The geometry of two intersecting balls of radius r := |z — y| .

over z € W gives

() — u(y)] < / () — u(2)|d + / fu(z) — u(y)|d
w

w
7 | [ ) =@l + [ fute) — utw)ias
T\ W

B
< T F/ lu(z) — u(z)|dz —I—A/ lu(2) — u(y)|dz

Hence by Lemma 25.9, Holder’s inequality and translation and rotation invariance
of Lebesgue measure,

8 Vu(2)] Vu(2)
il i Ikl N St oA B
O ) o=t 7 ) ey

@, Y,

dz

3 1 1
< 2 - -
= |1-\| HVUHLP(FTT)H |IE — ,|d71 HLq(Fm,r) + HVUHLP(AMT)H ‘y — ,|d71 ||L‘1(Ay,r)

(25.13)
23 1

<= ||vu||Li"(V)HWHL‘](FO,H
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where g = p—fl is the conjugate exponent to p. Now

" — —1\ ¢
Le(To,n) :/ dtt 1/(td ) do(w)

|F\/dt t‘“ |F\/dttp1

and since —2=L + 1 = 2=2 we find
p—1 p—1

1
||Hﬁ|

p—1
1 p—1 pea\ M1 p—1 T4
(25.14) ||Hﬁ|\m(ro,T) = <m T 7”"*) =\,—a IT’| T

Combining Egs. (25.13) and (25.14) gives
p=1

p—1Y\ »? _d
o) — () < s (E=5) T IVulanr .

Corollary 25.11. Suppose d < p < oo, I' € Bga—1, r € (0,00) and u € C1(T..).
Then

(25.15) lu(@)] < C(T,7,d,p) ulwrnr,,) -7

where ,
1 a-r (p—1\'"""
I'|,r.d — | — .
CAIT) 7 d,p) = iz m ( —(=2)

Proof. Fory €T, ,,

u(@)] < fu(y)] + |uly) — u(z)]

and hence using Eq. (25.11) and Holder’s 1nequahty,
[Vu(y)|
< u(y)|dy + — /
o) / s+ gy [

1 1
<1, 1, S o | m—
= m(Fx,'r) ||U‘HL (Ta,r) || HL (Ta,r) + ‘F| || uHL (Fz,r)H ‘.Z‘ — .|d_1 ||L (Taz,r)

where ¢ = =25 as before. This equation combined with Eq. (25.14) and the equality,

T ——
m(sz) Le(Ty ) — m(Fw’r)
shows

1-1/p
- p—1 _
[u(@)] < llull o e, (\Flrd/d> T m IVullzor,, (m Irl) pl=d/p

— 1-1/p
o [ E) |
e (el p—d

1 d—l/p p—l 1-1/p L
<|r|—wma"< : (m) lullwrrce, -t

(25.16) m(Ty, )/ = (0|74 /d) """
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Theorem 25.12 (Morrey’s Inequality). If d < p < oo, u € WP(R?), then there
exists a unique version u* of u (i.e. u* = u a.e.) such that u* is continuous.
Moreover u* € C%'=4(R%) and

(25.17) [[w"]] < Clluflwrr

C%1= & (RY)
where C' = C(p,d) is a universal constant.

Proof. First assume that v € CZ(R?) then by Corollary 25.11 [jul|cra) <
Cllullw1.»(ray and by Corollary 25.10

O <Ol uliogen,
Therefore
w4 < CIVul ooy < Cllullwroa)
and hence
(25.18) Il o5 oy < Clulwraa

Now suppose u € W1P(R9), choose (using Exercise 19.8 and Theorem G.67) ug €
C}(R9) such that ug — uin WHP(R?). Then by Eq. (25.18), ||ttn —tm ||

0 as m,n — oo and therefore there exists u* € C%'~(R?) such that u, — u* in
CO1= 4 (RY). Clearly u* = u a.e. and Eq. (25.17) holds. m
The following example shows that L>°(R%) ¢ W4(R9) in general.

co1-5 (RY) -

Example 25.13. Let u(z) = ¥ (z)loglog (1 + ‘71|) where ¢ € C°(R?) is chosen

so that ¢(z) = 1 for |z| < 1. Then u ¢ L>®°(R?) while u € W1 4(R?). Let us check
this claim. Using Theorem 8.35, one easily shows u € LP(R?). A short computation
shows, for |z| < 1, that

1 1 1
log (1 + ﬁ) ]

x

Vu(z)

! 1 <1 x)
1+|71\ log<1+i> ||

|]
where & = z/ |z| and so again by Theorem 8.35,

d

1 1
/|Vu(ac)|ddx > / PR - dx
2 jaf<1 log (1+ )

d
! 2
> Sd_1 / - - d—ld — )
_U( ) o (Tlog(1+%)> r T 0

Corollary 25.14. The above them holds with R? replaced by Q C, R? such that Q
is compact C'-manifold with boundary.

Proof. Use Extension Theory. m
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25.3. Rademacher’s Theorem.

Theorem 25.15. Suppose that u € Wllof(Q) for some d < p < oo. Then u is
differentiable almost everywhere and w-0;u = O;u a.e. on ).

Proof. We clearly may assume that p < co. For v € Wﬁ)f(ﬂ) and z,y € 2 such
that B(z,r) N B(y,r) C Q where r := |z — y|, the estimate in Corollary 25.10,
gives

_d
0(y) — v(@)| < CIVull Lo (Bamnpe.r) - |z -y

d

(25.19) = C|VollLo(Bamnaem) -7

Let u now denote the unique continuous version of u € V[/lloéo (©). The by the

Lebesgue differentiation Theorem 16.12, there exists an exceptional set E C {2 such
that m(E) = 0 and

1
limi/ Vu(y) — Vu(z)|Pdy =0 for x € Q\ E.
(B ) B(m)l ®) (z)| \

Fix a point z € Q\ E and let v(y) := u(y) — u(z) — Vu(z) - (y — ) and notice that
Vo(y) = Vu(y) — Vu(z). Applying Eq. (25.19) to v then implies

lu(y) — u(@) — Vu(z) - (y — z)|
< C|IVu() = Vul@)l| o (BrnBa) -7

1/p
u(y) — Vu(z)|? ~r(1_%)
<0</BW) Vu(y) - Vu() dy)

1/p
-C a(Sd—1>>rd/P< |w<y>—w<m>|pdy> (173)

m(B(z,r)) /B(:c,r)

1/p
1
—C{fo ) (g [ Vuly) - Va@Pdy) -z -yl
m(B(J?, T)) B(z,r)
which shows v is differentiable at x and Vu(z) = w-Vu(z). m

Theorem 25.16 (Rademacher’s Theorem). Let u be locally Lipschitz continuous
on Q Co, RY. Then w is differentiable almost everywhere and w-0ju = O;u a.e. on
Q.

Proof. By Proposition 19.29 8" u exists weakly and is in d;u € L(R%) for
1 =1,2,...,d. The result now follows from Theorem 25.15. =

25.4. Sobolev Embedding Theorems Summary.

Space Degree of Reguilarity
Wk k—d/p
Ccke = Ckto k+ «a.

Summary A space embeds continuously in the other if it has a higher or equal
degree of regularity. Here are some examples:
(1) WHEIoWhr ek —9>k—(—die >42—2or
1 ¢
_ 2 — —
q

1
p d
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(2) Who C Co & ki — (§>+ >a

The embeddings are compact if the above inequalities are strict and in the case
of considering W*? c W14 we must have k > j!

Example L?([0, 1]) < L1([0, 1]) but this is not compact. To see this, take {uq}3,
to be the Haar basis for L2. Then ug — 0 in L? and L!, while |Jug|l2 > [Juqgl1 > 1
since |uq| = 1.

25.5. Other Theorems along these lines. Another theorem of this form is de-

rived as follows. Let p > 0 be fixed and g € C. ((0,1),[0,1]) such that g(¢) =1 for
[t| < 1/2 and set 7(t) := g(t/p). Then for x € R? and w € T’ we have

/0 ’ % () + )] dt = —u()

and then by integration by parts repeatedly we learn that

/82 w(z + tw)] tdt = /82 )(m+tw)]d§
) 43
/8 m+tw)]d§:...
— ()™ / o [r(Byu(s + )] d
m!

m—1

_ (_1)m/0 O [T(H)u(z + tw)] mdt'

Integrating this equatoin on w € I' then implies

T /dw/ o x+tw)}(:7_ll)!dt

_ ﬁ / do / =g [r(t)u(z + tw)] 4L dt

—1 /dw/ e dZ( > [ ") (0l5u) (m+tw)} = 1at
_7177 / / $m= di( > k—m [g(m_k)(t) (8f,u) (ﬂc+tw)] -1 g
T.Z( )ot / jy =" |9 (ly — al) (9= u) ()] dy

and hence

u(e) = o _I,Z( ) b / ly =" [g "y — al) (05— u) (v)] dy

and hence by the Holder’s inequality,

lu(z)| < C(g) |r( o 5:( ) o VF

0, p

1/q » 1/p
ly — x|q(m7d) dy] [/F ‘(%/;“) (y)‘ dy] .
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From the same computation as in Eq. (23.4) we find

P q(m—d)+d
g(m—d) _ q(m—d),.d—1 ;.. _ 14
y— dy—af/r r*dr=0 (') ————
/ | o [ O s
pm—d
p T
=o (I —1).
o )pm_d(p )

provided that pm —d > 0 (i.e. m > d/p) wherein we have used

—d)+d(p—1 —d
p (m_d)+d:p(m )+dlp-1) _pm—d
p—1 p—1 p—1
This gives the estimate

gm—d)+d=

11/q p—1 p=1

T, pm —d pm —d
Thus we have obtained the estimate that
p—1
C(9) [c(@@-1] 7 —d/ (MY g H k
< m D m L .
[u@)l < D[(m—-1!| pm—d P PR L =t Lo(Tay)

k=0
25.6. Exercises.

Exercise 25.1. Let a; > 0 and p; € [1,00) for i = 1,2,...,d satisfy Zle =1,

then
d d 4
Hai < Z —al".
i=1 =1 Pi

Hint: This may be proved by induction on d making use of Lemma 2.27 or by
using Jensen’s inequality analogously to how the d = 2 case was done in Example
9.11.
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26. BANACH SPACES III: CALCULUS

In this section, X and Y will be Banach space and U will be an open subset of
X.

Notation 26.1 (e, O, and o notation). Let 0 € U C, X, and f : U — Y be a
function. We will write:
(1) f(z) = e(z) if limg o [| f(2)]| = 0.
(2) f(x) = O(z) if there are constants C < oo and r > 0 such that
If(@)] < C|lz] for all x € B(0,7). This is equivalent to the condition
that limsupzﬂo Tzl

|
lim sup ! |( ”)' = 1,1{185up{||f(:c)|| 20 <zl < r}.

x—0
(3) flz) =o(z) if f(z) = €(x)O(x), L.e. limy—o [|f(z)[[/=]] = 0.
Example 26.2. Here are some examples of properties of these symbols.

(1) A function f : U C, X — Y is continuous at g € U if f(zg + h) =
f(zo) + €(h).

(2) If f(x) = e(z) and g(x) = e(z) then f(z) + g(z) = e(z).

Now let g : Y — Z be another function where Z is another Banach

space.

(3) If f(z) = O(z) and g(y) = o(y) then go f(x) = o(x).
(4) If f(z) = €(z) and g(y) = €(y) then g o f(z) = (x).

26.1. The Differential.

< 00, where

Definition 26.3. A function f: U C, X — Y is differentiable at xq + hg € U
if there exists a linear transformation A € L(X,Y") such that

(26.1) Flzo + h) — f(zo + ho) — Ah = o(h).

We denote A by f'(xg) or Df(xp) if it exists. As with continuity, f is differentiable
on U if f is differentiable at all points in U.

Remark 26.4. The linear transformation A in Definition 26.3 is necessarily unique.
Indeed if A; is another linear transformation such that Eq. (26.1) holds with A
replaced by A1, then

(A= A1)h = o(h),
lim sup M —0.
h—0 ”hH

On the other hand, by definition of the operator norm,
A—A)h

lim sup liA = Ax)h] =||A = Aq]|-

h—0 17|

The last two equations show that A = Aj.

Exercise 26.1. Show that a function f : (a,b) — X is a differentiable at ¢t € (a,b)
in the sense of Definition 4.6 iff it is differentiable in the sense of Definition 26.3.
Also show Df(t)v = vf(t) for all v € R.
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Example 26.5. Assume that GL(X,Y) is non-empty. Then f : GL(X,Y) —
GL(Y,X) defined by f(A) = A~! is differentiable and
f'(A)B=—-A"1BA™! for all B € L(X,Y).
Indeed (by Eq. (3.13)),
fAA+H)— f(A)=(A+H) ' = A ' =(A(I+A'H)) " - A"

_ <I+A_1H))_1A_1 _ A—l _ Z(_A—IH)N, . A—l _ A—l
n=0
=—ATTHAT ) (AT H)™
n=2
Since
3 S AV
_ -1 n| < —1 n < H
3o -AT 8 < X I < 7y
we find that

fA+H) — f(A)=-A""HA™' +o(H).

26.2. Product and Chain Rules. The following theorem summarizes some basic
properties of the differential.
Theorem 26.6. The differential D has the following properties:
Linearity: D is linear, i.e. D(f + Ag) = Df + \Dg.
Product Rule: If f : U C, X - Y and A : U C, X — L(X,Z) are
differentiable at xq then so is x — (Af)(x) = A(z) f(z) and
D(Af)(@o)h = (DA(xo)h) f(z0) + A(zo)D f(x0)h.

Chain Rule: If f : U C, X — V C, Y is differentiable at o € U, and
9:V Co Y — Z is differentiable at yo = f(ho), then go f is differentiable
at @ and (g ) (wo) = ¢'(vo) ' (xo).

Converse Chain Rule: Suppose that f : U C, X — V C, Y is continuous
atxg €U, g:V Co Y — Z is differentiable yo = f(ho), ¢'(yo) is invertible,
and g o f is differentiable at xq, then f is differentiable at xy and

(26.2) f'(wo) = [g' (w0)] " (g © f)' (z0)-

Proof. For the proof of linearity, let f,g: U C, X — Y be two functions which
are differentiable at zp € U and ¢ € R, then

(f +cg)(@o + h) = f(zo) + Df(w0)h + o(h) + c(g(w0) + Dg(xo)h + o(h)
= (f + cg)(@o) + (Df(x0) + cDg(z0))h + o(h),
which implies that (f + cg) is differentiable at 2y and that
D(f + cg)(zo) = Df(zo) + cDg(zo).
For item 2, we have
A(xo + h) f(zo + h) = (A(wo) + DA(zo)h + o(h))(f(z0) + f'(z0)h + o(h))
A(zo) f(z0) + A(wo) f'(x0)h + [DA(z0)h] f (x0) + o(h),

which proves item 2.
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Similarly for item 3,

(g0 f)(@o+h) = g(f(20)) + g (f(20))(f (w0 + h) = f(w0)) + o(f(xo + h) — f(z0))
= g(f(20)) + g’ (f(x0))(Df(w0)zo + o(h)) + o(f (w0 + h) — f(z0)
= g(f(20)) + ¢'(f(0))Df(z0)h + o(h),
where in the last line we have used the fact that f(xo+h) — f(xo) = O(h) (see Eq.
(26.1)) and o(O(h)) = o(h).
Item 4. Since g is differentiable at yo = f(zo),
9(f(zo +h)) — g(f(z0)) = g'(f(20))(f(zo + h) — f(@0)) + o(f(xo + ) — f(z0))-
And since g o f is differentiable at z,
(90 f)(zo +h) = g(f(zo)) = (g0 f) (z0)h + o(h).
Comparing these two equations shows that
f(xo+h) — f(wo) = ¢'(f(z0)) " {(g 0 f) (xo)h + o(h) — o(f(xo + h) — f(w0))}
9 (f(z0))~ (g o f) (zo)h + o(h)
(26.3) g'(f(x0)) " o(f(xo + h) — f(x0)).

Using the continuity of f, f(xo + h) — f(z0) is close to 0 if h is close to zero, and
hence [|o(f(zo + h) — f(z0))|| < || f(zo + k) — f(zo)| for all h sufficiently close to
0. (We may replace % by any number o > 0 above.) Using this remark, we may
take the norm of both sides of equation (26.3) to find

1f (o +h) = f(zo)ll < llg'(f(0)) " (g 0 f) (o) |1l + o) + %llf(wo +h) = f(zo)ll
for h close to 0. Solving for || f(zo + h) — f(zo)]|| in this last equation shows that
(26.4) f@o +h) = f(z0) = O(h).

(This is an improvement, since the continuity of f only guaranteed that f(xzo+h)—

f(zo) = €(h).) Because of Eq. (25.4), we now know that o(f(xo+h)— f(x0)) = o(h),
which combined with Eq. (26.3) shows that

flao +h) = f(wo) = ¢'(f(0)) (g0 f) (xo)h + o(h),
i.e. fis differentiable at zo and f'(x¢) = ¢'(f(x0)) " (go f) (x0). =

Corollary 26.7. Suppose that o : (a,b) — U C, X is differentiable at t € (a,b)
and f:U Co, X — Y is differentiable at o(t) € U. Then f o o is differentiable at t

and
d(foo)(t)/dt = f'(o(t))o(t).
Example 26.8. Let us continue on with Example 26.5 but now let X = Y to
simplify the notation. So f : GL(X) — GL(X) is the map f(A) = A~! and
f/(A) = 7LA71RA71, i.e. f/ = 7LfRf.
where LyB = AB and Ry4B = AB for all A, B € L(X). As the reader may easily
check, the maps
A€ L(X)— La,Ra € L(L(X))
are linear and bounded. So by the chain and the product rule we find f”(A) exists
for all A € L(X) and

f"(A)B = —LyaypRy — LRy ayp
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More explicitly

(26.5) [f"(A)B]C = A'BA™'CA '+ A~tCcA'BA™L.

Working inductively one shows f : GL(X) — GL(X) defined by f(A) = A~! is
.

26.3. Partial Derivatives.

Definition 26.9 (Partial or Directional Derivative). Let f : U C, X — Y be a
function, z¢ € U, and v € X. We say that f is differentiable at x( in the direction v
ff L |o(f(zo+1tv)) = (D f)(z0) exists. We call (8, f)(wo) the directional or partial
derivative of f at zq in the direction v.

Notice that if f is differentiable at z, then 9, f (zo) exists and is equal to f’(zg)v,
see Corollary 26.7.

Proposition 26.10. Let f: U C, X — Y be a continuous function and D C X be
a dense subspace of X. Assume 0, f(x) exists for all x € U and v € D, and there
exists a continuous function A : U — L(X,Y) such that 9, f(z) = A(z)v for all
veD andx € UND. Then f € CY(U,Y) and Df = A.

Proof. Let zg € U, € > 0 such that B(zg,2¢) C U and M = sup{||A(z)|| : = €
B(z0,2€)} < 0. For x € B(xg,e)N D and v € D N B(0,¢), by the fundamental
theorem of calculus,

(26.6)
f(:v+v)—f(m):/0 Wdt:/o ((‘Bq,f)(m—&—tv)alt:/0 Az + tv) v dt.

For general € B(xzp,€) and v € B(0,¢), choose =, € B(zg,e) N D and v, €
D N B(0,¢) such that z,, — x and v, — v. Then

1
(26.7) F(on +v0n) — flan) = /0 Al + tv,) vy dt

holds for all n. The left side of this last equation tends to f(xz + v) — f(z) by the
continuity of f. For the right side of Eq. (26.7) we have

1 1 1
||/ A(:C—i—tv)vdt—/ A(a:n—i—tvn)vndtHg/ |A(z + tv) — Az, + tuy) ||||v]| dt
0 0 0
+ Mo — on.

It now follows by the continuity of A, the fact that ||A(z+tv) — A(z, +tv,) || < M,
and the dominated convergence theorem that right side of Eq. (26.7) converges to

fo x +tv)vdt. Hence Eq. (26.6) is valid for all z € B(zg,€) and v € B(0,¢). We
also see that

(26.8) flz+v) = f(z) - A(z)v = €(v)o,

431t should be noted well, unlike in finite dimensions closed and bounded sets need not be
compact, so it is not sufficient to choose € sufficiently small so that B(zo,2¢€) C U. Here is a
counter example. Let X = H be a Hilbert space, {e,}32; be an orthonormal set. Define
flx) =302 1 ng(|lx — enl|), where ¢ is any continuous function on R such that ¢(0) =1 and ¢
is supported in (—1,1). Notice that |len, — em]||? = 2 for all m # n, so that |len — em| = V2.
Using this fact it is rather easy to check that for any xg € H, there is an € > 0 such that for all
x € B(zo,€), only one term in the sum defining f is non-zero. Hence, f is continuous. However,
flen) =n — o0 as n — oco.
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where €(v) = fol [A(x + tv) — A(z)] dt. Now
1
e < [ A+ t0) - A@)| i < gmax A+ t0) = A@)] =0 a5 v =0,

0 telo,
by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x)=A(z). m
26.4. Smooth Dependence of ODE’s on Initial Conditions . In this subsec-
tion, let X be a Banach space, U C, X and J be an open interval with 0 € J.

Lemma 26.11. If Z € C(J xU, X) such that D, Z(t,x) exists for all (t,x) € JxU
and D, Z(t,x) € C(J x U, X) then Z is locally Lipschitz in x, see Definition 5.12.

Proof. Suppose I CC J and x € U. By the continuity of DZ, for every ¢t € I
there an open neighborhood N; of t € I and ¢; > 0 such that B(z,¢;) C U and

sup{||D,Z(t',2")|| : (t',2") € Ny X B(w, &)} < o0.
By the compactness of I, there exists a finite subset A C I such that I C Ui V.
Let €(z,I) :==min{e : t € A} and
K(x,I)=sup{||DZ(t,2")|(t,2") € I x B(z,e(z,1I))} < cc.

Then by the fundamental theorem of calculus and the triangle inequality,

1
1208, 21)~ Z(t, 20) | < ( [ 19200+ 1 )] ds) a1 —zoll < K (w, D)]ja1 —ol
0

for all xg,z1 € B(z,e(x,I)) andt € . m

Theorem 26.12 (Smooth Dependence of ODE’s on Initial Conditions). Let X be
a Banach space, U C, X, Z € C(R x U, X) such that D,Z € C(R x U, X) and
¢ :D(Z) C Rx X — X denote the mazimal solution operator to the ordinary
differential equation

(26.9) y(t) = Z(t,y(t)) with y(0) =z € U,

see Notation 5.15 and Theorem 5.21. Then ¢ € CY(D(Z),U), 0;D,é(t,x) exists
and is continuous for (t,x) € D(Z) and Dyp(t,x) satisfies the linear differential
equation,

(2610)  SD.o(t,2) = [(D22) (t,6(1,2))] Dedlt,2) with De(0,2) = L

fort e J,.
Proof. Let zp € U and J be an open interval such that 0 € J C J CC J,,,
Yo := y(-, zo)|s and
Oc:={y e BC(J,U) : |ly —yoll o, <€} Co BC(J,X).

By Lemma 26.11, Z is locally Lipschitz and therefore Theorem 5.21 is applicable.
By Eq. (5.30) of Theorem 5.21, there exists ¢ > 0 and ¢ > 0 such that G :
B(xp,d) — O, defined by G(x) = ¢(-,z)|s is continuous. By Lemma 26.13 below,
for € > 0 sufficiently small the function F': O, — BC(J, X) defined by

(26.11) Fly) =y - /0 2, y(8))dt.
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is C! and

(26.12) DF(y)v=v— / Dy Z(t,y(t))v(t)dt.
0

By the existence and uniqueness Theorem 5.5 for linear ordinary differential
equations, DF'(y) is invertible for any y € BC(J,U). By the definition of ¢,
F(G(z)) = h(z) for all x € B(zo,d) where h : X — BC(J,X) is defined by
h(z)(t) =« for all t € J, i.e. h(x) is the constant path at x. Since h is a bounded
linear map, h is smooth and Dh(z) = h for all z € X. We may now apply the
converse to the chain rule in Theorem 26.6 to conclude G € C! (B(x,d),0) and
DG(z) = [DF(G(z))] 1 Dh(z) or equivalently, DF(G(x))DG(x) = h which in turn
is equivalent to

Dot z) — / IDZ($(r.2)| Dad(r, ) dr = Ix.

As usual this equation implies D, ¢(t, x) is differentiable in ¢, D, ¢(t, ) is continuous
in (t,z) and Dy, ¢(t, x) satisfies Eq. (26.10). m

Lemma 26.13. Continuing the notation used in the proof of Theorem 26.12 and
further let

1) = [ 2yt dr fory € 0.
Then f € CY(O.,Y) and for ally € O,

Fy)h = /0 Do Z(r,y(7))h(r) dr =: Ayh.

Proof. Let h € Y be sufficiently small and 7 € J, then by fundamental theorem
of calculus,

Z(1y(1) + h(7)) = Z(7,9(7)) :/O (Do Z(7,y(7) + rh(7)) = Do Z(7, y(7))]dr

and therefore,

(fly+h) = fly) —Ayh) (1) = /0 [Z(7,y(7) + h(7)) = Z(7,y(7)) = Do Z(7,y(7))h(7) | dT

_ / dr / (D Z (7, y(7) + rh(7)) — DaZ(r, y(r)A(7).
0 0
Therefore,
(26.13) I(fly+h)—=fly) — Ayl < [[h]lcd(R)
where )
5(h) = /Jdr/o dr | DaZ(r,y(7) + rh(r)) — DuZ(r,y(r))] .
With the aide of Lemmas 26.11 and Lemma 5.13,
(ry7,h) €[0,1] x J XY — ||DZ(7,y(7) + rh(7))||

is bounded for small h provided € > 0 is sufficiently small. Thus it follows from the
dominated convergence theorem that d(h) — 0 as h — 0 and hence Eq. (26.13)
implies f’(y) exists and is given by A,. Similarly,

1 +h) =Wl < /J D22 (7,y(7) + h(7)) = Do Z(7,y(7))| dT — 0 as h — 0
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showing f’ is continuous. m

Remark 26.14. If Z € C*(U,X), then an inductive argument shows that ¢ €
Ck(D(Z), X). For example if Z € C?(U, X) then (y(t),u(t)) := (¢(t,z), Dpd(t, x))
solves the ODE,

S (0),u(t)) = 7 ((y(t),u(e))) with (4(0), u(0)) = (z Idx)

where Z is the C* — vector field defined by

Z (x,u) = (Z(z), Do Z(2)u) .
Therefore Theorem 26.12 may be applied to this equation to deduce: D2¢(t,x) and
D2¢(t,z) exist and are continuous. We may now differentiate Eq. (26.10) to find
D2¢(t, x) satisfies the ODE,

%Di(b(tv :E) = [(aDm¢(t,fﬂ)DIZ) (t’ ¢(tv :E))]Dx(b(t, LU) + [(DIZ) (tv (b(ta LU))]D?E¢(t, :U)

with D2¢(0,x) = 0.

26.5. Higher Order Derivatives. As above, let f: U C, X — Y be a function.
If f is differentiable on U, then the differential Df of f is a function from U to
the Banach space L(X,Y). If the function Df : U — L(X,Y) is also differen-
tiable on U, then its differential D>f = D(Df) : U — L(X, L(X,Y)). Similarly,
D3f = D(D(Df)) : U — L(X,L(X,L(X,Y))) if the differential of D(Df) ex-
ists. In general, let £'(X,Y) = L(X,Y) and £*(X,Y) be defined inductively by
LHYX,Y) = L(X,LF(X,Y)). Then (D*f)(z) € L¥(X,Y) if it exists. It will be
convenient to identify the space £¥(X,Y’) with the Banach space defined in the
next definition.

Definition 26.15. For k € {1,2,3,...}, let M (X,Y") denote the set of functions
f: X¥ — Y such that
(1) Fori e {1,2,....k}, v e X — flug,v9,...,0i_1,0,Vi41,...,0%) € Y is
linear * for all {v;}", C X.
(2) The norm || f| ar,(x,y) should be finite, where

If(v1, v, .. o) ly k
=su ${Vitim1 C X\ {0}}.

Lemma 26.16. There are linear operators ji : L¥(X,Y) — My(X,Y) defined in-
ductively as follows: j1 = Idp(x,yy (notice that M1(X,Y) = LY(X,Y) = L(X,Y))
and

(Jr+14){vo,v1, ..., vk) = (Je(Avo))(v1,v2,...,05) Vu; € X.
(Notice that Avy € LF(X,Y).) Moreover, the maps jj are isometric isomorphisms.

Proof. To get a feeling for what ji is let us write out js and j3 explicitly. If A €
L2(X,Y) = L(X, L(X,Y)), then (joA){v1,v2) = (Avi)vg and if A € L3(X,Y) =
L(X,L(X, L(X,Y))), (jsA){v1,ve,v3) = ((Avy)ve)vs for all v; € X.

It is easily checked that ji is linear for all k. We will now show by induction that
Jr is an isometry and in particular that jj is injective. Clearly this is true if £ =1
since j; is the identity map. For A € LFF1(X,Y),

447 will routinely write f{vi,va,...,v) rather than f(vi,v2,...,vx) when the function f
depends on each of variables linearly, i.e. f is a multi-linear function.
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(jr(Avo))(v1,v2, ..., vp) |y
‘|\Uo||\|vl||||7)2|\"'HUkH
{I(Jk(AUﬁ1)}2)|||Mk(X7Y) cvg € X\ {0}}

| Avoll zx (x,v)
= sup i

= ||A||L(X,Lk(x,y)) = ||A\|£k+1(x,y),

Huitoo € X\ {0}

. l
l7k-+1 Al a4, (x,v) = sup{

cvp € X\ {0})

wherein the second to last inequality we have used the induction hypothesis. This
shows that jiy1 is an isometry provided ji is an isometry.

To finish the proof it suffices to shows that ji is surjective for all k. Again this is
true for k = 1. Suppose that ji is invertible for some k > 1. Given f € M41(X,Y)
we must produce A € LFFY(XY) = L(X, £¥(X,Y)) such that jx1A = f. If such
an equation is to hold, then for vy € X, we would have ji(Avg) = f{vg,---). That
is Avg = ji "(f{vo,---)). It is easily checked that A so defined is linear, bounded,
and jp1A=f =

From now on we will identify £¥ with M}, without further mention. In particular,
we will view DF f as function on U with values in My (X,Y).

Theorem 26.17 (Differentiability). Suppose k € {1,2,...} and D is a dense
subspace of X, f : U Co X — Y is a function such that (0y, Oy, - - Oy, f)(T)
exists for all z € DNU, {v;}}_, € D, and | = 1,2,...k. Further assume
there exists continuous functions A : U C, X — M(X,Y) such that such
that (Oy, 0y, - Oy, f)(x) = Ai(x){v1,02,...,1) for all z € DNU, {v;}}_; C D,
and | = 1,2,...k. Then D'f(x) exists and is equal to Aj(x) for all x € U and
1=1,2,... k.

Proof. We will prove the theorem by induction on k. We have already proved
the theorem when k& = 1, see Proposition 26.10. Now suppose that k£ > 1 and that
the statement of the theorem holds when k is replaced by k£ — 1. Hence we know
that D! f(z) = Aj(z) for all x € U and [ = 1,2,...,k — 1. We are also given that

(26.14) (D, Dy -+~ Oy ) (@) = Ag(x){v1,02,...,08) Vo € UND,{v;} CD.

Now we may write (Jy, -0y, f)(z) as (D¥1f)(z)(ve,vs,...,vk) so that Eq.
(26.14) may be written as
(26.15)

Dv, (DEL ) () (g, v3, .. ., v1)) = Ap(x)(v1,v0,...,0) Yz € UND,{v}C D.
So by the fundamental theorem of calculus, we have that
(26.16)

1
((Dkilf)(x +v1) — (Dkilf)(x))@g,vg, Ce V) = /0 Ag(x + tvr){vy,va, ..., v) dt

for all z € UN D and {v;} C D with v; sufficiently small. By the same argument
given in the proof of Proposition 26.10, Eq. (26.16) remains valid for all x € U and
{v;} € X with v; sufficiently small. We may write this last equation alternatively
as,

1
(26.17) (DELf)(z +v1) — (DR L f)(2) = /o Ap(x 4+ tvr) (v, - -+ ) dt.
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Hence

(DF f) (@ +v1) = (DF 1 f) (@) = Ag (@) (o1, ) = /O [Ak(z+tv1) = Ap ()1, - -+ ) di
from which we get the estimate,
(26.18) I(D* ) +v1) = (D f)(@) = Ar(){vr, )| < ev)||oa]

where €(v1) fo |Ag(z + tv1) — Ag(z)|| dt. Notice by the continuity of Ay that
€(v1) — 0 as v; — 0. Thus it follow from Eq. (26.18) that D*~!f is differentiable
and that (D*f)(z) = Ap(z). =

Example 26.18. Let f: L*(X,Y) — L*(Y, X) be defined by f(A) = A~1. We
assume that L*(X,Y") is not empty. Then f is infinitely differentiable and
(26.19)

(DFFY(A) VL, Va, ... Z{B W, yB VB~ - BT,y B},

where sum is over all permutations of o of {1,2,... k}.

Let me check Eq. (26.19) in the case that k& = 2. Notice that we have already
shown that (dv, f)(B) = Df(B)Vy = —B~ Vi B~L. Using the product rule we find
that

(Ov,0v, f)(B) = BB 'ViB™' + B'ViB 'V, B™! =: Ay(B)(Vi, Va).

Notice that || A2(B)(V1, Va)|| < 2[|B~**[Vi|-[|Va[, so that [ A(B)]| < 2[|B~*]* <
0o. Hence Ay : L*(X,Y) — My (L(X,Y), L(Y, X)). Also

I(A2(B) = A2(C){Vi, Vo) | < 2B~ Vo B~ 'ViB™! = C™ ' AC ™|
<2(|B"",B'ViB~' = BT'V,BT VG|
+2|B"'VeBT'ViCT! - BT VO
+2|BVLCTIVICT! = AT VICTY|
< 2B P|VellIVall| B — 0|
+2|BTHICTHIVellVAlll B~ = 71|
+2CTH P VallIValll B~ = €.
This shows that
14>(B) = 42(C) | < 2B = CTHIBTP + [ BTHICTH ] + 072

Since B — B~! is differentiable and hence continuous, it follows that As(B) is
also continuous in B. Hence by Theorem 26.17 D? f(A) exists and is given as in Eq.
(26.19)

Example 26. 19 Suppose that f : R — R is a C*- function and
fo ))dt for z € X = C([0,1],R) equipped with the norm ||z| =
maxte 0,1] |(t )| Then F : X — R is also infinitely differentiable and

1
(26.20) @W%M%wwwm:AfWMMM®WW@@

for all x € X and {v;} C X.
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To verify this example, notice that

(0, F)(z )——|0F( + sv) —|0/ f(x(t) +sv(t))dt

:/ o (t) + su(t)) di = /f

Similar computations show that

By Doy~ 00, f)(a /f L(£) vk () dt = A(z) (o1, 02, ., vR).

Now for z,y € X,

1
[ Ag(2)(v1,v2, -, vk) = Ag(y) (o1, 02, o) S/O F® @) = FP )] - for(8) -~ v

k 1
< Tl | 119) - fO el

which shows that

1Ak (z) = Ar(v)| S/O |F® (1) = f® (y(0)lat.

This last expression is easily seen to go to zero as y — x in X. Hence Aj is
continuous. Thus we may apply Theorem 26.17 to conclude that Eq. (26.20) is
valid.

26.6. Contraction Mapping Principle.

Theorem 26.20. Suppose that (X, p) is a complete metric space and S : X — X
is a contraction, i.e. there exists a € (0,1) such that p(S(z),S(y)) < ap(z,y) for
all x,y € X. Then S has a unique fized point in X, i.e. there exists a unique point
x € X such that S(x) =

Proof. For uniqueness suppose that z and z’ are two fixed points of S, then

p(z,2') = p(S(x), S(2")) < ap(z,2’).
Therefore (1 — a)p(z, ") < 0 which implies that p(z,2") = 0 since 1 — a > 0. Thus
z=x.
For existence, let g € X be any point in X and define z,, € X inductively by
ZTpt1 = S(xy,) for n > 0. We will show that x = lim,,_, x,, exists in X and because
S is continuous this will imply,

x = lim zp41 = lim S(x,) =S(lim z,)=5(x),

n—oo n—00 n—oo

showing z is a fixed point of S.
So to finish the proof, because X is complete, it suffices to show {z,}5%; is a
Cauchy sequence in X. An easy inductive computation shows, for n > 0, that

P(Tnt1,Tn) = p(S(wn), S(Tn-1)) < ap(zy, Tp-1) < -+ < a”p(z1,20).

Another inductive argument using the triangle inequality shows, for m > n, that,

p(xmvxn) S p(xmaxmfl) +p(xm717xn) S T S Z P(37k+17$k)-

(¢) |dt
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Combining the last two inequalities gives (using again that « € (0, 1)),

a n

oo
n
wm,wn E oF Pﬂfl,@“o fEl,xo a E ol 5E1,370 1
1=0

This last equation shows that p(xm,,z,) — 0 as m,n — oo, i.e. {2,}22, is a
Cauchy sequence. m

Corollary 26.21 (Contraction Mapping Principle II). Suppose that (X, p) is a
complete metric space and S : X — X is a continuous map such that S is a
contraction for some n € N. Here

n times

—_——N—
SM =690850...08

and we are assuming there exists o € (0,1) such that p(S™ (z), S™ (y)) < ap(x,y)
for all z,y € X. Then S has a unique fized point in X.

Proof. Let T = S, then T : X — X is a contraction and hence T has a
unique fixed point z € X. Since any fixed point of S is also a fixed point of T, we
see if S has a fixed point then it must be x. Now

T(S(x)) = 8™(S(2)) = S(5™(2)) = S(T(2)) = S(x),

which shows that S(z) is also a fixed point of T Since T has only one fixed point,
we must have that S(z) = z. So we have shown that x is a fixed point of S and
this fixed point is unique. ®

Lemma 26.22. Suppose that (X, p) is a complete metric space, n € N, Z is a
topological space, and o € (0,1). Suppose for each z € Z there is amap S, : X — X
with the following properties:

Contraction property: p(S(n)( ), Sgn)(y)) < ap(x,y) for all z,y € X and
z € Z.

Continuity in z: For each x € X the map z € Z — S,(x) € X is continu-
ous.

By Corollary 26.21 above, for each z € Z there is a unique fized point G(z) € X
of S..

Conclusion: The map G : Z — X is continuous.
Proof. Let T, = S™. If 2,w € Z, then

p(G(2), G(w ))—p( 2(G(2)), Tw(G(w)))
< p(T(G(2)), Tw(G(2))) + p(Tw(G(2)), Tw (G(w)))
< p(TL(G(2), Tw(G(2))) + ap(G(z), G(w)).

Solving this inequality for p(G(z), G(w)) gives

p(G(=),Gw)) < T p(T-(G(2), Tul G(2))).

Since w — T,(G(2)) is continuous it follows from the above equation that G(w) —
G(z) as w — z, i.e. G is continuous. W
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26.7. Inverse and Implicit Function Theorems. In this section, let X be a
Banach space, U C X be an open set, and F' : U — X and ¢ : U — X be
continuous functions. Question: under what conditions on € is F(z) := = + €(x)
a homeomorphism from By(d) to F(By(d)) for some small 6 > 07 Let’s start by
looking at the one dimensional case first. So for the moment assume that X = R,
U= (-1,1),and ¢ : U — R is C*. Then F will be one to one iff F' is monotonic.
This will be the case, for example, if F” = 1+ € > 0. This in turn is guaranteed
by assuming that |¢’| < o < 1. (This last condition makes sense on a Banach space
whereas assuming 1 4 € > 0 is not as easily interpreted.)

Lemma 26.23. Suppose that U = B = B(0,7) (r > 0) is a ball in X and € : B
— X is a C! function such that | De|| < a < oo on U. Then for all z,y € U we
have:

(26.21) le(z) — ()l < allz -yl

Proof. By the fundamental theorem of calculus and the chain rule:

1
) — e(z) = /O %e(m bty — ))dt

_ /0 (De(z + t(y — 2))](y — z)dt.

Therefore, by the triangle inequality and the assumption that ||De(z)| < « on B,

1
le(y) - e(a)]| < / | Dee + tly — 2)ldt - | (y - 2)]| < all(y — )]
0
| ]

Remark 26.24. Tt is easily checked that if € : B = B(0,r) — X is C! and satisfies
(26.21) then || De|| < a on B.

Using the above remark and the analogy to the one dimensional example, one is
lead to the following proposition.

Proposition 26.25. Suppose that U = B = B(0,r) (r > 0) is a ball in X, a €
(0,1), e : U — X s continuous, F(x) =z + e(x) for x € U, and € satisfies:
(26.22) le(z) — )]l < allz =yl Va,y € B.
Then F(B) is open in X and F': B — V := F(B) is a homeomorphism.
Proof. First notice from (26.22) that
=yl = [I(F(z) = F(y)) — (e(x) — ()l

<|F(z) = F(y)ll + lle(z) — ()|

< |IF () ~ )] + all(z — )
from which it follows that ||z — y| < (1 — @) 7||F(z) — F(y)|. Thus F is injective
on B. Let V = F(B) and G = F~! : V — B denote the inverse function which
exists since F' is injective.

We will now show that V is open. For this let g € B and zg = F(zg) =
xo + €(xzo) € V. We wish to show for z close to zy that there is an € B such that
F(z) = z+¢e(x) = z or equivalently = z — e(z). Set S,(z) = z — €(x), then we are
looking for z € B such that = S, (), i.e. we want to find a fixed point of S,. We
will show that such a fixed point exists by using the contraction mapping theorem.



ANALYSIS TOOLS WITH APPLICATIONS 485

Step 1. S, is contractive for all z € X. In fact for z,y € B,

(26.23) 152 (x) = S=(y)ll = lle(z) — e(w))]| < allz -yl

Step 2. For any § > 0 such the C = B(zy,0) C B and z € X such that
Iz = 20]] < (1 — @)d, we have S,(C) C C. Indeed, let © € C and compute:

152 (2) = woll = |52 (2) — Sz (o)l
= [lz — e(z) — (20 — e(z0)) |
= [lz = 20 = (e(2) — e(zo))|
< |lz = 20ll + alz = @0l
<(l-a)d+ad=20.

wherein we have used zg = F(z9) and (26.22).

Since C' is a closed subset of a Banach space X, we may apply the contraction
mapping principle, Theorem 26.20 and Lemma 26.22, to S, to show there is a
continuous function G : B(zp, (1 — @)d) — C such that

G(2) = 5:(G(2)) = 2 = e(G(2)) = 2 = F(G(2)) + G(2),

i.e. F(G(z)) = z. This shows that B(zg, (1 —a)d) C F(C) C F(B) = V. That is
2o is in the interior of V. Since F 71| B(z0,(1—a)5) 18 necessarily equal to G' which is
continuous, we have also shown that F~! is continuous in a neighborhood of z.
Since zg € V was arbitrary, we have shown that V is open and that F~!:V — U
is continuous. H

Theorem 26.26 (Inverse Function Theorem). Suppose X and Y are Banach
spaces, U C, X, f € C*(U — X) with k > 1, z90 € U and Df(zo) is invert-
ible. Then there is a ball B = B(zg,r) in U centered at xo such that

(1) V = f(B) is open,

(2) f|B B — V is a homeomorphism,

(3) 9= (flp)~' € C*(V.B) and

(26.24) g = (gw)]" forallyeV.

Proof. Define F(z) = [Df(x0)] ' f(z + x0) and e(z) = z — F(x) € X for
x € (U — zo). Notice that 0 € U — x9, DF(0) = I, and that De( y=I-1=0.
Choose 7 > 0 such that B = B(0,7) C U — g and ||De(z)|| < & for x € B. By
Lemma 26.23, € satisfies (26.23) with a = 1/2. By Proposition 26. 25 F(B) is open
and F|5: B — F(B) is a homeomorphism. Let G = F|]§1 which we know to be a
continuous map from F(B) — B.

Since || De(x)|| < 1/2 for z € B, DF(z) = I + De(z) is invertible, see Corollary
3.70. Since H(z) = zis C' and H = F o G on F(B), it follows from the converse
to the chain rule, Theorem 26.6, that G is differentiable and

DG(z) = [DF(G(2))] "' DH(z) = [DF(G(2))] ™"

Since G, DF, and the map A € GL(X) — A=l € GL(X) are all continuous maps,
(see Example 26.5) the map z € F(B) — DG(z) € L(X) is also continuous, i.e. G
is C*.

Let B = B4 xg = B(xo,r) C U. Since f(z) = [Df(x0)]F (= — o) and D f(zo) is
invertible (hence an open mapping), V := f(B) = [Df(zo)]F(B) is open in X. It
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is also easily checked that f|§1 exists and is given by

(26.25) fI5' (W) = 20 + G([Df(w0)] ')

fory € V = f(B). This shows that f|p : B — V is a homeomorphism and it follows
from (26.25) that g = (f|p)~! € C1(V, B). Eq. (26.24) now follows from the chain
rule and the fact that
fogly) =y for all y € B.

Since f’ € C¥1(B, L(X)) and i(A) := A~! is a smooth map by Example 26.18,
g =ioflogis Clif k >2,ie. gis C?if k> 2. Again using ¢’ = io f' o g, we may
conclude ¢’ is C? if k > 3, i.e. ¢ is C? if k > 3. Continuing bootstrapping our way
up we eventually learn g = (f|g)~' € C¥(V,B) if fis C*. m

Theorem 26.27 (Implicit Function Theorem). Now suppose that X, Y, and W
are three Banach spaces, k > 1, A C X x Y is an open set, (xo,yo) IS a
point in A, and f : A — W is a C* — map such f(xg,y0) = 0. Assume that
Ds f(xo,y0) = D(f(z0,-))(yo) : Y — W is a bounded invertible linear transforma-
tion. Then there is an open neighborhood Uy of xg in X such that for all connected
open neighborhoods U of xg contained in Uy, there is a unique continuous function
u:U —Y such that u(zo) = Yo, (z,u(z)) € A and f(z,u(z)) =0 for all x € U.
Moreover u is necessarily C* and

(26.26) Du(z) = —Dof (z,u(x)) ' Dy f(z,u(z)) for all x € U.

Proof. Proof of 26.27. By replacing f by (z,y) — Daf(x0,y0) ' f(z,y) if
necessary, we may assume with out loss of generality that W =Y and Ds f(xo,y0) =
Iy. Define FF: A — X XY by F(z,y) = (z, f(z,y)) for all (x,y) € A. Notice that

prea= (o Biriei)|

which is invertible iff Dy f(z,y) is invertible and if Dy f(x,y) is invertible then

DF(QS,y)71 _ |: -([) _legvﬁ()fz.{Efay)_l :| )

Since D f(xg,yo) = I is invertible, the implicit function theorem guarantees that
there exists a neighborhood Uy of z¢ and Vj of yg such that Uy x Vo C A, F(Uy x Vp)
is open in X x Y, F|y,xv,) has a C*~inverse which we call F~!. Let m3(z,y) =y
for all (z,y) € X x Y and define C* — function ug on Uy by ug(x) = me 0 F~1(x,0).
Since F~1(x,0) = (Z,uo(x)) iff (z,0) = F(Z,uo(z)) = (&, f(Z,uo(x))), it follows
that x = 7 and f(z,ug(z)) = 0. Thus (z,uo(z)) = F~1(x,0) € Uy x Vo C A and
f(z,up(z)) = 0 for all € Uy. Moreover, ug is C* being the composition of the C*—
functions,  — (2,0), F~1, and . So if U C Uy is a connected set containing x,
we may define u = up|y to show the existence of the functions u as described in
the statement of the theorem. The only statement left to prove is the uniqueness
of such a function .

Suppose that u; : U — Y is another continuous function such that w; (o) = yo,
and (z,u1(z)) € A and f(z,u1(z)) =0 for all z € U. Let

O={zeUlu(z) =ui(x)} = {z € Ulu(z) = ui(x)}.

Clearly O is a (relatively) closed subset of U which is not empty since zg € O.
Because U is connected, if we show that O is also an open set we will have shown
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that O = U or equivalently that u; = wug on U. So suppose that x € O, i.e.
ug(z) = uyi(x). For T near x € U,

(2627)  0=0-0= f(#uo(®) — f(&ur(&)) = RE)(ur (&) — uo(#))
where

1
(26.28) R(z) = /0 Do f((Z, uo(Z) + t(u1(Z) — uo(Z)))dt.

From Eq. (26.28) and the continuity of uy and uq, limz_,, R(Z) = Daf(x,uo(x))
which is invertible!>. Thus R(%) is invertible for all # sufficiently close to z. Using
Eq. (26.27), this last remark implies that u1(Z) = uo(Z) for all Z sufficiently close
to x. Since z € O was arbitrary, we have shown that O is open. m

26.8. More on the Inverse Function Theorem. In this section X and Y will
denote two Banach spaces, U C, X, k > 1, and f € C¥(U,Y). Suppose zo € U,
h € X, and f'(xg) is invertible, then

f(xo +N) — f(zo) = f'(zo)h + o(h) = f'(x0) [P+ €(h)]
where
e(h) = f'(w0) " [f (w0 + h) — f(z0)] — h = o(h).

In fact by the fundamental theorem of calculus,

e(h) = /0 (' (@0)~"f (w0 + th) — I) hdt

but we will not use this here.
Let h,h’ € BX(0,R) and apply the fundamental theorem of calculus to t —
f(zo +t(h — h)) to conclude

e(h') —e(h) = f'(x0) " [f(zo + ') — flwo + h)] — (b —h)

_ [/01 (F'(x0) 1 f' (o + t(H' — h)) — I) dt] (' — h).

Taking norms of this equation gives

le(h) —e(h)]| < UO | (o)~ ' (o + t(h' = h)) = 1| dt] [ = k| < a||h" — R
where

26.29 = 3 "xo)  f(x) =1 )
(26.29) o= w1 @0 @)~

We summarize these comments in the following lemma.

Lemma 26.28. Suppose o € U, R > 0, f : BX(29,R) — Y be a C' — function
such that f'(xo) is invertible, a is as in Eq. (26.29) and ¢ € C* (B*(0, R), X) is
defined by

(26.30) f(xo +h) = f(zo) + f'(wo) (h +e(h)) .
Then
(26.31) le(h') — e(h)|| < ||k — || for all h,h' € BX(0, R).

45Notice that DF(x,uo(z)) is invertible for all z € Ug since F|y,x v, has a C1 inverse. There-
fore Dy f(x,uo(x)) is also invertible for all z € Up.
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Furthermore if a < 1 (which may be achieved by shrinking R if necessary) then
f'(z) is invertible for all x € BX(zq, R) and

(26.32) sup || f(z)”

1 1 / —1
€8 (o0, R) HL(Y,X) <14 | (o) HL(Y,X)'

Proof. It only remains to prove Eq. (26.32), so suppose now that o < 1. Then
by Proposition 3.69 f/(x¢)~!f'(x) is invertible and

Since f'(z) = f'(xo) [f’(xo)_lf’(x)] this implies f'(x) is invertible and

[P0 F @) < < L — for all & € B (s, R).

||f/($)_1|| = H [f/(aio)_lf/ H ||f zo) 1” for all z € BX (x, R).
n

Theorem 26.29 (Inverse Function Theorem). Suppose U C, X, k > 1 and f €
C*(U,Y) such that f'(z) is invertible for all x € U. Then:

(1) f:U =Y is an open mapping, in particular V := f(U) C, Y.
2) If f is injective, then f~':V — U is also a C* — map and
(2) j p
_ _ ~1
) W= @) forallyeV.
(3) If xo € U and R > 0 such that BX(xo, R) C U and

sup  ||f/(zo) f(x) — I =a <1
z€BX (z0,R)

(which may always be achieved by taking R sufficiently small by continuity
of f'(x)) then flpx(zo.r) : BX(x0,R) — f(BX(20,R)) is invertible and
f|§§(x07R)  f (BX(xO,R)) — BX(z0, R) is C*.
(4) Keeping the same hypothesis as in item 3. and letting yo = f(xg) € Y,
F(BX(z0,7)) € BY (yo, | f"(z0) | (1 + )r) for allr < R
and
BY (y0,6) C f(BX(z0, (1 — )" || f(w0) ]| 6))
Jor all § < 8(zo) == (1 — ) R/ || f'(z0) |-

Proof. Let g and R > 0 be as in item 3. above and € be as defined in Eq.
(26.30) above, so that for z,2’ € BX(z¢, R),

f(@) = f(zo) + f'(z0) [(z — @0) + €(z — 20)] and
f(@") = f(zo) + f'(wo) [(2" — z0) + (2’ — wo)].
Subtracting these two equations implies
f@) = f(@) = f/(@o) [¢" — x + e(a — @0) — e(z — @0)]
or equivalently
o' —x = f(wo) "t [f(a") = f(2)] + el — o) — e(a’ — wo).
Taking norms of this equation and making use of Lemma 26.28 implies

2" = @l < || (o) M [ I/ (@) = f(@)]| + e[la” — ]
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which implies

f

—1
(633 o —af < W@ ” 1£(a') = F(@)|| for all 2,2’ € BX (x, R).

This shows that f|BX(l.O7R) is injective and that f|;<(z0 R (BX(z0,R)) —
BX(z¢, R) is Lipschitz continuous because

[
S T4 ly

17155 oy @) = 155 oy @) < —y| for all y.y/ € f (BX(x0,R)).

Since z¢g € X was chosen arbitrarily, if we know f : U — Y is injective, we then
know that =1 : V = f(U) — U is necessarily continuous. The remaining assertions
of the theorem now follow from the converse to the chain rule in Theorem 26.6 and
the fact that f is an open mapping (as we shall now show) so that in particular
f (B* (0, R)) is open.

Let y € BY(0,6), with § to be determined later, we wish to solve the equation,
for z € BX(0, R),

f(@o) +y = flao+2) = f(zo) + ['(z0) (x + €(x)) .
Equivalently we are trying to find z € BX(0, R) such that
z = f'(z0) 'y — e(z) = S, ().
Now using Lemma 26.28 and the fact that €(0) =0,
18y (@)l < [| £ (zo) " yl| + lle() | < || (zo) ™ || Iyl + e[l
< ||/ (o) 7|6 + aR.

Therefore if we assume ¢ is chosen so that

| £/ (zo) || 6+ aR < R, ie. 6 < (1—a) R/ || f'(w0) "] := (o),
then S, : BX(0, R) — BX(0,R) C BX(0, R).
Similarly by Lemma 26.28, for all z,z € BX(0, R),
19y (x) = Sy(2)]| = lle(2) — e(2)[| < aflz — 2|

which shows S, is a contraction on BX(0, R). Hence by the contraction mapping
principle in Theorem 26.20, for every y € BY (0,) there exists a unique solution
z € BX(0, R) such that x = S, (z) or equivalently

f(@o+ ) = f(z0) +y.
Letting yo = f(xo), this last statement implies there exists a unique function g :
BY (yo,0(x0)) — BX(wo, R) such that f(g(y)) = y € BY (yo,0(x0)). From Eq.
(26.33) it follows that

ll9(y) — zoll = [lg(y) — g(yo)|

< L@ ) - statuon

_ 1@ 1H

T ly — voll -

This shows
9(BY (y0.8)) C B (w0, (1 = )7 [|f'(wo) || 8)
and therefore

BY (y0,8) = £ (9(B” (50,8))) < f (B (w0, (1 = )" [[£'(0) ]| )
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for all 6 < d(z).
This last assertion implies f(zg) € f(W)° for any W C, U with 2o € W. Since
xo € U was arbitrary, this shows f is an open mapping. ®

26.8.1. Alternate construction of g. Suppose U C, X and f : U — Y is a C? —
function. Then we are looking for a function g(y) such that f(g(y)) = y. Fix an
xo € U and yo = f(xo) € Y. Suppose such a g exists and let z(t) = g(yo + th) for
some h € Y. Then differentiating f(z(t)) = yo + th implies

d .

2/ @) = fi(@@)2(t) = h
or equivalently that
(26.34) z(t) = [f’(ac(t))]_1 h = Z(h,z(t)) with (0) = zq
where Z(h,z) = [f'(z(t))]"" h. Conversely if z solves Eq. (26.34) we have
4 #(z(t)) = h and hence that

f(z(1)) =yo + h.
Thus if we define
9(yo + h) := 7" (@),

then f(g(yo + h)) = yo + h for all h sufficiently small. This shows f is an open
mapping.

26.9. Applications. A detailed discussion of the inverse function theorem on Ba-
nach and Fréchet spaces may be found in Richard Hamilton’s, “The Inverse Func-
tion Theorem of Nash and Moser.” The applications in this section are taken from
this paper.

Theorem 26.30 (Hamilton’s Theorem on p. 110.). Let p : U := (a,b) — V =
(¢, d) be a smooth function with p’ > 0 on (a,b). For every g € CS2(R, (¢,d)) there
exists a unique function y € CS2(R, (a,b)) such that

y(t) + p(y(t) = g(t).
Proof. Let V := CY (R, (¢,d)) C, CI.(R,R) and
U:= {y € C3,(R,R) : a < y(t) < band c < g(t) + p(y(t)) < d for all t} C, C3,.(R, (a,b)).
The proof will be completed by showing P : U — V defined by
P(y)(t) = y(t) + ply(t)) for y € U and t € R
is bijective. .
Step 1. The differential of P is given by P’'(y)h = h + p'(y)h, see Exercise

26.7. We will now show that the linear mapping P’(y) is invertible. Indeed let
f=1p'(y) >0, then the general solution to the Eq. h+ fh = k is given by

t
h(t) = e o /4 hy + / e S IOk () dr
0

where hg is a constant. We wish to choose hg so that h(27) = hg, i.e. so that

2w .
ho (1) = [ eI 0 (ryar
0
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where
27

o(f)= | fr)dr= /O " y(r)dr > 0.

0

The unique solution h € C3_(R,R) to P'(y)h = k is given by

-1 2m t
h(t) = (1 —efc(f)> e o f(T)dT/O eI f(s)dsk(T)dT+/ e [+ s py(r)dr

0

N\ —1 . 2m . t .
= (1 - e_"‘(f)) e lo f(s)ds/ e~ jff(s)dsk(T)dT—F/ e~ jff(s)dsk(T)dT.
0

0

Therefore P’(y) is invertible for all y. Hence by the implicit function theorem,
P:U — V is an open mapping which is locally invertible.

Step 2. Let us now prove P : U — V is injective. For this suppose y1,y> € U
such that P(y;) = g = P(y2) and let z = yo — y1. Since

2(t) + p(y2(t) — p(ya(t)) = g(t) — g(t) =0,

if t,,, € R is point where z(t,,) takes on its maximum, then Z(¢,,) = 0 and hence

P(y2(tm)) = p(y1(tm)) = 0.

Since p is increasing this implies y2(t,,) = y1(tm) and hence z(t,,,) = 0. This shows
z(t) < 0 for all ¢ and a similar argument using a minimizer of z shows z(¢) > 0 for
all t. So we conclude y; = yo.

Step 3. Let W := P(U), we wish to show W = V. By step 1., we know W is
an open subset of V and since V is connected, to finish the proof it sufﬁces to show
W is relatively closed in V. So suppose y; € U such that gj == P(y;) — g € V.
We must now show g € W, i.e. ¢ = P(y) for some y € W. If t,,, is a maximizer of
yj, then g;(t,) = 0 and hence g;(tn) = p(y;(tm)) < d and therefore y;(t,,) < b
because p is increasing. A similar argument works for the minimizers then allows us
to conclude Ranpoy;) C Rang;) CC (c,d) for all j. Since g; is converging uniformly
to g, there exists ¢ < v < § < d such that Ran(poy;) C Ran(g;) C [v,0] for all j.
Again since p’ > 0,

Ran(y;) C p~* ([7,6]) = [o, 8] CC (a, b) for all j.
In particular sup {|g;(¢)| : ¢t € R and j} < oo since

(26.35) y;(t) = g;(t) — p(y;(t)) C [, 0] = [, ]

which is a compact subset of R. The Ascoli-Arzela Theorem 3.59 now allows us to
assume, by passing to a subsequence if necessary, that y; is converging uniformly
to y € CY (R, [c, B]). It now follows that

9 (t) = g;(t) — p(y;(t)) — g —p(y)

uniformly in ¢. Hence we concluded that y € C3,(R,R)NCY. (R, [o, B8]), ¥; — y and
P(y) = g. This has proved that g € W and hence that W is relatively closed in V.
[ ]
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26.10. Exercises.

Exercise 26.2. Suppose that A : R — L(X) is a continuous function and V : R —
L(X) is the unique solution to the linear differential equation
(26.36) V(t) = A(t)V(t) with V(0) = I.
Assuming that V() is invertible for all ¢t € R, show that V~=1(¢) = [V(¢)]~! must
solve the differential equation
d
(26.37) £V*1(t) = V1 (t)A(t) with V71(0) = I.
See Exercise 5.14 as well.

Exercise 26.3 (Differential Equations with Parameters). Let W be another Ba-
nach space, U x V C, X x W and Z € C*(U x V, X). For each (z,w) € U x V, let
t € Jpw — ¢(t,z, w) denote the maximal solution to the ODE
(26.38) y(t) = Z(y(t),w) with y(0) = =
and
D:={(t,z,w) ERXU XV :t€ Jyu}
as in Exercise 5.18.
(1) Prove that ¢ is C! and that D, ¢(¢, 2, w) solves the differential equation:
d

with D, ¢(0,z,w) = 0 € L(W,X). Hint: See the hint for Exercise 5.18
with the reference to Theorem 5.21 being replace by Theorem 26.12.

(2) Also show with the aid of Duhamel’s principle (Exercise 5.16) and Theorem
26.12 that

Dyo(t, z,w) = Dy(t, z, w) /t D, é(1,2,w) N (DWZ)(o(T, z,w),w)dr
0

Exercise 26.4. (Differential of e?) Let f : L(X) — L*(X) be the exponential
function f(A) = e®. Prove that f is differentiable and that

1
(26.39) Df(A)B = / e(1=DABetA g,
0

Hint: Let B € L(X) and define w(t, s) = e®A+s5) for all t, s € R. Notice that
(26.40) dw(t,s)/dt = (A+ sB)w(t, s) with w(0,s) = I € L(X).

Use Exercise 26.3 to conclude that w is C' and that w'(t,0) = dw(t,s)/ds|s=o
satisfies the differential equation,

(26.41) %w'(t, 0) = Aw'(t,0) + Be!* with w(0,0) = 0 € L(X).

Solve this equation by Duhamel’s principle (Exercise 5.16) and then apply Proposi-
tion 26.10 to conclude that f is differentiable with differential given by Eq. (26.39).

Exercise 26.5 (Local ODE Existence). Let S, be defined as in Eq. (5.22) from the
proof of Theorem 5.10. Verify that S, satisfies the hypothesis of Corollary 26.21.
In particular we could have used Corollary 26.21 to prove Theorem 5.10.
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Exercise 26.6 (Local ODE Existence Again). Let J = [-1,1], Z € C*(X, X),
Y :=C(J,X) and for y € Y and s € J let ys € Y be defined by ys(t) := y(st). Use
the following outline to prove the ODE
(26.42) y(t) = Z(y(t)) with y(0) = x
has a unique solution for small ¢ and this solution is C! in z.

(1) If y solves Eq. (26.42) then ys solves

Us(t) = s2(ys(t)) with y4(0) =«
or equivalently

(26.43) yolt) = & + 5 A Z(ys(7))dr.

Notice that when s = 0, the unique solution to this equation is yo(t) = =.
(2) Let F': JxY — J xY be defined by

F(s,y) == (5,u(t) — s / Z(y(r))dr).

Show the differential of F' is given by

F'(s,y)(a,v) = <a,t —v(t) — s/ot Z'(y(r))v(r)dr — a/o‘ Z(y(T))dT> .

(3) Verify F'(0,y) : R xY — R x Y is invertible for all y € Y and notice that
F(0,y) = (0,y).

(4) For z € X, let C; € Y be the constant path at z, i.e. C,(t) = x for all
t € J. Use the inverse function Theorem 26.26 to conclude there exists € > 0
and a C! map ¢ : (—¢,€) x B(xg,€) — Y such that

F(s,0(s,2)) = (s,Cy) for all (s,z) € (—e,€) X B(xp,€).

(5) Show, for s < e that ys(t) := ¢(s,x)(t) satisfies Eq. (26.43). Now define
y(t,x) = ¢(e/2,2)(2t/e) and show y(t, ) solve Eq. (26.42) for [t| < €/2
and x € B(xg, €).

Exercise 26.7. Show P defined in Theorem 26.30 is continuously differentiable
and P'(y)h = h+p'(y)h.
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27. PROOF OF THE CHANGE OF VARIABLE THEOREM

This section is devoted to the proof of the change of variables theorem 8.31. For
convenience we restate the theorem here.

Theorem 27.1 (Change of Variables Theorem). Let Q@ C, R? be an open set and
T:Q— T(Q) C, R be a C* — diffeomorphism. Then for any Borel measurable
f:T(Q2) — [0,00] we have

(27.1) /f oT|det T'|dm = / f dm.
Q ()

Proof. We will carry out the proof in a number of steps.

Step 1. Eq. (27.1) holds when Q = R? and T is linear and invertible. This was
proved in Theorem 8.33 above using Fubini’s theorem, the scaling and translation
invariance properties of one dimensional Lebesgue measure and the fact that by
row reduction arguments 7" may be written as a product of “elementary” transfor-

mations.
Step 2. For all A € Bg,

(27.2) m(T(A)) < /A \det T'| dm.

This will be proved in Theorem 27.4below.
Step 3. Step 2. implies the general case. To see this, let B € Bpq) and
A=T7YB) in Eq. (27.2) to learn that

/lAdmzm(A)g/ |detT’|dm:/1AoT\detT'|dm.
Q T-1(A) Q
Using linearity we may conclude from this equation that
(27.3) fdm < / foT |detT'|dm
Q

()

for all non-negative simple functions f on T(Q2). Using Theorem 7.12 and the
monotone convergence theorem one easily extends this equation to hold for all
nonnegative measurable functions f on T'(Q).

Applying Eq. (27.3) with Q replaced by T'(Q2), T replaced by T—! and f by
g:Q — [0,00], we see that

(27.4) / gdm = / gdm < / goT™! ‘det (T_l)l‘ dm
Q T-1(T()) (%)

for all Borel measurable g. Taking g = (f o T') |det T”| in this equation shows,

/foT\detT’mmg/ fydetT’oT—ly)det(T—l)"dm
Q ()

(27.5) - fdm
(Q)
wherein the last equality we used the fact that T o T-! = id so that
(T"oT~1) (T~")' = id and hence det T" o T~ det (T-1)" = 1.
Combining Eqgs. (27.3) and (27.5) proves Eq. (27.1). Thus the proof is complete
modulo Eq. (27.3) which we prove in Theorem 27.4 below. m



ANALYSIS TOOLS WITH APPLICATIONS 495

Notation 27.2. For a,b € RY we will write ¢ < bis a; < b; for all s and a < b
if a; < b; for all i. Given a < b let [a,b] = [, [as, bi] and (a,b] = [T, (as, bi).
(Notice that the closure of (a,b] is [a,b].) We will say that @ = (a,b] is a cube
provided that b; — a; = 20 > 0 is a constant independent of i. When (@ is a cube,
let

zg=a+(4,6,...,0)

be the center of the cube.
Notice that with this notation, if @) is a cube of side length 26,
(27.6) Q={zeR?: |z —12g| <d)}
and the interior (Q°) of @ may be written as
Q’={z eR?: |z —xg| < 3}

Notation 27.3. For a € R?, let |a|] = max; |a;| and if T is a d x d matrix let
1T = max; 3 [Tij|

A key point of this notation is that

[Ta| = max|} | Tija;| < max ) [Ty |ay|
j j

(27.7) < |7l lal.

Theorem 27.4. Let Q C, R? be an open set and T : Q — T(Q) C, R? be a C* -
diffeomorphism. Then for any A € Bq,

(27.8) m(T(A)) < / | det T'(2)|dz.
A

~ Proof. Step 1. We will first assume that A = @ = (a,b] is a cube such that
Q = [a,b] C . Let 0 = (b; —a;)/2 be half the side length of Q. By the fundamental
theorem of calculus (for Riemann integrals) for z € Q,
1
T(a) = T(ag) + [ T'(aq + tlo ~ 0))(w — o)
0
=T(zq) +T"(zq)S(x)
where )
S(x) = [/ T (2q) ' (vg + t(x — xg))dt| (z — zq).
0
Therefore T(Q) = T(zq) + T"(2g)S(Q) and hence

m(T(Q)) = m (T(xq) + T'(20)S(Q)) = m (T'(24)S(Q))
(27.9) = |det T' ()| m (S(Q)) -

Now for z € Q, i.e. |z —zg| <4,
1
1S(2)| < H | 7)1 g + ta — )it o~ g

< h(zg,x)d
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where
1

(27.10) hwo, ) = / T (20) T (2q + t(z — 2q))]| dt.

0
Hence

S(Q) C max h(zg,z){r € R : |z| < 5151&))( h(zg,x)}

and
(27.11) m(S(Q)) < max h(zg,z)* (26)" = max h(zg, 2)m(Q).
Combining Eqs. (27.9) and (27.11) shows that
(27.12) m(T(Q)) < |46t T (2g)| m(Q) - max ' (xq, ).

To refine this estimate, we will subdivide () into smaller cubes, i.e. for n € N let
Q, = {(a,a+ %(5,5,...,5)] + %55 €€ {O,l,?,...,n}d}.
Notice that Q = [[4co, A- By Eq. (27.12),
m(T(A)) < |detT'(xa)| m(A) - max hi(za,x)
and summing the equation on A gives
m(T(Q)) = Z m(T(A)) < Z |det T"(xa)| m(A) - r;leazlchd(m,q,x).

A€Q, AeQ,

Since h(z,z) =1 for all # € Q and h? : Q x Q — [0, 00) is continuous function on
a compact set, for any € > 0 there exists n such that if z,y € Q and |z —y| < d/n
then h?(z,y) < 1+ €. Using this in the previously displayed equation, we find that

m(T(Q) < (1+¢€) Y |det T'(z4)|m(A)

A€Qn
(27.13) =(1+¢) |det T"(z.4)| 1a(x)dm(z).

Since |det T'(x)| is continuous on the compact set @, it easily follows by uniform
continuity that

> |det T' ()| La(z) — |det T'(x)| as n — oo
AeQn,

and the convergence in uniform on Q. Therefore the dominated convergence theorem
enables us to pass to the limit, n — oo, in Eq. (27.13) to find

m(T(Q)) < (1+¢) / \det T/ ()| dm(x).
Q
Since € > 0 is arbitrary we are done we have shown that
m(T(Q)) < / (et T’ ()| dm(z).
Q

Step 2. We will now show that Eq. (27.8) is valid when A = U is an open
subset of 2. For n € N, let

Qn = {(Oa(6757a5)} _|_2—n§ : 5 € Zd}
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so that Q, is a partition of R%. Let F; := {A€ Q;: AC U} and define F, C
Up_; Qk inductively as follows. Assuming F,,—; has been defined, let

Fon=Fn1U{A€Q,:ACUand ANB =0 forall B€ F,_1}
= n,1U{A€Qn:ACUandAngoranyBEfnfl}

Now set F = UF, (see Figure 47) and notice that U = [] . A. Indeed by con-

\_L

F1GURE 47. Filling out an open set with half open disjoint cubes.
We have drawn Fs.

struction, the sets in F are pairwise disjoint subset of U so that [[,.-A C U.
If z € U, there exists an n and A € Q,, such that x € A and A C U. Then by
construction of F, either A € F or there is a set B € F such that A C B. In either
case = € [[ 4. A which shows that U = [] . » A. Therefore by step 1.,

m(T(U)) = m(T(UaerA)) = m((UaerT(A4)))
> om(T(A) < Y /A det T" ()| dm(x)

AeF AeF

:/ |det T" ()| dm(z)
U

which proves step 2.
Step 3. For general A € Bq let p be the measure,

wu(A) ::/A|detT’(m)|dm(x).

Then m o T and p are (0 — finite measures as you should check) on Bg such that
mo T < u on open sets. By regularity of these measures, we may conclude that
moT < p. Indeed, if A € Bq,

m(T(A)) = inf m(T(U) < inf () = u(4) = /A det T" ()| dim(z).
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27.1. Appendix: Other Approaches to proving Theorem 27.1 . Replace f
by foT~!in Eq. (27.1) gives

/f|detT’|dm: /foT—1 dm:/Qfd(moT)
Q T()

so we are trying to prove d(m o T) = | det T'|dm. Since both sides are measures it
suffices to show that they agree on a multiplicative system which generates the o —
algebra. So for example it is enough to show m(T(Q)) = |, ol det T'|dm when @ is
a small rectangle.

As above reduce the problem to the case where T(0) = 0 and 77(0) = id. Let
e(z) = T(z) — x and set Ty(z) = x + te(x). (Notice that det T’ > 0 in this case so
we will not need absolute values.) Then T} : Q — T3(Q) is a C! — morphism for Q
small and T}(Q) contains some fixed smaller cube C for all t. Let f € C}(C?), then
it suffices to show

i/ foTy|detT/|dm =0
i Jo
for then
/fOTdetT’dm:/fOTodetTédm:/fdm:/ fdm.
Q Q Q T(Q)

So we are left to compute
i/ foTtdetTt'dm:/ (Ocf) (Tt)detTt'—i-foTtidetTt’ dm
dt Jo 0 dt

- /Q (Oef) (T0) + f o T - tr (T/e)} det Tldm.

Now let W, := (T}) "¢, then
Wi(foT,) =Wi(foTy) = (Oryw, [) (Tr) = (9 f) (T1).

Therefore,
% /Qf o Ty det Tidm = /Q {Wi(foTy)+ foTy-tr(T/e)}detT/dm.
Let us now do an integration by parts,
/QWt(f oT;)det T/dm = —/Q(f o Ty) {Wydet T} + V - Wy det T/} dm
so that

d
E/foTtdetTt'dm:/{tr(Tt'e)detTt/—WtdetT{—V~Wtdetﬂ}fon}dm.
Q Q

Finally,
W, det T} = det T} - tr((T}) " W, T}) = det T} - tr((T}) " T/ (T}) " ¢)
while
VW= trW, = —tr () T (1) e e [
so that

Wodet T/ + V- Wy det T} = —det T} - tr [ (1)) " ¢/
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and therefore
d
E/ foT,detT{dm =0
Q

as desired.

The problem with this proof is that it requires T or equivalently € to be twice
continuously differentiable. I guess this can be overcome by smoothing a C' — ¢
and then removing the smoothing after the result is proved.

Proof. Take care of lower bounds also.

(1) Show m(T(Q)) = fQ(T’(:r))d:p = AQ) for all Q@ C Q

(2) Fix Q. ClaimmT =X onBo={ANQ:Ac B}

Proof Equality holds on a ||. Rectangles contained in (. Therefore the algebra
of finite disjoint unison of such of rectangles here as o({rectangle contained in Q}.
But o({rectangle C Q} = Bg.

(3) Since @ = |J of such rectangles (even cubes) it follows that mJ(E) =
i=1
S>mT(ENQ:)=> MENQ;) =AE) forall E€Bg. m

oo
Now for general open sets U C Q write U= |J @; almost disjoint union. Then
j=1

m(TL) <m(|T@Q) <Y mTQ; -3 / T dm = / IT"|dm
=1 i i, 0

so m(T(U)) < [, |T"|d, for all U € Q. Let E C Q such that E bounded. Choose
U, CQ such that Uy, | and m(E\ Uy) | 0. Then m(TE) <m(TU,) < [, |T'|dm |
S5 |T"|[dm so m(T(E)) < [, |T"|dm for all E bounded for general E C Q

m(T(E)) = lim m(T(E N B,)) < lim T |dm = / I |dm.

n—o0 n—oo ENB
n

Therefore m(T(E)) < [, |T'|dm for all E C Q measurable.

27.2. Sard’s Theorem. See p. 538 of Taylor and references. Also see Milnor’s
topology book. Add in the Brower Fixed point theorem here as well. Also Spivak’s
calculus on manifolds.

Theorem 27.5. LetU C, R™, f € C®°(U,R?) and C := {z € U : rank(f’(z)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel measuralbe
subset of R% of Lebesque measure 0.

Remark 27.6. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the norm,
|z| := max; |z;| . Recall that if f € C*(U,R?) and p € U, then

flp+2z) = f(p) +/O f'(p +tx)zdt = f(p) +f’(p):c+/0 [f'(p+tz) — f'(p)] wdt
so that if

R(p.2) = f(p+2) — () — /() = / /(0 + t2) — 1'(p)) wdt
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we have .
R <lol [ 150+ t0)~ PO dt = o] (. 2),
By uniform continuity, it follows for any compact subset K C U that
sup {|e(p,z)| :p€ K and || <J} —0asd | 0.

Proof. Notice that if z € U \ C, then f'(z) : R™ — R" is surjective, which is
an open condition, so that U \ C' is an open subset of U. This shows C' is relatively
closed in U, i.e. there exists C = R™ such that C = C NU. Let K, C U be
compact subsets of U such that K, T U, then K, NC 1 C and K, NC = K, NC
is compact for each n. Therefore, f(K, NC) 1 f(C) ie. f(C)=U,f(K,NC) is
a countable union of compact sets and therefore is Borel measurable. Moreover,
since m(f(C)) = lim,—0o m(f (K, N C)), it suffices to show m(f(K)) = 0 for all
compact subsets K C C.

Case 1. (n < m) Let K = [a,a + 7] be a cube contained in U and by
scaling the domain we may assume v = (1,1,1,...,1). For N € N and j €
Sy = {0,1,...,N=1}" let K; = j/N + [a,a + 7/N] so that K = Ujegs, Kj
with K¢ N K = 0 if j # j'. Let {Q;:5=1..., M} be the collection of those
{Kj:j E SN} Wthh intersect C. For each j, let p; € Q; N C and for x € Q; —
we have

fpj +x) = fpj) + f'(pj)z + R;()
where |R;(z)| < €;(IN)/N and €¢(N) := max; €;(IN) — 0 as N — co. Now
(

m (f(Q;)) =m (f(p;) + (f'(p ~)+Rj)(Qj—pj))
m ((f'(pj) + B;) (Q; — py))
(27.14) —m(  (f'(pg) + Rj) (@5 — py))

where O; € SO(n) is chosen so that O; f'(p; ) R™ C R™~1x {0} . Now O; f'(p;)(Q; —
p;) is contained in T'x {0} where I' C R™~ ! is a cube cetered at 0 € R™~! with side
length at most 2 |f'(p;)| /N < 2M/N where M = maxpek |f'(p)|. It now follows
that O; (f'(pj) + R;) (Q; — p;) is contained the set of all points within e(N)/N of
I' x {0} and in particular

O; (f'(pj) + R;) (Qj —p;) C (14 €(N)/N)T x [e(N)/N,€e(N)/N].
From this inclusion and Eq. (27.14) it follows that

m—1

m(AQ) < |2 G e/m)| 2N

1

= 2" M (1 (V) /N)]" ()

and therefore,

f(CNK)) Z ) < N™2m M 1[(1—&-6(]\7)/1\7)]7"_16(]\7)%

=2"M" 1 [(1+ ¢(N)/N)]" " e(N) —0as N — oo

Nm—n
since m > n. This proves the easy case since we may write U as a countable union
of cubes K as above.
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Remark. The case (m < n) also follows brom the case m = n as follows. When
m < n, C =U and we must show m(f(U)) = 0. Letting F': U x R"™™ — R" be
the map F(z,y) = f(x). Then F'(z,y)(v,w) = f'(z)v, and hence Cp := U x R*~™,
So if the assetion holds for m = n we have

m(f(U)) =m(FU xR"™™)) = 0.

Case 2. (m > n) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

C;={xeU:0%(z) =0 when |ao| <3}

so that C' D C1 D Cy D C3 D .... The proof is by induction on n and goes by the
following steps:

(1) m(f(C\ Cr)) = 0.

(2) m(f(C’l \Ci+1)) =0 for all ¢ > 1.

(3) m(f(C;)) = 0 for all i sufficiently large.

Step 1. If m = 1, there is nothing to prove since C' = C; so we may assume
m > 2. Suppose that z € C\Cy, then f'(p) # 0 and so by reordering the components
of z and f(p) if necessary we may assume that 0f;(p)/0z1 # 0. The map h(z) :=
(f1(z),xa,...,x,) has differential

0f1(p)/0x1 Ofi(p)/0z2 ... Ofi(p)/Ozn
0 1 0 0
W (p) = : : . :
0 0 0 1

which is not singular. So by the implicit function theorem, there exists there exists
V € 7, such that h : V. — (V) € 7, is a diffeomorphism and in particular
Af1(x)/0x1 # 0 for z € V and hence V C U \ C;. Consider the map g := foh™!:
V' :=h(V) — R™, which satisfies

(f1(2), fa(2), -, f(@)) = f(2) = g(W(z)) = 9((f1(2), 2, ..., 20))
h

which implies g(¢,y) = (¢, u(t,y)) for (t,y) € V' :=
below where p = Z and m = p. Since

(V) € Th(p), see Figure 48

Figure . Construction of the map g

F1GURE 48. Making a change of variable so as to apply induction.
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1 0
(4 _
IEN =1 dulty) dyult.y)

it follows that (¢,y) is a critical point of g iff y € C] — the set of critical points of
y — u(t,y). Since h is a diffeomorphism we have C’ := h(C' N V) are the critical
points of g in V'’ and

FCNV) =g(C") = U [{t} x w(C))] .

By the induction hypothesis, m,,_1(u:(C})) = 0 for all ¢, and therefore by Fubini’s
theorem,

m(f(CAV)) = /Rmm,l(ut(C;))lwﬂdt 0.

Since C'\ C; may be covered by a countable collection of open sets V' as above, it
follows that m(f(C'\ Cy)) =0

Step 2. Suppose that p € Cj\ Cj41, then there is an o such that |a| = k+1 such
that 9% f(p) = 0 while 9° f(p) = 0 for all |3| < k. Again by permuting coordinates
we may assume that ay # 0 and 9 f1(p) # 0. Let w(x) := 0% fi(z), then
w(p) = 0 while dyw(p) # 0. So again the implicit function theorem there exists
V € 1, such that h(z) := (w(x),z2,...,2,) maps V — V' := h(V) € 7 in
diffeomorphic way and in particular dyw(z) # 0 on V so that V . C U \ Ci41. As
before, let g := f o h™! and notice that Cj, := h(Cr, N V) C {0} x R"~! and

f(CnV) =g(Cy) =g (Cy)

where g := g|(o} xrn-1)ny-. Clearly Cj is contained in the critical points of g, and
therefore, by induction

0=m(g(Cy)) = m(f(Ce N V)).
Since Cy \ Cr41 is covered by a countable collection of such open sets, it follows
that
m(f(Ck \ Cx+1)) =0 for all k£ > 1.
Step 3. Supppose that @ is a closed cube with edge length § contained in U
and k > n/m — 1. We will show m(f(Q N C%)) = 0 and since @ is arbitrary it will
forllow that m(f(Ck)) = 0 as desired.

By Taylor’s theorem with (integral) remainder, it follows for © € @ N Cy, and h
such that x + h € @ that

fz+h)= f(z)+ R(z,h)
where
|R(x,h)| < c||n]**!

where ¢ = ¢(Q, k). Now subdivide @ into r™ cubes of edge size /r and let Q' be
one of the cubes in this subdivision such that Q' N Cy # 0 and let x € Q' N Cy.
It then follows that f(Q’) is contained in a cube centered at f(x) € R™ with side

length at most 2¢ (§/7)*™ and hence volume at most (2¢)™ (8/r)™*™) | Therefore,
F(QNCy) is contained in the union of at most r™ cubes of volume (2¢)™ (§/r )m(kﬂ)
and hence meach

m (F(Q 1 C) < (26)™ (/)™ 4D 1 = (20)" 50064 a1 1 o

provided that n —m(k + 1) <0, i.e. provided k >n/m—1. m
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27.3. Co-Area Formula. See “C:\driverdat\Bruce\DATA\MATHFILE\qft-notes\co-
area.tex” for this material.

27.4. Stokes Theorem. See Whitney’s "Geometric Integration Theory," p. 100.
for a fairly genral form of Stokes Theorem allowing for rough boundaries.
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28. COMPLEX DIFFERENTIABLE FUNCTIONS

28.1. Basic Facts About Complex Numbers.

Definition 28.1. C = R? and we write 1 = (1,0) and i = (0,1). As usual C
becomes a field with the multiplication rule determined by 12 = 1 and i2 = —1, i.e.

(a +ib)(c+id) = (ac — bd) + i(bc + ad).
Notation 28.2. If z = a + ib with a,b € Rlet Z=a — ib and
|22 = 22 = a® + b2
Also notice that if z # 0, then z is invertible with inverse given by

1 z
-1
z = - = —,
z 2P

Given w = a +ib € C, the map z € C — wz € C is complex and hence
real linear so we may view this a linear transformation M, : R?2 — R2. To work
out the matrix of this transformation, let z = ¢ + id, then the map is ¢ + id —
wz = (ac — bd) + i (bc + ad) which written in terms of real and imaginary parts is

equivalent to
a —b c\ [ ac—bd
b a d )\ bct+ad |’

Mw_(a _2>_al+wahereJ_<O _1>.

Thus

b 1 0

Remark 28.3. Continuing the notation above, M{" = M,,, det(M,,) = a® + b2 =
|w|?, and M, M, = M,,, for all w, z € C. Moreover the ready may easily check that
a real 2 x 2 matrix A is equal to M, for some w € Ciff 0 = [A,J] =: AJ — JA.
Hence C and the set of real 2 x 2 matrices A such that 0 = [A, J] are algebraically
isomorphic objects.
28.2. The complex derivative.
Definition 28.4. A function F' : Q@ C, C — C is complex differentiable at
zp € Q if
F(z)—F

(28.1) lim M =w

Z—20 Z— 20
exists.
Proposition 28.5. A function F : Q C, C — C is complex differentiable iff
F : Q — C is differentiable (in the real sense as a function from Q C, R? — R?)
and [F'(z0),J] =0, i.e. by Remark 28.3,

Feo =M= (5 7))
for some w =a+1ib € C.
Proof. Eq. (28.1) is equivalent to the equation:
F(z) = F(20) + w(z — 20) + o(z — 2p)
(28.2) = F(z0) + My(z — 20) + o(z — 29)

and hence F' is complex differentiable iff F' is differentiable and the differential is
of the form F'(zg) = M,, for some w € C. m
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Corollary 28.6 (Cauchy Riemann Equations). F' : Q — C is complex differen-
tiable at zy € Q iff F'(2) ewists*S and, writing zo = x¢ + iyo,

ZaF(x() + iyo) oF

(28.3) B = oy (zo +iyo)

; ito OF 4 JOF _
or in short we write or T ay — 0.

Proof. The differential F’(z) is, in general, an arbitrary matrix of the form

P =[5 g

where
oF OF
Since F' is complex differentiable at 2y iff d = a and ¢ = —b which is easily seen to

be equivalent to Eq. (28.3) by Eq. (28.4) and comparing the real and imaginary
parts of iF,(zy) and Fy(2).

Second Proof. If F is complex differentiable at zg = x¢ + iyg, then by the
chain rule,
oF oF i
8—y(330 +iyo) = iF'(xo +iyo) = i—(xg; Zy0)~
Conversely if F' is real differentiable at zy there exists a real linear transformation
A : C = R? — C such that

(28.5) F(z) = F(20) + Az — 20) + 0o(z — 20)
and as usual this implies

8F(z0) aF(Z())
ox dy

where 1 = (1,0) and i = (0,1) under the identification of C with R2. So if Eq.
(28.3) holds, we have

= A(1) and

= A(3)

A7) =iA(1)
from which it follows that A is complex linear. Hence if we set A := A(1), we have
A(a +1ib) = aA(1) + bA(i) = aA(1) + bA(1) = A(a + ib),
which shows Eq. (28.5) may be written as
F(z) = F(2z0) + AM(z — 20) + o(z — 2p).
This is equivalent to saying F' is complex differentiable at zp and F'(zp) = A. m

Notation 28.7. Let
- 170 .0 170 .0
0= 2 (ax +23y) and 9 = 2 (333 _Zﬁy) '

46por example this is satisfied if If F' : & — C is continuous at zp, F; and Fj exists in a
neighborhood of zp and are continuous near zg.
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With this notation we have

N A . 1/0 .0 .
8fdz+8fdz—2<8x—zay>f(dx+zdy)+2<6x+zay)f(dx—zdy)
_of, Of  _
= oy + 5 dy=df

In particular if o(s) € C is a smooth curve, then
d _
25/ (0(9) = 0f(a(5))o’(s) +0f (o (s))a"(s).

Corollary 28.8. Let Q C, C be a given open set and f : 2 — C be a C' — function
in the real variable sense. Then the following are equivalent:

(1) The complex derivative df (z)/dz exists for all z € Q.47
(2) The real differential f'(z) satisfies [f'(z),J] = 0 for all z € Q.
(3) The function f satisfies the Cauchy Riemann equations 0f =0 on Q.

Notation 28.9. A function f € C!(Q,C) satisfying any and hence all of the
conditions in Corollary 28.8 is said to be a holomorphic or an analytic function
on Q. We will let H(Q) denote the space of holomorphic functions on €.
Corollary 28.10. The chain rule holds for complex differentiable functions. In
particular, Q C, C b Co C —L C are functions, zo € Q and wy = f(z0) € D.
Assume that f'(zo) exists, g’ (wo) exists then (g o f)'(20) exists and is given by

(28.6) (go f)/(zo) = gl(f(zo))f/(zo)

Proof. This is a consequence of the chain rule for F : R?> — R? when restricted
to those functions whose differentials commute with .J. Alternatively, one can simply
follow the usual proof in the complex category as follows:

go f(z) = 9(f(2)) = g(wo) + g'(wo)(f(2) — f(20)) + o(f(2) = f(20))

and hence

ur)  LIEZAIC) ) S | A =Sl

Since %_Z{)(ZO)) — 0 as z — zp we may pass to the limit z — 2 in Eq. (28.7) to

prove Eq. (28.6). m

Lemma 28.11 (Converse to the Chain rule). Suppose f : Q Cc, C -U C, C and
g:U C, C — C are functions such that f is continuous, g € H(U) and h := go f €
H(Q), then f € HQ\ {z:¢'(f(2)) =0}). Moreover f'(z) = h'(2)/¢'(f(2)) when
z€Qand ¢'(f(2)) #0.

Proof. This follow from the previous converse to the chain rule or directly as
follows*®. Suppose that zy € Q and ¢'(f(20)) # 0. On one hand

h(z) = h(z0) + k' (20)(z — 20) + o(z — 20)

while on the other

h(z) = g(f(2)) = 9(f(20)) + g'(f(20)(f (2) = f(20)) + o(f(2) = f(20))-

4TAs we will see later in Theorem 28.38, the assumption that f is C1 in this condition is
redundant. Complex differentiablity of f at all points z € Q already implies that f is C° (£, C)!!
480ne could also apeal to the inverse function theorem here as well.
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Combining these equations shows

(288)  H(20)(z — 20) = ¢ (F(0)) (F(2) — F(20)) + 0(£(2) — F(20)) + olz — 20).
Since ¢'(f(z0)) # 0 we may conclude that

f(2) = f(20) = o(f(2) = f(20)) + O(z — 20),
in particular it follow that
1f(z) = f(20)] <

and hence that f(z) — f(z0)
that

|f(2) — f(20)] + O(z — 2p) for z near z

N =

O(z — zp). Using this back in Eq. (28.8) then shows

h'(20)(z = 20) = ¢'(f(20))(f(2) = f(20)) + 0(z = 20)
or equivalently that
— f(z0) = Mizo) z—2 o(z — =
2) = (z0) = i s (e = 20) 4oz = 20).
]

Example 28.12. Here are some examples.

k
(1) f(2) = z is analytic and more generally f(z) = > a,2z™ with a,, € C are
n=0
analytic on C.

(2) Tf f.g € H(Q) then f-g, f +g, cf € H(Q) and f/g € H(Q\ {g = 0}).
(3) f(z) = z is not analytic and f € C*(C,R) is analytic iff f is constant.
The next theorem shows that analytic functions may be averaged to produce
new analytic functions.

Theorem 28.13. Let g : 2 x X — C be a function such that
(1) g(-,z) € H(Q) for allz € X and write ¢'(z, ) for Lg(z, ).
(2) There exists G € LY (X, i) such that |g'(z,2)| < G(x) on Q x X.
(3) g(z,+) € LY (X, p) for z € Q.
Then
£6) = [ gtz €aute)

X
is holomorphic on Q) and the complex derivative is given by

f@=A¢@&MQ

Exercise 28.1. Prove Theorem 28.13 using the dominated convergence theorem
along with the mean value inequality of Corollary 4.10. Alternatively one may use
the corresponding real variable differentiation theorem to show 9, f and 0, f exists
and are continuous and then to show df = 0.

As an application we will shows that power series give example of complex dif-
ferentiable functions.

Corollary 28.14. Suppose that {a,},., C C is a sequence of complex numbers
such that series

f(z):= Z an(z —20)"

n=0
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is convergent for |z — zg| < R, where R is some positive number. Then f :
D(z9, R) — C is complex differentiable on D(z, R) and

(28.9) Z nan(z — 20)" Z nan(z — 29)" L.

By induction it follows that f*) exists for all k and that

o0

fF(z) = Z nn—1)...(n—k+Da,(z — 20)" "
n=0
Proof. Let p < R be given and choose r € (p, R). Since z = zo+r € D(zg, R), by
assumption the series Y a,r™ is convergent and in particular M := sup,, |a,r"| <
n=0

0o. We now apply Theorem 28.13 with X = NU{0}, u being counting measure,
Q = D(zo,p) and g(z,n) := an(z — z9)™. Since

l9'(z,n)| = [nan(z — 20)" 71| < nlan| p"
1 n—1 1 n—1
<-n (£> lan|r™ < —n (2) M
ro\r ro\r

and the function G(n) := 4n (ﬁ)n_l is summable (by the Ratio test for example),
we may use G as our dominating function. It then follows from Theorem 28.13

f(z):/X (z,m)du(n Z%Z—Zo

is complex differentiable with the differential given as in Eq. (28.9). =

Example 28.15. Let w € C, Q := C\{w} and f(z) =
zo € Q and write z = zg + h, then
1 1 1 1

w—z w—zg—h w—z1—h/(w—2)

S () S () e

n=0 n=0

(). Let

which is valid for |z — zo| < |w — 20| . Summarizing this computation we have shown

1 o] 1 n+1
28.10 = — zg)" fi — zo| < |w — 2o .
( ) P 7;) (w—zo> (z—20)" for |z — 29| < |w — 20|
& n
Proposition 28.16. The exponential function e = ) = is holomorphic on C

n=0
and d%ez = e”. Moreover,
(1) e+w) = e2e® for all z,w € C.
(2) (Euler’s Formula) €’ = cos® + isin® for all € R and |e?®| = 1 for all
OcR.
(3) et = e (cosy +isiny) for all z,y € R.
(4) ez =¢*.

Proof. By the chain rule for functions of a real variable,

i —twe(z+tw)] —

- [6 —twe(z+tw) + e—twwe(z+tw) =0

—we
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and hence e "e(*+t®) is constant in ¢. So by evaluating this expression at ¢t = 0
and t = 1 we find

(28.11) e~ velFF) = ¢ for all w, z € C.
Choose z = 0 in Eq. (28.11) implies e~ e” =1, i.e. e~ = 1/e which used back
in Eq. (28.11 proves item 1. Similarly,

d. _ .

@[e_m(cos 0 +isinf)] = —ie ¥ (cosf +isin@) + e~ (—sinf +icosf) = 0.
Hence e~ (cos@ +isin@) = e*%(cos @ +isin 0)|g—o = 1 which proves item 2. Ttem
3. is a consequence of items 1) and 2) and item 4) follows from item 3) or directly
from the power series expansion. H

Remark 28.17. One could define e* by e* = e®(cos(y) + ¢sin(y)) when z = = + iy
and then use the Cauchy Riemann equations to prove e* is complex differentiable.

Exercise 28.2. By comparing the real and imaginary parts of the equality e??e’® =
e'(9+2) prove the formulas:

cos(f + o) = cos b cos o — sin O sin @ and
sin(6 + a) = cosfsina + cos o sin 6

for all 8, € R.

Exercise 28.3. Find all possible solutions to the equation e* = w where z
and w are complex numbers. Let log(w) = {z : ¢ = w}. Note that log : C —
(subsets of C). One often writes log : C — C and calls log a multi-valued function.
A continuous function [ defined on some open subset 2 of C is called a branch of
log if I(w) € log(w) for all w € Q. Use the reverse chain rule to show any branch of
log is holomorphic on its domain of definition and that I(z) = 1/z for all z € Q.

Exercise 28.4. Let Q ={w=re?? € C:r >0, and —7 <0 <7} =C)\ (—00,0],
and define Ln : Q — C by Ln(re??) = In(r) + 6 for r > 0 and |#| < 7. Show that
Ln is a branch of log. This branch of the log function is often called the principle
value branch of log. The line (—oo,0] where Ln is not defined is called a branch
cut.

Exercise 28.5. Let {/w = {z € C: 2" = w}. The “function” w — {/w is another
example of a multi-valued function. Let h(w) be any branch of #/w, that is h is a
continuous function on an open subset 2 of C such that h(w) € /w. Show that h
is holomorphic away from w = 0 and that &'(w) = 2h(w)/w.

Exercise 28.6. Let | be any branch of the log function. Define w* = e**) for
all z € C and w € D(I) where D(I) denotes the domain of I. Show that w!/" is a
branch of {/w and also show that -Lw? = zw*~ 1.

28.3. Contour integrals.

Definition 28.18. Suppose that o : [a,b] —  is a Piecewise C! function and
f : Q@ — C is continuous, we define the contour integral of f along o (written

[ £(z)d2) by
b
[1¢1az:= [ oot

o
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Notation 28.19. Given Q C, C and a C? map o : [a,b] x [0,1] — Q, let 05 :=
a(-,8) € C([a,b] — Q). In this way, the map ¢ may be viewed as a map

s€1[0,1] — 05 :=0(-,5) € C*([a,b] — Q),

i.e. s — 0, is a path of contours in €.

Definition 28.20. Given a region Q and o, 3 € C?([a,b] — Q), we will write
a ~ B in Q provided there exists a C? — map o : [a,b] x [0,1] — Q such that
09 = a, 01 = 3, and o satisfies either of the following two conditions:

(1) Lo(a,s) = Lo(b,s) =0 for all s € [0,1], i.e. the end points of the paths

os for s € [0, 1] are fixed.
(2) o(a,s) =oa(b,s) for all s € [0,1], i.e. o, is a loop in § for all s € [0, 1].

Proposition 28.21. Let Q be a region and o, 3 € C?%([a,b],Q) be two contours
such that o ~ 8 in Q. Then

/f(z)dz = /f(z)dz for all f € H(Q).
o 3

Proof. Let o : [a,b] X [0,1] — £ be as in Definition 28.20, then it suffices to
show the function

F(s) = / F(2)dz

is constant for s € [0, 1]. For this we compute:

F’(s)zdils/ f(a(t,s))d(t,s)dt:/ %[f(a(t,s))d(t,s)} dt

=/ {f'(a(t,8))o'(t,s)a(t,s) + f(o(t,s))d’(t,s)} dt
bq

- [ FUttses)a

t=b

= [f(o(t,s))a'(t,s)] =0

t=a

where the last equality is a consequence of either of the two endpoint assumptions
of Definition 28.20. =

Remark 28.22. For those who know about differential forms and such we may
generalize the above computation to f € C1(Q) using df = dfdz + 0fdz. We then
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find
Fs) =3 / " Fott,5))6(t )it = / "L ottt o) e
/ 0'(t,5) + Df (0(t, )0 (t, )] (2. 5) + F(o(t, )5 (t, )} at
/ {[os £,5)0 (t,5) + DF (0(t,))a(t,5)0 (1. 5)] + F(o(t,9))6 (t,5)} db
/ 5 (t,5)6(t, ) — Gu(t,5)0' (1, 5)) dt

:/a C(lit[f( (¢, S)) (t,s dt-i—/ af (t,9)) (5’(t,s)d(t,s) _5t(t,8)0/(t,s))dt
= [f(o(t,s))d'(t,s)]

Tt [0t ) @960, — 1t )0, )
= [ 051016, @1 5)5(0.5) = 7406, 8)00,9)) .

Integrating this expression on s then shows that

/Ul fdz — /O_O fdz = /01 ds /ab dtdf(o(t,s)) (3" (t,s)o(t, s) — G4(t, )0’ (t, 5))
= / O(fdz) = / dfdz A dz

We have just given a proof of Green’s theorem in this context.
The main point of this section is to prove the following theorem.

Theorem 28.23. Let Q C, C be an open set and f € C1(Q,C), then the following
statements are equivalent:

(1) feH(), _
(2) For all disks D = D(zg, p) such that D C €,
(28.12) f(z) = ! de for all z € D.

21t Joap w— 2

(3) For all disks D = D(zq, p) such that D C Q, f(z) may be represented as a
convergent power series

(28.13) flz)= i an(z — z0)" for all z € D.
n=0

In particular f € C*>(Q,C).

Moreover if D is as above, we have

(28.14) f™(z) = L'jl{ #dw forall z€ D
oD

2mi w—2z)"

and the coefficients a,, in Eq. (28.13) are given by
1
ay, = f(")(zo)/n! — _7{ ﬂdw.
ap (

2mi w — zg)" 1
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Proof. 1) = 2) For s € [0, 1], let 25 = (1 — 5)20 + 52, ps := dist(z;,0D) = p —
s|z — zo] and o(t) = 25 + pse® for 0 <t < 2. Notice that og is a parametrization

of D, 0p ~ 01 in Q\ {2}, w — % is in H (Q\ {z}) and hence by Proposition
98.21,

EDW—Z / f—z _/01%%].

Now let 74(t) = z+sp1e® for 0 <t < 2w and s € (0,1]. Then 7, = 07 and 71 ~ 7, in
2\ {z} and so again by Proposition 28.21,

fw) [ fw) / fw)
oD W — 2 o W— 2 r,W—2
2m it
fErsmet), et
0 spret

27

=1 f(z+ spre)dt — 2mif(z) as s | 0.
0

2) = 3) By 2) and Eq. (28.10)
g g,

2mi Jop w— 2

— sy (2 )+ (5 — 20)"dw

oD n=0

ﬁ 3 (ng f(w) <wiZO)n+l dw> (2 — 20)"

(The reader should justify the interchange of the sum and the integral.) The last
equation proves Eq. (28.13) and shows that

1 f(w)

2w Jop (w— o)

flz) =

dw.
Also using Theorem 28.13 we may differentiate Eq. (28.12) repeatedly to find

! f(w)
28.15 (n) :”—y{ — L dwfor all z€ D
( ) " (2) i aD(w—z)"+1wora z €
which evaluated at z = zy shows that a, = f(™(z)/n!.
3) = 1) This follows from Corollary 28.14 and the fact that being complex
differentiable is a local property. ®
The proof of the theorem also reveals the following corollary.

Corollary 28.24. If f € H(Q) then f' € H(Q) and by induction f™ € H()
with ) defined as in Eq. (28.15).

Corollary 28.25 (Cauchy Estimates). Suppose that f € H(Q) where Q C, C and
suppose that D(zg, p) C §2, then

sup | f()]-

(28.16) |77 Gz0)| < o
P™ |e—zol=p
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Proof. From Eq. (28.15) evaluated at z = 2 and letting o(t) = 29 + pe’* for
0<t<2nm, wefind

iy My ) o on [ fw)
f (ZO) - 2 %{;D (w - Zo)n—i-l dw = 2 /a (w — Zo)n-‘rl dw

[T ot
_% o (peit)n-‘rl pe

n! 2T f(z0 + pett)

28.17 = . dt.
( ) 27Tpn 0 eznt
Therefore,
| 27 f(Z + eit) nl 27 ]
(m) ‘< "/ 0P ) dt = / )| dt
’f (20) ~ 2mp" J, eint 2" Jo |f (20 + pe™)]
n!
<— sup [f(9I
P JE=z0l=p

Exercise 28.7. Show that Theorem 28.13 is still valid with conditions 2) and 3) in
the hypothesis being replaced by: there exists G € L' (X, u) such that ||g(z,z)| <
G(x).

Hint: Use the Cauchy estimates.

Corollary 28.26 ( Liouville’s Theorem). If f € H(C) and f is bounded then f is
constant.

Proof. This follows from Eq. (28.16) with n =1 and the letting n — oo to find
f'(z0)=0forall zp€C. m

Corollary 28.27 (Fundamental theorem of algebra). Fvery polynomial p(z) of
degree larger than 0 has a root in C.

Proof. Suppose that p(z) is polynomial with no roots in z. Then f(z) = 1/p(z)
is a bounded holomorphic function and hence constant. This shows that p(z) is a
constant, i.e. p has degree zero. m

Definition 28.28. We say that € is a region if ) is a connected open subset of
C.

Corollary 28.29. Let Q be a region and f € H(Y) and Z(f) = f~1({0}) denote
the zero set of f. Then either f =0 or Z(f) has no accumulation points in Q2. More
generally if f,g € H(Q) and the set {z € Q: f(z) = g(2)} has an accumulation
point in Q, then f = g.

Proof. The second statement follows from the first by considering the function
f —g. For the proof of the first assertion we will work strictly in Q with the relative
topology.

Let A denote the set of accumulation points of Z(f) (in €2). By continuity of f,
A C Z(f) and A is a closed® subset of Q with the relative topology. The proof

49Recall that z € A iff VI NZ # 0 for all x € Vi, Cp C where V! := Vi \ {x}. Hence = ¢ A
iff there exists x € V Co C such that V. N Z = . Since V] is open, it follows that V) C A° and
thus V C A°. So A€ is open, i.e. A is closed.
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is finished by showing that A is open and thus A = ) or A = Q because Q is
connected.
Suppose that zy € A, and express f(z) as its power series expansion

o0
= Z an(z — 20)"
n=0

for z near zp. Since 0 = f(zp) it follows that ag = 0. Let 2, € Z(f) \ {20} such that
lim z; = zg. Then

o0
0= = E n(zk—zo)"*l—wzl as k — oo
ZE — 20 =1

so that f(z) = ZZOZQ an(z — 20)™. Similarly

0= ——— Zanzk—zo *2—>a2ask—>oo
(Zk - Zo
and continuing by induction, it follows that a,, = 0, i.e. f is zero in a neighborhood
of Zp. N

Definition 28.30. For z € C, let
eiz 4 eiz eiz _ eiz
=" and si - -
5 and sin(2) 5
Exercise 28.8. Show the these formula are consistent with the usual definition of
cos and sin when z is real. Also shows that the addition formula in Exercise 28.2

are valid for 6, « € C. This can be done with no additional computations by making
use of Corollary 28.29.

cos(z) =

Exercise 28.9. Let

f(z) = /exp —lx + zx)dm(x) for z € C.

o
Show f(z) = exp(32?) using the following outline:

(1) Show f € H(Q).

(2) Show f(z) = exp(32?) for z € R by completing the squares and using the
translation invariance of m. Also recall that you have proved in the first
quarter that f(0) =

(3) Conclude f(z) = exp(32?) for all z € C using Corollary 28.29.

Corollary 28.31 (Mean vaule property). Let Q C, C and f € H(Q), then f
satisfies the mean value property
2

(28.18) f(z0) = — f(z0 + pe'®)do

27
which holds for all zy and p > 0 such that D(zg, p) C Q.
Proof. Take n =0 in Eq. (28.17). m

Proposition 28.32. Suppose that Q is a connected open subset of C. If f € H()
is a function such that |f| has a local maximum at zg € ), then f is constant.
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Proof. Let p > 0 such that D = D(z,p) C @ and |f(2)| < [f(20)] = M

for z € D. By replacing f by e’ f with an appropriate # € R we may assume

M = f(zp). Letting u(z) = Re f(z) and v(z) = Im f(z), we learn from Eq. (28.18)
that

1 27 )
M = fe0) =Ref(z0) = 5= [ ulea+pe)ip

1 2m .
<= min(u(zo + pe®),0)dd < M
2T 0
since |u(zo + pe'®)| < | f(z0 + pe'®)| < M for all 6. From the previous equation it

follows that )

0= {M — min(u(zo + pe'),0)} do
0

which in turn implies that M = min(u(zo + pe'?),0), since § — M — min(u(zo +
pe'?),0) is positive and continuous. So we have proved M = u(zq + pe'®) for all 6.
Since

M? > |f(z0 + pe)

we find v(zg + pe’?) = 0 for all §. Thus we have shown f(zy + pe?®) = M for all 0
and hence by Corollary 28.29, f(z) = M for all z€ Q. =

The following lemma makes the same conclusion as Proposition 28.32 using the
Cauchy Riemann equations. This Lemma may be skipped.

Lemma 28.33. Suppose that f € H(D) where D = D(zg,p) for some p > 0. If
|f(2)| =k is constant on D then f is constant on D.

2 . . .
| :u2(20+p6w)+1)2(20+p6w):M2+U2(20+p620),

Proof. If £ = 0 we are done, so assume that k& > 0. By assumption
0=0k*=0|f" = 0(ff) =0 - f + for
=fof=fr
wherein we have used
0F = 5 (0, —i0,) = 58 110, J(:) = 3F = 0
by the Cauchy Riemann equations. Hence f’ = 0 and f is constant. m

Corollary 28.34 (Maximum modulous principle). Let 2 be a bounded region and
f€C@Q)NH(Q). Then for all z € Q, |f(2)| < sup |f(2)|. Furthermore if there
2€00Q

exists zg € Q such that | f(20)| = sup |f(2)| then f is constant.
2€00Q

Proof. If there exists zg € Q such that |f(zo)| = max.caq |f(2)], then Proposi-

tion 28.32 implies that f is constant and hence |f(z)| = sup |f(2)|. If no such z
2€09
exists then |f(2)| < sup |f(2)| forallz € Q. m
2€00

28.4. Weak characterizations of H(?). The next theorem is the deepest theo-
rem of this section.

Theorem 28.35. Let Q2 C, C and f : Q@ — C is a function which is complex
differentiable at each point z € Q. Then § f(z)dz =0 for all solid triangles T C Q.
oT
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1A
PAW
PEANZN

FIGURE 49. Spliting T into four similar triangles of equal size.

Proof. Write T'= S, U Sy U S3U Sy as in Figure 49 below.
Let 1 € {S1,82,855,54} such that | [, f(z)dz| = max{] [ f(z)dz|] : i =
S,

1,2,3,4}, then

\/f Vdz| = / dz\<Z|/f dz|<4|/f )dz].

=l gg. T,

Repeating the above argument with T replaced by T} again and again, we find by
induction there are triangles {T;}:-, such that

() T2Th 21,2132
(2) €(0T,,) = 27™£(0T) where £(0T) denotes the length of the boundary of T,
(3) diam(7T,) = 27" diam(7T") and

(28.19) |/f dz|<4"\/f )dz|.

0Ty

oo
By finite intersection property of compact sets there exists zp € () 7,. Because

n=1

f(2) = f(20) + f'(20) (2 = 20) + o(z — 20)
we find

4"/f(z)dz e /f(zo)dz+/f’(zo)(z—zo)dz+/o(z—zo)dz
T, 0T, oTy,

Ty

=4" /o(z—zo)dz §06n4”/|z—zo\d\z|

pT, Ty
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where €, — 0 as n — 00. Since

/ |z — 20| d|z| < diam(T},)¢(0T;,) = 27 "diam(T)2~"4(9T) = 4~ "diam(T)¢(0T)
aT,
we see

4n / f(z)dz| < Ce 44 "diam(T')4(0T) = Cey,, — 0 as n — 0.
Tn
Hence by Eq. (28.19), f f(z ]

Theorem 28.36 (Morera’s Theorem). Suppose that Q@ C, C and f € C(Q) is a
complex function such that

(28.20) /f(z)dz =0 for all solid triangles T C €,

then f € H(Q).
Proof. Let D = D(z, p) be a disk such that D C Q and for z € D let

= [ 19
[20,2]

where [zp, 2] is by definition the contour, o(t) = (1 — t)zg + tz for 0 < ¢t < 1. For
z,w € D we have, using Eq. (28.20),

Fw) /f Jdé = /fz+t — ) (w — 2)dt

[z,w]

=(w—2) / f(z+t(w — 2))dt.
0
From this equation and the dominated convergence theorem we learn that

F(w) —
Flw) = Fz) _ /fz—i—t( —z))dt — f(z) as w — 2.
w—z
Hence F' = f so that F' € H(D). Corollary 28.24 now implies f = F' € H(D).
Since D was an arbitrary disk contained in € and the condition for being in H(2)
is local we conclude that f € H(2). m

The method of the proof above also gives the following corollary.

Corollary 28.37. Suppose that Q C, C is convex open set. Then for every f €
H(Q) there exists F € H(Q) such that F' = f. In fact fixing a point zy € Q, we
may define F' by

= / F(&)dE for all z € Q.

[20,2]

Exercise 28.10. Let Q C, C and {f,} C H() be a sequence of functions such
that f(z) = lim, . fn(2) exists for all z € Q and the convergence is uniform on
compact subsets of Q. Show f € H(Q) and f'(z) = lim, . f/,(2).

Hint: Use Morera’s theorem to show f € H(2) and then use Eq. (28.14) with
n =1 to prove f'(z) = lim,— f},(2).
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Theorem 28.38. Let Q2 C, C be an open set. Then

d,
(28.21) H(Q) = {f : Q — C such that J;(z) exists for all z € Q} .
z
In other words, if f : Q — C is complex differentiable at all points of Q2 then [’ is
automatically continuous and hence C*° by Theorem 28.23!!!
Proof. Combine Theorems 28.35 and 28.36. m

Corollary 28.39 (Removable singularities). Let Q C, C, zo € Q and f € H(Q\
{20}). If limsup, ., |f(2)| < oo, i.e. sup |f(2)] < oo for some € > 0, then

0<|z—2z0|<e€
lim f(z) exists. Moreover if we extend f to Q by setting f(z0) = lim f(z), then
zZ—20 Z—2Z20
f e H(Q).
Proof. Set

(= 20)%f(2) for z€Q\ {20}
9(2) = { 0 for zZ =z ’

Then ¢'(zp) exists and is equal to zero. Therefore ¢'(z) exists for all z € Q and

hence g € H(Q)). We may now expand g into a power series using g(zo) = ¢’'(20) =0

to learn g(z) = > an(z — 29)™ which implies

n=2

f(z) = % = ian(z — )" 2 for 0 < |z— 2| <e

(z—20)* =

oo
Therefore, lim,_,,, f(2) = ag exists. Defining f(z0) = az we have f(2) = > an(z—

n=0
29)" 2 for z near zy. This shows that f is holomorphic in a neighborhood of zy and
since f was already holomorphic away from zg, f € H(Q2). =

Exercise 28.11. Show

1 . M .

M

(28.22) / e = / S g — 71 as M — oo
-1 xT M Z

using the following method.””
(1) Show that
z7lsinz for 2z#0
9(2) = { 1 if 2=0

defines a holomorphic function on C.

(2) Let T'ps denote the straight line path from —M to —1 along the real axis
followed by the contour €* for § going from 7 to 2w and then followed by
the straight line path from 1 to M. Explain why

M . . . i
. 1 iz 1 iz
/ sinz / sinz < / e . e dz.>
Mz ry Z 2t Jr,, 2 2 Jr,, =2

501y previous notes we evaluated this limit by real variable techniques based on the identity
that L = [>®e=?d) for z > 0.




ANALYSIS TOOLS WITH APPLICATIONS 519

(3) Let Cj; denote the path Me® with 0 going from 0 to m and C; denote the
path Me? with 6 going from 7 to 27. By deforming paths and using the
Cauchy integral formula, show

et efiz
/ —dz = 2mi and dz = 0.
FMJrC;\Ll z v —Cyy z

(4) Show (by writing out the integrals explicitly) that

—1iz

1z e

. (& .
lim —dz=0= lim
M—oo [ot+ 2 M—oo [o-
M M

(5) Conclude from steps 3. and 4. that Eq. (28.22) holds.

dz.

28.5. Summary of Results.

Theorem 28.40. Let Q) C C be an open subset and f : Q@ — C be a given function.
If f'(2) exists for all z € Q, then in fact f has complex derivatives to all orders and
hence f € C*°(Q). Set H(§2) to be the set of holomorphic functions on €.
Now assume that f € C°(Q). Then the following are equivalent:
(1) feHQ)
(2) $,p f(2)dz =0 for all triangles T C Q.
(3) $55 f(2)dz =0 for all “nice” regions R C Q.
(4) ¢ f(z)dz =0 for all closed paths o in Q which are null-homotopic.
(5) f € CYHQ) and Of = 0 or equivalently if f(z + iy) = u(z,y) + iv(z,y),
then the pair of real valued functions u,v should satisfy

£ #][:)-12)
35 Oz v 0
(6) For all closed discs D C 2 and z € D°,
f(©)
)= ¢ Fae
(7) Forall zg € Q and R > 0 such that D(zo, R) C Q the function f restricted
to D(zg, R) may be written as a power series:

flz)= Z an(z — 20)" for z € D(zo, R).

n=0

Furthermore

1 f(z)
= f(n) = — d
e S P e

where 0 < r < R.

92 _0
Remark 28.41. The operator L = Bam {?y is an example of an elliptic dif-

oy Oz

ferential operator. This means that if a% is replaced by & and a% is replaced by

&5 then the “principal symbol” of L, ﬁ(@“) = [ 21 _;2 } , is an invertible matrix
2 1

for all & = (£1,&2) # 0. Solutions to equations of the form Lf = g where L is an
elliptic operator have the property that the solution f is “smoother” than the forc-
ing function g. Another example of an elliptic differential operator is the Laplacian
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A= 8962 + a for which A(¢) = €2 4 ¢2 is invertible provided & # 0. The wave

operator [ = 6; - 86_y2 for which ﬂ(é) = 2 — £2 is not elliptic and also does not
have the smoothing properties of an elliptic operator.

28.6. Exercises.

(1)
2)

(4)

(7)

(®)

Set e* = Y ) 4. Show that e* = e”(cos(y) + isin(y)), and that de* =
jzez =¢% and de* = 0.

Find all possible solutions to the equation e* = w where z and w are
complex numbers. Let log(w) = {z : e = w}. Note that log : C —
(subsets of C). One often writes log : C — C and calls log a multi-valued
function. A continuous function ! defined on some open subset 2 of C is
called a branch of log if I(w) € log(w) for all w € Q. Use a result from class
to show any branch of log is holomorphic on its domain of definition and
that I'(z) = 1/z for all z € Q.

Let Q={w=re? €C:7>0,and —7 <0 <7} =C\(~00,0], and
define Ln : Q — C by Ln(re?) = In(r) + i for 7 > 0 and |§] < 7. Show
that Ln is a branch of log. This branch of the log function is often called
the principle value branch of log. The line (—o0, 0] where Ln is not defined
is called a branch cut. We will see that such a branch cut is necessary. In
fact for any continuous “simple” curve o joining 0 and oo there will be a
branch of the log - function defined on the complement of o.

Let ¥/w = {z € C: 2" = w}. The “function” w — ¥w is another example
of a multivalued function. Let h(w) be any branch of {/w, that is h is a
continuous function on an open subset 2 of C such that h(w) € Yw. Show
that A is holomorphic away from w = 0 and that h/(w) = Lh(w)/w.

Let [ be any branch of the log function. Define w? = e*(*) for all z € C
and w € D(l) where D(I) denotes the domain of [. Show that w!'/™ is a
branch of {/w and also show that %wz = zw* L.

Suppose that (X, p) is a measure space and that f : @ x X — Cis a
function (€ is an open subset of C) such that for all w € X the function
z = f(z,w) is in H(Q) and [y |f(z,w)|dp(w) < oo for all z € Q (in fact
one z € ( is enough). Also assume there is a function g € L'(du) such
that |8f )| < g(w) for all (2,w) € Q x X. Show that the function h( ) =

Jx f(z,w)dp(w) is holomorphic on X and that h'(z) = [ af(z ) dyu(w)

for all z € X. Hint: use the Hahn Banach theorem and the me;n Valued

theorem to prove the following estimate:

|f(z+6,w)—f(z,w)
)

all § € C sufficiently close to but not equal to zero.

Assume that f is a C! function on C. Show that 9[f ()] = (0f)(2). (By the
way, a C'—function f on C is said to be anti-holomorphic if &f = 0. This
problem shows that f is anti-holomorphic iff z — f(Z) is holomorphic.)
Let U C C be connected and open. Show that f € H(U) is constant on U
iff f/=0onU.
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(9) Let f € H(U) and R C U be a “nice” closed region (See Figure To be
supplied later.). Use Green’s theorem to show [, f(z)dz = 0, where

dz = d
=3 | sleice

and {o;}_, denote the components of the boundary appropriately oriented,

see the Figure 1.
(10) The purpose of this problem is to understand the Laurent Series of a
function holomorphic in an annulus. Let 0 < Ry < rg < 71 < Ry < o0,
20 € C,U={2€C|Ry < |z—2)| < Ri1},and A={z2€Clrg < |z — 2| <

7“1}.

a): Use the above problem (or otherwise) and the simple form of the
Cauchy integral formula proved in class to show if g € H(U)NCY(U),

then for all z € A, g(z) = 55 [o4 fu(f’;dw. Hint: Apply the above
problem to the function f(w) = % with a judiciously chosen region

RcCU.
b): Mimic the proof (twice, one time for each component of 9A) of the
Taylor series done in class to show if g € H(U) N C*(U), then

g(z) = Z an(z — 20)", Vze€eA,

n=—oo

1 g(w)
= om /, (w — z)ntl dw,

and o(t) = pe'’ (0 <t < 27) and p is any point in (R, R1).
c): Suppose that Ry =0, g € H(U) N C*(U), and g is bounded near z.
Show in this case that a_, = 0 for all n > 0 and in particular conclude
that g may be extended uniquely to zp in such a way that g is complex
differentiable at zg.
(11) A Problem from Berenstein and Gay, “Complex Variables: An introduc-
tion,” Springer, 1991, p. 163.
Notation and Conventions: Let 2 denote an open subset of R™V. Let
L=A=%", 88—; be the Laplacian on C?%(Q2,R).
(12) (Weak Maximum Principle)
a): Suppose that u € C?(Q, R) such that Lu(x) > 0 Vx € Q. Show that u
can have no local maximum in 2. In particular if €2 is a bounded open
subset of RY and u € C(Q,R) N C%(Q,R) then u(z) < maxyean u(y)
for all x € Q.
b): (Weak maximum principle) Suppose that € is now a bounded open
subset of R and that u € C(Q,R) N C?(,R) such that Lu > 0 on
Q. Show that u(y) < M := max,ecpq u(x) for all y € Q. (Hint: apply
part a) to the function u.(z) = u(x) + €|z|> where € > 0 and then let
e—0.)

where

Remark 28.42 (Fact:). Assume now that Q is connected. It is possible to
prove, using just calculus techniques, the “strong maximum principle”
which states that if u as in part b) of the problem above has an interior
maximum then v must be a constant. (One may prove this result when the
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dimension n = 2 by using the mean value property of harmonic functions
discussed in Chapter 11 of Rudin.) The direct calculus proof of this fact
is elementary but tricky. If you are interested see Protter and Weinberger,
“Maximum Principles in Differential Equations”, p.61—.

(Maximum modulus principle) Prove the maximum modulus principle us-
ing the strong maximum principle. That is assume that 2 is a con-
nected bounded subset of C, and that f € H(Q) N C(Q,C). Show that
|f(2)] < maxeean |f(§)] for all z € Q and if equality holds for some z €
then f is a constant.

Hint: Assume for contradiction that | f(z)| has a maximum greater than
zero at zg € Q. Write f(z) = €9 for some analytic function g in a
neighborhood of zy. (We have shown such a function must exist.) Now use
the strong maximum principle on the function u = Re(g).

28.7. Problems from Rudin.

p.

229:: #17 x.

Chapter 10:: 2,3, 4,5
Chapter 10:: 8-13, 17, 18-21, 26, 30 (replace the word “show” by “convince

yourself that” in problem 30.)

Remark 28.43. Remark. Problem 30. is related to the fact that the fundamental
group of 2 is not commutative, whereas the first homology group of 2 and is in
fact the abelianization of the fundamental group.

Chapter 11: 1, 2, 5, 6,

Chapter 12:: 2 (Hint: use the fractional linear transformation

z—1

z+1

which maps IIT — U. conformally.), 3, 4 (Hint: on 4a, apply Maxi-
mum modulus principle to 1/f.), 5, 11 (Hint: Choose @ > 1, 29 €
such that |f(z0)] < y/a and § € (0,1) such that D = D(z0,0) C Q
and |f(z)] < aM on D. For R > § let Qr = (2N D(2,R)) \ D.
Show that g,(z) = (f(2))"/(z — 20) satisfies g, € H(Qg) N C°(Qr) and
|gn| < max{a"M"/6, B"/R} on 0Qg. Now apply the maximum modulus
principle to gy, then let R — oo, then n — oo, and finally let o | 1.)

U(z) =1
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29. LITTLEWOOD PAYLEY THEORY
Lemma 29.1 (Hadamard’s three line lemma). Let S be the vertical strip
S={z:0<Re(z) <1} =(0,1) x iR

and ¢(z) be a continuous bounded function on S = [0, 1] x iR which is holomorphic
on S. If My 1= Supge(z)=, |¢(2)|, then M, < Mg~ M;. (In words this says that the
mazimum of ¢(z) on the line Re(z) = s is controlled by the mazimum of ¢(z) on
the lines Re(z) = 0 and Re(z) = 1. Hence the reason for the naming this the three
line lemma.

Proof. Let Ny > My and N; > M; ®! and € > 0 be given. For z = z + iy € S,
max(No, N1) > [Ny *N7| = Ny~ “N{ > min(Np, Ny)

and Re(22 — 1) = (22 — 1 —3?) < 0 and Re(2? — 1) — —o0 as z — oo in the strip
S. Therefore,
o(2)
(2) i= —/———
is a bounded continuous function S, ¢ € H(S) and ¢c(z) — 0 as z — oo in the
strip S. By the maximum modulus principle applied to Sg := [0,1] x i[—B, B] for
B sufficiently large, shows that

max {|¢c(z)| : z € S} = max {|¢(2)| : z € 8S}.

exp(e(z? = 1)) for z € S

For z = iy we have

| 62) 2 | sl _ My
o0(2) = |z et~ 1) < 1 < S0 <
and for z =1 + 4y,
(o) < PO M

Ny Ny
Combining the last three equations implies max {|¢c(z)| : z € S} < 1. Letting € | 0
then shows that

' $(2)

T <lforallze S
N3Nt

or equivalently that
lp(2)| < }Ng_sz’ =Ny “Niforall z=x+iy € S.
Since Ny > My and N7 > M; were arbitrary, we conclude that
6(2)] < |My M5 | = My~ “Mf forall z =2 + iy € S

from which it follows that M, < My~ "M7 for all z € (0,1). m
As a first application we have.

Proposition 29.2. Suppose that A and B are complex n x n matrices with A > 0.
(A > 0 can be handled by a limiting argument.) Suppose that ||AB| < 1 and

IBA|| <1, then H\/ZB\/ZH <1 as well.

Slyf Mp and Mj are both positive, we may take No = Mgy and N1 = M;.
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Proof. Let F(z) = A*BA'"% for z € S, where A*f := )\* = ¢*!"A f when
Af = Af. Then one checks that F' is holomorphic and
F(x4iy) = A"TWBAY "W = AWE(x) A~
so that
1F(z +iy)l| = [|[F(x)]]-

Hence F is bounded on S and

I1FO+iy)ll = [[FO)]| = [[BA| <1, and

I1FA+ay)ll = [FW] = [[AB] < 1.

So by the three lines lemma (and the Hahn Banach theorem) ||F(2)|] < 1 for all
z € S. Taking z = 1/2 then proves the proposition. ®

Theorem 29.3 (Riesz-Thorin Interpolation Theorem). Suppose that (X, M, )
and (Y,N,v) are o— finite measure spaces and that 1 < p;,q; < oo fori=0,1. For
0<s<1, let ps and qs be defined by

1 1-s5 s 1 1—-s5 s
— = +— and — = + —.
Ps Po Y41 ds q0 q1
If T is a linear map from LP°(u) + LP(p) to LP(v) + L% (v) such that
1Ty —go < Mo <00 and (T, _,, <M <o0
then
170, —q, < My = Mg' ™" M < oo

Alternatively put we are trying to show
(29.1) ITfll,, < Ms|lfll,, forallse (0,1) and f € LP*(p).

given

TSNy < Mollfll,, for all f € L (p) and
TSNy, < Milifll,, forall f € L (p).
Proof. Let us first give the main ideas of the proof. At the end we will fill in

some of the missing technicalities. (See Theorem 6.27 in Folland for the details.)
Eq. (29.1) is equivalent to showing

’/ngdu

for all f € LP+(u) such that [[f]|, =1 and for all g € L% such that gl =1,
where ¢} is the conjugate exponent to p,. Define p, and ¢} by k

< M;

1 1—=2 z 1 1—=2 z
o= + — and T )
Pz Po Y4 q, ‘0 q1
and let
f.= ‘f pe/p: i and g, = |g e/ i
| /] |9

%/ g6 that

77 and |g.| = |g

Writing z = x + iy we have |f,| = |f
(29.2) ”fz“Lm =1 and ”gz”Lqi =1
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ot
B
(&3

for all z =2 44y with 0 < x < 1. Let

F(Z) = <szagz> = /YTfZ - g.dv

and assume that f and g are simple functions. It is then routine to show F €

Cy(S) N H(S) where S is the strip S = (0,1) + iR. Moreover using Eq. (29.2),
|F'(it)| = KT fir; gie)| < Mo | fiell, il e = Mo

and
[F(1+it)] = (T fries 1) < M| figiell,,, lg14itlly: = M

for all ¢ € R. By the three lines lemma, it now follows that

(T2 g:)| = [F ()| < My~Re My
and in particular taking z = s using fs = f and g5 = g gives

(Tf,9)l = F(s) < My~ M.

Taking the supremum over all simple g € L% such that lgll - = 1 shows |T'f|[ .. <
My ~* M for all simple f € LPs () such that ||f|| . = 1 or equivalently that

(29.3) ITf |l o < Mg~ M7 || f]l,,, for all simple f € LP*(p).

Now suppose that f € LP= and f,, are simple functions in LP= such that |f,| < |f|
and f, — f point wise asn — o00. Set E = {|f| > 1}, 9= flg h = f1%, g0 = fulEr
and h,, = f,1ge. By renaming pg and p; if necessary we may assume py < p1. Under
this hypothesis we have g, g, € LP° and h, h,, € LP* and f = g+h and f,, = g, +hy.
By the dominated convergence theorem

1o = fllp, =0, llgn —gll,, = 0 and [[h = hal, —0

as n — oo. Therefore |Tg, —Tyg|, — 0 and |[Th, —Th|,, — 0 as n — oo.
Passing to a subsequence if necessary, we may also assume that T'g,, — T'g — 0 and
Th, —Th — 0 a.e. asn — oco. It then follows that T'f, = Tg, +Th, — Tg+Th =
Tf a.e. asn — oo. This result, Fatou’s lemma, the dominated convergence theorem
and Eq. (29.3) then gives

ITfll,, <lim inf [T, <lm inf M3=*M; |,

= My ="M | £,

Ps

29.0.1. Applications. For the first application, we will give another proof of Theo-
rem 11.19.
Proof. Proof of Theorem 11.19. The case ¢ = 1 is simple, namely

Il = | [ se=saa] < [ 1aC-l ot dy
S

and by interchanging the roles of f and g we also have

1 gl = 1 £l Nlgll, -

Letting Cy f = f * g, the above comments may be reformulated as saying

1Cl1—p < llgll,, -
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Another easy case is when r = oo, since

U*g@ﬂ=yé f@—=y)g)dy| < f(z =), lglly = /1], [lgll, -
which may be formulated as saying that
1€l g0 < llgll,, -
By the Riesz Thorin interpolation with pg =1, g9 = p, p1 = q and g1 = o0,
1— -
po—ae S NColl, = GGy < llgll, ™" llglly < llgll,,
for all s € (0,1) which is equivalent to

If*gll, <If

1Cq

Ps ng

Since
pol=(0-5s)4+s¢g tandg;' =1 —s)p t+s00 ' =(1—-s)p?,
and therefore if a = ¢, and b = p, then
bl == s) +sg T
=(1—s)+s(g +p )+ 1—s)p "
=1+(1—-s)p t=1+a".
]

Example 29.4. By the Riesz Thorin interpolation theorem we conclude that F :
LP — L7 is bounded for all p € [1,2] where ¢ = p* is the conjugate exponent to p.
Indeed, in the notation of the Riesz Thorin interpolation theorem F : LPs — L% is
bounded where

1 1—5+s dl 1—s s s
_——= — an _— = _——= -
Ps 1 2 s o 2 2’
i.e.
1 1 S S
—t+—=1- -—+==1
P R

See Theorem 20.11.
For the next application we will need the following general duality argument.

Lemma 29.5. Suppose that (X, M, u) and (Y,N,v) are o— finite measure spaces
and T : L*(p) — L%(v) is a bounded operator. If there exists p,q € [1,00] and a
constant C' < oo such that

ITgll, < Cligll, for all g € LP(u) N L (1)
then
1T f

where T* is the L? — adjoint of T and p* and q* are the conjugate exponents to p
and q.

o SCfllge forall f € LT (v) N L2(v),
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Proof. Suppose that f € L% (v) N L?(v), then by the reverse Holder inequality
17, = sup {(T" £, 9)| - g € L7() 0 L2 () with lg]l, =1}
—sup {|(/,T)| : g € L"(1) N L2(s) with | g, =1}

< 11fl,- sup { Tl + 9 € 7)1 12() with [lg], =1}
<clf

qr
|

Lemma 29.6. Suppose that K = {ky,, > 0}° | is a symmetric matriz such that

oo oo
(29.4) M :=sup Z kyn = sup Z Kmn < 00
mop=1 " m=1
and define Ka by (Ka),, =Y, kmnan when the sum converges. Given p € [1, 0]
and p* be the conjugate exponent, then K : £, — £, is bounded ||K||pHp* < M.
Proof. Let Ay, =307 kmn = Y peq knm. For a € 4,
P P
k’m’n
(zn: kmn |af’n|> - (Am - Am |a'n|>
kmn —
(29.5) <Ay - lan|” < M7 " Eonn lan|”
and hence
P
> (Z - |an|> SMPY D i fanl” = MUY DSk an]?
< M|l

which shows K : £, — £, with ||K{|,_,, < M. Moreover from Eq. (29.5) we see that
SUP Y K |an| < M |fal],

which shows that K : £, — {5 is bounded with || K], < M for all p and in

particular for p = 1. By duality it follows that || K|, < M as well. This is easy
to check directly as well.
Let po =1 = q1 and p; = o0 = g so that
pil=1—-s)1" +s00 ' =(1—-s)andg;' = (1 —s)oo ' +s17! =5
so that g, = p%. Applying the Riesz-Thorin interpolation theorem shows

||K = ||K Ps—(qs S M

Ps—P;
]
The following lemma only uses the case p = 2 which we proved without interpo-
lation.

Lemma 29.7. Suppose that {u,} is a sequence in a Hilbert space H, such that: 1)
>, lunl? < oo and 2) there exists constants kpn = knm > 0 satisfying Eq. (29.4)
and

[(Wrmy Un )| < Emn|tn||tm| for all m and n.
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Then v =7, u, exists and

(29.6) > < MY fun|*.

Proof. Let us begin by assuming that only a finite number of the {u,} are
non-zero. The key point is to prove Eq. (29.6). In this case

|'U|2 = Z(un,um) < Zk}mn\un\|um| =Ka-a
m,n

m,n

where a,, = |u,,|. Now by the above remarks

Ka-a§M|a\2:MZa$L=MZ|Un|27

which establishes Eq. (29.6) in this case.
For M < N, let vpr,nv = ZTJL M Un, then by what we have just proved

N
|UM,N|2 <M Z lun|®> — 0 as M, N — oo.
n=M
This shows that v = )" u, exists. Moreover we have

N %0
oL <MD funP <MY Jun
n=1 n=1

Letting N — oo in this last equation shows that Eq. (29.6) holds in general. m
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30. ELEMENTARY DISTRIBUTION THEORY

Author Friedlander, F. G. (Friedrich Gerard), 1917-

Title Introduction to the theory of distributions

Published Cambridge ; New York : Cambridge University Press, 1998
Edition 2nd ed. / F.G. Friedlander, with additional material by M. Joshi
LOCATION CALL NUMBER STATUS

S&E Stacks QA324 .F74 1998

30.1. Distributions on U C, R". Let U be an open subset of R” and
(30.1) CX(U) =UgecvC™(K)
denote the set of smooth functions on U with compact support in U.

Definition 30.1. A sequence {¢y},-, C D(U) converges to ¢ € D(U), iff there is
a compact set K CC U such that supp(¢x) C K for all k and ¢ — ¢ in C*°(K).

Definition 30.2 (Distributions on U C, R™). A generalized function T on U C,
R™ is a continuous linear functional on D(U), i.e. T : D(U) — C is linear and
lim,, 00 (T, ¢i) = 0 for all {¢} C D(U) such that ¢ — 0 in D(U). We denote the
space of generalized functions by D'(U).

Proposition 30.3. Let T : D(U) — C be a linear functional. Then T € D'(U) iff
for all K C”C U, there exist n € N and C < 0o such that

(30.2) T(¢)| < Cpn(@) for all ¢ € CF(K).

Proof. Suppose that {¢y} C D(U) such that ¢, — 0 in D(U). Let K be a
compact set such that supp(¢y) C K for all k. Since limg_, o0 pp(é1) = 0, it follows
that if Eq. (30.2) holds that lim,, o (T, ¢x) = 0. Conversely, suppose that there is
a compact set K CC U such that for no choice of n € N and C' < oo, Eq. (30.2)
holds. Then we may choose non-zero ¢,, € C*°(K) such that

|T(60)| > npp(py,) for all n.

Let ¢, = m(bn € C*(K), then p,(¢p,) = 1/n — 0 as n — oo which shows
that 1, — 0 in D(U). On the other hence |T'(¢,,)| > 1 so that lim, (T, ¥,) # 0.

Alternate Proof:The definition of 7" being continuous is equivalent to 7| e (k)
being sequentially continuous for all X CC U. Since C*°(K) is a metric space,
sequential continuity and continuity are the same thing. Hence T is continuous iff

Tk is continuous for all K CC U. Now T'|¢ee (k) is continuous iff a bound like
Eq. (30.2) holds. m

Definition 30.4. Let Y be a topological space and T, € D'(U) for all y € Y. We
say that T, — T € D'(U) as y — yo iff

lim (T, ¢) = (T, ¢) for all ¢ € D(U).

Y—Yo
30.1.1. Ezamples of distributions and related computations.

Example 30.5. Let u be a positive Radon measure on U and f € L .(U). Define

loc

T € D'(U) by (Tf,6) = [, dfdp for all ¢ € D(U). Notice that if ¢ € C(K) then

Ty, 6)] < /U 6] dp = /K 16f1dp < Crx 6]l
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where Ck := [, |f|dp < co. Hence Ty € D'(U). Furthermore, the map
fe L, (U) =T e D'(U)

is injective. Indeed, Ty = 0 is equivalent to

(30.3) /ngSfdu 0 for all ¢ € D).

for all ¢ € C*°(K). By the dominated convergence theorem and the usual convolu-
tion argument, this is equivalent to

(30.4) /U(bfdu =0 for all ¢ € C.(U).

Now fix a compact set K CC U and ¢, € C.(U) such that ¢, — sgn(f)1x in
L (u). By replacing ¢, by x(¢,) if necessary, where

oz it 2 <1
x(z) =9 = if |z >1,

z

we may assume that |¢,| < 1. By passing to a further subsequence, we may assume
that ¢, — sgn(f)1x a.e.. Thus we have

0= lim Ugbnfdu:/Usgn(f)led/l:/K|f|dM-

This shows that |f(z)| = 0 for p -a.e. x € K. Since K is arbitrary and U is the
countable union of such compact sets K, it follows that f(z) =0 for pu -a.e. x € U.

The injectivity may also be proved slightly more directly as follows. As before,
it suffices to prove Eq. (30.4) implies that f(z) = 0 for p — a.e. z. We may
further assume that f is real by considering real and imaginary parts separately.
Let K CC U and € > 0 be given. Set A = {f > 0} N K, then p(A) < oo and hence
since all ¢ finite measure on U are Radon, there exists FF C A C V with F' compact
and V C, U such that (V' \ F') < 6. By Uryshon’s lemma, there exists ¢ € C.(V)
such that 0 < ¢ <1 and ¢ =1 on F. Then by Eq. (30.4)

0=LWW=LWW+AWMW=LWW+LWMW

so that
[ ran=|[ orau< [ fldu<e
F V\F V\F

provided that § is chosen sufficiently small by the € — § definition of absolute con-
tinuity. Similarly, it follows that

0§/fdu§/fdu—l—e§2e.
A F

Since € > 0 is arbitrary, it follows that [ 4 fdp = 0. Since K was arbitrary, we learn

that
/ fdu=0
{f>0}

which shows that f < 0 p — a.e. Similarly, one shows that f > 0 u — a.e. and hence
f=0pu—ae.
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Example 30.6. Let us now assume that = m and write (T, ¢) = [; ¢fdm. For
the moment let us also assume that U = R. Then we have

(1) hn1M—>oo TsinM$ =0
(2) limps— o0 Thr-1 sin M = T0o Where g is the point measure at 0.
(3) If f € LY(R",dm) with [,, fdm = 1 and f(z) = € "f(z/e), then
limo Tt. = do. As a special case,
consider lim, m = dp.

Definition 30.7 (Multiplication by smooth functions). Suppose that g € C*°(U)
and T € D'(U) then we define g7 € D'(U) by

(9T, ¢) = (T, g¢) for all p € D(U).
It is easily checked that g7 is continuous.

Definition 30.8 (Differentiation). For T' € D'(U) and i € {1,2,...,n} let ;T €
D'(U) be the distribution defined by

(0T, ¢) = —(T, 0;¢) for all ¢ € D(U).
Again it is easy to check that 0,7 is a distribution.

More generally if L =3, <, aa0% with aq € C*(U) for all v, then LT is the
distribution defined by B

(LT, ¢) = (T, Y (=1)!*10* (aa0)) for all ¢ € D(U).

|| <m

Hence we can talk about distributional solutions to differential equations of the
form LT = S.

Example 30.9. Suppose that f € L} and g € C*(U), then g7y = T,;. If further
fe Cl( ), then 0; Ty =Ty If fe C™(U), then LTy =Try.

Example 30.10. Suppose that a € U, then
(0i0a, ¢) = —0;p(a)
and more generally we have
<L6a7 ¢> = Z (71)|a‘8a (aa¢) (a)
la|<m

Example 30.11. Consider the distribution 7" := Tj,| for = € R, i.e. take U = R.
Then

d d?
%T TSgn(.L) and %T = 260
More generally, suppose that f is piecewise C*, the
d

Tt =Tr+ 3 (flat) = f(2-)) b
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Example 30.12. Consider T' = Tj,|;| on D(R). Then

(T, ¢) = —/Rlnm ¢ (x)dx = —liﬁ)l In|z| ¢’ (x)dx

€ |z|>e
= —lim . In || ¢'(x)dz = lim . é(ﬁ(ﬂﬂ)dw — lim [ln e(é(e) — ¢(—e))]
= lim l¢(91:)d:r.

€l0 |z|>e T

We will write TV = PV% in the future. Here is another formula for T”,

N 1 1
@ =t [ ot [ Se
. 1 1
—tim [ Sle@ o0t [ Cow

1 1

[ 2@ - ol + [ Lot
12[a| ¥ |z[>1 T

Please notice in the last example that + ¢ L} (R) so that Ty, is not well

defined. This is an example of the so called division problem of distributions. Here
is another possible interpretation of % as a distribution.

Example 30.13. Here we try to define 1/z as limy g ?1@, that is we want to

define a distribution T4 by

T =1 dx.
(T, ¢) :=1lim [ — iiycﬁ(m) x
Let us compute T explicitly,
. 1 . 1 . 1
lim —¢(z)dr = lim — p(x)dx + lim — ¢(z)dx
yl0 Jp T+ 1y Y10 Jizj<1 T + 1y Y10 Jizj>1 T + 1y
1 1
= lim - z) — ¢(0)] dx + ¢(0) lim -
T el (ORI UL Y
1
+/ —¢(z)dx
|z|>1 x
= PV/ lqS(:z:)daz: + #(0) lim ! dx
R vl0 Jig<1 @iy
Now by deforming the contour we have
1 1 1
/ —dzr = / —dz —|—/ —dz
lz|<1 T T 1Y e<lz|]<1 T+ 1Y c. 2wy
where C. : z = e’ with 6 : 7 — 0. Therefore,
1
lim —dx = lim —dx + lim —dz
910 Jizj<1 T + 1y Y10 Jec|z|<1 T+ 0Y yl0 Jo, z+1y

1 1
:/ —dx—i—/ —dz=0—m.
e<|z|<1 ¥ c. ?
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Hence we have shown that T, = PV% — imdp. Similarly, one shows that T_ =
PV% +imdg. Notice that it follows from these computations that T — T, = i27dg.
Notice that

1 1 21y

x—iy_x—l—z'y:x2+y2

7 = mdy — a result that we saw in Example

and hence we conclude that lim, o w—rf#

30.6, item 3.

Example 30.14. Suppose that p is a complex measure on R and F(x) =
(=00, z]), then Ty = p. Moreover, if f € Lj,.(R) and Tj = p, then f = F 4+ C
a.e. for some constant C.

Proof. Let ¢ € D := D(R), then

«m@w>«m@»:—/F@wmwx:;émﬁgmwwmag

R
= /R du(y) /R drg/ (z) 1<z = /R du(y)o(y) = (1, &)

by Fubini’s theorem and the fundamental theorem of calculus. If T}(- = u, then
T} = 0 and the result follows from Corollary 30.16 below.

Lemma 30.15. Suppose that T' € D'(R"™) is a distribution such that 0;T = 0 for
some i, then there exists a distribution S € D'(R"™1) such that (T, ¢) = (S, ¢;) for
all ¢ € D(R™) where

bi = /RTteingdt € D(R" ).

Proof. To simplify notation, assume that i = n and write z € R” as x = (y, 2)
with y € R"* and z € R. Let § € C(R) such that [, 60(z)dz = 1 and for

¥ € D(R"1), let ¢ @ O(x) = ¢ (y)0(z). The mapping
Y e DR ey ®0 € DR™)

is easily seen to be sequentially continuous and therefore (S, 1) := (T, 19 ®0) defined
a distribution in D’'(R™). Now suppose that ¢ € D(R"™). If ¢ = 9,,f for some
f € D(R™) we would have to have [ @(y,z)dz = 0. This is not generally true,
however the function ¢ — ¢ ® 6 does have this property. Define

f@&%=/w[wwil—&wﬂ%ﬂwﬁ

— 00

then f € D(R") and 0, f = ¢ — ¢ ® . Therefore,
0= _<8nT, f> = <Ta 8nf> = <Ta¢> - <Taé®9> = <Ta ¢> - <S7 é>

Corollary 30.16. Suppose that T € D'(R™) is a distribution such that there exists
m > 0 such that

0“T =0 for all |a| = m,

then T = T, where p(z) is a polynomial on R™ of degree less than or equal to m—1,
where by convention if deg(p) = —1 then p = 0.



534 BRUCE K. DRIVER'

Proof. The proof will be by induction on n and m. The corollary is trivially
true when m = 0 and n is arbitrary. Let n = 1 and assume the corollary holds
for m = k— 1 with & > 1. Let T € D'(R) such that 0 = 9*T = 9*~19T. By
the induction hypothesis there exists a polynomial, ¢, of degree k — 2 such that
T" =T,. Let p(x fo z)dz, then p is a polynomial of degree at most k — 1 such
that p’ = q and hence T’ T, =T So (I —T,) =0 and hence by Lemma 30.15,
T —T, =1Tc where C = (T —T,,0) and 6 is as in the proof of Lemma 30.15. This
proves the he result for n = 1.

For the general induction, suppose there exists (m,n) € N? with m > 0 and
n > 1 such that assertion in the corollary holds for pairs (m’,n’) such that either
n’ <nofn’ =nand m’ < m. Suppose that T € D'(R"™) is a distribution such that

0°T =0 for all |a] =m+ 1.

In particular this implies that 09, T = 0 for all |«| = m—1 and hence by induction
0,T = T,, where g, is a polynomial of degree at most m — 1 on R™. Let p,(z) =
foz qn(y, 2')dz" a polynomial of degree at most m on R™. The polynomial p,, satisfies,
1) 0%p, = 0if || = m and o, =0 and 2) Oppn = gn. Hence 0,,(T' — T},,) = 0 and
so by Lemma 30.15,
<T - Tpn7¢> = <Sa d_)n>

for some distribution S € D/(R*~!). If a is a multi-index such that «,, = 0 and
|a| = m, then

0= (9°T—0"T,,,¢) = {T~T,,,8%9) = (5,(0°9),.) = (5,0%¢n) = (=1)I*1(5S, 6).

and in particular by taking ¢ = ¥ ® 0, we learn that (9*S5,¢) = 0 for all ¥ €
D(R"~1). Thus by the induction hypothesis, S = T, for some polynomial (r) of
degree at most m on R"~1. Letting p(y,z) = pn(y,2) + r(y) — a polynomial of
degree at most m on R", it is easily checked that T'=1T7,. =

Example 30.17. Consider the wave equation
(0 — 0y) (O + 0p) u(t,z) = (07 — 02) u(t,z) = 0.

From this equation one learns that u(t,z) = f(x +t) + g(z — t) solves the wave
equation for f,g € C?. Suppose that f is a bounded Borel measurable function on
R and consider the function f(z +¢) as a distribution on R. We compute

(Or = 02) f(z 1), 0(x, 1)) = | fz+1)(0x — ) b, t)dwdt

R2

. f(@) [0z — ) @] (z — t, t)dzdt

d
- [ 1) (o — t.0) doi
- / F(@) [l — £,8)] == d = 0.
R

This shows that (0; — ;) f(x +t) = 0 in the distributional sense. Similarly,
(O + 0z) g(x —t) = 0 in the distributional sense. Hence u(t,x) = f(x +1t)+ g(x —1)
solves the wave equation in the distributional sense whenever f and g are bounded
Borel measurable functions on R.
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Example 30.18. Consider f(z) = In |z| for z € R? and let T' = T'. Then, pointwise
we have

2
Vin|z| = iQ and Aln|z| = —5 7236.% -0

Hence Af(x) = 0 for all z € R? except at z = 0 where it is not defined. Does this
imply that AT = 07 No, in fact AT = 27 as we shall now prove. By definition of
AT and the dominated convergence theorem,

(AT, ¢) = (T, A¢) = /R2 In |z| Ap(x)dx = 1611151 In|z| Ag(z)dz.

|z|>e
Using the divergence theorem,
/ In|z| Ap(x)dz = f/ Vin|z| - Vé(z)dx + / In |z| Vo(x) - n(x)dS(x)
|z|>€ |z|>€ o{|z|>e€}
- / Aln [z| 6(x)dz — / Vin|z| - n(z)é(z)dS ()
|| >e o{|w|>e}
# [ el (Vo) n(e) dS(a)
a{|z|>¢}
[ el (Vo) n@)dS(e) = [ Vinfal-n(@)é()dS(a),
{|x|>e€} {|z|>e€}

where n(z) is the outward pointing normal, i.e. n(z) = —% := z/ |z|. Now

§C’(lne_1)27re—>0asel0

/ In [2] (Vo(x) - n(z)) dS(x)
a{|z|>¢}

where C'is a bound on (V¢(z) - n(z)) . While

Vi . dS(zx) = ﬁ
/B{|a:|>e} nlz]-n(z)¢(@)dS (@) /8{m|>e} |z

_ 71/ (2)dS(z) — —27$(0) as € | 0.
O{lal >}

(=2)p(x)dS(x)

€
Combining these results shows
(AT, ¢) = 2m¢(0).
Exercise 30.1. Carry out a similar computation to that in Example 30.18 to show
ATy )y = —4md
where now = € R3.

Example 30.19. Let z = 2 + iy, and 0 = %(aw +1i0y). Let T =T/, then

= =1
0T = 7dy or imprecisely 8; = 70(z).
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Proof. Pointwise we have 51 = 0 so we shall work as above. We then have

(0T, 6) = —(T,8¢) = / L56(2)dm(z) = — lim léqs(z)dm(z)

el0 \z\>e
1 .
= lim ‘z‘>€3;¢( z)dm(z) — lim 0{|Z|>6};¢( 25 (m(2) + ina(2)) do(2)
. 1 1 /- 1 1
=0 8{\z\>e};¢(2)§ <|7> do(z) = 2 {]=|>¢} |Z|¢(Z)da( ?)
— i —— (2)do(2) = 76(0).

€l0 2me o{|z|>¢€}
|

30.2. Other classes of test functions. (For what follows, see Exercises 6.13 and
6.14 of Chapter 6.

Notation 30.20. Suppose that X is a vector space and {p, },, is a family of semi-
norms on X such that p, < p,y1 for all n and with the property that p,(z) = 0
for all » implies that z = 0. (We allow for p,, = po for all n in which case X is a
normed vector space.) Let 7 be the smallest topology on X such that p,(z — ) :
X — [0,00) is continuous for alln e Nand x € X. Forn € N, € X and € > 0 let
Bu(,€) = {y € X : pa(z —y) < ¢}

Proposition 30.21. The balls B := {B,(z,¢) :n €N, x € X and ¢ > 0} for a
basis for the topology 7. This topology is the same as the topology induced by the
metric d on X defined by

_ - —-n pn(x—y)
dew =2 2" T

Moreover, a sequence {xr} C X is convergent to x € X iff limy_,o d(z,z1) =
0 ff limp—oo pn(z,2k) = 0 for all n € N and {zr} C X is Cauchy in X iff
limy, ;oo d(zr, 25) = 0 4ff limy ;oo Pr (21, 1) = 0 for all n € N.

Proof. Suppose that z € B,(z,¢) N B,,(y,0) and assume with out loss of
generality that m > n. Then if p,,,(w — 2) < a, we have

pm(w y)<pm(U/—Z +pm(2_y)<a+pm(z_y)<6
a.

)
provided that o € (0,8 — pp,(z — y)) and similarly

(

)-

(
Pr(w—2) < pp(w—12) <pp(w—2)+pm(z—2) <a+pn(z—1x) <e
(

provided that a € (0, € — p,, (2 — 2)). So choosing

5= 50 (6 = pn(= — )~ (= — ).

we have shown that B,,(z,«) C By(z,€) N By, (y,d). This shows that B forms a
basis for a topology. In detail, V' C, X iff for all x € V there exists n € N and
€ > 0 such that B, (z,e) :=={y € X :pp(z —y) <e} C V.

Let 7(B) be the topology generated by B. Since|py,(z — y) — pn(x — 2)| < pp(y —
z), we see that p, (z —-) is continuous on relative to 7(B) for each z € X and n € N.
This shows that 7 C 7(B). On the other hand, since p,(z — -) is 7 — continuous, it
follows that B, (z,e) ={y € X :p,(x —y) <e} et forallz € X, e >0andn € N.
This shows that B C 7 and therefore that 7(B) C 7. Thus 7 = 7(B).
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Givenz € X and € > 0, let By(x,¢) = {y € X : d(z,y) < ¢} be ad—ball. Choose
N large so that 7 . ;27" < ¢/2. Then y € By(z, €/4) we have

N
da,y) =pn(z—y) Y 27" +e/2<27 +e/2<e

n=0

which shows that By (z,€/4) C By(x,€). Conversely, if d(z,y) < ¢, then

9—n pn(m - y) <€
1 +10n(95 - y)
which implies that
27"
(T —1y) < —— =:§
a2 —y) < 75

when 27 "¢ < 1 which shows that By, (z,d) contains By(z, €) with € and ¢ as above.
This shows that 7 and the topology generated by d are the same.
The moreover statements are now easily proved and are left to the reader. m

Exercise 30.2. Keeping the same notation as Proposition 30.21 and further assume
that {p},},cy is another family of semi-norms as in Notation 30.20. Then the
topology 7' determined by {p/,},,cy is weaker then the topology 7 determined by
{Pn}pey (e. 7 C 1) iff for every n € N there is an m € N and C' < oo such that
p//n S Cpm~

Solution. Suppose that 7/ C 7. Since 0 € {p], < 1} € 7’ C 7, there exists an
m € N and § > 0 such that {p,, <0} C {p], < 1}. So for z € X,

oz
2pm ()

which implies 6p),(x) < 2py,(x) and hence p), < Cp,, with C = 2/¢. (Actually 1/6
would do here.)

For the converse assertion, let U € 7/ and xg € U. Then there exists an n € N

and § > 0 such that {p,(zg — ) < d} CU. If m € Nand C < oo so that p}, < Cpy,
then

€ {pm < 5} C {p{n < 1}

20 € {pm(zo —+) <3/C} C {pp (0 — ) <} CU
which shows that U € 7. m

Lemma 30.22. Suppose that X and Y are vector spaces equipped with sequences
of norms {pn} and {q,} as in Notation 30.20. Then a linear map T : X — Y is
continuous if for all n € N there exists Cy, < o0 and m,, € N such that ¢,(Tx) <
Crpm, (x) for allz € X. In particular, f € X* iff | f(z)| < Cpm(z) for some C' < oo
and m € N. (We may also characterize continuity by sequential convergence since
both X and Y are melric spaces.)

Proof. Suppose that T is continuous, then {x : ¢,(Tz) < 1} is an open neigh-
borhood of 0 in X. Therefore, there exists m € N and € > 0 such that B,,(0,¢) C
{2 :¢n(Tx) <1}.So for x € X and « < 1, aex/pm(z) € B,,(0,€) and thus

(o3 1
n(—=T 1 (T —DPm
n(=2E5T3) < 1= u(T2) < o)
for all z. Letting o 1 1 shows that ¢,,(T2) < 2p,,(z) for all z € X.
Conversely, if T satisfies

an(Tz) < Cppm, (z) for all z € X
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then
Tz —Tx') = ¢, (T(xz — ")) < Cppm, (x —2') for all z,y € X.

This shows Tz’ — Tx as ' — z, i.e. that T is continuous. m

Definition 30.23. A Fréchet space is a vector space X equipped with a family
{pn} of semi-norms such that X is complete in the associated metric d.

Example 30.24. Let K CC R™ and C*(K) := {f € C(R") : supp(f) C K}.

For m € N, let
= > 10°fll

lo|<m

Then (C®(K),{pm}_,) is a Fréchet space. Moreover the derivative operators
{0k} and multiplication by smooth functions are continuous linear maps from
C>®(K) to C°(K). If p is a finite measure on K, then T'(f) := [, 0*fdu is an
element of C*°(K)* for any multi index «a.

Example 30.25. Let U C, R™ and for m € N, and a compact set K CC U let
= S 0 e = Y max |0 f(a)].
lor| <m la|<m

Choose a sequence K,,, CC U such that K,,, C K,,; C Kyy1 CC U for all m
and set g (f) = p&=(f). Then (C®(K),{pm}m_,) is a Fréchet space and the
topology in independent of the choice of sequence of compact sets K exhausting
U. Moreover the derivative operators {0y} and multiplication by smooth functions
are continuous linear maps from C*°(U) to C>°(U). If p is a finite measure with
compact support in U, then T(f) := [, 0*fdp is an element of C>(U)* for any
multi index a.

Proposition 30.26. A linear functional T on C*°(U) is continuous, i.e. T €
C>(U)* iff there exists a compact set K CC U, m € N and C < 0o such that

(T, )| < Cpy(9) for all ¢ € C(U).
Notation 30.27. Let vy(z) := (1+|z|)* (or change to v(x) = (1+|z[*)*/2 = (2)*?)
for x € R™ and s € R.

Example 30.28. Let S denote the space of functions f € C°°(R™) such that f
and all of its partial derivatives decay faster that (1 + |z|)~™ for all m > 0 as in
Definition 20.6. Define

= > 1A+ D" oo = D Mmd* F()lloc

la|<m a|]<m

then (S, {pm}) is a Fréchet space. Again the derivative operators {9} and multi-
plication by function f € P are examples of continuous linear operators on S. For
an example of an element T € §*, let u be a measure on R" such that

/ (1 + [2)~Vd]ul(z) < oo

for some N € N. Then T'(f) := [}, 0* fdu defines and element of S*.

Proposition 30.29. The Fourier transform F : § — § is a continuous linear
transformation.
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Proof. For the purposes of this proof, it will be convenient to use the semi-norms

- 3 s l-Prenol.

|| <m

This is permissible, since by Exercise 30.2 they give rise to the same topology on

S.
Let f € S and m € N, then

(L+[EP)m 0" F(&) = (L + €)™ F ((—iz) f) (€)
= FI(1 = A)" ((=iz)* £)] (§)
and therefore if we let g = (1 — A)™ ((—ix)*f) € S,

(1-+1e2)of©)| < lall = [ o)l do
1

= [ 0t oy e
9O 1+ )"

where C = fRn mdf < 00. Using the product rule repeatedly, it is not hard
to show

<C

= [+ 1Py = Ay (i)
k3 e,

|B1<2m

S kp,Q’HL-‘rTL(f)
for some constant k < co. Combining the last two displayed equations implies that
P (f) < Ckphy,p, i (f) for all f € S, and thus F is continuous. m

Proposition 30.30. The subspace C°(R™) is dense in S(R™).

Proof. Let 6 € C°(R™) such that # = 1 in a neighborhood of 0 and set
O (z) = 0(xz/m) for all m € N. We will now show for all f € S that 6,,f converges
to f in §. The main point is by the product rule,

0 (Of — @)=Y (g) 9 00,,(2)0° I (x) - f

BLla
~ @) 0% P0(x/m)0” f (x).
2 G

Since max { ||8/3 GHDO 16 < a} is bounded it then follows from the last equation that
|0 (O f — )|l = O(1/m) for all ¢ > 0 and «. That is to say 0,,f — fin S. m

Lemma 30.31 (Peetre’s Inequality). For all z,y € R™ and s € R,
(80.5) (U o+ ) < min {(L+ DL+ Jal)*, (1+ ) (1 + Jo)

that is to say vs(w +y) < vis(2)vs(y) and vs(x +y) < vs(@)vis)(y) for all s € R,
where vg(x) = (1 + |z|)® as in Notation 30.27. We also have the same results for
(), namely

(306) (o +9)" < 22 min { @) " (9)", (o) () }

llayra+1p

o0



540 BRUCE K. DRIVER'

Proof. By elementary estimates,
(I +]z+y)) <1+ [zf+ [yl < (1 +[z])(1+ |y])
and so for Eq. (30.5) holds if s > 0. Now suppose that s < 0, then
(1 +lz+y)* = @+ |21+ [y’
and letting © — x —y and y — —y in this inequality implies
(1l > (14 o+ ) (1 + Iyl
This inequality is equivalent to
(L4 |z +y)* < A+ [a))* (L +y) ™ = (L + [2])* (L + [y,
By symmetry we also have
(112 +y1)* < (14 Ja) M+ )
For the proof of Eq. (30.6
(@ +y)° =1+ [z +yl” <1+ (el +[y)* =1+ |2” + ly* +2 el y]
<1 20af 420y < 20+ )1+ ) = 2)2 ()
From this it follows that (z)~2 < 2(z + y) ~%(y)? and hence
(x+y)7? < 2(z) 7 (y)*.
So if s > 0, then
(@ +y)* <2°/%(z)*(y)°
and
(@+y)~° <29%(@) " (y)*.
]

Proposition 30.32. Suppose that f,g € S then fxg € S.
Proof. First proof. Since F(fxg) = f§ € S it follows that fxg = F1(fg) € S
as well.
For the second proof we will make use of Peetre’s inequality. We have for any
k,l € N that
vi(z) [0%(f * 9)(@)] = () [0° f * g(2)] < va() / 0% f(z =yl lg(y)| dy
< Cuno) [v-se ~ yv-aw)dy < Cuno) [ v- @)y
= CVt—k(JJ)/Vk—z(y)dy-
Choosing k =t and [ >t + n we learn that

v(@) 10%(f + g)(x)| < C / vieei(y)dy < oo

showing [|,0%(f * g)||,, < oo forallt>0and a € N". m
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30.3. Compactly supported distributions.

Definition 30.33. For a distribution 7' € D'(U) and V C,, U, we say T|y = 0 if
(T, ¢) =0 for all ¢ € D(V).

Proposition 30.34. Suppose that V := {Va},c4 is a collection of open subset of
U such that Ty, =0 for all «, then T|w = 0 where W = UyeaVa.

Proof. Let {¢n},c4 be a smooth partition of unity subordinate to V, i.e.
supp(th) C V, for all @ € A, for each point & € W there exists a neighborhood
N, C, W such that #{a € A : supp(va) N N, # 0} < 0o and 1y = > o4 Va-
Then for ¢ € D(W), we have ¢ = > . 4 ¢1o and there are only a finite number of
nonzero terms in the sum since supp(¢) is compact. Since ¢1p, € D(V,,) for all «,

(T, ) = (T, Y ¢a) = > (T, $tba) = 0.
a€cA acA
]

Definition 30.35. The support, supp(T), of a distribution T' € D’ (U) is the rela-
tively closed subset of U determined by

U\supp(T)=U{V C, U :T|y =0}.
By Proposition 30.26, supp(7’) may described as the smallest (relatively) closed set
F such that T'|g\p = 0.

Proposition 30.36. If f € L}, .(U), then supp(Ty) = esssup(f), where

esssup(f):={z e U:m{y €V : f(y) #0}}) > 0 for all neighborhoods V of x}
as in Definition 11.14.

Proof. The key point is that T¢|yy = 0 iff f =0 a.e. on V' and therefore
U\supp(Ty) =U{V Co U : fly =0 a.e.}.

On the other hand,

U\esssup(f) ={z e U:m{y e V: f(y) #0}}) =0 for some neighborhood V" of z}
=U{z € U: fly =0 a.e. for some neighborhood V" of z}
=U{VC,U: fly =0ae}

|

Definition 30.37. Let £'(U) := {T € D'(U) : supp(T’) C U is compact} — the
compactly supported distributions in D’ (U).

Lemma 30.38. Suppose that T € D'(U) and f € C(U) is a function such that
K := supp(T) Nsupp(f) is a compact subset of U. Then we may define (T, f) :=
(T,0f), where 0 € D(U) is any function such that @ =1 on a neighborhood of K.
Moreover, if K CC U is a given compact set and F CC U is a compact set such
that K C F°, then there exists m € N and C < oo such that

(30.7) (TN <C Y N0%f]
[B]<m

for all f € C°°(U) such that supp(T) Nsupp(f) C K. In particular if T € E'(U)
then T extends uniquely to a linear functional on C*(U) and there is a compact
subset F'CC U such that the estimate in Eq. (30.7) holds for all f € C>=(U).
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Proof. Suppose that 6 is another such cutoff function and let V be an open
neighborhood of K such that # = 6 = 1 on V. Setting ¢ := (9 — 5) feDU) we
see that

supp(g) C supp(f) \ V' Csupp(f) \ K = supp(f) \ supp(T’) C U \ supp(T’),

see Figure 50 below. Therefore,
0= (T,g) = (T, (0~ 0) ) = (T.00) ~ (T.0/)
which shows that (T, f) is well defined.

Suge ()

F1cURE 50. Intersecting the supports.

Moreover, if F CC U is a compact set such that K C F° and § € C°(F?) is a
function which is 1 on a neighborhood of K, we have

@ pl=Hrep =C 3 1Ol <C S 7]y

la|<m IBI<m
and this estimate holds for all f € C°°(U) such that supp(T) Nsupp(f) C K. m

Theorem 30.39. The restriction of T € C(U)* to C°(U) defines an element in
E'(U). Moreover the map

T € C®(U)* % Tlpw € E'(U)

is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given S € E'(U) and 6 € C°(U) such that § = 1 on K = supp(S) then i~1(S) =
0S, where 65 € C>*(U)* defined by

(0S,¢) = (S,00) for all ¢ € C=(U).

Proof. Suppose that T € C°(U)* then there exists a compact set K CC U,
m € N and C < oo such that

(T, é)| < Cpy,(¢) for all ¢ € CF(U)
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where pX is defined in Example 30.25. It is clear using the sequential notion of
continuity that T'|pyy is continuous on D(U), i.e. T|pwy € D'(U). Moreover, if
0 € C°(U) such that 6 = 1 on a neighborhood of K then

(T, 0¢) = (T, )] = (T, (0 — 1) §)| < Cp,((0 — 1)) =0,

which shows 8T = T. Hence supp(T') = supp(#T') C supp(f) CC U showing that
Tlpwy € E'(U). Therefore the map i is well defined and is clearly linear. I also
claim that 4 is injective because if T € C*°(U)* and i(T) = T|pw) = 0, then
(T, 6) = (6T, 6) = (T, 06) = 0 for all ¢ € C=(U).

To show i is surjective suppose that S € £'(U). By Lemma 30.38 we know that
S extends uniquely to an element S of C*°(U)* such that §|D(U) =S, ie i(S)=S5.
and K = supp(S). =

Lemma 30.40. The space E'(U) is a sequentially dense subset of D'(U).

Proof. Choose K, CC U such that K;, C K;,,1 C Kp11 T U as n — oo. Let
6, € C°(KY, ) such that 6, = 1 on K. Then for T' € D'(U), 6,T € £'(U) and

0, T — T asn—oco. B

30.4. Tempered Distributions and the Fourier Transform. The space of
tempered distributions S’ (R™) is the continuous dual to S = S(R™). A linear
functional T on S is continuous iff there exists k € N and C' < oo such that

(30.8) (T, ¢)| < Cpr(¢) :=C > [[vk0*¢|

|l <k

for all ¢ € S. Since D = D (R") is a dense subspace of S any element 7' € &’
is determined by its restriction to D. Moreover, if T € S’ it is easy to see that
T|p € D'. Conversely and element T' € D’ satisfying an estimate of the form in Eq.
(30.8) for all ¢ € D extend uniquely to an element of S’. In this way we may view
S’ as a subspace of D’.

Example 30.41. Any compactly supported distribution is tempered, i.e. £'(U) C
S'(R™) for any U C, R™.

One of the virtues of S’ is that we may extend the Fourier transform to S’. Recall
that for L' functions f and g we have the identity,

(f,9) = (f.9)-
This suggests the following definition.

Definition 30.42. The Fourier and inverse Fourier transform of a tempered dis-
tribution T € S’ are the distributions 7' = FT € S’ and TV = F~IT € S'defined
by

(T, ¢) = (T, ¢) and (T, $) = (T, ¢") for all ¢ € S.
Since F : S — S is a continuous isomorphism with inverse F~!, one easily checks

that 7 and TV are well defined elements of S and that F~1 is the inverse of F on
S’
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Example 30.43. Suppose that p is a complex measure on R"”. Then we may view
v as an element of &’ via (u, ¢) = [ ¢dp for all ¢ € S’. Then by Fubini-Tonelli,

(5:6) = (1.9) = [ dla)dno /U¢ —”fds}dum
_ / [ [ o0 <au(w)] a

which shows that f{ is the distribution associated to the continuous function
¢ — [e " tdu(x) f e~ ¢ du(x)We will somewhat abuse notation and identify the
distribution 7 with the function ¢ — [e~"®¢du(z). When du(z) = f(z)dz with

f € L', we have i = f , so the definitions are all consistent.

Corollary 30.44. Suppose that p is a complex measure such that i = 0, then p = 0.
So compler measures on R™ are uniquely determined by their Fourier transform.

Proof. If i = 0, then 4 = 0 as a distribution, i.e. [ ¢dp =0 for all ¢ € S and in
particular for all ¢ € D. By Example 30.5 this implies that p is the zero measure.
u

More generally we have the following analogous theorem for compactly supported
distributions.

Theorem 30.45. Let S € &'(R™), then S is an analytic function and S(z) =
(S(z),e~"=). Also if supp(S) CC B(0, M), then S(z) satisfies a bound of the form
’S’(z)‘ < C(]. + |Z|)meM|Imz|

for somem € N and C < co. If S € D(R"™), i.e. if S is assumed to be smooth, then
for all m € N there exists C,, < 0o such that

]S(Z)‘ < Cp(1 + |2])~meMItm ],

Proof. The function h(z) = (S(£),e"%¢) for z € C" is analytic since the map
z € C" — e7¢ € O®(¢ € R") is analytic and S is complex linear. Moreover, we
have the bound

I =[(8©), e <C Y 08¢ | L poan =C D 2% s

lo|<m loe|<m

<C Z ‘Z||a| He_i24§HOO,B(O,M) <C(1+ \Z|)meM‘Imz‘-

la|<m

If we now assume that S € D(R™), then

stz te| =| [ ste)iogre<a

z"‘S’(z)‘ =

R

[ (ieersioe =i < e [ jgesioa

showing

|24

$(2)| < Mt oe s
and therefore
(L+ =)™ ’S’(z)‘ < CeMItm=| Z 1028, < CeMitm=l,

la|<m
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So to finish the proof it suffices to show h = S in the sense of distributions®?
For this let ¢ € D, K CC R"™ be a compact set for ¢ > 0 let

Oel€) = (2m) 2 3 glw)e

xrCelm
This is a finite sum and

sup
¢eK

0" (69~ 6(0)) | = sup | 3 / g ()BT ()" gy ) da

LeK YyEeL™

< Z / sup ’y Ye W€ — aca(b(x)e_”ﬂ dz
yeezn Jyte(0,1]" LEK

By uniform continuity of z%¢(x)e~ "¢ for (¢,x) € K x R" (¢ has compact support),

() =sup sup  sup [y?g(y)e V' —xP(x)e | — Oase |0
EEK ycel™ xey+e(0,1]™

which shows

0 (98 = 9(9))| = (e
where C'is the volume of a cube in R™ which contains the support of ¢. This shows

that ¢, — ¢ in C°°(R™). Therefore,
<‘§’7 ¢> <S ¢> = 111'I1<S ¢€> = 111’11(277 7’/2 n Z ¢ ) —im-§>

rEELn

1 n(27) R N gl /¢ z)dx = (h, ).

TEEL™

sup
{eK

[
Remark 30.46. Notice that
0 8(2) = (S(w), 0%6~%) = (S(a), (—im) %) = ((~iz)"S(z), =)
and (—iz)*S(x) € &'(R™). Therefore, we find a bound of the form
aag(z)‘ < C(l + ‘Z|)m'eM|ImZ\

where C and m’ depend on «. In particular, this shows that S € P, i.e. S is
preserved under multiplication by S.

The converse of this theorem holds as well. For the moment we only have the
tools to prove the smooth converse. The general case will follow by using the notion
of convolution to regularize a distribution to reduce the question to the smooth case.

52This is most easily done using Fubini’s Theorem 31.2 for distributions proved below. This
proof goes as follows. Let 8,7 € D(R™) such that # = 1 on a neighborhood of supp(S) and n =1
on a neighborhood of supp(¢) then

(h, ¢) = (B(2), (S(€),e7™%)) = (n(2)$(x), (S(€), 0(E)e™*™%))
= (9(), (S(£), n(2)8(€)e™""%)).
We may now apply Theorem 31.2 to conclude,
(R, ¢) = (S(€), (d(2), n(@)0(E)e™%)) = (S(€), 6(€)(d(x), "™ %)) = (S(€), (¢(x),e™*""%))
= (5(6),8(&))-
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Theorem 30.47. Let S € S(R") and assume that S is an analytic function and
there exists an M < oo such that for all m € N there exists C,, < co such that

]S(Z)‘ < Cp (1 + |2])~meMIm ],

Then supp(S) C B(0, M).

Proof. By the Fourier inversion formula,
S(z) = / (&)’ de
and by deforming the contour, we may express this integral as

S(z) :/]R y S(g)ei“dg = §(§+in)ei(5+in)~md£
" in

R

for any n € R™. From this last equation it follows that

1S(z)] < e /

< OmefnweMlnl / (14 |¢)~mde < C'mefn-xeMlnl

n

S(¢ +im)|de < e [ (1 Jg o inl) g

n n

where C,, < 0o if m > n. Letting n = Az with A > 0 we learn
(30.9) |S(z)| < Cpyexp (=Alzf* + M |z]) = Crpe NI =lz])
Hence if |z| > M, we may let A — oo in Eq. (30.9) to show S(z) = 0. That is to

say supp(S) C B(0,M). m
Let us now pause to work out some specific examples of Fourier transform of
measures.

Example 30.48 (Delta Functions). Let a € R™ and d, be the point mass measure
at a, then

0a(€) = e7108,
In particular it follows that
Flemied = §,.
To see the content of this formula, let ¢ € S. Then
/ e PV (E)dE = (7, FTlg) = (F 1T, ) = (0, 6) = ()
which is precisely the Fourier inversion formula.

Example 30.49. Suppose that p(x) is a polynomial. Then

$,8) = (p.d) = / p(&)d(E)de.
Now

pQ3E) = [ op©e < do = [ o(plio,)e < da
= /p(—iam)(b(x)e_’f'xdm = F (p(—i0)9) (£)
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which combined with the previous equation implies

5.9) = [ F ((=i0)0) (©)d€ = (7' F (p(=i0)2) (0) = p(i0)o(0)
503 ( Za)¢> < (28)503 ¢>
Thus we have shown that p = p(i0)dy.

Lemma 30.50. Let p(€) be a polynomial in & € R™, L = p(—id) (a constant
coefficient partial differential operator) and T € S’, then

Fp(—id)T = pT.
In particular if T = &y, we have
Fp(—id)do =p- 0o = p
Proof. By definition,
(FLT,¢) = (LT, ) = (p(=id)T, ) = (T, p(i0)$)
and
pi0)3(6) = p(ide) [ dl)e "o = [ pla)oereda = (po) "
Thus R R R
(FLT, ¢) = (T, p(i0)¢) = (T, (p9) ") = (T, pg) = (pT', $)
which proves the lemma. m
Example 30.51. Let n =1, —o0 < a < b < oo, and du(x) = 1[4 )(z)dz. Then
1 e—iw{ b 1 e—ib~§ _ e—iuf

b
H(E) = —1TE g —
(€) _/a e dx = J2r —i€ o = NG —if

1 efiaf _ efib-g

B V2T i€
So by the inversion formula we may conclude that
1 efza{ _ efib-g
30.10 Fi - z) = 1z
(30.10) (=) @ = lan@
in the sense of distributions. This also true at the Level of L2 — functions. When
a = —b and b > 0 these formula reduce to
1 eté —emibe 2 sinb¢
Fli_pp = - =
V2T 13 Vor &
and 5 b§
1 sin
s e Tl

Let us pause to work out Eq. (30.10) by first principles. For M € (0, 00) let vy
be the complex measure on R™ defined by

1 ) p—iaf _ o—ibE
Vor [§l<M i€
1 efia{ _ efib-g

V2r i§

dvn (§) = dg,

then

= lim vy in the 8’ topology.
M —oo
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Hence

1 < 1 et — e_ib'5> () = lim 7!
xr) = 1m 14
2 ’Lf M—o0 M

and
M giag _ —ibg

. . —ia _ —ibE oo . .
Since is £ — \/Lz_ﬂ%e’f" is a holomorphic function on C we may deform

the contour to any contour in C starting at —M and ending at M. Let I'j; denote
the straight line path from —M to —1 along the real axis followed by the contour
e for @ going from 7 to 27 and then followed by the straight line path from 1 to
M. Then

/ 1 e—iaé _ g=ibg elﬁwdé‘ B 1 e taé _ p—ibg elgwdf
g<m V2T oy VIT R
_ 1 eilz—a)e - eilz—b)-€ it
' V 2 Zé_
1 ei(mfa)-ﬁ _ e’i(mfb)f
_ : dm(§).

27 Jr,, i€

By the usual contour methods we find

1 e'vs 1 if y>0
dm(’f)_{o it y<0

im -
M—oco 271 T g

and therefore we have

(et lim F! 1
- - )= lim F vy(@) =1se — losy = Ligp(2).
(=) @ = Jim F () = L = oot = L)

Example 30.52. Let g; be the surface measure on the sphere S; of radius ¢ centered
at zero in R3. Then

Gu(6) = 47rtsm|§t|’f .
Indeed,
6:(§) = /t52 eiix.gda(ﬁf) =t? /S2 efim'gdo(x)

2m ™
:tQ/ e~ t@slel do (z) =t2/ d9/ d¢ sin et cos ?I¢l
52 0 0

1 .
= 27rt2/ e~ MulEl gy = 27rt2—_1 e~ itulél |Z§1_1 = 4nt? sint |¢] .
-1 —it [€] 1€
By the inversion formula, it follows that
_ysint [¢] t _
F1 =——o0 =1
g et T

where 7 is #at, the surface measure on S; normalized to have total measure one.
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Let us again pause to try to compute this inverse Fourier transform directly.

To this end, let fas (&) := Siill?f‘ Li¢j<m- By the dominated convergence theorem, it

follows that fi; — %ﬂf‘ in &', i.e. pointwise on S. Therefore,

sint |€]

sint [§] 4
F
tlgl

-1
4 e

,0) =

¢) = lim (fu, F7'¢) = lim (F~'far,¢)

and

(27‘()3/2?71]0]\4(%) _ (271_)3/2 ‘[RS Sl;l|t§||§|

/ / / sintr el cos @2 6in bdrdpdd
r=0J6 $=0 tT

tro. M . t irle| _ ,—ir|x|
/ / / sin fr L eirlalup grdudy = 271/ LU —— rdr
r=0 9 -1 r=0 t ir ||

sin tr sin r|x|dr

Ligj<are’“dg

t|a:|

[ oot el — ostr (e~ o)
_ﬂ;sinr z|) — sin(r(t — |z|)) M
_t|$|2(t+|x‘)( (r(t + [a]) (rt—z]) lr=o
_arl (sin<M (t+|z])  sin(M(t— |:c|>>

tla] 2 t+ |z t—|a]

Now make use of the fact that % — 7d(x) in one dimension to finish the proof.

30.4.1. Wave Equation. Given a distribution 7" and a test function ¢, we wish to
define T x ¢ € C*° by the formula

T () = / T(y)d(z — y)dy” = (T, 8(z — ).

As motivation for wanting to understand convolutions of distributions let us recon-
sider the wave equation in R™,

0= (07 — A) u(t,z) with
u(0,2) = f(z) and u(0,z) = g(x).
Taking the Fourier transform in the x variables gives the following equation

G4 (t, €) + €] at, € with
£(€) and @(0,£) = §(¢).

0
@0,¢)

The solution to these equations is

sin t|¢|
€]

a(t,€) = f(€) cos (t€]) + 4(&)
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and hence we should have

ult,z) = F! (f(é“) cos (1 |€]) + (¢ >Smt'5') ()

G
— Fcos (t|¢]) * f(x) +flsﬁ§'§' g (2)
i 1 sint|¢| . _,sint|¢] .
.7-" €] flz)+F —|€| g(z).

The question now is how interpret this equation. In particular what are the inverse

Fourier transforms of F~!cos (t|£]) and .7-"‘15175“5‘ Since df_lslrllgl‘ﬂ f(z) =

F~Lcos (t|€]) * f(x), it really suffices to understand F~ l%ﬂlél. This was worked
out in Example 30.51 when n = 1 where we found

(.7:_15_1 sin t.f) (x) =

(Lo4t>0 — Lz—y>0)

ERIE
3 3

™
(1w>7t - 1(12>t) = E1[7t1t] (.’If)

where in writing the last line we have assume that ¢ > 0. Therefore,

(.7-'*15 Smt§ /fw—

Therefore the solution to the one dimensional wave equation is

u(t,r) = dw/fﬂs— )dy + = [tg(x—y)dy

(Ha=t)+ fa+0)+5 [ alw—vay

T+t

(fa—t)+ e+t +5 [ oy

—t

l\.')l»—l le

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0= (07 —02) u(t,z) = (0 — 0) (01 + 0y) u(t, ).

Let U(t,z) := (0y + 0,) u(t, x), then the wave equation states (0; — 9,) U = 0 and
hence by the chain rule £U(t,z —t) = 0. So

Utz —t) = U(0,2) = g(z) + f'(z)
and replacing x by = + t in this equation shows
(O + 0z) u(t,x) = U(t,x) = gz +1) + f'(z +1).

Working similarly, we learn that

%u(t T+t)=g(z+2t) + f'(z+21)
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which upon integration implies

uw(t,r +t) =u(0,z) + /Ot {9(x +27) + f'(z + 27)} dT.

¢
:f(x)+/0 g(m+27)d7+%f(m+27)|3

l\.'JIr—l

(f(@) + f(= +2t))+/0 g(z + 27)dr.

Replacing * — x — ¢ in this equation then implies

u(t,x):%(f(x—t)+f<x+t))+/0 g(x —t +27)dr.

Finally, letting y = © — t + 27 in the last integral gives
x+t

uta) =5 (e + fa+0)+3 [ oy

r—t

as derived using the Fourier transform.
For the three dimensional case we have
d __sintl¢| _
u(t,r) = —F 1 x f(x)+F
dt [3

d _
= (tae = f(x)) + tay x g ().

s sintl¢]
g

* g ()

The question is what is p* g(x) where p is a measure. To understand the definition,
suppose first that du(z) = p(z)dz, then we should have

pg(e) = prgla) = [ glo—piple)ds = [ gla = p)duty)

Thus we expect our solution to the wave equation should be given by

ult,z) = 2 {t |, fa =ity )} w1 [ ot =)

{ /Slfmtw dw}+t/Slg(:rtw)dw

{ Slf( +tw)dw}+t/519(x+tw)dw

where dw := d&1(w). Notice the sharp propagation of speed. To understand this
suppose that f = 0 for simplicity and g has compact support near the origin, for
example think of g = do(z), the z + tw = 0 for some w iff |z| = ¢t. Hence the wave
front propagates at unit speed in a sharp way. See figure below.

We may also use this solution to solve the two dimensional wave equation using
Hadamard’s method of decent. Indeed, suppose now that f and g are function
on R? which we may view as functions on R3 which do not depend on the third
coordinate say. We now go ahead and solve the three dimensional wave equation
using Eq. (30.11) and f and g as initial conditions. It is easily seen that the solution
u(t, z,y, z) is again independent of z and hence is a solution to the two dimensional
wave equation. See figure below.

&& &I& &I

(30.11)
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F1GURE 51. The geometry of the solution to the wave equation in
three dimensions.

2D - Pievoee

FICURE 52. The geometry of the solution to the wave equation in
two dimensions.

Notice that we still have finite speed of propagation but no longer sharp prop-
agation. In fact we can work out the solution analytically as follows. Again for
simplicity assume that f = 0. Then

27 T
u(t,x,y) = %/0 d@/o d¢ sin pg((x,y) + t(sin ¢ cos 0, sin ¢ sin 6))

t

27 /2
=5 d¢9/ d¢ sin ¢g((z,y) + t(sin ¢ cos 0, sin ¢ sin §))
0 0

and letting u = sin ¢, so that du = cos ¢d¢ = /1 — u2d¢ we find

27 1
u(t,z,y) = %/0 dﬁ/o \/%ug((z,y)+ut(cos9,sin9))
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and then letting r = ut we learn,

u(t,z,y) = > /27T /0 ((x, y) + r(cos 6, sin 9))

7"2/252 [
27 t 7“
- ﬁ/ d&/ ﬁm((m,y) + r(cosf,sin6))

zw//Dt xy w|2))d m{w)

Here is a better alternative derivation of this result. We begin by using symmetry
to find

uts) =2t [ glo =)o) =2 [ gla+ 9ol

t t
where S is the portion of S; with z > 0. This sphere is parametrized by
R(u,v) = (u,v, V12 —u? — v?) with (u,v) € Dy := {(u,v) : u> + v* < ¢*} . In these
coordinates we have

Ant’da, = ‘ (—8u\/ 12 —u2 — 02, —9,V/t2 —u? — v?, 1) ) dudv

u v
= , ,1 )| dudv
’(\/L‘Q—uz—v2 V2 —u? — 02 )’

u? + v? |t]

and therefore,
u(t,z) = 2t g(x + (u,v, V12 —u? — v?2))
b 47Tt2 Sz» ) )

= isgn(t) /S+ Mdudv.

2m 12 —u? — 2

This may be written as

utt.2) = goomt) [ ST amia

as before. (I should check on the sgn(t) term.)

30.5. Appendix: Topology on C*(U). Let U be an open subset of R” and
(30.12) CX(U) =UkgecvC™®(K)

denote the set of smooth functions on U with compact support in U. Our goal is
to topologize C°(U) in a way which is compatible with he topologies defined in
Example 30.24 above. This leads us to the inductive limit topology which we now
pause to introduce.

Definition 30.53 (Indcutive Limit Topology). Let X be a set, X, C X fora € A
(A is an index set) and assume that 7, C P(X,) is a topology on X, for each .
Let i, : Xo — X denote the inclusion maps. The inductive limit topology on X
is the largest topology 7 on X such that i, is continuous for all a« € A. That is to
say, T = NaecAlax(Ta), i-e. aset U C X is open (U € 7) iff i1 (A) = AN X, €7,
for all o € A.
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Notice that C' C X is closed iff C' N X4, is closed in X,, for all a. Indeed, C' C X
is closed iff C¢ = X\ C C X is open, iff C°N X, = X, \ C is open in X, iff
XoNC =X\ (Xa\0) is closed in X, for all a € A.

Definition 30.54. Let D(U) denote C2°(U) equipped with the inductive limit
topology arising from writing C°(U) as in Eq. (30.12) and using the Fréchet
topologies on C*°(K) as defined in Example 30.24.

For each K CC U, C*(K) is a closed subset of D(U). Indeed if F' is another
compact subset of U, then C*°(K)NC*(F') = C*(KNF), which is a closed subset
of C°(F). The set U C D(U) defined by

(30.13) U=SPeDU): Y 0% =) <€

la|<m

for some ¢ € D(U) and € > 0 is an open subset of D(U). Indeed, if K CC U, then

UNC™(K)= (e C(K): Y 0% =9l <e

la| <m
is easily seen to be open in C*°(K).

Proposition 30.55. Let (X, 7) be as described in Definition 30.53 and f : X —Y
be a function where Y is another topological space. Then f is continuous iff foiy :
Xo — Y is continuous for all o € A.

Proof. Since the composition of continuous maps is continuous, it follows that
foiq: Xo — Y is continuous for all @ € A if f: X — Y is continuous. Conversely,
if f o4, is continuous for all & € A, then for all V' C, Y we have

Ta D (fo ia)il V) =i '(f*(V) = fF (V)N X, foralla € A
showing that f~1(V) e 7. m

Lemma 30.56. Let us continue the notation introduced in Definition 30.53. Sup-
pose further that there exists oy, € A such that X}, = X, T X as k — oo and for
each oo € A there exists an k € N such that X, C X}, and the inclusion map is con-
tinuous. Then T = {AC X : ANX, Co X}, for all k} and a function f : X —Y
18 continuous iﬁf|X’/c : X}, — Y is continuous for all k. In short the inductive limit
topology on X arising from the two collections of subsets {Xa} s and {X}}, oy
are the same.

Proof. Suppose that A C X, if A € 7 then ANX, = AN X,, C, X, by
definition. Now suppose that AN X; C, X, for all k. For & € A choose k such
that X, C X, then AN X, = (ANX})N Xy Co Xq since AN X, is open in X,
and by assumption that X, is continuously embedded in X}, VNX, C, X, for all
V C, X.. The characterization of continuous functions is prove similarly. m

Let Ky CC U for k € N such that K C Ky C K| C Kyy for all k and
Ki T U as k — oo. Then it follows for any K CC U, there exists an k such
that K C K C Kj. One now checks that the map C°(K) embeds continuously
into C*°(K},) and moreover, C*°(K) is a closed subset of C*°(Kj1). Therefore
we may describe D(U) as C2°(U) with the inductively limit topology coming from
UrenC > (Ky).
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Lemma 30.57. Suppose that {¢};-, C D(U), then ¢, — ¢ € D(U) iff ¢ — ¢ —
0 D).

Proof. Let ¢ € D(U) and U C D(U) be a set. We will begin by showing that
U is open in D(U) iff U — ¢ is open in D(U). To this end let K be the compact
sets described above and choose kg sufficiently large so that ¢ € C°(K}) for all
k > ko. Now U — ¢ C D(U) is open iff (U — ¢) N C°(K}) is open in C(K}) for
all k > ko. Because ¢ € C°(K}), we have (U — ) NC®(K) =UNC®(Ky) — ¢
which is open in C*°(K},) iff U N C*°(K}) is open C*°(K}). Since this is true for
all k > ko we conclude that U — ¢ is an open subset of D(U) iff U is open in D(U).

Now ¢, — ¢ in D(U) iff for all ¢ € U C, D(U), ¢i. € U for almost all k which
happens iff ¢ — ¢ € U — ¢ for almost all k. Since U — ¢ ranges over all open
neighborhoods of 0 when U ranges over the open neighborhoods of ¢, the result
follows. m

Lemma 30.58. A sequence {¢r}r., C D(U) converges to ¢ € D(U), iff there is a
compact set K CC U such that supp(¢x) C K for all k and ¢, — ¢ in C°(K).

Proof. If ¢ — ¢ in C°(K), then for any open set V C D(U) with ¢ € V we
have VN C>(K) is open in C*°(K) and hence ¢, € VNC®(K) C V for almost all
k. This shows that ¢, — ¢ € D(U).

For the converse, suppose that there exists {¢y}r..; C D(U) which converges to
¢ € D(U) yet there is no compact set K such that supp(¢x) C K for all k. Using
Lemma30.57, we may replace ¢ by ¢ — ¢ if necessary so that we may assume
¢r — 0 in D(U). By passing to a subsequences of {¢} and {K}} if necessary, we
may also assume there xy, € Kj11 \ K} such that ¢y (xy) # 0 for all k. Let p denote
the semi-norm on C°(U) defined by

e lp(@)] 0
p(¢) = kEZOSUP { PRESIE x € K1 \Kk} .
One then checks that

p(9) < (2 ﬁ) 16l

for ¢ € C*°(Kny1). This shows that p|ce (k) is continuous for all N and hence
p is continuous on D(U). Since p is continuous on D(U) and ¢ — 0 in D(U), it
follows that limy_.co p(¢r) = p(limg— oo ¢r) = p(0) = 0. While on the other hand,
p(¢r) > 1 by construction and hence we have arrived at a contradiction. Thus for
any convergent sequence {¢y},.; C D(U) there is a compact set K CC U such
that supp(¢x) C K for all k.

We will now show that {¢x},-, is convergent to ¢ in C°°(K). To this end let
U C D(U) be the open set described in Eq. (30.13), then ¢ € U for almost all k
and in particular, ¢y, € U N C°(K) for almost all k. (Letting € > 0 tend to zero
shows that supp(¢) C K, i.e. ¢ € C°(K).) Since sets of the form U N C>°(K) with
U as in Eq. (30.13) form a neighborhood base for the C*°(K) at ¢, we concluded
that ¢ — ¢ in C°(K). m

Definition 30.59 (Distributions on U C, R™). A generalized function on U C, R™
is a continuous linear functional on D(U). We denote the space of generalized
functions by D' (U).
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Proposition 30.60. Let f: D(U) — C be a linear functional. Then the following
are equivalent.

(1) f is continuous, i.e. f € D'(U).

(2) For all K °C U, there exist n € N and C < oo such that

)
(30.14) |f(9)] < Cpn(d) for all ¢ € C(K).
(3) For all sequences {¢r} C D(U) such that ¢, — 0 in D(U), limg o0 f(¢r) =

Proof. 1) <= 2). If f is continuous, then by definition of the inductive limit
topology f|ce (k) is continuous. Hence an estimate of the type in Eq. (30.14) must
hold. Conversely if estimates of the type in Eq. (30.14) hold for all compact sets
K, then f|oe(x is continuous for all K CC U and again by the definition of the
inductive limit topologies, f is continuous on D’ (U).

1) <= 3) By Lemma 30.58, the assertion in item 3. is equivalent to saying that
fle= (k) is sequentially continuous for all K CC U. Since the topology on C*°(K)
is first countable (being a metric topology), sequential continuity and continuity
are the same think. Hence item 3. is equivalent to the assertion that f \Coo( K) 18
continuous for all K CC U which is equivalent to the assertion that f is continuous
onD'(U). m

Proposition 30.61. The maps (A, ¢) € Cx D(U) — Ao € DU) and (¢,9) €
DU) x DU) — ¢+ € D(U) are continuous. (Actually, I will have to look up
how to decide to this.) What is obvious is that all of these operations are sequentially
continuous, which is enough for our purposes.
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31. CONVOLUTIONS INVOLVING DISTRIBUTIONS

31.1. Tensor Product of Distributions. Let X C, R and Y Cc, R™ and S €
D'(X)and T € D'(Y). We wish to define S®T € D'(X xY). Informally, we should
have

(S®T,0) = / S(@)T () (x, y)dudy

— /: XC;;S(@«) /Y dyT (y)p(x,y) = /Y dyT (y) /X dzS(x)¢(z,y).

Of course we should interpret this last equation as follows,

(31.1) (S®T,¢) = (S(x), (T'(y), d(x,9))) = (T(y), (S(x), ¢z, y)))-

This formula takes on particularly simple form when ¢ = u® v with « € D(X) and
v € D(Y) in which case

(31.2) (ST, u@v) = (S, u)(T,v).

We begin with the following smooth version of the Weierstrass approximation the-
orem which will be used to show Eq. (31.2) uniquely determines S ® T.

Theorem 31.1 (Density Theorem). Suppose that X C, R™ and Y C, R™, then
D(X)®D(Y) is dense in D(X x Y).

Proof. First let us consider the special case where X = (0,1)" and Y = (0,1)™
so that X x Y = (0, 1)™*™. To simplify notation, let m-+n = k and Q = (0, 1)* and
7; :  — (0, 1) be projection onto the it" factor of Q. Suppose that ¢ € C°() and
K = supp(¢). We will view ¢ € C2°(R¥) by setting ¢ = 0 outside of €. Since K is
compact m;(K) C [a;, b;] for some 0 < a; < b; < 1. Let a = min{a; : i =1,...,k}
and b =max {b; :i=1,...,k}. Then supp(¢) = K C [a,b]* C Q.

As in the proof of the Weierstrass approximation theorem, let ¢, (t) = ¢, (1 —
t%)"1j5<1 where ¢, is chosen so that [, ¢n(t)dt = 1. Also set Q,, = ¢, ®@ -+ ® ¢y,

ie. Qn(z) = Hle qn(x;) for © € R*. Let

(1 - (mi - yi)2)nl|ri*yi\§1dyi~
1

3L fula) = Qurol) =k [ 60

k
By standard arguments, we know that 0%f, — 0%¢ uniformly on R* as n — oo.
Moreover for x € Q, it follows from Eq. (31.3) that

k
@)= [ o) [10 = o =)y = pa(a)

where p,(x) is a polynomial in z. Notice that p,, € C*°((0,1))®---® C*((0,1)) so
that we are almost there.”® We need only cutoff these functions so that they have

530ne could also construct fn€C™ (R)®* such that 8% f, — 8% f uniformlly as n — oo using
Fourier series. To this end, let ¢ be the 1 — periodic extension of ¢ to R¥. Then ¢ € C}'?Sriodic (R*)
and hence it may be written as
Ha)= Y ememm
mezZk
where the {cm, : m € ZF) are the Fourier coefficients of ¢ which decay faster that (1 + |m|)~" for
any I > 0. Thus fn(z) := ZmeZk:|m\§n cmei2mme ¢ 0oo(R)®F and §° f,, — 9%¢ unifromly on

Q as n — oo.



558 BRUCE K. DRIVER'

compact support. To this end, let § € C2°((0,1)) be a function such that § =1 on
a neighborhood of [a, b] and define

)
I claim now that ¢, — ¢ in D(Q2). Certainly by construction supp(¢,) C
[a,b]k CC Q for all n. Also

(31.4) 0%(¢—0n) =0 - (0© - ©0)fu) = (0©---®0) (06— 0"fu) + Rn

where R,, is a sum of terms of the form 6° (0 ® --- ® 0) - 37 f,, with 3 # 0. Since
0@ - ®0)=0on [a,b]* and 97 f, converges uniformly to zero on R* \ [a, b]¥,
it follows that R,, — 0 uniformly as n — oo. Combining this with Eq. (31.4) and
the fact that 9 f,, — 9@ uniformly on R¥ as n — oo, we see that ¢,, — ¢ in D(Q).
This finishes the proof in the case X = (0,1)” and Y = (0,1)™.

For the general case, let K = supp(¢) CC X X Y and Ky = m(K) CC X and
Ky = mo(K) CC Y where m; and m are projections from X x Y to X and YV
respectively. Then K T K; x Ky CC X x Y. Let {V;}{_, and {Uj}s‘:l be finite
covers of K and Kj respectively by open sets V; = (a;,b;) and U; = (¢j,d;) with
ai,b; € X and ¢;,d; € Y. Also let a; € C°(V;) for i =1,...,a and §; € C(U;)
for 5 = 1,...,b be functions such that Zz:l a; =1ona nelghborhood of K7 and
22:1 B; = 1 on a neighborhood of K. Then ¢ = > ¢, Z?’:l (a; ® B;) ¢ and by
what we have just proved (after scaling and translating) each term in this sum,
(v ® B;) ¢, may be written as a limit of elements in D(X) ®D(Y') in the D(X xY)
topology. m

Theorem 31.2 (Distribution-Fubini-Theorem). Let S € D'(X), T € D'(Y),
h(z) == (T(y),¢(z,y)) and g(y) = (S(z),¢(z,y)). Then h = hy € D(X),
g = g5 € D(Y), 9h(z) = (T(y),020(x,y)) and Pg(y) = (S(x), L o(x,y)) for
all multi-indices o and 3. Moreover

(31.5) (S(2), (T(y), ¢(x,y))) = (5, h) = (T, 9) = (T(y), (S(x), ¢(x, y)))-

We denote this common value by (S ® T, ¢) and call S QT the tensor product of S
and T. This distribution is uniquely determined by its values on D(X) @ D(Y) and
for u e D(X) and v € D(Y') we have

(ST, u®v) = (S, u)(T,v).

Proof. Let K = supp(¢) CC X x Y and K; = m(K) and K3 = m2(K). Then
KicCcXand KhcCYand K C Ky x Kb C X xY. If x € X and y ¢ Ko, then
¢(x,y) = 0 and more generally 0%¢(z,y) = 0 so that {y: 0%d(z,y) # 0} C K.
Thus for all x € X, supp(0%¢p(z,-)) C Ky C Y. By the fundamental theorem of
calculus,

(31.6) aﬁgb(x—kv y) — 85¢ (x,y) / 318%5 (x 4+ Tv,y)dr
and therefore
1
1656z +v,) — Bo(z, )| < Jo] /O V.08 + v, || _ dr

< |v| Hvxagqsum —Qasv—0.
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This shows that z € X — ¢(x,) € D(Y) is continuous. Thus h is continuous being
the composition of continuous functions. Letting v = te; in Eq. (31.6) we find

Oyd(z +teiy) = Ojd(x,y) 9 1o 9
y ’ y I 16} — a8 ) __Z 9B
t 0500 = [ - 0fota+ ries) - - 0fo(an)] dr

1
</
0
o0

which tends to zero as t — 0. Thus we have checked that

ai/?( ) =D'(Y)-lim o tte) — @)

t—0 t

and hence
fd(x +tei) —Ofdla.) 0
t

oo(a,) - 050(e + rtes) = g-0jote. )| ar

(9315 v

and therefore,
h(z +te;) —h(z)
t

Pz +tei,-) — o, ) 9
t > - <Ta 8_¢(xa )>

as t — 0 showing 0;h(z) exists and is given by (T uu 9_4(x,-)). By what we

have proved above, it follows that dih(z) = (T, 5 - 9_4(z,-)) is continuous in
z. By induction on |«|, it follows that 0%h(x) exists and is continuous and
0%h(z) = (T(y),0%¢(x,y)) for all a. Now if x ¢ K4, then ¢(x, ) = 0 showing that
{r € X :h(z) #0} C K; and hence supp(h) C K; CC X. Thus h has compact
support. This proves all of the assertions made about k. The assertions pertaining
to the function g are prove analogously.

Let (T', ¢) = (S(x), (T'(y), #(x,y))) = (S, hy) for $ € D(X xY'). Then I is clearly
linear and we have

(L, 0) = 1S, k)l < C Y 1105 hollo i, =C D INT (W), 020C, )l e,

la|<m la|<m

which combined with the estimate

(T(y), 02 6(,y) < C Y (0702 6(x. )|,
[BI<p
shows
N<C D > 07020 g sy,
la]<m |B|<p

So T is continuous, i.e. I' € D'(X x Y), i.e
¢ € D(X xY) = (S(x), (T(y), o(x,9)))

defines a distribution. Similarly,

¢ € D(X xY) = (T(y), (5(x), p(z,9)))

also defines a distribution and since both of these distributions agree on the dense
subspace D(X) ® D(Y), it follows they are equal. ®

Theorem 31.3. If (T, ¢) is a distribution test function pair satisfying one of the
following three conditions

(1) T € &'(R™) and ¢ € C(R™)

(2) T € D'(R™) and ¢ € D(R™) or

(3) T € S'(R™) and ¢ € S(R™),
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let
(31.7) T s o(z) = © / T(y)d(z — y)dy” = (T, d(x — )).

Then T x ¢ € C®R"™), 94T x ¢) = (0°T % ¢) = (T x 0%p) for all a and
supp(T * ¢) C supp(T") + supp(¢). Moreover if (3) holds then T x ¢ € P — the space
of smooth functions with slow decrease.

Proof. T will supply the proof for case (3) since the other cases are similar and
easier. Let h(z) := T * ¢(x). Since T € S'(R™), there exists m € N and C < o0
such that |(T, )| < Cpp(¢) for all ¢ € S, where p,, is defined in Example 30.28.
Therefore,

Ih(z) = h(y)| = (T, dp(z — ) — d(y — )| < Cpm(d(z — ) — dy — )
=C Y Num(0%¢(x =) — 0%y — )| o -

la|<m

Let ¢ := 0%¢, then

1
(318) Wz —2) — Py —2) = / Vo + (- y) — 2) - (¢ — y)dr

and hence

1
|¢<x—z>—w<y—z>|s|x—y|-/0 Veply + (@ — y) — 2)|dr

1
<Clx —y\/ poy(y+7(x—y) — 2)dr
0
for any M < oo. By Peetre’s inequality,

p-m(y+7(@—y) —2) < p-m(2)pm(y +7(T —y))
so that

1
0%¢(z — 2) — 0%P(y — 2)| < C'lz — y[ p—m(2) /O pum (y + 7(x —y))dr
(31.9) < C(z,y) |z =yl p-m(2)

where C(z,y) is a continuous function of (z,y). Putting all of this together we see
that ~

[h(z) = h(y)| < C(z,y) [z —y[ — 0 as z —y,
showing h is continuous. Let us now compute a partial derivative of h. Suppose
that v € R™ is a fixed vector, then by Eq. (31.8),

Pz +tv—2)—d(x—2)
t

1
— oz —2) = /0 Vo(z + mtv — 2) - vd1 — Oyp(z — 2)

1
= / [0vd(z + Ttv — 2) — Oy P(x — 2)] dT.
0
This then implies
aa{qb(x—l-tv—z)—gb(x—z)

t — Dyl — z)}‘ _ ‘/01 0% Byl + Tt — 2) — Byd(z — 2)] dr

1
< / |02 [Ovo(z + Ttv — 2) — Oy Pz — 2)]| dT.
0
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But by the same argument as above, it follows that
|02 [0p@(z + Ttv — 2) — Oz — 2)]| < C(x + Ttv, x) |Ttv| p_pr(2)
and thus

ag{qb(:c—l—tv—zt)—qb(m—z)

— Ovp(z — z)}‘ <tpu_nm(z) /01 Clx+7tv, z)rdr |v| p—ps (2).

Putting this all together shows
o rt+itv—2z)—@x —=z
e {# )= da—2)

t
That is to say
continuous on S, we learn

— Oyp(x — z)}” =0(t) —0ast— 0.
w — Oyd(x — ) in S as t — 0. Hence since T is

plettv—-)—ox—")
t

0, (1'+ 6) () = Bu(T. 6l — ) = liny (T, )
= <Ta 3U¢($ - )> =T x av¢(x)

By the first part of the proof, we know that 9, (T * ¢) is continuous and hence by
induction it now follows that T x ¢ is C*° and 0“T * ¢ = T x 0%¢. Since

T+ 0%(x) = (T(2),(0%¢) (x — 2)) = (=1)"(T'(2), 07 ¢(x — 2))
= (07T (2),¢(x — 2)) = 0°T = §(x)
the proof is complete except for showing T x ¢ € P.

For the last statement, it suffices to prove |T * ¢(z)| < Cups(z) for some C < o0
and M < co. This goes as follows

Ih(2)] = (T, ¢z — )| < Cpm(dle =) =C Y [ (8d(z =)
ja<m
and using Peetre’s inequality, |0%¢(x — 2)| < Cpu_m(x — 2) < Clu—pm(2)pm(x) so
that
1m (0% D2 = )|l < Cpim ().
Thus it follows that |1 x ¢(x)| < Cpy,(x) for some C < oco.
If z € R™\ (supp(T) + supp(¢)) and y € supp(¢) then x —y ¢ supp(T) for
otherwise © = & — y +y € supp(T’) + supp(¢). Thus
supp(¢(z —-)) = & — supp(¢) C R™ \ supp(T)

and hence h(z) = (T,¢(z —-)) = 0 for all x € R™ \ (supp(T') + supp(¢)). This
implies that {h # 0} C supp(T’) + supp(¢) and hence

supp(h) = {h # 0} C supp(7T’) + supp(¢).

]
As we have seen in the previous theorem, 1" * ¢ is a smooth function and hence
may be used to define a distribution in D'(R™) by

(T % 6,9) = / T s $(ay(a)dz = / (T, ola — ))(a)d.

Using the linearity of T we might expect that

/ (T, 6(z — Yb(z)de = (T, / oz — Yo(x)dx)
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or equivalently that

(31.10) (T*¢,4) = (T, ¢ x1)
where ¢(z) := ¢(—z).

Theorem 31.4. Suppose that if (T, $) is a distribution test function pair satisfy-
ing one the three condition in Theorem 31.3, then T x ¢ as a distribution may be
characterized by

(31.11) (T * ¢,9) = (T, ¢ %)

for all ¢ € D(R™). Moreover, if T € 8’ and ¢ € S then Eq. (31.11) holds for all
P eS.

Proof. Let us first assume that T € D’ and ¢,9 € D and 6 € D be a function
such that # = 1 on a neighborhood of the support of ). Then

T60) = [ (Tl = Dolo)de = (0(a). (T(). 6~ )
= (0()0(a), (T(w), 6l — ) = ($(@), 0T (), 6 — )
= (9(2), (T(),6)5( — ).

Now the function, 6(z)¢(x — y) € D(R™ x R™), so we may apply Fubini’s theorem
for distributions to conclude that

(T * ¢,9) = ((), (T'(y),0(z)p(x — y)))
= (T(y), (0(x)(x), p(x — y)))
= (T(y),v * d(y)) = (T, 1 * )

= (T(y), (¥(),0(x)p(x — y)))
(T(y), (¥(2), ¢(x = y)))

as claimed.
IfT €&, let o € D(R™) be a function such that o = 1 on a neighborhood of
supp(7'), then working as above,

(T'x ¢,9) = (P(), (T(y), 0(x)p(z —y))) = ((x), (T(y), a(y)b(x)d(z —y)))

and since a(y)f(z)d(x —y) € D(R™ x R™) we may apply Fubini’s theorem for
distributions to conclude again that

(T'x ¢,9) = (T(y), (¥(2), a(y)0(z)d(x — y)))
= (a@)T(y), (0(x)(x), o(z = y)))
= (T(y), (@), d(z —y))) = (T ¢ = §).

Now suppose that T € &’ and ¢, € S. Let ¢,,,1%, € D be a sequences such that
¢n, — ¢ and Y, — 1 in S, then using arguments similar to those in the proof of
Theorem 31.3, one shows

[ ]

Theorem 31.5. Let U C, R", then D(U) is sequentially dense in E'(U). When
U = R"™ we have &' (R™) is a dense subspace of S'(R™) C D'(R™). Hence we have
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the following inclusions,
D) c&(U)cD(U),
D(R™) C &'(R™) c S'(R™) C D'(R™) and
D(R") c S(R") c S'(R™) c D'(R")
with all inclusions being dense in the next space up.

Proof. The key point is to show D(U) is dense in £'(U). Choose 6 € C°(R™)
such that supp(#) C B(0,1), 6 = 6 and [6(z)dz = 1. Let 0,,,(z) = m ™ "0(mz)
so that supp(f,,) C B(0,1/m). An element in T € £'(U) may be viewed as an
element in £'(R™) in a natural way. Namely if x € C°(U) such that y = 1
on a neighborhood of supp(T), and ¢ € C>°(R"), let (T,¢) = (T, x¢). Define
T = T % O, Tt is easily seen that supp(7,) C supp(T) + B(0,1/m) C U for all m

sufficiently large. Hence T, € D(U) for large enough m. Moreover, if ¢ € D(U),
then

<Trna ¢> = <T * H'rnv ¢> = <Ta Gm * ¢> = <T7 em * ’¢> - <T7 ¢>
since 0,, x¢) — ¢ in D(U) by standard arguments. If U =R, T € £'(R™) C §'(R™)
and ¢ € S, the same argument goes through to show (T,,, %) — (T, ) provided

we show 60, * ¢» — 1 in S(R™) as m — oo. This latter is proved by showing for all
aandt>0,1

HMt (aaem * ¢ - aaw)”oo —0asm— o0,

which is a consequence of the estimates:
0% * p(x) — 0%P(2)] = |Om * 0% (x) — O%()]
‘ [ bnt) 00t =)~ 0*0(@)) dy

< sup [0%(z—y) - 0°U(@)| < ~ sup [VOU(z — )|

ly|<1/m M jy|<1/m

1 1
—C sup pi(z—y) < =Cpu(r—y) sup pu(y)
Mo y|<1/m m ly|<1/m

%C’ (1+ mfl)t,u_t(x).

IN

IN

Definition 31.6 (Convolution of Distributions). Suppose that '€ D’ and S € &',
then define T'x S € D' by

(T'*5,0) =(T'®S, 1)

where ¢ (z,y) = ¢(z + y) for all z,y € R™. More generally we may define T" x S
for any two distributions having the property that supp(T ® S) N supp(¢4) =
[supp(T") x supp(S)] Nsupp(¢+) is compact for all ¢ € D.

Proposition 31.7. Suppose that T € D’ and S € £’ then T * S is well defined and

(31.12) (T'x 5, ¢) = (T'(x), (S(y), oz +y))) = (S(y), (T(x), d(x + y)))-

Moreover, if T € S’ then TS € S’ and F(T % S) = ST. Recall from Remark 30.46
that S € P so that ST € S'.
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Proof. Let § € D be a function such that § = 1 on a neighborhood of supp(5),
then by Fubini’s theorem for distributions,
(T®S,¢4) =(T@S(x,y),0(y)o(x +y)) = (T(x)S(y), 0(y)o(x +y))
= (T'(x),(S(),0(y)o(z +y))) = (T'(x), (S(y), ¢(z + y)))
and
(T®S,¢4) =(T(x)S(y), 0(y)o(z +y)) = (Sy), ;
=(S), 0(W)(T'(x),p(z +y))) = (S(y), (T'(x), p(z +y)))
proving Eq. (31.12).
Suppose that T' € S’, then

(T xS, 6)| = {T(2),(S(y), oz + 9N < C D 1m0z (SW), d( + )l

o] <m
=C > m{S®),0%6(- + )l
|| <m
and
(S(),0%6(x +y))| < C > sup [0°0“¢(x + )| < Cpmyp(d) SUP pim—p(z +y)
18l<p YK yeK
< CPimtp(9) ti—m—p(@) SEII; tmtp(y) = éﬂ—m—p(x)pm+p(¢)-
y

Combining the last two displayed equations shows

(T %S, ¢)| < Cpmip(®)
which shows that T+ S € §’. We still should check that

(T'x 5, 0) = (T(x), (S(y), oz +y))) = (S(y), (T(x), ¢z +y)))

still holds for all ¢ € S. This is a matter of showing that all of the expressions
are continuous in § when restricted to D. Explicitly, let ¢, € D be a sequence of
functions such that ¢,, — ¢ in S, then

(31.13) (T S,¢) = lim (T'+ 5, ¢n) = lim (T(x), (S(y), pn(z +y)))
and
(31.14) (T'+5,¢) = lim (T'* 5, ¢,) = lim (S(y), (T (z), on(z +y)))-

So it suffices to show the map ¢ € S — (S(y),¢(- + y)) € S is continuous and
oS — (T(x),p(x+-)) € C®°R"™) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to the
reader. Given these continuity assertions, we may pass to the limits in Eq. (31.13d
(31.14) to learn

(T'x 5, 0) = (T'(x), (S(y), ¢z +y))) = (S(y), (T(x), ¢(x +y)))

still holds for all ¢ € S. o
The last and most important point is to show F(T x S) = ST. Using

bz +y) = s P e g = [ g(&)e Ve dE = F (¢(£)e ) (z)

R”
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and the definition of F on &’ we learn
(F(T % 8),¢) = (T % S,4) = (S(y), (T(x), o(x +))) = (S(y), (T(x), F (¢(§)e” ) (x)))
(31.15)

= (S(y), (T (&), p(&)e™"Y)).

Let # € D be a function such that # = 1 on a neighborhood of supp(S) and
assume ¢ € D for the moment. Then from Eq. (31.15) and Fubini’s theorem for
distributions we find

(F(T % 5),0) = (S(y), 0(u)(T(€), 9(E)e ™)) = {S(y),
(), (S (y), (€)8(y)e¥)) = (T
)

(), (7€), 9(€)0(y)e ™))
=(T'(¢ (€), 6(E)(S(y), e ¥))
(31.16) = (T(€),6(€)5(&)) = (S(OT(€), 6(¢)).

Since F(T xS) € 8’ and ST € &', we conclude that Eq. (31.16) holds for all ¢ € S
and hence F(T « S) = ST as was to be proved. m

31.2. Elliptic Regularity.

Theorem 31.8 (Hypoellipticity). Suppose that p(x) = E\a\<m ao &Y is a polyno-
mial on R™ and L is the constant coefficient differential operator

L=p(30) = Y auzo) = Y aa(-i)".
[ <m o <rm

Also assume there exists a distribution T € D'(R™) such that R := 0—LT € C*°(R"™)
and T'|gny\ oy € C(R™ \ {0}). Then if v € C*(U) and u € D'(U) solves Lu = v
then uw € C*°(U). In particular, all solutions u to the equation Lu = 0 are smooth.

Proof. We must show for each xy € U that u is smooth on a neighborhood of
xo. So let zp € U and 0 € D(U) such that 0 < ¢ < 1 and € = 1 on neighborhood
V of zp. Also pick @ € D(V) such that 0 < o < 1 and @ = 1 on a neighborhood of
zo. Then

Ou=20x(0u) = (LT + R) * (Qu) = (LT) * (6u) + R * (Qu)
=T« L(0u)+ Rx* (6u)
=T+ {aLl (0u)+ (1 —a)L(6u)} + R * (Qu)
=Tx{alu+ (1 —a)L(0u)} + R * (0u)
=T x(aw)+ Rx* (0u) +T +[(1 — a)L (0u)].
Since av € D(U) and T € D'(R™) it follows that R * (6u) € C*°(R™). Also since
R e C*°[R") and u € E'(U), R x (u) € C*°(R™). So to show fu, and hence u, is

smooth near zg it suffices to show T x g is smooth near xy where g := (1—a)L (6u) .
Working formally for the moment,

Txg(z) = / T(x—y)g(y)dy = /Rn\{ L T(x—y)g(y)dy

which should be smooth for  near xg since in this case © —y # 0 when g(y) # 0. To
make this precise, let § > 0 be chosen so that o =1 on a neighborhood of B(zy, d)
so that supp(g) C B(zo,0) . For ¢ € D(B(x0,6/2),

(T'xg,¢) = (T'(2), (9(y), p(x + y))) = (T\ h)
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where h(z) := (g9(y), ¢(z +y)). If |2| < 6/2
supp(¢(z + +)) = supp(¢) — x C B(z0,6/2) —x C B(zo,9)

so that h(z) = 0 and hence supp(h) C B(xo,0/2) . Hence if we let € D(B(0,5/2))
be a function such that v = 1 near 0, we have vh = 0, and thus

(T g,¢) = (T, h) = (T, h —~vh) = (1 =7)T, h) = ([(1 =7)T] * g, 9).
Since this last equation is true for all ¢ € D(B(x0,6/2)), Txg = [(1 —)T] * g
on B(zg,d/2) and this finishes the proof since [(1 —)T] *x g € C*>°(R"™) because
1-=y)TeC®R"). m

Definition 31.9. Suppose that p(x) = Zla\<m aa&” is a polynomial on R™ and L
is the constant coefficient differential operator

1 1

L — —_ e —_ a — —1 a.

PO = Y 0O = Y au(-i)
la]<m la|<m

Let 0p(L)(§) := 3 aj=m 0a8&” and call 0,(L) the principle symbol of L. The oper-

ator L is said to be elliptic provided that o,(L)(§) # 0 if £ # 0.

Theorem 31.10 (Existence of Parametrix). Suppose that L = p(30) is an elliptic
constant coefficient differential operator, then there exists a distribution T € D'(R™)
such that R :=0 — LT € C*(R") and T|gn (01 € C(R™ \ {0}).

Proof. The idea is to try to find T such that LT = 4. Taking the Fourier
transform of this equation implies that p(€)T'(¢) = 1 and hence we should try to
define T'(€) = 1/p(€£). The main problem with this definition is that p(¢) may have
zeros. However, these zeros can not occur for large £ by the ellipticity assumption.
Indeed, let g(§) := 0y, (L)(€) = Z\a|:m aa®, (&) = p(§)—q(§) = Z\a|<m a.§* and
let ¢ = min{|q(&)| : 1&| =1} < max{|q(§)|:|¢] =1} =: C. Then because |¢(-)| is a
nowhere vanishing continuous function on the compact set S := {{ € R™ : [£| = 1|},

0<c¢<C < oo. For & e R™, let € = £/|€] and notice

()] = la(&)] = M) = elé™ ~ [r(©)] = ¢ (c — L&

G
= 0. Choose 6 € D(R"™)

)>0

for all [¢| > M with M sufficiently large since limg_, o ||T£(|§,,)L|

such that # = 1 on a neighborhood of B(0, M) and let

h(f) — 1- 9(5) _ 5(5) c Coo(Rn)

p(&)  p(€)
where § =1 — 6. Since h(§) is bounded (in fact lim¢_.oo h(§) = 0), h € S'(R™) so
there exists T := F~1h € S'(R") is well defined. Moreover,
F(6—LT)=1-=p(&)h(§) =1-5(&) = 0(¢) € D(R")
which shows that

R:=6—-LT e S(R") C C(R").
So to finish the proof it suffices to show
Tla oy € C%(R"\ {0}).
To prove this recall that
F(2°T) = (i0)°T = (i9)*h.
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By the chain rule and the fact that any derivative of 8 is has compact support in
————C
B(0, M) and any derivative of l is non-zero on this set,

0%h = 5aa +7a

where 7, € D(R™). Moreover,

a% = —ii” and aja% — 9 iﬁf = _a;a;p + 2?}”5
from which it follows that
B0 ()] < Cl and |B(©)0,0| < Clel~
More generally, one shows by inductively that
(31.17) 'ﬂ(g)aa% < ¢ g~ mtleh

In particular, if & € N is given and « is chosen so that |a| + m > n + k, then
£]F 0°R(€) € LY(€) and therefore

T = F~L[(i0)*h] € CF(R™).
Hence we learn for any k£ € N, we may choose p sufficiently large so that
|z|?PT € C*(R™).
This shows that T|gn\ 10y € C°(R™\ {0}). m

Here is the induction argument that proves Eq. (31.17). Let g, := plol+19op=1
with gg = 1, then

0;0°p™" = 0; (p*'“‘*lqa) = (—]a| = 1) p~1*1"2g,0p + p~ 1171 0iqs
so that

Gote, = P*T?0,0°p7" = (= |a] = 1) ¢adip + pdiga-
It follows by induction that ¢, is a polynomial in ¢ and letting d, := deg(q,), we
have dote; < do +m — 1 with dyp = 1. Again by indunction this implies d, <
|| (m — 1). Therefore

a — o do—m(|a|+1) al(m—1)—m(|a]+1 (m+]|a
9op~! = = ar ~ €| (la+1) |€‘| I( )—m(lal+1) _ = ¢ +laf)

as claimed in Eq. (31.17).

31.3. Appendix: Old Proof of Theorem 31.4. This indeed turns out to be the
case but is a bit painful to prove. The next theorem is the key ingredient to proving
Eq. (31.10).

Theorem 31.11. Let p € D (¢ € S) dA\(y) = ¥(y)dy, and ¢ € C*(R™) (¢ € S).
For ¢ > 0 we may write R" =[] ,n(me + €Q) where Q = (0,1]". For y €
(me + €Q), let y. € me + €Q be the point closest to the origin in me + €Q. (This
will be one of the corners of the translated cube.) In this way we define a function
y € R™ — y,. € eZ™ which is constant on each cube e(m + Q). Let

(31.18) /¢ 2=y )dAy) = Y ¢z — (me))A(e(m + Q)),

meznr
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then the above sum converges in C°(R™) (S) and F. — ¢ x1p in C°(R™) (S) as
€ | 0. (In particular if ¢, € S then px € S.)

Proof. First suppose that ¢ € D the measure A has compact support and hence
the sum in Eq. (31.18) is finite and so is certainly convergent in C*°(R™). To shows
F. — ¢+ in C°(R"™), let K be a compact set and m € N. Then for |a| < m,

07, () — 9% » u(a)| = \ [t 0 - 000~ )l ixe)

(31.19) < / 1076 (x — ye) — 8°6(z — v)| [(y)]| dy

and therefore,
J0°F. = %6 bl < [ 10760 =) = 06 = )| o) dy
< swp [0°0( —ye) — 0°6( — o)l x / ()] dy.

y€supp(¢)

Since 9(y) has compact support, we may us the uniform continuity of 9%¢ on
compact sets to conclude

sup  [[076(-— ) — 99 — 9o i — 0 25 € L 0.
yEsupp(v)

This finishes the proof for ¢ € D and ¢ € C*>(R").

Now suppose that both 1 and ¢ are in S in which case the sum in Eq. (31.18) is
now an infinite sum in general so we need to check that it converges to an element
in S. For this we estimate each term in the sum. Given s,¢ > 0 and a multi-index
«, using Peetre’s inequality and simple estimates,

0%0(x — (me))A(e(m + Q)| < Cvi(z — (me)e) /( ‘o [ (y)l dy

< Cv_y(@n((m)) K / R

for some finite constants K and C. Making the change of variables y = me + ez, we
find

/ v_s(y)dy = e"/ v_s(me + €2)dz
e(m+Q) Q

< €"v_g(me).
Combining these two estimates shows

[140%¢(- — (me) )A(e(m + Q)| < Cri((me)e)e™vs(me)
< Cre(me)v_s(me)e™

= Cvp_s((me)e™
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and therefore for some (different constant C')

S o (60 — I elm+@Q)) £ S Cry(me)e

mezZ" mezn

e —

mezn  (L+e€lm])
which can be made finite by taking s > k+n as can be seen by an comparison with

the integral [ de Therefore the sum is convergent in S as claimed.

To finish the proof, we must show that F, — ¢ * % in S. From Eq. (31.19) we
still have

0°F.(2) — 8% * (z)| < / 10°6(z — ) — 80z — )| [(v)] dy.

The estimate in Eq. (31.9) gives

1
|0%¢(z — ye) — 0%¢(z — y)| < C/O M (Ye + (Y — ye))dT [y — Ye| v_nr ()
< CevfM(%)/0 v (Ye +7(y — ye))dr

< Caryi(e) [ vaulw)ir = Cavss(@on(y)

where in the last inequality we have used the fact that |y. +7(y —ye)| < |yl.
Therefore,

lvar (0% Fe(x) — %@ x )| < Ce/n var(y) [¥(y)ldy = O(e) — 0 as e — o0

because [, var(y) [1(y)| dy < oo for all M < co sincep € S. m
We are now in a position to prove Eq. (31.10). Let us state this in the form of
a theorem.

Theorem 31.12. Suppose that if (T, ) is a distribution test function pair satis-

fying one the three condition in Theorem 31.3, then T * ¢ as a distribution may be
characterized by

(31.20) (T % ¢, ) = (T, ¢ )
for all v € D(R™) and ally € S whenT € §" and ¢ € S.

Proof. Let

F.= /q{)(w—yed/\ qu:c— me)e)A(e(m + Q))

mezn
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then making use of Theorem 31.12 in all cases we find
(T, ¢+ v) = him(T F)

=lm(T(x), Y ¢z — (me))A(e(m + Q)))

€l0 mezn
=lim > (T(2), ¢((me)c = 2)A(e(m + Q)
meZ"
(31.21) =lim > (T + ¢((me)e)Ae(m + Q).
mezn

To compute this last limit, let h(z) = T % ¢(x) and let us do the hard case where
T € §&'. In this case we know that h € P, and in particular there exists k < oo and
C < oo such that ||vgh|, < co. So we have

IROECE §3<T*¢«m@aA&mr+Q»‘=

mezn

[ @) = bl driz)

< [ 1h@) = b (o) da

Now
|h(z) = h(zc)| < C (vi(z) + vi(ze)) < 20w ()

and since vy [¢| € L' we may use the dominated convergence theorem to conclude

lim =0

el

h(z)d(x) = Y (T * ¢((me))Me(m + Q)

mezm
which combined with Eq. (31.21) proves the theorem. m

Rn




