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Abstract. These are lecture notes from Math 240.
Things to do:
0) Exhibit a non-measurable null set and a non-Borel measurable Riemann

integrable function.
1) Weak convergence on metric spaces. See Durrett, Stochastic calculus,

Chapter 8 for example. Also see Stroock’s book on this point, chapter 3. See
Problems 3.1.18—3.1.20.
2) Infinite product measures using the Caratheodory extension theorem in

the general case of products of arbitrary probability spaces. See Stroock’s book
on probability from an analytic point of view.
3) Do enough on topological vector spaces to cover what is needed for the

section on distributions, this includes Banach - Steinhauss theorem and open
mapping theorem in the context of Frechet spaces. See Rudin’s functional
analysis and len’s notes.
4) Add manifolds basics including Stoke’s theorems and partitions of unity.

See file Partitn.tex in 257af94 directory. Also add facts about smooth measure
on manifolds, see the last chapter of bookall.tex for this material.
5) Also basic ODE facts, i.e. flows of vector fields
6) Put in some complex variables.
7) Bochner Integrals (See Gaussian.tex for a discussion and problems be-

low.)
8) Add in implicit function theorem proof of existence to ODE’s via Joel

Robbin’s method, see PDE notes.
9) Manifold theory including Sards theorem (See p.538 of Taylor Volume I

and references), Stokes Theorem, perhaps a little PDE on manifolds.
10) Put in more PDE stuff, especially by hilbert space methods. See file

zpde.tex in this directory.
11) Add some functional analysis, including the spectral theorem. See

Taylor volume 2.
12) Perhaps some probability theory including stochastic integration. See

course.tex from 257af94 and other files on disk. For Kolmogorov continuity
criteria see course.tex from 257af94 as well. Also see Gaussian.tex in 289aW98
for construction of Wiener measures.
13) There are some typed notes on Partitions of unity called partitn.tex,

from PDE course and other notes from that course may be useful. For more
ODE stuff see pdenote2.tex from directory 231a-f96. These notes also contain
quadratic form notes and compact and Fredholm operator notes.
15) Move Holder spaces much earlier in the text as illustrations of com-

pactness theorems.
14) Use the proof in Loomis of Tychonoff ’s theorem, see p.11
15) Perhaps the pi-lambda theorem should go in section 4 when discussing

the generation of σ — algebras.
Major Break down thoughts:
I Real Analysis
II: Topology
III: Complex Variables
IV Distributrion Theory, PDE 1
V: Functional analysis and PDE 2. (Sobolev Spaces)
VI: Probability Theory
VII: Manifold Theory and PDE 3.
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1. Introduction

Not written as of yet. Topics to mention.

(1) A better and more general integral.
(a) Convergence Theorems
(b) Integration over diverse collection of sets. (See probability theory.)
(c) Integration relative to different weights or densities including singular

weights.
(d) Characterization of dual spaces.
(e) Completeness.

(2) Infinite dimensional Linear algebra.
(3) ODE and PDE.
(4) Harmonic and Fourier Analysis.
(5) Probability Theory

2. Limits, sums, and other basics

2.1. Set Operations. Suppose that X is a set. Let P(X) or 2X denote the power
set of X, that is elements of P(X) = 2X are subsets of A. For A ∈ 2X let

Ac = X \A = {x ∈ X : x /∈ A}
and more generally if A,B ⊂ X let

B \A = {x ∈ B : x /∈ A}.
We also define the symmetric difference of A and B by

A4B = (B \A) ∪ (A \B) .
As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 2.1. We will also write
`

α∈I Aα for ∪α∈IAα in the case that {Aα}α∈I
are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

{An i.o.} := {x ∈ X : # {n : x ∈ An} =∞} and
{An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost al-
ways.) Then x ∈ {An i.o.} iff ∀N ∈ N ∃n ≥ N 3 x ∈ An which may be written
as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff ∃ N ∈ N 3 ∀ n ≥ N, x ∈ An which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set R̄ := R∪ {±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined.

If Λ ⊂ R̄ we will let supΛ and inf Λ denote the least upper bound and greatest
lower bound of Λ respectively. We will also use the following convention, if Λ = ∅,
then sup ∅ = −∞ and inf ∅ = +∞.

Notation 2.3. Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then
lim inf

n→∞xn = lim
n→∞ inf{xk : k ≥ n} and(2.1)

lim sup
n→∞

xn = lim
n→∞ sup{xk : k ≥ n}.(2.2)

We will also write lim for lim inf and lim for lim sup .

Remark 2.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥ n},then
{ak} is an increasing sequence while {bk} is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist and

lim inf
n→∞xn = sup

n
inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n
sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

(1) lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff lim infn→∞ an =
lim supn→∞ an ∈ R̄.

(2) There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim supn→∞ an.

(3)

(2.3) lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

whenever the right side of this equation is not of the form ∞−∞.
(4) If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

(2.4) lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn,

provided the right hand side of (2.4) is not of the form 0 ·∞ or ∞ · 0.
Proof. We will only prove part 1. and leave the rest as an exercise to the reader.

We begin by noticing that

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n
so that

lim inf
n→∞ an ≤ lim sup

n→∞
an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all � > 0,
there is an integer N such that

a− � ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ �,
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i.e.
a− � ≤ ak ≤ a+ � for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a.
If lim infn→∞ an = ∞, then we know for all M ∈ (0,∞) there is an integer N

such that
M ≤ inf{ak : k ≥ N}

and hence limn→∞ an = ∞. The case where lim supn→∞ an = −∞ is handled
similarly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for every

� > 0 there exists N(�) ∈ N such that |A− an| ≤ � for all n ≥ N(�), i.e.

A− � ≤ an ≤ A+ � for all n ≥ N(�).

From this we learn that

A− � ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A+ �.

Since � > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an.
If A = ∞, then for all M > 0 there exists N(M) such that an ≥ M for all

n ≥ N(M). This show that
lim inf

n→∞ an ≥M

and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an.

The proof is similar if A = −∞ as well.

2.3. Sums of positive functions. In this and the next few sections, let X and Y
be two sets. We will write α ⊂⊂ X to denote that α is a finite subset of X.

Definition 2.6. Suppose that a : X → [0,∞] is a function and F ⊂ X is a subset,
then X

F

a =
X
x∈F

a(x) = sup

(X
x∈α

a(x) : α ⊂⊂ F

)
.

Remark 2.7. Suppose that X = N = {1, 2, 3, . . . }, thenX
N

a =
∞X
n=1

a(n) := lim
N→∞

NX
n=1

a(n).

Indeed for all N,
PN

n=1 a(n) ≤
P
N a, and thus passing to the limit we learn that
∞X
n=1

a(n) ≤
X
N

a.

Conversely, if α ⊂⊂ N, then for all N large enough so that α ⊂ {1, 2, . . . , N}, we
have

P
α a ≤

PN
n=1 a(n) which upon passing to the limit implies thatX

α

a ≤
∞X
n=1

a(n)
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and hence by taking the supremum over α we learn thatX
N

a ≤
∞X
n=1

a(n).

Remark 2.8. Suppose that
P

X a < ∞, then {x ∈ X : a(x) > 0} is at most count-
able. To see this first notice that for any � > 0, the set {x : a(x) ≥ �} must be finite
for otherwise

P
X a =∞. Thus
{x ∈ X : a(x) > 0} =

[∞
k=1{x : a(x) ≥ 1/k}

which shows that {x ∈ X : a(x) > 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that a, b : X → [0,∞] are two functions, thenX
X

(a+ b) =
X
X

a+
X
X

b andX
X

λa = λ
X
X

a

for all λ ≥ 0.
I will only prove the first assertion, the second being easy. Let α ⊂⊂ X be a

finite set, then X
α

(a+ b) =
X
α

a+
X
α

b ≤
X
X

a+
X
X

b

which after taking sups over α shows thatX
X

(a+ b) ≤
X
X

a+
X
X

b.

Similarly, if α, β ⊂⊂ X, thenX
α

a+
X
β

b ≤
X
α∪β

a+
X
α∪β

b =
X
α∪β

(a+ b) ≤
X
X

(a+ b).

Taking sups over α and β then shows thatX
X

a+
X
X

b ≤
X
X

(a+ b).

Lemma 2.10. Let X and Y be sets, R ⊂ X × Y and suppose that a : R→ R̄ is a
function. Let xR := {y ∈ Y : (x, y) ∈ R} and Ry := {x ∈ X : (x, y) ∈ R} . Then

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y) = sup
y∈Y

sup
x∈Ry

a(x, y) and

inf
(x,y)∈R

a(x, y) = inf
x∈X

inf
y∈xR

a(x, y) = inf
y∈Y

inf
x∈Ry

a(x, y).

(Recall the conventions: sup ∅ = −∞ and inf ∅ = +∞.)

Proof. Let M = sup(x,y)∈R a(x, y), Nx := supy∈xR a(x, y). Then a(x, y) ≤ M

for all (x, y) ∈ R implies Nx = supy∈xR a(x, y) ≤M and therefore that

(2.5) sup
x∈X

sup
y∈xR

a(x, y) = sup
x∈X

Nx ≤M.

Similarly for any (x, y) ∈ R,

a(x, y) ≤ Nx ≤ sup
x∈X

Nx = sup
x∈X

sup
y∈xR

a(x, y)
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and therefore

(2.6) sup
(x,y)∈R

a(x, y) ≤ sup
x∈X

sup
y∈xR

a(x, y) =M

Equations (2.5) and (2.6) show that

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y).

The assertions involving infinums are proved analogously or follow from what we
have just proved applied to the function −a.

Figure 1. The x and y — slices of a set R ⊂ X × Y.

Theorem 2.11 (Monotone Convergence Theorem for Sums). Suppose that fn :
X → [0,∞] is an increasing sequence of functions and

f(x) := lim
n→∞ fn(x) = sup

n
fn(x).

Then
lim
n→∞

X
X

fn =
X
X

f

Proof. We will give two proves. For the first proof, let Pf (X) = {A ⊂ X :
A ⊂⊂ X}. Then
lim
n→∞

X
X

fn = sup
n

X
X

fn = sup
n

sup
α∈Pf (X)

X
α

fn = sup
α∈Pf (X)

sup
n

X
α

fn

= sup
α∈Pf (X)

lim
n→∞

X
α

fn = sup
α∈Pf (X)

X
α

lim
n→∞ fn = sup

α∈Pf (X)

X
α

f =
X
X

f.

(Second Proof.) Let Sn =
P

X fn and S =
P

X f. Since fn ≤ fm ≤ f for all
n ≤ m, it follows that

Sn ≤ Sm ≤ S

which shows that limn→∞ Sn exists and is less that S, i.e.

(2.7) A := lim
n→∞

X
X

fn ≤
X
X

f.
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Noting that
P

α fn ≤
P

X fn = Sn ≤ A for all α ⊂⊂ X and in particular,X
α

fn ≤ A for all n and α ⊂⊂ X.

Letting n tend to infinity in this equation shows thatX
α

f ≤ A for all α ⊂⊂ X

and then taking the sup over all α ⊂⊂ X gives

(2.8)
X
X

f ≤ A = lim
n→∞

X
X

fn

which combined with Eq. (2.7) proves the theorem.

Lemma 2.12 (Fatou’s Lemma for Sums). Suppose that fn : X → [0,∞] is a
sequence of functions, thenX

X

lim inf
n→∞ fn ≤ lim inf

n→∞

X
X

fn.

Proof. Define gk ≡ inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k →∞. Since gk ≤ fn

for all k ≤ n, X
X

gk ≤
X
X

fn for all n ≥ k

and therefore X
X

gk ≤ lim inf
n→∞

X
X

fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findX
X

lim inf
n→∞ fn =

X
X

lim
k→∞

gk
MCT
= lim

k→∞

X
X

gk ≤ lim inf
n→∞

X
X

fn.

Remark 2.13. If A =
P

X a <∞, then for all � > 0 there exists α� ⊂⊂ X such that

A ≥
X
α

a ≥ A− �

for all α ⊂⊂ X containing α� or equivalently,

(2.9)

¯̄̄̄
¯A−X

α

a

¯̄̄̄
¯ ≤ �

for all α ⊂⊂ X containing α�. Indeed, choose α� so that
P

α�
a ≥ A− �.

2.4. Sums of complex functions.

Definition 2.14. Suppose that a : X → C is a function, we say thatX
X

a =
X
x∈X

a(x)

exists and is equal to A ∈ C, if for all � > 0 there is a finite subset α� ⊂ X such
that for all α ⊂⊂ X containing α� we have¯̄̄̄

¯A−X
α

a

¯̄̄̄
¯ ≤ �.
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The following lemma is left as an exercise to the reader.

Lemma 2.15. Suppose that a, b : X → C are two functions such that
P

X a andP
X b exist, then

P
X(a+ λb) exists for all λ ∈ C andX

X

(a+ λb) =
X
X

a+ λ
X
X

b.

Definition 2.16 (Summable). We call a function a : X → C summable ifX
X

|a| <∞.

Proposition 2.17. Let a : X → C be a function, then
P

X a exists iff
P

X |a| <∞,
i.e. iff a is summable.

Proof. If
P

X |a| <∞, then
P

X (Re a)
± <∞ and

P
X (Im a)± <∞ and hence

by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by
Lemma 2.15,

P
X a exists andX

X

a =
X
X

(Re a)+ −
X
X

(Re a)− + i

ÃX
X

(Im a)+ −
X
X

(Im a)−
!
.

Conversely, if
P

X |a| =∞ then, because |a| ≤ |Re a|+ |Im a| , we must haveX
X

|Re a| =∞ or
X
X

|Im a| =∞.

Thus it suffices to consider the case where a : X → R is a real function. Write
a = a+ − a− where

(2.10) a+(x) = max(a(x), 0) and a−(x) = max(−a(x), 0).
Then |a| = a+ + a− and

∞ =
X
X

|a| =
X
X

a+ +
X
X

a−

which shows that either
P

X a+ = ∞ or
P

X a− = ∞. Suppose, with out loss of
generality, that

P
X a+ = ∞. Let X 0 := {x ∈ X : a(x) ≥ 0}, then we know thatP

X0 a =∞ which means there are finite subsets αn ⊂ X 0 ⊂ X such that
P

αn
a ≥ n

for all n. Thus if α ⊂⊂ X is any finite set, it follows that limn→∞
P

αn∪α a = ∞,
and therefore

P
X a can not exist as a number in R.

Remark 2.18. Suppose that X = N and a : N→ C is a sequence, then it is not
necessarily true that

(2.11)
∞X
n=1

a(n) =
X
n∈N

a(n).

This is because
∞X
n=1

a(n) = lim
N→∞

NX
n=1

a(n)

depends on the ordering of the sequence a where as
P

n∈N a(n) does not. For
example, take a(n) = (−1)n/n then Pn∈N |a(n)| = ∞ i.e.

P
n∈N a(n) does not
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exist while
P∞

n=1 a(n) does exist. On the other hand, ifX
n∈N

|a(n)| =
∞X
n=1

|a(n)| <∞

then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem for Sums). Suppose that fn :
X → C is a sequence of functions on X such that f(x) = limn→∞ fn(x) ∈ C exists
for all x ∈ X. Further assume there is a dominating function g : X → [0,∞)
such that

(2.12) |fn(x)| ≤ g(x) for all x ∈ X and n ∈ N
and that g is summable. Then

(2.13) lim
n→∞

X
x∈X

fn(x) =
X
x∈X

f(x).

Proof. Notice that |f | = lim |fn| ≤ g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in the
case where f is real. By Fatou’s Lemma,X

X

(g ± f) =
X
X

lim inf
n→∞ (g ± fn) ≤ lim inf

n→∞

X
X

(g ± fn)

=
X
X

g + lim inf
n→∞

Ã
±
X
X

fn

!
.

Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,X
X

g ±
X
X

f ≤
X
X

g +

½
lim infn→∞

P
X fn

− lim supn→∞
P

X fn

and therefore
lim sup

n→∞

X
X

fn ≤
X
X

f ≤ lim inf
n→∞

X
X

fn.

This shows that lim
n→∞

P
X fnexists and is equal to

P
X f.

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that |f | ≤ g
and in particular that f is summable. Given � > 0, let α ⊂⊂ X such thatX

X\α
g ≤ �.

Then for β ⊂⊂ X such that α ⊂ β,¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄X
β

(f − fn)

¯̄̄̄
¯̄

≤
X
β

|f − fn| =
X
α

|f − fn|+
X
β\α

|f − fn|

≤
X
α

|f − fn|+ 2
X
β\α

g

≤
X
α

|f − fn|+ 2�.
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and hence that ¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ ≤X

α

|f − fn|+ 2�.

Since this last equation is true for all such β ⊂⊂ X, we learn that¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤X

α

|f − fn|+ 2�

which then implies that

lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤ lim sup

n→∞

X
α

|f − fn|+ 2�

= 2�.

Because � > 0 is arbitrary we conclude that

lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ = 0.

which is the same as Eq. (2.13).

2.5. Iterated sums. Let X and Y be two sets. The proof of the following lemma
is left to the reader.

Lemma 2.20. Suppose that a : X → C is function and F ⊂ X is a subset such
that a(x) = 0 for all x /∈ F. Show that

P
F a exists iff

P
X a exists, and if the sums

exist then X
X

a =
X
F

a.

Theorem 2.21 (Tonelli’s Theorem for Sums). Suppose that a : X × Y → [0,∞],
then X

X×Y
a =

X
X

X
Y

a =
X
Y

X
X

a.

Proof. It suffices to show, by symmetry, thatX
X×Y

a =
X
X

X
Y

a

Let Λ ⊂⊂ X × Y. The for any α ⊂⊂ X and β ⊂⊂ Y such that Λ ⊂ α× β, we haveX
Λ

a ≤
X
α×β

a =
X
α

X
β

a ≤
X
α

X
Y

a ≤
X
X

X
Y

a,

i.e.
P
Λ a ≤

P
X

P
Y a. Taking the sup over Λ in this last equation showsX

X×Y
a ≤

X
X

X
Y

a.

We must now show the opposite inequality. If
P

X×Y a = ∞ we are done so
we now assume that a is summable. By Remark 2.8, there is a countable set
{(x0n, y0n)}∞n=1 ⊂ X × Y off of which a is identically 0.
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Let {yn}∞n=1 be an enumeration of {y0n}∞n=1 , then since a(x, y) = 0 if y /∈
{yn}∞n=1 ,

P
y∈Y a(x, y) =

P∞
n=1 a(x, yn) for all x ∈ X. Hence

X
x∈X

X
y∈Y

a(x, y) =
X
x∈X

∞X
n=1

a(x, yn) =
X
x∈X

lim
N→∞

NX
n=1

a(x, yn)

= lim
N→∞

X
x∈X

NX
n=1

a(x, yn),(2.14)

wherein the last inequality we have used the monotone convergence theorem with
FN (x) :=

PN
n=1 a(x, yn). If α ⊂⊂ X, then

X
x∈α

NX
n=1

a(x, yn) =
X

α×{yn}Nn=1

a ≤
X
X×Y

a

and therefore,

(2.15) lim
N→∞

X
x∈X

NX
n=1

a(x, yn) ≤
X
X×Y

a.

Hence it follows from Eqs. (2.14) and (2.15) that

(2.16)
X
x∈X

X
y∈Y

a(x, y) ≤
X
X×Y

a

as desired.
Alternative proof of Eq. (2.16). Let A = {x0n : n ∈ N} and let {xn}∞n=1 be an

enumeration of A. Then for x /∈ A, a(x, y) = 0 for all y ∈ Y.
Given � > 0, let δ : X → [0,∞) be the function such thatPX δ = � and δ(x) > 0

for x ∈ A. (For example we may define δ by δ(xn) = �/2n for all n and δ(x) = 0 if
x /∈ A.) For each x ∈ X, let βx ⊂⊂ X be a finite set such thatX

y∈Y
a(x, y) ≤

X
y∈βx

a(x, y) + δ(x).

Then X
X

X
Y

a ≤
X
x∈X

X
y∈βx

a(x, y) +
X
x∈X

δ(x)

=
X
x∈X

X
y∈βx

a(x, y) + � = sup
α⊂⊂X

X
x∈α

X
y∈βx

a(x, y) + �

≤
X
X×Y

a+ �,(2.17)

wherein the last inequality we have usedX
x∈α

X
y∈βx

a(x, y) =
X
Λα

a ≤
X
X×Y

a

with
Λα := {(x, y) ∈ X × Y : x ∈ α and y ∈ βx} ⊂ X × Y.

Since � > 0 is arbitrary in Eq. (2.17), the proof is complete.
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Theorem 2.22 (Fubini’s Theorem for Sums). Now suppose that a : X × Y → C
is a summable function, i.e. by Theorem 2.21 any one of the following equivalent
conditions hold:

(1)
P

X×Y |a| <∞,
(2)

P
X

P
Y |a| <∞ or

(3)
P

Y

P
X |a| <∞.

Then X
X×Y

a =
X
X

X
Y

a =
X
Y

X
X

a.

Proof. If a : X → R is real valued the theorem follows by applying Theorem
2.21 to a± — the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the real and
imaginary parts of a.

2.6. cp — spaces, Minkowski and Holder Inequalities. In this subsection, let
µ : X → (0,∞] be a given function. Let F denote either C or R. For p ∈ (0,∞)
and f : X → F, let

kfkp ≡ (
X
x∈X

|f(x)|pµ(x))1/p

and for p =∞ let
kfk∞ = sup {|f(x)| : x ∈ X} .

Also, for p > 0, let
cp(µ) = {f : X → F : kfkp <∞}.

In the case where µ(x) = 1 for all x ∈ X we will simply write cp(X) for cp(µ).

Definition 2.23. A norm on a vector space L is a function k·k : L→ [0,∞) such
that

(1) (Homogeneity) kλfk = |λ| kfk for all λ ∈ F and f ∈ L.
(2) (Triangle inequality) kf + gk ≤ kfk+ kgk for all f, g ∈ L.
(3) (Positive definite) kfk = 0 implies f = 0.
A pair (L, k·k) where L is a vector space and k·k is a norm on L is called a

normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 2.24. For p ∈ [1,∞], (cp(µ), k · kp) is a normed vector space.
Proof. The only difficulty is the proof of the triangle inequality which is the

content of Minkowski’s Inequality proved in Theorem 2.30 below.

2.6.1. Some inequalities.

Proposition 2.25. Let f : [0,∞) → [0,∞) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim

s→∞ f(s) =∞. Let g = f−1 and
for s, t ≥ 0 let

F (s) =

Z s

0

f(s0)ds0 and G(t) =

Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t)

and equality holds iff t = f(s).
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Proof. Let

As := {(σ, τ) : 0 ≤ τ ≤ f(σ) for 0 ≤ σ ≤ s} and
Bt := {(σ, τ) : 0 ≤ σ ≤ g(τ) for 0 ≤ τ ≤ t}

then as one sees from Figure 2, [0, s]× [0, t] ⊂ As ∪Bt. (In the figure: s = 3, t = 1,
A3 is the region under t = f(s) for 0 ≤ s ≤ 3 and B1 is the region to the left of the
curve s = g(t) for 0 ≤ t ≤ 1.) Hence if m denotes the area of a region in the plane,
then

st = m ([0, s]× [0, t]) ≤ m(As) +m(Bt) = F (s) +G(t).

As it stands, this proof is a bit on the intuitive side. However, it will become rig-
orous if one takes m to be Lebesgue measure on the plane which will be introduced
later.
We can also give a calculus proof of this theorem under the additional assumption

that f is C1. (This restricted version of the theorem is all we need in this section.)
To do this fix t ≥ 0 and let

h(s) = st− F (s) =

Z s

0

(t− f(σ))dσ.

If σ > g(t) = f−1(t), then t− f(σ) < 0 and hence if s > g(t), we have

h(s) =

Z s

0

(t− f(σ))dσ =

Z g(t)

0

(t− f(σ))dσ +

Z s

g(t)

(t− f(σ))dσ

≤
Z g(t)

0

(t− f(σ))dσ = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some point
s ∈ (0, t] and hence at a point where 0 = h0(s) = t− f(s). The only solution to this
equation is s = g(t) and we have thus shown

st− F (s) = h(s) ≤
Z g(t)

0

(t− f(σ))dσ = h(g(t))

with equality when s = g(t). To finish the proof we must show
R g(t)
0

(t− f(σ))dσ =
G(t). This is verified by making the change of variables σ = g(τ) and then inte-
grating by parts as follows:Z g(t)

0

(t− f(σ))dσ =

Z t

0

(t− f(g(τ)))g0(τ)dτ =
Z t

0

(t− τ)g0(τ)dτ

=

Z t

0

g(τ)dτ = G(t).

Definition 2.26. The conjugate exponent q ∈ [1,∞] to p ∈ [1,∞] is q := p
p−1 with

the convention that q = ∞ if p = 1. Notice that q is characterized by any of the
following identities:

(2.18)
1

p
+
1

q
= 1, 1 +

q

p
= q, p− p

q
= 1 and q(p− 1) = p.
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Figure 2. A picture proof of Proposition 2.25.

Lemma 2.27. Let p ∈ (1,∞) and q := p
p−1 ∈ (1,∞) be the conjugate exponent.

Then

st ≤ sq

q
+

tp

p
for all s, t ≥ 0

with equality if and only if sq = tp.

Proof. Let F (s) = sp

p for p > 1. Then f(s) = sp−1 = t and g(t) = t
1

p−1 = tq−1,
wherein we have used q − 1 = p/ (p− 1) − 1 = 1/ (p− 1) . Therefore G(t) = tq/q
and hence by Proposition 2.25,

st ≤ sp

p
+

tq

q

with equality iff t = sp−1.

Theorem 2.28 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate exponents. For
all f, g : X → F,

(2.19) kfgk1 ≤ kfkp · kgkq.
If p ∈ (1,∞), then equality holds in Eq. (2.19) iff

(
|f |
kfkp )

p = (
|g|
kgkq )

q.

Proof. The proof of Eq. (2.19) for p ∈ {1,∞} is easy and will be left to
the reader. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easily dealt
with and are also left to the reader. So we will assume that p ∈ (1,∞) and
0 < kfkq, kgkp <∞. Letting s = |f |/kfkp and t = |g|/kgkq in Lemma 2.27 implies

|fg|
kfkpkgkq ≤

1

p

|f |p
kfkp +

1

q

|g|q
kgkq .

Multiplying this equation by µ and then summing gives

kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1
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with equality iff

|g|
kgkq =

|f |p−1
kfk(p−1)p

⇐⇒ |g|
kgkq =

|f |p/q
kfkp/qp

⇐⇒ |g|qkfkpp = kgkqq|f |p.

Definition 2.29. For a complex number λ ∈ C, let

sgn(λ) =

½ λ
|λ| if λ 6= 0
0 if λ = 0.

Theorem 2.30 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ cp(µ) then

kf + gkp ≤ kfkp + kgkp,
with equality iff

sgn(f) = sgn(g) when p = 1 and

f = cg for some c > 0 when p ∈ (1,∞).
Proof. For p = 1,

kf + gk1 =
X
X

|f + g|µ ≤
X
X

(|f |µ+ |g|µ) =
X
X

|f |µ+
X
X

|g|µ

with equality iff

|f |+ |g| = |f + g| ⇐⇒ sgn(f) = sgn(g).

For p =∞,

kf + gk∞ = sup
X
|f + g| ≤ sup

X
(|f |+ |g|)

≤ sup
X
|f |+ sup

X
|g| = kfk∞ + kgk∞.

Now assume that p ∈ (1,∞). Since
|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p)

it follows that
kf + gkpp ≤ 2p

¡kfkpp + kgkpp¢ <∞.

The theorem is easily verified if kf + gkp = 0, so we may assume kf + gkp > 0.
Now

(2.20) |f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1
with equality iff sgn(f) = sgn(g). Multiplying Eq. (2.20) by µ and then summing
and applying Holder’s inequality givesX

X

|f + g|pµ ≤
X
X

|f | |f + g|p−1µ+
X
X

|g| |f + g|p−1µ

≤ (kfkp + kgkp) k |f + g|p−1 kq(2.21)

with equality iff µ |f |
kfkp

¶p
=

µ |f + g|p−1
k|f + g|p−1kq

¶q
=

µ |g|
kgkp

¶p
and sgn(f) = sgn(g).
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By Eq. (2.18), q(p− 1) = p, and hence

(2.22) k|f + g|p−1kqq =
X
X

(|f + g|p−1)qµ =
X
X

|f + g|pµ.

Combining Eqs. (2.21) and (2.22) implies

(2.23) kf + gkpp ≤ kfkpkf + gkp/qp + kgkpkf + gkp/qp

with equality iff

sgn(f) = sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
.(2.24)

Solving for kf + gkp in Eq. (2.23) with the aid of Eq. (2.18) shows that kf + gkp ≤
kfkp+ kgkp with equality iff Eq. (2.24) holds which happens iff f = cg with c > 0.

2.7. Exercises .

2.7.1. Set Theory. Let f : X → Y be a function and {Ai}i∈I be an indexed family
of subsets of Y, verify the following assertions.

Exercise 2.1. (∩i∈IAi)
c = ∪i∈IAc

i .

Exercise 2.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 2.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 2.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 2.5. Find a counter example which shows that f(C ∩D) = f(C)∩ f(D)
need not hold.

Exercise 2.6. Now suppose for each n ∈ N ≡ {1, 2, . . .} that fn : X → R is a
function. Let

D ≡ {x ∈ X : lim
n→∞ fn(x) = +∞}

show that

(2.25) D = ∩∞M=1 ∪∞N=1 ∩n≥N{x ∈ X : fn(x) ≥M}.
Exercise 2.7. Let fn : X → R be as in the last problem. Let

C ≡ {x ∈ X : lim
n→∞ fn(x) exists in R}.

Find an expression for C similar to the expression for D in (2.25). (Hint: use the
Cauchy criteria for convergence.)

2.7.2. Limit Problems.

Exercise 2.8. Prove Lemma 2.15.

Exercise 2.9. Prove Lemma 2.20.

Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Exercise 2.10. Show lim infn→∞(−an) = − lim supn→∞ an.

Exercise 2.11. Suppose that lim supn→∞ an = M ∈ R̄, show that there is a
subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =M.
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Exercise 2.12. Show that

(2.26) lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

provided that the right side of Eq. (2.26) is well defined, i.e. no∞−∞ or −∞+∞
type expressions. (It is OK to have ∞+∞ =∞ or −∞−∞ = −∞, etc.)

Exercise 2.13. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ N. Show
(2.27) lim sup

n→∞
(anbn) ≤ lim sup

n→∞
an · lim sup

n→∞
bn,

provided the right hand side of (2.27) is not of the form 0 ·∞ or ∞ · 0.
2.7.3. Dominated Convergence Theorem Problems.

Notation 2.31. For u0 ∈ Rn and δ > 0, let Bu0(δ) := {x ∈ Rn : |x− u0| < δ} be
the ball in Rn centered at u0 with radius δ.

Exercise 2.14. Suppose U ⊂ Rn is a set and u0 ∈ U is a point such that
U ∩ (Bu0(δ) \ {u0}) 6= ∅ for all δ > 0. Let G : U \ {u0} → C be a function on
U \ {u0}. Show that limu→u0 G(u) exists and is equal to λ ∈ C,1 iff for all se-
quences {un}∞n=1 ⊂ U \ {u0} which converge to u0 (i.e. limn→∞ un = u0) we have
limn→∞G(un) = λ.

Exercise 2.15. Suppose that Y is a set, U ⊂ Rn is a set, and f : U × Y → C is a
function satisfying:

(1) For each y ∈ Y, the function u ∈ U → f(u, y) is continuous on U.2

(2) There is a summable function g : Y → [0,∞) such that
|f(u, y)| ≤ g(y) for all y ∈ Y and u ∈ U.

Show that

(2.28) F (u) :=
X
y∈Y

f(u, y)

is a continuous function for u ∈ U.

Exercise 2.16. Suppose that Y is a set, J = (a, b) ⊂ R is an interval, and f :
J × Y → C is a function satisfying:

(1) For each y ∈ Y, the function u→ f(u, y) is differentiable on J,
(2) There is a summable function g : Y → [0,∞) such that¯̄̄̄

∂

∂u
f(u, y)

¯̄̄̄
≤ g(y) for all y ∈ Y.

(3) There is a u0 ∈ J such that
P

y∈Y |f(u0, y)| <∞.

Show:

a) for all u ∈ J that
P

y∈Y |f(u, y)| <∞.

1More explicitly, limu→u0 G(u) = λ means for every every � > 0 there exists a δ > 0 such that

|G(u)− λ| < � whenerver u ∈ U ∩ (Bu0(δ) \ {u0}) .

2To say g := f(·, y) is continuous on U means that g : U → C is continuous relative to the
metric on Rn restricted to U.
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b) Let F (u) :=
P

y∈Y f(u, y), show F is differentiable on J and that

Ḟ (u) =
X
y∈Y

∂

∂u
f(u, y).

(Hint: Use the mean value theorem.)

Exercise 2.17 (Differentiation of Power Series). Suppose R > 0 and {an}∞n=0 is
a sequence of complex numbers such that

P∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Show, using Exercise 2.16, f(x) :=
P∞

n=0 anx
n is continuously differentiable for

x ∈ (−R,R) and
f 0(x) =

∞X
n=0

nanx
n−1 =

∞X
n=1

nanx
n−1.

Exercise 2.18. Let {an}∞n=−∞ be a summable sequence of complex numbers, i.e.P∞
n=−∞ |an| <∞. For t ≥ 0 and x ∈ R, define

F (t, x) =
∞X

n=−∞
ane
−tn2einx,

where as usual eix = cos(x) + i sin(x). Prove the following facts about F :
(1) F (t, x) is continuous for (t, x) ∈ [0,∞)×R.Hint: Let Y = Z and u = (t, x)

and use Exercise 2.15.
(2) ∂F (t, x)/∂t, ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 exist for t > 0 and x ∈ R.

Hint: Let Y = Z and u = t for computing ∂F (t, x)/∂t and u = x for
computing ∂F (t, x)/∂x and ∂2F (t, x)/∂x2. See Exercise 2.16.

(3) F satisfies the heat equation, namely

∂F (t, x)/∂t = ∂2F (t, x)/∂x2 for t > 0 and x ∈ R.
2.7.4. Inequalities.

Exercise 2.19. Generalize Proposition 2.25 as follows. Let a ∈ [−∞, 0] and f : R∩
[a,∞)→ [0,∞) be a continuous strictly increasing function such that lim

s→∞ f(s) =

∞, f(a) = 0 if a > −∞ or lims→−∞ f(s) = 0 if a = −∞. Also let g = f−1,
b = f(0) ≥ 0,

F (s) =

Z s

0

f(s0)ds0 and G(t) =

Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t ∨ b) ≤ F (s) +G(t)

and equality holds iff t = f(s). In particular, taking f(s) = es, prove Young’s
inequality stating

st ≤ es + (t ∨ 1) ln (t ∨ 1)− (t ∨ 1) ≤ es + t ln t− t.

Hint: Refer to the following pictures.
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Figure 3. Comparing areas when t ≥ b goes the same way as in
the text.
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Figure 4. When t ≤ b, notice that g(t) ≤ 0 but G(t) ≥ 0. Also
notice that G(t) is no longer needed to estimate st.

3. Metric, Banach and Topological Spaces

3.1. Basic metric space notions.

Definition 3.1. A function d : X ×X → [0,∞) is called a metric if
(1) (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X
(2) (Non-degenerate) d(x, y) = 0 if and only if x = y ∈ X
(3) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

As primary examples, any normed space (X, k·k) is a metric space with d(x, y) :=
kx− yk . Thus the space cp(µ) is a metric space for all p ∈ [1,∞]. Also any subset
of a metric space is a metric space. For example a surface Σ in R3 is a metric space
with the distance between two points on Σ being the usual distance in R3.

Definition 3.2. Let (X, d) be a metric space. The open ball B(x, δ) ⊂ X centered
at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.
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We will often also write B(x, δ) as Bx(δ). We also define the closed ball centered
at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.
Definition 3.3. A sequence {xn}∞n=1 in a metric space (X, d) is said to be conver-
gent if there exists a point x ∈ X such that limn→∞ d(x, xn) = 0. In this case we
write limn→∞ xn = x of xn → x as n→∞.

Exercise 3.1. Show that x in Definition 3.3 is necessarily unique.

Definition 3.4. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1
which is contained in F has its limit back in F. A set V ⊂ X is open iff V c is
closed. We will write F @ X to indicate the F is a closed subset of X and V ⊂o X
to indicate the V is an open subset of X. We also let τd denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show ∩F := ∩F∈FF
is closed. Also show that finite unions of closed sets are closed, i.e. if {Fk}nk=1 are
closed sets then ∪nk=1Fk is closed. (By taking complements, this shows that the
collection of open sets, τd, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset A ⊂ X, let dA(x) ≡ inf{d(x, a)|a ∈ A},
then

(3.1) |dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X.

Moreover the set F� ≡ {x ∈ X|dA(x) ≥ �} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

d(x, a) ≤ d(x, y) + d(y, a).

Take the inf over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x)− dA(y) ≤ d(x, y) and by interchanging x and y we also have that
dA(y)− dA(x) ≤ d(x, y) which implies Eq. (3.1). Now suppose that {xn}∞n=1 ⊂ F�
is a convergent sequence and x = limn→∞ xn ∈ X. By Eq. (3.1),

�− dA(x) ≤ dA(xn)− dA(x) ≤ d(x, xn)→ 0 as n→∞,

so that � ≤ dA(x). This shows that x ∈ F� and hence F� is closed.

Corollary 3.6. The function d satisfies,

|d(x, y)− d(x0, y0)| ≤ d(y, y0) + d(x, x0)

and in particular d : X ×X → [0,∞) is continuous.
Proof. By Lemma 3.5 for single point sets and the triangle inequality for the

absolute value of real numbers,

|d(x, y)− d(x0, y0)| ≤ |d(x, y)− d(x, y0)|+ |d(x, y0)− d(x0, y0)|
≤ d(y, y0) + d(x, x0).
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Exercise 3.3. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0 such
that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and δ > 0.

Lemma 3.7. Let A be a closed subset of X and F� @ X be as defined as in Lemma
3.5. Then F� ↑ Ac as � ↓ 0.
Proof. It is clear that dA(x) = 0 for x ∈ A so that F� ⊂ Ac for each � > 0 and

hence ∪�>0F� ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 3.3 there exists
an � > 0 such that Bx(�) ⊂ Ac, i.e. d(x, y) ≥ � for all y ∈ A. Hence x ∈ F� and we
have shown that Ac ⊂ ∪�>0F�. Finally it is clear that F� ⊂ F�0 whenever �0 ≤ �.

Definition 3.8. Given a set A contained a metric space X, let Ā ⊂ X be the
closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞xn}.

That is to say Ā contains all limit points of A.

Exercise 3.4. Given A ⊂ X, show Ā is a closed set and in fact

(3.2) Ā = ∩{F : A ⊂ F ⊂ X with F closed}.
That is to say Ā is the smallest closed set containing A.

3.2. Continuity. Suppose that (X, d) and (Y, ρ) are two metric spaces and f :
X → Y is a function.

Definition 3.9. A function f : X → Y is continuous at x ∈ X if for all � > 0 there
is a δ > 0 such that

d(f(x), f(x0)) < � provided that ρ(x, x0) < δ.

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that (X,ρ) and (Y, d) are two metric
spaces and f : X → Y is a function. Then the following are equivalent:

(1) f is continuous.
(2) f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
(3) f−1(C) is closed in X if C is closed in Y.
(4) For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.

Proof. 1. ⇒ 2. For all x ∈ X and � > 0 there exists δ > 0 such that
d(f(x), f(x0)) < � if ρ(x, x0) < δ. i.e.

Bx(δ) ⊂ f−1(Bf(x)(�))

So if V ⊂o Y and x ∈ f−1(V ) we may choose � > 0 such that Bf(x)(�) ⊂ V then

Bx(δ) ⊂ f−1(Bf(x)(�)) ⊂ f−1(V )

showing that f−1(V ) is open.
2. ⇒ 1. Let � > 0 and x ∈ X, then, since f−1(Bf(x)(�)) ⊂o X, there exists δ > 0

such that Bx(δ) ⊂ f−1(Bf(x)(�)) i.e. if ρ(x, x0) < δ then d(f(x0), f(x)) < �.
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2. ⇐⇒ 3. If C is closed in Y, then Cc ⊂o Y and hence f−1(Cc) ⊂o X. Since
f−1(Cc) =

¡
f−1(C)

¢c
, this shows that f−1(C) is the complement of an open set

and hence closed. Similarly one shows that 3. ⇒ 2.
1. ⇒ 4. If f is continuous and xn → x in X, let � > 0 and choose δ > 0

such that d(f(x), f(x0)) < � when ρ(x, x0) < δ. There exists an N > 0 such that
ρ(x, xn) < δ for all n ≥ N and therefore d(f(x), f(xn)) < � for all n ≥ N. That is
to say limn→∞ f(xn) = f(x) as n→∞.
4. ⇒ 1. We will show that not 1. ⇒ not 4. Not 1 implies there exists � > 0,

a point x ∈ X and a sequence {xn}∞n=1 ⊂ X such that d(f(x), f(xn)) ≥ � while
ρ(x, xn) <

1
n . Clearly this sequence {xn} violates 4.

There is of course a local version of this lemma. To state this lemma, we will
use the following terminology.

Definition 3.11. Let X be metric space and x ∈ X. A subset A ⊂ X is a neigh-
borhood of x if there exists an open set V ⊂o X such that x ∈ V ⊂ A. We will
say that A ⊂ X is an open neighborhood of x if A is open and x ∈ A.

Lemma 3.12 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d) are two
metric spaces and f : X → Y is a function. Then following are equivalent:

(1) f is continuous as x ∈ X.
(2) For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.
(3) For all sequences {xn} ⊂ X such that x = limn→∞ xn, {f(xn)} is conver-

gent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.

Example 3.13. The function dA defined in Lemma 3.5 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous for
each x ∈ X.

Exercise 3.5. Show the closed ball Cx(δ) := {y ∈ X : d(x, y) ≤ δ} is a closed
subset of X.

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.14. A collection of subsets τ of X is a topology if
(1) ∅,X ∈ τ
(2) τ is closed under arbitrary unions, i.e. if Vα ∈ τ, for α ∈ I then

S
α∈I

Vα ∈ τ .

(3) τ is closed under finite intersections, i.e. if V1, . . . , Vn ∈ τ then V1∩· · ·∩Vn ∈
τ.

A pair (X, τ) where τ is a topology on X will be called a topological space.

Notation 3.15. The subsets V ⊂ X which are in τ are called open sets and we
will abbreviate this by writing V ⊂o X and the those sets F ⊂ X such that F c ∈ τ
are called closed sets. We will write F @ X if F is a closed subset of X.

Example 3.16. (1) Let (X, d) be a metric space, we write τd for the collection
of d — open sets inX.We have already seen that τd is a topology, see Exercise
3.2.
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(2) Let X be any set, then τ= P(X) is a topology. In this topology all subsets
ofX are both open and closed. At the opposite extreme we have the trivial
topology, τ = {∅,X} . In this topology only the empty set and X are open
(closed).

(3) Let X = {1, 2, 3}, then τ = {∅,X, {2, 3}} is a topology on X which does
not come from a metric.

(4) Again let X = {1, 2, 3}. Then τ = {{1}, {2, 3}, ∅,X}. is a topology, and the
sets X, {1}, {2, 3}, φ are open and closed. The sets {1, 2} and {1, 3} are
neither open nor closed.

1

2
3

Figure 5. A topology.

Definition 3.17. Let (X, τ) be a topological space, A ⊂ X and iA : A → X be
the inclusion map, i.e. iA(a) = a for all a ∈ A. Define

τA = i−1A (τ) = {A ∩ V : V ∈ τ} ,
the so called relative topology on A.

Notice that the closed sets in Y relative to τY are precisely those sets of the form
C ∩ Y where C is close in X. Indeed, B ⊂ Y is closed iff Y \ B = Y ∩ V for some
V ∈ τ which is equivalent to B = Y \ (Y ∩ V ) = Y ∩ V c for some V ∈ τ.

Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d) is
a metric space and τ = τd is the topology coming from d, then (τd)A is the topology
induced by making A into a metric space using the metric d|A×A.
Notation 3.18 (Neighborhoods of x). An open neighborhood of a point x ∈ X
is an open set V ⊂ X such that x ∈ V. Let τx = {V ∈ τ : x ∈ V } denote the
collection of open neighborhoods of x. A collection η ⊂ τx is called a neighborhood
base at x ∈ X if for all V ∈ τx there exists W ∈ η such that W ⊂ V .

The notation τx should not be confused with

τ{x} := i−1{x}(τ) = {{x} ∩ V : V ∈ τ} = {∅, {x}} .
When (X, d) is a metric space, a typical example of a neighborhood base for x is
η = {Bx(�) : � ∈ D} where D is any dense subset of (0, 1].
Definition 3.19. Let (X, τ) be a topological space and A be a subset of X.
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(1) The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩ {F : A ⊂ F @ X} .
(Because of Exercise 3.4 this is consistent with Definition 3.8 for the closure
of a set in a metric space.)

(2) The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪ {V ∈ τ : V ⊂ A} .
(3) The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩A \ {x} 6= ∅ for all V ∈ τx}.
(4) The boundary of A is the set ∂A := Ā \Ao.
(5) A is a neighborhood of a point x ∈ X if x ∈ Ao. This is equivalent to

requiring there to be an open neighborhood of V of x ∈ X such that V ⊂ A.

Remark 3.20. The relationships between the interior and the closure of a set are:

(Ao)c =
\
{V c : V ∈ τ and V ⊂ A} =

\
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

(3.3) ∂A ≡ Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac,

which is to say ∂A consists of the points in both the closure of A and Ac.

Proposition 3.21. Let A ⊂ X and x ∈ X.

(1) If V ⊂o X and A ∩ V = ∅ then Ā ∩ V = ∅.
(2) x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx.
(3) x ∈ ∂A iff V ∩A 6= ∅ and V ∩Ac 6= ∅ for all V ∈ τx.
(4) Ā = A ∪ acc(A).
Proof. 1. Since A ∩ V = ∅, A ⊂ V c and since V c is closed, Ā ⊂ V c. That is to

say Ā ∩ V = ∅.
2. By Remark 3.203, Ā = ((Ac)o)c so x ∈ Ā iff x /∈ (Ac)o which happens iff

V * Ac for all V ∈ τx, i.e. iff V ∩A 6= ∅ for all V ∈ τx.
3. This assertion easily follows from the Item 2. and Eq. (3.3).
4. Item 4. is an easy consequence of the definition of acc(A) and item 2.

Lemma 3.22. Let A ⊂ Y ⊂ X, ĀY denote the closure of A in Y with its relative
topology and Ā = ĀX be the closure of A in X, then ĀY = ĀX ∩ Y.
Proof. Using the comments after Definition 3.17,

ĀY = ∩ {B @ Y : A ⊂ B} = ∩ {C ∩ Y : A ⊂ C @ X}
= Y ∩ (∩ {C : A ⊂ C @ X}) = Y ∩ ĀX .

Alternative proof. Let x ∈ Y then x ∈ ĀY iff for all V ∈ τYx , V ∩A 6= ∅. This
happens iff for all U ∈ τXx , U ∩Y ∩A = U ∩A 6= ∅ which happens iff x ∈ ĀX . That
is to say ĀY = ĀX ∩ Y.

3Here is another direct proof of item 2. which goes by showing x /∈ Ā iff there exists V ∈ τx
such that V ∩ A = ∅. If x /∈ Ā then V = Ac ∈ τx and V ∩ A ⊂ V ∩ Ā = ∅. Conversely if there
exists V ∈ τx such that V ∩A = ∅ then by Item 1. Ā ∩ V = ∅.
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Definition 3.23. Let (X, τ) be a topological space and A ⊂ X. We say a subset
U ⊂ τ is an open cover of A if A ⊂ ∪U . The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if U is an open cover of A there exists
U0 ⊂⊂ U such that U0 is a cover of A. (We will write A @@ X to denote that
A ⊂ X and A is compact.) A subset A ⊂ X is precompact if Ā is compact.

Proposition 3.24. Suppose that K ⊂ X is a compact set and F ⊂ K is a closed
subset. Then F is compact. If {Ki}ni=1 is a finite collections of compact subsets of
X then K = ∪ni=1Ki is also a compact subset of X.

Proof. Let U ⊂ τ is an open cover of F, then U∪ {F c} is an open cover of K.
The cover U∪ {F c} of K has a finite subcover which we denote by U0∪ {F c} where
U0 ⊂⊂ U . Since F ∩ F c = ∅, it follows that U0 is the desired subcover of F.
For the second assertion suppose U ⊂ τ is an open cover of K. Then U covers

each compact set Ki and therefore there exists a finite subset Ui ⊂⊂ U for each i
such that Ki ⊂ ∪Ui. Then U0 := ∪ni=1Ui is a finite cover of K.

Definition 3.25. We say a collection F of closed subsets of a topological space
(X, τ) has the finite intersection property if ∩F0 6= ∅ for all F0 ⊂⊂ F .
The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.26. A topological space X is compact iff every family of closed sets
F ⊂ P(X) with the finite intersection property satisfies TF 6= ∅.
Proof. (⇒) Suppose that X is compact and F ⊂ P(X) is a collection of closed

sets such that
TF = ∅. Let

U = Fc := {Cc : C ∈ F} ⊂ τ,

then U is a cover of X and hence has a finite subcover, U0. Let F0 = Uc0 ⊂⊂ F ,
then ∩F0 = ∅ so that F does not have the finite intersection property.
(⇐) If X is not compact, there exists an open cover U of X with no finite sub-

cover. Let F = Uc, then F is a collection of closed sets with the finite intersection
property while

TF = ∅.
Exercise 3.7. Let (X, τ) be a topological space. Show that A ⊂ X is compact iff
(A, τA) is a compact topological space.

Definition 3.27. Let (X, τ) be a topological space. A sequence {xn}∞n=1 ⊂ X
converges to a point x ∈ X if for all V ∈ τx, xn ∈ V almost always (abbreviated
a.a.), i.e. #({n : xn /∈ V }) <∞.We will write xn → x as n→∞ or limn→∞ xn = x
when xn converges to x.

Example 3.28. Let Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} and yn = 2 for
all n. Then yn → y for every y ∈ Y. So limits need not be unique!

Definition 3.29. Let (X, τX) and (Y, τY ) be topological spaces. A function f :
X → Y is continuous if f−1(τY ) ⊂ τX . We will also say that f is τX/τY —
continuous or (τX , τY ) — continuous. We also say that f is continuous at a point
x ∈ X if for every open neighborhood V of f(x) there is an open neighborhood U
of x such that U ⊂ f−1(V ). See Figure 6.

Definition 3.30. A map f : X → Y between topological spaces is called a home-
omorphism provided that f is bijective, f is continuous and f−1 : Y → X is
continuous. If there exists f : X → Y which is a homeomorphism, we say that
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Figure 6. Checking that a function is continuous at x ∈ X.

X and Y are homeomorphic. (As topological spaces X and Y are essentially the
same.)

Exercise 3.8. Show f : X → Y is continuous iff f is continuous at all points
x ∈ X.

Exercise 3.9. Show f : X → Y is continuous iff f−1(C) is closed in X for all
closed subsets C of Y.

Exercise 3.10. Suppose f : X → Y is continuous and K ⊂ X is compact, then
f(K) is a compact subset of Y.

Exercise 3.11 (Dini’s Theorem). Let X be a compact topological space and fn :
X → [0,∞) be a sequence of continuous functions such that fn(x) ↓ 0 as n → ∞
for each x ∈ X. Show that in fact fn ↓ 0 uniformly in x, i.e. supx∈X fn(x) ↓ 0 as
n→∞. Hint: Given � > 0, consider the open sets Vn := {x ∈ X : fn(x) < �}.
Definition 3.31 (First Countable). A topological space, (X, τ), is first countable
iff every point x ∈ X has a countable neighborhood base. (All metric space are
first countable.)

When τ is first countable, we may formulate many topological notions in terms
of sequences.

Proposition 3.32. If f : X → Y is continuous at x ∈ X and limn→∞ xn = x ∈ X,
then limn→∞ f(xn) = f(x) ∈ Y. Moreover, if there exists a countable neighborhood
base η of x ∈ X, then f is continuous at x iff lim

n→∞ f(xn) = f(x) for all sequences

{xn}∞n=1 ⊂ X such that xn → x as n→∞.

Proof. If f : X → Y is continuous and W ∈ τY is a neighborhood of f(x) ∈ Y,
then there exists a neighborhood V of x ∈ X such that f(V ) ⊂ W. Since xn → x,
xn ∈ V a.a. and therefore f(xn) ∈ f(V ) ⊂W a.a., i.e. f(xn)→ f(x) as n→∞.
Conversely suppose that η ≡ {Wn}∞n=1 is a countable neighborhood base at x and

lim
n→∞ f(xn) = f(x) for all sequences {xn}∞n=1 ⊂ X such that xn → x. By replacing

Wn by W1 ∩ · · · ∩Wn if necessary, we may assume that {Wn}∞n=1 is a decreasing
sequence of sets. If f were not continuous at x then there exists V ∈ τf(x) such
that x /∈ f−1(V )0. Therefore, Wn is not a subset of f−1(V ) for all n. Hence for
each n, we may choose xn ∈ Wn \ f−1(V ). This sequence then has the property
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that xn → x as n→∞ while f(xn) /∈ V for all n and hence limn→∞ f(xn) 6= f(x).

Lemma 3.33. Suppose there exists {xn}∞n=1 ⊂ A such that xn → x, then x ∈ Ā.
Conversely if (X, τ) is a first countable space (like a metric space) then if x ∈ Ā
there exists {xn}∞n=1 ⊂ A such that xn → x.

Proof. Suppose {xn}∞n=1 ⊂ A and xn → x ∈ X. Since Āc is an open set, if
x ∈ Āc then xn ∈ Āc ⊂ Ac a.a. contradicting the assumption that {xn}∞n=1 ⊂ A.
Hence x ∈ Ā.
For the converse we now assume that (X, τ) is first countable and that {Vn}∞n=1 is

a countable neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By Proposition
3.21, x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx. Hence x ∈ Ā implies there exists xn ∈ Vn∩A
for all n. It is now easily seen that xn → x as n→∞.

Definition 3.34 (Support). Let f : X → Y be a function from a topological space
(X, τX) to a vector space Y. Then we define the support of f by

supp(f) := {x ∈ X : f(x) 6= 0},
a closed subset of X.

Example 3.35. For example, let f(x) = sin(x)1[0,4π](x) ∈ R, then
{f 6= 0} = (0, 4π) \ {π, 2π, 3π}

and therefore supp(f) = [0, 4π].

Notation 3.36. If X and Y are two topological spaces, let C(X,Y ) denote the
continuous functions from X to Y. If Y is a Banach space, let

BC(X,Y ) := {f ∈ C(X,Y ) : sup
x∈X

kf(x)kY <∞}

and
Cc(X,Y ) := {f ∈ C(X,Y ) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and Cc(X) for C(X,Y ),
BC(X,Y ) and Cc(X,Y ) respectively.

The next result is included for completeness but will not be used in the sequel
so may be omitted.

Lemma 3.37. Suppose that f : X → Y is a map between topological spaces. Then
the following are equivalent:

(1) f is continuous.
(2) f(Ā) ⊂ f(A) for all A ⊂ X

(3) f−1(B) ⊂ f−1(B̄) for all B @ X.

Proof. If f is continuous, then f−1
³
f(A)

´
is closed and since A ⊂ f−1 (f(A)) ⊂

f−1
³
f(A)

´
it follows that Ā ⊂ f−1

³
f(A)

´
. From this equation we learn that

f(Ā) ⊂ f(A) so that (1) implies (2) Now assume (2), then for B ⊂ Y (taking
A = f−1(B̄)) we have

f(f−1(B)) ⊂ f(f−1(B̄)) ⊂ f(f−1(B̄)) ⊂ B̄
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and therefore

(3.4) f−1(B) ⊂ f−1(B̄).

This shows that (2) implies (3) Finally if Eq. (3.4) holds for all B, then when B is
closed this shows that

f−1(B) ⊂ f−1(B̄) = f−1(B) ⊂ f−1(B)

which shows that
f−1(B) = f−1(B).

Therefore f−1(B) is closed whenever B is closed which implies that f is continuous.

3.4. Completeness.

Definition 3.38 (Cauchy sequences). A sequence {xn}∞n=1 in a metric space (X, d)
is Cauchy provided that

lim
m,n→∞ d(xn, xm) = 0.

Exercise 3.12. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(x, y) = |x− y|. Choose a sequence {xn}∞n=1 ⊂ Q which converges to

√
2 ∈ R,

then {xn}∞n=1 is (Q, d) — Cauchy but not (Q, d) — convergent. The sequence does
converge in R however.
Definition 3.39. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.13. Let (X, d) be a complete metric space. Let A ⊂ X be a subset of
X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete iff A is
a closed subset of X.

Definition 3.40. If (X, k·k) is a normed vector space, then we say {xn}∞n=1 ⊂ X
is a Cauchy sequence if limm,n→∞ kxm − xnk = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {xn}∞n=1 ⊂ X which is Cauchy is
convergent where {xn}∞n=1 ⊂ X is convergent iff there exists x ∈ X such that
limn→∞ kxn − xk = 0. As usual we will abbreviate this last statement by writing
limn→∞ xn = x.

Lemma 3.41. Suppose that X is a set then the bounded functions c∞(X) on X is
a Banach space with the norm

kfk = kfk∞ = sup
x∈X

|f(x)| .

Moreover if X is a topological space the set BC(X) ⊂ c∞(X) = B(X) is closed
subspace of c∞(X) and hence is also a Banach space.

Proof. Let {fn}∞n=1 ⊂ c∞(X) be a Cauchy sequence. Since for any x ∈ X, we
have

(3.5) |fn(x)− fm(x)| ≤ kfn − fmk∞
which shows that {fn(x)}∞n=1 ⊂ F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, f(x) := limn→∞ fn(x) exists for all x ∈ X. Passing to
the limit n→∞ in Eq. (3.5) implies

|f(x)− fm(x)| ≤ lim sup
n→∞

kfn − fmk∞



28 BRUCE K. DRIVER†

and taking the supremum over x ∈ X of this inequality implies

kf − fmk∞ ≤ lim sup
n→∞

kfn − fmk∞ → 0 as m→∞

showing fm → f in c∞(X).
For the second assertion, suppose that {fn}∞n=1 ⊂ BC(X) ⊂ c∞(X) and fn →

f ∈ c∞(X). We must show that f ∈ BC(X), i.e. that f is continuous. To this end
let x, y ∈ X, then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 kf − fnk∞ + |fn(x)− fn(y)| .

Thus if � > 0, we may choose n large so that 2 kf − fnk∞ < �/2 and then for this
n there exists an open neighborhood Vx of x ∈ X such that |fn(x)− fn(y)| < �/2
for y ∈ Vx. Thus |f(x)− f(y)| < � for y ∈ Vx showing the limiting function f is
continuous.

Remark 3.42. Let X be a set, Y be a Banach space and c∞(X,Y ) denote
the bounded functions f : X → Y equipped with the norm kfk = kfk∞ =
supx∈X kf(x)kY . If X is a topological space, let BC(X,Y ) denote those f ∈
c∞(X,Y ) which are continuous. The same proof used in Lemma 3.41 shows that
c∞(X,Y ) is a Banach space and that BC(X,Y ) is a closed subspace of c∞(X,Y ).

Theorem 3.43 (Completeness of cp(µ)). Let X be a set and µ : X → (0,∞] be a
given function. Then for any p ∈ [1,∞], (cp(µ), k·kp) is a Banach space.
Proof. We have already proved this for p =∞ in Lemma 3.41 so we now assume

that p ∈ [1,∞). Let {fn}∞n=1 ⊂ cp(µ) be a Cauchy sequence. Since for any x ∈ X,

|fn(x)− fm(x)| ≤ 1

µ(x)
kfn − fmkp → 0 as m,n→∞

it follows that {fn(x)}∞n=1 is a Cauchy sequence of numbers and f(x) :=
limn→∞ fn(x) exists for all x ∈ X. By Fatou’s Lemma,

kfn − fkpp =
X
X

µ · lim
m→∞ inf |fn − fm|p ≤ lim

m→∞ inf
X
X

µ · |fn − fm|p

= lim
m→∞ inf kfn − fmkpp → 0 as n→∞.

This then shows that f = (f−fn)+fn ∈ cp(µ) (being the sum of two cp — functions)

and that fn
cp−→ f.

Example 3.44. Here are a couple of examples of complete metric spaces.
(1) X = R and d(x, y) = |x− y|.
(2) X = Rn and d(x, y) = kx− yk2 =

Pn
i=1(xi − yi)

2.
(3) X = cp(µ) for p ∈ [1,∞] and any weight function µ.
(4) X = C([0, 1],R) — the space of continuous functions from [0, 1] to R and

d(f, g) := maxt∈[0,1] |f(t)− g(t)|. This is a special case of Lemma 3.41.
(5) Here is a typical example of a non-complete metric space. Let X =

C([0, 1],R) and

d(f, g) :=

Z 1

0

|f(t)− g(t)| dt.
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3.5. Compactness in Metric Spaces. Let (X, ρ) be a metric space and let
B0
x(�) = Bx(�) \ {x} .

Definition 3.45. A point x ∈ X is an accumulation point of a subset E ⊂ X if
∅ 6= E ∩ V \ {x} for all V ⊂o X containing x.

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.46. Let E ⊂ X be a subset of a metric space (X, ρ) . Then the following
are equivalent:

(1) x ∈ X is an accumulation point of E.
(2) B0

x(�) ∩E 6= ∅ for all � > 0.
(3) Bx(�) ∩E is an infinite set for all � > 0.
(4) There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Definition 3.47. A metric space (X,ρ) is said to be � — bounded (� > 0) provided
there exists a finite cover of X by balls of radius �. The metric space is totally
bounded if it is � — bounded for all � > 0.

Theorem 3.48. Let X be a metric space. The following are equivalent.
(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) X is totally bounded and complete.

Proof. The proof will consist of showing that a⇒ b⇒ c⇒ a.
(a ⇒ b) We will show that not b ⇒ not a. Suppose there exists E ⊂ X, such

that #(E) =∞ and E has no accumulation points. Then for all x ∈ X there exists
δx > 0 such that Vx := Bx(δx) satisfies (Vx \ {x})∩E = ∅. Clearly V = {Vx}x∈X is
a cover of X, yet V has no finite sub cover. Indeed, for each x ∈ X, Vx ∩E consists
of at most one point, therefore if Λ ⊂⊂ X, ∪x∈ΛVx can only contain a finite number
of points from E, in particular X 6= ∪x∈ΛVx. (See Figure 7.)

Figure 7. The construction of an open cover with no finite sub-cover.

(b ⇒ c) To show X is complete, let {xn}∞n=1 ⊂ X be a sequence and
E := {xn : n ∈ N} . If #(E) < ∞, then {xn}∞n=1 has a subsequence {xnk} which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.46 implies that {xn} has a convergence
subsequence.
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We now show thatX is totally bounded. Let � > 0 be given and choose x1 ∈ X. If
possible choose x2 ∈ X such that d(x2, x1) ≥ �, then if possible choose x3 ∈ X such
that d(x3, {x1, x2}) ≥ � and continue inductively choosing points {xj}nj=1 ⊂ X

such that d(xn, {x1, . . . , xn−1}) ≥ �. This process must terminate, for otherwise
we could choose E = {xj}∞j=1 and infinite number of distinct points such that
d(xj , {x1, . . . , xj−1}) ≥ � for all j = 2, 3, 4, . . . . Since for all x ∈ X the Bx(�/3)∩E
can contain at most one point, no point x ∈ X is an accumulation point of E. (See
Figure 8.)

Figure 8. Constructing a set with out an accumulation point.

(c ⇒ a) For sake of contradiction, assume there exists a cover an open cover
V = {Vα}α∈A of X with no finite subcover. Since X is totally bounded for each
n ∈ N there exists Λn ⊂⊂ X such that

X =
[

x∈Λn
Bx(1/n) ⊂

[
x∈Λn

Cx(1/n).

Choose x1 ∈ Λ1 such that no finite subset of V covers K1 := Cx1(1). Since K1 =
∪x∈Λ2K1∩Cx(1/2), there exists x2 ∈ Λ2 such that K2 := K1∩Cx2(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
Kn = Kn−1 ∩Cxn(1/n) with xn ∈ Λn such no Kn can be covered by a finite subset
of V. Now choose yn ∈ Kn for each n. Since {Kn}∞n=1 is a decreasing sequence of
closed sets such that diam(Kn) ≤ 2/n, it follows that {yn} is a Cauchy and hence
convergent with

y = lim
n→∞ yn ∈ ∩∞m=1Km.

Since V is a cover of X, there exists V ∈ V such that x ∈ V. Since Kn ↓ {y} and
diam(Kn)→ 0, it now follows that Kn ⊂ V for some n large. But this violates the
assertion that Kn can not be covered by a finite subset of V.(See Figure 9.)

Remark 3.49. LetX be a topological space and Y be a Banach space. By combining
Exercise 3.10 and Theorem 3.48 it follows that Cc(X,Y ) ⊂ BC(X,Y ).

Corollary 3.50. Let X be a metric space then X is compact iff all sequences
{xn} ⊂ X have convergent subsequences.

Proof. Suppose X is compact and {xn} ⊂ X.
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Figure 9. Nested Sequence of cubes.

(1) If #({xn : n = 1, 2, . . . }) < ∞ then choose x ∈ X such that xn = x i.o.
and let {nk} ⊂ {n} such that xnk = x for all k. Then xnk → x

(2) If #({xn : n = 1, 2, . . . }) = ∞. We know E = {xn} has an accumulation
point {x}, hence there exists xnk → x.

Conversely if E is an infinite set let {xn}∞n=1 ⊂ E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume xn → x ∈ X as
n→∞. Now x ∈ X is an accumulation point of E by Theorem 3.48 and hence X
is compact.

Corollary 3.51. Compact subsets of Rn are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [−M,M ]n for some positive integer M.
For δ > 0, let

Λδ = δZn ∩ [−M,M ]n := {δx : x ∈ Zn and δ|xi| ≤M for i = 1, 2, . . . , n}.
We will show, by choosing δ > 0 sufficiently small, that

(3.6) K ⊂ [−M,M ]n ⊂ ∪x∈ΛδB(x, �)
which shows that K is totally bounded. Hence by Theorem 3.48, K is compact.
Suppose that y ∈ [−M,M ]n, then there exists x ∈ Λδ such that |yi − xi| ≤ δ for

i = 1, 2, . . . , n. Hence

d2(x, y) =
nX
i=1

(yi − xi)
2 ≤ nδ2

which shows that d(x, y) ≤ √nδ. Hence if choose δ < �/
√
n we have shows that

d(x, y) < �, i.e. Eq. (3.6) holds.

Example 3.52. Let X = cp(N) with p ∈ [1,∞) and ρ ∈ X such that ρ(k) ≥ 0 for
all k ∈ N. The set

K := {x ∈ X : |x(k)| ≤ ρ(k) for all k ∈ N}
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is compact. To prove this, let {xn}∞n=1 ⊂ K be a sequence. By compactness of
closed bounded sets in C, for each k ∈ N there is a subsequence of {xn(k)}∞n=1 ⊂ C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence {yn}∞n=1 of {xn}∞n=1 such that y(k) := limn→∞ yn(k) exists for all k ∈ N.4
Since |yn(k)| ≤ ρ(k) for all n it follows that |y(k)| ≤ ρ(k), i.e. y ∈ K. Finally

lim
n→∞ ky − ynkpp = lim

n→∞

∞X
k=1

|y(k)− yn(k)|p =
∞X
k=1

lim
n→∞ |y(k)− yn(k)|p = 0

where we have used the Dominated convergence theorem. (Note |y(k)− yn(k)|p ≤
2pρp(k) and ρp is summable.) Therefore yn → y and we are done.
Alternatively, we can proveK is compact by showing thatK is closed and totally

bounded. It is simple to show K is closed, for if {xn}∞n=1 ⊂ K is a convergent
sequence in X, x := limn→∞ xn, then |x(k)| ≤ limn→∞ |xn(k)| ≤ ρ(k) for all k ∈ N.
This shows that x ∈ K and hence K is closed. To see that K is totally bounded, let
� > 0 and choose N such that

¡P∞
k=N+1 |ρ(k)|p

¢1/p
< �. Since

QN
k=1Cρ(k)(0) ⊂ CN

is closed and bounded, it is compact. Therefore there exists a finite subset Λ ⊂QN
k=1 Cρ(k)(0) such that

NY
k=1

Cρ(k)(0) ⊂ ∪z∈ΛBN
z (�)

where BN
z (�) is the open ball centered at z ∈ CN relative to the cp({1, 2, 3, . . . , N})

— norm. For each z ∈ Λ, let z̃ ∈ X be defined by z̃(k) = z(k) if k ≤ N and z̃(k) = 0
for k ≥ N + 1. I now claim that

(3.7) K ⊂ ∪z∈ΛBz̃(2�)

which, when verified, shows K is totally bounced. To verify Eq. (3.7), let x ∈ K
and write x = u + v where u(k) = x(k) for k ≤ N and u(k) = 0 for k < N. Then
by construction u ∈ Bz̃(�) for some z̃ ∈ Λ and

kvkp ≤
Ã ∞X
k=N+1

|ρ(k)|p
!1/p

< �.

So we have

kx− z̃kp = ku+ v − z̃kp ≤ ku− z̃kp + kvkp < 2�.
Exercise 3.14 (Extreme value theorem). Let (X, τ) be a compact topological space
and f : X → R be a continuous function. Show −∞ < inf f ≤ sup f < ∞ and

4The argument is as follows. Let {n1j}∞j=1 be a subsequence of N = {n}∞n=1 such that
limj→∞ xn1j

(1) exists. Now choose a subsequence {n2j}∞j=1 of {n1j}∞j=1 such that limj→∞ xn2j
(2)

exists and similalry {n3j}∞j=1 of {n2j}∞j=1 such that limj→∞ xn3j
(3) exists. Continue on this way

inductively to get

{n}∞n=1 ⊃ {n1j}∞j=1 ⊃ {n2j}∞j=1 ⊃ {n3j}∞j=1 ⊃ . . .

such that limj→∞ xnkj
(k) exists for all k ∈ N. Let mj := njj so that eventually {mj}∞j=1 is a

subsequnce of {nkj }∞j=1 for all k. Therefore, we may take yj := xmj .
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there exists a, b ∈ X such that f(a) = inf f and f(b) = sup f. 5 Hint: use Exercise
3.10 and Corollary 3.51.

Exercise 3.15 (Uniform Continuity). Let (X, d) be a compact metric space, (Y, ρ)
be a metric space and f : X → Y be a continuous function. Show that f is
uniformly continuous, i.e. if � > 0 there exists δ > 0 such that ρ(f(y), f(x)) < � if
x, y ∈ X with d(x, y) < δ. Hint: I think the easiest proof is by using a sequence
argument.

Definition 3.53. Let L be a vector space. We say that two norms, |·| and k·k , on
L are equivalent if there exists constants α, β ∈ (0,∞) such that

kfk ≤ α |f | and |f | ≤ β kfk for all f ∈ L.

Lemma 3.54. Let L be a finite dimensional vector space. Then any two norms
|·| and k·k on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {fi}ni=1 be a basis for L and define a new norm on L by°°°°°
nX
i=1

aifi

°°°°°
1

≡
nX
i=1

|ai| for ai ∈ F.

By the triangle inequality of the norm |·| , we find¯̄̄̄
¯
nX
i=1

aifi

¯̄̄̄
¯ ≤

nX
i=1

|ai| |fi| ≤M
nX
i=1

|ai| =M

°°°°°
nX
i=1

aifi

°°°°°
1

where M = maxi |fi| . Thus we have
|f | ≤M kfk1

for all f ∈ L. This inequality shows that |·| is continuous relative to k·k1 . Now
let S := {f ∈ L : kfk1 = 1} , a compact subset of L relative to k·k1 . Therefore by
Exercise 3.14 there exists f0 ∈ S such that

m = inf {|f | : f ∈ S} = |f0| > 0.
Hence given 0 6= f ∈ L, then f

kfk1 ∈ S so that

m ≤
¯̄̄̄

f

kfk1

¯̄̄̄
= |f | 1

kfk1
or equivalently

kfk1 ≤
1

m
|f | .

This shows that |·| and k·k1 are equivalent norms. Similarly one shows that k·k and
k·k1 are equivalent and hence so are |·| and k·k .
Definition 3.55. A subset D of a topological space X is dense if D̄ = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.56. The following are examples of countable dense sets.

5Here is a proof if X is a metric space. Let {xn}∞n=1 ⊂ X be a sequence such that f(xn) ↑ sup f.
By compactness of X we may assume, by passing to a subsequence if necessary that xn → b ∈ X
as n→∞. By continuity of f, f(b) = sup f.
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(1) The rational number Q are dense in R equipped with the usual topology.
(2) More generally, Qd is a countable dense subset of Rd for any d ∈ N.
(3) Even more generally, for any function µ : N→ (0,∞), cp(µ) is separable for

all 1 ≤ p <∞. For example, let Γ ⊂ F be a countable dense set, then
D := {x ∈ cp(µ) : xi ∈ ¡ for all i and #{j : xj 6= 0} <∞}.

The set Γ can be taken to be Q if F = R or Q+ iQ if F = C.
(4) If (X, ρ) is a metric space which is separable then every subset Y ⊂ X is

also separable in the induced topology.

To prove 4. above, let A = {xn}∞n=1 ⊂ X be a countable dense subset of X.
Let ρ(x, Y ) = inf{ρ(x, y) : y ∈ Y } be the distance from x to Y . Recall that
ρ(·, Y ) : X → [0,∞) is continuous. Let �n = ρ(xn, Y ) ≥ 0 and for each n let
yn ∈ Bxn(

1
n) ∩ Y if �n = 0 otherwise choose yn ∈ Bxn(2�n) ∩ Y. Then if y ∈ Y and

� > 0 we may choose n ∈ N such that ρ(y, xn) ≤ �n < �/3 and 1
n < �/3. If �n > 0,

ρ(yn, xn) ≤ 2�n < 2�/3 and if �n = 0, ρ(yn, xn) < �/3 and therefore

ρ(y, yn) ≤ ρ(y, xn) + ρ(xn, yn) < �.

This shows that B ≡ {yn}∞n=1 is a countable dense subset of Y.
Lemma 3.57. Any compact metric space (X, d) is separable.

Proof. To each integer n, there exists Λn ⊂⊂ X such thatX = ∪x∈ΛnB(x, 1/n).
Let D := ∪∞n=1Λn — a countable subset of X. Moreover, it is clear by construction
that D̄ = X.

3.6. Compactness in Function Spaces. In this section, let (X, τ) be a topolog-
ical space.

Definition 3.58. Let F ⊂ C(X).

(1) F is equicontinuous at x ∈ X iff for all � > 0 there exists U ∈ τx such that
|f(y)− f(x)| < � for all y ∈ U and f ∈ F .

(2) F is equicontinuous if F is equicontinuous at all points x ∈ X.
(3) F is pointwise bounded if sup{|f(x)| : |f ∈ F} <∞ for all x ∈ X.

Theorem 3.59 (Ascoli-Arzela Theorem). Let (X, τ) be a compact topological space
and F ⊂ C(X). Then F is precompact in C(X) iff F is equicontinuous and point-
wise bounded.

Proof. (⇐) Since C(X) ⊂ B(X) is a complete metric space, we must show F
is totally bounded. Let � > 0 be given. By equicontinuity there exists Vx ∈ τx for
all x ∈ X such that |f(y) − f(x)| < �/2 if y ∈ Vx and f ∈ F . Since X is compact
we may choose Λ ⊂⊂ X such that X = ∪x∈ΛVx. We have now decomposed X
into “blocks” {Vx}x∈Λ such that each f ∈ F is constant to within � on Vx. Since
sup {|f(x)| : x ∈ Λ and f ∈ F} <∞, it is now evident that

M ≡ sup {|f(x)| : x ∈ X and f ∈ F} ≤ sup {|f(x)| : x ∈ Λ and f ∈ F}+ � <∞.

Let D ≡ {k�/2 : k ∈ Z} ∩ [−M,M ]. If f ∈ F and φ ∈ DΛ (i.e. φ : Λ → D is a
function) is chosen so that |φ(x)− f(x)| ≤ �/2 for all x ∈ Λ, then

|f(y)− φ(x)| ≤ |f(y)− f(x)|+ |f(x)− φ(x)| < � ∀ x ∈ Λ and y ∈ Vx.

From this it follows that F = S©Fφ : φ ∈ DΛª where, for φ ∈ DΛ,
Fφ ≡ {f ∈ F : |f(y)− φ(x)| < � for y ∈ Vx and x ∈ Λ}.
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Let Γ :=
©
φ ∈ DΛ : Fφ 6= ∅

ª
and for each φ ∈ Γ choose fφ ∈ Fφ∩F . For f ∈ Fφ,

x ∈ Λ and y ∈ Vx we have

|f(y)− fφ(y)| ≤ |f(y)− φ(x))|+ |φ(x)− fφ(y)| < 2�.
So kf − fφk < 2� for all f ∈ Fφ showing that Fφ ⊂ Bfφ(2�). Therefore,

F = ∪φ∈ΓFφ ⊂ ∪φ∈ΓBfφ(2�)

and because � > 0 was arbitrary we have shown that F is totally bounded.
(⇒) Since k·k : C(X) → [0,∞) is a continuous function on C(X) it is bounded

on any compact subset F ⊂ C(X). This shows that sup {kfk : f ∈ F} <∞ which
clearly implies that F is pointwise bounded.6 Suppose F were not equicontinuous
at some point x ∈ X that is to say there exists � > 0 such that for all V ∈ τx,
sup
y∈V

sup
f∈F

|f(y)− f(x)| > �.7 Equivalently said, to each V ∈ τx we may choose

(3.8) fV ∈ F and xV ∈ V such that |fV (x)− fV (xV )| ≥ �.

Set CV = {fW :W ∈ τx and W ⊂ V }k·k∞ ⊂ F and notice for any V ⊂⊂ τx that

∩V ∈VCV ⊇ C∩V 6= ∅,
so that {CV }V ∈ τx ⊂ F has the finite intersection property.8 Since F is compact,
it follows that there exists some

f ∈
\
V ∈τx

CV 6= ∅.

Since f is continuous, there exists V ∈ τx such that |f(x) − f(y)| < �/3 for all
y ∈ V. Because f ∈ CV , there exists W ⊂ V such that kf − fW k < �/3. We now
arrive at a contradiction;

� ≤ |fW (x)− fW (xW )| ≤ |fW (x)− f(x)|+ |f(x)− f(xW )|+ |f(xW )− fW (xW )|
< �/3 + �/3 + �/3 = �.

6One could also prove that F is pointwise bounded by considering the continuous evaluation
maps ex : C(X)→ R given by ex(f) = f(x) for all x ∈ X.

7If X is first countable we could finish the proof with the following argument. Let {Vn}∞n=1
be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By the assumption that F is not
equicontinuous at x, there exist fn ∈ F and xn ∈ Vn such that |fn(x) − fn(xn)| ≥ � ∀ n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that fn
converges uniformly to some f ∈ F . Because xn → x as n→∞ we learn that

� ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2kfn − fk+ |f(x)− f(xn)|→ 0 as n→∞

which is a contradiction.
8If we are willing to use Net’s described in Appendix D below we could finish the proof as

follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster point f ∈ F ⊂ C(X). Choose a
subnet {gα}α∈A of {fV }V ∈τX such that gα → f uniformly. Then, since xV → x implies xVα → x,
we may conclude from Eq. (3.8) that

� ≤ |gα(x)− gα(xVα)|→ |g(x)− g(x)| = 0
which is a contradiction.
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3.7. Bounded Linear Operators Basics.

Definition 3.60. Let X and Y be normed spaces and T : X → Y be a linear
map. Then T is said to be bounded provided there exists C < ∞ such that
kT (x)k ≤ CkxkX for all x ∈ X. We denote the best constant by kTk, i.e.

kTk = sup
x6=0

kT (x)k
kxk = sup

x6=0
{kT (x)k : kxk = 1} .

The number kTk is called the operator norm of T.

Proposition 3.61. Suppose that X and Y are normed spaces and T : X → Y is a
linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.
(c) T is bounded.

Proof. (a) ⇒ (b) trivial. (b) ⇒ (c) If T continuous at 0 then there exist δ > 0
such that kT (x)k ≤ 1 if kxk ≤ δ. Therefore for any x ∈ X, kT (δx/kxk) k ≤ 1 which
implies that kT (x)k ≤ 1

δkxk and hence kTk ≤ 1
δ < ∞. (c) ⇒ (a) Let x ∈ X and

� > 0 be given. Then

kT (y)− T (x)k = kT (y − x)k ≤ kTk ky − xk < �

provided ky − xk < �/kTk ≡ δ.
In the examples to follow all integrals are the standard Riemann integrals, see

Section 4 below for the definition and the basic properties of the Riemann integral.

Example 3.62. Suppose that K : [0, 1]× [0, 1]→ C is a continuous function. For
f ∈ C([0, 1]), let

Tf(x) =

Z 1

0

K(x, y)f(y)dy.

Since

|Tf(x)− Tf(z)| ≤
Z 1

0

|K(x, y)−K(z, y)| |f(y)| dy
≤ kfk∞maxy |K(x, y)−K(z, y)|(3.9)

and the latter expression tends to 0 as x→ z by uniform continuity of K. Therefore
Tf ∈ C([0, 1]) and by the linearity of the Riemann integral, T : C([0, 1])→ C([0, 1])
is a linear map. Moreover,

|Tf(x)| ≤
Z 1

0

|K(x, y)| |f(y)| dy ≤
Z 1

0

|K(x, y)| dy · kfk∞ ≤ A kfk∞
where

(3.10) A := sup
x∈[0,1]

Z 1

0

|K(x, y)| dy <∞.

This shows kTk ≤ A < ∞ and therefore T is bounded. We may in fact show
kTk = A. To do this let x0 ∈ [0, 1] be such that

sup
x∈[0,1]

Z 1

0

|K(x, y)| dy =
Z 1

0

|K(x0, y)| dy.
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Such an x0 can be found since, using a similar argument to that in Eq. (3.9),
x→ R 1

0
|K(x, y)| dy is continuous. Given � > 0, let

f�(y) :=
K(x0, y)q

�+ |K(x0, y)|2

and notice that lim�↓0 kf�k∞ = 1 and

kTf�k∞ ≥ |Tf�(x0)| = Tf�(x0) =

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy.

Therefore,

kTk ≥ lim
�↓0

1

kf�k∞

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy

= lim
�↓0

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy = A

since

0 ≤ |K(x0, y)|− |K(x0, y)|2q
�+ |K(x0, y)|2

=
|K(x0, y)|q
�+ |K(x0, y)|2

·q
�+ |K(x0, y)|2 − |K(x0, y)|

¸

≤
q
�+ |K(x0, y)|2 − |K(x0, y)|

and the latter expression tends to zero uniformly in y as � ↓ 0.
We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1]) denote

C([0, 1]) with the norm

kfk1 =
Z 1

0

|f(x)| dx,
then T : L1 ([0, 1], dm) → C([0, 1]) is bounded as well. Indeed, let M =
sup {|K(x, y)| : x, y ∈ [0, 1]} , then

|(Tf)(x)| ≤
Z 1

0

|K(x, y)f(y)| dy ≤M kfk1
which shows kTfk∞ ≤M kfk1 and hence,

kTkL1→C ≤ max {|K(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that kTk = M as follows. Let (x0, y0) ∈ [0, 1]2 satisfying
|K(x0, y0)| = M. Then given � > 0, there exists a neighborhood U = I × J of
(x0, y0) such that |K(x, y)−K(x0, y0)| < � for all (x, y) ∈ U. Let f ∈ Cc(I, [0,∞))
such that

R 1
0
f(x)dx = 1. Choose α ∈ C such that |α| = 1 and αK(x0, y0) = M,

then

|(Tαf)(x0)| =
¯̄̄̄Z 1

0

K(x0, y)αf(y)dy

¯̄̄̄
=

¯̄̄̄Z
I

K(x0, y)αf(y)dy

¯̄̄̄
≥ Re

Z
I

αK(x0, y)f(y)dy ≥
Z
I

(M − �) f(y)dy = (M − �) kαfkL1
and hence

kTαfkC ≥ (M − �) kαfkL1
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showing that kTk ≥ M − �. Since � > 0 is arbitrary, we learn that kTk ≥ M and
hence kTk =M.
One may also view T as a map from T : C([0, 1])→ L1([0, 1]) in which case one

may show

kTkL1→C ≤
Z 1

0

max
y
|K(x, y)| dx <∞.

For the next three exercises, let X = Rn and Y = Rm and T : X → Y be a linear
transformation so that T is given by matrix multiplication by an m×n matrix. Let
us identify the linear transformation T with this matrix.

Exercise 3.16. Assume the norms on X and Y are the c1 — norms, i.e. for x ∈ Rn,
kxk =Pn

j=1 |xj | . Then the operator norm of T is given by

kTk = max
1≤j≤n

mX
i=1

|Tij | .

Exercise 3.17. ms on X and Y are the c∞ — norms, i.e. for x ∈ Rn, kxk =
max1≤j≤n |xj | . Then the operator norm of T is given by

kTk = max
1≤i≤m

nX
j=1

|Tij | .

Exercise 3.18. Assume the norms on X and Y are the c2 — norms, i.e. for x ∈ Rn,
kxk2 =Pn

j=1 x
2
j . Show kTk2 is the largest eigenvalue of the matrix T trT : Rn → Rn.

Exercise 3.19. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.63. Let L(X,Y ) denote the bounded linear operators from X to Y. If
Y = F we write X∗ for L(X,F) and call X∗ the (continuous) dual space to X.

Lemma 3.64. Let X,Y be normed spaces, then the operator norm k·k on L(X,Y )
is a norm. Moreover if Z is another normed space and T : X → Y and S : Y → Z
are linear maps, then kSTk ≤ kSkkTk, where ST := S ◦ T.
Proof. As usual, the main point in checking the operator norm is a norm is

to verify the triangle inequality, the other axioms being easy to check. If A,B ∈
L(X,Y ) then the triangle inequality is verified as follows:

kA+Bk = sup
x6=0

kAx+Bxk
kxk ≤ sup

x6=0
kAxk+ kBxk

kxk

≤ sup
x6=0

kAxk
kxk + sup

x6=0
kBxk
kxk = kAk+ kBk .

For the second assertion, we have for x ∈ X, that

kSTxk ≤ kSkkTxk ≤ kSkkTkkxk.
From this inequality and the definition of kSTk, it follows that kSTk ≤ kSkkTk.
Proposition 3.65. Suppose that X is a normed vector space and Y is a Banach
space. Then (L(X,Y ), k · kop) is a Banach space. In particular the dual space X∗
is always a Banach space.
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We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.66. A normed space (X, k · k) is a Banach space iff for every sequence
{xn}∞n=1 such that

∞P
n=1

kxnk < ∞ then limN→∞
NP
n=1

xn = S exists in X (that is to

say every absolutely convergent series is a convergent series in X). As usual we

will denote S by
∞P
n=1

xn.

Proof. (⇒)If X is complete and
∞P
n=1

kxnk <∞ then sequence SN ≡
NP
n=1

xn for

N ∈ N is Cauchy because (for N > M)

kSN − SMk ≤
NX

n=M+1

kxnk→ 0 as M,N →∞.

Therefore S =
∞P
n=1

xn := limN→∞
NP
n=1

xn exists in X.

(⇐=) Suppose that {xn}∞n=1 is a Cauchy sequence and let {yk = xnk}∞k=1 be a
subsequence of {xn}∞n=1 such that

∞P
n=1

kyn+1 − ynk <∞. By assumption

yN+1 − y1 =
NX
n=1

(yn+1 − yn)→ S =
∞X
n=1

(yn+1 − yn) ∈ X as N →∞.

This shows that limN→∞ yN exists and is equal to x := y1 + S. Since {xn}∞n=1 is
Cauchy,

kx− xnk ≤ kx− ykk+ kyk − xnk→ 0 as k, n→∞
showing that limn→∞ xn exists and is equal to x.
Proof. (Proof of Proposition 3.65.) We must show (L(X,Y ), k·kop) is complete.

Suppose that Tn ∈ L(X,Y ) is a sequence of operators such that
∞P
n=1

kTnk < ∞.

Then
∞X
n=1

kTnxk ≤
∞X
n=1

kTnk kxk <∞

and therefore by the completeness of Y, Sx :=
∞P
n=1

Tnx = limN→∞ SNx exists in

Y, where SN :=
NP
n=1

Tn. The reader should check that S : X → Y so defined in

linear. Since,

kSxk = lim
N→∞

kSNxk ≤ lim
N→∞

NX
n=1

kTnxk ≤
∞X
n=1

kTnk kxk ,

S is bounded and

(3.11) kSk ≤
∞X
n=1

kTnk.
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Similarly,

kSx− SMxk = lim
N→∞

kSNx− SMxk ≤ lim
N→∞

NX
n=M+1

kTnk kxk =
∞X

n=M+1

kTnk kxk

and therefore,

kS − SMk ≤
∞X

n=M

kTnk→ 0 as M →∞.

Of course we did not actually need to use Theorem 3.66 in the proof. Here is
another proof. Let {Tn}∞n=1 be a Cauchy sequence in L(X,Y ). Then for each x ∈ X,

kTnx− Tmxk ≤ kTn − Tmk kxk→ 0 as m,n→∞
showing {Tnx}∞n=1 is Cauchy in Y. Using the completeness of Y, there exists an
element Tx ∈ Y such that

lim
n→∞ kTnx− Txk = 0.

It is a simple matter to show T : X → Y is a linear map. Moreover,

kTx− Tnxk ≤ kTx− Tmxk+ kTmx− Tnxk ≤ kTx− Tmxk+ kTm − Tnk kxk
and therefore

kTx− Tnxk ≤ lim sup
m→∞

(kTx− Tmxk+ kTm − Tnk kxk) = kxk·lim sup
m→∞

kTm − Tnk .

Hence

kT − Tnk ≤ lim sup
m→∞

kTm − Tnk→ 0 as n→∞.

Thus we have shown that Tn → T in L(X,Y ) as desired.

3.8. Inverting Elements in L(X) and Linear ODE.

Definition 3.67. A linear map T : X → Y is an isometry if kTxkY = kxkX for
all x ∈ X. T is said to be invertible if T is a bijection and T−1 is bounded.

Notation 3.68. We will write GL(X,Y ) for those T ∈ L(X,Y ) which are invert-
ible. If X = Y we simply write L(X) and GL(X) for L(X,X) and GL(X,X)
respectively.

Proposition 3.69. Suppose X is a Banach space and Λ ∈ L(X) ≡ L(X,X)

satisfies
∞P
n=0

kΛnk <∞. Then I − Λ is invertible and

(I − Λ)−1 = “ 1

I − Λ” =
∞X
n=0

Λn and
°°(I − Λ)−1°° ≤ ∞X

n=0

kΛnk.

In particular if kΛk < 1 then the above formula holds and°°(I − Λ)−1°° ≤ 1

1− kΛk .
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Proof. Since L(X) is a Banach space and
∞P
n=0

kΛnk <∞, it follows from Theo-

rem 3.66 that

S := lim
N→∞

SN := lim
N→∞

NX
n=0

Λn

exists in L(X). Moreover, by Exercise 3.38 below,

(I − Λ)S = (I − Λ) lim
N→∞

SN = lim
N→∞

(I − Λ)SN

= lim
N→∞

(I − Λ)
NX
n=0

Λn = lim
N→∞

(I − ΛN+1) = I

and similarly S (I − Λ) = I. This shows that (I − Λ)−1 exists and is equal to S.
Moreover, (I − Λ)−1 is bounded because°°(I − Λ)−1°° = kSk ≤ ∞X

n=0

kΛnk.

If we further assume kΛk < 1, then kΛnk ≤ kΛkn and
∞X
n=0

kΛnk ≤
∞X
n=0

kΛkn ≤ 1

1− kΛk <∞.

Corollary 3.70. Let X and Y be Banach spaces. Then GL(X,Y ) is an open
(possibly empty) subset of L(X,Y ). More specifically, if A ∈ GL(X,Y ) and B ∈
L(X,Y ) satisfies

(3.12) kB −Ak < kA−1k−1
then B ∈ GL(X,Y )

(3.13) B−1 =
∞X
n=0

£
IX −A−1B

¤n
A−1 ∈ L(Y,X)

and °°B−1°° ≤ kA−1k 1

1− kA−1k kA−Bk .

Proof. Let A and B be as above, then

B = A− (A−B) = A
£
IX −A−1(A−B))

¤
= A(IX − Λ)

where Λ : X → X is given by

Λ := A−1(A−B) = IX −A−1B.

Now

kΛk = °°A−1(A−B))
°° ≤ kA−1k kA−Bk < kA−1kkA−1k−1 = 1.

Therefore I − Λ is invertible and hence so is B (being the product of invertible
elements) with

B−1 = (I − Λ)−1A−1 = £IX −A−1(A−B))
¤−1

A−1.

For the last assertion we have,°°B−1°° ≤ °°(IX − Λ)−1°° kA−1k ≤ kA−1k 1

1− kΛk ≤ kA
−1k 1

1− kA−1k kA−Bk .
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For an application of these results to linear ordinary differential equations, see
Section 5.2.

3.9. Supplement: Sums in Banach Spaces.

Definition 3.71. Suppose that X is a normed space and {vα ∈ X : α ∈ A} is a
given collection of vectors in X. We say that s =

P
α∈A vα ∈ X if for all � > 0

there exists a finite set Γ� ⊂ A such that
°°s−Pα∈Λ vα

°° < � for all Λ ⊂⊂ A
such that Γ� ⊂ Λ. (Unlike the case of real valued sums, this does not imply thatP

α∈Λ kvαk < ∞. See Proposition 12.19 below, from which one may manufacture
counter-examples to this false premise.)

Lemma 3.72. (1) When X is a Banach space,
P

α∈A vα exists in X iff for all
� > 0 there exists Γ� ⊂⊂ A such that

°°P
α∈Λ vα

°° < � for all Λ ⊂⊂ A \ Γ�.
Also if

P
α∈A vα exists in X then {α ∈ A : va 6= 0} is at most countable. (2) If

s =
P

α∈A vα ∈ X exists and T : X → Y is a bounded linear map between normed
spaces, then

P
α∈A Tvα exists in Y and

Ts = T
X
α∈A

vα =
X
α∈A

Tvα.

Proof. (1) Suppose that s =
P

α∈A vα exists and � > 0. Let Γ� ⊂⊂ A be as in
Definition 3.71. Then for Λ ⊂⊂ A \ Γ�,°°°°°X

α∈Λ
vα

°°°°° ≤
°°°°°X
α∈Λ

vα +
X
α∈Γ�

vα − s

°°°°°+
°°°°°X
α∈Γ�

vα − s

°°°°°
=

°°°°° X
α∈Γ�∪Λ

vα − s

°°°°°+ � < 2�.

Conversely, suppose for all � > 0 there exists Γ� ⊂⊂ A such that
°°P

α∈Λ vα
°° < �

for all Λ ⊂⊂ A \ Γ�. Let γn := ∪nk=1Γ1/k ⊂ A and set sn :=
P

α∈γn vα. Then for
m > n,

ksm − snk =
°°°°°°

X
α∈γm\γn

vα

°°°°°° ≤ 1/n→ 0 as m,n→∞.

Therefore {sn}∞n=1 is Cauchy and hence convergent in X. Let s := limn→∞ sn, then
for Λ ⊂⊂ A such that γn ⊂ Λ, we have°°°°°s−X

α∈Λ
vα

°°°°° ≤ ks− snk+
°°°°°°
X

α∈Λ\γn
vα

°°°°°° ≤ ks− snk+ 1

n
.

Since the right member of this equation goes to zero as n → ∞, it follows thatP
α∈A vα exists and is equal to s.
Let γ := ∪∞n=1γn — a countable subset of A. Then for α /∈ γ, {α} ⊂ A \ γn for all

n and hence

kvαk =
°°°°°°
X

β∈{α}
vβ

°°°°°° ≤ 1/n→ 0 as n→∞.

Therefore vα = 0 for all α ∈ A \ γ.
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(2) Let Γ� be as in Definition 3.71 and Λ ⊂⊂ A such that Γ� ⊂ Λ. Then°°°°°Ts−X
α∈Λ

Tvα

°°°°° ≤ kTk
°°°°°s−X

α∈Λ
vα

°°°°° < kTk �
which shows that

P
α∈Λ Tvα exists and is equal to Ts.

3.10. Word of Caution.

Example 3.73. Let (X, d) be a metric space. It is always true that Bx(�) ⊂ Cx(�)
since Cx(�) is a closed set containing Bx(�). However, it is not always true that
Bx(�) = Cx(�). For example let X = {1, 2} and d(1, 2) = 1, then B1(1) = {1} ,
B1(1) = {1} while C1(1) = X. For another counter example, take

X =
©
(x, y) ∈ R2 : x = 0 or x = 1ª

with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| < 1ª ,

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| ≤ 1ª , while

C(0,0)(1) = B(0,0)(1) ∪ {(0, 1)} .
In spite of the above examples, Lemmas 3.74 and 3.75 below shows that for

certain metric spaces of interest it is true that Bx(�) = Cx(�).

Lemma 3.74. Suppose that (X, |·|) is a normed vector space and d is the metric
on X defined by d(x, y) = |x− y| . Then

Bx(�) = Cx(�) and

∂Bx(�) = {y ∈ X : d(x, y) = �}.
Proof. We must show that C := Cx(�) ⊂ Bx(�) =: B̄. For y ∈ C, let v = y − x,

then
|v| = |y − x| = d(x, y) ≤ �.

Let αn = 1 − 1/n so that αn ↑ 1 as n → ∞. Let yn = x + αnv, then d(x, yn) =
αnd(x, y) < �, so that yn ∈ Bx(�) and d(y, yn) = 1−αn → 0 as n→∞. This shows
that yn → y as n→∞ and hence that y ∈ B̄.

3.10.1. Riemannian Metrics. This subsection is not completely self contained and
may safely be skipped.

Lemma 3.75. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y}
where c(σ) is the length of the curve σ. We define c(σ) = ∞ if σ is not piecewise
smooth.
Then

Bx(�) = Cx(�) and

∂Bx(�) = {y ∈ X : d(x, y) = �}.
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ε

δ

x

y

z

Figure 10. An almost length minimizing curve joining x to y.

Proof. Let C := Cx(�) ⊂ Bx(�) =: B̄. We will show that C ⊂ B̄ by showing
B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩ B̄ = ∅. In
particular this implies that

By(δ) ∩Bx(�) = ∅.
We will finish the proof by showing that d(x, y) ≥ �+ δ > � and hence that y ∈ Cc.
This will be accomplished by showing: if d(x, y) < �+ δ then By(δ) ∩Bx(�) 6= ∅.
If d(x, y) < max(�, δ) then either x ∈ By(δ) or y ∈ Bx(�). In either case By(δ) ∩

Bx(�) 6= ∅. Hence we may assume that max(�, δ) ≤ d(x, y) < �+ δ. Let α > 0 be a
number such that

max(�, δ) ≤ d(x, y) < α < �+ δ

and choose a curve σ from x to y such that c(σ) < α. Also choose 0 < δ0 < δ such
that 0 < α − δ0 < � which can be done since α − δ < �. Let k(t) = d(y, σ(t)) a
continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected set which
contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that d(y, σ(t0)) =
k(t0) = δ0. Let z = σ(t0) ∈ By(δ) then

d(x, z) ≤ c(σ|[0,t0]) = c(σ)− c(σ|[t0,1]) < α− d(z, y) = α− δ0 < �

and therefore z ∈ Bx(�) ∩Bx(δ) 6= ∅.
Remark 3.76. Suppose again thatX is a Riemannian (or sub-Riemannian) manifold
and

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y} .
Let σ be a curve from x to y and let � = c(σ)− d(x, y). Then for all 0 ≤ u < v ≤ 1,

d(σ(u), σ(v)) ≤ c(σ|[u,v]) + �.

So if σ is within � of a length minimizing curve from x to y that σ|[u,v] is within
� of a length minimizing curve from σ(u) to σ(v). In particular if d(x, y) = c(σ)
then d(σ(u), σ(v)) = c(σ|[u,v]) for all 0 ≤ u < v ≤ 1, i.e. if σ is a length minimizing
curve from x to y that σ|[u,v] is a length minimizing curve from σ(u) to σ(v).
To prove these assertions notice that

d(x, y) + � = c(σ) = c(σ|[0,u]) + c(σ|[u,v]) + c(σ|[v,1])
≥ d(x, σ(u)) + c(σ|[u,v]) + d(σ(v), y)

and therefore

c(σ|[u,v]) ≤ d(x, y) + �− d(x, σ(u))− d(σ(v), y)

≤ d(σ(u), σ(v)) + �.
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3.11. Exercises.

Exercise 3.20. Prove Lemma 3.46.

Exercise 3.21. Let X = C([0, 1],R) and for f ∈ X, let

kfk1 :=
Z 1

0

|f(t)| dt.

Show that (X, k·k1) is normed space and show by example that this space is not
complete.

Exercise 3.22. Let (X, d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is a
sequence and set �n := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1X
k=n

�k ≤
∞X
k=n

�k.

Conclude from this that if
∞X
k=1

�k =
∞X
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent sequence
and x = limn→∞ xn then

d(x, xn) ≤
∞X
k=n

�k.

Exercise 3.23. Show that (X, d) is a complete metric space iff every sequence
{xn}∞n=1 ⊂ X such that

P∞
n=1 d(xn, xn+1) <∞ is a convergent sequence in X. You

may find it useful to prove the following statements in the course of the proof.
(1) If {xn} is Cauchy sequence, then there is a subsequence yj ≡ xnj such thatP∞

j=1 d(yj+1, yj) <∞.

(2) If {xn}∞n=1 is Cauchy and there exists a subsequence yj ≡ xnj of {xn} such
that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal to x.

Exercise 3.24. Suppose that f : [0,∞) → [0,∞) is a C2 — function such that
f(0) = 0, f 0 > 0 and f 00 ≤ 0 and (X, ρ) is a metric space. Show that d(x, y) =
f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) ≡ ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a + b) ≤ f(a) + f(b) for all
a, b ∈ [0,∞).)
Exercise 3.25. Let d : C(R)× C(R)→ [0,∞) be defined by

d(f, g) =
∞X
n=1

2−n
kf − gkn

1 + kf − gkn ,

where kfkn ≡ sup{|f(x)| : |x| ≤ n} = max{|f(x)| : |x| ≤ n}.
(1) Show that d is a metric on C(R).
(2) Show that a sequence {fn}∞n=1 ⊂ C(R) converges to f ∈ C(R) as n → ∞

iff fn converges to f uniformly on compact subsets of R.
(3) Show that (C(R), d) is a complete metric space.
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Exercise 3.26. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=
Q∞

n=1Xn,
and for x = (x(n))∞n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞X
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

Show: 1) (X, d) is a metric space, 2) a sequence {xk}∞k=1 ⊂ X converges to x ∈ X
iff xk(n) → x(n) ∈ Xn as k → ∞ for every n = 1, 2, . . . , and 3) X is complete if
Xn is complete for all n.

Exercise 3.27 (Tychonoff’s Theorem). Let us continue the notation of the previous
problem. Further assume that the spaces Xn are compact for all n. Show (X, d) is
compact. Hint: Either use Cantor’s method to show every sequence {xm}∞m=1 ⊂ X
has a convergent subsequence or alternatively show (X, d) is complete and totally
bounded.

Exercise 3.28. Let (Xi, di) for i = 1, . . . , n be a finite collection of metric spaces
and for 1 ≤ p ≤ ∞ and x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) in X :=

Qn
i=1Xi,

let

ρp(x, y) =

½
(
Pn

i=1 [di(xi, yi)]
p
)
1/p if p 6=∞

maxi di(xi, yi) if p =∞ .

(1) Show (X,ρp) is a metric space for p ∈ [1,∞].Hint: Minkowski’s inequality.
(2) Show that all of the metric {ρp : 1 ≤ p ≤ ∞} are equivalent, i.e. for any

p, q ∈ [1,∞] there exists constants c, C <∞ such that

ρp(x, y) ≤ Cρq(x, y) and ρq(x, y) ≤ cρp(x, y) for all x, y ∈ X.

Hint: This can be done with explicit estimates or more simply using
Lemma 3.54.

(3) Show that the topologies associated to the metrics ρp are the same for all
p ∈ [1,∞].

Exercise 3.29. Let C be a closed proper subset of Rn and x ∈ Rn \C. Show there
exists a y ∈ C such that d(x, y) = dC(x).

Exercise 3.30. Let F = R in this problem and A ⊂ c2(N) be defined by
A = {x ∈ c2(N) : x(n) ≥ 1 + 1/n for some n ∈ N}
= ∪∞n=1{x ∈ c2(N) : x(n) ≥ 1 + 1/n}.

Show A is a closed subset of c2(N) with the property that dA(0) = 1 while there
is no y ∈ A such that dA(y) = 1. (Remember that in general an infinite union of
closed sets need not be closed.)

3.11.1. Banach Space Problems.

Exercise 3.31. Show that all finite dimensional normed vector spaces (L, k·k) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.32. Let (X, k·k) be a normed space over F (R or C). Show the map
(λ, x, y) ∈ F×X ×X → x+ λy ∈ X

is continuous relative to the topology on F×X ×X defined by the norm

k(λ, x, y)kF×X×X := |λ|+ kxk+ kyk .
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(See Exercise 3.28 for more on the metric associated to this norm.) Also show that
k·k : X → [0,∞) is continuous.
Exercise 3.33. Let p ∈ [1,∞] and X be an infinite set. Show the closed unit ball
in cp(X) is not compact.

Exercise 3.34. Let X = N and for p, q ∈ [1,∞) let k·kp denote the cp(N) — norm.
Show k·kp and k·kq are inequivalent norms for p 6= q by showing

sup
f 6=0

kfkp
kfkq

=∞ if p < q.

Exercise 3.35. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 3.36. Folland Problem 5.9. Showing Ck([0, 1]) is a Banach space.

Exercise 3.37. Folland Problem 5.11. Showing Holder spaces are Banach spaces.

Exercise 3.38. Let X, Y and Z be normed spaces. Prove the maps

(S, x) ∈ L(X,Y )×X −→ Sx ∈ Y

and
(S, T ) ∈ L(X,Y )× L(Y,Z) −→ ST ∈ L(X,Z)

are continuous relative to the norms

k(S, x)kL(X,Y )×X := kSkL(X,Y ) + kxkX and

k(S, T )kL(X,Y )×L(Y,Z) := kSkL(X,Y ) + kTkL(Y,Z)
on L(X,Y )×X and L(X,Y )× L(Y,Z) respectively.

3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.39. Let T ∈ (0,∞) and F ⊂ C([0, T ]) be a family of functions such
that:

(1) ḟ(t) exists for all t ∈ (0, T ) and f ∈ F .
(2) supf∈F |f(0)| <∞ and

(3) M := supf∈F supt∈(0,T )
¯̄̄
ḟ(t)

¯̄̄
<∞.

Show F is precompact in the Banach space C([0, T ]) equipped with the norm
kfk∞ = supt∈[0,T ] |f(t)| .
Exercise 3.40. Folland Problem 4.63.

Exercise 3.41. Folland Problem 4.64.

3.11.3. General Topological Space Problems.

Exercise 3.42. Give an example of continuous map, f : X → Y, and a compact
subset K of Y such that f−1(K) is not compact.

Exercise 3.43. Let V be an open subset of R. Show V may be written as a disjoint
union of open intervals Jn = (an, bn), where an, bn ∈ R∪ {±∞} for n = 1, 2, · · · < N
with N =∞ possible.
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4. The Riemann Integral

In this short chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter. The
following simple “Bounded Linear Transformation” theorem will often be used here
and in the sequel to define linear transformations.

Theorem 4.1 (B. L. T. Theorem). Suppose that Z is a normed space, X is a
Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C < ∞ such that kTzk ≤ C kzk
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and this
extension still satisfies °°T̄ z°° ≤ C kzk for all z ∈ S̄.
Exercise 4.1. Prove Theorem 4.1.

For the remainder of the chapter, let [a, b] be a fixed compact interval and X be
a Banach space. The collection S = S([a, b],X) of step functions, f : [a, b]→ X,
consists of those functions f which may be written in the form

(4.1) f(t) = x01[a,t1](t) +
n−1X
i=1

xi1(ti,ti+1](t),

where π ≡ {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X. For f as
in Eq. (4.1), let

(4.2) I(f) ≡
n−1X
i=0

(ti+1 − ti)xi ∈ X.

Exercise 4.2. Show that I(f) is well defined, independent of how f is represented
as a step function. (Hint: show that adding a point to a partition π of [a, b] does
not change the right side of Eq. (4.2).) Also verify that I : S → X is a linear
operator.

Proposition 4.2 (Riemann Integral). The linear function I : S → X extends
uniquely to a continuous linear operator Ī from S̄ (the closure of the step functions
inside of c∞([a, b],X)) to X and this operator satisfies,

(4.3) kĪ(f)k ≤ (b− a) kfk∞ for all f ∈ S̄.
Furthermore, C([a, b],X) ⊂ S̄ ⊂ c∞([a, b],X) and for f ∈, Ī(f) may be computed
as

(4.4) Ī(f) = lim
|π|→0

n−1X
i=0

f(cπi )(ti+1 − ti)

where π ≡ {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b],
|π| = max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be chosen
arbitrarily inside [ti, ti+1].

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality shows,

(4.5) kI(f)k ≤
n−1X
i=0

(ti+1 − ti)kxik ≤
n−1X
i=0

(ti+1 − ti)kfk∞ ≤ (b− a)kfk∞.
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The existence of Ī satisfying Eq. (4.3) is a consequence of Theorem 4.1.
For f ∈ C([a, b],X), π ≡ {a = t0 < t1 < · · · < tn = b} a partition of [a, b], and

cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let

fπ(t) ≡ f(c0)01[t0,t1](t) +
n−1X
i=1

f(cπi )1(ti,ti+1](t).

Then I(fπ) =
Pn−1

i=0 f(cπi )(ti+1 − ti) so to finish the proof of Eq. (4.4) and that
C([a, b],X) ⊂ S̄, it suffices to observe that lim|π|→0 kf − fπk∞ = 0 because f is
uniformly continuous on [a, b].
If fn ∈ S and f ∈ S̄ such that limn→∞ kf − fnk∞ = 0, then for a ≤ α < β ≤ b,

then 1[α,β]fn ∈ S and limn→∞
°°1[α,β]f − 1[α,β]fn°°∞ = 0. This shows 1[α,β]f ∈ S̄

whenever f ∈ S̄.
Notation 4.3. For f ∈ S̄ and a ≤ α ≤ β ≤ b we will write denote Ī(1[α,β]f) byR β
α
f(t) dt or

R
[α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤ α ≤ b, we
will let Z β

α

f(t) dt = −Ī(1[β,α]f) = −
Z α

β

f(t) dt.

The next Lemma, whose proof is left to the reader (Exercise 4.4) contains some
of the many familiar properties of the Riemann integral.

Lemma 4.4. For f ∈ S̄([a, b],X) and α, β, γ ∈ [a, b], the Riemann integral satisfies:
(1)

°°°R βα f(t) dt
°°°
∞
≤ (β − α) sup {kf(t)k : α ≤ t ≤ β} .

(2)
R γ
α
f(t) dt =

R β
α
f(t) dt+

R γ
β
f(t) dt.

(3) The function G(t) :=
R t
a
f(τ)dτ is continuous on [a, b].

(4) If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y ) and

T

ÃZ β

α

f(t)dt

!
=

Z β

α

Tf(t)dt.

(5) The function t→ kf(t)kX is in S̄([a, b],R) and°°°°°
Z b

a

f(t) dt

°°°°° ≤
Z b

a

kf(t)k dt.

(6) If f, g ∈ S̄([a, b],R) and f ≤ g, thenZ b

a

f(t)dt ≤
Z b

a

g(t)dt.

Theorem 4.5 (Baby Fubini Theorem). Let a, b, c, d ∈ R and f(s, t) ∈ X be a
continuous function of (s, t) for s between a and b and t between c and d. Then the
maps t→ R b

a
f(s, t)ds ∈ X and s→ R d

c
f(s, t)dt are continuous and

(4.6)
Z d

c

"Z b

a

f(s, t)ds

#
dt =

Z b

a

"Z d

c

f(s, t)dt

#
ds.
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Proof. With out loss of generality we may assume a < b and c < d. By uniform
continuity of f, Exercise 3.15,

sup
c≤t≤d

kf(s, t)− f(s0, t)k→ 0 as s→ s0

and so by Lemma 4.4 Z d

c

f(s, t)dt→
Z d

c

f(s0, t)dt as s→ s0

showing the continuity of s→ R d
c
f(s, t)dt. The other continuity assertion is proved

similarly.
Now let

π = {a ≤ s0 < s1 < · · · < sm = b} and π0 = {c ≤ t0 < t1 < · · · < tn = d}
be partitions of [a, b] and [c, d] respectively. For s ∈ [a, b] let sπ = si if s ∈ (si, si+1]
and i ≥ 1 and sπ = s0 = a if s ∈ [s0, s1]. Define tπ0 for t ∈ [c, d] analogously. ThenZ b

a

"Z d

c

f(s, t)dt

#
ds =

Z b

a

"Z d

c

f(s, tπ0)dt

#
ds+

Z b

a

�π0(s)ds

=

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds+ δπ,π0 +

Z b

a

�π0(s)ds

where

�π0(s) =

Z d

c

f(s, t)dt−
Z d

c

f(s, tπ0)dt

and

δπ,π0 =

Z b

a

"Z d

c

{f(s, tπ0)− f(sπ, tπ0)} dt
#
ds.

The uniform continuity of f and the estimates

sup
s∈[a,b]

k�π0(s)k ≤ sup
s∈[a,b]

Z d

c

kf(s, t)− f(s, tπ0)k dt

≤ (d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
and

kδπ,π0k ≤
Z b

a

"Z d

c

kf(s, tπ0)− f(sπ, tπ0)k dt
#
ds

≤ (b− a)(d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
allow us to conclude thatZ b

a

"Z d

c

f(s, t)dt

#
ds−

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds→ 0 as |π|+ |π0|→ 0.

By symmetry (or an analogous argument),Z d

c

"Z b

a

f(s, t)ds

#
dt−

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt→ 0 as |π|+ |π0|→ 0.
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This completes the proof sinceZ b

a

"Z d

c

f(sπ, tπ0)dt

#
ds =

X
0≤i<m,0≤j<n

f(si, tj)(si+1 − si)(tj+1 − tj)

=

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt.

4.1. The Fundamental Theorem of Calculus. Our next goal is to show that
our Riemann integral interacts well with differentiation, namely the fundamental
theorem of calculus holds. Before doing this we will need a couple of basic definitions
and results.

Definition 4.6. Let (a, b) ⊂ R. A function f : (a, b) → X is differentiable at
t ∈ (a, b) iff L := limh→0

f(t+h)−f(t)
h exists in X. The limit L, if it exists, will be

denoted by ḟ(t) or df
dt (t). We also say that f ∈ C1((a, b)→ X) if f is differentiable

at all points t ∈ (a, b) and ḟ ∈ C((a, b)→ X).

Proposition 4.7. Suppose that f : [a, b] → X is a continuous function such that
ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let � > 0 and α ∈ (a, b) be given. (We will later let � ↓ 0 and α ↓ a.) By
the definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0 such that
(4.7) kf(t)− f(τ)k =

°°°f(t)− f(τ)− ḟ(τ)(t− τ)
°°° ≤ � |t− τ | if |t− τ | < δτ .

Let

(4.8) A = {t ∈ [α, b] : kf(t)− f(α)k ≤ �(t− α)}
and t0 be the least upper bound for A.We will now use a standard argument called
continuous induction to show t0 = b.
Eq. (4.7) with τ = α shows t0 > α and a simple continuity argument shows

t0 ∈ A, i.e.

(4.9) kf(t0)− f(α)k ≤ �(t0 − α)

For the sake of contradiction, suppose that t0 < b. By Eqs. (4.7) and (4.9),

kf(t)− f(α)k ≤ kf(t)− f(t0)k+ kf(t0)− f(α)k ≤ �(t0 − α) + �(t− t0) = �(t− α)

for 0 ≤ t− t0 < δt0 which violates the definition of t0 being an upper bound. Thus
we have shown Eq. (4.8) holds for all t ∈ [α, b]. Since � > 0 and α > a were
arbitrary we may conclude, using the continuity of f, that kf(t)− f(a)k = 0 for all
t ∈ [a, b].
Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem is not
available to vector valued functions. However with the aid of the Hahn Banach
Theorem 18.16 and Lemma 4.4, it is possible to reduce the proof of Proposition 4.7
and the proof of the Fundamental Theorem of Calculus 4.9 to the real valued case,
see Exercise 18.12.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that f ∈ C([a, b],X),
Then
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(1) d
dt

R t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

(2) Now assume that F ∈ C([a, b],X), F is continuously differentiable on (a, b),
and Ḟ extends to a continuous function on [a, b] which is still denoted by
Ḟ . Then Z b

a

Ḟ (t) dt = F (b)− F (a).

Proof. Let h > 0 be a small number and consider

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk = k
Z t+h

t

(f(τ)− f(t)) dτk

≤
Z t+h

t

k(f(τ)− f(t))k dτ
≤ h�(h),

where �(h) ≡ maxτ∈[t,t+h] k(f(τ)− f(t))k. Combining this with a similar computa-
tion when h < 0 shows, for all h ∈ R sufficiently small, that

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk ≤ |h|�(h),

where now �(h) ≡ maxτ∈[t−|h|,t+|h|] k(f(τ)−f(t))k. By continuity of f at t, �(h)→ 0

and hence d
dt

R t
a
f(τ) dτ exists and is equal to f(t).

For the second item, set G(t) ≡ R t
a
Ḟ (τ) dτ − F (t). Then G is continuous by

Lemma 4.4 and Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of Proposition
4.7 shows G is a constant and in particular G(b) = G(a), i.e.

R b
a
Ḟ (τ) dτ − F (b) =

−F (a).
Corollary 4.10 (Mean Value Inequality). Suppose that f : [a, b] → X is a con-
tinuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a continuous
function on [a, b]. Then

(4.10) kf(b)− f(a)k ≤
Z b

a

kḟ(t)kdt ≤ (b− a) ·
°°°ḟ°°°

∞
.

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
R b
a
ḟ(t)dt and

then by Lemma 4.4,

kf(b)− f(a)k =
°°°°°
Z b

a

ḟ(t)dt

°°°°° ≤
Z b

a

kḟ(t)kdt ≤
Z b

a

°°°ḟ°°°
∞
dt = (b− a) ·

°°°ḟ°°°
∞
.

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let Q = (a, b)× (c, d)
be an open rectangle in R2 and f ∈ C(Q,X). Assume that ∂

∂tf(s, t),
∂
∂sf(s, t) and

∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q, then ∂

∂s
∂
∂tf(s, t) exists for

(s, t) ∈ Q and

(4.11)
∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q.
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Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 4.9,

f(s, t) = f(st0 , t) +

Z s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ)(4.12)

and then by Fubini’s Theorem 4.5 we learn

f(s, t) = f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z t

t0

dτ

Z s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more applications
of Theorem 4.9) shows Eq. (4.11) holds.

4.2. Exercises.

Exercise 4.3. Let c∞([a, b],X) ≡ {f : [a, b]→ X : kfk∞ ≡ supt∈[a,b] kf(t)k <∞}.
Show that (c∞([a, b],X), k · k∞) is a complete Banach space.
Exercise 4.4. Prove Lemma 4.4.

Exercise 4.5. Using Lemma 4.4, show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff fi ∈
S̄([a, b],R) for i = 1, 2, . . . , n andZ b

a

f(t)dt =

ÃZ b

a

f1(t)dt, . . . ,

Z b

a

fn(t)dt

!
.

Exercise 4.6. Give another proof of Proposition 4.11 which does not use Fubini’s
Theorem 4.5 as follows.

(1) By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (4.11) holds at (s, t) = (0, 0).

(2) Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=

Z s

0

dσ

Z t

0

dτh(σ, τ)

so that Eq. (4.12) states

f(s, t) = f(0, t) +

Z s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows

(4.13)
∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0).

Now show using the definition of the derivative that

(4.14)
∂

∂t
G(s, 0) =

Z s

0

dσh(σ, 0).

Hint: Consider

G(s, t)− t

Z s

0

dσh(σ, 0) =

Z s

0

dσ

Z t

0

dτ [h(σ, τ)− h(σ, 0)] .

(3) Now differentiate Eq. (4.13) in s using Theorem 4.9 to finish the proof.
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Exercise 4.7. Give another proof of Eq. (4.6) in Theorem 4.5 based on Proposition
4.11. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=

Z t

t0

dτ

Z s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 4.11 which combined with two ap-
plications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with the
observation that G = 0 if t = t0 or s = s0 to conclude

(4.15) G(s, t) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ
f(σ, τ).

Finally let s = b and t = d in Eq. (4.15) and then let s0 ↓ a and t0 ↓ c to prove Eq.
(4.6).



ANALYSIS TOOLS WITH APPLICATIONS 55

5. Ordinary Differential Equations in a Banach Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) — Z
is to be interpreted as a time dependent vector-field on U ⊂ X. In this section we
will consider the ordinary differential equation (ODE for short)

(5.1) ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U.

The reader should check that any solution y ∈ C1(J, U) to Eq. (5.1) gives a solution
y ∈ C(J, U) to the integral equation:

(5.2) y(t) = x+

Z t

0

Z(τ, y(τ))dτ

and conversely if y ∈ C(J,U) solves Eq. (5.2) then y ∈ C1(J, U) and y solves Eq.
(5.1).

Remark 5.1. For notational simplicity we have assumed that the initial condition
for the ODE in Eq. (5.1) is taken at t = 0. There is no loss in generality in doing
this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (5.1) with Z(t, x) = Z̃(t+ t0, x).

5.1. Examples. Let X = R, Z(x) = xn with n ∈ N and consider the ordinary
differential equation

(5.3) ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R.
If y solves Eq. (5.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore up to
the first time y possibly hits 0, we must have

t =

Z t

0

ẏ(τ)

y(τ)n
dτ =

Z y(t)

0

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
¯̄̄
y(t)
x

¯̄̄
if n = 1

and solving these equations for y(t) implies

(5.4) y(t) = y(t, x) =

(
x

n−1√1−(n−1)txn−1 if n > 1

etx if n = 1.

The reader should verify by direct calculation that y(t, x) defined above does in-
deed solve Eq. (5.3). The above argument shows that these are the only possible
solutions to the Equations in (5.3).
Notice that when n = 1, the solution exists for all time while for n > 1, we must

require
1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1

(1− n) |x|n−1 if x
n−1 < 0.
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Moreover for n > 1, y(t, x) blows up as t approaches the value for which 1− (n−
1)txn−1 = 0. The reader should also observe that, at least for s and t close to 0,

(5.5) y(t, y(s, x)) = y(t+ s, x)

for each of the solutions above. Indeed, if n = 1 Eq. (5.5) is equivalent to the well
know identity, etes = et+s and for n > 1,

y(t, y(s, x)) =
y(s, x)

n−1
p
1− (n− 1)ty(s, x)n−1

=

x
n−1√1−(n−1)sxn−1

n−1

s
1− (n− 1)t

·
x

n−1√1−(n−1)sxn−1
¸n−1

=

x
n−1√1−(n−1)sxn−1

n−1
q
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
p
1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
p
1− (n− 1)(s+ t)xn−1

= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the ordinary
differential equation

(5.6) ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R.
Working as above we find, if x 6= 0 that

t =

Z t

0

ẏ(τ)

|y(t)|α dτ =
Z y(t)

0

|u|−α du = [y(t)]1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation im-
plies

sgn(x)(1− α)t = sgn(x)
h
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

i
= |y(t)|1−α − |x|1−α

and therefore,

(5.7) y(t, x) = sgn(x)
³
|x|1−α + sgn(x)(1− α)t

´ 1
1−α

is uniquely determined by this formula until the first time t where |x|1−α+sgn(x)(1−
α)t = 0. As before y(t) = 0 is a solution to Eq. (5.6), however it is far from being
the unique solution. For example letting x ↓ 0 in Eq. (5.7) gives a function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (5.6) for t > 0. Moreover if we define

y(t) :=

½
((1− α)t)

1
1−α if t > 0

0 if t ≤ 0 ,
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(for example if α = 1/2 then y(t) = 1
4 t
21t≥0) then the reader may easily check y

also solve Eq. (5.6). Furthermore, ya(t) := y(t − a) also solves Eq. (5.6) for all
a ≥ 0, see Figure 11 below.

86420

10

7.5

5

2.5

0

tt

Figure 11. Three different solutions to the ODE ẏ(t) = |y(t)|1/2
with y(0) = 0.

With these examples in mind, let us now go to the general theory starting with
linear ODEs.

5.2. Linear Ordinary Differential Equations. Consider the linear differential
equation

(5.8) ẏ(t) = A(t)y(t) where y(0) = x ∈ X.

Here A ∈ C(J → L(X)) and y ∈ C1(J → X). This equation may be written in its
equivalent (as the reader should verify) integral form, namely we are looking for
y ∈ C(J,X) such that

(5.9) y(t) = x+

Z t

0

A(τ)y(τ)dτ.

In what follows, we will abuse notation and use k·k to denote the operator norm
on L (X) associated to k·k on X we will also fix J = (a, b) 3 0 and let kφk∞ :=
maxt∈J kφ(t)k for φ ∈ BC(J,X) or BC(J, L (X)).

Notation 5.2. For t ∈ R and n ∈ N, let

∆n(t) =

½ {(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn andZ
∆n(t)

f(τ1, . . . τn)dτ : = (−1)n·1t<0
Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1f(τ1, . . . τn).

Lemma 5.3. Suppose that ψ ∈ C (R,R) , then

(5.10) (−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

µZ t

0

ψ(τ)dτ

¶n
.
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Proof. Let Ψ(t) :=
R t
0
ψ(τ)dτ. The proof will go by induction on n. The case

n = 1 is easily verified since

(−1)1·1t<0
Z
∆1(t)

ψ(τ1)dτ1 =

Z t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (5.10) for n− 1 for some n ≥ 2, then

(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=

Z t

0

dτn
Ψn−1(τn)
(n− 1)! ψ(τn) =

Z t

0

dτn
Ψn−1(τn)
(n− 1)! Ψ̇(τn)

=

Z Ψ(t)
0

un−1

(n− 1)!du =
Ψn(t)

n!
,

wherein we made the change of variables, u = Ψ(τn), in the second to last equality.

Remark 5.4. Eq. (5.10) is equivalent toZ
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

ÃZ
∆1(t)

ψ(τ)dτ

!n

and another way to understand this equality is to view
R
∆n(t)

ψ(τ1) . . . ψ(τn)dτ as
a multiple integral (see Section 8 below) rather than an iterated integral. Indeed,
taking t > 0 for simplicity and letting Sn be the permutation group on {1, 2, . . . , n}
we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}
with the union being “essentially” disjoint. Therefore, making a change of variables
and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations, we findµZ t

0

ψ(τ)dτ

¶n
=

Z
[0,t]n

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!

Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 5.5. Let φ ∈ BC(J,X), then the integral equation

(5.11) y(t) = φ(t) +

Z t

0

A(τ)y(τ)dτ

has a unique solution given by

(5.12) y(t) = φ(t) +
∞X
n=1

(−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ
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and this solution satisfies the bound

kyk∞ ≤ kφk∞ e
R
J
kA(τ)kdτ .

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =

Z t

0

A(τ)y(τ)dτ.

Then y solves Eq. (5.9) iff y = φ+ Λy or equivalently iff (I − Λ)y = φ.
An induction argument shows

(Λnφ)(t) =

Z t

0

dτnA(τn)(Λ
n−1φ)(τn)

=

Z t

0

dτn

Z τn

0

dτn−1A(τn)A(τn−1)(Λn−2φ)(τn−1)

...

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1A(τn) . . . A(τ1)φ(τ1)

= (−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ.

Taking norms of this equation and using the triangle inequality along with Lemma
5.3 gives,

k(Λnφ)(t)k ≤ kφk∞ ·
Z
∆n(t)

kA(τn)k . . . kA(τ1)kdτ

≤kφk∞ · 1
n!

ÃZ
∆1(t)

kA(τ)kdτ
!n

≤kφk∞ · 1
n!

µZ
J

kA(τ)kdτ
¶n

.

Therefore,

(5.13) kΛnkop ≤ 1

n!

µZ
J

kA(τ)kdτ
¶n

and ∞X
n=0

kΛnkop ≤ e
R
J
kA(τ)kdτ <∞

where k·kop denotes the operator norm on L (BC(J,X)) . An application of Propo-

sition 3.69 now shows (I − Λ)−1 =
∞P
n=0
Λn exists and°°(I − Λ)−1°°
op
≤ e

R
J
kA(τ)kdτ .

It is now only a matter of working through the notation to see that these assertions
prove the theorem.

Corollary 5.6. Suppose that A ∈ L(X) is independent of time, then the solution
to

ẏ(t) = Ay(t) with y(0) = x
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is given by y(t) = etAx where

(5.14) etA =
∞X
n=0

tn

n!
An.

Proof. This is a simple consequence of Eq. 5.12 and Lemma 5.3 with ψ = 1.
We also have the following converse to this corollary whose proof is outlined in

Exercise 5.11 below.

Theorem 5.7. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies
(1) (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
(2) (Norm Continuity) t → Tt is continuous at 0, i.e. kTt − IkL(X) → 0 as

t ↓ 0.
Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.

(5.14).

5.3. Uniqueness Theorem and Continuous Dependence on Initial Data.

Lemma 5.8. Gronwall’s Lemma. Suppose that f, �, and k are non-negative
functions of a real variable t such that

(5.15) f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)f(τ)dτ

¯̄̄̄
.

Then

(5.16) f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)�(τ)e|
R t
τ
k(s)ds|dτ

¯̄̄̄
,

and in particular if � and k are constants we find that

(5.17) f(t) ≤ �ek|t|.

Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived by
applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and �̃(t) = �(−t).
Set F (t) =

R t
0
k(τ)f(τ)dτ . Then by (5.15),

Ḟ = kf ≤ k�+ kF.

Hence,
d

dt
(e−

R t
0
k(s)dsF ) = e−

R t
0
k(s)ds(Ḟ − kF ) ≤ k�e−

R t
0
k(s)ds.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
R t
0
k(s)ds ·

Z t

0

dτk(τ)�(τ)e−
R τ
0
k(s)ds =

Z t

0

dτk(τ)�(τ)e
R t
τ
k(s)ds.

But by the definition of F we have that

f ≤ �+ F,

and hence the last two displayed equations imply (5.16). Equation (5.17) follows
from (5.16) by a simple integration.

Corollary 5.9 (Continuous Dependence on Initial Data). Let U ⊂o X, 0 ∈ (a, b)
and Z : (a, b)×U → X be a continuous function which is K—Lipschitz function on U,
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i.e. kZ(t, x)−Z(t, x0)k ≤ Kkx−x0k for all x and x0 in U. Suppose y1, y2 : (a, b)→ U
solve

(5.18)
dyi(t)

dt
= Z(t, yi(t)) with yi(0) = xi for i = 1, 2.

Then

(5.19) ky2(t)− y1(t)k ≤ kx2 − x1keK|t| for t ∈ (a, b)
and in particular, there is at most one solution to Eq. (5.1) under the above Lip-
schitz assumption on Z.

Proof. Let f(t) ≡ ky2(t)−y1(t)k. Then by the fundamental theorem of calculus,

f(t) = ky2(0)− y1(0) +

Z t

0

(ẏ2(τ)− ẏ1(τ)) dτk

≤ f(0) +

¯̄̄̄Z t

0

kZ(τ, y2(τ))− Z(τ, y1(τ))k dτ
¯̄̄̄

= kx2 − x1k+K

¯̄̄̄Z t

0

f(τ) dτ

¯̄̄̄
.

Therefore by Gronwall’s inequality we have,

ky2(t)− y1(t)k = f(t) ≤ kx2 − x1keK|t|.

5.4. Local Existence (Non-Linear ODE). We now show that Eq. (5.1) under
a Lipschitz condition on Z. Another existence theorem is given in Exercise 7.9.

Theorem 5.10 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0 and

C(x0, r) := {x ∈ X : kx− x0k ≤ r}
be the closed r — ball centered at x0 ∈ X. Assume

(5.20) M = sup {kZ(t, x)k : (t, x) ∈ J × C(x0, r)} <∞
and there exists K <∞ such that

(5.21) kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ C(x0, r) and t ∈ J.

Let T0 < min {r/M,T} and J0 := (−T0, T0), then for each x ∈ B(x0, r−MT0) there
exists a unique solution y(t) = y(t, x) to Eq. (5.2) in C (J0, C(x0, r)) . Moreover
y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t, ẏ(t, x) is jointly
continuous for all (t, x) ∈ J0 ×B(x0, r −MT0) and satisfies Eq. (5.1).

Proof. The uniqueness assertion has already been proved in Corollary 5.9. To
prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

(5.22) Sx(y)(t) := x+

Z t

0

Z(τ, y(τ))dτ.

With this notation, Eq. (5.2) becomes y = Sx(y), i.e. we are looking for a fixed
point of Sx. If y ∈ Y, then

kSx(y)(t)− x0k ≤ kx− x0k+
¯̄̄̄Z t

0

kZ(τ, y(τ))k dτ
¯̄̄̄
≤ kx− x0k+M |t|

≤ kx− x0k+MT0 ≤ r −MT0 +MT0 = r,
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showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

kSx(y)(t)− Sx(z)(t)k =
°°°°Z t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ

°°°°
≤
¯̄̄̄Z t

0

kZ(τ, y(τ))− Z(τ, z(τ))k dτ
¯̄̄̄

≤ K

¯̄̄̄Z t

0

ky(τ)− z(τ)k dτ
¯̄̄̄
.(5.23)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by

(5.24) yn(·, x) := Sx(yn−1(·, x)) = x+

Z t

0

Z(τ, yn−1(τ, x))dτ.

Using the estimate in Eq. (5.23) repeatedly we find

kyn+1(t)− yn(t)k ≤ K

¯̄̄̄Z t

0

kyn(τ)− yn−1(τ)k dτ
¯̄̄̄

≤ K2

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 kyn−1(t2)− yn−2(t2)k
¯̄̄̄¯̄̄̄

. . .

≤ Kn

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 . . .

¯̄̄̄Z tn−1

0

dtn ky1(tn)− y0(tn)k
¯̄̄̄
. . .

¯̄̄̄¯̄̄̄
≤ Kn ky1(·, x)− y0(·, x)k∞

Z
∆n(t)

dτ

=
Kn |t|n

n!
ky1(·, x)− y0(·, x)k∞ ≤ 2r

Kn |t|n
n!

(5.25)

wherein we have also made use of Lemma 5.3. Combining this estimate with

ky1(t, x)− y0(t, x)k =
°°°°Z t

0

Z(τ, x)dτ

°°°° ≤ ¯̄̄̄Z t

0

kZ(τ, x)k dτ
¯̄̄̄
≤M0,

where

M0 = T0max

(Z T0

0

kZ(τ, x)k dτ,
Z 0

−T0
kZ(τ, x)k dτ

)
≤MT0,

shows

kyn+1(t, x)− yn(t, x)k ≤M0
Kn |t|n

n!
≤M0

KnTn
0

n!
and this implies
∞X
n=0

sup
n
kyn+1(·, x)− yn(·, x)k∞,J0

: t ∈ J0

o
≤
∞X
n=0

M0
KnTn

0

n!
=M0e

KT0 <∞

where

kyn+1(·, x)− yn(·, x)k∞,J0
:= sup {kyn+1(t, x)− yn(t, x)k : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (5.21) we
also have

sup {kZ(t, y(t))− Z(t, yn−1(t))k : t ∈ J0} ≤ K ky(·, x)− yn−1(·, x)k∞,J0
→ 0 as n→∞.
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Now passing to the limit in Eq. (5.24) shows y solves Eq. (5.2). From this equation
it follows that y(t, x) is differentiable in t and y satisfies Eq. (5.1).
The continuity of y(t, x) follows from Corollary 5.9 and mean value inequality

(Corollary 4.10):

ky(t, x)− y(t0, x0)k ≤ ky(t, x)− y(t, x0)k+ ky(t, x0)− y(t0, x0)k

= ky(t, x)− y(t, x0)k+
°°°°Z t

t0
Z(τ, y(τ, x0))dτ

°°°°
≤ ky(t, x)− y(t, x0)k+

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
≤ kx− x0keKT +

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
(5.26)

≤ kx− x0keKT +M |t− t0| .
The continuity of ẏ(t, x) is now a consequence Eq. (5.1) and the continuity of y

and Z.

Corollary 5.11. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

(5.27) kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ X and t ∈ J.

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (5.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0,X) . By compactness, M := supt∈J̄0 kZ(t, 0)k < ∞ which combined with
Eq. (5.27) implies

sup
t∈J̄0

kZ(t, x)k ≤M +K kxk for all x ∈ X.

Using this estimate and Lemma 4.4 one easily shows Sx(Y ) ⊂ Y for all x ∈ X. The
proof of Theorem 5.10 now goes through without any further change.

5.5. Global Properties.

Definition 5.12 (Local Lipschitz Functions). Let U ⊂o X, J be an open interval
and Z ∈ C(J × U,X). The function Z is said to be locally Lipschitz in x if for
all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) < ∞ and
� = �(x, I) > 0 such that B(x, �(x, I)) ⊂ U and
(5.28)
kZ(t, x1)− Z(t, x0)k ≤ K(x, I)kx1 − x0k for all x0, x1 ∈ B(x, �(x, I)) and t ∈ I.

For the rest of this section, we will assume J is an open interval containing 0, U
is an open subset of X and Z ∈ C(J × U,X) is a locally Lipschitz function.

Lemma 5.13. Let Z ∈ C(J ×U,X) be a locally Lipschitz function in X and E be
a compact subset of U and I be a compact subset of J. Then there exists � > 0 such
that Z(t, x) is bounded for (t, x) ∈ I × E� and and Z(t, x) is K — Lipschitz on E�

for all t ∈ I, where

E� := {x ∈ U : dist(x,E) < �} .
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Proof. Let �(x, I) and K(x, I) be as in Definition 5.12 above. Since E is com-
pact, there exists a finite subset Λ ⊂ E such that E ⊂ V := ∪x∈ΛB(x, �(x, I)/2). If
y ∈ V, there exists x ∈ Λ such that ky − xk < �(x, I)/2 and therefore

kZ(t, y)k ≤ kZ(t, x)k+K(x, I) ky − xk ≤ kZ(t, x)k+K(x, I)�(x, I)/2

≤ sup
x∈Λ,t∈I

{kZ(t, x)k+K(x, I)�(x, I)/2} =:M <∞.

This shows Z is bounded on I × V.
Let

� := d(E, V c) ≤ 1
2
min
x∈Λ

�(x, I)

and notice that � > 0 since E is compact, V c is closed and E ∩ V c = ∅. If y, z ∈ E�

and ky − zk < �, then as before there exists x ∈ Λ such that ky − xk < �(x, I)/2.
Therefore

kz − xk ≤ kz − yk+ ky − xk < �+ �(x, I)/2 ≤ �(x, I)

and since y, z ∈ B(x, �(x, I)), it follows that

kZ(t, y)− Z(t, z)k ≤ K(x, I)ky − zk ≤ K0ky − zk
where K0 := maxx∈ΛK(x, I) <∞. On the other hand if y, z ∈ E� and ky − zk ≥ �,
then

kZ(t, y)− Z(t, z)k ≤ 2M ≤ 2M
�
ky − zk .

Thus if we let K := max {2M/�,K0} , we have shown
kZ(t, y)− Z(t, z)k ≤ Kky − zk for all y, z ∈ E� and t ∈ I.

Proposition 5.14 (Maximal Solutions). Let Z ∈ C(J×U,X) be a locally Lipschitz
function in x and let x ∈ U be fixed. Then there is an interval Jx = (a(x), b(x))
with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1—function y : J → U with the following
properties:

(1) y solves ODE in Eq. (5.1).
(2) If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (5.1) (we assume that

0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .
The function y : J → U is called the maximal solution to Eq. (5.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to Eq.
(5.1). We will start by showing the y1 = y2 on J1 ∩J2. To do this9 let J0 = (a0, b0)
be chosen so that 0 ∈ J0 ⊂ J1 ∩ J2, and let E := y1(J0) ∪ y2(J0) — a compact
subset of X. Choose � > 0 as in Lemma 5.13 so that Z is Lipschitz on E�. Then
y1|J0 , y2|J0 : J0 → E� both solve Eq. (5.1) and therefore are equal by Corollary 5.9.

9Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.
(T is the first positive time after which y1 and y2 disagree.
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) = y2(T ) =: x0.

Applying the local uniqueness theorem to y1(· − T ) and y2(· − T ) thought as function from
(−δ, δ)→ B(x0, �(x0)) for some δ sufficiently small, we learn that y1(·−T ) = y2(·−T ) on (−δ, δ).
But this shows that y1 = y2 on [0, T + δ) which contradicts the definition of T. Hence we must
have the T = min{b1, b2}, i.e. y1 = y2 on J1 ∩J2 ∩ [0,∞). A similar argument shows that y1 = y2
on J1 ∩ J2 ∩ (−∞, 0] as well.
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Since J0 = (a0, b0) was chosen arbitrarily so that [a, b] ⊂ J1 ∩ J2, we may conclude
that y1 = y2 on J1 ∩ J2.
Let (yα, Jα = (aα, bα))α∈A denote the possible solutions to (5.1) such that 0 ∈

Jα. Define Jx = ∪Jα and set y = yα on Jα. We have just checked that y is well
defined and the reader may easily check that this function y : Jx → U satisfies all
the conclusions of the theorem.

Notation 5.15. For each x ∈ U, let Jx = (a(x), b(x)) be the maximal interval on
which Eq. (5.1) may be solved, see Proposition 5.14. Set D(Z) ≡ ∪x∈U (Jx×{x}) ⊂
J × U and let φ : D(Z) → U be defined by φ(t, x) = y(t) where y is the maximal
solution to Eq. (5.1). (So for each x ∈ U, φ(·, x) is the maximal solution to Eq.
(5.1).)

Proposition 5.16. Let Z ∈ C(J×U,X) be a locally Lipschitz function in x and y :
Jx = (a(x), b(x))→ U be the maximal solution to Eq. (5.1). If b(x) < b, then either
lim supt↑b(x) kZ(t, y(t))k = ∞ or y(b(x)−) ≡ limt↑b(x) y(t) exists and y(b(x)−) /∈
U. Similarly, if a > a(x), then either lim supt↓a(x) ky(t)k = ∞ or y(a(x)+) ≡
limt↓a y(t) exists and y(a(x)+) /∈ U.

Proof. Suppose that b < b(x) and M ≡ lim supt↑b(x) kZ(t, y(t))k < ∞. Then
there is a b0 ∈ (0, b(x)) such that kZ(t, y(t))k ≤ 2M for all t ∈ (b0, b(x)). Thus, by
the usual fundamental theorem of calculus argument,

ky(t)− y(t0)k ≤
¯̄̄̄
¯
Z t0

t

kZ(t, y(τ))k dτ
¯̄̄̄
¯ ≤ 2M |t− t0|

for all t, t0 ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) = limt↑b(x) y(t)
exists. If y(b(x)−) ∈ U, by the local existence Theorem 5.10, there exists δ > 0 and
w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).
Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t) if t ∈ [b(x), b(x) + δ)

.

The reader may now easily show ỹ solves the integral Eq. (5.2) and hence also
solves Eq. 5.1 for t ∈ (a(x), b(x) + δ).10 But this violates the maximality of y and
hence we must have that y(b(x)−) /∈ U. The assertions for t near a(x) are proved
similarly.

Example 5.17. Let X = R2, J = R, U =
©
(x, y) ∈ R2 : 0 < r < 1

ª
where r2 =

x2 + y2 and

Z(x, y) =
1

r
(x, y) +

1

1− r2
(−y, x).

The the unique solution (x(t), y(t)) to

d

dt
(x(t), y(t)) = Z(x(t), y(t)) with (x(0), y(0)) = (

1

2
, 0)

10See the argument in Proposition 5.19 for a slightly different method of extending y which
avoids the use of the integral equation (5.2).
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is given by

(x(t), y(t)) =

µ
t+

1

2

¶µ
cos

µ
1

1/2− t

¶
, sin

µ
1

1/2− t

¶¶
for t ∈ J(1/2,0) = (−∞, 1/2) . Notice that kZ(x(t), y(t))k → ∞ as t ↑ 1/2 and
dist((x(t), y(t)), U c)→ 0 as t ↑ 1/2.
Example 5.18. (Not worked out completely.) Let X = U = c2, ψ ∈ C∞(R2) be
a smooth function such that ψ = 1 in a neighborhood of the line segment joining
(1, 0) to (0, 1) and being supported within the 1/10 — neighborhood of this segment.
Choose an ↑ ∞ and bn ↑ ∞ and define

(5.29) Z(x) =
∞X
n=1

anψ(bn(xn, xn+1))(en+1 − en).

For any x ∈ c2, only a finite number of terms are non-zero in the above some in a
neighborhood of x. Therefor Z : c2 → c2 is a smooth and hence locally Lipshcitz
vector field. Let (y(t), J = (a, b)) denote the maximal solution to

ẏ(t) = Z(y(t)) with y(0) = e1.

Then if the an and bn are chosen appropriately, then b < ∞ and there will exist
tn ↑ b such that y(tn) is approximately en for all n. So again y(tn) does not have
a limit yet supt∈[0,b) ky(t)k < ∞. The idea is that Z is constructed to blow the
particle form e1 to e2 to e3 to e4 etc. etc. with the time it takes to travel from en
to en+1 being on order 1/2n. The vector field in Eq. (5.29) is a first approximation
at such a vector field, it may have to be adjusted a little more to provide an honest
example. In this example, we are having problems because y(t) is “going off in
dimensions.”

Here is another version of Proposition 5.16 which is more useful when dim(X) <
∞.

Proposition 5.19. Let Z ∈ C(J × U,X) be a locally Lipschitz function in x and
y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (5.1).

(1) If b(x) < b, then for every compact subset K ⊂ U there exists TK < b(x)
such that y(t) /∈ K for all t ∈ [TK , b(x)).

(2) When dim(X) <∞, we may write this condition as: if b(x) < b, then either

lim sup
t↑b(x)

ky(t)k =∞ or lim inf
t↑b(x)

dist(y(t), U c) = 0.

Proof. 1) Suppose that b(x) < b and, for sake of contradiction, there exists a
compact set K ⊂ U and tn ↑ b(x) such that y(tn) ∈ K for all n. Since K is compact,
by passing to a subsequence if necessary, we may assume y∞ := limn→∞ y(tn)
exists in K ⊂ U. By the local existence Theorem 5.10, there exists T0 > 0 and
δ > 0 such that for each x0 ∈ B (y∞, δ) there exists a unique solution w(·, x0) ∈
C1((−T0, T0), U) solving

w(t, x0) = Z(t, w(t, x0)) and w(0, x0) = x0.

Now choose n sufficiently large so that tn ∈ (b(x)− T0/2, b(x)) and y(tn) ∈
B (y∞, δ) . Define ỹ : (a(x), b(x) + T0/2)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t− tn, y(tn)) if t ∈ (tn − T0, b(x) + T0/2) ⊂ (tn − T0, tn + T0).
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By uniqueness of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + T0/2) ,X)
and ỹ solves the ODE in Eq. 5.1. But this violates the maximality of y.
2) For each n ∈ N let

Kn := {x ∈ U : kxk ≤ n and dist(x,Uc) ≥ 1/n} .
Then Kn ↑ U and each Kn is a closed bounded set and hence compact if dim(X) <
∞. Therefore if b(x) < b, by item 1., there exists Tn ∈ [0, b(x)) such that y(t) /∈ Kn

for all t ∈ [Tn, b(x)) or equivalently ky(t)k > n or dist(y(t), Uc) < 1/n for all
t ∈ [Tn, b(x)).
Remark 5.20. In general it is not true that the functions a and b are continuous.
For example, let U be the region in R2 described in polar coordinates by r > 0 and
0 < θ < 3π/4 and Z(x, y) = (0,−1) as in Figure 12 below. Then b(x, y) = y for all
x, y > 0 while b(x, y) =∞ for all x < 0 and y ∈ R which shows b is discontinuous.
On the other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}
is an open set for all t > 0.

Figure 12. An example of a vector field for which b(x) is discon-
tinuous. This is given in the top left hand corner of the figure.
The map ψ would allow the reader to find an example on R2 if so
desired. Some calculations shows that Z transfered to R2 by the
map ψ is given by

Z̃(x, y) = −e−x
µ
sin

µ
3π

8
+
3

4
tan−1 (y)

¶
, cos

µ
3π

8
+
3

4
tan−1 (y)

¶¶
.

Theorem 5.21 (Global Continuity). Let Z ∈ C(J × U,X) be a locally Lipschitz
function in x. Then D(Z) is an open subset of J ×U and the functions φ : D(Z)→
U and φ̇ : D(Z) → U are continuous. More precisely, for all x0 ∈ U and all
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open intervals J0 such that 0 ∈ J0 @@ Jx0 there exists δ = δ(x0, J0, Z) > 0 and
C = C(x0, J0, Z) <∞ such that for all x ∈ B(x0, δ), J0 ⊂ Jx and

(5.30) kφ(·, x)− φ(·, x0)kBC(J0,U) ≤ C kx− x0k .
Proof. Let |J0| = b0 − a0, I = J̄0 and E := y(J̄0) — a compact subset of U and

let � > 0 and K < ∞ be given as in Lemma 5.13, i.e. K is the Lipschitz constant
for Z on E�. Also recall the notation: ∆1(t) = [0, t] if t > 0 and ∆1(t) = [t, 0] if
t < 0.
Suppose that x ∈ E�, then by Corollary 5.9,

(5.31) kφ(t, x)− φ(t, x0)k ≤ kx− x0keK|t| ≤ kx− x0keK|J0|

for all t ∈ J0 ∩ Jx such that such that φ (∆1(t), x) ⊂ E�. Letting δ := �e−K|J0|/2,
and assuming x ∈ B(x0, δ), the previous equation implies

kφ(t, x)− φ(t, x0)k ≤ �/2 < � for all t ∈ J0 ∩ Jx such that φ (∆1(t), x) ⊂ E�.

This estimate further shows that φ(t, x) remains bounded and strictly away from
the boundary of U for all such t. Therefore, it follows from Proposition 5.14 and
“continuous induction11” that J0 ⊂ Jx and Eq. (5.31) is valid for all t ∈ J0. This
proves Eq. (5.30) with C := eK|J0|.
Suppose that (t0, x0) ∈ D(Z) and let 0 ∈ J0 @@ Jx0 such that t0 ∈ J0 and δ be

as above. Then we have just shown J0 × B(x0, δ) ⊂ D(Z) which proves D(Z) is
open. Furthermore, since the evaluation map

(t0, y) ∈ J0 ×BC(J0, U)
e→ y(t0) ∈ X

is continuous (as the reader should check) it follows that φ = e ◦ (x→ φ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous maps.
The continuity of φ̇(t0, x) is a consequences of the continuity of φ and the differential
equation 5.1
Alternatively using Eq. (5.2),

kφ(t0, x)− φ(t, x0)k ≤ kφ(t0, x)− φ(t0, x0)k+ kφ(t0, x0)− φ(t, x0)k

≤ C kx− x0k+
¯̄̄̄Z t0

t

kZ(τ, φ(τ, x0))k dτ
¯̄̄̄
≤ C kx− x0k+M |t0 − t|

where C is the constant in Eq. (5.30) and M = supτ∈J0 kZ(τ, φ(τ, x0))k <∞. This
clearly shows φ is continuous.

5.6. Semi-Group Properties of time independent flows. To end this chapter
we investigate the semi-group property of the flow associated to the vector-field Z.
It will be convenient to introduce the following suggestive notation. For (t, x) ∈
D(Z), set etZ(x) = φ(t, x). So the path t→ etZ(x) is the maximal solution to

d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

11See the argument in the proof of Proposition 4.7.
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Notation 5.22. We write f : X → X to mean a function defined on some open
subset D(f) ⊂ X. The open set D(f) will be called the domain of f. Given two
functions f : X → X and g : X → X with domains D(f) and D(g) respectively,
we define the composite function f ◦ g : X → X to be the function with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g iff
D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write f ⊂ g
iff D(f) ⊂ D(g) and g|D(f) = f.

Theorem 5.23. For fixed t ∈ R we consider etZ as a function from X to X with
domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(φ) = D(Z) ⊂ R×U, D(Z) and
φ are defined in Notation 5.15. Conclusions:

(1) If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
(2) If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).

(3) For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left to
the reader. Suppose that x ∈ D(etZ ◦ esZ). Then by assumption x ∈ D(esZ) and
esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =

½
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since, eτZ(x) is
the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t+ s) = e(t+s)Z(x).
That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that etZ ◦ esZ ⊂ e(t+s)Z .
To finish the proof of item 1. it suffices to show that D(e(t+s)Z) ⊂ D(etZ ◦ esZ).

Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set y(τ) = e(τ+s)Z(x) defined for
0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued prob-
lem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ = t, e(t+s)Z(x) =
etZ(esZ(x)). This shows that x ∈ D(etZ ◦ esZ) and in fact e(t+s)Z ⊂ etZ ◦ esZ .
Item 2. Let x ∈ D(e−tZ) — again assume for simplicity that t ≥ 0. Set y(τ) =

e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x) and ẏ(τ) = Z(y(τ)).
This shows that y(τ) = eτZ(e−tZ(x)) and in particular that x ∈ D(etZ ◦ e−tZ) and
etZ ◦ e−tZ(x) = x. This proves item 2.
Item 3. I will only consider the case that s < 0 and t + s ≥ 0, the other

cases are handled similarly. Write u for t + s, so that t = −s + u. We know that
etZ = euZ ◦ e−sZ by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .
Notice in general, one has (f ◦ g) ◦ h = f ◦ (g ◦ h) (you prove). Hence, the above
displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial converse to
Theorem 5.23.



70 BRUCE K. DRIVER†

Proposition 5.24 (Flows and Complete Vector Fields). Suppose U ⊂o X, φ ∈
C(R× U,U) and φt(x) = φ(t, x). Suppose φ satisfies:

(1) φ0 = IU ,
(2) φt ◦ φs = φt+s for all t, s ∈ R, and
(3) Z(x) := φ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then φt = etZ .

Proof. Let x ∈ U and y(t) ≡ φt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0φ(t+s)(x) = d

ds
|0φs ◦ φt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 5.9) that φt(x) = y(t) = etZ(x).

5.7. Exercises.

Exercise 5.1. Find a vector field Z such that e(t+s)Z is not contained in etZ ◦ esZ .
Definition 5.25. A locally Lipschitz function Z : U ⊂o X −→ X is said to be a
complete vector field if D(Z) = R×U. That is for any x ∈ U, t −→ etZ(x) is defined
for all t ∈ R.
Exercise 5.2. Suppose that Z : X −→ X is a locally Lipschitz function. Assume
there is a constant C > 0 such that

kZ(x)k ≤ C(1 + kxk) for all x ∈ X.

Then Z is complete. Hint: use Gronwall’s Lemma 5.8 and Proposition 5.16.

Exercise 5.3. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0. Show there
exists a, b ∈ [0,∞] such that

y(t) =


1
4(t− b)2 if t ≥ b

0 if −a < t < b
−14(t+ a)2 if t ≤ −a.

Exercise 5.4. Using the fact that the solutions to Eq. (5.3) are never 0 if x 6= 0,
show that y(t) = 0 is the only solution to Eq. (5.3) with y(0) = 0.

Exercise 5.5. Suppose that A ∈ L(X). Show directly that:

(1) etA define in Eq. (5.14) is convergent in L(X) when equipped with the
operator norm.

(2) etA is differentiable in t and that d
dte

tA = AetA.

Exercise 5.6. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A with
eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that X = Rn and A
is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn).

Exercise 5.7. Suppose that A,B ∈ L(X) and [A,B] ≡ AB −BA = 0. Show that
e(A+B) = eAeB.
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Exercise 5.8. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all s, t ∈ R.
Show

y(t) := e(
R t
0
A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 5.9. Compute etA when

A =

µ
0 1
−1 0

¶
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.
Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 5.10. Compute etA when

A =

 0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is the 3×3
identity matrix. Hint: Sum the series.

Exercise 5.11. Prove Theorem 5.7 using the following outline.

(1) First show t ∈ [0,∞)→ Tt ∈ L(X) is continuos.
(2) For � > 0, let S� := 1

�

R �
0
Tτdτ ∈ L(X). Show S� → I as � ↓ 0 and conclude

from this that S� is invertible when � > 0 is sufficiently small. For the
remainder of the proof fix such a small � > 0.

(3) Show

TtS� =
1

�

Z t+�

t

Tτdτ

and conclude from this that

lim
t↓0

t−1 (Tt − I)S� =
1

�
(T� − IdX) .

(4) Using the fact that S� is invertible, conclude A = limt↓0 t−1 (Tt − I) exists
in L(X) and that

A =
1

�
(T� − I)S−1� .

(5) Now show using the semigroup property and step 4. that d
dtTt = ATt for

all t > 0.
(6) Using step 5, show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 5.12 (Higher Order ODE). Let X be a Banach space, , U ⊂o Xn and
f ∈ C (J × U ,X) be a Locally Lipschitz function in x = (x1, . . . , xn). Show the nth
ordinary differential equation,
(5.32)
y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t)) with y(k)(0) = yk0 for k = 0, 1, 2 . . . , n− 1
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where (y00, . . . , y
n−1
0 ) is given in U , has a unique solution for small t ∈ J. Hint: let

y(t) =
¡
y(t), ẏ(t), . . . y(n−1)(t)

¢
and rewrite Eq. (5.32) as a first order ODE of the

form
ẏ(t) = Z(t,y(t)) with y(0) = (y00, . . . , y

n−1
0 ).

Exercise 5.13. Use the results of Exercises 5.10 and 5.12 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2 × 2 matrix associated to this system, A, has only one eigenvalue 1
and may be written as A = I +B where B2 = 0.

Exercise 5.14. Suppose that A : R → L(X) is a continuous function and U,V :
R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I

and

(5.33) U̇(t) = −U(t)A(t) with U(0) = I.

Prove that V (t) is invertible and that V −1(t) = U(t).Hint: 1) show d
dt [U(t)V (t)] =

0 (which is sufficient if dim(X) <∞) and 2) show compute y(t) := V (t)U(t) solves
a linear differential ordinary differential equation that has y ≡ 0 as an obvious
solution. Then use the uniqueness of solutions to ODEs. (The fact that U(t) must
be defined as in Eq. (5.33) is the content of Exercise 26.2 below.)

Exercise 5.15 (Duhamel’ s Principle I). Suppose that A : R→ L(X) is a contin-
uous function and V : R → L(X) is the unique solution to the linear differential
equation in Eq. (26.36). Let x ∈ X and h ∈ C(R,X) be given. Show that the
unique solution to the differential equation:

(5.34) ẏ(t) = A(t)y(t) + h(t) with y(0) = x

is given by

(5.35) y(t) = V (t)x+ V (t)

Z t

0

V (τ)−1h(τ) dτ.

Hint: compute d
dt [V

−1(t)y(t)] when y solves Eq. (5.34).

Exercise 5.16 (Duhamel’ s Principle II). Suppose that A : R → L(X) is a con-
tinuous function and V : R→ L(X) is the unique solution to the linear differential
equation in Eq. (26.36). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be given. Show that
the unique solution to the differential equation:

(5.36) Ẇ (t) = A(t)W (t) +H(t) with W (0) =W0

is given by

(5.37) W (t) = V (t)W0 + V (t)

Z t

0

V (τ)−1H(τ) dτ.

Exercise 5.17 (Non-Homogeneous ODE). Suppose that U ⊂o X is open and
Z : R× U → X is a continuous function. Let J = (a, b) be an interval and t0 ∈ J.
Suppose that y ∈ C1(J, U) is a solution to the “non-homogeneous” differential
equation:

(5.38) ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U.
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Define Y ∈ C1(J − t0,R× U) by Y (t) ≡ (t+ t0, y(t+ t0)). Show that Y solves the
“homogeneous” differential equation

(5.39) Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0),

where Z̃(t, x) ≡ (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R × U) is a
solution to Eq. (5.39). Show that Y (t) = (t+ t0, y(t+ t0)) for some y ∈ C1(J, U)
satisfying Eq. (5.38). (In this way the theory of non-homogeneous ode’s may be
reduced to the theory of homogeneous ode’s.)

Exercise 5.18 (Differential Equations with Parameters). Let W be another Ba-
nach space, U ×V ⊂o X ×W and Z ∈ C(U ×V,X) be a locally Lipschitz function
on U × V. For each (x,w) ∈ U × V, let t ∈ Jx,w → φ(t, x, w) denote the maximal
solution to the ODE

(5.40) ẏ(t) = Z(y(t), w) with y(0) = x.

Prove

(5.41) D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}
is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (5.40), then v(t) ≡ (y(t), w)

solves the differential equation,

(5.42) v̇(t) = Z̃(v(t)) with v(0) = (x,w),

where Z̃(x,w) ≡ (Z(x,w), 0) ∈ X ×W and let ψ(t, (x,w)) := v(t). Now apply the
Theorem 5.21 to the differential equation (5.42).

Exercise 5.19 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=
∞X
n=0

(−1)n
(2n)!

t2nA2n and

sin(tA)

A
:=

∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2n.

Show that the unique solution y ∈ C2 (R,X) to

(5.43) ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X

is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0.

Remark 5.26. Exercise 5.19 can be done by direct verification. Alternatively and
more instructively, rewrite Eq. (5.43) as a first order ODE using Exercise 5.12. In
doing so you will be lead to compute etB where B ∈ L(X ×X) is given by

B =

µ
0 I
−A2 0

¶
,

where we are writing elements of X ×X as column vectors,
µ

x1
x2

¶
. You should

then show

etB =

µ
cos(tA) sin(tA)

A−A sin(tA) cos(tA)

¶
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where

A sin(tA) :=
∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2(n+1).

Exercise 5.20 (Duhamel’s Principle for the Abstract Wave Equation). Continue
the notation in Exercise 5.19, but now consider the ODE,

(5.44) ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X

where f ∈ C(R,X). Show the unique solution to Eq. (5.44) is given by

(5.45) y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0 +

Z t

0

sin((t− τ)A)

A
f(τ)dτ

Hint: Again this could be proved by direct calculation. However it is more in-
structive to deduce Eq. (5.45) from Exercise 5.15 and the comments in Remark
5.26.
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6. Algebras, σ — Algebras and Measurability

6.1. Introduction: What are measures and why “measurable” sets.

Definition 6.1 (Preliminary). Suppose that X is a set and P(X) denotes the
collection of all subsets of X. A measure µ on X is a function µ : P(X) → [0,∞]
such that

(1) µ(∅) = 0
(2) If {Ai}Ni=1 is a finite (N <∞) or countable (N =∞) collection of subsets

of X which are pair-wise disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then

µ(∪Ni=1Ai) =
NX
i=1

µ(Ai).

Example 6.2. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =

½
1 if x ∈ A
0 otherwise.

Then µ = δx is a measure on X called the Dirac delta function at x.

Example 6.3. Suppose that µ is a measure on X and λ > 0, then λ · µ is also a
measure on X. Moreover, if {µα}α∈J are all measures on X, then µ =

P
α∈J µα,

i.e.

µ(A) =
X
α∈J

µα(A) for all A ⊂ X

is a measure on X. (See Section 2 for the meaning of this sum.) To prove this we
must show that µ is countably additive. Suppose that {Ai}∞i=1 is a collection of
pair-wise disjoint subsets of X, then

µ(∪∞i=1Ai) =
∞X
i=1

µ(Ai) =
∞X
i=1

X
α∈J

µα(Ai)

=
X
α∈J

∞X
i=1

µα(Ai) =
X
α∈J

µα(∪∞i=1Ai)

= µ(∪∞i=1Ai)

wherein the third equality we used Theorem 2.21 and in the fourth we used that
fact that µα is a measure.

Example 6.4. Suppose that X is a set λ : X → [0,∞] is a function. Then

µ :=
X
x∈X

λ(x)δx

is a measure, explicitly

µ(A) =
X
x∈A

λ(x)

for all A ⊂ X.
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6.2. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure µ : P(R)→[0,∞] such that
(1) µ([a, b)) = (b− a) for all a < b and
(2) (Translation invariant) µ(A + x) = µ(A) for all x ∈ R? (Here A + x :=

{y + x : y ∈ A} ⊂ R.)
The answer is no which we now demonstrate. In fact the answer is no even if we

replace (1) by the condition that 0 < µ((0, 1]) <∞.

Let us identify [0, 1) with the unit circle S1 := {z ∈ C : |z| = 1} by the map
φ(t) = ei2πt ∈ S1 for t ∈ [0, 1). Using this identification we may use µ to define a
function ν on P(S1) by ν(φ(A)) = µ(A) for all A ⊂ [0, 1). This new function is a
measure on S1 with the property that 0 < ν((0, 1]) < ∞. For z ∈ S1 and N ⊂ S1

let

(6.1) zN := {zn ∈ S1 : n ∈ N},
that is to say eiθN is N rotated counter clockwise by angle θ. We now claim that
ν is invariant under these rotations, i.e.

(6.2) ν(zN) = ν(N)

for all z ∈ S1 and N ⊂ S1. To verify this, write N = φ(A) and z = φ(t) for some
t ∈ [0, 1) and A ⊂ [0, 1). Then

φ(t)φ(A) = φ(t+Amod1)

where for A ⊂ [0, 1) and α ∈ [0, 1), let
t+Amod1 = {a+ tmod1 ∈ [0, 1) : a ∈ N}

= (a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}) .
Thus

ν(φ(t)φ(A)) = µ(t+Amod1)

= µ ((a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}))
= µ ((a+A ∩ {a < 1− t})) + µ (((t− 1) +A ∩ {a ≥ 1− t}))
= µ (A ∩ {a < 1− t}) + µ (A ∩ {a ≥ 1− t})
= µ ((A ∩ {a < 1− t}) ∪ (A ∩ {a ≥ 1− t}))
= µ(A) = ν(φ(A)).

Therefore it suffices to prove that no finite measure ν on S1 such that Eq. (6.2)
holds. To do this we will “construct” a non-measurable set N = φ(A) for some
A ⊂ [0, 1).
To do this let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q},
a countable subgroup of S1. As above R acts on S1 by rotations and divides S1 up
into equivalence classes, where z, w ∈ S1 are equivalent if z = rw for some r ∈ R.
Choose (using the axiom of choice) one representative point n from each of these
equivalence classes and let N ⊂ S1 be the set of these representative points. Then
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every point z ∈ S1 may be uniquely written as z = nr with n ∈ N and r ∈ R. That
is to say

(6.3) S1 =
a
r∈R

(rN)

where
`

αAα is used to denote the union of pair-wise disjoint sets {Aα} . By Eqs.
(6.2) and (6.3),

ν(S1) =
X
r∈R

ν(rN) =
X
r∈R

ν(N).

The right member from this equation is either 0 or ∞, 0 if ν(N) = 0 and ∞ if
ν(N) > 0. In either case it is not equal ν(S1) ∈ (0, 1). Thus we have reached the
desired contradiction.
Proof. (Second proof of Answer to Question 1) For N ⊂ [0, 1) and α ∈ [0, 1),

let

Nα = N + αmod1

= {a+ αmod1 ∈ [0, 1) : a ∈ N}
= (α+N ∩ {a < 1− α}) ∪ ((α− 1) +N ∩ {a ≥ 1− α}) .

If µ is a measure satisfying the properties of the Question we would have

µ (Nα) = µ (α+N ∩ {a < 1− α}) + µ ((α− 1) +N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α}) + µ (N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α} ∪ (N ∩ {a ≥ 1− α}))
= µ(N).(6.4)

We will now construct a bad set N which coupled with Eq. (6.4) will lead to a
contradiction.
Set

Qx ≡ {x+ r ∈ R : r∈ Q} =x+Q.
Notice that Qx ∩ Qy 6= ∅ implies that Qx = Qy. Let O = {Qx : x ∈ R} — the
orbit space of the Q action. For all A ∈ O choose f(A) ∈ [0, 1/3) ∩ A.12 Define
N = f(O). Then observe:

(1) f(A) = f(B) implies that A ∩ B 6= ∅ which implies that A = B so that f
is injective.

(2) O = {Qn : n ∈ N}.
Let R be the countable set,

R ≡ Q ∩ [0, 1).
We now claim that

Nr ∩Ns = ∅ if r 6= s and(6.5)

[0, 1) = ∪r∈RNr.(6.6)

Indeed, if x ∈ Nr ∩ Ns 6= ∅ then x = r + nmod1 and x = s + n0mod1, then
n − n0 ∈ Q, i.e. Qn = Qn0 . That is to say, n = f(Qn) = f(Qn0) = n0 and hence
that s = rmod1, but s, r ∈ [0, 1) implies that s = r. Furthermore, if x ∈ [0, 1) and
n := f(Qx), then x− n = r ∈ Q and x ∈ Nrmod 1.

12We have used the Axiom of choice here, i.e.
Q
A∈F (A ∩ [0, 1/3]) 6= ∅
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Now that we have constructed N, we are ready for the contradiction. By Equa-
tions (6.4—6.6) we find

1 = µ([0, 1)) =
X
r∈R

µ(Nr) =
X
r∈R

µ(N)

=

½ ∞ if µ(N) > 0
0 if µ(N) = 0

.

which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set.
Because of this example and our desire to have a measure µ on R satisfying the

properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets A ⊂ R, i.e. we will only try to define µ on a
smaller collection of “measurable” sets. Such collections will be called σ — algebras
which we now introduce. The formal definition of a measure appears in Definition
7.1 of Section 7 below.

6.3. Algebras and σ — algebras.

Definition 6.5. A collection of subsets A of X is an Algebra if
(1) ∅,X ∈ A
(2) A ∈ A implies that Ac ∈ A
(3) A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
30. A is closed under finite intersections.

Definition 6.6. A collection of subsetsM of X is a σ — algebra (σ — field) ifM
is an algebra which also closed under countable unions, i.e. if {Ai}∞i=1 ⊂M, then
∪∞i=1Ai ∈M. (Notice that sinceM is also closed under taking complements,M is
also closed under taking countable intersections.) A pair (X,M), where X is a set
andM is a σ — algebra on X, is called a measurable space.

The reader should compare these definitions with that of a topology, see Defini-
tion 3.14. Recall that the elements of a topology are called open sets. Analogously,
we will often refer to elements of and algebra A or a σ — algebraM asmeasurable
sets.

Example 6.7. Here are some examples.
(1) τ =M = P(X) in which case all subsets of X are open, closed, and mea-

surable.
(2) Let X = {1, 2, 3}, then τ = {∅,X, {2, 3}} is a topology on X which is not

an algebra.
(3) τ = A = {{1}, {2, 3}, ∅,X} is a topology, an algebra, and a σ — algebra

on X. The sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and
{1, 3} are neither open nor closed and are not measurable.

Proposition 6.8. Let E be any collection of subsets of X. Then there exists a
unique smallest topology τ(E), algebra A(E) and σ-algebra σ(E) which contains E.
Proof. Note P(X) is a topology and an algebra and a σ-algebra and E ⊂ P(X),

so E is always a subset of a topology, algebra, and σ — algebra. One may now easily
check that

τ(E) ≡
\
{τ : τ is a topology and E ⊂ τ}
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is a topology which is clearly the smallest topology containing E. The analogous
construction works for the other cases as well.
We may give explicit descriptions of τ(E) and A(E). However σ(E) typically does

not admit a simple concrete description.

Proposition 6.9. Let X be a set and E ⊂ P(X). For simplicity of notation, assume
that X, ∅ ∈ E (otherwise adjoin them to E if necessary) and let Ec ≡ {Ac : A ∈ E}
and Ec = E ∪ {X, ∅} ∪ Ec Then τ(E) = τ and A(E) = A where

(6.7) τ := {arbitrary unions of finite intersections of elements from E}
and

(6.8) A := {finite unions of finite intersections of elements from Ec}.
Proof. From the definition of a topology and an algebra, it is clear that E ⊂

τ ⊂ τ(E) and E ⊂ A ⊂ A(E). Hence to finish that proof it suffices to show τ is a
topology and A is an algebra. The proof of these assertions are routine except for
possibly showing that τ is closed under taking finite intersections and A is closed
under complementation.
To check A is closed under complementation, let Z ∈ A be expressed as

Z =
N[
i=1

K\
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Ac
ij ∈ Ec, we find that

Zc =
N\
i=1

K[
j=1

Bij =
K[

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1 ∩B2j2 ∩ · · · ∩BNjN is a finite intersection
of sets from Ec.
To show τ is closed under finite intersections it suffices to show for V,W ∈ τ

that V ∩W ∈ τ. Write

V = ∪α∈AVα and W = ∪β∈BWβ

where Vα and Wβ are sets which are finite intersection of elements from E . Then
V ∩W = (∪α∈AVα) ∩ (∪β∈BWβ) =

[
(α,β)∈A×B

Vα ∩Wβ ∈ τ

since for each (α, β) ∈ A×B, Vα ∩Wβ is still a finite intersection of elements from
E .
Remark 6.10. One might think that in general σ(E) may be described as the count-
able unions of countable intersections of sets in Ec. However this is false, since if

Z =
∞[
i=1

∞\
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞[

j1=1,j2=1,...jN=1,...

Ã ∞\
c=1

Ac
c,jc

!
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which is now an uncountable union. Thus the above description is not correct. In
general it is complicated to explicitly describe σ(E), see Proposition 1.23 on page
39 of Folland for details.

Exercise 6.1. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written as
finite union of sets of the form F ∩ V where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 6.11. A set E ⊂ P(X) is said to be an elementary family or ele-
mentary class provided that

• ∅ ∈ E
• E is closed under finite intersections
• if E ∈ E , then Ec is a finite disjoint union of sets from E. (In particular
X = ∅c is a disjoint union of elements from E .)

Proposition 6.12. Suppose E ⊂ P(X) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from E .
Proof. This could be proved making use of Proposition 6.12. However it is

easier to give a direct proof.
Let A denote the collection of sets which may be written as finite disjoint unions

of sets from E . Clearly E ⊂ A ⊂ A(E) so it suffices to show A is an algebra since
A(E) is the smallest algebra containing E .
By the properties of E, we know that ∅,X ∈ A. Now suppose that Ai =`
F∈Λi F ∈ A where, for i = 1, 2, . . . , n., Λi is a finite collection of disjoint sets

from E. Then
n\
i=1

Ai =
n\
i=1

Ã a
F∈Λi

F

!
=

[
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from E . Therefore A is closed
under finite intersections. Similarly, if A =

`
F∈Λ F with Λ being a finite collection

of disjoint sets from E, then Ac =
T
F∈Λ F

c. Since by assumption F c ∈ A for
F ∈ Λ ⊂ E and A is closed under finite intersections, it follows that Ac ∈ A.
Exercise 6.2. Let A ⊂ P(X) and B ⊂ P(Y ) be elementary families. Show the
collection

E = A×B = {A×B : A ∈ A and B ∈ B}
is also an elementary family.

The analogous notion of elementary class E for topologies is a basis V defined
below.

Definition 6.13. Let (X, τ) be a topological space. We say that S ⊂ τ is a sub-
basis for the topology τ iff τ = τ(S) and X = ∪S := ∪V ∈SV. We say V ⊂ τ is a
basis for the topology τ iff V is a sub-basis with the property that every element
V ∈ τ may be written as

V = ∪{B ∈ V : B ⊂ V }.
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Figure 13. Fitting balls in the intersection.

Exercise 6.3. Suppose that S is a sub-basis for a topology τ on a setX. Show V :=
Sf consisting of finite intersections of elements from S is a basis for τ. Moreover, S
is itself a basis for τ iff

V1 ∩ V2 = ∪{S ∈ S : S ⊂ V1 ∩ V2}.
for every pair of sets V1, V2 ∈ S.
Remark 6.14. Let (X, d) be a metric space, then E = {Bx(δ) : x ∈ X and δ > 0}
is a basis for τd — the topology associated to the metric d. This is the content of
Exercise 3.3.
Let us check directly that E is a basis for a topology. Suppose that x, y ∈ X and

�, δ > 0. If z ∈ B(x, δ) ∩B(y, �), then
(6.9) B(z, α) ⊂ B(x, δ) ∩B(y, �)
where α = min{δ−d(x, z), �−d(y, z)}, see Figure 13. This is a formal consequence
of the triangle inequality. For example let us show that B(z, α) ⊂ B(x, δ). By the
definition of α, we have that α ≤ δ − d(x, z) or that d(x, z) ≤ δ − α. Hence if
w ∈ B(z, α), then

d(x,w) ≤ d(x, z) + d(z, w) ≤ δ − α+ d(z, w) < δ − α+ α = δ

which shows that w ∈ B(x, δ). Similarly we show that w ∈ B(y, �) as well.
Owing to Exercise 6.3, this shows E is a basis for a topology. We do not need

to use Exercise 6.3 here since in fact Equation (6.9) may be generalized to finite
intersection of balls. Namely if xi ∈ X, δi > 0 and z ∈ ∩ni=1B(xi, δi), then
(6.10) B(z, α) ⊂ ∩ni=1B(xi, δi)
where now α := min {δi − d(xi, z) : i = 1, 2, . . . , n} . By Eq. (6.10) it follows that
any finite intersection of open balls may be written as a union of open balls.

Example 6.15. Suppose X = {1, 2, 3} and E = {∅,X, {1, 2}, {1, 3}}, see Figure 14
below.
Then

τ(E) = {∅,X, {1}, {1, 2}, {1, 3}}
A(E) = σ(E) = P(X).



82 BRUCE K. DRIVER†

Figure 14. A collection of subsets.

Definition 6.16. Let X be a set. We say that a family of sets F ⊂ P(X) is a
partition of X if X is the disjoint union of the sets in F .
Example 6.17. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = τ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}
where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

#A(E) = #(P({1, 2, . . . , n})) = 2n.
Proposition 6.18. Suppose thatM ⊂ P(X) is a σ — algebra andM is at most a
countable set. Then there exists a unique finite partition F of X such that F ⊂M
and every element A ∈M is of the form

(6.11) A = ∪ {α ∈ F : α ⊂ A} .
In particularM is actually a finite set.

Proof. For each x ∈ X let

Ax = (∩x∈A∈MA) ∈M.

That is, Ax is the smallest set inM which contains x. Suppose that C = Ax ∩Ay

is non-empty. If x /∈ C then x ∈ Ax \ C ∈ M and hence Ax ⊂ Ax \ C which
shows that Ax ∩C = ∅ which is a contradiction. Hence x ∈ C and similarly y ∈ C,
therefore Ax ⊂ C = Ax ∩ Ay and Ay ⊂ C = Ax ∩ Ay which shows that Ax = Ay.
Therefore, F = {Ax : x ∈ X} is a partition of X (which is necessarily countable)
and Eq. (6.11) holds for all A ∈ M. Let F = {Pn}Nn=1 where for the moment
we allow N = ∞. If N = ∞, then M is one to one correspondence with {0, 1}N .
Indeed to each a ∈ {0, 1}N , let Aa ∈M be defined by

Aa = ∪{Pn : an = 1}.
This shows thatM is uncountable since {0, 1}N is uncountable; think of the base
two expansion of numbers in [0, 1] for example. Thus any countable σ — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader.
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Example 6.19. Let X = R and

E = {(a,∞) : a ∈ R} ∪ {R, ∅} = {(a,∞) ∩R : a ∈ R̄} ⊂ P(R).
Notice that Ef = E and that E is closed under unions, which shows that
τ(E) = E , i.e. E is already a topology. Since (a,∞)c = (−∞, a] we find that
Ec = {(a,∞), (−∞, a],−∞ ≤ a <∞} ∪ {R, ∅}. Noting that

(a,∞) ∩ (−∞, b] = (a, b]

it is easy to verify that the algebra A(E) generated by E may be described as being
those sets which are finite disjoint unions of sets from the following list

Ẽ := ©(a, b] ∩R : a, b ∈ R̄ª .
(This follows from Proposition 6.12 and the fact that Ẽ is an elementary family of
subsets of R.) The σ — algebra, σ(E), generated by E is very complicated. Here
are some sets in σ(E) — most of which are not in A(E).

(a) (a, b) =
∞S
n=1
(a, b− 1

n ] ∈ σ(E).
(b) All of the standard open subsets of R are in σ(E).
(c) {x} = T

n

¡
x− 1

n , x
¤ ∈ σ(E)

(d) [a, b] = {a} ∪ (a, b] ∈ σ(E)
(e) Any countable subset of R is in σ(E).

Remark 6.20. In the above example, one may replace E by E = {(a,∞) : a ∈
Q} ∪ {R, ∅}, in which case A(E) may be described as being those sets which are
finite disjoint unions of sets from the following list

{(a,∞), (−∞, a], (a, b] : a, b ∈ Q} ∪ {∅,R} .
This shows that A(E) is a countable set — a fact we will use later on.
Definition 6.21. A topological space, (X, τ), is second countable if there exists
a countable base V for τ, i.e. V ⊂ τ is a countable set such that for every W ∈ τ,

W = ∪{V : V ∈ V 3V ⊂W}.
Exercise 6.4. Suppose E ⊂ P(X) is a countable collection of subsets of X, then
τ = τ(E) is a second countable topology on X.

Proposition 6.22. Every separable metric space, (X, ρ) is second countable.

Proof. Let {xn}∞n=1 be a countable dense subset of X. Let V ≡
{X, ∅}

∞S
m,n=1

{Bxn(rm)} ⊂ τρ, where {rm}∞m=1 is dense in (0,∞). Then V is a

countable base for τρ. To see this let V ⊂ X be open and x ∈ V . Choose
� > 0 such that Bx(�) ⊂ V and then choose xn ∈ Bx(�/3). Choose rm near
�/3 such that ρ(x, xn) < rm < �/3 so that x ∈ Bxn(rm) ⊂ V . This shows
V =

S {Bxn(rm) : Bxn(rm) ⊂ V } .
Notation 6.23. For a general topological space (X, τ), the Borel σ — algebra is
the σ — algebra, BX = σ(τ). We will use BR to denote the Borel σ - algebra on R.
Proposition 6.24. If τ is a second countable topology on X and E ⊂ P(X) is a
countable set such that τ = τ(E), then BX := σ(τ) = σ(E), i.e. σ(τ(E)) = σ(E).
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Proof. Let Ef denote the collection of subsets of X which are finite intersection
of elements from E along withX and ∅. Notice that Ef is still countable (you prove).
A set Z is in τ(E) iff Z is an arbitrary union of sets from Ef . Therefore Z =

S
A∈F

A

for some subset F ⊂ Ef which is necessarily countable. Since Ef ⊂ σ(E) and σ(E) is
closed under countable unions it follows that Z ∈ σ(E) and hence that τ(E) ⊂ σ(E).
For the last assertion, since E ⊂ τ(E) ⊂ σ(E) it follows that σ(E) ⊂ σ(τ(E)) ⊂ σ(E).

Exercise 6.5. Verify the following identities

BR = σ({(a,∞) : a ∈ R} = σ({(a,∞) : a ∈ Q} = σ({[a,∞) : a ∈ Q}).
6.4. Continuous and Measurable Functions. Our notion of a “measurable”
function will be analogous to that for a continuous function. For motivational pur-
poses, suppose (X,M, µ) is a measure space and f : X → R+. Roughly speaking,
in the next section we are going to define

R
X

fdµ byZ
X

fdµ = lim
mesh→0

∞X
0<a1<a2<a3<...

aiµ(f
−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈M for all a < b. Because
of Lemma 6.30 below, this last condition is equivalent to the condition

f−1(BR) ⊂M,

where we are using the following notation.

Notation 6.25. If f : X → Y is a function and E ⊂ P(Y ) let
f−1E ≡ f−1 (E) ≡ {f−1(E)|E ∈ E}.

If G ⊂ P(X), let
f∗G ≡ {A ∈ P(Y )|f−1(A) ∈ G}.

Exercise 6.6. Show f−1E and f∗G are σ — algebras (topologies) provided E and
G are σ — algebras (topologies).
Definition 6.26. Let (X,M) and (Y,F) be measurable (topological) spaces. A
function f : X → Y is measurable (continuous) if f−1(F) ⊂M. We will also
say that f isM/F — measurable (continuous) or (M,F) — measurable (continuous).
Example 6.27 (Characteristic Functions). Let (X,M) be a measurable space and
A ⊂ X. We define the characteristic function 1A : X → R by

1A(x) =

½
1 if x ∈ A
0 if x /∈ A.

If A ∈M, then 1A is (M,P(R)) — measurable because 1−1A (W ) is either ∅, X, A or
Ac for any U ⊂ R. Conversely, if F is any σ — algebra on R containing a set W ⊂ R
such that 1 ∈ W and 0 ∈ W c, then A ∈M if 1A is (M,F) — measurable. This is
because A = 1−1A (W ) ∈M.

Remark 6.28. Let f : X → Y be a function. Given a σ — algebra (topology)
F ⊂ P(Y ), the σ — algebra (topology) M := f−1(F) is the smallest σ — algebra
(topology) on X such that f is (M,F) - measurable (continuous). Similarly, ifM
is a σ - algebra (topology) on X then F = f∗M is the largest σ — algebra (topology)
on Y such that f is (M,F) - measurable (continuous).
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Lemma 6.29. Suppose that (X,M), (Y,F) and (Z,G) are measurable (topological)
spaces. If f : (X,M)→ (Y,F) and g : (Y,F)→ (Z,G) are measurable (continuous)
functions then g ◦ f : (X,M)→ (Z,G) is measurable (continuous) as well.
Proof. This is easy since by assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
¡
g−1 (G)¢ ⊂ f−1 (F) ⊂M.

Lemma 6.30. Suppose that f : X → Y is a function and E ⊂ P(Y ), then
σ
¡
f−1(E)¢ = f−1(σ(E)) and(6.12)

τ
¡
f−1(E)¢ = f−1(τ(E)).(6.13)

Moreover, if F = σ(E) (or F = τ(E)) and M is a σ — algebra (topology) on X,
then f is (M,F) — measurable (continuous) iff f−1(E) ⊂M.

Proof. We will prove Eq. (6.12), the proof of Eq. (6.13) being analogous.
If E ⊂ F , then f−1(E) ⊂ f−1(σ(E)) and therefore, (because f−1(σ(E)) is a σ —
algebra)

G := σ(f−1(E)) ⊂ f−1(σ(E))
which proves half of Eq. (6.12). For the reverse inclusion notice that

f∗G =
©
B ⊂ Y : f−1(B) ∈ Gª

is a σ — algebra which contains E and thus σ(E) ⊂ f∗G. Hence if B ∈ σ(E) we
know that f−1(B) ∈ G, i.e. f−1(σ(E)) ⊂ G. The last assertion of the Lemma is
an easy consequence of Eqs. (6.12) and (6.13). For example, if f−1E ⊂M, then
f−1σ (E) = σ

¡
f−1E¢ ⊂M which shows f is (M,F) — measurable.

Definition 6.31. A function f : X → Y between to topological spaces is Borel
measurable if f−1(BY ) ⊂ BX .
Proposition 6.32. Let X and Y be two topological spaces and f : X → Y be a
continuous function. Then f is Borel measurable.

Proof. Using Lemma 6.30 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Corollary 6.33. Suppose that (X,M) is a measurable space. Then f : X → R
is (M,BR) — measurable iff f−1((a,∞)) ∈M for all a ∈ R iff f−1((a,∞)) ∈M
for all a ∈ Q iff f−1((−∞, a]) ∈ M for all a ∈ R, etc. Similarly, if (X,M) is
a topological space, then f : X → R is (M, τR) - continuous iff f−1((a, b)) ∈ M
for all −∞ < a < b < ∞ iff f−1((a,∞)) ∈ M and f−1((−∞, b)) ∈ M for all
a, b ∈ Q. (We are using τR to denote the standard topology on R induced by the
metric d(x, y) = |x− y|.)
Proof. This is an exercise (Exercise 6.7) in using Lemma 6.30.
We will often deal with functions f : X → R̄ = R∪ {±∞} . Let

(6.14) BR̄ := σ ({[a,∞] : a ∈ R}) .
The following Corollary of Lemma 6.30 is a direct analogue of Corollary 6.33.
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Corollary 6.34. f : X → R̄ is (M,BR̄) - measurable iff f−1((a,∞]) ∈M for all
a ∈ R iff f−1((−∞, a]) ∈M for all a ∈ R, etc.
Proposition 6.35. Let BR and BR̄ be as above, then
(6.15) BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}.
In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.
Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,
{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
¡
i−1

¡©
[a,∞] : a ∈ R̄ª¢¢ = σ

¡©
i−1 ([a,∞]) : a ∈ R̄ª¢

= σ
¡©
[a,∞] ∩ R : a ∈ R̄ª¢ = σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.
This implies:

(1) A ∈ BR̄ =⇒ A ∩R ∈BR and
(2) if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (6.15).

Proposition 6.36 (Closure under sups, infs and limits). Suppose that (X,M) is
a measurable space and fj : (X,M) → R is a sequence of M/BR — measurable
functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are all M/BR — measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in the
statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈M.

Since

lim sup
j→∞

fj = inf
n
sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n
inf {fj : j ≥ n}

we are done by what we have already proved.
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6.4.1. More general pointwise limits.

Lemma 6.37. Suppose that (X,M) is a measurable space, (Y, d) is a metric space
and fj : X → Y is (M,BY ) — measurable for all j. Also assume that for each x ∈ X,
f(x) = limn→∞ fn(x) exists. Then f : X → Y is also (M,BY ) — measurable.
Proof. Let V ∈ τd and Wm := {y ∈ Y : dV c(y) > 1/m} for m = 1, 2, . . . . Then

Wm ∈ τd,
Wm ⊂ W̄m ⊂ {y ∈ Y : dV c(y) ≥ 1/m} ⊂ V

for all m and Wm ↑ V as m → ∞. The proof will be completed by verifying the
identity,

f−1(V ) = ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) ∈M.

If x ∈ f−1(V ) then f(x) ∈ V and hence f(x) ∈Wm for somem. Since fn(x)→ f(x),
fn(x) ∈ Wm for almost all n. That is x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm). Conversely
when x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) there exists an m such that fn(x) ∈ Wm ⊂
W̄m for almost all n. Since fn(x)→ f(x) ∈ W̄m ⊂ V, it follows that x ∈ f−1(V ).

Remark 6.38. In the previous Lemma 6.37 it is possible to let (Y, τ) be any topo-
logical space which has the “regularity” property that if V ∈ τ there exists Wm ∈ τ
such that Wm ⊂ W̄m ⊂ V and V = ∪∞m=1Wm. Moreover, some extra condition is
necessary on the topology τ in order for Lemma 6.37 to be correct. For example if
Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} as in Example 3.28 and X = {a, b}
with the trivial σ — algebra. Let fj(a) = fj(b) = 2 for all j, then fj is constant and
hence measurable. Let f(a) = 1 and f(b) = 2, then fj → f as j →∞ with f being
non-measurable. Notice that the Borel σ — algebra on Y is P(Y ).
6.5. Topologies and σ — Algebras Generated by Functions.

Definition 6.39. Let E ⊂ P(X) be a collection of sets, A ⊂ X, iA : A → X be
the inclusion map (iA(x) = x) for all x ∈ A, and

EA = i−1A (E) = {A ∩E : E ∈ E} .
When E = τ is a topology or E =M is a σ — algebra we call τA the relative topology
andMA the relative σ — algebra on A.

Proposition 6.40. Suppose that A ⊂ X, M ⊂ P(X) is a σ — algebra and τ ⊂
P(X) is a topology, thenMA ⊂ P(A) is a σ — algebra and τA ⊂ P(A) is a topology.
Moreover if E ⊂ P(X) is such that M = σ(E) (τ = τ(E)) then MA = σ(EA)
(τA = τ(EA)).
Proof. The first assertion is Exercise 6.6 and the second assertion is a conse-

quence of Lemma 6.30. Indeed,

MA = i−1A (M) = i−1A (σ(E)) = σ(i−1A (E)) = σ(EA)
and similarly

τA = i−1A (τ) = i−1A (τ(E)) = τ(i−1A (E)) = τ(EA).

Example 6.41. Suppose that (X, d) is a metric space and A ⊂ X is a set. Let
τ = τd and dA := d|A×A be the metric d restricted to A. Then τA = τdA , i.e.
the relative topology, τA, of τd on A is the same as the topology induced by the
restriction of the metric d to A. Indeed, if V ∈ τA there exists W ∈ τ such that
V ∩ A = W. Therefore for all x ∈ A there exists � > 0 such that Bx(�) ⊂ W and
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hence Bx(�) ∩ A ⊂ V. Since Bx(�) ∩ A = BdA
x (�) is a dA — ball in A, this shows

V is dA — open, i.e. τA ⊂ τdA . Conversely, if V ∈ τdA , then for each x ∈ A there
exists �x > 0 such that BdA

x (�) = Bx(�) ∩ A ⊂ V. Therefore V = A ∩ W with
W := ∪x∈ABx(�) ∈ τ. This shows τdA ⊂ τA.

Definition 6.42. Let A ⊂ X, f : A→ C be a function,M ⊂ P(X) be a σ — algebra
and τ ⊂ P(X) be a topology, then we say that f |A is measurable (continuous) if
f |A isMA — measurable (τA continuous).

Proposition 6.43. Let A ⊂ X, f : X → C be a function, M ⊂ P(X) be a σ —
algebra and τ ⊂ P(X) be a topology. If f is M — measurable (τ continuous) then
f |A is MA measurable (τA continuous). Moreover if An ∈M (An ∈ τ) such that
X = ∪∞n=1An and f |An is MAn measurable (τAn continuous) for all n, then f is
M — measurable (τ continuous).

Proof. Notice that iA is (MA,M) — measurable (τA, τ) — continuous) hence
f |A = f ◦ iA isMA measurable (τA — continuous). Let B ⊂ C be a Borel set and
consider

f−1(B) = ∪∞n=1
¡
f−1(B) ∩An

¢
= ∪∞n=1f |−1An(B).

If A ∈M (A ∈ τ), then it is easy to check that

MA = {B ∈M : B ⊂ A} ⊂M and

τA = {B ∈ τ : B ⊂ A} ⊂ τ.

The second assertion is now an easy consequence of the previous three equations.

Definition 6.44. Let X and A be sets, and suppose for α ∈ A we are give a
measurable (topological) space (Yα,Fα) and a function fα : X → Yα.We will write
σ(fα : α ∈ A) (τ(fα : α ∈ A)) for the smallest σ-algebra (topology) on X such that
each fα is measurable (continuous), i.e.

σ(fα : α ∈ A) = σ(∪αf−1α (Fα)) and
τ(fα : α ∈ A) = τ(∪αf−1α (Fα)).

Proposition 6.45. Assuming the notation in Definition 6.44 and additionally let
(Z,M) be a measurable (topological) space and g : Z → X be a function. Then g
is (M, σ(fα : α ∈ A)) — measurable ((M, τ(fα : α ∈ A)) — continuous) iff fα ◦ g is
(M,Fα)—measurable (continuous) for all α ∈ A.

Proof. (⇒) If g is (M, σ(fα : α ∈ A)) — measurable, then the composition fα ◦g
is (M,Fα) — measurable by Lemma 6.29.
(⇐) Let

G = σ(fα : α ∈ A) = σ
¡∪α∈Af−1α (Fα)

¢
.

If fα ◦ g is (M,Fα) — measurable for all α, then
g−1f−1α (Fα) ⊂M∀α ∈ A

and therefore

g−1
¡∪α∈Af−1α (Fα)

¢
= ∪α∈Ag−1f−1α (Fα) ⊂M.

Hence

g−1 (G) = g−1
¡
σ
¡∪α∈Af−1α (Fα)

¢¢
= σ(g−1

¡∪α∈Af−1α (Fα)
¢ ⊂M
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which shows that g is (M,G) — measurable.
The topological case is proved in the same way.

6.6. Product Spaces. In this section we consider product topologies and σ —
algebras. We will start with a finite number of factors first and then later mention
what happens for an infinite number of factors.

6.6.1. Products with a Finite Number of Factors. Let {Xi}ni=1 be a collection of sets,
X := X1×X2×· · ·×Xn and πi : X → Xi be the projection map π(x1, x2, . . . , xn) =
xi for each 1 ≤ i ≤ n. Let us also suppose that τi is a topology on Xi andMi is a
σ — algebra on Xi for each i.

Notation 6.46. Let Ei ⊂ P(Xi) be a collection of subsets of Xi for i = 1, 2, . . . , n
we will write, by abuse of notation, E1 × E2 × · · · × En for the collection of subsets
of X1 × · · · ×Xn of the form A1 ×A2 × · · · ×An with Ai ∈ Ei for all i. That is we
are identifying (A1, A2, . . . , An) with A1 ×A2 × · · · ×An.

Definition 6.47. The product topology on X, denoted by τ1 ⊗ τ2 ⊗ · · ·⊗ τn is
the smallest topology on X so that each map πi : X → Xi is continuous. Similarly,
the product σ — algebra on X, denoted byM1⊗M2⊗ · · ·⊗Mn, is the smallest
σ — algebra on X so that each map πi : X → Xi is measurable.

Remark 6.48. The product topology may also be described as the smallest topology
containing sets from τ1 × · · · × τn, i.e.

τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(τ1 × · · · × τn).

Indeed,

τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(π1, π2, . . . , πn)

= τ(
©∩ni=1π−1i (Vi) : Vi ∈ τi for i = 1, 2, . . . , n

ª
)

= τ({V1 × V2 × · · · × Vn : Vi ∈ τi for i = 1, 2, . . . , n}).
Similarly,

M1 ⊗M2 ⊗ · · ·⊗Mn = σ(M1 ×M2 × · · · ×Mn).

Furthermore if Bi ⊂ τi is a basis for the topology τi for each i, then B1×· · ·×Bn is
a basis for τ1⊗ τ2⊗ · · ·⊗ τn. Indeed, τ1×· · ·× τn is closed under finite intersections
and generates τ1 ⊗ τ2 ⊗ · · · ⊗ τn, therefore τ1 × · · · × τn is a basis for the product
topology. Hence for W ∈ τ1 ⊗ τ2 ⊗ · · ·⊗ τn and x = (x1, . . . , xn) ∈W, there exists
V1 × V2 × · · · × Vn ∈ τ1 × · · · × τn such that

x ∈ V1 × V2 × · · · × Vn ⊂W.

Since Bi is a basis for τi, we may now choose Ui ∈ Bi such that xi ∈ Ui ⊂ Vi for
each i. Thus

x ∈ U1 × U2 × · · · × Un ⊂W

and we have shown W may be written as a union of sets from B1 × · · · × Bn. Since
B1 × · · · × Bn ⊂ τ1 × · · · × τn ⊂ τ1 ⊗ τ2 ⊗ · · ·⊗ τn,

this shows B1 × · · · × Bn is a basis for τ1 ⊗ τ2 ⊗ · · ·⊗ τn.
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Lemma 6.49. Let (Xi, di) for i = 1, . . . , n be metric spaces, X := X1 × · · · ×Xn

and for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in X let

(6.16) d(x, y) =
nX
i=1

di(xi, yi).

Then the topology, τd, associated to the metric d is the product topology on X, i.e.

τd = τd1 ⊗ τd2 ⊗ · · ·⊗ τdn .

Proof. Let ρ(x, y) = max{di(xi, yi) : i = 1, 2, . . . , n}. Then ρ is equivalent to d
and hence τρ = τd. Moreover if � > 0 and x = (x1, x2, . . . , xn) ∈ X, then

Bρ
x(�) = Bd1

x1(�)× · · · ×Bdn
xn(�).

By Remark 6.14,
E := {Bρ

x(�) : x ∈ X and � > 0}
is a basis for τρ and by Remark 6.48 E is also a basis for τd1 ⊗ τd2 ⊗ · · · ⊗ τdn .
Therefore,

τd1 ⊗ τd2 ⊗ · · ·⊗ τdn = τ(E) = τρ = τd.

Remark 6.50. Let (Z,M) be a measurable (topological) space, then by Proposition
6.45, a function f : Z → X is measurable (continuous) iff πi ◦ f : Z → Xi is
(M,Mi) — measurable ((τ, τi) — continuous) for i = 1, 2, . . . , n. So if we write

f(z) = (f1(z), f2(z), . . . , fn(z)) ∈ X1 ×X2 × · · · ×Xn,

then f : Z → X is measurable (continuous) iff fi : Z → Xi is measurable (continu-
ous) for all i.

Theorem 6.51. For i = 1, 2, . . . , n, let Ei ⊂ P(Xi) be a collection of subsets of Xi

such that Xi ∈ Ei andMi = σ(Ei) (or τi = τ(Ei)) for i = 1, 2, . . . , n, then
M1 ⊗M2 ⊗ · · ·⊗Mn = σ(E1 × E2 × · · · × En) and

τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(E1 × E2 × · · · × En).
Written out more explicitly, these equations state

σ(σ(E1)× σ(E2)× · · · × σ(En)) = σ(E1 × E2 × · · · × En) and(6.17)

τ(τ(E1)× τ(E2)× · · · × τ(En)) = τ(E1 × E2 × · · · × En).(6.18)

Moreover if {(Xi, τi)}ni=1 is a sequence of second countable topological spaces, τ =
τ1 ⊗ τ2 ⊗ · · ·⊗ τn is the product topology on X = X1 × · · · ×Xn, then

BX := σ(τ1 ⊗ τ2 ⊗ · · ·⊗ τn) = σ(BX1
× · · · × BXn

) =: BX1
⊗ · · ·⊗ BXn

.

That is to say the Borel σ — algebra and the product σ — algebra on X are the same.

Proof. We will prove Eq. (6.17). The proof of Eq. (6.18) is completely analo-
gous. Let us first do the case of two factors. Since

E1 × E2 ⊂ σ(E1)× σ(E2)
it follows that

σ (E1 × E2) ⊂ σ (σ(E1)× σ(E2)) = σ(π1, π2).
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To prove the reverse inequality it suffices to show πi : X1×X2 → Xi is σ (E1 × E2)
—Mi = σ(Ei) measurable for i = 1, 2. To prove this suppose that E ∈ E1, then

π−11 (E) = E ×X2 ∈ E1 × E2 ⊂ σ (E1 × E2)
wherein we have used the fact that X2 ∈ E2. Similarly, for E ∈ E2 we have

π−12 (E) = X1 ×E ∈ E1 × E2 ⊂ σ (E1 × E2) .
This proves the desired measurability, and hence

σ(π1, π2) ⊂ σ (E1 × E2) ⊂ σ(π1, π2).

To prove the last assertion we may assume each Ei is countable for i = 1, 2. Since
E1 × E2 is countable, a couple of applications of Proposition 6.24 along with the
first two assertions of the theorems gives

σ(τ1 ⊗ τ2) = σ(τ (τ1 × τ2)) = σ(τ (τ(E1)× τ(E2))) = σ(τ (E1 × E2))
= σ(E1 × E2) = σ (σ(E1)× σ(E2)) = σ (M1 ×M2) =M1 ⊗M2.

The proof for n factors works the same way. Indeed,

E1 × E2 × · · · × En ⊂ σ(E1)× σ(E2)× · · · × σ(En)
implies

σ (E1 × E2 × · · · × En) ⊂ σ (σ(E1)× σ(E2)× · · · × σ(En)) = σ(π1, . . . , πn)

and for E ∈ Ei,
π−1i (E) = X1 ×X2 × · · · ×Xi−1 ×E ×Xi+1 · · · ×Xn ∈ E1 × E2 × · · · × En

⊂ σ (E1 × E2 × · · · × En) .
This show πi is σ (E1 × E2 × · · · × En) —Mi = σ(Ei) measurable and therefore,

σ(π1, . . . , πn) ⊂ σ (E1 × E2 × · · · × En) ⊂ σ(π1, . . . , πn).

If the Ei are countable, then
σ(τ1 ⊗ τ2 ⊗ · · ·⊗ τn) = σ(τ (τ1 × τ2 × · · · × τn))

= σ(τ (τ(E1)× τ(E2)× · · · × τ(En)))
= σ(τ (E1 × E2 × · · · × En))
= σ(E1 × E2 × · · · × En)
= σ (σ(E1)× σ(E2)× · · · × σ(En))
= σ (M1 ×M2 × · · · ×Mn)

=M1 ⊗M2 ⊗ · · ·⊗Mn.

Remark 6.52. One can not relax the assumption that Xi ∈ Ei in Theorem 6.51.
For example, if X1 = X2 = {1, 2} and E1 = E2 = {{1}} , then σ(E1 × E2) =
{∅,X1 ×X2, {(1, 1)}} while σ(σ(E1)× σ(E2)) = P(X1 ×X2).

Proposition 6.53. If (Xi, di) are separable metric spaces for i = 1, . . . , n, then

BX1 ⊗ · · ·⊗ BXn = B(X1×···×Xn)

where BXi is the Borel σ — algebra on Xi and B(X1×···×Xn) is the Borel σ — algebra
on X1 × · · · ×Xn equipped with the product topology.
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Proof. This follows directly from Proposition 6.22 and Theorem 6.51.
Because all norms on finite dimensional spaces are equivalent, the usual Euclid-

ean norm on Rm ×Rn is equivalent to the “product” norm defined by

k(x, y)kRm×Rn = kxkRm + kykRn .
Hence by Lemma 6.49, the Euclidean topology on Rm+n is the same as the product
topology on Rm+n ∼= Rm×Rn Here we are identifying Rm×Rn with Rm+n by the
map

(x, y) ∈ Rm ×Rn → (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.
Proposition 6.53 and these comments leads to the following corollaries.

Corollary 6.54. After identifying Rm × Rn with Rm+n as above and letting BRn
denote the Borel σ —algebra on Rn, we have

BRm+n = BRn ⊗ BRm and BRn =
n—timesz }| {

BR ⊗ · · ·⊗ BR.
Corollary 6.55. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) — measurable iff fi : X → R is (M,BR) — measurable for each i. In
particular, a function f : X → C is (M,BC) — measurable iff Re f and Im f are
(M,BR) — measurable.
Corollary 6.56. Let (X,M) be a measurable space and f, g : X → C be (M,BC)
— measurable functions. Then f ± g and f · g are also (M,BC) — measurable.
Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C by

F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and M are
continuous and hence (BC2 ,BC) — measurable. Also F is (M,BC ⊗ BC) = (M,BC2)
— measurable since π1 ◦F = f and π2 ◦F = g are (M,BC) — measurable. Therefore
A± ◦F = f ± g and M ◦ F = f · g, being the composition of measurable functions,
are also measurable.

Lemma 6.57. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) — measurable function. Then

F (x) :=

½ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =

½
1
z if z 6= 0
α if z = 0.

For any open set V ⊂ C we have
i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty set or
the one point set {α} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) = i−1(σ(τC)) =
σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since F = i ◦ f is the
composition of measurable functions, F is also measurable.
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6.6.2. General Product spaces .

Definition 6.58. Suppose(Xα,Mα)α∈A is a collection of measurable spaces and
let X be the product space

X =
Y
α∈A

Xα

and πα : X → Xα be the canonical projection maps. Then the product σ — algebra,N
α
Mα, is defined by

O
α∈A

Mα ≡ σ(πα : α ∈ A) = σ

Ã[
α

π−1α (Mα)

!
.

Similarly if (Xα,Mα)α∈A is a collection of topological spaces, the product topologyN
α
Mα, is defined by

O
α∈A

Mα ≡ τ(πα : α ∈ A) = τ

Ã[
α

π−1α (Mα)

!
.

Remark 6.59. Let (Z,M) be a measurable (topological) space andÃ
X =

Y
α∈A

Xα,
O
α∈A

Mα

!
be as in Definition 6.58. By Proposition 6.45, a function f : Z → X is measurable
(continuous) iff πα ◦ f is (M,Mα) — measurable (continuous) for all α ∈ A.

Proposition 6.60. Suppose that (Xα,Mα)α∈A is a collection of measurable (topo-
logical) spaces and Eα ⊂Mα generatesMα for each α ∈ A, then

(6.19) ⊗α∈AMα = σ
¡∪α∈Aπ−1α (Eα)

¢ ¡
τ
¡∪α∈Aπ−1α (Eα)

¢¢
Moreover, suppose that A is either finite or countably infinite, Xα ∈ Eα for each
α ∈ A, andMα = σ(Eα) for each α ∈ A. Then the product σ — algebra satisfies

(6.20)
O
α∈A

Mα = σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
.

Similarly if A is finite andMα = τ(Eα), then the product topology satisfies

(6.21)
O
α∈A

Mα = τ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
.

Proof. We will prove Eq. (6.19) in the measure theoretic case since a similar
proof works in the topological category. Since

S
α
π−1α (Eα) ⊂ ∪απ−1α (Mα), it follows

that

F := σ

Ã[
α

π−1α (Eα)
!
⊂ σ

Ã[
α

π−1α (Mα)

!
=
O
α

Mα.

Conversely,
F ⊃ σ(π−1α (Eα)) = π−1α (σ(Eα)) = π−1α (Mα)

holds for all α implies that [
α

π−1α (Mα) ⊂ F
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and hence that
N
α
Mα ⊂ F .

We now prove Eq. (6.20). Since we are assuming that Xα ∈ Eα for each α ∈ A,
we see that [

α

π−1α (Eα) ⊂
(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)
and therefore by Eq. (6.19)

O
α∈A

Mα = σ

Ã[
α

π−1α (Eα)
!
⊂ σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
.

This last statement is true independent as to whether A is countable or not. For
the reverse inclusion it suffices to notice that since A is countable,Y

α∈A
Eα = ∩α∈Aπ−1α (Eα) ∈

O
α∈A

Mα

and hence

σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
⊂
O
α∈A

Mα.

Here is a generalization of Theorem 6.51 to the case of countable number of factors.

Proposition 6.61. Let {Xα}α∈A be a sequence of sets where A is at most count-
able. Suppose for each α ∈ A we are given a countable set Eα ⊂ P(Xα). Let
τα = τ(Eα) be the topology on Xα generated by Eα and X be the product spaceQ

α∈AXα with equipped with the product topology τ := ⊗α∈Aτ(Eα). Then the Borel
σ — algebra BX = σ(τ) is the same as the product σ — algebra:

BX = ⊗α∈ABXα
,

where BXα = σ(τ(Eα)) = σ(Eα) for all α ∈ A.

Proof. By Proposition 6.60, the topology τ may be described as the smallest
topology containing E = ∪α∈Aπ−1α (Eα). Now E is the countable union of countable
sets so is still countable. Therefore by Proposition 6.24 and Proposition 6.60 we
have

BX = σ(τ) = σ(τ(E)) = σ(E) = ⊗α∈Aσ(Eα) = ⊗α∈Aσ(τα) = ⊗α∈ABXα
.

Lemma 6.62. Suppose that (Y,F) is a measurable space and F : X → Y is a
map. Then to every (σ(F ),BR̄) — measurable function, H from X → R̄, there is a
(F ,BR̄) — measurable function h : Y → R̄ such that H = h ◦ F.
Proof. First suppose that H = 1A where A ∈ σ(F ) = F−1(BR̄). Let J ∈ BR̄

such that A = F−1(J) then 1A = 1F−1(J) = 1J ◦ F and hence the Lemma is valid
in this case with h = 1J . More generally if H =

P
ai1Ai is a simple function, then

there exists Ji ∈ BR̄ such that 1Ai = 1Ji ◦F and hence H = h◦F with h :=P ai1Ji
— a simple function on R̄.
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For general (σ(F ),BR̄) — measurable function, H, from X → R̄, choose simple
functions Hn converging to H. Let hn be simple functions on R̄ such that Hn =
hn ◦ F. Then it follows that

H = lim
n→∞Hn = lim sup

n→∞
Hn = lim sup

n→∞
hn ◦ F = h ◦ F

where h := lim supn→∞ hn — a measurable function from Y to R̄.
The following is an immediate corollary of Proposition 6.45 and Lemma 6.62.

Corollary 6.63. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

Q
α∈A Yα, F :=

⊗α∈AFα be the product σ — algebra on Y andM := σ(fα : α ∈ A) be the smallest
σ-algebra on X such that each fα is measurable. Then the function F : X → Y
defined by [F (x)]α := fα(x) for each α ∈ A is (M,F) — measurable and a function
H : X → R̄ is (M,BR̄) — measurable iff there exists a (F ,BR̄) — measurable function
h from Y to R̄ such that H = h ◦ F.
6.7. Exercises.

Exercise 6.7. Prove Corollary 6.33. Hint: See Exercise 6.5.

Exercise 6.8. Folland, Problem 1.5 on p.24. IfM is the σ — algebra generated by
E ⊂ P(X), thenM is the union of the σ — algebras generated by countable subsets
F ⊂ E .
Exercise 6.9. Let (X,M) be a measure space and fn : X → F be a sequence of
measurable functions on X. Show that {x : limn→∞ fn(x) exists} ∈M.

Exercise 6.10. Show that every monotone function f : R→ R is (BR,BR) — mea-
surable.

Exercise 6.11. Folland problem 2.6 on p. 48.

Exercise 6.12. Suppose thatX is a set, {(Yα, τα) : α ∈ A} is a family of topological
spaces and fα : X → Yα is a given function for all α ∈ A. Assuming that Sα ⊂ τα
is a sub-basis for the topology τα for each α ∈ A, show S := ∪α∈Af−1α (Sα) is a
sub-basis for the topology τ := τ(fα : α ∈ A).

Notation 6.64. Let X be a set and p := {pn}∞n=0 be a family of semi-metrics on
X, i.e. pn : X × X → [0,∞) are functions satisfying the assumptions of metric
except for the assertion that pn(x, y) = 0 implies x = y. Further assume that
pn(x, y) ≤ pn+1(x, y) for all n and if pn(x, y) = 0 for all n ∈ N then x = y. Given
n ∈ N and x ∈ X let

Bn(x, �) := {y ∈ X : pn(x, y) < �} .
We will write τ(p) form the smallest topology on X such that pn(x, ·) : X → [0,∞)
is continuous for all n ∈ N and x ∈ X, i.e. τ(p) := τ(pn(x·) : n ∈ N and x ∈ X).

Exercise 6.13. Using Notation 6.64, show that collection of balls,

B := {Bn(x, �) : n ∈ N, x ∈ X and � > 0} ,
forms a basis for the topology τ(p). Hint: Use Exercise 6.12 to show B is a sub-
basis for the topology τ(p) and then use Exercise 6.3 to show B is in fact a basis
for the topology τ(p).
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Exercise 6.14. Using the notation in 6.64, let

d(x, y) =
∞X
n=0

2−n
pn(x, y)

1 + pn(x, y)
.

Show d is a metric on X and τd = τ(p). Conclude that a sequence {xk}∞k=1 ⊂ X
converges to x ∈ X iff

lim
k→∞

pn(xk, x) = 0 for all n ∈ N.

Exercise 6.15. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=
Q∞

n=1Xn,
and for x = (x(n))∞n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞X
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

(See Exercise 3.26.) Moreover, let πi : X → Xi be the projection maps, show

τd = ⊗∞n=1τdi := τ({πi : i ∈ N}).
That is show the d — metric topology is the same as the product topology on X.



ANALYSIS TOOLS WITH APPLICATIONS 97

7. Measures and Integration

Definition 7.1. A measure µ on a measurable space (X,M) is a function µ :
M→ [0,∞] such that

(1) µ(∅) = 0 and
(2) (Finite Additivity) If {Ai}ni=1 ⊂M are pairwise disjoint, i.e. Ai ∩ Aj = ∅

when i 6= j, then

µ(
n[
i=1

Ai) =
nX
i=1

µ(Ai).

(3) (Continuity) If An ∈M and An ↑ A, then µ(An) ↑ µ(A).
We call a triple (X,M, µ), where (X,M) is a measurable space and µ :M →

[0,∞] is a measure, a measure space.
Remark 7.2. Properties 2) and 3) in Definition 7.1 are equivalent to the following
condition. If {Ai}∞i=1 ⊂M are pairwise disjoint then

(7.1) µ(
∞[
i=1

Ai) =
∞X
i=1

µ(Ai).

To prove this suppose that Properties 2) and 3) in Definition 7.1 and {Ai}∞i=1 ⊂M
are pairwise disjoint. Let Bn :=

nS
i=1

Ai ↑ B :=
∞S
i=1

Ai, so that

µ(B)
(3)
= lim

n→∞µ(Bn)
(2)
= lim

n→∞

nX
i=1

µ(Ai) =
∞X
i=1

µ(Ai).

Conversely, if Eq. (7.1) holds we may take Aj = ∅ for all j ≥ n to see that Property
2) of Definition 7.1 holds. Also if An ↑ A, let Bn := An \An−1. Then {Bn}∞n=1 are
pairwise disjoint, An = ∪nj=1Bj and A = ∪∞j=1Bj . So if Eq. (7.1) holds we have

µ(A) = µ
¡∪∞j=1Bj

¢
=
∞X
j=1

µ(Bj)

= lim
n→∞

nX
j=1

µ(Bj) = lim
n→∞µ(∪nj=1Bj) = lim

n→∞µ(An).

Proposition 7.3 (Basic properties of measures). Suppose that (X,M, µ) is a mea-
sure space and E,F ∈M and {Ej}∞j=1 ⊂M, then :

(1) µ(E) ≤ µ(F ) if E ⊂ F.
(2) µ(∪Ej) ≤

P
µ(Ej).

(3) If µ(E1) < ∞ and Ej ↓ E, i.e. E1 ⊃ E2 ⊃ E3 ⊃ . . . and E = ∩jEj , then
µ(Ej) ↓ µ(E) as j →∞.

Proof.
(1) Since F = E ∪ (F \E),

µ(F ) = µ(E) + µ(F \E) ≥ µ(E).

(2) Let eEj = Ej \ (E1 ∪ · · ·∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪ eEj . Since Ẽj ⊂ Ej it follows from Remark 7.2 and part (1), that

µ(E) =
X

µ( eEj) ≤
X

µ(Ej).
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N
F

A

Figure 15. Completing a σ — algebra.

(3) Define Di ≡ E1 \Ei then Di ↑ E1 \E which implies that

µ(E1)− µ(E) = lim
i→∞

µ(Di) = µ(E1)− lim
i→∞

µ(Ei)

which shows that limi→∞ µ(Ei) = µ(E).

Definition 7.4. A set E ⊂ X is a null set if E ∈M and µ(E) = 0. If P is some
“property” which is either true or false for each x ∈ X, we will use the terminology
P a.e. (to be read P almost everywhere) to mean

E := {x ∈ X : P is false for x}
is a null set. For example if f and g are two measurable functions on (X,M, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 7.5. A measure space (X,M, µ) is complete if every subset of a null
set is inM, i.e. for all F ⊂ X such that F ⊂ E ∈M with µ(E) = 0 implies that
F ∈M.

Proposition 7.6. Let (X,M, µ) be a measure space. Set

N ≡ {N ⊂ X : ∃ F ∈M 3 N ⊂ F and µ(F ) = 0}
and

M̄ = {A ∪N : A ∈M, N ∈M},
see Fig. 15. Then M̄ is a σ-algebra. Define µ̄(A∪N) = µ(A), then µ̄ is the unique
measure on M̄ which extends µ.

Proof. Clearly X, ∅ ∈ M̄.
Let A ∈ M and N ∈ N and choose F ∈ M such that N ⊂ F and µ(F ) = 0.

Since Nc = (F \N) ∪ F c,

(A ∪N)c = Ac ∩Nc = Ac ∩ (F \N ∪ F c) = [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac∩(F \N)] ∈ N and [Ac∩F c] ∈M. Thus M̄ is closed under complements.
If Ai ∈M and Ni ⊂ Fi ∈M such that µ(Fi) = 0 then ∪(Ai ∪ Ni) = (∪Ai) ∪

(∪Ni) ∈ M̄ since ∪Ai ∈M and ∪Ni ⊂ ∪Fi and µ(∪Fi) ≤
P

µ(Fi) = 0. Therefore,
M̄ is a σ-algebra.
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Suppose A∪N1 = B∪N2 with A,B ∈M and N1, N2,∈ N . Then A ⊂ A∪N1 ⊂
A ∪N1 ∪ F2 = B ∪ F2 which shows that

µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A∪N) :=
µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e. that it is
countable additive.
Many theorems in the sequel will require some control on the size of a measure

µ. The relevant notion for our purposes (and most purposes) is that of a σ — finite
measure defined next.

Definition 7.7. Suppose X is a set, E ⊂M ⊂ P(X) and µ : M → [0,∞] is
a function. The function µ is σ — finite on E if there exists En ∈ E such that
µ(En) < ∞ and X = ∪n=1En. If M is a σ — algebra and µ is a measure on M
which is σ — finite onM we will say (X,M, µ) is a σ-finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
M, then µ is σ — finite on M iff there exists Xn ∈ M such that Xn ↑ X and
µ(Xn) <∞.

7.1. Example of Measures. Most σ — algebras and σ -additive measures are
somewhat difficult to describe and define. However, one special case is fairly easy
to understand. Namely suppose that F ⊂ P(X) is a countable or finite partition of
X andM ⊂ P(X) is the σ — algebra which consists of the collection of sets A ⊂ X
such that

(7.2) A = ∪ {α ∈ F : α ⊂ A} .
It is easily seen thatM is a σ — algebra.
Any measure µ :M → [0,∞] is determined uniquely by its values on F . Con-

versely, if we are given any function λ : F → [0,∞] we may define, for A ∈M,

µ(A) =
X

α∈F3α⊂A
λ(α) =

X
α∈F

λ(α)1α⊂A

where 1α⊂A is one if α ⊂ A and zero otherwise. We may check that µ is a measure
onM. Indeed, if A =

`∞
i=1Ai and α ∈ F , then α ⊂ A iff α ⊂ Ai for one and hence

exactly one Ai. Therefore 1α⊂A =
P∞

i=1 1α⊂Ai and hence

µ(A) =
X
α∈F

λ(α)1α⊂A =
X
α∈F

λ(α)
∞X
i=1

1α⊂Ai

=
∞X
i=1

X
α∈F

λ(α)1α⊂Ai =
∞X
i=1

µ(Ai)

as desired. Thus we have shown that there is a one to one correspondence between
measures µ onM and functions λ : F → [0,∞].
We will leave the issue of constructing measures until Sections 13 and 14. How-

ever, let us point out that interesting measures do exist. The following theorem
may be found in Theorem 13.35 or see Section 13.8.1.

Theorem 7.8. To every right continuous non-decreasing function F : R→ R there
exists a unique measure µF on BR such that
(7.3) µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞
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Moreover, if A ∈ BR then

µF (A) = inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]
)

(7.4)

= inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂
∞a
i=1

(ai, bi]

)
.(7.5)

In fact the map F → µF is a one to one correspondence between right continuous
functions F with F (0) = 0 on one hand and measures µ on BR such that µ(J) <∞
on any bounded set J ∈ BR on the other.
Example 7.9. The most important special case of Theorem 7.8 is when F (x) = x,
in which case we write m for µF . The measure m is called Lebesgue measure.

Theorem 7.10. Lebesgue measure m is invariant under translations, i.e. for B ∈
BR and x ∈ R,
(7.6) m(x+B) = m(B).

Moreover, m is the unique measure on BR such that m((0, 1]) = 1 and Eq. (7.6)
holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

(7.7) m(λB) = |λ|m(B)
where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure on

BR such that mx((a, b]) = b− a for all a < b. Therefore, mx = m by the uniqueness
assertion in Theorem 7.8.
For the converse, suppose that m is translation invariant and m((0, 1]) = 1.

Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

µ
k − 1
n

+ (0,
1

n
]

¶
.

Therefore,

1 = m((0, 1]) =
nX

k=1

m

µ
k − 1
n

+ (0,
1

n
]

¶

=
nX

k=1

m((0,
1

n
]) = n ·m((0, 1

n
]).

That is to say

m((0,
1

n
]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation invariance
of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and an ↑ a,
then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞m((an, bn]) = lim

n→∞ (bn − an) = b− a,

i.e. m is Lebesgue measure.



ANALYSIS TOOLS WITH APPLICATIONS 101

To prove Eq. (7.7) we may assume that λ 6= 0 since this case is trivial to prove.
Now let mλ(B) := |λ|−1m(λB). It is easily checked that mλ is again a measure on
BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
We are now going to develope integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, m, will be an extension of the
standard Riemann integral on R.

7.2. Integrals of Simple functions. Let (X,M, µ) be a fixed measure space in
this section.

Definition 7.11. A function φ : X → F is a simple function if φ is M — BR
measurable and φ(X) is a finite set. Any such simple functions can be written as

(7.8) φ =
nX
i=1

λi1Ai with Ai ∈M and λi ∈ F.

Indeed, let λ1, λ2, . . . , λn be an enumeration of the range of φ and Ai = φ−1({λi}).
Also note that Eq. (7.8) may be written more intrinsically as

φ =
X
y∈F

y1φ−1({y}).

The next theorem shows that simple functions are “pointwise dense” in the space
of measurable functions.

Theorem 7.12 (Approximation Theorem). Let f : X → [0,∞] be measurable and
define

φn(x) ≡
22n−1X
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2

n1f−1((2n,∞])(x)

=
22n−1X
k=0

k

2n
1{ k

2n<f≤ k+1
2n }(x) + 2

n1{f>2n}(x)

then φn ≤ f for all n, φn(x) ↑ f(x) for all x ∈ X and φn ↑ f uniformly on the sets
XM := {x ∈ X : f(x) ≤M} with M <∞. Moreover, if f : X → C is a measurable
function, then there exists simple functions φn such that limn→∞ φn(x) = f(x) for
all x and |φn| ↑ |f | as n→∞.

Proof. It is clear by construction that φn(x) ≤ f(x) for all x and that 0 ≤
f(x)−φn(x) ≤ 2−n if x ∈ X2n . From this it follows that φn(x) ↑ f(x) for all x ∈ X
and φn ↑ f uniformly on bounded sets.
Also notice that

(
k

2n
,
k + 1

2n
] = (

2k

2n+1
,
2k + 2

2n+1
] = (

2k

2n+1
,
2k + 1

2n+1
] ∪ (2k + 1

2n+1
,
2k + 2

2n+1
]
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and for x ∈ f−1
¡
( 2k
2n+1 ,

2k+1
2n+1 ]

¢
, φn(x) = φn+1(x) = 2k

2n+1 and for x ∈
f−1

¡
( 2k+12n+1 ,

2k+2
2n+1 ]

¢
, φn(x) =

2k
2n+1 < 2k+1

2n+1 = φn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],
so for x ∈ f−1((2n+1,∞]) φn(x) = 2n < 2n+1 = φn+1(x) and for x ∈
f−1((2n, 2n+1]), φn+1(x) ≥ 2n = φn(x). Therefore φn ≤ φn+1 for all n and we
have completed the proof of the first assertion.
For the second assertion, first assume that f : X → R is a measurable function

and choose φ±n to be simple functions such that φ±n ↑ f± as n → ∞ and define
φn = φ+n − φ−n . Then

|φn| = φ+n + φ−n ≤ φ+n+1 + φ−n+1 = |φn+1|

and clearly |φn| = φ+n + φ−n ↑ f+ + f− = |f | and φn = φ+n − φ−n → f+ − f− = f as
n→∞.
Now suppose that f : X → C is measurable. We may now choose simple

function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and vn → Im f
as n→∞. Let φn = un + ivn, then

|φn|2 = u2n + v2n ↑ |Re f |2 + |Im f |2 = |f |2

and φn = un + ivn → Re f + i Im f = f as n→∞.
We are now ready to define the Lebesgue integral. We will start by integrating

simple functions and then proceed to general measurable functions.

Definition 7.13. Let F = C or [0,∞) and suppose that φ : X → F is a simple
function. If F = C assume further that µ(φ−1({y})) < ∞ for all y 6= 0 in C. For
such functions φ, define Iµ(φ) by

Iµ(φ) =
X
y∈F

yµ(φ−1({y})).

Proposition 7.14. Let λ ∈ F and φ and ψ be two simple functions, then Iµ
satisfies:

(1)

(7.9) Iµ(λφ) = λIµ(φ).

(2)

Iµ(φ+ ψ) = Iµ(ψ) + Iµ(φ).

(3) If φ and ψ are non-negative simple functions such that φ ≤ ψ then

Iµ(φ) ≤ Iµ(ψ).

Proof. Let us write {φ = y} for the set φ−1({y}) ⊂ X and µ(φ = y) for
µ({φ = y}) = µ(φ−1 ({y})) so that

Iµ(φ) =
X
y∈C

yµ(φ = y).
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We will also write {φ = a, ψ = b} for φ−1({a}) ∩ ψ−1({b}). This notation is more
intuitive for the purposes of this proof. Suppose that λ ∈ F then

Iµ(λφ) =
X
y∈F

y µ(λφ = y) =
X
y∈F

y µ(φ = y/λ)

=
X
z∈F

λz µ(φ = z) = λIµ(φ)

provided that λ 6= 0. The case λ = 0 is clear, so we have proved 1.
Suppose that φ and ψ are two simple functions, then

Iµ(φ+ ψ) =
X
z∈F

z µ(φ+ ψ = z)

=
X
z∈F

z µ (∪w∈F {φ = w, ψ = z − w})

=
X
z∈F

z
X
w∈F

µ(φ = w, ψ = z − w)

=
X
z,w∈F

(z + w)µ(φ = w, ψ = z)

=
X
z∈F

z µ(ψ = z) +
X
w∈F

w µ(φ = w)

= Iµ(ψ) + Iµ(φ).

which proves 2.
For 3. if φ and ψ are non-negative simple functions such that φ ≤ ψ

Iµ(φ) =
X
a≥0

aµ(φ = a) =
X
a,b≥0

aµ(φ = a, ψ = b)

≤
X
a,b≥0

bµ(φ = a, ψ = b) =
X
b≥0

bµ(ψ = b) = Iµ(ψ),

wherein the third inequality we have used {φ = a, ψ = b} = ∅ if a > b.

7.3. Integrals of positive functions.

Definition 7.15. Let L+ = {f : X → [0,∞] : f is measurable}. DefineZ
X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f} .

Because of item 3. of Proposition 7.14, if φ is a non-negative simple function,R
X
φdµ = Iµ(φ) so that

R
X
is an extension of Iµ. We say the f ∈ L+ is integrable

if
R
X
fdµ <∞.

Remark 7.16. Notice that we still have the monotonicity property: 0 ≤ f ≤ g thenZ
X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f}

≤ sup {Iµ(φ) : φ is simple and φ ≤ g} ≤
Z
X

g.

Similarly if c > 0, Z
X

cfdµ = c

Z
X

fdµ.
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Also notice that if f is integrable, then µ ({f =∞}) = 0.
Lemma 7.17. Let X be a set and ρ : X → [0,∞] be a function, let µ =P

x∈X ρ(x)δx onM = P(X), i.e.
µ(A) =

X
x∈A

ρ(x).

If f : X → [0,∞] is a function (which is necessarily measurable), thenZ
X

fdµ =
X
X

ρf.

Proof. Suppose that φ : X → [0,∞] is a simple function, then φ =P
z∈[0,∞] z1φ−1({z}) andX

X

ρφ =
X
x∈X

ρ(x)
X

z∈[0,∞]
z1φ−1({z})(x) =

X
z∈[0,∞]

z
X
x∈X

ρ(x)1φ−1({z})(x)

=
X

z∈[0,∞]
zµ(φ−1({z})) =

Z
X

φdµ.

So if φ : X → [0,∞) is a simple function such that φ ≤ f, thenZ
X

φdµ =
X
X

ρφ ≤
X
X

ρf.

Taking the sup over φ in this last equation then shows thatZ
X

fdµ ≤
X
X

ρf.

For the reverse inequality, let Λ ⊂⊂ X be a finite set and N ∈ (0,∞). Set
fN (x) = min {N, f(x)} and let φN,Λ be the simple function given by φN,Λ(x) :=
1Λ(x)f

N (x). Because φN,Λ(x) ≤ f(x),X
Λ

ρfN =
X
X

ρφN,Λ =

Z
X

φN,Λdµ ≤
Z
X

fdµ.

Since fN ↑ f as N → ∞, we may let N → ∞ in this last equation to concluded
that X

Λ

ρf ≤
Z
X

fdµ

and since Λ is arbitrary we learn thatX
X

ρf ≤
Z
X

fdµ.

Theorem 7.18 (Monotone Convergence Theorem). Suppose fn ∈ L+ is a sequence
of functions such that fn ↑ f (f is necessarily in L+) thenZ

fn ↑
Z

f as n→∞.
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Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,Z
fn ≤

Z
fm ≤

Z
f

from which if follows
R
fn is increasing in n and

(7.10) lim
n→∞

Z
fn ≤

Z
f.

For the opposite inequality, let φ be a simple function such that 0 ≤ φ ≤ f and
let α ∈ (0, 1). By Proposition 7.14,

(7.11)
Z

fn ≥
Z
1Enfn ≥

Z
En

αφ = α

Z
En

φ.

Write φ =
P

λi1Bi with λi > 0 and Bi ∈M, then

lim
n→∞

Z
En

φ = lim
n→∞

X
λi

Z
En

1Bi =
X

λiµ(En ∩Bi) =
X

λi lim
n→∞µ(En ∩Bi)

=
X

λiµ(Bi) =

Z
φ.

Using this we may let n→∞ in Eq. (7.11) to conclude

lim
n→∞

Z
fn ≥ α lim

n→∞

Z
En

φ = α

Z
X

φ.

Because this equation holds for all simple functions 0 ≤ φ ≤ f, form the definition
of
R
f we have lim

n→∞
R
fn ≥ α

R
f. Since α ∈ (0, 1) is arbitrary, lim

n→∞
R
fn ≥

R
f

which combined with Eq. (7.10) proves the theorem.
The following simple lemma will be use often in the sequel.

Lemma 7.19 (Chebyshev’s Inequality). Suppose that f ≥ 0 is a measurable func-
tion, then for any � > 0,

(7.12) µ(f ≥ �) ≤ 1
�

Z
X

fdµ.

In particular if
R
X
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the set

{f > 0} is σ — finite.
Proof. Since 1{f≥�} ≤ 1{f≥�} 1�f ≤ 1

� f,

µ(f ≥ �) =

Z
X

1{f≥�}dµ ≤
Z
X

1{f≥�}
1

�
fdµ ≤ 1

�

Z
X

fdµ.

If M :=
R
X
fdµ <∞, then

µ(f =∞) ≤ µ(f ≥ n) ≤ M

n
→ 0 as n→∞

and {f ≥ 1/n} ↑ {f > 0} with µ(f ≥ 1/n) ≤ nM <∞ for all n.

Corollary 7.20. If fn ∈ L+ is a sequence of functions thenZ X
n

fn =
X
n

Z
fn.

In particular, if
P

n

R
fn <∞ then

P
n fn <∞ a.e.
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Proof. First off we show thatZ
(f1 + f2) =

Z
f1 +

Z
f2

by choosing non-negative simple function φn and ψn such that φn ↑ f1 and ψn ↑ f2.
Then (φn + ψn) is simple as well and (φn + ψn) ↑ (f1 + f2) so by the monotone
convergence theorem,Z

(f1 + f2) = lim
n→∞

Z
(φn + ψn) = lim

n→∞

µZ
φn +

Z
ψn

¶
= lim

n→∞

Z
φn + lim

n→∞

Z
ψn =

Z
f1 +

Z
f2.

Now to the general case. Let gN ≡
NP
n=1

fn and g =
∞P
1
fn, then gN ↑ g and so again

by monotone convergence theorem and the additivity just proved,
∞X
n=1

Z
fn := lim

N→∞

NX
n=1

Z
fn = lim

N→∞

Z NX
n=1

fn

= lim
N→∞

Z
gN =

Z
g =

∞X
n=1

Z
fn.

Remark 7.21. It is in the proof of this corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measurable.
In fact the definition

R
fdµ makes sense for all functions f : X → [0,∞] not just

measurable functions. Moreover the monotone convergence theorem holds in this
generality with no change in the proof. However, in the proof of Corollary 7.20, we
use the approximation Theorem 7.12 which relies heavily on the measurability of
the functions to be approximated.

The following Lemma and the next Corollary are simple applications of Corollary
7.20.

Lemma 7.22 (First Borell-Carnteli- Lemma.). Let (X,M, µ) be a measure space,
An ∈M, and set

{An i.o.} = {x ∈ X : x ∈ An for infinitely many n’s} =
∞\

N=1

[
n≥N

An.

If
P∞

n=1 µ(An) <∞ then µ({An i.o.}) = 0.
Proof. (First Proof.) Let us first observe that

{An i.o.} =
(
x ∈ X :

∞X
n=1

1An(x) =∞
)
.

Hence if
P∞

n=1 µ(An) <∞ then

∞ >
∞X
n=1

µ(An) =
∞X
n=1

Z
X

1An dµ =

Z
X

∞X
n=1

1An dµ

implies that
∞P
n=1

1An(x) <∞ for µ - a.e. x. That is to say µ({An i.o.}) = 0.
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(Second Proof.) Of course we may give a strictly measure theoretic proof of this
fact:

µ(An i.o.) = lim
N→∞

µ

 [
n≥N

An


≤ lim

N→∞

X
n≥N

µ(An)

and the last limit is zero since
P∞

n=1 µ(An) <∞.

Corollary 7.23. Suppose that (X,M, µ) is a measure space and {An}∞n=1 ⊂M is
a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞X
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =

Z
X

1∪∞n=1Andµ and

∞X
n=1

µ(An) =

Z
X

∞X
n=1

1Andµ

it suffices to show

(7.13)
∞X
n=1

1An = 1∪∞n=1An µ — a.e.

Now
P∞

n=1 1An ≥ 1∪∞n=1An and
P∞

n=1 1An(x) 6= 1∪∞n=1An(x) iff x ∈ Ai∩Aj for some
i 6= j, that is (

x :
∞X
n=1

1An(x) 6= 1∪∞n=1An(x)
)
= ∪i<jAi ∩Aj

and the later set has measure 0 being the countable union of sets of measure zero.
This proves Eq. (7.13) and hence the corollary.

Example 7.24. Suppose −∞ < a < b < ∞, f ∈ C([a, b], [0,∞)) and m be
Lebesgue measure on R. Also let πk = {a = ak0 < ak1 < · · · < aknk = b} be a
sequence of refining partitions (i.e. πk ⊂ πk+1 for all k) such that

mesh(πk) := max{
¯̄
akj − ak+1j−1

¯̄
: j = 1, . . . , nk}→ 0 as k →∞.

For each k, let

fk(x) = f(a)1{a} +
nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
1(akl ,akl+1](x)
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then fk ↑ f as k →∞ and so by the monotone convergence theorem,Z b

a

fdm :=

Z
[a,b]

fdm = lim
k→∞

Z b

a

fk dm

= lim
k→∞

nkX
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
m
¡
(akl , a

k
l+1]

¢
=

Z b

a

f(x)dx.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable functions:

Example 7.25. For all λ > 0,
R∞
0

e−λxdm(x) = λ−1 and
R
R

1
1+x2 dm(x) = π.

The proof of these equations are similar. By the monotone convergence theorem,
Example 7.24 and the fundamental theorem of calculus for Riemann integrals (or
see Theorem 7.40 below),Z ∞

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdx

= − lim
N→∞

1

λ
e−λx|N0 = λ−1

and Z
R

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dx

= tan−1(N)− tan−1(−N) = π.

Let us also consider the functions x−p,Z
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

0

1( 1n ,1](x)
1

xp
dm(x)

= lim
n→∞

Z 1

1
n

1

xp
dx = lim

n→∞
x−p+1

1− p

¯̄̄̄1
1/n

=

½ 1
1−p if p < 1

∞ if p > 1

If p = 1 we findZ
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

1
n

1

x
dx = lim

n→∞ ln(x)|
1
1/n =∞.

Example 7.26. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞X
n=1

2−n
1p|x− rn|

with the convention that
1p|x− rn|

= 5 if x = rn.
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Since, By Theorem 7.40,Z 1

0

1p|x− rn|
dx =

Z 1

rn

1√
x− rn

dx+

Z rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

¡√
1− rn −√rn

¢
≤ 4,

we find Z
[0,1]

f(x)dm(x) =
∞X
n=1

2−n
Z
[0,1]

1p|x− rn|
dx ≤

∞X
n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f < ∞ for almost every x ∈ [0, 1] and this
implies that

∞X
n=1

2−n
1p|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands form a
dense subset of [0, 1].

Proposition 7.27. Suppose that f ≥ 0 is a measurable function. Then R
X
fdµ = 0

iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that f ≤ g a.e. thenR
fdµ ≤ R gdµ. In particular if f = g a.e. then

R
fdµ =

R
gdµ.

Proof. If f = 0 a.e. and φ ≤ f is a simple function then φ = 0 a.e. This implies
that µ(φ−1({y})) = 0 for all y > 0 and hence R

X
φdµ = 0 and therefore

R
X
fdµ = 0.

Conversely, if
R
fdµ = 0, then by Chebyshev’s Inequality (Lemma 7.19),

µ(f ≥ 1/n) ≤ n

Z
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤P∞n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e.
For the second assertion let E be the exceptional set where g > f, i.e. E := {x ∈

X : g(x) > f(x)}. By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere.
Because g = 1Ecg + 1Eg and 1Eg = 0 a.e.,Z

gdµ =

Z
1Ecgdµ+

Z
1Egdµ =

Z
1Ecgdµ

and similarly
R
fdµ =

R
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,Z

fdµ =

Z
1Ecfdµ ≤

Z
1Ecgdµ =

Z
gdµ.

Corollary 7.28. Suppose that {fn} is a sequence of non-negative functions and f
is a measurable function such that fn ↑ f off a null set, thenZ

fn ↑
Z

f as n→∞.

Proof. Let E ⊂ X be a null set such that fn1Ec ↑ f1Ec as n → ∞. Then by
the monotone convergence theorem and Proposition 7.27,Z

fn =

Z
fn1Ec ↑

Z
f1Ec =

Z
f as n→∞.
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Lemma 7.29 (Fatou’s Lemma). If fn : X → [0,∞] is a sequence of measurable
functions then Z

lim inf
n→∞ fn ≤ lim inf

n→∞

Z
fn

Proof. Define gk ≡ inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k →∞. Since gk ≤ fn

for all k ≤ n, Z
gk ≤

Z
fn for all n ≥ k

and therefore Z
gk ≤ lim inf

n→∞

Z
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findZ
lim inf

n→∞ fn =

Z
lim
k→∞

gk
MCT
= lim

k→∞

Z
gk ≤ lim inf

n→∞

Z
fn.

7.4. Integrals of Complex Valued Functions.

Definition 7.30. A measurable function f : X → R̄ is integrable if f+ ≡ f1{f≥0}
and f− = −f 1{f≤0} are integrable. We write L1 for the space of integrable
functions. For f ∈ L1, let Z

fdµ =

Z
f+dµ−

Z
f−dµ

Convention: If f, g : X → R̄ are two measurable functions, let f + g denote
the collection of measurable functions h : X → R̄ such that h(x) = f(x) + g(x)
whenever f(x) + g(x) is well defined, i.e. is not of the form ∞−∞ or −∞ +∞.
We use a similar convention for f − g. Notice that if f, g ∈ L1 and h1, h2 ∈ f + g,
then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Remark 7.31. Since

f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
R |f | dµ < ∞. If f, g ∈ L1 and f = g a.e.

then f± = g± a.e. and so it follows from Proposition 7.27 that
R
fdµ =

R
gdµ. In

particular if f, g ∈ L1 we may defineZ
X

(f + g) dµ =

Z
X

hdµ

where h is any element of f + g.

Proposition 7.32. The map

f ∈ L1 →
Z
X

fdµ ∈ R

is linear and has the monotonicity property:
R
fdµ ≤ R gdµ for all f, g ∈ L1 such

that f ≤ g a.e.
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Proof. Let f, g ∈ L1 and a, b ∈ R. By modifying f and g on a null set, we may
assume that f, g are real valued functions. We have af + bg ∈ L1 because

|af + bg| ≤ |a||f |+ |b| |g| ∈ L1.

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that Z
af = −a

Z
f− + a

Z
f+ = a(

Z
f+ −

Z
f−) = a

Z
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have shown
that Z

af = a

Z
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, Z
h+ +

Z
f− +

Z
g− =

Z
h− +

Z
f+ +

Z
g+

and henceZ
h =

Z
h+ −

Z
h− =

Z
f+ +

Z
g+ −

Z
f− −

Z
g− =

Z
f +

Z
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that Z

f+ +

Z
g− ≤

Z
g+ +

Z
f−

or equivalently thatZ
f =

Z
f+ −

Z
f− ≤

Z
g+ −

Z
g− =

Z
g.

The monotonicity property is also a consequence of the linearity of the integral, the
fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 7.27.

Definition 7.33. A measurable function f : X → C is integrable if
R
X
|f | dµ <∞,

again we write f ∈ L1. Because,max (|Re f | , |Im f |) ≤ |f | ≤ √2max (|Re f | , |Im f |) ,R |f | dµ <∞ iff Z
|Re f | dµ+

Z
|Im f | dµ <∞.

For f ∈ L1 define Z
f dµ =

Z
Re f dµ+ i

Z
Im f dµ.

It is routine to show the integral is still linear on the complex L1 (prove!).

Proposition 7.34. Suppose that f ∈ L1, then¯̄̄̄Z
X

fdµ

¯̄̄̄
≤
Z
X

|f |dµ.
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Proof. Start by writing
R
X
f dµ = Reiθ. Then using the monotonicity in

Proposition 7.27,¯̄̄̄Z
X

fdµ

¯̄̄̄
= R = e−iθ

Z
X

fdµ =

Z
X

e−iθfdµ

=

Z
X

Re
¡
e−iθf

¢
dµ ≤

Z
X

¯̄
Re
¡
e−iθf

¢¯̄
dµ ≤

Z
X

|f | dµ.

Proposition 7.35. f, g ∈ L1, then

(1) The set {f 6= 0} is σ-finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n) <∞ for all n.
(2) The following are equivalent

(a)
R
E
f =

R
E
g for all E ∈M

(b)
R
X

|f − g| = 0
(c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 7.19,

µ(|f | ≥ 1

n
) ≤ n

Z
X

|f |dµ <∞

for all n.
2. (a) =⇒ (c) Notice thatZ

E

f =

Z
E

g ⇔
Z
E

(f − g) = 0

for all E ∈M. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we learn
that

0 = Re

Z
E

(f − g)dµ =

Z
1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f − g) < 0) = 0 so that Re(f − g) = 0 a.e. Similarly, Im(f − g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.
(c) =⇒ (b) is clear and so is (b) =⇒ (a) since¯̄̄̄Z

E

f −
Z
E

g

¯̄̄̄
≤
Z
|f − g| = 0.

Definition 7.36. Let (X,M, µ) be a measure space and L1(µ) = L1(X,M, µ)
denote the set of L1 functions modulo the equivalence relation; f ∼ g iff f = g a.e.
We make this into a normed space using the norm

kf − gkL1 =
Z
|f − g| dµ

and into a metric space using ρ1(f, g) = kf − gkL1 .
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Remark 7.37. More generally we may define Lp(µ) = Lp(X,M, µ) for p ∈ [1,∞)
as the set of measurable functions f such thatZ

X

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in Section 9 that

kfkLp =
µZ

|f |p dµ
¶1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), k·kLp) is a Banach space in this norm.
Theorem 7.38 (Dominated Convergence Theorem). Suppose fn, gn, g ∈ L1, fn →
f a.e., |fn| ≤ gn ∈ L1, gn → g a.e. and

R
X
gndµ→

R
X
gdµ. Then f ∈ L1 andZ

X

fdµ = lim
h→∞

Z
X

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that f ∈ L1.
By considering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,Z

X

(g ± f)dµ =

Z
X

lim inf
n→∞ (gn ± fn) dµ ≤ lim inf

n→∞

Z
X

(gn ± fn) dµ

= lim
n→∞

Z
X

gndµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
=

Z
X

gdµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,Z

X

gdµ±
Z
X

fdµ ≤
Z
X

gdµ+

½
lim infn→∞

R
X
fndµ

− lim supn→∞
R
X
fndµ

and therefore

lim sup
n→∞

Z
X

fndµ ≤
Z
X

fdµ ≤ lim inf
n→∞

Z
X

fndµ.

This shows that lim
n→∞

R
X
fndµ exists and is equal to

R
X
fdµ.

Corollary 7.39. Let {fn}∞n=1 ⊂ L1 be a sequence such that
P∞

n=1 kfnkL1 < ∞,
then

P∞
n=1 fn is convergent a.e. andZ

X

Ã ∞X
n=1

fn

!
dµ =

∞X
n=1

Z
X

fndµ.

Proof. The condition
P∞

n=1 kfnkL1 <∞ is equivalent to
P∞

n=1 |fn| ∈ L1. HenceP∞
n=1 fn is almost everywhere convergent and if SN :=

PN
n=1 fn, then

|SN | ≤
NX
n=1

|fn| ≤
∞X
n=1

|fn| ∈ L1.
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So by the dominated convergence theorem,Z
X

Ã ∞X
n=1

fn

!
dµ =

Z
X

lim
N→∞

SNdµ = lim
N→∞

Z
X

SNdµ

= lim
N→∞

NX
n=1

Z
X

fndµ =
∞X
n=1

Z
X

fndµ.

Theorem 7.40 (The Fundamental Theorem of Calculus). Suppose −∞ < a < b <
∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) := R x

a
f(y)dm(y). Then

(1) F ∈ C([a, b],R) ∩C1((a, b),R).
(2) F 0(x) = f(x) for all x ∈ (a, b).
(3) If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.

f = G0|(a,b)) then Z b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
R
R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y) for m

— a.e. y and
¯̄
1(a,x)(y)f(y)

¯̄ ≤ 1(a,b)(y) |f(y)| is an L1 — function, it follows from
the dominated convergence Theorem 7.38 that F is continuous on [a, b]. Simple
manipulations show,¯̄̄̄

F (x+ h)− F (x)

h
− f(x)

¯̄̄̄
=
1

|h|


¯̄̄R x+h
x

[f(y)− f(x)] dm(y)
¯̄̄
if h > 0¯̄̄R x

x+h
[f(y)− f(x)] dm(y)

¯̄̄
if h < 0

≤ 1

|h|

( R x+h
x

|f(y)− f(x)| dm(y) if h > 0R x
x+h

|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}
and the latter expression, by the continuity of f, goes to zero as h→ 0 . This shows
F 0 = f on (a, b).
For the converse direction, we have by assumption that G0(x) = F 0(x) for x ∈

(a, b). Therefore by the mean value theorem, F−G = C for some constant C. HenceZ b

a

f(x)dm(x) = F (b) = F (b)− F (a) = (G(b) + C)− (G(a) + C) = G(b)−G(a).

Example 7.41. The following limit holds,

lim
n→∞

Z n

0

(1− x

n
)ndm(x) = 1.

Let fn(x) = (1 − x
n)

n1[0,n](x) and notice that limn→∞ fn(x) = e−x. We will now
show

0 ≤ fn(x) ≤ e−x for all x ≥ 0.
It suffices to consider x ∈ [0, n]. Let g(x) = exfn(x), then for x ∈ (0, n),

d

dx
ln g(x) = 1 + n

1

(1− x
n)
(− 1

n
) = 1− 1

(1− x
n)
≤ 0
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which shows that ln g(x) and hence g(x) is decreasing on [0, n]. Therefore g(x) ≤
g(0) = 1, i.e.

0 ≤ fn(x) ≤ e−x.

From Example 7.25, we knowZ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated convergence
theorem,

lim
n→∞

Z n

0

(1− x

n
)ndm(x) = lim

n→∞

Z ∞
0

fn(x)dm(x)

=

Z ∞
0

lim
n→∞ fn(x)dm(x) =

Z ∞
0

e−xdm(x) = 1.

Example 7.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

P∞
n=0 |an| rn <∞ for all r ∈ (0, R). ThenZ β

α

Ã ∞X
n=0

anx
n

!
dm(x) =

∞X
n=0

an

Z β

α

xndm(x) =
∞X
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 7.39 since
∞X
n=0

Z β

α

|an| |x|n dm(x) ≤
∞X
n=0

ÃZ |β|

0

|an| |x|n dm(x) +
Z |α|

0

|an| |x|n dm(x)
!

≤
∞X
n=0

|an| |β|
n+1 + |α|n+1
n+ 1

≤ 2r
∞X
n=0

|an| rn <∞

where r = max(|β| , |α|).
Corollary 7.43 (Differentiation Under the Integral). Suppose that J ⊂ R is an
open interval and f : J ×X → C is a function such that

(1) x→ f(t, x) is measurable for each t ∈ J.
(2) f(t0, ·) ∈ L1(µ) for some t0 ∈ J.

(3) ∂f
∂t (t, x) exists for all (t, x).

(4) There is a function g ∈ L1 such that
¯̄̄
∂f
∂t (t, ·)

¯̄̄
≤ g ∈ L1 for each t ∈ J.

Then f(t, ·) ∈ L1(µ) for all t ∈ J (i.e.
R |f(t, x)| dµ(x) < ∞), t →R

X
f(t, x)dµ(x) is a differentiable function on J and

d

dt

Z
X

f(t, x)dµ(x) =

Z
X

∂f

∂t
(t, x)dµ(x).

Proof. (The proof is essentially the same as for sums.) By considering the real
and imaginary parts of f separately, we may assume that f is real. Also notice that

∂f

∂t
(t, x) = lim

n→∞n(f(t+ n−1, x)− f(t, x))

and therefore, for x → ∂f
∂t (t, x) is a sequential limit of measurable functions and

hence is measurable for all t ∈ J. By the mean value theorem,

(7.14) |f(t, x)− f(t0, x)| ≤ g(x) |t− t0| for all t ∈ J
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and hence

|f(t, x)| ≤ |f(t, x)− f(t0, x)|+ |f(t0, x)| ≤ g(x) |t− t0|+ |f(t0, x)| .
This shows f(t, ·) ∈ L1(µ) for all t ∈ J. Let G(t) :=

R
X
f(t, x)dµ(x), then

G(t)−G(t0)

t− t0
=

Z
X

f(t, x)− f(t0, x)

t− t0
dµ(x).

By assumption,

lim
t→t0

f(t, x)− f(t0, x)

t− t0
=

∂f

∂t
(t, x) for all x ∈ X

and by Eq. (7.14),¯̄̄̄
f(t, x)− f(t0, x)

t− t0

¯̄̄̄
≤ g(x) for all t ∈ J and x ∈ X.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)

tn − t0
= lim

n→∞

Z
X

f(tn, x)− f(t0, x)

tn − t0
dµ(x)

=

Z
X

lim
n→∞

f(tn, x)− f(t0, x)

tn − t0
dµ(x) =

Z
X

∂f

∂t
(t0, x)dµ(x)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =

limt→t0
G(t)−G(t0)

t−t0 exists and

Ġ(t0) =

Z
X

∂f

∂t
(t0, x)dµ(x).

Example 7.44. Recall from Example 7.25 that

λ−1 =
Z
[0,∞)

e−λxdm(x) for all λ > 0.

Let � > 0. For λ ≥ 2� > 0 and n ∈ N there exists Cn(�) <∞ such that

0 ≤
µ
− d

dλ

¶n
e−λx = xne−λx ≤ C(�)e−�x.

Using this fact, Corollary 7.43 and induction gives

n!λ−n−1 =
µ
− d

dλ

¶n
λ−1 =

Z
[0,∞)

µ
− d

dλ

¶n
e−λxdm(x) =

Z
[0,∞)

xne−λxdm(x).

That is n! = λn
R
[0,∞) x

ne−λxdm(x). Recall that

Γ(t) :=

Z
[0,∞)

xt−1e−xdx for t > 0.

(The reader should check that Γ(t) < ∞ for all t > 0.) We have just shown that
Γ(n+ 1) = n! for all n ∈ N.
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Remark 7.45. Corollary 7.43 may be generalized by allowing the hypothesis to hold
for x ∈ X\E where E ∈M is a fixed null set, i.e. E must be independent of t. Con-
sider what happens if we formally apply Corollary 7.43 to g(t) :=

R∞
0
1x≤tdm(x),

ġ(t) =
d

dt

Z ∞
0

1x≤tdm(x)
?
=

Z ∞
0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is not

defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should decide
which hypothesis of Corollary 7.43 has been violated in this example.)

7.5. Measurability on Complete Measure Spaces. In this subsection we will
discuss a couple of measurability results concerning completions of measure spaces.

Proposition 7.46. Suppose that (X,M, µ) is a complete measure space13 and
f : X → R is measurable.

(1) If g : X → R is a function such that f(x) = g(x) for µ — a.e. x, then g is
measurable.

(2) If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in M and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable so g
will be measurable if we show 1Eg is measurable. For this consider,

(7.15) (1Eg)
−1(A) =

½
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)

−1(A) if 0 /∈ A

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness ofM that
(1Eg)

−1(B) ∈M if 0 /∈ B. Therefore Eq. (7.15) shows that 1Eg is measurable.
2. Let E = {x : lim

n→∞ fn(x) 6= f(x)} by assumption E ∈M and µ(E) = 0. Since

g ≡ 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g on Ec and µ(E) = 0,
f = g a.e. so by part 1. f is also measurable.
The above results are in general false if (X,M, µ) is not complete. For example,

let X = {0, 1, 2} M = {{0}, {1, 2},X, φ} and µ = δ0 Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 7.47. Suppose that (X,M, µ) is a measure space and M̄ is the completion
of M relative to µ and µ̄ is the extension of µ to M̄. Then a function f : X → R
is (M̄,B = BR) — measurable iff there exists a function g : X → R that is (M,B) —
measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0, i.e. f(x) = g(x) for µ̄
— a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄) iff g ∈ L1(µ) and in which
case Z

X

fdµ̄ =

Z
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) — measurable, we see from Proposition 7.46 that f is (M̄,B) —
measurable.

13Recall this means that if N ⊂ X is a set such that N ⊂ A ∈M and µ(A) = 0, then N ∈M
as well.
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Conversely if f is (M̄,B) — measurable, by considering f± we may assume that
f ≥ 0. Choose (M̄,B) — measurable simple function φn ≥ 0 such that φn ↑ f as
n→∞. Writing

φn =
X

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak \ Bk) = 0.
Letting

φ̃n :=
X

ak1Bk

we have produced a (M,B) — measurable simple function φ̃n ≥ 0 such that En :=

{φn 6= φ̃n} has zero µ̄ — measure. Since µ̄ (∪nEn) ≤
P

n µ̄ (En) , there exists F ∈M
such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F φ̃n = 1Fφn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) — measurable and that {f 6= g} ⊂ F has µ̄ —
measure zero.
Since f = g, µ̄ — a.e.,

R
X
fdµ̄ =

R
X
gdµ̄ so to prove Eq. (7.16) it suffices to prove

(7.16)
Z
X

gdµ̄ =

Z
X

gdµ.

Because µ̄ = µ onM, Eq. (7.16) is easily verified for non-negativeM — measurable
simple functions. Then by the monotone convergence theorem and the approxi-
mation Theorem 7.12 it holds for all M — measurable functions g : X → [0,∞].
The rest of the assertions follow in the standard way by considering (Re g)± and
(Im g)± .

7.6. Comparison of the Lebesgue and the Riemann Integral. For the rest
of this chapter, let −∞ < a < b <∞ and f : [a, b]→ R be a bounded function. A
partition of [a, b] is a finite subset π ⊂ [a, b] containing {a, b}. To each partition
(7.17) π = {a = t0 < t1 < · · · < tn = b}
of [a, b] let

mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
nX
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
nX
1

mj1(tj−1,tj ] and

Sπf =
X

Mj(tj − tj−1) and sπf =
X

mj(tj − tj−1).

Notice that

Sπf =

Z b

a

Gπdm and sπf =

Z b

a

gπdm.

The upper and lower Riemann integrals are defined respectively byZ b

a

f(x)dx = inf
π
Sπf and

Z a

b

f(x)dx = sup
π

sπf.
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Definition 7.48. The function f is Riemann integrable iff
R b
a
f =

R b
a
f and

which case the Riemann integral
R b
a
f is defined to be the common value:Z b

a

f(x)dx =

Z b

a

f(x)dx =

Z b

a

f(x)dx.

The proof of the following Lemma is left as an exercise to the reader.

Lemma 7.49. If π0 and π are two partitions of [a, b] and π ⊂ π0 then

Gπ ≥ Gπ0 ≥ f ≥ gπ0 ≥ gπ and

Sπf ≥ Sπ0f ≥ sπ0f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓ 0
and

Sπkf ↓
Z b

a

f and sπkf ↑
Z b

a

f as k →∞.

If we let

(7.18) G ≡ lim
k→∞

Gπk and g ≡ lim
k→∞

gπk

then by the dominated convergence theorem,Z
[a,b]

gdm = lim
k→∞

Z
[a,b]

gπk = lim
k→∞

sπkf =

Z b

a

f(x)dx(7.19)

andZ
[a,b]

Gdm = lim
k→∞

Z
[a,b]

Gπk = lim
k→∞

Sπkf =

Z b

a

f(x)dx.(7.20)

Notation 7.50. For x ∈ [a, b], let
H(x) = lim sup

y→x
f(y) = lim

�↓0
sup{f(y) : |y − x| ≤ �, y ∈ [a, b]} and

h(x) ≡ lim inf
y→x

f(y) = lim
�↓0

inf {f(y) : |y − x| ≤ �, y ∈ [a, b]}.

Lemma 7.51. The functions H,h : [a, b]→ R satisfy:
(1) h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous

at x.
(2) If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0

and G and g are defined as in Eq. (7.18), then

(7.21) G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk.
(Note π is a countable set.)

(3) H and h are Borel measurable.

Proof. Let Gk ≡ Gπk ↓ G and gk ≡ gπk ↑ g.
(1) It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim

y→x
f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
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(2) For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k
and letting k →∞ in this equation implies

(7.22) G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π.

Moreover, given � > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ �, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y)
over some interval contained in [x− �, x+ �]. Again letting k →∞ implies
sup

|y−x|≤�
f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (7.22) then implies H(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (7.21) is proved.

(3) The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 7.52. Let f : [a, b]→ R be a bounded function. Then

(7.23)
Z b

a

f =

Z
[a,b]

Hdm and
Z b

a

f =

Z
[a,b]

hdm

and the following statements are equivalent:
(1) H(x) = h(x) for m -a.e. x,
(2) the set

E := {x ∈ [a, b] : f is disconituous at x}
is an m̄ — null set.

(3) f is Riemann integrable.
If f is Riemann integrable then f is Lebesgue measurable14, i.e. f is L/B —

measurable where L is the Lebesgue σ — algebra and B is the Borel σ — algebra on
[a, b]. Moreover if we let m̄ denote the completion of m, then

(7.24)
Z
[a,b]

Hdm =

Z b

a

f(x)dx =

Z
[a,b]

fdm̄ =

Z
[a,b]

hdm.

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as described
in Lemma 7.49 and let G and g be defined as in Lemma 7.51. Since m(π) = 0,
H = G a.e., Eq. (7.23) is a consequence of Eqs. (7.19) and (7.20). From Eq. (7.23),
f is Riemann integrable iff Z

[a,b]

Hdm =

Z
[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m — null

14f need not be Borel measurable.
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set. In light of these results and Eq. (7.21), the remaining assertions including Eq.
(7.24) are now consequences of Lemma 7.47.

Notation 7.53. In view of this theorem we will often write
R b
a
f(x)dx for

R b
a
fdm.

7.7. Appendix: Bochner Integral. In this appendix we will discuss how to
define integrals of functions taking values in a Banach space. The resulting integral
will be called the Bochner integral. In this section, let (Ω,F , µ) be a probability
space and X be a separable Banach space.

Remark 7.54. Recall that we have already seen in this case that the Borel σ — field
B = B(X) on X is the same as the σ — field ( σ(X∗)) which is generated by X∗ —
the continuous linear functionals on X. As a consequence F : Ω → X is F/B(X)
measurable iff φ ◦ F : Ω→ R is F/B(R) — measurable for all φ ∈ X∗.

Lemma 7.55. Let 1 ≤ p <∞ and Lp(µ;X) denote the space of measurable func-
tions F : Ω→ X such that

R
Ω

kFkpdµ <∞. For F ∈ Lp(µ;X), define

kFkLp =
Z
Ω

kFkpXdµ
 1

p

.

Then after identifying function F ∈ Lp(µ;X) which agree modulo sets of µ — mea-
sure zero, (Lp(µ;X), k · kLp) becomes a Banach space.
Proof. It is easily checked that k · kLp is a norm, for example,

kF +GkLp =
Z
Ω

kF +GkpXdµ
 1

p

≤
Z
Ω

(kFkX + kGkX)pdµ
 1

p

≤ kFkLp + kGkLp .
So the main point is to check completeness of the space. For this suppose {Fn}∞1 ⊆
Lp = Lp(µ;X) such that

∞P
n=1

kFn+1−FnkLp <∞ and define F0 ≡ 0. Since kFkL1 ≤
kFkLp it follows thatZ

Ω

∞X
n=1

kFn+1 − FnkXdµ ≤
∞X
n=1

kFn+1 − FnkL1 <∞

and therefore that
∞P
n=1

kFn+1 − FnkX <∞ on as set Ω0 ⊆ Ω such that µ(Ω0) = 1.

Since X is complete, we know
∞P
n=0
(Fn+1(x)− Fn(x)) exists in X for all x ∈ Ω0 so

we may define F : Ω→ X by

F ≡


∞P
n=0

(Fn+1 − Fn) ∈ X on Ω0

0 on Ωc0.

Then on Ω0,

F − FN =
∞X

n=N+1

(Fn+1 − Fn) = lim
M→∞

MX
n=N+1

(Fn+1 − Fn).
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So

kF − FNkX ≤
∞X

n=N+1

kFn+1 − FnkX = lim
M→∞

MX
n−N+1

kFn+1 − FnkX

and therefore by Fatou’s Lemma and Minikowski’s inequality,

kF − FNkLp ≤
°°°°° limM→∞

inf
MX
N+1

kFn+1 − FnkX
°°°°°
Lp

≤ lim
M→∞

inf

°°°°°
MX
N+1

|Fn+1 − Fn|
°°°°°
Lp

≤ lim
M→∞

inf
MX
N+1

kFn+1 − FnkLp =
∞X

N+1

kFn+1 − FnkLp → 0 as N →∞.

Therefore F ∈ Lp and lim
N→∞

FN = F in Lp.

Definition 7.56. A measurable function F : Ω→ X is said to be a simple function
provided that F (Ω) is a finite set. Let S denote the collection of simple functions.
For F ∈ S set

I(F ) ≡
X
x∈X

xµ(F−1({x})) =
X
x∈X

xµ({F = x}) =
X

x∈F (Ω)
xµ({F = x}).

Proposition 7.57. The map I : S → X is linear and satisfies for all F ∈ S,

(7.25) kI(F )kX ≤
Z
Ω

kFkdµ

and

(7.26) φ(I(F )) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗.

Proof. If 0 6= c ∈ R and F ∈ S, then
I(cF ) =

X
x∈X

xµ(cF = x) =
X
x∈X

xµ
³
F =

x

c

´
=
X
y∈X

cy µ(F = y) = cI(F )

and if c = 0, I(0F ) = 0 = 0I(F ). If F,G ∈ S,
I(F +G) =

X
x

xµ(F +G = x)

=
X
x

x
X

y+z=x

µ(F = y,G = z)

=
X
y,z

(y + z)µ(F = y,G = z)

=
X
y

yµ(F = y) +
X
z

zµ(G = z) = I(F ) + I(G).

Equation (7.25) is a consequence of the following computation:

kI(F )kX = k
X
x∈X

xµ(F = x)k ≤
X
x∈X

kxkµ(F = x) =

Z
Ω

kFkdµ
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and Eq. (7.26) follows from:

φ(I(F )) = φ(
X
x∈X

xµ({F = x}))

=
X
x∈X

φ(x)µ({F = x}) =
Z
X

φ ◦ F dµ.

Proposition 7.58. The set of simple functions, S, is dense in Lp(µ,X) for all
p ∈ [1,∞).
Proof. By assumption that X is separable, there is a countable dense set

D ={xn}∞n=1 ⊆ X. Given � > 0 and n ∈ N set

V �
n = B(xn, �)r

Ã
n−1[
i=1

B(xi, �)

!

where by convention V �
1 = B(x1, �). Then X =

∞̀

i=1
V �
i disjoint union. For F ∈

Lp(µ;X) let

F � =
∞X
n=1

xn1F−1(V �
n)

and notice that kF − F �kX ≤ � on Ω and therefore, kF − F �kLp ≤ �. In particular
this shows that

kF �kLp ≤ kF − F �kLp + kFkLp ≤ �+ kFkLp <∞
so that F � ∈ Lp(µ;X). Since

∞ > kF �kpLp =
∞X
n=1

kxnkpµ(F−1(V �
n)),

there exists N such that
∞P

n=N+1

kxnkpµ(F−1(V �
n)) ≤ �p and hence

°°°°°F −
NX
n=1

xn1F−1(V �
n)

°°°°°
Lp

≤ kF − F �kLp +
°°°°°F � −

NX
n=1

xn1F−1(V �
n)

°°°°°
Lp

≤ �+

°°°°°
∞X

n=N+1

xn1F−1(V �
n)

°°°°°
Lp

= �+

Ã ∞X
n=N+1

kxnkpµ(F−1(V �
n))

!1/p
≤ �+ � = 2�.

Since
NP
n=1

xn1F−1(V �
n)
∈ S and � > 0 is arbitrary, the last estimate proves the

proposition.



124 BRUCE K. DRIVER†

Theorem 7.59. There is a unique continuous linear map Ī : L1(Ω,F , µ;X)→ X
such that Ī|S = I where I is defined in Definition 7.56. Moreover, for all F ∈
L1(Ω,F , µ;X),
(7.27) kĪ(F )kX ≤

Z
Ω

kFkdµ

and Ī(F ) is the unique element in X such that

(7.28) φ(Ī(F )) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗.

The map Ī(F ) will be denoted suggestively by
R
X
Fdµ so that Eq. (7.28) may be

written as

φ(

Z
X

Fdµ) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗.

Proof. The existence of a continuous linear map Ī : L1(Ω,F , µ;X) → X such
that Ī|S = I and Eq. (7.27) holds follows from Propositions 7.57 and 7.58 and the
bounded linear transformation Theorem 4.1. If φ ∈ X∗ and F ∈ L1(Ω,F , µ;X),
choose Fn ∈ S such that Fn → F in L1(Ω,F , µ;X) as n → ∞. Then Ī(F ) =
limn→∞ I(Fn) and hence by Eq. (7.26),

φ(Ī(F )) = φ( lim
n→∞ I(Fn)) = lim

n→∞φ(I(Fn)) = lim
n→∞

Z
X

φ ◦ Fndµ.

This proves Eq. (7.28) since¯̄̄̄
¯̄Z
Ω

(φ ◦ F − φ ◦ Fn)dµ
¯̄̄̄
¯̄ ≤ Z

Ω

|φ ◦ F − φ ◦ Fn| dµ

≤
Z
Ω

kφkX∗ kφ ◦ F − φ ◦ FnkX dµ

= kφkX∗kF − FnkL1 → 0 as n→∞.

The fact that Ī(F ) is determined by Eq. (7.28) is a consequence of the Hahn —
Banach theorem.

Remark 7.60. The separability assumption on X may be relaxed by assuming that
F : Ω → X has separable essential range. In this case we may still define

R
X
Fdµ

by applying the above formalism with X replaced by the separable Banach space
X0 := essranµ(F ). For example if Ω is a compact topological space and F : Ω→ X
is a continuous map, then

R
Ω
Fdµ is always defined.

7.8. Bochner Integrals.

7.8.1. Bochner Integral Problems From Folland. #15
Let f, g ∈ L1Y , c ∈ C then |(f + cg)(x)| ≤ |f(x)| + |c| |g(x)| for all x ∈ X.

Integrating over x ⇒ kf + cgk1 ≤ kfk1 + |c| kgk1 < ∞. Hence f, g ∈ LY and
c ∈ C⇒ f + cg ∈ LY so that LY is vector subspace of all functions from X → Y .
(By the way LY is a vector space since the map (y1, y2)→ y1+cy2 from Y×Y → Y is
continuous and therefore f+cg = Φ(f, g) is a composition of measurable functions).

It is clear that FY is a linear space. Moreover if f =
nX
j=1

yjxEj with u(Ej) < ∞
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then |f(x)| ≤
nP
j=1

|yj |xEj (x) ⇒ kfkL1 ≤
nP
j=1

|yi|u(Ej) < ∞. So FY ⊂ L1Y . It is

easily checked that k · k1 is a seminorm with the property

kfk1 = 0⇔
Z
kf(x)kdu(x) = 0

⇔ kf(x)k = 0 a.e.

⇔ f(x) = 0 a.e.

Hence k · k1 is a norm on L1Y / (null functions).
#16

B�
n = {y ∈ Y : ky − ynk < �kynk}

{yn}∞n=1 = Y
.

Let 0 6= y ∈ Y and choose {ynk} ⊂ {yn} 3 ynk → y as k →∞. Then ky−ynkk→ 0
while kynkk → kyk 6= 0 as k → ∞. Hence eventually |y − ynkk < �kynkk for k
sufficiently large, i.e. y ∈ B�

nk
for all k sufficiently large. Thus Y \ {0} ⊂

∞S
n=1

B�
n.

Also Y \ {0} =
∞S
n=1

B�
n if � < 1. Since k0− ynk < �kynk can not happen.

#17
Let f ∈ L1Y and 1 > � > 0, B�

n as in problem 16. Define A�
n ≡ B�

n \ (B�
1 ∪ · · · ∪

B�
n−1) and E�

n ≡ f−1(A�
n) and set

g� ≡
∞X
1

ynxE�
n
=
∞X
1

ynxA�n ◦ f.

Suppose ∈ E�
n then kf(x)−g�(x)k = kyn−f(x)k < �kynk. Now kynk ≤ kyn−f(x)k+

kf(x)k < �kynk+kf(x)k. Therefore kynk < kf(x)k
1− �

. So kf(x)−g�(x)k < �
1−�kf(x)k

for x ∈ E�
n. Since n is arbitrary it follows by problem 16 that kf(x) − g�(x)k <

�
1−�kf(x)k for all x /∈ f−1({0}). Since � < 1, by the end of problem 16 we know
0 /∈ A�

n for any n ⇒ g�(x) = 0 if f(x) = 0. Hence kf(x) − g�(x)k < �
1−�kf(x)k

holds for all x ∈ X. This implies kf − g�k1 ≤ �
1−�kfk1 → 0 � → 0. Also we

see kg�k1 ≤ kfk1 + kf − g�k1 < ∞ ⇒
∞P
n=1

kynku(E�
n) = kg�k1 < ∞. Choose

N(�) ∈ {1, 2, 3, . . . } such that
∞P

n=N(�)+1

kynku(E�
n) < �. Set f�(x) =

N(�)P
n=1

ynxE�
n
.

Then

kf − f�k1 ≤ kf − g�k1 + kg� − f�k1

≤ �

1− �
kfk1 +

∞X
n=N(�)+1

kynku(E�
n)

≤ �(1 +
kfk1
1− �

)→ 0 as � ↓ 0.

Finally f� ∈ FY so we are done.
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#18
Define

R
: FY → Y by

R
X

f(x)du(x) =
P
y∈Y

yu(f−1({y}) Just is the real variable
case be in class are shows that

R
: FY → Y is linear. For f ∈ L1Y choose fn ∈

FY such that kf − fnk1 → 0, n →∞. Then kfn − fmk1 → 0 as m,n →∞. Now
fn f ∈ FY .

k
Z
X

f duk ≤
X
y∈Y

kyku(f−1({y})) =
Z
X

kfkdu.

Therefore k R
X

fn du−
R
X

fm duk ≤ kfn−fmk1 → 0 m,n→∞. Hence lim
n→∞

R
X

fn du

exists in Y . Set
R
X
f du = lim

n→∞
R
X
fn du.

Claim 1.
R
X
fdu is well defined. Indeed if gn ∈ Fy such that kf − gnk1 → 0

as n → ∞. Then kfn − gnk1 → 0 as n → ∞ also. ⇒ k R
X
fn du − R

x
gnduk ≤

kfn − gnk1 → 0 n→∞. So lim
n→∞

R
X
gndu = lim

n→∞
R
X
fn du

Finally:

k
Z
X

f duk = lim
n→∞ k

Z
X

fn duk
≤ lim sup

n→∞
kfnk1 = kfk1

#19 D.C.T {fn} ⊂ L1Y , f ∈ L1Y such that g ∈ L1(dµ) for all n kfn(x)k ≤ g(x)
a.e. and fn(x)→ f(x) a.e. Then k R f R fnk ≤ �kf−fnkdu −→

n→∞ 0 by real variable.

7.9. Exercises.

Exercise 7.1. Let µ be a measure on an algebra A ⊂ P(X), then µ(A) + µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.
Exercise 7.2. Problem 12 on p. 27 of Folland. Let (X,M, µ) be a finite measure
space and for A,B ∈M let ρ(A,B) = µ(A∆B) where A∆B = (A \B) ∪ (B \A) .
Define A ∼ B iff µ(A∆B) = 0. Show “∼ ” is an equivalence relation, ρ is a metric
on M/ ∼ and µ(A) = µ(B) if A ∼ B. Also show that µ : (M/ ∼) → [0,∞) is a
continuous function relative to the metric ρ.

Exercise 7.3. Suppose that µn :M→ [0,∞] are measures onM for n ∈ N. Also
suppose that µn(A) is increasing in n for all A ∈M. Prove that µ :M → [0,∞]
defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 7.4. Now suppose that Λ is some index set and for each λ ∈ Λ, µλ :
M → [0,∞] is a measure on M. Define µ :M → [0,∞] by µ(A) =

P
λ∈Λ µλ(A)

for each A ∈M. Show that µ is also a measure.

Exercise 7.5. Let (X,M, µ) be a measure space and ρ : X → [0,∞] be a measur-
able function. For A ∈M, set ν(A) :=

R
A
ρdµ.

(1) Show ν :M→ [0,∞] is a measure.
(2) Let f : X → [0,∞] be a measurable function, show

(7.29)
Z
X

fdν =

Z
X

fρdµ.

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.
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(3) Show that f ∈ L1(ν) iff fρ ∈ L1(µ) and if f ∈ L1(ν) then Eq. (7.29) still
holds.

Notation 7.61. It is customary to informally describe ν defined in Exercise 7.5
by writing dν = ρdµ.

Exercise 7.6. Let (X,M, µ) be a measure space, (Y,F) be a measurable space
and f : X → Y be a measurable map. Define a function ν : F → [0,∞] by
ν(A) := µ(f−1(A)) for all A ∈ F .

(1) Show ν is a measure. (We will write ν = f∗µ or ν = µ ◦ f−1.)
(2) Show

(7.30)
Z
Y

gdν =

Z
X

(g ◦ f) dµ

for all measurable functions g : Y → [0,∞]. Hint: see the hint from
Exercise 7.5.

(3) Show g ∈ L1(ν) iff g◦f ∈ L1(µ) and that Eq. (7.30) holds for all g ∈ L1(ν).

Exercise 7.7. Let F : R → R be a C1-function such that F 0(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the implicit function theorem that F−1 is a
C1 — function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
¡
F−1

¢−1
(A)) =

¡
F−1∗ m

¢
(A)

for all A ∈ BR. Show dν = F 0dm. Use this result to prove the change of variable
formula,

(7.31)
Z
R
h ◦ F · F 0dm =

Z
R
hdm

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F 0dm on sets of the form A = (a, b] with a, b ∈ R

and a < b. Then use the uniqueness assertions in Theorem 7.8 to conclude dν =
F 0dm on all of BR. To prove Eq. (7.31) apply Exercise 7.6 with g = h ◦ F and
f = F−1.

Exercise 7.8. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞ µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 7.9 (Peano’s Existence Theorem). Suppose Z : R×Rd → Rd is a bounded
continuous function. Then for each T < ∞15 there exists a solution to the differ-
ential equation

(7.32) ẋ(t) = Z(t, x(t)) for 0 ≤ t ≤ T with x(0) = x0.

Do this by filling in the following outline for the proof.

15Using Corollary 10.12 below, we may in fact allow T =∞.
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(1) Given � > 0, show there exists a unique function x� ∈ C([−�,∞) → Rd)
such that x�(t) ≡ x0 for −� ≤ t ≤ 0 and

(7.33) x�(t) = x0 +

Z t

0

Z(τ, x�(τ − �))dτ for all t ≥ 0.
HereZ t

0

Z(τ, x�(τ − �))dτ =

µZ t

0

Z1(τ, x�(τ − �))dτ, . . . ,

Z t

0

Zd(τ, x�(τ − �))dτ

¶
where Z = (Z1, . . . , Zd) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t ∈ [0, �], it follows from Eq. (7.33) that

x�(t) = x0 +

Z t

0

Z(τ, x0)dτ.

Now that x�(t) is known for t ∈ [−�, �] it can be found by integration for
t ∈ [−�, 2�]. The process can be repeated.

(2) Then use Exercise 3.39 to show there exists {�k}∞k=1 ⊂ (0,∞) such that
limk→∞ �k = 0 and x�k converges to some x ∈ C([0, T ]) (relative to the
sup-norm: kxk∞ = supt∈[0,T ] |x(t)|) as k →∞.

(3) Pass to the limit in Eq. (7.33) with � replaced by �k to show x satisfies

x(t) = x0 +

Z t

0

Z(τ, x(τ))dτ ∀ t ∈ [0, T ].
(4) Conclude from this that ẋ(t) exists for t ∈ (0, T ) and that x solves Eq.

(7.32).
(5) Apply what you have just prove to the ODE,

ẏ(t) = −Z(−t, y(t)) for 0 ≤ t ≤ T with x(0) = x0.

Then extend x(t) above to [−T, T ] by setting x(t) = y(−t) if t ∈ [−T, 0].
Show x so defined solves Eq. (7.32) for t ∈ (−T, T ).

Exercise 7.10. Folland 2.12 on p. 52.

Exercise 7.11. Folland 2.13 on p. 52.

Exercise 7.12. Folland 2.14 on p. 52.

Exercise 7.13. Give examples of measurable functions {fn} on R such that fn
decreases to 0 uniformly yet

R
fndm = ∞ for all n. Also give an example of a

sequence of measurable functions {gn} on [0, 1] such that gn → 0 while
R
gndm = 1

for all n.

Exercise 7.14. Folland 2.19 on p. 59.

Exercise 7.15. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.
P∞

n=−∞ |an| <
∞), then f(θ) :=

P∞
n=−∞ ane

inθ is a continuous function for θ ∈ R and

an =
1

2π

Z π

−π
f(θ)e−inθdθ.

Exercise 7.16. Folland 2.26 on p. 59.

Exercise 7.17. Folland 2.28 on p. 59.

Exercise 7.18. Folland 2.31b on p. 60.
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8. Fubini’s Theorem

This next example gives a “real world” example of the fact that it is not always
possible to interchange order of integration.

Example 8.1. ConsiderZ 1

0

dy

Z ∞
1

dx(e−xy − 2e−2xy) =
Z 1

0

dy

½
e−y

−y − 2
e−2xy

−2y
¾¯̄̄̄∞

x=1

=

Z 1

0

dy

·
e−y − e−2y

y

¸
=

Z 1

0

dy e−y
µ
1− e−y

y

¶
∈ (0,∞).

Note well that
³
1−e−y

y

´
has not singularity at 0. On the other handZ ∞

1

dx

Z 1

0

dy(e−xy − 2e−2xy) =
Z ∞
1

dx

½
e−xy

−x − 2
e−2xy

−2x
¾¯̄̄̄1

y=0

=

Z ∞
1

dx

½
e−2x − e−x

x

¾
= −

Z ∞
1

e−x
·
1− e−x

x

¸
dx ∈ (−∞, 0).

Moral
R
dx
R
dy f(x, y) 6= R dy R dx f(x, y) is not always true.

In the remainder of this section we will let (X,M, µ) and (Y,N , ν) be fixed
measure spaces. Our main goals are to show:

(1) There exists a unique measure µ⊗ ν onM⊗N such that µ⊗ ν(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N and

(2) For all f : X × Y → [0,∞] which areM⊗N — measurable,Z
X×Y

f d (µ⊗ ν) =

Z
X

dµ(x)

Z
Y

dν(y)f(x, y)

=

Z
Y

dν(y)

Z
X

dµ(x)f(x, y).

Before proving such assertions, we will need a few more technical measure
theoretic arguments which are of independent interest.

8.1. Measure Theoretic Arguments.

Definition 8.2. Let C ⊂ P(X) be a collection of sets. We say:
(1) C is a monotone class if it is closed under countable increasing unions

and countable decreasing intersections,
(2) C is a π — class if it is closed under finite intersections and
(3) C is a λ—class if C satisfies the following properties:

(a) X ∈ C
(b) If A,B ∈ C and A ∩ B = ∅, then A ∪ B ∈ C. (Closed under disjoint

unions.)
(c) If A,B ∈ C and A ⊃ B, then A \ B ∈ C. (Closed under proper

differences.)
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(d) If An ∈ C and An ↑ A, then A ∈ C. (Closed under countable increasing
unions.)

(4) We will say C is a λ0 — class if C satisfies conditions a) — c) but not necessarily
d).

Remark 8.3. Notice that every λ — class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 8.7 where
he/she should then only read the second proof.)

Lemma 8.4 (Monotone Class Theorem). Suppose A ⊂ P(X) is an algebra and C
is the smallest monotone class containing A. Then C = σ(A).
Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},
then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bc

n ↓ Bc

and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bc

n ↓ C ∩Bc and

C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C∩B,C∩Bc, B∩Cc ∈ C, i.e. B ∈ C(C).
This shows that C(C) is closed under increasing limits and a similar argument shows
that C(C) is closed under decreasing limits. Thus we have shown that C(C) is a
monotone class for all C ∈ C.
If A ∈ A ⊂ C, then A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence

it follows that A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing
A and C(A) is a monotone class containing A, we conclude that C(A) = C for any
A ∈ A.
Let B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and

the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone class we
conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then A ∈ C = C(B)
and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under complements (since
X ∈ A ⊂ C) and finite intersections and increasing unions from which it easily
follows that C is a σ — algebra.
Let E ⊂ P(X × Y ) be given by

E =M×N = {A×B : A ∈M, B ∈ N}
and recall from Exercise 6.2 that E is an elementary family. Hence the algebra
A = A(E) generated by E consists of sets which may be written as disjoint unions
of sets from E .
Theorem 8.5 (Uniqueness). Suppose that E ⊂ P(X) is an elementary class and
M = σ(E) (the σ — algebra generated by E). If µ and ν are two measures on M
which are σ — finite on E and such that µ = ν on E then µ = ν onM.

Proof. Let A := A(E) be the algebra generated by E . Since every element of A
is a disjoint union of elements from E , it is clear that µ = ν on A. Henceforth we
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may assume that E = A.We begin first with the special case where µ(X) <∞ and
hence ν(X) = µ(X) <∞. Let

C = {A ∈M : µ(A) = ν(A)}
The reader may easily check that C is a monotone class. Since A ⊂ C, the monotone
class lemma asserts thatM = σ(A) ⊂ C ⊂M showing that C =M and hence that
µ = ν onM.
For the σ — finite case, let Xn ∈ A be sets such that µ(Xn) = ν(Xn) < ∞ and

Xn ↑ X as n→∞. For n ∈ N, let
(8.1) µn(A) := µ(A ∩Xn) and νn(A) = ν(A ∩Xn)

for all A ∈ M. Then one easily checks that µn and νn are finite measure on M
such that µn = νn on A. Therefore, by what we have just proved, µn = νn onM.
Hence or all A ∈M, using the continuity of measures,

µ(A) = lim
n→∞µ(A ∩Xn) = lim

n→∞ ν(A ∩Xn) = ν(A).

Lemma 8.6. If D is a λ0 — class which contains a π-class, C, then D contains
A (C) — the algebra generated by C.
Proof. We will give two proofs of this lemma. The first proof is “constructive”

and makes use of Proposition 6.9 which tells how to construct A(C) from C. The
key to the first proof is the following claim which will be proved by induction.
Claim. Let C̃0 = C and C̃n denote the collection of subsets of X of the form

(8.2) Ac
1 ∩ · · · ∩Ac

n ∩B = B \A1 \A2 \ · · · \An.

with Ai ∈ C and B ∈ C ∪ {X} . Then C̃n ⊂ D for all n, i.e. C̃ := ∪∞n=0C̃n ⊂ D.
By assumption C̃0 ⊂ D and when n = 1,

B \A1 = B \ (A1 ∩B) ∈ D
when A1, B ∈ C ⊂ D since A1 ∩ B ∈ C ⊂ D. Therefore, C̃1 ⊂ D. For the induction
step, let B ∈ C ∪ {X} and Ai ∈ C ∪ {X} and let En denote the set in Eq. (8.2) We
now assume C̃n ⊂ D and wish to show En+1 ∈ D, where

En+1 = En \An+1 = En \ (An+1 ∩En).

Because
An+1 ∩En = Ac

1 ∩ · · · ∩Ac
n ∩ (B ∩An+1) ∈ C̃n ⊂ D

and (An+1 ∩ En) ⊂ En ∈ C̃n ⊂ D, we have En+1 ∈ D as well. This finishes the
proof of the claim.
Notice that C̃ is still a multiplicative class and from Proposition 6.9 (using the

fact that C is a multiplicative class), A(C) consists of finite unions of elements from
C̃. By applying the claim to C̃, Ac

1 ∩ · · · ∩Ac
n ∈ D for all Ai ∈ C̃ and hence

A1 ∪ · · · ∪An = (A
c
1 ∩ · · · ∩Ac

n)
c ∈ D.

Thus we have shown A(C) ⊂ D which completes the proof.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest λ0 — class containing C for if not just replace D by the intersection of all
λ0 — classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.
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Then C ⊂ D1 and D1 is also a λ0—class as we now check. a) X ∈ D1. b) If A,B ∈ D1
with A ∩ B = ∅, then (A ∪ B) ∩ C = (A ∩ C)` (B ∩ C) ∈ D for all C ∈ C. c) If
A,B ∈ D1 with B ⊂ A, then (A \B)∩C = A∩C \ (B∩C) ∈ D for all C ∈ C. Since
C ⊂ D1 ⊂ D and D is the smallest λ0 — class containing C it follows that D1 = D.
From this we conclude that if A ∈ D and B ∈ C then A ∩B ∈ D.
Let

D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.
ThenD2 is a λ0—class (as you should check) which, by the above paragraph, contains
C. As above this implies that D = D2, i.e. we have shown that D is closed under
finite intersections. Since λ0 — classes are closed under complementation, D is an
algebra and hence A (C) ⊂ D. In fact D = A(C).
This Lemma along with the monotone class theorem immediately implies

Dynkin’s very useful “π — λ theorem.”

Theorem 8.7 (π — λ Theorem). If D is a λ class which contains a contains a
π-class, C, then σ(C) ⊂ D.
Proof. Since D is a λ0 — class, Lemma 8.6 implies that A(C) ⊂ D and so by

Remark 8.3 and Lemma 8.4, σ(C) ⊂ D. Let us pause to give a second stand-alone
proof of this Theorem.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest λ — class containing C for if not just replace D by the intersection of all λ
— classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.
Then C ⊂ D1 and D1 is also a λ—class because as we now check. a) X ∈ D1. b)
If A,B ∈ D1 with A ∩ B = ∅, then (A ∪ B) ∩ C = (A ∩ C)` (B ∩ C) ∈ D for all
C ∈ C. c) If A,B ∈ D1 with B ⊂ A, then (A \B) ∩ C = A ∩ C \ (B ∩ C) ∈ D for
all C ∈ C. d) If An ∈ D1 and An ↑ A as n → ∞, then An ∩ C ∈ D for all C ∈ D
and hence An ∩ C ↑ A ∩ C ∈ D. Since C ⊂ D1 ⊂ D and D is the smallest λ — class
containing C it follows that D1 = D. From this we conclude that if A ∈ D and
B ∈ C then A ∩B ∈ D.
Let

D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.
Then D2 is a λ—class (as you should check) which, by the above paragraph, contains
C. As above this implies that D = D2, i.e. we have shown that D is closed under
finite intersections.
Since λ — classes are closed under complementation, D is an algebra which is

closed under increasing unions and hence is closed under arbitrary countable unions,
i.e. D is a σ — algebra. Since C ⊂ D we must have σ(C) ⊂ D and in fact σ(C) = D.

Using this theorem we may strengthen Theorem 8.5 to the following.

Theorem 8.8 (Uniqueness). Suppose that C ⊂ P(X) is a π — class such that
M = σ(C). If µ and ν are two measures on M and there exists Xn ∈ C such that
Xn ↑ X and µ(Xn) = ν(Xn) <∞ for each n, then µ = ν onM.

Proof. As in the proof of Theorem 8.5, it suffices to consider the case where µ
and ν are finite measure such that µ(X) = ν(X) <∞. In this case the reader may
easily verify from the basic properties of measures that

D = {A ∈M : µ(A) = ν(A)}
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is a λ — class. By assumption C ⊂ D and hence by the π— λ theorem, D contains
M = σ(C).
As an immediate consequence we have the following corollaries.

Corollary 8.9. Suppose that (X, τ) is a topological space, BX = σ(τ) is the Borel
σ — algebra on X and µ and ν are two measures on BX which are σ — finite on τ.
If µ = ν on τ then µ = ν on BX , i.e. µ ≡ ν.

Corollary 8.10. Suppose that µ and ν are two measures on BRn which are finite
on bounded sets and such that µ(A) = ν(A) for all sets A of the form

A = (a, b] = (a1, b1]× · · · × (an, bn]
with a, b ∈ Rn and a ≤ b, i.e. ai ≤ bi for all i. Then µ = ν on BRn .
To end this section we wish to reformulate the π — λ theorem in a function

theoretic setting.

Definition 8.11 (Bounded Convergence). Let X be a set. We say that a se-
quence of functions fn from X to R or C converges boundedly to a function f if
limn→∞ fn(x) = f(x) for all x ∈ X and

sup{|fn(x)| : x ∈ X and n = 1, 2, . . .} <∞.

Theorem 8.12. Let X be a set and H be a subspace of B(X,R) — the space of
bounded real valued functions on X. Assume:

(1) 1 ∈ H, i.e. the constant functions are in H and
(2) H is closed under bounded convergence, i.e. if {fn}∞n=1 ⊂ H and fn → f

boundedly then f ∈ H.
If C ⊂ P(X) is a multiplicative class such that 1A ∈ H for all A ∈ C, then H

contains all bounded σ(C) — measurable functions.
Proof. Let D := {A ⊂ X : 1A ∈ H}. Then by assumption C ⊂ D and since

1 ∈ H we know X ∈ D. If A,B ∈ D are disjoint then 1A∪B = 1A + 1B ∈ H so
that A ∪ B ∈ D and if A,B ∈ D and A ⊂ B, then 1B\A = 1B − 1A ∈ H. Finally
if An ∈ D and An ↑ A as n → ∞ then 1An → 1A boundedly so 1A ∈ H and
hence A ∈ D. So D is λ — class containing C and hence D contains σ(C). From this
it follows that H contains 1A for all A ∈ σ(C) and hence all σ(C) — measurable
simple functions by linearity. The proof is now complete with an application of
the approximation Theorem 7.12 along with the assumption that H is closed under
bounded convergence.

Corollary 8.13. Suppose that (X,d) is a metric space and BX = σ(τd) is the
Borel σ — algebra on X and H is a subspace of B(X,R) such that BC(X,R) ⊂ H
(BC(X,R) — the bounded continuous functions on X) and H is closed under
bounded convergence. Then H contains all bounded BX — measurable real val-
ued functions on X. (This may be paraphrased as follows. The smallest vector
space of bounded functions which is closed under bounded convergence and contains
BC(X,R) is the space of bounded BX — measurable real valued functions on X.)

Proof. Let V ∈ τd be an open subset of X and for n ∈ N let
fn(x) := min(n · dV c(x), 1) for all x ∈ X.

Notice that fn = φn ◦ dV c where φn(t) = min(nt, 1) which is continuous and hence
fn ∈ BC(X,R) for all n. Furthermore, fn converges boundedly to 1V as n → ∞
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and therefore 1V ∈ H for all V ∈ τ. Since τ is a π — class the corollary follows by
an application of Theorem 8.12.
Here is a basic application of this corollary.

Proposition 8.14. Suppose that (X, d) is a metric space, µ and ν are two measures
on BX = σ(τd) which are finite on bounded measurable subsets of X and

(8.3)
Z
X

fdµ =

Z
X

fdν

for all f ∈ BCb(X,R) where

BCb(X,R) = {f ∈ BC(X,R) : supp(f) is bounded}.
Then µ ≡ ν.

Proof. To prove this fix a o ∈ X and let

ψR(x) = ([R+ 1− d(x, o)] ∧ 1) ∨ 0
so that ψR ∈ BCb(X, [0, 1]), supp(ψR) ⊂ B(o,R + 2) and ψR ↑ 1 as R → ∞. Let
HR denote the space of bounded measurable functions f such that

(8.4)
Z
X

ψRfdµ =

Z
X

ψRfdν.

Then HR is closed under bounded convergence and because of Eq. (8.3) contains
BC(X,R). Therefore by Corollary 8.13, HR contains all bounded measurable func-
tions on X. Take f = 1A in Eq. (8.4) with A ∈ BX , and then use the monotone
convergence theorem to let R→∞. The result is µ(A) = ν(A) for all A ∈ BX .
Corollary 8.15. Let (X,d) be a metric space, BX = σ(τd) be the Borel σ — algebra
and µ : BX → [0,∞] be a measure such that µ(K) < ∞ when K is a compact
subset of X. Assume further there exists compact sets Kk ⊂ X such that Ko

k ↑ X.
Suppose that H is a subspace of B(X,R) such that Cc(X,R) ⊂ H (Cc(X,R) is the
space of continuous functions with compact support) and H is closed under bounded
convergence. Then H contains all bounded BX — measurable real valued functions
on X.

Proof. Let k and n be positive integers and set ψn,k(x) = min(1, n · d(Ko
k)

c(x)).

Then ψn,k ∈ Cc(X,R) and {ψn,k 6= 0} ⊂ Ko
k . Let Hn,k denote those bounded

BX — measurable functions, f : X → R, such that ψn,kf ∈ H. It is easily seen
that Hn,k is closed under bounded convergence and that Hn,k contains BC(X,R)
and therefore by Corollary 8.13, ψn,kf ∈ H for all bounded measurable functions
f : X → R. Since ψn,kf → 1Ko

k
f boundedly as n → ∞, 1Ko

k
f ∈ H for all k and

similarly 1Ko
k
f → f boundedly as k →∞ and therefore f ∈ H.

Here is another version of Proposition 8.14.

Proposition 8.16. Suppose that (X, d) is a metric space, µ and ν are two measures
on BX = σ(τd) which are both finite on compact sets. Further assume there exists
compact sets Kk ⊂ X such that Ko

k ↑ X. If

(8.5)
Z
X

fdµ =

Z
X

fdν

for all f ∈ Cc(X,R) then µ ≡ ν.
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Proof. Let ψn,k be defined as in the proof of Corollary 8.15 and let Hn,k denote
those bounded BX — measurable functions, f : X → R such thatZ

X

fψn,kdµ =

Z
X

fψn,kdν.

By assumption BC(X,R) ⊂ Hn,k and one easily checks that Hn,k is closed under
bounded convergence. Therefore, by Corollary 8.13, Hn,k contains all bounded
measurable function. In particular for A ∈ BX ,Z

X

1A ψn,kdµ =

Z
X

1A ψn,kdν.

Letting n → ∞ in this equation, using the dominated convergence theorem, one
shows Z

X

1A 1Ko
k
dµ =

Z
X

1A 1Ko
k
dν

holds for k. Finally using the monotone convergence theorem we may let k → ∞
to conclude

µ(A) =

Z
X

1A dµ =

Z
X

1A dν = ν(A)

for all A ∈ BX .
8.2. Fubini-Tonelli’s Theorem and Product Measure. Recall that (X,M, µ)
and (Y,N , ν) are fixed measure spaces.

Notation 8.17. Suppose that f : X → C and g : Y → C are functions, let f ⊗ g
denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f ⊗ g is (M⊗N ,BC) — measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F · G will
be measurable provided that F and G are measurable. Now F = f ◦ π1 where
π1 : X × Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

Theorem 8.18. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces and
f is a nonnegative (M⊗N ,BR) — measurable function, then for each y ∈ Y,

(8.6) x→ f(x, y) isM — B[0,∞] measurable,
for each x ∈ X,

(8.7) y → f(x, y) is N — B[0,∞] measurable,

x→
Z
Y

f(x, y)dν(y) isM — B[0,∞] measurable,(8.8)

y →
Z
X

f(x, y)dµ(x) is N — B[0,∞] measurable,(8.9)

and

(8.10)
Z
X

dµ(x)

Z
Y

dν(y)f(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y).
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Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (8.6) and (8.7) hold. MoreoverZ
Y

f(x, y)dν(y) =

Z
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (8.8) holds and we have

(8.11)
Z
X

dµ(x)

Z
Y

dν(y)f(x, y) = ν(B)µ(A).

Similarly, Z
X

f(x, y)dµ(x) = µ(A)1B(y) andZ
Y

dν(y)

Z
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (8.9) and (8.10) hold in this case as well.
For the moment let us further assume that µ(X) <∞ and ν(Y ) <∞ and let H

be the collection of all bounded (M⊗N ,BR) — measurable functions on X×Y such
that Eqs. (8.6) — (8.10) hold. Using the fact that measurable functions are closed
under pointwise limits and the dominated convergence theorem (the dominating
function always being a constant), one easily shows that H closed under bounded
convergence. Since we have just verified that 1E ∈ H for all E in the π — class, E ,
it follows that H is the space of all bounded (M⊗N ,BR) — measurable functions
on X × Y. Finally if f : X × Y → [0,∞] is a (M⊗N ,BR̄) — measurable function,
let fM = M ∧ f so that fM ↑ f as M → ∞ and Eqs. (8.6) — (8.10) hold with f
replaced by fM for all M ∈ N. Repeated use of the monotone convergence theorem
allows us to pass to the limit M →∞ in these equations to deduce the theorem in
the case µ and ν are finite measures.
For the σ — finite case, choose Xn ∈ M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,

µ(Xn) <∞ and ν(Yn) <∞ for all m,n ∈ N. Then define µm(A) = µ(Xm ∩A) and
νn(B) = ν(Yn ∩ B) for all A ∈M and B ∈ N or equivalently dµm = 1Xmdµ and
dνn = 1Yndν. By what we have just proved Eqs. (8.6) — (8.10) with µ replaced by
µm and ν by νn for all (M⊗N ,BR̄) — measurable functions, f : X × Y → [0,∞].
The validity of Eqs. (8.6) — (8.10) then follows by passing to the limits m → ∞
and then n→∞ using the monotone convergence theorem again to concludeZ

X

fdµm =

Z
X

f1Xmdµ ↑
Z
X

fdµ as m→∞

and Z
Y

gdµn =

Z
Y

g1Yndµ ↑
Z
Y

gdµ as n→∞
for all f ∈ L+(X,M) and g ∈ L+(Y,N ).
Corollary 8.19. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces.
Then there exists a unique measure π onM⊗N such that π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N . Moreover π is given by

(8.12) π(E) =

Z
X

dµ(x)

Z
Y

dν(y)1E(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)1E(x, y)
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for all E ∈M⊗N and π is σ — finite.

Notation 8.20. The measure π is called the product measure of µ and ν and will
be denoted by µ⊗ ν.

Proof. Notice that any measure π such that π(A×B) = µ(A)ν(B) for all A ∈M
and B ∈ N is necessarily σ — finite. Indeed, let Xn ∈M and Yn ∈ N be chosen
so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y, then Xn × Yn ∈ M ⊗ N ,
Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n. The uniqueness assertion is
a consequence of either Theorem 8.5 or by Theorem 8.8 with E = M×N . For
the existence, it suffices to observe, using the monotone convergence theorem, that
π defined in Eq. (8.12) is a measure on M ⊗ N . Moreover this measure satisfies
π(A×B) = µ(A)ν(B) for all A ∈M and B ∈ N from Eq. (8.11

Theorem 8.21 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ-finite
measure spaces and π = µ⊗ ν is the product measure on M⊗N . If f ∈ L+(X ×
Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈ L+(Y,N ) for all x ∈ X,Z

Y

f(·, y)dν(y) ∈ L+(X,M),

Z
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and Z
X×Y

f dπ =

Z
X

dµ(x)

Z
Y

dν(y)f(x, y)(8.13)

=

Z
Y

dν(y)

Z
X

dµ(x)f(x, y).(8.14)

Proof. By Theorem 8.18 and Corollary 8.19, the theorem holds when f = 1E
with E ∈ M ⊗ N . Using the linearity of all of the statements, the theorem is
also true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with Theorem 7.12, one deduces the theorem for general
f ∈ L+(X × Y,M⊗N ).
Theorem 8.22 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ-finite
measure spaces and π = µ⊗ν be the product measure onM⊗N . If f ∈ L1(π) then
for µ a.e. x, f(x, ·) ∈ L1(ν) and for ν a.e. y, f(·, y) ∈ L1(µ). Moreover,

g(x) =

Z
Y

f(x, y)dv(y) and h(y) =
Z
X

f(x, y)dµ(x)

are in L1(µ) and L1(ν) respectively and Eq. (8.14) holds.

Proof. If f ∈ L1(X × Y ) ∩ L+ then by Eq. (8.13),Z
X

µZ
Y

f(x, y)dν(y)

¶
dµ(x) <∞

so
R
Y
f(x, y)dν(y) <∞ for µ a.e. x, i.e. for µ a.e. x, f(x, ·) ∈ L1(ν). Similarly for

ν a.e. y, f(·, y) ∈ L1(µ). Let f be a real valued function in f ∈ L1(X ×Y ) and let
f = f+ − f−. Apply the results just proved to f± to conclude, f±(x, ·) ∈ L1(ν) for
µ a.e. x and that Z

Y

f±(·, y)dν(y) ∈ L1(µ).
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Therefore for µ a.e. .x,

f(x, ·) = f+(x, ·)− f−(x, ·) ∈ L1(ν)

and

x→
Z

f(x, y)dν(y) =

Z
f+(x, ·)dν(y)−

Z
f−(x, ·)dν(y)

is a µ — almost everywhere defined function such that
R
f(·, y)dν(y) ∈ L1(µ). Be-

cause Z
f±(x, y)d (µ⊗ ν) =

Z
dµ(x)

Z
dν(y)f±(x, y),Z

f d(µ⊗ ν) =

Z
f+d(µ⊗ ν)−

Z
f−d(µ⊗ ν)

=

Z
dµ

Z
dνf+ −

Z
dµ

Z
dνf−

=

Z
dµ

µZ
f+dν −

Z
f−dν

¶
=

Z
dµ

Z
dν(f+ − f−) =

Z
dµ

Z
dνf.

The proof that Z
f d(µ⊗ ν) =

Z
dν(y)

Z
dµ(x)f(x, y)

is analogous. As usual the complex case follows by applying the real results just
proved to the real and imaginary parts of f.

Notation 8.23. Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.
Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.
If f : X ×Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that fx : Y → C
and fy : X → C.

Theorem 8.24. Suppose (X,M, µ) and (Y,N , ν) are complete σ-finite measure
spaces. Let (X × Y,L, λ) be the completion of (X × Y,M ⊗ N , µ ⊗ ν). If f is
L-measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N -measurable for µ a.e.
x and fy isM-measurable for ν a.e. y and in case (b) fx ∈ L1(ν) and fy ∈ L1(µ)
for µ a.e. x and ν a.e. y respectively. Moreover,

x→
Z

fxdν and y →
Z

fydµ

are measurable and Z
fdλ =

Z
dν

Z
dµf =

Z
dµ

Z
dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set ((µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =

Z
X

ν(xE)dµ(x) =

Z
X

µ(Ey)dν(y).



ANALYSIS TOOLS WITH APPLICATIONS 139

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,
i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y.
If h is L measurable and h = 0 for λ- a.e., then there exists E ∈ M ⊗ N 3

{(x, y) : h(x, y) 6= 0} ⊂ E and (µ ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and
(µ⊗ ν)(E) = 0. Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and

{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

for ν a.e. y,
Z

h(x, y)dν(y) exists and equals 0

and

for µ a.e. x,
Z

h(x, y)dµ(y) exists and equals 0.

Therefore

0 =

Z
hdλ =

Z µZ
hdµ

¶
dν =

Z µZ
hdν

¶
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M⊗N , µ⊗ ν) such that f(x, y) =
g(x, y) for λ− a.e. (x, y). Define h ≡ f − g. Then h = 0, λ− a.e. Hence by what
we have just proved and Theorem 8.21 f = g + h has the following properties:

(1) For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) andZ
f(x, y)dν(y) =

Z
g(x, y)dν(y).

(2) For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) andZ
f(x, y)dµ(x) =

Z
g(x, y)dµ(x).

From these assertions and Theorem 8.21, it follows thatZ
dµ(x)

Z
dν(y)f(x, y) =

Z
dµ(x)

Z
dν(y)g(x, y)

=

Z
dν(y)

Z
dν(x)g(x, y)

=

Z
g(x, y)d(µ⊗ ν)(x, y)

=

Z
f(x, y)dλ(x, y)

and similarly we showsZ
dν(y)

Z
dµ(x)f(x, y) =

Z
f(x, y)dλ(x, y).

The previous theorems have obvious generalizations to products of any finite
number of σ — compact measure spaces. For example the following theorem holds.
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Theorem 8.25. Suppose {(Xi,Mi, µi)}ni=1 are σ — finite measure spaces and X :=
X1×· · ·×Xn. Then there exists a unique measure, π, on (X,M1 ⊗ · · ·⊗Mn) such
that π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi. (This measure and its
completion will be denote by µ1 ⊗ · · · ⊗ µn.) If f : X → [0,∞] is a measurable
function then Z

X

fdπ =
nY
i=1

Z
Xσ(i)

dµσ(i)(xσ(i)) f(x1, . . . , xn)

where σ is any permutation of {1, 2, . . . , n}. This equation also holds for any f ∈
L1(X,π) and moreover, f ∈ L1(X,π) iff

nY
i=1

Z
Xσ(i)

dµσ(i)(xσ(i)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutation, σ.

This theorem can be proved by the same methods as in the two factor case.
Alternatively, one can use induction on n, see Exercise 8.6.

Example 8.26. We have

(8.15)
Z ∞
0

sinx

x
e−Λxdx =

1

2
π − arctanΛ for all Λ > 0

and forΛ,M ∈ [0,∞),

(8.16)

¯̄̄̄
¯
Z M

0

sinx

x
e−Λxdx− 1

2
π + arctanΛ

¯̄̄̄
¯ ≤ C

e−MΛ

M

where C = maxx≥0 1+x
1+x2 =

1
2
√
2−2
∼= 1.2. In particular,

(8.17) lim
M→∞

Z M

0

sinx

x
dx = π/2.

To verify these assertions, first notice that by the fundamental theorem of cal-
culus,

|sinx| =
¯̄̄̄Z x

0

cos ydy

¯̄̄̄
≤
¯̄̄̄Z x

0

|cos y| dy
¯̄̄̄
≤
¯̄̄̄Z x

0

1dy

¯̄̄̄
= |x|

so
¯̄
sin x
x

¯̄ ≤ 1 for all x 6= 0. Making use of the identity
Z ∞
0

e−txdt = 1/x
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and Fubini’s theorem,Z M

0

sinx

x
e−Λxdx =

Z M

0

dx sinx e−Λx
Z ∞
0

e−txdt

=

Z ∞
0

dt

Z M

0

dx sinx e−(Λ+t)x

=

Z ∞
0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)
2
+ 1

dt

=

Z ∞
0

1

(Λ+ t)
2
+ 1

dt−
Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)
2
+ 1

e−M(Λ+t)dt

=
1

2
π − arctanΛ− �(M,Λ)(8.18)

where

�(M,Λ) =

Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)2 + 1
e−M(Λ+t)dt.

Since ¯̄̄̄
¯cosM + (Λ+ t) sinM

(Λ+ t)
2
+ 1

¯̄̄̄
¯ ≤ 1 + (Λ+ t)

(Λ+ t)
2
+ 1
≤ C,

|�(M,Λ)| ≤
Z ∞
0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (8.18) proves Eq. (8.16) from which Eq. (8.17)
follows by taking Λ→∞ and Eq. (8.15) follows (using the dominated convergence
theorem again) by letting M →∞.

8.3. Lebesgue measure on Rd.
Notation 8.27. Let

md :=

d timesz }| {
m⊗ · · ·⊗m on BRd =

d timesz }| {
BR ⊗ · · ·⊗ BR

be the d — fold product of Lebesgue measurem on BR.We will also usemd to denote
its completion and let Ld be the completion of BRd relative to m. A subset A ∈ Ld
is called a Lebesgue measurable set and md is called d — dimensional Lebesgue
measure, or just Lebesgue measure for short.

Definition 8.28. A function f : Rd → R is Lebesgue measurable if f−1(BR) ⊂
Ld.
Theorem 8.29. Lebesgue measure md is translation invariant. Moreover md is
the unique translation invariant measure on BRd such that md((0, 1]d) = 1.

Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then
x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that
md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x + A) = md(A) for all A ∈ BRd by Corollary 8.10. From this fact
we see that the measure md(x + ·) and md(·) have the same null sets. Using this
it is easily seen that m(x + A) = m(A) for all A ∈ Ld. The proof of the second
assertion is Exercise 8.7.
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Notation 8.30. I will often be sloppy in the sequel and write m for md and dx
for dm(x) = dmd(x). Hopefully the reader will understand the meaning from the
context.

The following change of variable theorem is an important tool in using Lebesgue
measure.

Theorem 8.31 (Change of Variables Theorem). Let Ω ⊂o Rd be an open set and
T : Ω → T (Ω) ⊂o Rd be a C1 — diffeomorphism16. Then for any Borel measurable
function, f : T (Ω)→ [0,∞],

(8.19)
Z
Ω

f ◦ T |detT 0|dm =

Z
T (Ω)

f dm,

where T 0(x) is the linear transformation on Rd defined by T 0(x)v := d
dt |0T (x+ tv).

Alternatively, the ij — matrix entry of T 0(x) is given by T 0(x)ij = ∂Tj(x)/∂xi where
T (x) = (T1(x), . . . , Td(x)).

We will postpone the full proof of this theorem until Section 27. However we will
give here the proof in the case that T is linear. The following elementary remark
will be used in the proof.

Remark 8.32. Suppose that

Ω
T→ T (Ω)

S→ S(T (Ω))

are two C1 — diffeomorphisms and Theorem 8.31 holds for T and S separately, then
it holds for the composition S ◦ T. IndeedZ

Ω

f ◦ S ◦ T |det (S ◦ T )0 |dm =

Z
Ω

f ◦ S ◦ T |det (S0 ◦ T )T 0|dm

=

Z
Ω

(|detS0| f ◦ S) ◦ T |detT 0|dm

=

Z
T (Ω)

|detS0| f ◦ Sdm =

Z
S(T (Ω))

fdm.

Theorem 8.33. Suppose T ∈ GL(d,R) = GL(Rd) — the space of d × d invertible
matrices.

(1) If f : Rd → R is Borel — measurable then so is f ◦T and if f ≥ 0 or f ∈ L1

then

(8.20)
Z
Rd

f(y)dy = |detT |
Z
Rd

f ◦ T (x)dx.

(2) If E ∈ Ld then T (E) ∈ Ld and m(T (E)) = |detT |m(E).
Proof. Since f is Borel measurable and T : Rd → Rd is continuous and hence

Borel measurable, f ◦ T is also Borel measurable. We now break the proof of Eq.
(8.20) into a number of cases. In each case we make use Tonelli’s theorem and the
basic properties of one dimensional Lebesgue measure.

16That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the inverse map
T−1 : T (Ω)→ Ω is also continuously differentiable.
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(1) Suppose that i < k and

T (x1, x2 . . . , xd) = (x1, . . . , xi−1, xk, xi+1 . . . , xk−1, xi, xk+1, . . . xd)

then by Tonelli’s theorem,Z
Rd

f ◦ T (x1, . . . , xd) =
Z
Rd

f(x1, . . . , xk, . . . xi, . . . xd)dx1 . . . dxd

=

Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

which prove Eq. (8.20) in this case since |detT | = 1.
(2) Suppose that c ∈ R and T (x1, . . . xk, . . . , xd) = (x1, . . . , cxk, . . . xd), thenZ

Rd
f ◦ T (x1, . . . , xd)dm =

Z
Rd

f(x1, . . . , cxk, . . . , xd)dx1 . . . dxk . . . dxd

= |c|−1
Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

= |detT |−1
Z
Rd

f dm

which again proves Eq. (8.20) in this case.
(3) Suppose that

T (x1, x2 . . . , xd) = (x1, . . . ,
i’th spot
xi + cxk, . . . xk, . . . xd).

ThenZ
Rd

f ◦ T (x1, . . . , xd)dm =

Z
Rd

f(x1, . . . , xi + cxk, . . . xk, . . . xd)dx1 . . . dxi . . . dxk . . . dxd

=

Z
Rd

f(x1, . . . , xi, . . . xk, . . . xd)dx1 . . . dxi . . . dxk . . . dxd

=

Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

where in the second inequality we did the xi integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (8.20) in this
case since det(T ) = 1.

Since every invertible matrix is a product of matrices of the type occurring in
steps 1. — 3. above, it follows by Remark 8.32 that Eq. (8.20) holds in general. For
the second assertion, let E ∈ BRd and take f = 1E in Eq. (8.20) to find

|detT |m(T−1(E)) = |detT |
Z
Rd
1T−1(E)dm = |detT |

Z
Rd
1E◦Tdm =

Z
Rd
1Edm = m(E).

Replacing T by T−1 in this equation shows that

m(T (E)) = |detT |m(E)
for all E ∈ BRd . In particular this shows that m ◦ T and m have the same null sets
and therefore the completion of BRd is Ld for both measures. Using Proposition
7.6 one now easily shows

m(T (E)) = |detT |m(E) ∀ E ∈ Ld.
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8.4. Polar Coordinates and Surface Measure. Let

Sd−1 = {x ∈ Rd : |x|2 :=
dX
i=1

x2i = 1}

be the unit sphere in Rd. Let Φ : Rd \ (0)→ (0,∞)× Sd−1 and Φ−1 be the inverse
map given by

(8.21) Φ(x) := (|x| , x

|x| ) and Φ
−1(r, ω) = rω

respectively. Since Φ and Φ−1 are continuous, they are Borel measurable.
Consider the measure Φ∗m on B(0,∞) ⊗ BSd−1 given by

Φ∗m(A) := m
¡
Φ−1(A)

¢
for all A ∈ B(0,∞) ⊗ BSd−1 . For E ∈ BSd−1 and a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]×E) ∈ BRd .
Noting that Ea = aE1, we have for 0 < a < b, E ∈ BSd−1 , E and A = (a, b] × E
that

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E}(8.22)

= bE1 \ aE1.(8.23)

Therefore,

(Φ∗m) ((a, b]×E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1)

= d ·m(E1)
Z b

a

rd−1dr.(8.24)

Let ρ denote the unique measure on B(0,∞) such that

(8.25) ρ(J) =

Z
J

rd−1dr

for all J ∈ B(0,∞), i.e. dρ(r) = rd−1dr.

Definition 8.34. For E ∈ BSd−1 , let σ(E) := d · m(E1). We call σ the surface
measure on S.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]×E) ∈ BRd so that m(E1) is well defined. Moreover if E =

`∞
i=1Ei,

then E1 =
`∞

i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞X
i=1

m ((Ei)1) =
∞X
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and � > 0 is
a small number, then the volume of

(1, 1 + �] ·E = {rω : r ∈ (1, 1 + �] and ω ∈ E}
should be approximately given by m ((1, 1 + �] ·E) ∼= σ(E)�, see Figure 16 below.
On the other hand

m ((1, 1 + �]E) = m (E1+� \E1) =
©
(1 + �)d − 1ªm(E1).
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Figure 16. Motivating the definition of surface measure for a sphere.

Therefore we expect the area of E should be given by

σ(E) = lim
�↓0

©
(1 + �)d − 1ªm(E1)

�
= d ·m(E1).

According to these definitions and Eq. (8.24) we have shown that

(8.26) Φ∗m((a, b]×E) = ρ((a, b]) · σ(E).
Let

E = {(a, b]×E : 0 < a < b,E ∈ BSd−1} ,
then E is an elementary class. Since σ(E) = B(0,∞) ⊗ BSd−1 , we conclude from Eq.
(8.26) that

Φ∗m = ρ⊗ σ

and this implies the following theorem.

Theorem 8.35. If f : Rd → [0,∞] is a (BRd ,B)—measurable function then
(8.27)

Z
Rd

f(x)dm(x) =

Z
[0,∞)×Sd−1

f(r ω) dσ(ω)rd−1dr.

Let us now work out some integrals using Eq. (8.27).

Lemma 8.36. Let a > 0 and

Id(a) :=

Z
Rd

e−a|x|
2

dm(x).

Then Id(a) = (π/a)
d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =

Z
Rd−1×R

e−a|y|
2

e−at
2

md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a).(8.28)

So it suffices to compute:

I2(a) =

Z
R2

e−a|x|
2

dm(x) =

Z
R2\{0}

e−a(x
2
1+x

2
2)dx1dx2.
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We now make the change of variables,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In vector form this transform is

x = T (r, θ) =

µ
r cos θ
r sin θ

¶
and the differential and the Jacobian determinant are given by

T 0(r, θ) =
µ
cos θ −r sin θ
sin θ r cos θ

¶
and detT 0(r, θ) = r cos2 θ + r sin2 θ = r.

Notice that T : (0,∞) × (0, 2π) → R2 \ c where c is the ray, c := {(x, 0) : x ≥ 0}
which is a m2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function f : R2 → [0,∞] we haveZ

R2
f(x)dx =

Z 2π

0

Z ∞
0

f(r cos θ, r sin θ) rdrdθ.

In particular,

I2(a) =

Z ∞
0

dr r

Z 2π

0

dθ e−ar
2

= 2π

Z ∞
0

re−ar
2

dr

= 2π lim
M→∞

Z M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a
Z M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (8.28).

Corollary 8.37. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

(8.29) σ(Sd−1) =
2πd/2

Γ(d/2)

where Γ is the gamma function given by

(8.30) Γ(x) :=

Z ∞
0

ux−1e−udr

Moreover, Γ(1/2) =
√
π, Γ(1) = 1 and Γ(x+ 1) = xΓ(x) for x > 0.

Proof. We may alternatively compute Id(1) = πd/2 using Theorem 8.35;

Id(1) =

Z ∞
0

dr rd−1e−r
2

Z
Sd−1

dσ

= σ(Sd−1)
Z ∞
0

rd−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so that
r = u1/2 and dr = 1

2u
−1/2du. The result isZ ∞
0

rd−1e−r
2

dr =

Z ∞
0

u
d−1
2 e−u

1

2
u−1/2du

=
1

2

Z ∞
0

u
d
2−1e−udu

=
1

2
Γ(d/2).(8.31)
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Collecting these observations implies that

πd/2 = Id(1) =
1

2
σ(Sd−1)Γ(d/2)

which proves Eq. (8.29).
The computation of Γ(1) is easy and is left to the reader. By Eq. (8.31),

Γ(1/2) = 2

Z ∞
0

e−r
2

dr =

Z ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

The relation, Γ(x + 1) = xΓ(x) is the consequence of the following integration by
parts:

Γ(x+ 1) =

Z ∞
0

e−u ux+1
du

u
=

Z ∞
0

ux
µ
− d

du
e−u

¶
du

= x

Z ∞
0

ux−1 e−u du = x Γ(x).

8.5. Regularity of Measures.

Definition 8.38. Suppose that E is a collection of subsets of X, let Eσ denote
the collection of subsets of X which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of X which are finite or countable
intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ , etc.
Remark 8.39. Notice that if A is an algebra and C = ∪Ci and D = ∪Dj with
Ci,Dj ∈ Aσ, then

C ∩D = ∪i,j (Ci ∩Dj) ∈ Aσ

so that Aσ is closed under finite intersections.

The following theorem shows how recover a measure µ on σ(A) from its values
on an algebra A.
Theorem 8.40 (Regularity Theorem). Let A ⊂ P(X) be an algebra of sets,M =
σ(A) and µ :M → [0,∞] be a measure on M which is σ — finite on A. Then for
all A ∈M,

(8.32) µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} .
Moreover, if A ∈M and � > 0 are given, then there exists B ∈ Aσ such that A ⊂ B
and µ(B \A) ≤ �.

Proof. For A ⊂ X, define

µ∗(A) = inf {µ(B) : A ⊂ B ∈ Aσ} .
We are trying to show µ∗ = µ on M. We will begin by first assuming that µ is a
finite measure, i.e. µ(X) <∞.
Let

F = {B ∈M : µ∗ (B) = µ(B)} = {B ∈M : µ∗ (B) ≤ µ(B)}.
It is clear that A ⊂ F , so the finite case will be finished by showing F is a monotone
class. Suppose Bn ∈ F , Bn ↑ B as n→∞ and let � > 0 be given. Since µ∗(Bn) =
µ(Bn) there exists An ∈ Aσ such that Bn ⊂ An and µ(An) ≤ µ(Bn) + �2−n i.e.

µ(An \Bn) ≤ �2−n.
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Let A = ∪nAn ∈ Aσ, then B ⊂ A and

µ(A \B) = µ(∪n(An \B)) ≤
∞X
n=1

µ((An \B))

≤
∞X
n=1

µ((An \Bn)) ≤
∞X
n=1

�2−n = �.

Therefore,
µ∗(B) ≤ µ(A) ≤ µ(B) + �

and since � > 0 was arbitrary it follows that B ∈ F .
Now suppose that Bn ∈ F and Bn ↓ B as n→∞ so that

µ(Bn) ↓ µ(B) as n→∞.

As above choose An ∈ Aσ such that Bn ⊂ An and

0 ≤ µ(An)− µ(Bn) = µ(An \Bn) ≤ 2−n.
Combining the previous two equations shows that limn→∞ µ(An) = µ(B). Since
µ∗(B) ≤ µ(An) for all n, we conclude that µ∗(B) ≤ µ(B), i.e. that B ∈ F .
Since F is a monotone class containing the algebra A, the monotone class theo-

rem asserts that
M = σ(A) ⊂ F ⊂M

showing the F =M and hence that µ∗ = µ onM.
For the σ — finite case, let Xn ∈ A be sets such that µ(Xn) <∞ and Xn ↑ X as

n→∞. Let µn be the finite measure onM defined by µn(A) := µ(A ∩Xn) for all
A ∈M. Suppose that � > 0 and A ∈M are given. By what we have just proved,
for all A ∈M, there exists Bn ∈ Aσ such that A ⊂ Bn and

µ ((Bn ∩Xn) \ (A ∩Xn)) = µn(Bn \A) ≤ �2−n.

Notice that since Xn ∈ Aσ, Bn ∩Xn ∈ Aσ and

B := ∪∞n=1 (Bn ∩Xn) ∈ Aσ.

Moreover, A ⊂ B and

µ(B \A) ≤
∞X
n=1

µ((Bn ∩Xn) \A) ≤
∞X
n=1

µ((Bn ∩Xn) \ (A ∩Xn))

≤
∞X
n=1

�2−n = �.

Since this implies that
µ(A) ≤ µ(B) ≤ µ(A) + �

and � > 0 is arbitrary, this equation shows that Eq. (8.32) holds.

Corollary 8.41. Let A ⊂ P(X) be an algebra of sets, M = σ(A) and µ :M →
[0,∞] be a measure onM which is σ — finite on A. Then for all A ∈M and � > 0
there exists B ∈ Aδ such that B ⊂ A and

µ(A \B) < �.

Furthermore, for any B ∈ M there exists A ∈ Aδσ and C ∈ Aσδ such that A ⊂
B ⊂ C and µ(C \A) = 0.
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Proof. By Theorem 8.40, there exist C ∈ Aσ such that Ac ⊂ C and µ(C \Ac) ≤
�. Let B = Cc ⊂ A and notice that B ∈ Aδ and that C \Ac = Bc ∩A = A \B, so
that

µ(A \B) = µ(C \Ac) ≤ �.

Finally, given B ∈M, we may choose An ∈ Aδ and Cn ∈ Aσ such that An ⊂ B ⊂
Cn and µ(Cn\B) ≤ 1/n and µ(B\An) ≤ 1/n. By replacing AN by ∪Nn=1An and CN

by ∩Nn=1Cn, we may assume that An ↑ and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ

and C = ∩Cn ∈ Aσδ, then A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)

≤ 2/n→ 0 as n→∞.

Corollary 8.42. Let A ⊂ P(X) be an algebra of sets, M = σ(A) and µ :M →
[0,∞] be a measure on M which is σ — finite on A. Then for every B ∈M such
that µ(B) <∞ and � > 0 there exists D ∈ A such that µ(B4D) < �.

Proof. By Corollary 8.41, there exists C ∈ Aσ such B ⊂ C and µ(C \ B) < �.
Now write C = ∪∞n=1Cn with Cn ∈ A for each n. By replacing Cn by ∪nk=1Ck ∈ A
if necessary, we may assume that Cn ↑ C as n → ∞. Since Cn \ B ↑ C \ B and
B \ Cn ↓ B \ C = ∅ as n→∞ and µ(B \ C1) ≤ µ(B) <∞, we know that

lim
n→∞µ(Cn \B) = µ(C \B) < � and lim

n→∞µ(B \ Cn) = µ(B \ C) = 0
Hence for n sufficiently large,

µ(B4Cn) = (µ(Cn \B) + µ(B \ Cn) < �.

Hence we are done by taking D = Cn ∈ A for an n sufficiently large.

Remark 8.43. We have to assume that µ(B) <∞ as the following example shows.
Let X = R, M = B, µ = m, A be the algebra generated by half open intervals of
the form (a, b], and B = ∪∞n=1(2n, 2n+1]. It is easily checked that for every D ∈ A,
that m(B∆D) =∞.

For Exercises 8.1 — 8.3 let τ ⊂ P(X) be a topology, M = σ(τ) and µ : M →
[0,∞) be a finite measure, i.e. µ(X) <∞.

Exercise 8.1. Let

(8.33) F := {A ∈M : µ(A) = inf {µ(V ) : A ⊂ V ∈ τ}} .
(1) Show F may be described as the collection of set A ∈M such that for all

� > 0 there exists V ∈ τ such that A ⊂ V and µ(V \A) < �.
(2) Show F is a monotone class.

Exercise 8.2. Give an example of a topology τ on X = {1, 2} and a measure µ on
M = σ(τ) such that F defined in Eq. (8.33) is notM.

Exercise 8.3. Suppose now τ ⊂ P(X) is a topology with the property that to
every closed set C ⊂ X, there exists Vn ∈ τ such that Vn ↓ C as n → ∞. Let
A = A(τ) be the algebra generated by τ.

(1) With the aid of Exercise 6.1, show that A ⊂ F . Therefore by exercise 8.1
and the monotone class theorem, F =M, i.e.

µ(A) = inf {µ(V ) : A ⊂ V ∈ τ} .
(Hint: Recall the structure of A from Exercise 6.1.)
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(2) Show this result is equivalent to following statement: for every � > 0 and
A ∈M there exist a closed set C and an open set V such that C ⊂ A ⊂ V
and µ(V \ C) < �. (Hint: Apply part 1. to both A and Ac.)

Exercise 8.4 (Generalization to the σ — finite case). Let τ ⊂ P(X) be a topology
with the property that to every closed set F ⊂ X, there exists Vn ∈ τ such that
Vn ↓ F as n → ∞. Also letM = σ(τ) and µ :M → [0,∞] be a measure which is
σ — finite on τ.

(1) Show that for all � > 0 and A ∈M there exists an open set V ∈ τ and a
closed set F such that F ⊂ A ⊂ V and µ(V \ F ) ≤ �.

(2) Let Fσ denote the collection of subsets of X which may be written as a
countable union of closed sets. Use item 1. to show for all B ∈M, there
exists C ∈ τδ (τδ is customarily written as Gδ) and A ∈ Fσ such that
A ⊂ B ⊂ C and µ(C \A) = 0.

Exercise 8.5 (Metric Space Examples). Suppose that (X, d) is a metric space and
τd is the topology of d — open subsets of X. To each set F ⊂ X and � > 0 let

F� = {x ∈ X : dF (x) < �} = ∪x∈FBx(�) ∈ τd.

Show that if F is closed, then F� ↓ F as � ↓ 0 and in particular Vn := F1/n ∈ τd are
open sets decreasing to F. Therefore the results of Exercises 8.3 and 8.4 apply to
measures on metric spaces with the Borel σ — algebra, B = σ(τd).

Corollary 8.44. Let X ⊂ Rn be an open set and B = BX be the Borel σ — algebra
on X equipped with the standard topology induced by open balls with respect to the
Euclidean distance. Suppose that µ : B → [0,∞] is a measure such that µ(K) <∞
whenever K is a compact set.

(1) Then for all A ∈ B and � > 0 there exist a closed set F and an open set V
such that F ⊂ A ⊂ V and µ(V \ F ) < �.

(2) If µ(A) <∞, the set F in item 1. may be chosen to be compact.
(3) For all A ∈ B we may compute µ(A) using

µ(A) = inf{µ(V ) : A ⊂ V and V is open}(8.34)

= sup{µ(K) : K ⊂ A and K is compact}.(8.35)

Proof. For k ∈ N, let
(8.36) Kk := {x ∈ X : |x| ≤ k and dXc(x) ≥ 1/k} .
Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ X as k →∞ since17

{x ∈ X : |x| < k and dXc(x) > 1/k} ⊂ Ko
k

and {x ∈ X : |x| < k and dXc(x) > 1/k} ↑ X as k → ∞.This shows µ is σ — finite
on τX and Item 1. follows from Exercises 8.4 and 8.5.
If µ(A) < ∞ and F ⊂ A ⊂ V as in item 1. Then Kk ∩ F ↑ F as k → ∞ and

therefore since µ(V ) <∞, µ(V \Kk ∩F ) ↓ µ(V \F ) as k →∞. Hence by choosing
k sufficiently large, µ(V \Kk ∩ F ) < � and we may replace F by the compact set
F ∩Kk and item 1. still holds. This proves item 2.
Item 3. Item 1. easily implies that Eq. (8.34) holds and item 2. implies Eq.

(8.35) holds when µ(A) < ∞. So we need only check Eq. (8.35) when µ(A) = ∞.

17In fact this is an equality, but we will not need this here.
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By Item 1. there is a closed set F ⊂ A such that µ(A \ F ) < 1 and in particular
µ(F ) =∞. Since Kn ∩F ↑ F, and Kn ∩F is compact, it follows that the right side
of Eq. (8.35) is infinite and hence equal to µ(A).

8.6. Exercises.

Exercise 8.6. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ — finite measure spaces. Let
F : X1 ×X2 ×X3 → (X1 ×X2)×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

(1) Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) — measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) — measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1 ×X2 ×X3,M1 ⊗M2 ⊗M3)

is a “measure theoretic isomorphism.”
(2) Let λ := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. λ(A) = [(µ1 ⊗ µ2)⊗ µ3] (F

−1(A)) for all
A ∈M1 ⊗M2 ⊗M3. Then λ is the unique measure onM1 ⊗M2 ⊗M3

such that

λ(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write λ := µ1 ⊗ µ2 ⊗ µ3.
(3) Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) — measurable

function. Verify the identity,Z
X1×X2×X3

fdλ =

Z
X3

Z
X2

Z
X1

f(x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3),

makes sense and is correct. Also show the identity holds for any one of the
six possible orderings of the iterated integrals.

Exercise 8.7. Prove the second assertion of Theorem 8.29. That is show md is
the unique translation invariant measure on BRd such that md((0, 1]d) = 1. Hint:
Look at the proof of Theorem 7.10.

Exercise 8.8. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M = B[0,1]
be the Borel σ — field on X, m be Lebesgue measure on [0, 1] and ν be counting
measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the diagonal in
X2. Show Z

X

Z
X

1D(x, y)dν(y)dm(x) 6=
Z
X

Z
X

1D(x, y)dm(x)dν(y)

by explicitly computing both sides of this equation.

Exercise 8.9. Folland Problem 2.48 on p. 69. (Fubini problem.)

Exercise 8.10. Folland Problem 2.50 on p. 69. (Note the M× BR should be
M⊗ BR̄ in this problem.)
Exercise 8.11. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 8.12. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =R a
x

f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) andZ a

0

g(x)dx =

Z a

0

f(t)dt.
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Exercise 8.13. Show
R∞
0

¯̄
sinx
x

¯̄
dm(x) = ∞. So sinx

x /∈ L1([0,∞),m) andR∞
0

sinx
x dm(x) is not defined as a Lebesgue integral.

Exercise 8.14. Folland Problem 2.57 on p. 77.

Exercise 8.15. Folland Problem 2.58 on p. 77.

Exercise 8.16. Folland Problem 2.60 on p. 77. Properties of Γ — functions.

Exercise 8.17. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 8.18. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on Sn−1.

Exercise 8.19. Folland Problem 2.64 on p. 80. On the integrability of |x|a |log |x||b
for x near 0 and x near ∞ in Rn.
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9. Lp-spaces

Let (X,M, µ) be a measure space and for 0 < p <∞ and a measurable function
f : X → C let

(9.1) kfkp ≡ (
Z
|f |pdµ)1/p.

When p =∞, let

(9.2) kfk∞ = inf {a ≥ 0 : µ(|f | > a) = 0}
For 0 < p ≤ ∞, let

Lp(X,M, µ) = {f : X → C : f is measurable and kfkp <∞}/ ∼
where f ∼ g iff f = g a.e. Notice that kf − gkp = 0 iff f ∼ g and if f ∼ g then
kfkp = kgkp. In general we will (by abuse of notation) use f to denote both the
function f and the equivalence class containing f.

Remark 9.1. Suppose that kfk∞ ≤ M, then for all a > M, µ(|f | > a) = 0 and
therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(x)| ≤ M for µ -
a.e. x. Conversely, if |f | ≤ M a.e. and a > M then µ(|f | > a) = 0 and hence
kfk∞ ≤M. This leads to the identity:

kfk∞ = inf {a ≥ 0 : |f(x)| ≤ a for µ — a.e. x} .
Theorem 9.2 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q := p

p−1 , or
equivalently p−1 + q−1 = 1. If f and g are measurable functions then

(9.3) kfgk1 ≤ kfkp · kgkq.
Assuming p ∈ (1,∞) and kfkp · kgkq <∞, equality holds in Eq. (9.3) iff |f |p and
|g|q are linearly dependent as elements of L1. If we further assume that kfkp and
kgkq are positive then equality holds in Eq. (9.3) iff
(9.4) |g|qkfkpp = kgkqq|f |p a.e.
Proof. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easy to deal with

and are left to the reader. So we will now assume that 0 < kfkq, kgkp < ∞. Let
s = |f |/kfkp and t = |g|/kgkq then Lemma 2.27 implies

(9.5)
|fg|

kfkpkgkq ≤
1

p

|f |p
kfkp +

1

q

|g|q
kgkq

with equality iff |g/kgkq| = |f |p−1/kfk(p−1)p = |f |p/q/kfkp/qp , i.e. |g|qkfkpp =
kgkqq|f |p. Integrating Eq. (9.5) implies

kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1

with equality iff Eq. (9.4) holds. The proof is finished since it is easily checked that
equality holds in Eq. (9.3) when |f |p = c |g|q of |g|q = c |f |p for some constant c.
The following corollary is an easy extension of Hölder’s inequality.

Corollary 9.3. Suppose that fi : X → C are measurable functions for i = 1, . . . , n
and p1, . . . , pn and r are positive numbers such that

Pn
i=1 p

−1
i = r−1, then°°°°°

nY
i=1

fi

°°°°°
r

≤
nY
i=1

kfikpi where
nX
i=1

p−1i = r−1.
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Proof. To prove this inequality, start with n = 2, then for any p ∈ [1,∞],
kfgkrr =

Z
frgrdµ ≤ kfrkp kgrkp∗

where p∗ = p
p−1 is the conjugate exponent. Let p1 = pr and p2 = p∗r so that

p−11 + p−12 = r−1 as desired. Then the previous equation states that

kfgkr ≤ kfkp1 kgkp2
as desired. The general case is now proved by induction. Indeed,°°°°°

n+1Y
i=1

fi

°°°°°
r

=

°°°°°
nY
i=1

fi · fn+1
°°°°°
r

≤
°°°°°

nY
i=1

fi

°°°°°
q

kfn+1kpn+1

where q−1 + p−1n+1 = r−1. Since
Pn

i=1 p
−1
i = q−1, we may now use the induction

hypothesis to conclude °°°°°
nY
i=1

fi

°°°°°
q

≤
nY
i=1

kfikpi ,

which combined with the previous displayed equation proves the generalized form
of Holder’s inequality.

Theorem 9.4 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp then

(9.6) kf + gkp ≤ kfkp + kgkp.
Moreover if p <∞, then equality holds in this inequality iff

sgn(f) = sgn(g) when p = 1 and

f = cg or g = cf for some c > 0 when p > 1.

Proof. When p = ∞, |f | ≤ kfk∞ a.e. and |g| ≤ kgk∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ kfk∞ + kgk∞ a.e. and therefore

kf + gk∞ ≤ kfk∞ + kgk∞ .

When p <∞,

|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,
kf + gkpp ≤ 2p

¡kfkpp + kgkpp¢ <∞.

In case p = 1,

kf + gk1 =
Z
X

|f + g|dµ ≤
Z
X

|f |dµ+
Z
X

|g|dµ

with equality iff |f |+ |g| = |f + g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p ∈ (1,∞), we may assume kf + gkp, kfkp and kgkp are all positive since

otherwise the theorem is easily verified. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1
with equality iff sgn(f) = sgn(g). Integrating this equation and applying Holder’s
inequality with q = p/(p− 1) givesZ

X

|f + g|pdµ ≤
Z
X

|f | |f + g|p−1dµ+
Z
X

|g| |f + g|p−1dµ

≤ (kfkp + kgkp) k |f + g|p−1 kq(9.7)
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with equality iff

sgn(f) = sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
a.e.(9.8)

Therefore

(9.9) k|f + g|p−1kqq =
Z
X

(|f + g|p−1)qdµ =
Z
X

|f + g|pdµ.

Combining Eqs. (9.7) and (9.9) implies

(9.10) kf + gkpp ≤ kfkpkf + gkp/qp + kgkpkf + gkp/qp

with equality iff Eq. (9.8) holds which happens iff f = cg a.e. with c > 0.. Solving
for kf + gkp in Eq. (9.10) gives Eq. (9.6).
The next theorem gives another example of using Hölder’s inequality

Theorem 9.5. Suppose that (X,M, µ) and (Y,N , ν) be σ-finite measure spaces,
p ∈ [1,∞], q = p/(p− 1) and k : X × Y → C be a M⊗N — measurable function.
Assume there exist finite constants C1 and C2 such thatZ

X

|k(x, y)| dµ(x) ≤ C1 for ν a.e. y andZ
Y

|k(x, y)| dν(y) ≤ C2 for µ a.e. x.

If f ∈ Lp(ν), then Z
Y

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x,

x→ Kf(x) :=
R
k(x, y)f(y)dν(y) ∈ Lp(µ) and

(9.11) kKfkLp(µ) ≤ C
1/p
1 C

1/q
2 kfkLp(ν)

Proof. Suppose p ∈ (1,∞) to begin with and let q = p/(p−1), then by Hölder’s
inequality,Z

Y

|k(x, y)f(y)| dν(y) =
Z
Y

|k(x, y)|1/q |k(x, y)|1/p |f(y)| dν(y)

≤
·Z

Y

|k(x, y)| dν(y)
¸1/q ·Z

X

|k(x, y)| |f(y)|p dν(y)
¸1/p

≤ C
1/q
2

·Z
X

|k(x, y)| |f(y)|p dν(y)
¸1/p

.

Therefore, using Tonelli’s theorem,°°°°Z
Y

|k(·, y)f(y)| dν(y)
°°°°p
p

≤ C
p/q
2

Z
Y

dµ(x)

Z
X

dν(y) |k(x, y)| |f(y)|p

= C
p/q
2

Z
X

dν(y) |f(y)|p
Z
Y

dµ(x) |k(x, y)|

≤ C
p/q
2 C1

Z
X

dν(y) |f(y)|p = C
p/q
2 C1 kfkpp .
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From this it follows that x → Kf(x) :=
R
k(x, y)f(y)dν(y) ∈ Lp(µ) and that Eq.

(9.11) holds.
Similarly, if p =∞,Z

Y

|k(x, y)f(y)| dν(y) ≤ kfk∞
Z
Y

|k(x, y)| dν(y) ≤ C2 kfk∞ for µ — a.e. x.

so that kKfkL∞(µ) ≤ C2 kfkL∞(ν) . If p = 1, thenZ
X

dµ(x)

Z
Y

dν(y) |k(x, y)f(y)| =
Z
Y

dν(y) |f(y)|
Z
X

dµ(x) |k(x, y)|

≤ C1

Z
Y

dν(y) |f(y)|

which shows kKfkL1(µ) ≤ C1 kfkL1(ν) .
9.1. Jensen’s Inequality.

Definition 9.6. A function φ : (a, b)→ R is convex if for all a < x0 < x1 < b and
t ∈ [0, 1] φ(xt) ≤ tφ(x1) + (1− t)φ(x0) where xt = tx1 + (1− t)x0.

The following Proposition is clearly motivated by Figure 17.

420-2-4

25

12.5

0

-12.5

-25

x

y

x

y

Figure 17. A convex function along with two cords corresponding
to x0 = −2 and x1 = 4 and x0 = −5 and x1 = −2.

Proposition 9.7. Suppose φ : (a, b)→ R is a convex function, then
(1) For all u, v, w, z ∈ (a, b) such that u < z, w ∈ [u, z) and v ∈ (u, z],

(9.12)
φ(v)− φ(u)

v − u
≤ φ(z)− φ(w)

z − w
.

(2) For each c ∈ (a, b), the right and left sided derivatives φ0±(c) exists in R
and if a < u < v < b, then φ0+(u) ≤ φ0−(v) ≤ φ0+(v).

(3) The function φ is continuous.
(4) For all t ∈ (a, b) and β ∈ [φ0−(t), φ0+(t)], φ(x) ≥ φ(t) + β(x − t) for all

x ∈ (a, b). In particular,
φ(x) ≥ φ(t) + φ0−(t)(x− t) for all x, t ∈ (a, b).
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Proof. 1a) Suppose first that u < v = w < z, in which case Eq. (9.12) is
equivalent to

(φ(v)− φ(u)) (z − v) ≤ (φ(z)− φ(v)) (v − u)

which after solving for φ(v) is equivalent to the following equations holding:

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

But this last equation states that φ(v) ≤ φ(z)t + φ(u) (1− t) where t = v−u
z−u and

v = tz + (1− t)u and hence is valid by the definition of φ being convex.
1b) Now assume u = w < v < z, in which case Eq. (9.12) is equivalent to

(φ(v)− φ(u)) (z − u) ≤ (φ(z)− φ(u)) (v − u)

which after solving for φ(v) is equivalent to

φ(v) (z − u) ≤ φ(z) (v − u) + φ(u) (z − v)

which is equivalent to

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

Again this equation is valid by the convexity of φ.
1c) u < w < v = z, in which case Eq. (9.12) is equivalent to

(φ(z)− φ(u)) (z − w) ≤ (φ(z)− φ(w)) (z − u)

and this is equivalent to the inequality,

φ(w) ≤ φ(z)
w − u

z − u
+ φ(u)

z − w

z − u

which again is true by the convexity of φ.
1) General case. If u < w < v < z, then by 1a-1c)

φ(z)− φ(w)

z − w
≥ φ(v)− φ(w)

v − w
≥ φ(v)− φ(u)

v − u

and if u < v < w < z

φ(z)− φ(w)

z − w
≥ φ(w)− φ(v)

w − v
≥ φ(w)− φ(u)

w − u
.

We have now taken care of all possible cases.
2) On the set a < w < z < b, Eq. (9.12) shows that (φ(z)− φ(w)) / (z − w) is a

decreasing function in w and an increasing function in z and therefore φ0±(x) exists
for all x ∈ (a, b). Also from Eq. (9.12) we learn that

φ0+(u) ≤
φ(z)− φ(w)

z − w
for all a < u < w < z < b,(9.13)

φ(v)− φ(u)

v − u
≤ φ0−(z) for all a < u < v < z < b,(9.14)

and letting w ↑ z in the first equation also implies that
φ0+(u) ≤ φ0−(z) for all a < u < z < b.

The inequality, φ0−(z) ≤ φ0+(z), is also an easy consequence of Eq. (9.12).
3) Since φ(x) has both left and right finite derivatives, it follows that φ is con-

tinuous. (For an alternative proof, see Rudin.)
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4) Given t, let β ∈ [φ0−(t), φ0+(t)], then by Eqs. (9.13) and (9.14),
φ(t)− φ(u)

t− u
≤ φ0−(t) ≤ β ≤ φ0+(t) ≤

φ(z)− φ(t)

z − t

for all a < u < t < z < b. Item 4. now follows.

Corollary 9.8. Suppose φ : (a, b)→ R is differential then φ is convex iff φ0 is non
decreasing. In particular if φ ∈ C2(a, b) then φ is convex iff φ00 ≥ 0.
Proof. By Proposition 9.7, if φ is convex then φ0 is non-decreasing. Conversely

if φ0 is increasing then by the mean value theorem,

φ(x1)− φ(c)

x1 − c
= φ0(ξ1) for some ξ1 ∈ (c, x1)

and
φ(c)− φ(x0)

c− x0
= φ0(ξ2) for some ξ2 ∈ (x0, c).

Hence
φ(x1)− φ(c)

x1 − c
≥ φ(c)− φ(x0)

c− x0
for all x0 < c < x1. Solving this inequality for φ(c) gives

φ(c) ≤ c− x0
x1 − x0

φ(x1) +
x1 − c

x1 − x0
φ(x0)

showing φ is convex.

Example 9.9. The functions exp(x) and − log(x) are convex and xp is convex iff
p ≥ 1.
Theorem 9.10 (Jensen’s Inequality). Suppose that (X,M, µ) is a probability space,
i.e. µ is a positive measure and µ(X) = 1. Also suppose that f ∈ L1(µ), f : X →
(a, b), and φ : (a, b)→ R is a convex function. Then

φ

µZ
X

fdµ

¶
≤
Z
X

φ(f)dµ

where if φ◦f /∈ L1(µ), then φ◦f is integrable in the extended sense and R
X
φ(f)dµ =

∞.

Proof. Let t =
R
X
fdµ ∈ (a, b) and let β ∈ R be such that φ(s)−φ(t) ≥ β(s− t)

for all s ∈ (a, b). Then integrating the inequality, φ(f) − φ(t) ≥ β(f − t), implies
that

0 ≤
Z
X

φ(f)dµ− φ(t) =

Z
X

φ(f)dµ− φ(

Z
X

fdµ).

Moreover, if φ(f) is not integrable, then φ(f) ≥ φ(t) + β(f − t) which shows that
negative part of φ(f) is integrable. Therefore,

R
X
φ(f)dµ =∞ in this case.

Example 9.11. The convex functions in Example 9.9 lead to the following inequal-
ities,

exp

µZ
X

fdµ

¶
≤
Z
X

efdµ,(9.15) Z
X

log(|f |)dµ ≤ log
µZ

X

|f | dµ
¶
≤ log

µZ
X

fdµ

¶
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and for p ≥ 1, ¯̄̄̄Z
X

fdµ

¯̄̄̄p
≤
µZ

X

|f | dµ
¶p
≤
Z
X

|f |p dµ.
The last equation may also easily be derived using Hölder’s inequality. As a special
case of the first equation, we get another proof of Lemma 2.27. Indeed, more
generally, suppose pi, si > 0 for i = 1, 2, . . . , n and

Pn
i=1

1
pi
= 1, then

(9.16) s1 . . . sn = e
Pn

i=1 ln si = e
Pn

i=1
1
pi
ln s

pi
i ≤

nX
i=1

1

pi
eln s

pi
i =

nX
i=1

spii
pi

where the inequality follows from Eq. (9.15) with µ =
Pn

i=1
1
pi
δsi . Of course Eq.

(9.16) may be proved directly by directly using the convexity of the exponential
function.

9.2. Modes of Convergence. As usual let (X,M, µ) be a fixed measure space
and let {fn} be a sequence of measurable functions on X. Also let f : X → C be
a measurable function. We have the following notions of convergence and Cauchy
sequences.

Definition 9.12. (1) fn → f a.e. if there is a set E ∈M such that µ(Ec) = 0
and limn→∞ 1Efn = 1Ef.

(2) fn → f in µ — measure if limn→∞ µ(|fn− f | > �) = 0 for all � > 0. We will
abbreviate this by saying fn → f in L0 or by fn

µ→ f.
(3) fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞

R |fn−f |pdµ = 0.
Definition 9.13. (1) {fn} is a.e. Cauchy if there is a set E ∈M such that

µ(Ec) = 0 and{1E fn} is a pointwise Cauchy sequences.
(2) {fn} is Cauchy in µ — measure (or L0 — Cauchy) if limm,n→∞ µ(|fn−fm| >

�) = 0 for all � > 0.
(3) {fn} is Cauchy in Lp if limm,n→∞

R |fn − fm|pdµ = 0.
Lemma 9.14 (Chebyshev’s inequality again). Let p ∈ [1,∞) and f ∈ Lp, then

µ (|f | ≥ �) ≤ 1

�p
kfkpp for all � > 0.

In particular if {fn} ⊂ Lp is Lp — convergent (Cauchy) then {fn} is also convergent
(Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.12),

µ (|f | ≥ �) = µ (|f |p ≥ �p) ≤ 1

�p

Z
X

|f |p dµ = 1

�p
kfkpp

and therefore if {fn} is Lp — Cauchy, then
µ (|fn − fm| ≥ �) ≤ 1

�p
kfn − fmkp → 0 as m,n→∞

showing {fn} is L0 — Cauchy. A similar argument holds for the Lp — convergent
case.

Lemma 9.15. Suppose an ∈ C and |an+1 − an| ≤ �n and
∞P
n=1

�n < ∞. Then

lim
n→∞ an = a ∈ C exists and |a− an| ≤ δn ≡

∞P
k=n

�k.
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Figure 18. Modes of convergence examples. In picture 1. fn → 0

a.e., fn 9 0 in L1, fn
m→ 0. In picture 2. fn → 0 a.e., fn 9 0 in

L1, fn
m9 0. In picture 3., fn → 0 a.e., fn

m→ 0 but fn 9 0 in L1.

In picture 4., fn → 0 in L1, fn 9 0 a.e., and fn
m→ 0.

Proof. Let m > n then

(9.17) |am − an| =

¯̄̄̄
m−1P
k=n

(ak+1 − ak)

¯̄̄̄
≤

m−1P
k=n

|ak+1 − ak| ≤
∞P
k=n

�k ≡ δn .

So |am − an| ≤ δmin(m,n) → 0 as ,m, n → ∞, i.e. {an} is Cauchy. Let m → ∞ in
(9.17) to find |a− an| ≤ δn.

Theorem 9.16. Suppose {fn} is L0-Cauchy. Then there exists a subsequence

gj = fnj of {fn} such that lim gj ≡ f exists a.e. and fn
µ

−→ f as n → ∞.

Moreover if g is a measurable function such that fn
µ−→ g as n → ∞, then f = g

a.e.

Proof. Let �n > 0 such that
∞P
n=1

�n < ∞ (�n = 2−n would do) and set δn =
∞P
k=n

�k. Choose gj = fnj such that {nj} is a subsequence of N and

µ({|gj+1 − gj | > �j}) ≤ �j .
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Let Ej = {|gj+1 − gj | > �j} ,

FN =
∞[
j=N

Ej =
∞[
j=N

{|gj+1 − gj | > �j}

and

E ≡
∞\

N=1

FN =
∞\

N=1

∞[
j=N

Ej = {|gj+1 − gj | > �j i.o.}.

Then µ(E) = 0 since

µ(E) ≤
∞X

j=N

µ(Ej) ≤
∞X

j=N

�j = δN → 0 as N →∞.

For x /∈ FN , |gj+1(x) − gj(x)| ≤ �j for all j ≥ N and by Lemma 9.15, f(x) =
lim
j→∞

gj(x) exists and |f(x)−gj(x)| ≤ δj for all j ≥ N . Therefore, lim
j→∞

gj(x) = f(x)

exists for all x /∈ E. Moreover, {x : |f(x) − fj(x)| > δj} ⊂ Fj for all j ≥ N and
hence

µ(|f − gj | > δj) ≤ µ(Fj) ≤ δj → 0 as j →∞.

Therefore gj
µ−→ f as j →∞.

Since

{|fn − f | > �} = {|f − gj + gj − fn| > �}
⊂ {|f − gj | > �/2} ∪ {|gj − fn| > �/2},

µ({|fn − f | > �}) ≤ µ({|f − gj| > �/2}) + µ(|gj − fn| > �/2)

and
µ({|fn − f | > �}) ≤ lim

j→∞
supµ(|gj − fn| > �/2)→ 0 as n→∞.

If also fn
µ−→ g as n→∞, then arguing as above

µ(|f − g| > �) ≤ µ({|f − fn| > �/2}) + µ(|g − fn| > �/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ(∪∞n=1{|f − g| > 1

n
}) ≤

∞X
n=1

µ(|f − g| > 1

n
) = 0,

i.e. f = g a.e.

Corollary 9.17 (Dominated Convergence Theorem). Suppose {fn} , {gn} , and g
are in L1 and f ∈ L0 are functions such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
Z

gn →
Z

g as n→∞.

Then f ∈ L1 and limn→∞ kf − fnk1 = 0, i.e. fn → f in L1. In particular
limn→∞

R
fn =

R
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To see that
|f | ≤ g, use Theorem 9.16 to find subsequences {fnk} and {gnk} of {fn} and {gn}
respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.
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If (for sake of contradiction) limn→∞ kf − fnk1 6= 0 there exists � > 0 and a
subsequence {fnk} of {fn} such that

(9.18)
Z
|f − fnk | ≥ � for all k.

Using Theorem 9.16 again, we may assume (by passing to a further subsequences
if necessary) that fnk → f and gnk → g almost everywhere. Noting, |f − fnk | ≤
g+ gnk → 2g and

R
(g + gnk)→

R
2g, an application of the dominated convergence

Theorem 7.38 implies limk→∞
R |f − fnk | = 0 which contradicts Eq. (9.18).

Exercise 9.1 (Fatou’s Lemma). If fn ≥ 0 and fn → f in measure, then
R
f ≤

lim infn→∞
R
fn.

Theorem 9.18 (Egoroff’s Theorem). Suppose µ(X) < ∞ and fn → f a.e. Then
for all � > 0 there exists E ∈M such that µ(E) < � and fn → f uniformly on Ec.

In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then µ({|fn − f | > 1
k i.o. n}) = 0 for all k > 0, i.e.

lim
N→∞

µ

 [
n≥N

{|fn − f | > 1

k
}
 = µ

 ∞\
N=1

[
n≥N

{|fn − f | > 1

k
}
 = 0.

Let Ek :=
S

n≥Nk

{|fn − f | > 1
k} and choose an increasing sequence {Nk}∞k=1 such

that µ(Ek) < �2−k for all k. Setting E := ∪Ek, µ(E) <
P

k �2
−k = � and if x /∈ E,

then |fn − f | ≤ 1
k for all n ≥ Nk and all k. That is fn → f uniformly on Ec.

Exercise 9.2. Show that Egoroff’s Theorem remains valid when the assumption
µ(X) <∞ is replaced by the assumption that |fn| ≤ g ∈ L1 for all n.

9.3. Completeness of Lp — spaces.

Theorem 9.19. Let k·k∞ be as defined in Eq. (9.2), then (L∞(X,M, µ), k·k∞) is
a Banach space. A sequence {fn}∞n=1 ⊂ L∞ converges to f ∈ L∞ iff there exists
E ∈ M such that µ(E) = 0 and fn → f uniformly on Ec. Moreover, bounded
simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 9.4, k·k∞ satisfies the triangle inequality. The
reader may easily check the remaining conditions that ensure k·k∞ is a norm.
Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e. kf − fnk∞ →

0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
¡|f − fn| > k−1

¢
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

©|f − fn| > k−1
ª
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This shows
that fn → f uniformly on Ec. Conversely, if there exists E ∈M such that µ(E) = 0
and fn → f uniformly on Ec, then for any � > 0,

µ (|f − fn| ≥ �) = µ ({|f − fn| ≥ �} ∩Ec) = 0

for all n sufficiently large. That is to say lim supn→∞ kf − fnk∞ ≤ � for all � > 0.
The density of simple functions follows from the approximation Theorem 7.12.
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So the last item to prove is the completeness of L∞ for which we will use Theorem
3.66. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such that

P∞
n=1 kfnk∞ <∞. Let

Mn := kfnk∞ , En := {|fn| > Mn} , and E := ∪∞n=1En so that µ(E) = 0. Then
∞X
n=1

sup
x∈Ec

|fn(x)| ≤
∞X
n=1

Mn <∞

which shows that SN (x) =
PN

n=1 fn(x) converges uniformly to S(x) :=
P∞

n=1 fn(x)
on Ec, i.e. limn→∞ kS − Snk∞ = 0.
Alternatively, suppose �m,n := kfm − fnk∞ → 0 as m,n → ∞. Let Em,n =

{|fn − fm| > �m,n} and E := ∪Em,n, then µ(E) = 0 and kfm − fnkEc,u = �m,n → 0
as m,n→∞. Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on
Ec. Letting f = lim supn→∞ fn, it then follows that kfm − fk∞ → 0 as m→∞.

Theorem 9.20 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped with the
Lp — norm, k·kp (see Eq. (9.1)), is a Banach space.
Proof. By Minkowski’s Theorem 9.4, k·kp satisfies the triangle inequality. As

above the reader may easily check the remaining conditions that ensure k·kp is a
norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p < ∞, the case
p = ∞ being done in Theorem 9.19. By Chebyshev’s inequality (Lemma 9.14),
{fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem 9.16 there exists a
subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s Lemma,

kgj − fkpp =
Z
lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf

Z
|gj − gk|pdµ

= lim
k→∞

inf kgj − gkkpp → 0 as j →∞.

In particular, kfkp ≤ kgj − fkp + kgjkp < ∞ so the f ∈ Lp and gj
Lp−→ f . The

proof is finished because,

kfn − fkp ≤ kfn − gjkp + kgj − fkp → 0 as j, n→∞.

The Lp(µ) — norm controls two types of behaviors of f, namely the “behavior at
infinity” and the behavior of local singularities. So in particular, if f is blows up at
a point x0 ∈ X, then locally near x0 it is harder for f to be in Lp(µ) as p increases.
On the other hand a function f ∈ Lp(µ) is allowed to decay at “infinity” slower and
slower as p increases. With these insights in mind, we should not in general expect
Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However, there are two notable exceptions. (1) If
µ(X) <∞, then there is no behavior at infinity to worry about and Lq(µ) ⊂ Lp(µ)
for all q ≤ p as is shown in Corollary 9.21 below. (2) If µ is counting measure, i.e.
µ(A) = #(A), then all functions in Lp(µ) for any p can not blow up on a set of
positive measure, so there are no local singularities. In this case Lp(µ) ⊂ Lq(µ) for
all q ≤ p, see Corollary 9.25 below.

Corollary 9.21. If µ(X) < ∞, then Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞ and
the inclusion map is bounded.

Proof. Choose a ∈ [1,∞] such that
1

p
=
1

a
+
1

q
, i.e. a =

pq

q − p
.



164 BRUCE K. DRIVER†

Then by Corollary 9.3,

kfkp = kf · 1kp ≤ kfkq · k1ka = µ(X)1/akfkq = µ(X)(
1
p− 1

q )kfkq.
The reader may easily check this final formula is correct even when q =∞ provided
we interpret 1/p− 1/∞ to be 1/p.

Proposition 9.22. Suppose that 0 < p < q < r ≤ ∞, then Lq ⊂ Lp + Lr, i.e.
every function f ∈ Lq may be written as f = g + h with g ∈ Lp and h ∈ Lr. For
1 ≤ p < r ≤ ∞ and f ∈ Lp + Lr let

kfk := inf
n
kgkp + khkr : f = g + h

o
.

Then (Lp + Lr, k·k) is a Banach space and the inclusion map from Lq to Lp + Lr

is bounded; in fact kfk ≤ 2 kfkq for all f ∈ Lq.

Proof. Let M > 0, then the local singularities of f are contained in the set
E := {|f | > M} and the behavior of f at “infinity” is solely determined by f on
Ec. Hence let g = f1E and h = f1Ec so that f = g + h. By our earlier discussion
we expect that g ∈ Lp and h ∈ Lr and this is the case since,

kgkpp =
°°f1|f |>M°°pp = Z |f |p 1|f |>M =Mp

Z ¯̄̄̄
f

M

¯̄̄̄p
1|f|>M

≤Mp

Z ¯̄̄̄
f

M

¯̄̄̄q
1|f |>M ≤Mp−q kfkqq <∞

and

khkrr =
°°f1|f |≤M°°rr = Z |f |r 1|f|≤M =Mr

Z ¯̄̄̄
f

M

¯̄̄̄r
1|f |≤M

≤Mr

Z ¯̄̄̄
f

M

¯̄̄̄q
1|f|≤M ≤Mr−q kfkqq <∞.

Moreover this shows

kfk ≤M1−q/p kfkq/pq +M1−q/r kfkq/rq .

Taking M = λ kfkq then gives

kfk ≤
³
λ1−q/p + λ1−q/r

´
kfkq

and then taking λ = 1 shows kfk ≤ 2 kfkq . The the proof that (Lp + Lr, k·k) is a
Banach space is left as Exercise 9.7 to the reader.

Corollary 9.23. Suppose that 0 < p < q < r ≤ ∞, then Lp ∩ Lr ⊂ Lq and

(9.19) kfkq ≤ kfkλp kfk1−λr

where λ ∈ (0, 1) is determined so that
1

q
=

λ

p
+
1− λ

r
with λ = p/q if r =∞.

Further assume 1 ≤ p < q < r ≤ ∞, and for f ∈ Lp ∩ Lr let
kfk := kfkp + kfkr .
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Then (Lp ∩Lr, k·k) is a Banach space and the inclusion map of Lp ∩Lr into Lq is
bounded, in fact

(9.20) kfkq ≤ max
¡
λ−1, (1− λ)−1

¢ ³kfkp + kfkr´ ,
where

λ =

1
q − 1

r
1
p − 1

r

=
p (r − q)

q (r − p)
.

The heuristic explanation of this corollary is that if f ∈ Lp∩Lr, then f has local
singularities no worse than an Lr function and behavior at infinity no worse than
an Lp function. Hence f ∈ Lq for any q between p and r.
Proof. Let λ be determined as above, a = p/λ and b = r/(1 − λ), then by

Corollary 9.3,

kfkq =
°°°|f |λ |f |1−λ°°°

q
≤
°°°|f |λ°°°

a

°°°|f |1−λ°°°
b
= kfkλp kfk1−λr .

It is easily checked that k·k is a norm on Lp ∩ Lr. To show this space is complete,
suppose that {fn} ⊂ Lp∩Lr is a k·k — Cauchy sequence. Then {fn} is both Lp and
Lr — Cauchy. Hence there exist f ∈ Lp and g ∈ Lr such that limn→∞ kf − fnkp = 0
and limn→∞ kg − fnkq = 0. By Chebyshev’s inequality (Lemma 9.14) fn → f and
fn → g in measure and therefore by Theorem 9.16, f = g a.e. It now is clear that
limn→∞ kf − fnk = 0. The estimate in Eq. (9.20) is left as Exercise 9.6 to the
reader.

Remark 9.24. Let p = p1, r = p0 and for λ ∈ (0, 1) let pλ be defined by

(9.21)
1

pλ
=
1− λ

p0
+

λ

p1
.

Combining Proposition 9.22 and Corollary 9.23 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

and Eq. (9.19) becomes

kfkpλ ≤ kfk
1−λ
p0

kfkλp1 .
Corollary 9.25. Suppose now that µ is counting measure on X. Then Lp(µ) ⊂
Lq(µ) for all 0 < p < q ≤ ∞ and kfkq ≤ kfkp .
Proof. Suppose that 0 < p < q =∞, then

kfkp∞ = sup {|f(x)|p : x ∈ X} ≤
X
x∈X

|f(x)|p = kfkpp ,

i.e. kfk∞ ≤ kfkp for all 0 < p <∞. For 0 < p ≤ q ≤ ∞, apply Corollary 9.23 with
r =∞ to find

kfkq ≤ kfkp/qp kfk1−p/q∞ ≤ kfkp/qp kfk1−p/qp = kfkp .
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9.3.1. Summary:

(1) Since µ(|f | > �) ≤ �−p kfkpp it follows that Lp — convergence implies L0 —
convergence.

(2) L0 — convergence implies almost everywhere convergence for some subse-
quence.

(3) If µ(X) <∞, then Lq ⊂ Lp for all p ≤ q in fact

kfkp ≤ [µ(X)](
1
p− 1

q ) kfkq ,
i.e. Lq — convergence implies Lp — convergence.

(4) Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1 where

1

pλ
=
1− λ

p0
+

λ

p1
.

(5) cp ⊂ cq if p ≤ q. In fact kfkq ≤ kfkp in this case. To prove this write
1

q
=

λ

p
+
(1− λ)

∞ ,

then using kfk∞ ≤ kfkp for all p,
kfkq ≤ kfkλp kfk1−λ∞ ≤ kfkλp kfk1−λp = kfkp .

(6) If µ(X) <∞ then almost everywhere convergence implies L0 — convergence.

9.4. Converse of Hölder’s Inequality. Throughout this section we assume
(X,M, µ) is a σ-finite measure space, q ∈ [1,∞] and p ∈ [1,∞] are conjugate
exponents, i.e. p−1 + q−1 = 1. For g ∈ Lq, let φg ∈ (Lp)∗ be given by

(9.22) φg(f) =

Z
gf dµ.

By Hölder’s inequality

(9.23) |φg(f)| ≤
Z
|gf |dµ ≤ kgkqkfkp

which implies that

(9.24) kφgk(Lp)∗ := sup{|φg(f)| : kfkp = 1} ≤ kgkq.
Proposition 9.26 (Converse of Hölder’s Inequality). Let (X,M, µ) be a σ-finite
measure space and 1 ≤ p ≤ ∞ as above. For all g ∈ Lq,

(9.25) kgkq = kφgk(Lp)∗ := sup
n
|φg(f)| : kfkp = 1

o
and for any measurable function g : X → C,

(9.26) kgkq = sup
½Z

X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
.

Proof. We begin by proving Eq. (9.25). Assume first that q < ∞ so p > 1.
Then

|φg(f)| =
¯̄̄̄Z

gf dµ

¯̄̄̄
≤
Z
|gf | dµ ≤ kgkqkfkp

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 9.2, when |f |p = c|g|q for some constant
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c > 0. So let f := sgn(g)|g|q/p which for p =∞ is to be interpreted as f = sgn(g),
i.e. |g|q/∞ ≡ 1.
When p =∞,

|φg(f)| =
Z
X

g sgn(g)dµ = kgkL1(µ) = kgk1 kfk∞
which shows that kφgk(L∞)∗ ≥ kgk1. If p <∞, then

kfkpp =
Z
|f |p =

Z
|g|q = kgkqq

while

φg(f) =

Z
gfdµ =

Z
|g||g|q/pdµ =

Z
|g|qdµ = kgkqq.

Hence
|φg(f)|
kfkp =

kgkqq
kgkq/pq

= kgkq(1−
1
p )

q = kgkq.

This shows that ||φgk ≥ kgkq which combined with Eq. (9.24) implies Eq. (9.25).
The last case to consider is p = 1 and q = ∞. Let M := kgk∞ and choose

Xn ∈ M such that Xn ↑ X as n → ∞ and µ(Xn) < ∞ for all n. For any
� > 0, µ(|g| ≥ M − �) > 0 and Xn ∩ {|g| ≥ M − �} ↑ {|g| ≥ M − �}. Therefore,
µ(Xn ∩ {|g| ≥M − �}) > 0 for n sufficiently large. Let

f = sgn(g)1Xn∩{|g|≥M−�},

then
kfk1 = µ(Xn ∩ {|g| ≥M − �}) ∈ (0,∞)

and

|φg(f)| =
Z
Xn∩{|g|≥M−�}

sgn(g)gdµ =

Z
Xn∩{|g|≥M−�}

|g|dµ

≥ (M − �)µ(Xn ∩ {|g| ≥M − �}) = (M − �)kfk1.
Since � > 0 is arbitrary, it follows from this equation that kφgk(L1)∗ ≥M = kgk∞.
We now will prove Eq. (9.26). The key new point is that we no longer are

assuming that g ∈ Lq. Let M(g) denote the right member in Eq. (9.26) and set
gn := 1Xn∩{|g|≤n}g. Then |gn| ↑ |g| as n→∞ and it is clear thatM(gn) is increasing
in n. Therefore using Lemma 2.10 and the monotone convergence theorem,

lim
n→∞M(gn) = sup

n
M(gn) = sup

n
sup

½Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
sup
n

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
lim
n→∞

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½Z
X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
=M(g).

Since gn ∈ Lq for all n and M(gn) = kφgnk(Lp)∗ (as you should verify), it fol-
lows from Eq. (9.25) that M(gn) = kgnkq . When q < ∞, by the monotone
convergence theorem, and when q = ∞, directly from the definitions, one learns
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that limn→∞ kgnkq = kgkq . Combining this fact with limn→∞M(gn) =M(g) just
proved shows M(g) = kgkq .
As an application we can derive a sweeping generalization of Minkowski’s inequal-

ity. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough discussion of
complex interpolation theory.)

Theorem 9.27 (Minkowski’s Inequality for Integrals). Let (X,M, µ) and (Y,N , ν)
be σ-finite measure spaces and 1 ≤ p ≤ ∞. If f is a M⊗N measurable function,
then y → kf(·, y)kLp(µ) is measurable and

(1) if f is a positiveM⊗N measurable function, then

(9.27) k
Z
Y

f(·, y)dν(y)kLp(µ) ≤
Z
Y

kf(·, y)kLp(µ)dν(y).

(2) If f : X×Y → C is aM⊗N measurable function and
R
Y
kf(·, y)kLp(µ)dν(y) <

∞ then
(a) for µ — a.e. x, f(x, ·) ∈ L1(ν),
(b) the µ —a.e. defined function, x→ R

Y
f(x, y)dν(y), is in Lp(µ) and

(c) the bound in Eq. (9.27) holds.

Proof. For p ∈ [1,∞], let Fp(y) := kf(·, y)kLp(µ). If p ∈ [1,∞)

Fp(y) = kf(·, y)kLp(µ) =
µZ

X

|f(x, y)|p dµ(x)
¶1/p

is a measurable function on Y by Fubini’s theorem. To see that F∞ is measurable,
let Xn ∈M such that Xn ↑ X and µ(Xn) <∞ for all n. Then by Exercise 9.5,

F∞(y) = lim
n→∞ lim

p→∞ kf(·, y)1XnkLp(µ)
which shows that F∞ is (Y,N ) — measurable as well. This shows that integral on
the right side of Eq. (9.27) is well defined.
Now suppose that f ≥ 0, q = p/(p − 1)and g ∈ Lq(µ) such that g ≥ 0 and

kgkLq(µ) = 1. Then by Tonelli’s theorem and Hölder’s inequality,Z
X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y)g(x)

≤ kgkLq(µ)
Z
Y

kf(·, y)kLp(µ)dν(y)

=

Z
Y

kf(·, y)kLp(µ)dν(y).
Therefore by Proposition 9.26,

k
Z
Y

f(·, y)dν(y)kLp(µ) = sup
½Z

X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) : kgkLq(µ) = 1 and g ≥ 0

¾
≤
Z
Y

kf(·, y)kLp(µ)dν(y)

proving Eq. (9.27) in this case.
Now let f : X × Y → C be as in item 2) of the theorem. Applying the first part

of the theorem to |f | showsZ
Y

|f(x, y)| dν(y) <∞ for µ— a.e. x,
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i.e. f(x, ·) ∈ L1(ν) for the µ —a.e. x. Since
¯̄R
Y
f(x, y)dν(y)

¯̄ ≤ R
Y
|f(x, y)| dν(y) it

follows by item 1) that

k
Z
Y

f(·, y)dν(y)kLp(µ) ≤ k
Z
Y

|f(·, y)| dν(y)kLp(µ) ≤
Z
Y

kf(·, y)kLp(µ)dν(y).

Hence the function, x ∈ X → R
Y
f(x, y)dν(y), is in Lp(µ) and the bound in Eq.

(9.27) holds.
Here is an application of Minkowski’s inequality for integrals.

Theorem 9.28 (Theorem 6.20 in Folland). Suppose that k : (0,∞)× (0,∞)→ C
is a measurable function such that k is homogenous of degree −1, i.e. k(λx, λy) =
λ−1k(x, y) for all λ > 0. If

Cp :=

Z ∞
0

|k(x, 1)|x−1/pdx <∞

for some p ∈ [1,∞], then for f ∈ Lp((0,∞),m), k(x, ·)f(·) ∈ Lp((0,∞),m) for m
— a.e. x Moreover, the m — a.e. defined function

(9.28) (Kf)(x) =

Z ∞
0

k(x, y)f(y)dy

is in Lp((0,∞),m) and
kKfkLp((0,∞),m) ≤ CpkfkLp((0,∞),m).

Proof. By the homogeneity of k, k(x, y) = y−1k(xy , 1). HenceZ ∞
0

|k(x, y)f(y)| dy =
Z ∞
0

x−1 |k(1, y/x)f(y)| dy

=

Z ∞
0

x−1 |k(1, z)f(xz)|xdz =
Z ∞
0

|k(1, z)f(xz)| dz.
Since

kf(· z)kpLp((0,∞),m) =
Z ∞
0

|f(yz)|pdy =
Z ∞
0

|f(x)|p dx

z
,

kf(· z)kLp((0,∞),m) = z−1/pkfkLp((0,∞),m).
Using Minkowski’s inequality for integrals then shows°°°°Z ∞

0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤
Z ∞
0

|k(1, z)| kf(·z)kLp((0,∞),m) dz

= kfkLp((0,∞),m)
Z ∞
0

|k(1, z)| z−1/pdz
= CpkfkLp((0,∞),m) <∞.

This shows that Kf in Eq. (9.28) is well defined from m — a.e. x. The proof is
finished by observing

kKfkLp((0,∞),m) ≤
°°°°Z ∞

0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤ CpkfkLp((0,∞),m)

for all f ∈ Lp((0,∞),m).
The following theorem is a strengthening of Proposition 9.26. which will be used

(actually maybe not) in Theorem G.49 below. (WHERE IS THIS THEOREM
USED?)



170 BRUCE K. DRIVER†

Theorem 9.29 (Converse of Hölder’s Inequality II). Assume that (X,M, µ) is a
σ — finite measure space, q, p ∈ [1,∞] are conjugate exponents and let Sf denote the
set of simple functions φ on X such that µ (φ 6= 0) <∞. For g : X → C measurable
such that φg ∈ L1 for all φ ∈ Sf , 18 let

(9.29) Mq(g) = sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Sf with kφkp = 1

¾
.

If Mq(g) <∞ then g ∈ Lq and Mq(g) = kgkq .
Proof. Let Xn ∈ M be sets such that µ(Xn) < ∞ and Xn ↑ X as n ↑ ∞.

Suppose that q = 1 and hence p =∞. Choose simple functions φn on X such that
|φn| ≤ 1 and sgn(g) = limn→∞ φn in the pointwise sense. Then 1Xmφn ∈ Sf and
therefore ¯̄̄̄Z

X

1Xmφngdµ

¯̄̄̄
≤Mq(g)

for all m,n. By assumption 1Xmg ∈ L1(µ) and therefore by the dominated conver-
gence theorem we may let n→∞ in this equation to findZ

X

1Xm |g| dµ ≤Mq(g)

for all m. The monotone convergence theorem then implies thatZ
X

|g| dµ = lim
m→∞

Z
X

1Xm |g| dµ ≤Mq(g)

showing g ∈ L1(µ) and kgk1 ≤ Mq(g). Since Holder’s inequality implies that
Mq(g) ≤ kgk1 , we have proved the theorem in case q = 1.
For q > 1, we will begin by assuming that g ∈ Lq(µ). Since p ∈ [1,∞) we know

that Sf is a dense subspace of Lp(µ) and therefore, using φg is continuous on Lp(µ),

Mq(g) = sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
= kgkq

where the last equality follows by Proposition 9.26.
So it remains to show that if φg ∈ L1 for all φ ∈ Sf and Mq(g) < ∞ then

g ∈ Lq(µ). For n ∈ N, let gn ≡ 1Xn1|g|≤ng. Then gn ∈ Lq(µ), in fact kgnkq ≤
nµ(Xn)

1/q <∞. So by the previous paragraph,

kgnkq =Mq(gn) = sup

½¯̄̄̄Z
X

φ1Xn1|g|≤ngdµ
¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
≤Mq(g)

°°φ1Xn1|g|≤n
°°
p
≤Mq(g) · 1 =Mq(g)

wherein the second to last inequality we have made use of the definition of Mq(g)
and the fact that φ1Xn

1|g|≤n ∈ Sf . If q ∈ (1,∞), an application of the monotone
convergence theorem (or Fatou’s Lemma) along with the continuity of the norm,
k·kp , implies

kgkq = lim
n→∞ kgnkq ≤Mq(g) <∞.

If q = ∞, then kgnk∞ ≤ Mq(g) < ∞ for all n implies |gn| ≤ Mq(g) a.e. which
then implies that |g| ≤Mq(g) a.e. since |g| = limn→∞ |gn| . That is g ∈ L∞(µ) and
kgk∞ ≤M∞(g).

18This is equivalent to requiring 1Ag ∈ L1(µ) for all A ∈M such that µ(A) <∞.
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9.5. Uniform Integrability. This section will address the question as to what
extra conditions are needed in order that an L0 — convergent sequence is Lp —
convergent.

Notation 9.30. For f ∈ L1(µ) and E ∈M, let

µ(f : E) :=

Z
E

fdµ.

and more generally if A,B ∈M let

µ(f : A,B) :=

Z
A∩B

fdµ.

Lemma 9.31. Suppose g ∈ L1(µ), then for any � > 0 there exist a δ > 0 such that
µ(|g| : E) < � whenever µ(E) < δ.

Proof. If the Lemma is false, there would exist � > 0 and sets En such that
µ(En)→ 0 while µ(|g| : En) ≥ � for all n. Since |1Eng| ≤ |g| ∈ L1 and for any δ ∈
(0, 1), µ(1En |g| > δ) ≤ µ(En)→ 0 as n→∞, the dominated convergence theorem
of Corollary 9.17 implies limn→∞ µ(|g| : En) = 0. This contradicts µ(|g| : En) ≥ �
for all n and the proof is complete.
Suppose that {fn}∞n=1 is a sequence of measurable functions which converge in

L1(µ) to a function f. Then for E ∈M and n ∈ N,
|µ(fn : E)| ≤ |µ(f − fn : E)|+ |µ(f : E)| ≤ kf − fnk1 + |µ(f : E)| .

Let �N := supn>N kf − fnk1 , then �N ↓ 0 as N ↑ ∞ and

(9.30) sup
n
|µ(fn : E)| ≤ sup

n≤N
|µ(fn : E)| ∨ (�N + |µ(f : E)|) ≤ �N + µ (gN : E) ,

where gN = |f | +PN
n=1 |fn| ∈ L1. From Lemma 9.31 and Eq. (9.30) one easily

concludes,

(9.31) ∀ � > 0 ∃ δ > 0 3 sup
n
|µ(fn : E)| < � when µ(E) < δ.

Definition 9.32. Functions {fn}∞n=1 ⊂ L1(µ) satisfying Eq. (9.31) are said to be
uniformly integrable.

Remark 9.33. Let {fn} be real functions satisfying Eq. (9.31), E be a set where
µ(E) < δ and En = E ∩ {fn ≥ 0} . Then µ(En) < δ so that µ(f+n : E) = µ(fn :
En) < � and similarly µ(f−n : E) < �. Therefore if Eq. (9.31) holds then

(9.32) sup
n

µ(|fn| : E) < 2� when µ(E) < δ.

Similar arguments work for the complex case by looking at the real and imaginary
parts of fn. Therefore {fn}∞n=1 ⊂ L1(µ) is uniformly integrable iff

(9.33) ∀ � > 0 ∃ δ > 0 3 sup
n

µ(|fn| : E) < � when µ(E) < δ.

Lemma 9.34. Assume that µ(X) < ∞, then {fn} is uniformly bounded in L1(µ)
(i.e. K = supn kfnk1 <∞) and {fn} is uniformly integrable iff
(9.34) lim

M→∞
sup
n

µ(|fn| : |fn| ≥M) = 0.
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Proof. Since {fn} is uniformly bounded in L1(µ), µ(|fn| ≥ M) ≤ K/M. So
if (9.33) holds and � > 0 is given, we may choose M sufficeintly large so that
µ(|fn| ≥M) < δ(�) for all n and therefore,

sup
n

µ(|fn| : |fn| ≥M) ≤ �.

Since � is arbitrary, we concluded that Eq. (9.34) must hold.
Conversely, suppose that Eq. (9.34) holds, then automaticallyK = supn µ(|fn|) <

∞ because

µ(|fn|) = µ(|fn| : |fn| ≥M) + µ(|fn| : |fn| < M)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(X) <∞.

Moreover,

µ(|fn| : E) = µ(|fn| : |fn| ≥M,E) + µ(|fn| : |fn| < M,E)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(E).

So given � > 0 choose M so large that supn µ(|fn| : |fn| ≥M) < �/2 and then take
δ = �/ (2M) .

Remark 9.35. It is not in general true that if {fn} ⊂ L1(µ) is uniformly integrable
then supn µ(|fn|) <∞. For example take X = {∗} and µ({∗}) = 1. Let fn(∗) = n.
Since for δ < 1 a set E ⊂ X such that µ(E) < δ is in fact the empty set, we see
that Eq. (9.32) holds in this example. However, for finite measure spaces with out
“atoms”, for every δ > 0 we may find a finite partition of X by sets {Ec}kc=1 with
µ(Ec) < δ. Then if Eq. (9.32) holds with 2� = 1, then

µ(|fn|) =
kX

c=1

µ(|fn| : Ec) ≤ k

showing that µ(|fn|) ≤ k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions for
verifying a sequence of functions is uniformly bounded and uniformly integrable.

Lemma 9.36. Suppose that µ(X) <∞, and Λ ⊂ L0(X) is a collection of functions.

(1) If there exists a non decreasing function φ : R+ → R+ such that
limx→∞ φ(x)/x =∞ and

(9.35) K := sup
f∈Λ

µ(φ(|f |)) <∞

then

(9.36) lim
M→∞

sup
f∈Λ

µ
¡|f | 1|f |≥M¢ = 0.

(2) Conversely if Eq. (9.36) holds, there exists a non-decreasing continuous
function φ : R+ → R+ such that φ(0) = 0, limx→∞ φ(x)/x = ∞ and Eq.
(9.35) is valid.
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Proof. 1. Let φ be as in item 1. above and set �M := supx≥M
x

φ(x) → 0 as
M →∞ by assumption. Then for f ∈ Λ

µ(|f | : |f | ≥M) = µ(
|f |

φ (|f |)φ (|f |) : |f | ≥M) ≤ �Mµ(φ (|f |) : |f | ≥M)

≤ �Mµ(φ (|f |)) ≤ K�M

and hence
lim

M→∞
sup
f∈Λ

µ
¡|f | 1|f|≥M¢ ≤ lim

M→∞
K�M = 0.

2. By assumption, �M := supf∈Λ µ
¡|f | 1|f|≥M¢ → 0 as M → ∞. Therefore we

may choose Mn ↑ ∞ such that
∞X
n=0

(n+ 1) �Mn
<∞

where by convention M0 := 0. Now define φ so that φ(0) = 0 and

φ0(x) =
∞X
n=0

(n+ 1) 1(Mn,Mn+1](x),

i.e.

φ(x) =

Z x

0

φ0(y)dy =
∞X
n=0

(n+ 1) (x ∧Mn+1 − x ∧Mn) .

By construction φ is continuous, φ(0) = 0, φ0(x) is increasing (so φ is convex)
and φ0(x) ≥ (n+ 1) for x ≥Mn. In particular

φ(x)

x
≥ φ(Mn) + (n+ 1)x

x
≥ n+ 1 for x ≥Mn

from which we conclude limx→∞ φ(x)/x = ∞. We also have φ0(x) ≤ (n + 1) on
[0,Mn+1] and therefore

φ(x) ≤ (n+ 1)x for x ≤Mn+1.

So for f ∈ Λ,

µ (φ(|f |)) =
∞X
n=0

µ
¡
φ(|f |)1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1|f |≥Mn

¢ ≤ ∞X
n=0

(n+ 1) �Mn

and hence

sup
f∈Λ

µ (φ(|f |)) ≤
∞X
n=0

(n+ 1) �Mn <∞.

Theorem 9.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose that 1 ≤
p <∞. A sequence {fn} ⊂ Lp is Cauchy iff

(1) {fn} is L0 — Cauchy,
(2) {|fn|p} — is uniformly integrable.



174 BRUCE K. DRIVER†

(3) For all � > 0, there exists a set E ∈ M such that µ(E) < ∞ andR
Ec |fn|p dµ < � for all n. (This condition is vacuous when µ(X) <∞.)

Proof. (=⇒) Suppose {fn} ⊂ Lp is Cauchy. Then (1) {fn} is L0 — Cauchy by
Lemma 9.14. (2) By completeness of Lp, there exists f ∈ Lp such that kfn − fkp →
0 as n→∞. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f |, |fn|))p−1 ||f |− |fn|| ≤ p(|f |+ |fn|)p−1 ||f |− |fn||
and therefore by Hölder’s inequality,Z
||f |p − |fn|p| dµ ≤ p

Z
(|f |+ |fn|)p−1 ||f |− |fn|| dµ ≤ p

Z
(|f |+ |fn|)p−1|f − fn|dµ

≤ pkf − fnkpk(|f |+ |fn|)p−1kq = pk|f |+ |fn|kp/qp kf − fnkp
≤ p(kfkp + kfnkp)p/qkf − fnkp

where q := p/(p − 1). This shows that R ||f |p − |fn|p| dµ → 0 as n →∞.19 By the
remarks prior to Definition 9.32, {|fn|p} is uniformly integrable.
To verify (3), for M > 0 and n ∈ N let EM = {|f | ≥ M} and EM (n) = {|fn| ≥

M}. Then µ(EM ) ≤ 1
Mp kf ||pp <∞ and by the dominated convergence theorem,Z

Ec
M

|f |pdµ =
Z
|f |p1|f |<Mdµ→ 0 as M → 0.

Moreover,

(9.37)
°°fn1Ec

M

°°
p
≤ °°f1Ec

M

°°
p
+
°°(fn − f)1Ec

M

°°
p
≤ °°f1Ec

M

°°
p
+ kfn − fkp .

So given � > 0, choose N sufficiently large such that for all n ≥ N, kf −fnkpp < �.
Then choose M sufficiently small such that

R
Ec
M
|f |p dµ < � and

R
Ec
M (n)

|f |p dµ < �

for all n = 1, 2, . . . , N − 1. Letting E ≡ EM ∪EM (1) ∪ · · · ∪EM (N − 1), we have

µ(E) <∞,

Z
Ec

|fn|p dµ < � for n ≤ N − 1

and by Eq. (9.37)Z
Ec

|fn|p dµ < (�1/p + �1/p)p ≤ 2p� for n ≥ N.

Therefore we have found E ∈M such that µ(E) <∞ and

sup
n

Z
Ec

|fn|p dµ ≤ 2p�

which verifies (3) since � > 0 was arbitrary.
(⇐=) Now suppose{fn} ⊂ Lp satisfies conditions (1) - (3). Let � > 0, E be as

in (3) and
Amn ≡ {x ∈ E|fm(x)− fn(x)| ≥ �}.

Then
k(fn − fm) 1Eckp ≤ kfn1Eckp + kfm 1Eckp < 2�1/p

19Here is an alternative proof. Let hn ≡ ||fn|p − |f |p| ≤ |fn|p+ |f |p =: gn ∈ L1 and g ≡ 2|f |p.
Then gn

µ→ g, hn
µ→ 0 and

R
gn →

R
g. Therefore by the dominated convergence theorem in

Corollary 9.17, lim
n→∞

R
hn dµ = 0.
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and

kfn − fmkp = k(fn − fm)1Eckp + k(fn − fm)1E\Amn
kp

+ k(fn − fm)1Amnkp
≤ k(fn − fm)1E\Amn

kp + k(fn − fm)1Amn
kp + 2�1/p.(9.38)

Using properties (1) and (3) and 1E∩{|fm−fn|<�}|fm − fn|p ≤ �p1E ∈ L1, the
dominated convergence theorem in Corollary 9.17 implies

k(fn − fm) 1E\Amn
kpp =

Z
1E∩{|fm−fn|<�} |fm − fn|p −→

m,n→∞ 0.

which combined with Eq. (9.38) implies

lim sup
m,n→∞

kfn − fmkp ≤ lim sup
m,n→∞

k(fn − fm)1Amnkp + 2�1/p.

Finally
k(fn − fm)1Amnkp ≤ kfn1Amnkp + kfm 1Amnkp ≤ 2δ(�)

where
δ(�) ≡ sup

n
sup{ kfn 1Ekp : E ∈M 3 µ(E) ≤ �}

By property (2), δ(�)→ 0 as �→ 0. Therefore

lim sup
m,n→∞

kfn − fmkp ≤ 2�1/p + 0 + 2δ(�)→ 0 as � ↓ 0

and therefore {fn} is Lp-Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 9.38 (Vitali Convergence Theorem). (This is problem 9 on p. 133 in
Rudin.) Assume that µ(X) < ∞, {fn} is uniformly integrable, fn → f a.e. and
|f | <∞ a.e., then f ∈ L1(µ) and fn → f in L1(µ).

Proof. Let � > 0 be given and choose δ > 0 as in the Eq. (9.32). Now use
Egoroff’s Theorem 9.18 to choose a set Ec where {fn} converges uniformly on Ec

and µ(E) < δ. By uniform convergence on Ec, there is an integer N <∞ such that
|fn − fm| ≤ 1 on Ec for all m,n ≥ N. Letting m→∞, we learn that

|fN − f | ≤ 1 on Ec.

Therefore |f | ≤ |fN |+ 1 on Ec and hence

µ(|f |) = µ(|f | : Ec) + µ(|f | : E)
≤ µ(|fN |) + µ(X) + µ(|f | : E).

Now by Fatou’s lemma,

µ(|f | : E) ≤ lim inf
n→∞µ(|fn| : E) ≤ 2� <∞

by Eq. (9.32). This shows that f ∈ L1. Finally

µ(|f − fn|) = µ(|f − fn| : Ec) + µ(|f − fn| : E)
≤ µ(|f − fn| : Ec) + µ(|f |+ |fn| : E)
≤ µ(|f − fn| : Ec) + 4�

and so by the Dominated convergence theorem we learn that

lim sup
n→∞

µ(|f − fn|) ≤ 4�.
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Since � > 0 was arbitrary this completes the proof.

Theorem 9.39 (Vitali again). Suppose that fn → f in µ measure and Eq. (9.34)
holds, then fn → f in L1.

Proof. This could of course be proved using 9.38 after passing to subsequences
to get {fn} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f ∈ L1(µ). Now let

φK(x) = x1|x|≤K +K1|x|>K .

then φK(fn)
µ→ φK(f) because |φK(f)− φK(fn)| ≤ |f − fn| and since

|f − fn| ≤ |f − φK(f)|+ |φK(f)− φK(fn)|+ |φK(fn)− fn|
we have that

µ|f − fn| ≤ µ |f − φK(f)|+ µ|φK(f)− φK(fn)|+ µ |φK(fn)− fn|
= µ(|f | : |f | ≥ K) + µ|φK(f)− φK(fn)|+ µ(|fn| : |fn| ≥ K).

Therefore by the dominated convergence theorem

lim sup
n→∞

µ|f − fn| ≤ µ(|f | : |f | ≥ K) + lim sup
n→∞

µ(|fn| : |fn| ≥ K).

This last expression goes to zero as K →∞ by uniform integrability.

9.6. Exercises.

Definition 9.40. The essential range of f, essran(f), consists of those λ ∈ C
such that µ(|f − λ| < �) > 0 for all � > 0.

Definition 9.41. Let (X, τ) be a topological space and ν be a measure on BX =
σ(τ). The support of ν, supp(ν), consists of those x ∈ X such that ν(V ) > 0 for
all open neighborhoods, V, of x.

Exercise 9.3. Let (X, τ) be a second countable topological space and ν be a
measure on BX — the Borel σ — algebra on X. Show

(1) supp(ν) is a closed set. (This is true on all topological spaces.)
(2) ν(X \ supp(ν)) = 0 and use this to conclude that W := X \ supp(ν) is the

largest open set in X such that ν(W ) = 0. Hint: U ⊂ τ be a countable
base for the topology τ. Show thatW may be written as a union of elements
from V ∈ V with the property that µ(V ) = 0.

Exercise 9.4. Prove the following facts about essran(f).
(1) Let ν = f∗µ := µ◦f−1 — a Borel measure on C. Show essran(f) = supp(ν).
(2) essran(f) is a closed set and f(x) ∈ essran(f) for almost every x, i.e. µ(f /∈

essran(f)) = 0.
(3) If F ⊂ C is a closed set such that f(x) ∈ F for almost every x then

essran(f) ⊂ F. So essran(f) is the smallest closed set F such that f(x) ∈ F
for almost every x.

(4) kfk∞ = sup {|λ| : λ ∈ essran(f)} .
Exercise 9.5. Let f ∈ Lp ∩ L∞ for some p < ∞. Show kfk∞ = limq→∞ kfkq .
If we further assume µ(X) < ∞, show kfk∞ = limq→∞ kfkq for all measurable
functions f : X → C. In particular, f ∈ L∞ iff limq→∞ kfkq <∞.
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Exercise 9.6. Prove Eq. (9.20) in Corollary 9.23. (Part of Folland 6.3 on p. 186.)
Hint: Use Lemma 2.27 applied to the right side of Eq. (9.19).

Exercise 9.7. Complete the proof of Proposition 9.22 by showing (Lp + Lr, k·k)
is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 9.8. Folland 6.5 on p. 186.

Exercise 9.9. Folland 6.6 on p. 186.

Exercise 9.10. Folland 6.9 on p. 186.

Exercise 9.11. Folland 6.10 on p. 186. Use the strong form of Theorem 7.38.

Exercise 9.12. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, f ∈ L2(ν)
and k ∈ L2(µ⊗ ν). ShowZ

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x.

Let Kf(x) :=
R
Y
k(x, y)f(y)dν(y) when the integral is defined. Show Kf ∈ L2(µ)

and K : L2(ν)→ L2(µ) is a bounded operator with kKkop ≤ kkkL2(µ⊗ν) .
Exercise 9.13. Folland 6.27 on p. 196.

Exercise 9.14. Folland 2.32 on p. 63.

Exercise 9.15. Folland 2.38 on p. 63.
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10. Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology τ.We are now
interested in restrictions on τ in order to insure there are “plenty” of continuous
functions. One such restriction is to assume τ = τd — is the topology induced from
a metric on X. The following two results shows that (X, τd) has lots of continuous
functions. Recall for A ⊂ X, dA(x) = inf{d(x, y) : y ∈ A}.
Lemma 10.1 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a metric space,
V ⊂o X and F @ X such that F ⊂ V. Then

(10.1) f(x) =
dV c(x)

dF (x) + dV c(x)
for x ∈ X

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ F and
f(x) = 0 if x /∈ V. (This may also be stated as follows. Let A (A = F ) and B
(B = V c) be two disjoint closed subsets of X, then there exists f ∈ C(X, [0, 1]) such
that f = 1 on A and f = 0 on B.)

Proof. By Lemma 3.5, dF and dV c are continuous functions on X. Since F and
V c are closed, dF (x) > 0 if x /∈ F and dV c(x) > 0 if x ∈ V. Since F ∩ V c = ∅,
dF (x)+dV c(x) > 0 for all x and (dF + dV c)

−1 is continuous as well. The remaining
assertions about f are all easy to verify.

Theorem 10.2 (Metric Space Tietze Extension Theorem). Let (X, d) be a metric
space, D be a closed subset of X, −∞ < a < b <∞ and f ∈ C(D, [a, b]). (Here we
are viewing D as a topological space with the relative topology, τD, see Definition
3.17.) Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof.
(1) By scaling and translation (i.e. by replacing f by f−a

b−a ), it suffices to prove
Theorem 10.2 with a = 0 and b = 1.

(2) Suppose α ∈ (0, 1] and f : D → [0, α] is continuous function. Let A :=
f−1([0, 13α]) and B := f−1([23α, 1]). By Lemma 10.1 there exists a function
g̃ ∈ C(X, [0, α/3]) such that g̃ = 0 on A and g̃ = 1 on B. Letting g := α

3 g̃,
we have g ∈ C(X, [0, α/3]) such that g = 0 on A and g = α/3 on B. Further
notice that

0 ≤ f(x)− g(x) ≤ 2
3
α for all x ∈ D.

(3) Now suppose f : D → [0, 1] is a continuous function as in step 1. Let
g1 ∈ C(X, [0, 1/3]) be as in step 2. with α = 1 and let f1 := f − g1|D ∈
C(D, [0, 2/3]). Apply step 2. with α = 2/3 and f = f1 to find g2 ∈
C(X, [0, 13

2
3 ]) such that f2 := f − (g1 + g2) |D ∈ C(D, [0,

¡
2
3

¢2
]). Continue

this way inductively to find gn ∈ C(X, [0, 13
¡
2
3

¢n−1
]) such that

(10.2) f −
NX
n=1

gn|D =: fN ∈ C(D, [0,

µ
2

3

¶N
]).

(4) Define F :=
P∞

n=1 gn. Since
∞X
n=1

kgnku ≤
∞X
n=1

1

3

µ
2

3

¶n−1
=
1

3

1

1− 2
3

= 1,
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the series defining F is uniformly convergent so F ∈ C(X, [0, 1]). Passing
to the limit in Eq. (10.2) shows f = F |D.

The main thrust of this section is to study locally compact (and σ — compact)
Hausdorff spaces as defined below. We will see again that this class of topological
spaces have an ample supply of continuous functions. We will start out with the
notion of a Hausdorff topology. The following example shows a pathology which
occurs when there are not enough open sets in a topology.

Example 10.3. Let X = {1, 2, 3} and τ = {X, ∅, {1, 2}, {2, 3}, {2}} and xn = 2
for all n. Then xn → x for every x ∈ X!

Definition 10.4 (Hausdorff Topology). A topological space, (X, τ), is Hausdorff
if for each pair of distinct points, x, y ∈ X, there exists disjoint open neighborhoods,
U and V of x and y respectively. (Metric spaces are typical examples of Hausdorff
spaces.)

Remark 10.5. When τ is Hausdorff the “pathologies” appearing in Example 10.3
do not occur. Indeed if xn → x ∈ X and y ∈ X \ {x} we may choose V ∈ τx and
W ∈ τy such that V ∩W = ∅. Then xn ∈ V a.a. implies xn /∈W for all but a finite
number of n and hence xn 9 y, so limits are unique.

Proposition 10.6. Suppose that (X, τ) is a Hausdorff space, K @@ X and x ∈ Kc.
Then there exists U,V ∈ τ such that U ∩ V = ∅, x ∈ U and K ⊂ V. In particular
K is closed. (So compact subsets of Hausdorff topological spaces are closed.) More
generally if K and F are two disjoint compact subsets of X, there exist disjoint
open sets U, V ∈ τ such that K ⊂ V and F ⊂ U.

Proof. Because X is Hausdorff, for all y ∈ K there exists Vy ∈ τy and Uy ∈ τx
such that Vy ∩Uy = ∅. The cover {Vy}y∈K of K has a finite subcover, {Vy}y∈Λ for
some Λ ⊂⊂ K. Let V = ∪y∈ΛVy and U = ∩y∈ΛUy, then U, V ∈ τ satisfy x ∈ U,
K ⊂ V and U ∩ V = ∅. This shows that Kc is open and hence that K is closed.
Suppose that K and F are two disjoint compact subsets of X. For each x ∈ F

there exists disjoint open sets Ux and Vx such that K ⊂ Vx and x ∈ Ux. Since
{Ux}x∈F is an open cover of F, there exists a finite subset Λ of F such that F ⊂
U := ∪x∈ΛUx. The proof is completed by defining V := ∩x∈ΛVx.
Exercise 10.1. Show any finite set X admits exactly one Hausdorff topology τ.

Exercise 10.2. Let (X, τ) and (Y, τY ) be topological spaces.

(1) Show τ is Hausdorff iff ∆ := {(x, x) : x ∈ X} is a closed in X×X equipped
with the product topology τ ⊗ τ.

(2) Suppose τ is Hausdorff and f, g : Y → X are continuous maps. If

{f = g}Y = Y then f = g. Hint: make use of the map f × g : Y → X×X
defined by (f × g) (y) = (f(y), g(y)).

Exercise 10.3. Given an example of a topological space which has a non-closed
compact subset.

Proposition 10.7. Suppose that X is a compact topological space, Y is a Hausdorff
topological space, and f : X → Y is a continuous bijection then f is a homeomor-
phism, i.e. f−1 : Y → X is continuous as well.
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Proof. Since closed subsets of compact sets are compact, continuous images of
compact subsets are compact and compact subsets of Hausdorff spaces are closed,
it follows that

¡
f−1

¢−1
(C) = f(C) is closed in X for all closed subsets C of X.

Thus f−1 is continuous.

Definition 10.8 (Local and σ — compactness). Let (X, τ) be a topological space.
(1) (X, τ) is locally compact if for all x ∈ X there exists an open neigh-

borhood V ⊂ X of x such that V̄ is compact. (Alternatively, in light of
Definition 3.19, this is equivalent to requiring that to each x ∈ X there
exists a compact neighborhood Nx of x.)

(2) (X, τ) is σ — compact if there exists compact sets Kn ⊂ X such that X =
∪∞n=1Kn. (Notice that we may assume, by replacingKn byK1∪K2∪· · ·∪Kn

if necessary, that Kn ↑ X.)

Example 10.9. Any open subset of X ⊂ Rn is a locally compact and σ — compact
metric space (and hence Hausdorff). The proof of local compactness is easy and is
left to the reader. To see that X is σ — compact, for k ∈ N, let

Kk := {x ∈ X : |x| ≤ k and dXc(x) ≥ 1/k} .
Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ X as k →∞ since20

Ko
k ⊃ {x ∈ X : |x| < k and dXc(x) > 1/k} ↑ X as k →∞.

Exercise 10.4. Every separable locally compact metric space is σ — compact.
Hint: Let {xn}∞n=1 ⊂ X be a countable dense subset of X and define

�n =
1

2
sup {� > 0 : Cxn(�) is compact} ∧ 1.

Exercise 10.5. Every σ — compact metric space is separable. Therefore a locally
compact metric space is separable iff it is σ — compact.

Exercise 10.6. Suppose that (X, d) is a metric space and U ⊂ X is an open subset.
(1) If X is locally compact then (U, d) is locally compact.
(2) If X is σ — compact then (U, d) is σ — compact. Hint: Mimick Example

10.9, replacing C0(k) by compact set Kk @@ X such that Kk ↑ X.

Lemma 10.10. Let (X, τ) be a locally compact and σ — compact topological space.
Then there exists compact sets Kn ↑ X such that Kn ⊂ Ko

n+1 ⊂ Kn+1 for all n.

Proof. Suppose that C ⊂ X is a compact set. For each x ∈ C let Vx ⊂o X be
an open neighborhood of x such that V̄x is compact. Then C ⊂ ∪x∈CVx so there
exists Λ ⊂⊂ C such that

C ⊂ ∪x∈ΛVx ⊂ ∪x∈ΛV̄x =: K.

Then K is a compact set, being a finite union of compact subsets of X, and C ⊂
∪x∈ΛVx ⊂ Ko.
Now let Cn ⊂ X be compact sets such that Cn ↑ X as n → ∞. Let K1 = C1

and then choose a compact set K2 such that C2 ⊂ Ko
2 . Similarly, choose a compact

set K3 such that K2 ∪ C3 ⊂ Ko
3 and continue inductively to find compact sets Kn

such that Kn ∪Cn+1 ⊂ Ko
n+1 for all n. Then {Kn}∞n=1 is the desired sequence.

20In fact this is an equality, but we will not need this here.
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Remark 10.11. Lemma 10.10 may also be stated as saying there exists precompact
open sets {Gn}∞n=1 such that Gn ⊂ Ḡn ⊂ Gn+1 for all n and Gn ↑ X as n → ∞.
Indeed if {Gn}∞n=1 are as above, let Kn := Ḡn and if {Kn}∞n=1 are as in Lemma
10.10, let Gn := Ko

n.

The following result is a Corollary of Lemma 10.10 and Theorem 3.59.

Corollary 10.12 (Locally compact form of Ascoli-Arzela Theorem ). Let (X, τ)
be a locally compact and σ — compact topological space and {fm} ⊂ C(X) be a
pointwise bounded sequence of functions such that {fm|K} is equicontinuous for any
compact subset K ⊂ X. Then there exists a subsequence {mn} ⊂ {m} such that
{gn := fmn}∞n=1 ⊂ C(X) is a sequence which is uniformly convergent on compact
subsets of X.

Proof. Let {Kn}∞n=1 be the compact subsets of X constructed in Lemma 10.10.
We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences

{fm} ⊃ {g1m} ⊃ {g2m} ⊃ {g3m} ⊃ . . .

such that the sequence {gnm}∞m=1 ⊂ C(X) is uniformly convergent on Kn. Using
Cantor’s trick, define the subsequence {hn} of {fm} by hn ≡ gnn. Then {hn} is
uniformly convergent on Kl for each l ∈ N. Now if K ⊂ X is an arbitrary compact
set, there exists l < ∞ such that K ⊂ Ko

l ⊂ Kl and therefore {hn} is uniformly
convergent on K as well.
The next two results shows that locally compact Hausdorff spaces have plenty

of open sets and plenty of continuous functions.

Proposition 10.13. Suppose X is a locally compact Hausdorff space and U ⊂o X
and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X and V̄ is
compact.

Proof. By local compactness, for all x ∈ K, there exists Ux ∈ τx such that Ūx
is compact. Since K is compact, there exists Λ ⊂⊂ K such that {Ux}x∈Λ is a cover
of K. The set O = U ∩ (∪x∈ΛUx) is an open set such that K ⊂ O ⊂ U and O
is precompact since Ō is a closed subset of the compact set ∪x∈ΛŪx. (∪x∈ΛŪx. is
compact because it is a finite union of compact sets.) So by replacing U by O if
necessary, we may assume that Ū is compact.
Since Ū is compact and ∂U = Ū ∩ U c is a closed subset of Ū , ∂U is compact.

Because ∂U ⊂ U c, it follows that ∂U ∩K = ∅, so by Proposition 10.6, there exists
disjoint open sets V and W such that K ⊂ V and ∂U ⊂ W. By replacing V by
V ∩ U if necessary we may further assume that K ⊂ V ⊂ U, see Figure 19.
Because Ū ∩W c is a closed set containing V and Uc ∩ Ū ∩W c = ∂U ∩W c = ∅,

V̄ ⊂ Ū ∩W c = U ∩W c ⊂ U ⊂ Ū .

Since Ū is compact it follows that V̄ is compact and the proof is complete.

Exercise 10.7. Give a “simpler” proof of Proposition 10.13 under the additional
assumption that X is a metric space. Hint: show for each x ∈ K there exists
Vx := Bx(�x) with �x > 0 such that Bx(�x) ⊂ Cx(�x) ⊂ U with Cx(�x) being
compact. Recall that Cx(�) is the closed ball of radius � about x.

Definition 10.14. Let U be an open subset of a topological space (X, τ). We will
write f ≺ U to mean a function f ∈ Cc(X, [0, 1]) such that supp(f) := {f 6= 0} ⊂ U.
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Figure 19. The construction of V.

Lemma 10.15 (Locally Compact Version of Urysohn’s Lemma). Let X be a locally
compact Hausdorff space and K @@ U ⊂o X. Then there exists f ≺ U such that
f = 1 on K. In particular, if K is compact and C is closed in X such that K∩C = ∅,
there exists f ∈ Cc(X, [0, 1]) such that f = 1 on K and f = 0 on C.

Proof. For notational ease later it is more convenient to construct g := 1 − f
rather than f. To motivate the proof, suppose g ∈ C(X, [0, 1]) such that g = 0
on K and g = 1 on Uc. For r > 0, let Ur = {g < r} . Then for 0 < r < s ≤ 1,
Ur ⊂ {g ≤ r} ⊂ Us and since {g ≤ r} is closed this implies

K ⊂ Ur ⊂ Ūr ⊂ {g ≤ r} ⊂ Us ⊂ U.

Therefore associated to the function g is the collection open sets {Ur}r>0 ⊂ τ with
the property that K ⊂ Ur ⊂ Ūr ⊂ Us ⊂ U for all 0 < r < s ≤ 1 and Ur = X if
r > 1. Finally let us notice that we may recover the function g from the sequence
{Ur}r>0 by the formula
(10.3) g(x) = inf{r > 0 : x ∈ Ur}.
The idea of the proof to follow is to turn these remarks around and define g by Eq.
(10.3).
Step 1. (Construction of the Ur.) Let

D ≡ ©k2−n : k = 1, 2, . . . , 2−1, n = 1, 2, . . .ª
be the dyadic rationales in (0, 1]. Use Proposition 10.13 to find a precompact open
set U1 such that K ⊂ U1 ⊂ Ū1 ⊂ U. Apply Proposition 10.13 again to construct an
open set U1/2 such that

K ⊂ U1/2 ⊂ Ū1/2 ⊂ U1

and similarly use Proposition 10.13 to find open sets U1/2, U3/4 ⊂o X such that

K ⊂ U1/4 ⊂ Ū1/4 ⊂ U1/2 ⊂ Ū1/2 ⊂ U3/4 ⊂ Ū3/4 ⊂ U1.

Likewise there exists open set U1/8, U3/8, U5/8, U7/8 such that

K ⊂ U1/8 ⊂ Ū1/8 ⊂ U1/4 ⊂ Ū1/4 ⊂ U3/8 ⊂ Ū3/8 ⊂ U1/2

⊂ Ū1/2 ⊂ U5/8 ⊂ Ū5/8 ⊂ U3/4 ⊂ Ū3/4 ⊂ U7/8 ⊂ Ū7/8 ⊂ U1.
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Continuing this way inductively, one shows there exists precompact open sets
{Ur}r∈D ⊂ τ such that

K ⊂ Ur ⊂ Ur ⊂ Us ⊂ U1 ⊂ Ū1 ⊂ U

for all r, s ∈ D with 0 < r < s ≤ 1.
Step 2. Let Ur ≡ X if r > 1 and define

g(x) = inf{r ∈ D ∪ (1,∞) : x ∈ Ur},
see Figure 20. Then g(x) ∈ [0, 1] for all x ∈ X, g(x) = 0 for x ∈ K since x ∈ K ⊂ Ur

Figure 20. Determining g from {Ur} .

for all r ∈ D. If x ∈ Uc
1 , then x /∈ Ur for all r ∈ D and hence g(x) = 1. Therefore

f := 1−g is a function such that f = 1 onK and {f 6= 0} = {g 6= 1} ⊂ U1 ⊂ Ū1 ⊂ U

so that supp(f) = {f 6= 0} ⊂ Ū1 ⊂ U is a compact subset of U. Thus it only remains
to show f, or equivalently g, is continuous.
Since E = {(α,∞), (−∞, α) : α ∈ R} generates the standard topology on R, to

prove g is continuous it suffices to show {g < α} and {g > α} are open sets for all
α ∈ R. But g(x) < α iff there exists r ∈ D ∪ (1,∞) with r < α such that x ∈ Ur.
Therefore

{g < α} =
[
{Ur : r ∈ D ∪ (1,∞) 3 r < α}

which is open in X. If α ≥ 1, {g > α} = ∅ and if α < 0, {g > α} = X. If α ∈ (0, 1),
then g(x) > α iff there exists r ∈ D such that r > α and x /∈ Ur. Now if r > α and
x /∈ Ur then for s ∈ D ∩ (α, r), x /∈ Ūs ⊂ Ur. Thus we have shown that

{g > α} =
[n¡

Us

¢c
: s ∈ D 3 s > α

o
which is again an open subset of X.

Exercise 10.8. mGive a simpler proof of Lemma 10.15 under the additional as-
sumption that X is a metric space.
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Theorem 10.16 (Locally Compact Tietz Extension Theorem). Let (X, τ) be a
locally compact Hausdorff space, K @@ U ⊂o X, f ∈ C(K,R), a = min f(K) and
b = max f(K). Then there exists F ∈ C(X, [a, b]) such that F |K = f. Moreover
given c ∈ [a, b], F can be chosen so that supp(F − c) = {F 6= c} ⊂ U.

The proof of this theorem is similar to Theorem 10.2 and will be left to the
reader, see Exercise 10.11.

Lemma 10.17. Suppose that (X, τ) is a locally compact second countable Hausdorff
space. (For example any separable locally compact metric space and in particular
any open subsets of Rn.) Then:

(1) every open subset U ⊂ X is σ — compact.
(2) If F ⊂ X is a closed set, there exist open sets Vn ⊂ X such that Vn ↓ F as

n→∞.
(3) To each open set U ⊂ X there exists fn ≺ U such that limn→∞ fn = 1U .
(4) The σ — algebra generated by Cc(X) is the Borel σ — algebra, BX .
Proof.

(1) Let U be an open subset of X, V be a countable base for τ and
VU := {W ∈ V : W̄ ⊂ U and W̄ is compact}.

For each x ∈ U, by Proposition 10.13, there exists an open neighborhood V
of x such that V̄ ⊂ U and V̄ is compact. Since V is a base for the topology
τ, there exists W ∈ V such that x ∈ W ⊂ V. Because W̄ ⊂ V̄ , it follows
that W̄ is compact and hence W ∈ VU . As x ∈ U was arbitrary, U = ∪VU .
Let {Wn}∞n=1 be an enumeration of VU and set Kn := ∪nk=1W̄k. Then

Kn ↑ U as n→∞ and Kn is compact for each n.
(2) Let {Kn}∞n=1 be compact subsets of F c such that Kn ↑ F c as n→∞ and

set Vn := Kc
n = X \Kn. Then Vn ↓ F and by Proposition 10.6, Vn is open

for each n.
(3) Let U ⊂ X be an open set and {Kn}∞n=1 be compact subsets of U such

that Kn ↑ U. By Lemma 10.15, there exist fn ≺ U such that fn = 1 on Kn.
These functions satisfy, 1U = limn→∞ fn.

(4) By Item 3., 1U is σ(Cc(X,R)) — measurable for all U ∈ τ. Hence τ ⊂
σ(Cc(X,R)) and therefore BX = σ(τ) ⊂ σ(Cc(X,R)). The converse inclu-
sion always holds since continuous functions are always Borel measurable.

Corollary 10.18. Suppose that (X, τ) is a second countable locally compact Haus-
dorff space, BX = σ(τ) is the Borel σ — algebra on X and H is a subspace of
B(X,R) which is closed under bounded convergence and contains Cc(X,R). Then
H contains all bounded BX — measurable real valued functions on X.

Proof. Since H is closed under bounded convergence and Cc(X,R) ⊂ H, it
follows by Item 3. of Lemma 10.17 that 1U ∈ H for all U ∈ τ. Since τ is a π — class
the corollary follows by an application of Theorem 8.12.

10.1. Locally compact form of Urysohn Metrization Theorem.
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Notation 10.19. Let Q := [0, 1]N denote the (infinite dimensional) unit cube in
RN. For a, b ∈ Q let

(10.4) d(a, b) :=
∞X
n=1

1

2n
|an − bn| .

The metric introduced in Exercise 3.27 would be defined, in this context, as
d̃(a, b) :=

P∞
n=1

1
2n

|an−bn|
1+|an−bn| . Since 1 ≤ 1+|an − bn| ≤ 2, it follows that d̃ ≤ d ≤ 2d.

So the metrics d and d̃ are equivalent and in particular the topologies induced by
d and d̃ are the same. By Exercises 6.15, the d — topology on Q is the same as the
product topology and by Exercise 3.27, (Q, d) is a compact metric space.

Theorem 10.20 (Urysohn Metrization Theorem). Every second countable locally
compact Hausdorff space, (X, τ) , is metrizable, i.e. there is a metric ρ on X such
that τ = τρ. Moreover, ρ may be chosen so that X is isometric to a subset Q0 ⊂ Q
equipped with the metric d in Eq. (10.4). In this metric X is totally bounded and
hence the completion of X (which is isometric to Q̄0 ⊂ Q) is compact.

Proof. Let B be a countable base for τ and set
Γ ≡ {(U, V ) ∈ B × B | Ū ⊂ V and Ū is compact}.

To each O ∈ τ and x ∈ O there exist (U,V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a basis for τ, there exists V ∈ B such that x ∈ V ⊂ O. Now
apply Proposition 10.13 to find U 0 ⊂o X such that x ∈ U 0 ⊂ Ū 0 ⊂ V with Ū 0

being compact. Since B is a basis for τ, there exists U ∈ B such that x ∈ U ⊂ U 0

and since Ū ⊂ Ū 0, Ū is compact so (U,V ) ∈ Γ. In particular this shows that
B0 := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B} is still a base for τ.
If Γ is a finite, then B0 is finite and τ only has a finite number of elements as

well. Since (X, τ) is Hausdorff, it follows that X is a finite set. Letting {xn}Nn=1 be
an enumeration of X, define T : X → Q by T (xn) = en for n = 1, 2, . . . , N where
en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1 ocurring in the nth spot. Then ρ(x, y) :=
d(T (x), T (y)) for x, y ∈ X is the desired metric. So we may now assume that Γ is
an infinite set and let {(Un, Vn)}∞n=1 be an enumeration of Γ.
By Urysohn’s Lemma 10.15 there exists fU,V ∈ C(X, [0, 1]) such that fU,V = 0

on Ū and fU,V = 1 on V c. Let F ≡ {fU,V | (U, V ) ∈ Γ} and set fn := fUn,Vn — an
enumeration of F . We will now show that

ρ(x, y) :=
∞X
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

(1) (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequal-
ity and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0 , Vn0) ∈ Γ such that x ∈ Un0 and Vn0 ⊂ O := {y}c . Since fn0(x) = 0
and fn0(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.

(2) (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.
Since, for each x ∈ X, y → ρ(x, y) is τ0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(�) :=
{y ∈ X : ρ(x, y) < �} ∈ τ0 for all x ∈ X and � > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0 , Vn0) ∈ Γ be such that x ∈ Un0

and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on Oc. Therefore if y ∈ X and
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fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0. Moreover, if y ∈ Bx(2

−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0(y)
and therefore x ∈ Bx(2

−n0) ⊂ {fn0 < 1} ⊂ O. This shows O is ρ — open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.

(3) (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and therefore X is isometric to Q0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore X
is totally bounded.

10.2. Partitions of Unity.

Definition 10.21. Let (X, τ) be a topological space and X0 ⊂ X be a set. A
collection of sets {Bα}α∈A ⊂ 2X is locally finite on X0 if for all x ∈ X0, there is
an open neighborhood Nx ∈ τ of x such that #{α ∈ A : Bα ∩Nx 6= ∅} <∞.

Lemma 10.22. Let (X, τ) be a locally compact Hausdorff space.
(1) A subset E ⊂ X is closed iff E ∩K is closed for all K @@ X.
(2) Let {Cα}α∈A be a locally finite collection of closed subsets of X, then C =
∪α∈ACα is closed in X. (Recall that in general closed sets are only closed
under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, E ∩ K
is closed if E is closed and K is compact. Now suppose that E ∩K is closed for
all compact subsets K ⊂ X and let x ∈ Ec. Since X is locally compact, there
exists a precompact open neighborhood, V, of x.21 By assumption E ∩ V̄ is closed
so x ∈ ¡E ∩ V̄ ¢c — an open subset of X. By Proposition 10.13 there exists an open
set U such that x ∈ U ⊂ Ū ⊂ ¡E ∩ V̄ ¢c , see Figure 21. Let W := U ∩ V. Since

Figure 21. Showing Ec is open.

W ∩E = U ∩ V ∩E ⊂ U ∩ V̄ ∩E = ∅,
21If X were a metric space we could finish the proof as follows. If there does not exist an open

neighborhood of x which is disjoint from E, then there would exists xn ∈ E such that xn → x.
Since E ∩ V̄ is closed and xn ∈ E ∩ V̄ for all large n, it follows (see Exercise 3.4) that x ∈ E ∩ V̄
and in particular that x ∈ E. But we chose x ∈ Ec.
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and W is an open neighborhood of x and x ∈ Ec was arbitrary, we have shown Ec

is open hence E is closed.
Item 2. Let K be a compact subset of X and for each x ∈ K let Nx be an

open neighborhood of x such that #{α ∈ A : Cα ∩ Nx 6= ∅} < ∞. Since K
is compact, there exists a finite subset Λ ⊂ K such that K ⊂ ∪x∈ΛNx. Letting
Λ0 := {α ∈ A : Cα ∩K 6= ∅}, then

#(Λ0) ≤
X
x∈Λ

#{α ∈ A : Cα ∩Nx 6= ∅} <∞

and hence K ∩ (∪α∈ACα) = K ∩ (∪α∈Λ0Cα) . The set (∪α∈Λ0Cα) is a finite union
of closed sets and hence closed. Therefore, K ∩ (∪α∈ACα) is closed and by Item (1)
it follows that ∪α∈ACα is closed as well.

Definition 10.23. Suppose that U is an open cover of X0 ⊂ X. A collection
{φi}Ni=1 ⊂ C(X, [0, 1]) (N = ∞ is allowed here) is a partition of unity on X0

subordinate to the cover U if:
(1) for all i there is a U ∈ U such that supp(φi) ⊂ U,
(2) the collection of sets, {supp(φi)}Ni=1, is locally finite on X0, and
(3)

PN
i=1 φi = 1 on X0. (Notice by (2), that for each x ∈ X0 there is a neigh-

borhood Nx such that φi|Nx is not identically zero for only a finite number
of terms. So the sum is well defined and we say the sum is locally finite.)

Proposition 10.24 (Partitions of Unity: The Compact Case). Suppose that X is
a locally compact Hausdorff space, K ⊂ X is a compact set and U = {Uj}nj=1 is
an open cover of K. Then there exists a partition of unity {hj}nj=1 of K such that
hj ≺ Uj for all j = 1, 2, . . . , n.

Proof. For all x ∈ K choose a precompact open neighborhood, Vx, of x such
that V x ⊂ Uj . Since K is compact, there exists a finite subset, Λ, of K such that
K ⊂ S

x∈Λ
Vx. Let

Fj = ∪
©
V̄x : x ∈ Λ and V x ⊂ Uj

ª
.

Then Fj is compact, Fj ⊂ Uj for all j, and K ⊂ ∪nj=1Fj . By Urysohn’s Lemma
10.15 there exists fj ≺ Uj such that fj = 1 on Fj . We will now give two methods
to finish the proof.
Method 1. Let h1 = f1, h2 = f2(1− h1) = f2(1− f1),

h3 = f3(1− h1 − h2) = f3(1− f1 − (1− f1)f2) = f3(1− f1)(1− f2)

and continue on inductively to define

(10.5) hk = (1− h1 − · · ·− hk−1)fk = fk ·
k−1Y
j=1

(1− fj)∀ k = 2, 3, . . . , n

and to show

(10.6) (1− h1 − · · ·− hn) =
nY
j=1

(1− fj).

From these equations it clearly follows that hj ∈ Cc(X, [0, 1]) and that supp(hj) ⊂
supp(fj) ⊂ Uj , i.e. hj ≺ Uj . Since

Qn
j=1(1− fj) = 0 on K,

Pn
j=1 hj = 1 on K and

{hj}nj=1 is the desired partition of unity.
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Method 2. Let g :=
nP
j=1

fj ∈ Cc(X). Then g ≥ 1 on K and hence K ⊂ {g > 1
2}.

Choose φ ∈ Cc(X, [0, 1]) such that φ = 1 on K and supp(φ) ⊂ {g > 1
2} and define

f0 ≡ 1− φ. Then f0 = 0 on K, f0 = 1 if g ≤ 1
2 and therefore,

f0 + f1 + · · ·+ fn = f0 + g > 0

on X. The desired partition of unity may be constructed as

hj(x) =
fj(x)

f0(x) + · · ·+ fn(x)
.

Indeed supp (hj) = supp (fj) ⊂ Uj , hj ∈ Cc(X, [0, 1]) and on K,

h1 + · · ·+ hn =
f1 + · · ·+ fn

f0 + f1 + · · ·+ fn
=

f1 + · · ·+ fn
f1 + · · ·+ fn

= 1.

Proposition 10.25. Let (X, τ) be a locally compact and σ — compact Hausdorff
space. Suppose that U ⊂ τ is an open cover of X. Then we may construct two
locally finite open covers V = {Vi}Ni=1 and W = {Wi}Ni=1 of X (N =∞ is allowed
here) such that:

(1) Wi ⊂ W̄i ⊂ Vi ⊂ V̄i and V̄i is compact for all i.
(2) For each i there exist U ∈ U such that V̄i ⊂ U.

Proof. By Remark 10.11, there exists an open cover of G = {Gn}∞n=1 of X such
that Gn ⊂ Ḡn ⊂ Gn+1. Then X = ∪∞k=1(Ḡk \ Ḡk−1), where by convention G−1 =
G0 = ∅. For the moment fix k ≥ 1. For each x ∈ Ḡk \Gk−1, let Ux ∈ U be chosen so
that x ∈ Ux and by Proposition 10.13 choose an open neighborhood Nx of x such
that N̄x ⊂ Ux∩(Gk+1\Ḡk−2), see Figure 22 below. Since {Nx}x∈Ḡk\Gk−1 is an open

Figure 22. Constructing the {Wi}Ni=1 .

cover of the compact set Ḡk \Gk−1, there exist a finite subset Γk ⊂ {Nx}x∈Ḡk\Gk−1
which also covers Ḡk \ Gk−1. By construction, for each W ∈ Γk, there is a U ∈ U
such that W̄ ⊂ U ∩ (Gk+1 \ Ḡk−2). Apply Proposition 10.13 one more time to find,
for each W ∈ Γk, an open set VW such that W̄ ⊂ VW ⊂ V̄W ⊂ U ∩ (Gk+1 \ Ḡk−2).
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We now choose and enumeration {Wi}Ni=1 of the countable open cover ∪∞k=1Γk of
X and define Vi = VWi . Then the collection {Wi}Ni=1 and {Vi}Ni=1 are easily checked
to satisfy all the conclusions of the proposition. In particular notice that for each
k that the set of i’s such that Vi ∩Gk 6= ∅ is finite.
Theorem 10.26 (Partitions of Unity in locally and σ — compact spaces). Let (X, τ)
be a locally compact and σ — compact Hausdorff space and U ⊂ τ be an open cover
of X. Then there exists a partition of unity of {hi}Ni=1 (N = ∞ is allowed here)
subordinate to the cover U such that supp(hi) is compact for all i.
Proof. Let V = {Vi}Ni=1 and W = {Wi}Ni=1 be open covers of X with the

properties described in Proposition 10.25. By Urysohn’s Lemma 10.15, there exists
fi ≺ Vi such that fi = 1 on W̄i for each i.
As in the proof of Proposition 10.24 there are two methods to finish the proof.
Method 1. Define h1 = f1, hj by Eq. (10.5) for all other j. Then as in Eq.

(10.6)

1−
NX
j=1

hj =
NY
j=1

(1− fj) = 0

since for x ∈ X, fj(x) = 1 for some j. As in the proof of Proposition 10.24, it is
easily checked that {hi}Ni=1 is the desired partition of unity.
Method 2. Let f ≡ PN

i=1 fi, a locally finite sum, so that f ∈ C(X). Since
{Wi}∞i=1 is a cover of X, f ≥ 1 on X so that 1/f ∈ C (X)) as well. The functions
hi ≡ fi/f for i = 1, 2, . . . , N give the desired partition of unity.

Corollary 10.27. Let (X, τ) be a locally compact and σ — compact Hausdorff space
and U = {Uα}α∈A ⊂ τ be an open cover of X. Then there exists a partition of unity
of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂ Uα for all α ∈ A.
(Notice that we do not assert that hα has compact support. However if Ūα is
compact then supp(hα) will be compact.)

Proof. By the σ — compactness ofX, we may choose a countable subset, {αi}i<N
(N =∞ allowed here), of A such that {Ui ≡ Uαi}i<N is still an open cover ofX. Let
{gj}j<N be a partition of unity subordinate to the cover {Ui}i<N as in Theorem

10.26. Define Γ̃k ≡ {j : supp(gj) ⊂ Uk} and Γk := Γ̃k \
³
∪k−1j=1 Γ̃k

´
, where by

convention Γ̃0 = ∅. Then

{i ∈ N : i < N}=
∞[
k=1

Γ̃k =
∞a
k=1

Γk.

If Γk = ∅ let hk ≡ 0 otherwise let hk :=
P

j∈Γk gj , a locally finite sum. ThenP∞
k=1 hk =

PN
j=1 gj = 1 and the sum

P∞
k=1 hk is still locally finite. (Why?) Now

for α = αk ∈ {αi}Ni=1, let hα := hk and for α /∈ {αi}Ni=1 let hα ≡ 0. Since
{hk 6= 0} = ∪j∈Γk {gj 6= 0} ⊂ ∪j∈Γksupp(gj) ⊂ Uk

and, by Item 2. of Lemma 10.22, ∪j∈Γksupp(gj) is closed, we see that
supp(hk) = {hk 6= 0} ⊂ ∪j∈Γksupp(gj) ⊂ Uk.

Therefore {hα}α∈A is the desired partition of unity.
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Corollary 10.28. Let (X, τ) be a locally compact and σ — compact Hausdorff space
and A,B be disjoint closed subsets of X. Then there exists f ∈ C(X, [0, 1]) such
that f = 1 on A and f = 0 on B. In fact f can be chosen so that supp(f) ⊂ Bc.

Proof. Let U1 = Ac and U2 = Bc, then {U1, U2} is an open cover of X. By
Corollary 10.27 there exists h1, h2 ∈ C(X, [0, 1]) such that supp(hi) ⊂ Ui for i = 1, 2
and h1 + h2 = 1 on X. The function f = h2 satisfies the desired properties.

10.3. C0(X) and the Alexanderov Compactification.

Definition 10.29. Let (X, τ) be a topological space. A continuous function f :
X → C is said to vanish at infinity if {|f | ≥ �} is compact in X for all � > 0.
The functions, f ∈ C(X), vanishing at infinity will be denoted by C0(X).

Proposition 10.30. Let X be a topological space, BC(X) be the space of bounded
continuous functions on X with the supremum norm topology. Then

(1) C0(X) is a closed subspace of BC(X).
(2) If we further assume that X is a locally compact Hausdorff space, then

C0(X) = Cc(X).

Proof.

(1) If f ∈ C0(X), K1 := {|f | ≥ 1} is a compact subset ofX and therefore f(K1)
is a compact and hence bounded subset of C and soM := supx∈K1

|f(x)| <
∞. Therefore kfku ≤M ∨ 1 <∞ showing f ∈ BC(X).
Now suppose fn ∈ C0(X) and fn → f in BC(X). Let � > 0 be given

and choose n sufficiently large so that kf − fnku ≤ �/2. Since

|f | ≤ |fn|+ |f − fn| ≤ |fn|+ kf − fnku ≤ |fn|+ �/2,

{|f | ≥ �} ⊂ {|fn|+ �/2 ≥ �} = {|fn| ≥ �/2} .
Because {|f | ≥ �} is a closed subset of the compact set {|fn| ≥ �/2} ,
{|f | ≥ �} is compact and we have shown f ∈ C0(X).

(2) Since C0(X) is a closed subspace of BC(X) and Cc(X) ⊂ C0(X), we always
have Cc(X) ⊂ C0(X). Now suppose that f ∈ C0(X) and let Kn ≡ {|f | ≥
1
n} @@ X. By Lemma 10.15 we may choose φn ∈ Cc(X, [0, 1]) such that
φn ≡ 1 on Kn. Define fn ≡ φnf ∈ Cc(X). Then

kf − fnku = k(1− φn)fku ≤ 1

n
→ 0 as n→∞.

This shows that f ∈ Cc(X).

Proposition 10.31 (Alexanderov Compactification). Suppose that (X, τ) is a non-
compact locally compact Hausdorff space. Let X∗ = X ∪ {∞} , where {∞} is a new
symbol not in X. The collection of sets,

τ∗ = τ ∪ {X∗ \K : K @@ X} ⊂ P(X∗),
is a topology on X∗ and (X∗, τ∗) is a compact Hausdorff space. Moreover f ∈ C(X)
extends continuously to X∗ iff f = g + c with g ∈ C0(X) and c ∈ C in which case
the extension is given by f(∞) = c.
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Proof. 1. (τ∗ is a topology.) Let F := {F ⊂ X∗ : X∗ \ F ∈ τ∗}, i.e. F ∈ F iff
F is a compact subset of X or F = F0 ∪ {∞} with F0 being a closed subset of X.
Since the finite union of compact (closed) subsets is compact (closed), it is easily
seen that F is closed under finite unions. Because arbitrary intersections of closed
subsets of X are closed and closed subsets of compact subsets of X are compact,
it is also easily checked that F is closed under arbitrary intersections. Therefore F
satisfies the axioms of the closed subsets associated to a topology and hence τ∗ is
a topology.
2. ((X∗, τ∗) is a Hausdorff space.) It suffices to show any point x ∈ X can be

separated from ∞. To do this use Proposition 10.13 to find an open precompact
neighborhood, U, of x. Then U and V := X∗ \ Ū are disjoint open subsets of X∗

such that x ∈ U and ∞ ∈ V.
3. ((X∗, τ∗) is compact.) Suppose that U ⊂ τ∗ is an open cover of X∗. Since U

covers ∞, there exists a compact set K ⊂ X such that X∗ \K ∈ U . Clearly X is
covered by U0 := {V \ {∞} : V ∈ U} and by the definition of τ∗ (or using (X∗, τ∗)
is Hausdorff), U0 is an open cover of X. In particular U0 is an open cover of K and
since K is compact there exists Λ ⊂⊂ U such that K ⊂ ∪ {V \ {∞} : V ∈ Λ} . It is
now easily checked that Λ ∪ {X∗ \K} ⊂ U is a finite subcover of X∗.
4. (Continuous functions on C(X∗) statements.) Let i : X → X∗ be the inclusion

map. Then i is continuous and open, i.e. i(V ) is open in X∗ for all V open in X.
If f ∈ C(X∗), then g = f |X − f(∞) = f ◦ i− f(∞) is continuous on X. Moreover,
for all � > 0 there exists an open neighborhood V ∈ τ∗ of ∞ such that

|g(x)| = |f(x)− f(∞)| < � for all x ∈ V.

Since V is an open neighborhood of∞, there exists a compact subset, K ⊂ X, such
that V = X∗ \K. By the previous equation we see that {x ∈ X : |g(x)| ≥ �} ⊂ K,
so {|g| ≥ �} is compact and we have shown g vanishes at ∞.
Conversely if g ∈ C0(X), extend g to X∗ by setting g(∞) = 0. Given � > 0, the

set K = {|g| ≥ �} is compact, hence X∗\K is open in X∗. Since g(X∗\K) ⊂ (−�, �)
we have shown that g is continuous at ∞. Since g is also continuous at all points
in X it follows that g is continuous on X∗. Now it f = g + c with c ∈ C and
g ∈ C0(X), it follows by what we just proved that defining f(∞) = c extends f to
a continuous function on X∗.

10.4. More on Separation Axioms: Normal Spaces. (The reader may skip
to Definition 10.34 if he/she wishes. The following material will not be used in the
rest of the book.)

Definition 10.32 (T0 — T2 Separation Axioms). Let (X, τ) be a topological space.
The topology τ is said to be:

(1) T0 if for x 6= y in X there exists V ∈ τ such that x ∈ V and y /∈ V or V
such that y ∈ V but x /∈ V.

(2) T1 if for every x, y ∈ X with x 6= y there exists V ∈ τ such that x ∈ V and
y /∈ V. Equivalently, τ is T1 iff all one point subsets of X are closed.22

(3) T2 if it is Hausdorff.

22If one point subsets are closed and x 6= y in X then V := {x}c is an open set containing y
but not x. Conversely if τ is T1 and x ∈ X there exists Vy ∈ τ such that y ∈ Vy and x /∈ Vy for
all y 6= x. Therefore, {x}c = ∪y 6=xVy ∈ τ.
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Note T2 implies T1 which implies T0. The topology in Example 10.3 is T0 but
not T1. If X is a finite set and τ is a T1 — topology on X then τ = 2X . To prove this
let x ∈ X be fixed. Then for every y 6= x in X there exists Vy ∈ τ such that x ∈ Vy
while y /∈ Vy. Thus {x} = ∩y 6=xVy ∈ τ showing τ contains all one point subsets of
X and therefore all subsets of X. So we have to look to infinite sets for an example
of T1 topology which is not T2.

Example 10.33. LetX be any infinite set and let τ = {A ⊂ X : #(Ac) <∞}∪{∅}
— the so called cofinite topology. This topology is T1 because if x 6= y in X, then
V = {x}c ∈ τ with x /∈ V while y ∈ V. This topology however is not T2. Indeed if
U, V ∈ τ are open sets such that x ∈ U, y ∈ V and U ∩ V = ∅ then U ⊂ V c. But
this implies #(U) <∞ which is impossible unless U = ∅ which is impossible since
x ∈ U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies (see
Remark 10.5) need not occur for T1 — spaces. For example, let X = N and τ be
the cofinite topology on X as in Example 10.33. Then xn = n is a sequence in X
such that xn → x as n →∞ for all x ∈ N. For the most part we will avoid these
pathologies in the future by only considering Hausdorff topologies.

Definition 10.34 (Normal Spaces: T4 — Separation Axiom). A topological space
(X, τ) is said to be normal or T4 if:

(1) X is Hausdorff and
(2) if for any two closed disjoint subsets A,B ⊂ X there exists disjoint open

sets V,W ⊂ X such that A ⊂ V and B ⊂W.

Example 10.35. By Lemma 10.1 and Corollary 10.28 it follows that metric space
and locally compact and σ — compact Hausdorff space (in particular compact Haus-
dorff spaces) are normal. Indeed, in each case if A,B are disjoint closed subsets of
X, there exists f ∈ C(X, [0, 1]) such that f = 1 on A and f = 0 on B. Now let
U =

©
f > 1

2

ª
and V = {f < 1

2}.
Remark 10.36. A topological space, (X, τ), is normal iff for any C ⊂W ⊂ X with
C being closed and W being open there exists an open set U ⊂o X such that

C ⊂ U ⊂ Ū ⊂W.

To prove this first suppose X is normal. Since W c is closed and C ∩ W c = ∅,
there exists disjoint open sets U and V such that C ⊂ U and W c ⊂ V. Therefore
C ⊂ U ⊂ V c ⊂W and since V c is closed, C ⊂ U ⊂ Ū ⊂ V c ⊂W.
For the converse direction suppose A and B are disjoint closed subsets of X.

Then A ⊂ Bc and Bc is open, and so by assumption there exists U ⊂o X such
that A ⊂ U ⊂ Ū ⊂ Bc and by the same token there exists W ⊂o X such that
Ū ⊂W ⊂ W̄ ⊂ Bc. Taking complements of the last expression implies

B ⊂ W̄ c ⊂W c ⊂ Ū c.

Let V = W̄ c. Then A ⊂ U ⊂o X, B ⊂ V ⊂o X and U ∩ V ⊂ U ∩W c = ∅.
Theorem 10.37 (Urysohn’s Lemma for Normal Spaces). Let X be a normal space.
Assume A,B are disjoint closed subsets of X. Then there exists f ∈ C(X, [0, 1])
such that f = 0 on A and f = 1 on B.

Proof. To make the notation match Lemma 10.15, let U = Ac and K = B.
Then K ⊂ U and it suffices to produce a function f ∈ C(X, [0, 1]) such that f = 1
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on K and supp(f) ⊂ U. The proof is now identical to that for Lemma 10.15 except
we now use Remark 10.36 in place of Proposition 10.13.

Theorem 10.38 (Tietze Extension Theorem). Let (X, τ) be a normal space, D be
a closed subset of X, −∞ < a < b < ∞ and f ∈ C(D, [a, b]). Then there exists
F ∈ C(X, [a, b]) such that F |D = f.

Proof. The proof is identical to that of Theorem 10.2 except we now use The-
orem 10.37 in place of Lemma 10.1.

Corollary 10.39. Suppose that X is a normal topological space, D ⊂ X is closed,
F ∈ C(D,R). Then there exists F ∈ C(X) such that F |D = f.

Proof. Let g = arctan(f) ∈ C(D, (−π
2 ,

π
2 )). Then by the Tietze exten-

sion theorem, there exists G ∈ C(X, [−π
2 ,

π
2 ]) such that G|D = g. Let B ≡

G−1({−π
2 ,

π
2 }) @ X, then B ∩D = ∅. By Urysohn’s lemma (Theorem 10.37) there

exists h ∈ C(X, [0, 1]) such that h ≡ 1 on D and h = 0 on B and in particular
hG ∈ C(D, (−π

2 ,
π
2 )) and (hG) |D = g. The function F ≡ tan(hG) ∈ C(X) is an

extension of f.

Theorem 10.40 (Urysohn Metrization Theorem). Every second countable normal
space, (X, τ) , is metrizable, i.e. there is a metric ρ on X such that τ = τρ. More-
over, ρ may be chosen so that X is isometric to a subset Q0 ⊂ Q equipped with
the metric d in Eq. (10.4). In this metric X is totally bounded and hence the
completion of X (which is isometric to Q̄0 ⊂ Q) is compact.

Proof. Let B be a countable base for τ and set
Γ ≡ {(U,V ) ∈ B × B | Ū ⊂ V }.

To each O ∈ τ and x ∈ O there exist (U,V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a basis for τ, there exists V ∈ B such that x ∈ V ⊂ O. Because
{x} ∩ V c = ∅, there exists disjoint open sets eU and W such that x ∈ eU, V c ⊂ W

and eU ∩ W = ∅. Choose U ∈ B such that x ∈ U ⊂ eU. Since U ⊂ eU ⊂ W c,
U ⊂ W c ⊂ V and hence (U, V ) ∈ Γ. See Figure 23 below. In particular this shows

Figure 23. Constructing (U, V ) ∈ Γ.

that {U ∈ B : (U, V ) ∈ Γ for some V ∈ B} is still a base for τ.
If Γ is a finite set, the previous comment shows that τ only has a finite number

of elements as well. Since (X, τ) is Hausdorff, it follows that X is a finite set.
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Letting {xn}Nn=1 be an enumeration of X, define T : X → Q by T (xn) = en for
n = 1, 2, . . . ,N where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1 ocurring in the nth

spot. Then ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the desired metric. So we may
now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1 be an enumeration of Γ.
By Urysohn’s Lemma (Theorem 10.37) there exists fU,V ∈ C(X, [0, 1]) such that

fU,V = 0 on Ū and fU,V = 1 on V c. Let F ≡ {fU,V | (U, V ) ∈ Γ} and set
fn := fUn,Vn — an enumeration of F . We will now show that

ρ(x, y) :=
∞X
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

(1) (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequal-
ity and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0 , Vn0) ∈ Γ such that x ∈ Un0 and Vn0 ⊂ O := {y}c . Since fn0(x) = 0
and fn0(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.

(2) (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.
Since, for each x ∈ X, y → ρ(x, y) is τ0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(�) :=
{y ∈ X : ρ(x, y) < �} ∈ τ0 for all x ∈ X and � > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0 , Vn0) ∈ Γ be such that x ∈ Un0

and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on Oc. Therefore if y ∈ X and
fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0. Moreover, if y ∈ Bx(2

−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0(y)
and therefore x ∈ Bx(2

−n0) ⊂ {fn0 < 1} ⊂ O. This shows O is ρ — open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.

(3) (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and therefore X is isometric to Q0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore X
is totally bounded.

10.5. Exercises.

Exercise 10.9. Let (X, τ) be a topological space, A ⊂ X, iA : A → X be the
inclusion map and τA := i−1A (τ) be the relative topology on A. Verify τA = {A∩V :
V ∈ τ} and show C ⊂ A is closed in (A, τA) iff there exists a closed set F ⊂ X
such that C = A∩F. (If you get stuck, see the remarks after Definition 3.17 where
this has already been proved.)

Exercise 10.10. Let (X, τ) and (Y, τ 0) be a topological spaces, f : X → Y be a
function, U be an open cover of X and {Fj}nj=1 be a finite cover of X by closed
sets.

(1) If A ⊂ X is any set and f : X → Y is (τ, τ 0) — continuous then f |A : A→ Y
is (τA, τ 0) — continuous.

(2) Show f : X → Y is (τ, τ 0) — continuous iff f |U : U → Y is (τU , τ 0) —
continuous for all U ∈ U .
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(3) Show f : X → Y is (τ, τ 0) — continuous iff f |Fj : Fj → Y is (τFj , τ
0) —

continuous for all j = 1, 2, . . . , n.
(4) (A baby form of the Tietze extension Theorem.) Suppose V ∈ τ and

f : V → C is a continuous function such supp(f) ⊂ V, then F : X → C
defined by

F (x) =

½
f(x) if x ∈ V
0 otherwise

is continuous.

Exercise 10.11. Prove Theorem 10.16. Hints:
(1) By Proposition 10.13, there exists a precompact open set V such that K ⊂

V ⊂ V̄ ⊂ U. Now suppose that f : K → [0, α] is continuous with α ∈ (0, 1]
and let A := f−1([0, 13α]) and B := f−1([23α, 1]). Appeal to Lemma 10.15
to find a function g ∈ C(X, [0, α/3]) such that g = α/3 on B and supp(g) ⊂
V \A.

(2) Now follow the argument in the proof of Theorem 10.2 to construct F ∈
C(X, [a, b]) such that F |K = f.

(3) For c ∈ [a, b], choose φ ≺ U such that φ = 1 on K and replace F by
Fc := φF + (1− φ)c.

Exercise 10.12 (Sterographic Projection). Let X = Rn, X∗ := X ∪ {∞} be the
one point compactification of X, Sn := {y ∈ Rn+1 : |y| = 1} be the unit sphere
in Rn+1 and N = (0, . . . , 0, 1) ∈ Rn+1. Define f : Sn → X∗ by f(N) = ∞, and
for y ∈ Sn \ {N} let f(y) = b ∈ Rn be the unique point such that (b, 0) is on
the line containing N and y, see Figure 24 below. Find a formula for f and show
f : Sn → X∗ is a homeomorphism. (So the one point compactification of Rn is
homeomorphic to the n sphere.)

N

-N

ρ (b,0)

z

1

y

Figure 24. Sterographic projection and the one point compacti-
fication of Rn.

Exercise 10.13. Let (X, τ) be a locally compact Hausdorff space. Show (X, τ) is
separable iff (X∗, τ∗) is separable.

Exercise 10.14. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X∗ := X ∪ {∞} , τ∗) , is
not metrizable. Hint: use exercise 10.13.
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Exercise 10.15. Suppose (X, d) is a locally compact and σ — compact metric
space. Show the one point compactification, (X∗ := X ∪ {∞} , τ∗) , is metrizable.
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11. Approximation Theorems and Convolutions

Let (X,M, µ) be a measure space, A ⊂M an algebra.

Notation 11.1. Let Sf (A, µ) denote those simple functions φ : X → C such that
φ−1({λ}) ∈ A for all λ ∈ C and µ(φ 6= 0) <∞.

For φ ∈ Sf (A, µ) and p ∈ [1,∞), |φ|p =Pz 6=0 |z|p1{φ=z} and henceZ
|φ|p dµ =

X
z 6=0

|z|pµ(φ = z) <∞

so that Sf (A, µ) ⊂ Lp(µ).

Lemma 11.2 (Simple Functions are Dense). The simple functions, Sf (M, µ), form
a dense subspace of Lp(µ) for all 1 ≤ p <∞.

Proof. Let {φn}∞n=1 be the simple functions in the approximation Theorem
7.12. Since |φn| ≤ |f | for all n, φn ∈ Sf (M, µ) (verify!) and

|f − φn|p ≤ (|f |+ |φn|)p ≤ 2p |f |p ∈ L1.

Therefore, by the dominated convergence theorem,

lim
n→∞

Z
|f − φn|pdµ =

Z
lim
n→∞ |f − φn|pdµ = 0.

Theorem 11.3 (Separable Algebras implies Separability of Lp — Spaces). Suppose
1 ≤ p < ∞ and A ⊂ M is an algebra such that σ(A) = M and µ is σ-finite on
A. Then Sf (A, µ) is dense in Lp(µ). Moreover, if A is countable, then Lp(µ) is
separable and

D = {
X

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}
is a countable dense subset.

Proof. First Proof. Let Xk ∈ A be sets such that µ(Xk) <∞ and Xk ↑ X as
k →∞. For k ∈ N let Hk denote those boundedM — measurable functions, f, on

X such that 1Xk
f ∈ Sf (A, µ)L

p(µ)
. It is easily seen that Hk is a vector space closed

under bounded convergence and this subspace contains 1A for all A ∈ A. Therefore
by Theorem 8.12, Hk is the set of all boundedM — measurable functions on X.
For f ∈ Lp(µ), the dominated convergence theorem implies 1Xk∩{|f|≤k}f → f

in Lp(µ) as k → ∞. We have just proved 1Xk∩{|f|≤k}f ∈ Sf (A, µ)
Lp(µ)

for all k

and hence it follows that f ∈ Sf (A, µ)L
p(µ)

. The last assertion of the theorem is
a consequence of the easily verified fact that D is dense in Sf (A, µ) relative to the
Lp(µ) — norm.
Second Proof. Given � > 0, by Corollary 8.42, for all E ∈ M such that

µ(E) <∞, there exists A ∈ A such that µ(E4A) < �. Therefore

(11.1)
Z
|1E − 1A|pdµ = µ(E4A) < �.

This equation shows that any simple function in Sf (M, µ) may be approximated
arbitrary well by an element from D and hence D is also dense in Lp(µ).
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Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that f ∈ L1(R,m), then

lim
λ→±∞

Z
R
f(x)eiλxdm(x) = 0.

Proof. Let A denote the algebra on R generated by the half open intervals, i.e.
A consists of sets of the form

na
k=1

(ak, bk] ∩ R

where ak, bk ∈ R̄. By Theorem 11.3given � > 0 there exists φ =
Pn

k=1 ck1(ak,bk]
with ak, bk ∈ R such that Z

R
|f − φ|dm < �.

Notice thatZ
R
φ(x)eiλxdm(x) =

Z
R

nX
k=1

ck1(ak,bk](x)e
iλxdm(x)

=
nX

k=1

ck

Z bk

ak

eiλxdm(x) =
nX

k=1

ckλ
−1eiλx|bkak

= λ−1
nX

k=1

ck
¡
eiλbk − eiλak

¢→ 0 as |λ|→∞.

Combining these two equations with¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤
¯̄̄̄Z
R
(f(x)− φ(x)) eiλxdm(x)

¯̄̄̄
+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤
Z
R
|f − φ|dm+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤ �+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
we learn that

lim sup
|λ|→∞

¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤ �+ lim sup

|λ|→∞

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
= �.

Since � > 0 is arbitrary, we have proven the lemma.

Theorem 11.5 (Continuous Functions are Dense). Let (X, d) be a metric space,
τd be the topology on X generated by d and BX = σ(τd) be the Borel σ — algebra.
Suppose µ : BX → [0,∞] is a measure which is σ — finite on τd and let BCf (X)
denote the bounded continuous functions on X such that µ(f 6= 0) < ∞. Then
BCf (X) is a dense subspace of Lp(µ) for any p ∈ [1,∞).
Proof. First Proof. Let Xk ∈ τd be open sets such that Xk ↑ X and µ(Xk) <

∞. Let k and n be positive integers and set

ψn,k(x) = min(1, n · dXc
k
(x)) = φn(dXc

k
(x)),

and notice that ψn,k → 1dXc
k
>0 = 1Xk

as n→∞, see Figure 25 below.
Then ψn,k ∈ BCf (X) and {ψn,k 6= 0} ⊂ Xk. Let H denote those bounded

M — measurable functions, f : X → R, such that ψn,kf ∈ BCf (X)
Lp(µ)

. It is
easily seen that H is a vector space closed under bounded convergence and this
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Figure 25. The plot of φn for n = 1, 2, and 4. Notice that φn → 1(0,∞).

subspace contains BC(X,R). By Corollary 8.13, H is the set of all bounded real

valuedM — measurable functions on X, i.e. ψn,kf ∈ BCf (X)
Lp(µ)

for all bounded
measurable f and n, k ∈ N. Let f be a bounded measurable function, by the
dominated convergence theorem, ψn,kf → 1Xkf in Lp(µ) as n → ∞, therefore

1Xk
f ∈ BCf (X)

Lp(µ)
. It now follows as in the first proof of Theorem 11.3 that

BCf (X)
Lp(µ)

= Lp(µ).
Second Proof. Since Sf (M, µ) is dense in Lp(µ) it suffices to show any φ ∈

Sf (M, µ) may be well approximated by f ∈ BCf (X). Moreover, to prove this it
suffices to show for A ∈ M with µ(A) < ∞ that 1A may be well approximated
by an f ∈ BCf (X). By Exercises 8.4 and 8.5, for any � > 0 there exists a closed
set F and an open set V such that F ⊂ A ⊂ V and µ(V \ F ) < �. (Notice that
µ(V ) < µ(A) + � < ∞.) Let f be as in Eq. (10.1), then f ∈ BCf (X) and since
|1A − f | ≤ 1V \F ,

(11.2)
Z
|1A − f |p dµ ≤

Z
1V \F dµ = µ(V \ F ) ≤ �

or equivalently
k1A − fk ≤ �1/p.

Since � > 0 is arbitrary, we have shown that 1A can be approximated in Lp(µ)
arbitrarily well by functions from BCf (X)).

Proposition 11.6. Let (X, τ) be a second countable locally compact Hausdorff
space, BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure
such that µ(K) <∞ when K is a compact subset of X. Then Cc(X) (the space of
continuous functions with compact support) is dense in Lp(µ) for all p ∈ [1,∞).
Proof. First Proof. Let {Kk}∞k=1 be a sequence of compact sets as in Lemma

10.10 and set Xk = Ko
k . Using Item 3. of Lemma 10.17, there exists {ψn,k}∞n=1 ⊂

Cc(X) such that supp(ψn,k) ⊂ Xk and limn→∞ ψn,k = 1Xk . As in the first proof of
Theorem 11.5, let H denote those bounded BX — measurable functions, f : X → R,
such that ψn,kf ∈ Cc(X)

Lp(µ)
. It is easily seen that H is a vector space closed

under bounded convergence and this subspace contains BC(X,R). By Corollary
10.18, H is the set of all bounded real valued BX — measurable functions on X, i.e.
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ψn,kf ∈ Cc(X)
Lp(µ)

for all bounded measurable f and n, k ∈ N. Let f be a bounded
measurable function, by the dominated convergence theorem, ψn,kf → 1Xk

f in

Lp(µ) as k →∞, therefore 1Xk
f ∈ Cc(X)

Lp(µ)
. It now follows as in the first proof

of Theorem 11.3 that Cc(X)
Lp(µ)

= Lp(µ).
Second Proof. Following the second proof of Theorem 11.5, let A ∈M with

µ(A) < ∞. Since limk→∞ ||1A∩Ko
k
− 1A||p = 0, it suffices to assume A ⊂ Ko

k for
some k. Given � > 0, by Item 2. of Lemma 10.17 and Exercises 8.4 there exists a
closed set F and an open set V such that F ⊂ A ⊂ V and µ(V \F ) < �. Replacing
V by V ∩Ko

k we may assume that V ⊂ Ko
k ⊂ Kk. The function f defined in Eq.

(10.1) is now in Cc(X). The remainder of the proof now follows as in the second
proof of Theorem 11.5.

Lemma 11.7. Let (X, τ) be a second countable locally compact Hausdorff space,
BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure such that
µ(K) <∞ when K is a compact subset of X. If h ∈ L1loc(µ) is a function such that

(11.3)
Z
X

fhdµ = 0 for all f ∈ Cc(X)

then h(x) = 0 for µ — a.e. x.

Proof. First Proof. Let dν(x) = |h(x)| dx, then ν is a measure on X such
that ν(K) <∞ for all compact subsets K ⊂ X and hence Cc(X) is dense in L1(ν)
by Proposition 11.6. Notice that

(11.4)
Z
X

f · sgn(h)dν =
Z
X

fhdµ = 0 for all f ∈ Cc(X).

Let {Kk}∞k=1 be a sequence of compact sets such that Kk ↑ X as in Lemma 10.10.
Then 1Kk

sgn(h) ∈ L1(ν) and therefore there exists fm ∈ Cc(X) such that fm →
1Kksgn(h) in L1(ν). So by Eq. (11.4),

ν(Kk) =

Z
X

1Kk
dν = lim

m→∞

Z
X

fmsgn(h)dν = 0.

Since Kk ↑ X as k →∞, 0 = ν(X) =
R
X
|h| dµ, i.e. h(x) = 0 for µ — a.e. x.

Second Proof. Let Kk be as above and use Lemma 10.15 to find χ ∈
Cc(X, [0, 1]) such that χ = 1 on Kk. Let H denote the set of bounded measur-
able real valued functions on X such that

R
X
χfhdµ = 0. Then it is easily checked

that H is linear subspace closed under bounded convergence which contains Cc(X).
Therefore by Corollary 10.18, 0 =

R
X
χfhdµ for all bounded measurable functions

f : X → R and then by linearity for all bounded measurable functions f : X → C.
Taking f = sgn(h) then implies

0 =

Z
X

χ |h| dµ ≥
Z
Kk

|h| dµ

and hence by the monotone convergence theorem,

0 = lim
k→∞

Z
Kk

|h| dµ =
Z
X

|h| dµ.
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Corollary 11.8. Suppose X ⊂ Rn is an open set, BX is the Borel σ — algebra on
X and µ is a measure on (X,BX) which is finite on compact sets. Then Cc(X) is
dense in Lp(µ) for all p ∈ [1,∞).
11.1. Convolution and Young’s Inequalities.

Definition 11.9. Let f, g : Rn → C be measurable functions. We define

f ∗ g(x) =
Z
Rn

f(x− y)g(y)dy

whenever the integral is defined, i.e. either f(x−·)g(·) ∈ L1(Rn,m) or f(x−·)g(·) ≥
0. Notice that the condition that f(x− ·)g(·) ∈ L1(Rn,m) is equivalent to writing
|f | ∗ |g| (x) <∞.

Notation 11.10. Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

Remark 11.11 (The Significance of Convolution). Suppose that L =
P
|α|≤k aα∂

α is
a constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = g in the form

u(x) = Kg(x) :=

Z
Rn

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since τzL = Lτz for all z ∈ Rn, (this is another way to characterize
constant coefficient differential operators) and L−1 = K we should have τzK = Kτz.
Writing out this equation then saysZ

Rn
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

Z
Rn

k(x, y)g(y − z)dy =

Z
Rn

k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y + z). Taking y = 0 then
gives

k(x, z) = k(x− z, 0) =: ρ(x− z).

We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals, Theorem 9.27.

Proposition 11.12. Suppose q ∈ [1,∞], f ∈ L1 and g ∈ Lq, then f ∗ g(x) exists
for almost every x, f ∗ g ∈ Lq and

kf ∗ gkp ≤ kfk1 kgkp .
For z ∈ Rn and f : Rn → C, let τzf : Rn → C be defined by τzf(x) = f(x− z).

Proposition 11.13. Suppose that p ∈ [1,∞), then τz : L
p → Lp is an isometric

isomorphism and for f ∈ Lp, z ∈ Rn → τzf ∈ Lp is continuous.
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Proof. The assertion that τz : Lp → Lp is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that τ−z ◦ τz = id.
For the continuity assertion, observe that

kτzf − τyfkp = kτ−y (τzf − τyf)kp = kτz−yf − fkp
from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rn.
When f ∈ Cc(Rn), τzf → f uniformly and since the K := ∪|z|≤1supp(τzf) is

compact, it follows by the dominated convergence theorem that τzf → f in Lp as
z → 0 ∈ Rn. For general g ∈ Lp and f ∈ Cc(Rn),
kτzg − gkp ≤ kτzg − τzfkp + kτzf − fkp + kf − gkp = kτzf − fkp + 2 kf − gkp

and thus

lim sup
z→0

kτzg − gkp ≤ lim sup
z→0

kτzf − fkp + 2 kf − gkp = 2 kf − gkp .

Because Cc(Rn) is dense in Lp, the term kf − gkp may be made as small as we
please.

Definition 11.14. Suppose that (X, τ) is a topological space and µ is a measure
on BX = σ(τ). For a measurable function f : X → C we define the essential support
of f by
(11.5)
suppµ(f) = {x ∈ U : µ({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}.
It is not hard to show that if supp(µ) = X (see Definition 9.41) and f ∈ C(X)

then suppµ(f) = supp(f) := {f 6= 0} , see Exercise 11.5.
Lemma 11.15. Suppose (X, τ) is second countable and f : X → C is a measurable
function and µ is a measure on BX . Then X := U \ suppµ(f) may be described
as the largest open set W such that f1W (x) = 0 for µ — a.e. x. Equivalently put,
C := suppµ(f) is the smallest closed subset of X such that f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent, suppose
suppµ(f) is defined as in Eq. (11.5) and W := X \ suppµ(f). Then

W = {x ∈ X : µ({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪ {V ⊂o X : µ (f1V 6= 0) = 0}
= ∪ {V ⊂o X : f1V = 0 for µ — a.e.} .

So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let U be
a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.
Then it is easily seen that W = ∪Uf and since Uf is countable µ (f1W 6= 0) ≤P

V ∈Uf µ (f1V 6= 0) = 0.
Lemma 11.16. Suppose f, g, h : Rn → C are measurable functions and assume
that x is a point in Rn such that |f | ∗ |g| (x) <∞ and |f | ∗ (|g| ∗ |h|) (x) <∞, then

(1) f ∗ g(x) = g ∗ f(x)
(2) f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
(3) If z ∈ Rn and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
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(4) If x /∈ suppm(f)+suppm(g) then f ∗g(x) = 0 and in particular, suppm(f ∗
g) ⊂ suppm(f) + suppm(g) where in defining suppm(f ∗ g) we will use the
convention that “f ∗ g(x) 6= 0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
Z
Rn
|f | (x− y) |g| (y)dy =

Z
Rn
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y → x− y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.
Item 4. Since f ∗ g(x) = f̃ ∗ g̃(x) if f = f̃ and g = g̃ a.e. we may,

by replacing f by f1suppm(f) and g by g1suppm(g) if necessary, assume that{f 6= 0} ⊂ suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g))
then x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rn, either x − y /∈ {f 6= 0} or
y /∈ {g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x− y)g(y) = 0 for all y and therefore f ∗ g(x) = 0. This shows that f ∗ g = 0 on
Rn \

³
suppm(f) + suppm(g)

´
and therefore

Rn \
³
suppm(f) + suppm(g)

´
⊂ Rn \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).
Remark 11.17. Let A,B be closed sets of Rn, it is not necessarily true that A+B
is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/|x|} ,
then every point of A+B has a positive y - component and hence is not zero. On
the other hand, for x > 0 we have (x, 1/x) + (−x, 1/x) = (0, 2/x) ∈ A+ B for all
x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A + B is closed again. Indeed, if A is compact and
xn = an + bn ∈ A + B and xn → x ∈ Rn, then by passing to a subsequence if
necessary we may assume limn→∞ an = a ∈ A exists. In this case

lim
n→∞ bn = lim

n→∞ (xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 11.18. Suppose that p, q ∈ [1,∞] and p and q are conjugate expo-
nents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rn), kf ∗ gku ≤ kfkp kgkq and if
p, q ∈ (1,∞) then f ∗ g ∈ C0(Rn).

Proof. The existence of f ∗ g(x) and the estimate |f ∗ g| (x) ≤ kfkp kgkq for all
x ∈ Rn is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows kf ∗ gku ≤ kfkp kgkq . By relabeling
p and q if necessary we may assume that p ∈ [1,∞). Since

kτz (f ∗ g)− f ∗ gku = kτzf ∗ g − f ∗ gku ≤ kτzf − fkp kgkq → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 11.16 and what we have just proved that fm ∗ gm ∈ Cc(Rn) where
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fm = f1|f|≤m and gm = g1|g|≤m. Moreover,

kf ∗ g − fm ∗ gmku ≤ kf ∗ g − fm ∗ gku + kfm ∗ g − fm ∗ gmku
≤ kf − fmkp kgkq + kfmkp kg − gmkq
≤ kf − fmkp kgkq + kfkp kg − gmkq → 0 as m→∞

showing, with the aid of Proposition 10.30, f ∗ g ∈ C0(Rn).

Theorem 11.19 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy
(11.6)

1

p
+
1

q
= 1 +

1

r
.

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m — a.e. x and

(11.7) kf ∗ gkr ≤ kfkp kgkq .
In particular L1 is closed under convolution. (The space (L1, ∗) is an example of a
“Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq. (11.6)
by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then after a few
simple change of variables we find

kfλkp = λ−1/p kfk and (f ∗ g)λ = λfλ ∗ gλ.
Therefore if Eq. (11.7) holds for some p, q, r ∈ [1,∞], we would also have
kf ∗ gkr = λ1/r k(f ∗ g)λkr ≤ λ1/rλ kfλkp kgλkq = λ(1+1/r−1/p−1/q) kfkp kgkq

for all λ > 0. This is only possible if Eq. (11.6) holds.

Proof. Let α, β ∈ [0, 1] and p1, p2 ∈ [0,∞] satisfy p−11 + p−12 + r−1 = 1. Then
by Hölder’s inequality, Corollary 9.3,

|f ∗ g(x)| =
¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄
≤
Z
|f(x− y)|(1−α) |g(y)|(1−β) |f(x− y)|α |g(y)|β dy

≤
µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶1/r µZ

|f(x− y)|αp1 dy
¶1/p1 µZ

|g(y)|βp2 dy
¶1/p2

=

µZ
|f(x− y)|(1−α)r |g(y)|(1−β)r dy

¶1/r
kfkααp1 kgk

β
βp2

.

Taking the rth power of this equation and integrating on x gives

kf ∗ gkrr ≤
Z µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶
dx · kfkααp1 kgk

β
βp2

= kfk(1−α)r(1−α)r kgk(1−β)r(1−β)r kfkαrαp1 kgk
βr
βp2

.(11.8)

Let us now suppose, (1− α)r = αp1 and (1− β)r = βp2, in which case Eq. (11.8)
becomes,

kf ∗ gkrr ≤ kfkrαp1 kgk
r
βp2

which is Eq. (11.7) with

(11.9) p := (1− α)r = αp1 and q := (1− β)r = βp2.

So to finish the proof, it suffices to show p and q are arbitrary indices in [1,∞]
satisfying p−1 + q−1 = 1 + r−1.
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If α, β, p1, p2 satisfy the relations above, then

α =
r

r + p1
and β =

r

r + p2

and
1

p
+
1

q
=
1

p1

r + p1
r

+
1

p2

r + p2
r

=
1

p1
+
1

p2
+
2

r
= 1 +

1

r
.

Conversely, if p, q, r satisfy Eq. (11.6), then let α and β satisfy p = (1 − α)r and
q = (1− β)r, i.e.

α :=
r − p

r
= 1− p

r
≤ 1 and β =

r − q

r
= 1− q

r
≤ 1.

From Eq. (11.6), α = p(1− 1
q ) ≥ 0 and β = q(1− 1

p) ≥ 0, so that α, β ∈ [0, 1]. We
then define p1 := p/α and p2 := q/β, then

1

p1
+
1

p2
+
1

r
= β

1

q
+ α

1

p
+
1

r
=
1

q
− 1

r
+
1

p
− 1

r
+
1

r
= 1

as desired.

Theorem 11.21 (Approximate δ — functions). Let p ∈ [1,∞], φ ∈ L1(Rn), a :=R
Rn f(x)dx, and for t > 0 let φt(x) = t−nφ(x/t). Then

(1) If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
(2) If f ∈ BC(Rn) and f is uniformly continuous then kφt ∗ f − fk∞ → 0 as

t ↓ 0.
(3) If f ∈ L∞ and f is continuous on U ⊂o Rn then φt ∗ f → af uniformly on

compact subsets of U as t ↓ 0.
Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
Z
Rn

f(x− y)φt(y)dy =

Z
Rn

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =

Z
Rn
[f(x− tz)− f(x)]φ(z)dz

=

Z
Rn
[τtzf(x)− f(x)]φ(z)dz.(11.10)

Hence by Minkowski’s inequality for integrals (Theorem 9.27), Proposition 11.13
and the dominated convergence theorem,

kφt ∗ f − afkp ≤
Z
Rn
kτtzf − fkp |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (11.10)

kφt ∗ f − afk∞ ≤
Z
Rn
kτtzf − fk∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 kτtzf − fk∞ = 0 uniformly in z by the uniform continuity of f.
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Item 3. Let BR = B(0, R) be a large ball in Rn and K @@ U, then

sup
x∈K

|φt ∗ f(x)− af(x)| ≤
¯̄̄̄Z
BR

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
+

¯̄̄̄
¯
Z
Bc
R

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
¯

≤
Z
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
Bc
R

|φ(z)| dz

≤ kφk1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K

|φt ∗ f(x)− af(x)| ≤ 2 kfk∞
Z
|z|>R

|φ(z)| dz → 0 as R→∞.

See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Exercise 11.1. Let

f(t) =

½
e−1/t if t > 0
0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 11.22. There exists φ ∈ C∞c (Rn, [0,∞)) such that φ(0) > 0, supp(φ) ⊂
B̄(0, 1) and

R
Rn φ(x)dx = 1.

Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 11.1. Then
h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =

R
Rn h(|x|2)dx.

Then φ(x) = c−1h(|x|2) is the desired function.
Definition 11.23. Let X ⊂ Rn be an open set. A Radon measure on BX is a
measure µ which is finite on compact subsets of X. For a Radon measure µ, we let
L1loc(µ) consists of those measurable functions f : X → C such that

R
K
|f | dµ <∞

for all compact subsets K ⊂ X.

The reader asked to prove the following proposition in Exercise 11.6 below.

Proposition 11.24. Suppose that f ∈ L1loc(Rn,m) and φ ∈ C1c (Rn), then f ∗ φ ∈
C1(Rn) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rn) then f ∗ φ ∈ C∞(Rn).

Corollary 11.25 (C∞ — Uryhson’s Lemma). Given K @@ U ⊂o Rn, there exists
f ∈ C∞c (Rn, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let φ be as in Lemma 11.22, φt(x) = t−nφ(x/t) be as in Theorem 11.21,
d be the standard metric on Rn and � = d(K,Uc). Since K is compact and Uc is
closed, � > 0. Let Vδ = {x ∈ Rn : d(x,K) < δ} and f = φ�/3 ∗ 1V�/3 , then

supp(f) ⊂ supp(φ�/3) + V�/3 ⊂ V̄2�/3 ⊂ U.

Since V̄2�/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

Z
Rn
1d(y,K)<�/3 · φ�/3(x− y)dy =

Z
Rn

φ�/3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader, Exercise

11.7.
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Lemma 11.26 (Integration by Parts). Suppose f and g are measurable functions
on Rn such that t→ f(x1, . . . , xi−1, t, xi+1, . . . , xn) and t→ g(x1, . . . , xi−1, t, xi+1, . . . , xn)
are continuously differentiable functions on R for each fixed x = (x1, . . . , xn) ∈ Rn.
Moreover assume f · g, ∂f

∂xi
· g and f · ∂g

∂xi
are in L1(Rn,m). ThenZ

Rn

∂f

∂xi
· gdm = −

Z
Rn

f · ∂g
∂xi

dm.

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 11.27. For f ∈ L1(Rn,m) let

f̂(ξ) := (2π)−n/2
Z
Rn

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ (2π)−n/2 kfk1 . (The

choice of the normalization factor, (2π)−n/2, in f̂ is for later convenience.)

Proof. The fact that f̂ is continuous is a simple application of the dominated
convergence theorem. Moreover,¯̄̄

f̂(ξ)
¯̄̄
≤
Z
|f(x)| dm(x) ≤ (2π)−n/2 kfk1

so it only remains to see that f̂(ξ)→ 0 as |ξ|→∞.

First suppose that f ∈ C∞c (Rn) and let ∆ =
Pn

j=1
∂2

∂x2j
be the Laplacian on Rn.

Notice that ∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using Lemma 11.26
repeatedly,Z

∆kf(x)e−iξ·xdm(x) =
Z

f(x)∆k
xe
−iξ·xdm(x) = − |ξ|2k

Z
f(x)e−iξ·xdm(x)

= −(2π)n/2 |ξ|2k f̂(ξ)
for any k ∈ N. Hence (2π)n/2

¯̄̄
f̂(ξ)

¯̄̄
≤ |ξ|−2k °°∆kf

°°
1
→ 0 as |ξ| → ∞ and

f̂ ∈ C0(Rn). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rn) is a sequence such that
limk→∞ kf − fkk1 = 0, then limk→∞

°°°f̂ − f̂k

°°°
u
= 0. Hence f̂ ∈ C0(Rn) by an

application of Proposition 10.30.

Corollary 11.28. Let X ⊂ Rn be an open set and µ be a Radon measure on BX .
(1) Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
(2) If h ∈ L1loc(µ) satisfies

(11.11)
Z
X

fhdµ = 0 for all f ∈ C∞c (X)

then h(x) = 0 for µ — a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 11.22, φt be as in Theorem 11.21 and
set ψt := φt ∗ (f1X) . Then by Proposition 11.24 ψt ∈ C∞(X) and by Lemma 11.16
there exists a compact set K ⊂ X such that supp(ψt) ⊂ K for all t sufficiently
small. By Theorem 11.21, ψt → f uniformly on X as t ↓ 0

(1) The dominated convergence theorem (with dominating function being
kfk∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1., since
Proposition 11.6 guarantees that Cc(X) is dense in Lp(µ).
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(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being kfk∞ |h| 1K) implies

0 = lim
t↓0

Z
X

ψthdµ =

Z
X

lim
t↓0

ψthdµ =

Z
X

fhdµ.

The proof is now finished by an application of Lemma 11.7.

11.1.1. Smooth Partitions of Unity. We have the following smooth variants of
Proposition 10.24, Theorem 10.26 and Corollary 10.27. The proofs of these re-
sults are the same as their continuous counterparts. One simply uses the smooth
version of Urysohn’s Lemma of Corollary 11.25 in place of Lemma 10.15.

Proposition 11.29 (Smooth Partitions of Unity for Compacts). Suppose that X
is an open subset of Rn, K ⊂ X is a compact set and U = {Uj}nj=1 is an open
cover of K. Then there exists a smooth (i.e. hj ∈ C∞(X, [0, 1])) partition of unity
{hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Theorem 11.30 (Locally Compact Partitions of Unity). Suppose that X is an open
subset of Rn and U is an open cover of X. Then there exists a smooth partition of
unity of {hi}Ni=1 (N = ∞ is allowed here) subordinate to the cover U such that
supp(hi) is compact for all i.

Corollary 11.31. Suppose that X is an open subset of Rn and U = {Uα}α∈A ⊂ τ
is an open cover of X. Then there exists a smooth partition of unity of {hα}α∈A
subordinate to the cover U such that supp(hα) ⊂ Uα for all α ∈ A. Moreover if Ūα
is compact for each α ∈ A we may choose hα so that hα ≺ Uα.

11.2. Classical Weierstrass Approximation Theorem. Let Z+ := N ∪ {0}.
Notation 11.32. For x ∈ Rd and α ∈ Zd+ let xα =

Qd
i=1 x

αi
i and |α| = Pd

i=1 αi.

A polynomial on Rd is a function p : Rd → C of the form

p(x) =
X

α:|α|≤N
pαx

α with pα ∈ C and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be the
degree of p. The function p has a natural extension to z ∈ Cd, namely p(z) =P

α:|α|≤N pαz
α where zα =

Qd
i=1 z

αi
i .

Remark 11.33. The mapping (x, y) ∈ Rd×Rd → z = x+iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd×Rd may be written
as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in (x, y),
namely p(x, y) = q(x+ iy, x− iy).

Theorem 11.34 (Weierstrass Approximation Theorem). Let a, b ∈ Rd with a ≤ b
(i.e. ai ≤ bi for i = 1, 2, . . . , d ) and set [a, b] := [a1, b1] × · · · × [ad, bd]. Then for
f ∈ C([a, b],C) there exists polynomials pn on Rd such that pn → f uniformly on
[a, b].
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We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate δ — functions.

Corollary 11.35. Suppose that K ⊂ Rd is a compact set and f ∈ C(K,C). Then
there exists polynomials pn on Rd such that pn → f uniformly on K.

Proof. Choose a, b ∈ Rd such that a ≤ b andK ⊂ (a, b) := (a1, b1)×· · ·×(ad, bd).
Let f̃ : K ∪ (a, b)c → C be the continuous function defined by f̃ |K = f and
f̃ |(a,b)c ≡ 0. Then by the Tietze extension Theorem (either of Theorems 10.2 or
10.16 will do) there exists F ∈ C(Rd,C) such that f̃ = F |K∪(a,b)c . Apply the
Weierstrass Approximation Theorem 11.34 to F |[a,b] to find polynomials pn on Rd
such that pn → F uniformly on [a, b]. Clearly we also have pn → f uniformly on
K.

Corollary 11.36 (Complex Weierstrass Approximation Theorem). Suppose that
K ⊂ Cd is a compact set and f ∈ C(K,C). Then there exists polynomials pn(z, z̄)
for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)|→ 0 as n→∞.

Proof. This is an immediate consequence of Remark 11.33 and Corollary 11.35.

Example 11.37. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1).23 Since z̄ = z−1 on S1, we have
shown polynomials in z and z−1 are dense in C(S1). This example generalizes in
an obvious way to K =

¡
S1
¢d ⊂ Cd.

11.2.1. First proof of the Weierstrass Approximation Theorem 11.34. Proof. Let
0 : = (0, 0, . . . , 0) and 1 : = (1, 1, . . . , 1). By considering the real and imaginary
parts of f separately, it suffices to assume f is real valued. By replacing f by
g(x) = f(a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) for x ∈ [0,1], it suffices to prove
the theorem for f ∈ C([0,1]).
For x ∈ [0, 1], let νx be the measure on {0, 1} such that νx ({0}) = 1 − x and

νx ({1}) = x. Then Z
{0,1}

ydνx(y) = 0 · (1− x) + 1 · x = x and(11.12) Z
{0,1}

(y − x)2dνx(y) = x2(1− x) + (1− x)2 · x = x(1− x).(11.13)

For x ∈ [0,1] let µx = νx1⊗ · · ·⊗νxd be the product of νx1 , . . . , νxd on Ω := {0, 1}d .
Alternatively the measure µx may be described by

(11.14) µx ({�}) =
dY
i=1

(1− xi)
1−�i x�ii

for � ∈ Ω. Notice that µx ({�}) is a degree d polynomial in x for each � ∈ Ω. For
n ∈ N and x ∈ [0,1], let µnx denote the n — fold product of µx with itself on Ωn,
Xi(ω) = ωi ∈ Ω ⊂ Rd for ω ∈ Ωn and let

Sn = (S
1
n, . . . , S

d
n) := (X1 +X2 + · · ·+Xn)/n,

23Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting F (z) = zf( z
|z| )

for z 6= 0 and F (0) = 0. So this special case does not require the Tietze extension theorem.
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so Sn : Ωn → Rd. The reader is asked to verify (Exercise 11.2) that

(11.15)
Z
Ωn

Sndµ
n
x =

µZ
Ωn

S1ndµ
n
x , . . . ,

Z
Ωn

Sdndµ
n
x

¶
= (x1, . . . , xd) = x

and

(11.16)
Z
Ωn
|Sn − x|2 dµnx =

1

n

dX
i=1

xi(1− xi) ≤ d

n
.

From these equations it follows that Sn is concentrating near x as n → ∞, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(11.17) pn(x) :=

Z
Ωn

f(Sn)dµ
n
x

should approach f(x) as n→∞.
Let � > 0 be given, M = sup {|f(x)| : x ∈ [0, 1]} and

δ� = sup {|f(y)− f(x)| : x, y ∈ [0,1] and |y − x| ≤ �} .
By uniform continuity of f on [0,1], lim�↓0 δ� = 0. Using these definitions and the
fact that µnx(Ω

n) = 1,

|f(x)− pn(x)| =
¯̄̄̄Z
Ωn
(f(x)− f(Sn)) dµ

n
x

¯̄̄̄
≤
Z
Ωn
|f(x)− f(Sn)| dµnx

≤
Z
{|Sn−x|>�}

|f(x)− f(Sn)| dµnx +
Z
{|Sn−x|≤�}

|f(x)− f(Sn)| dµnx
≤ 2Mµnx (|Sn − x| > �) + δ�.(11.18)

By Chebyshev’s inequality,

µnx (|Sn − x| > �) ≤ 1

�2

Z
Ωn
(Sn − x)2dµnx =

d

n�2
,

and therefore, Eq. (11.18) yields the estimate

kf − pnku ≤
2dM

n�2
+ δ�

and hence

lim sup
n→∞

kf − pnku ≤ δ� → 0 as � ↓ 0.

This completes the proof since, using Eq. (11.14),

pn(x) =
X
ω∈Ωn

f(Sn(ω))µ
n
x({ω}) =

X
ω∈Ωn

f(Sn(ω))
nY
i=1

µx({ωi}),

is an nd — degree polynomial in x ∈ Rd).
Exercise 11.2. Verify Eqs. (11.15) and (11.16). This is most easily done using
Eqs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless it
is convenient to use this formulation.)
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11.2.2. Second proof of the Weierstrass Approximation Theorem 11.34. For the
second proof we will first need two lemmas.

Lemma 11.38 (Approximate δ — sequences). Suppose that {Qn}∞n=1 is a sequence
of positive functions on Rd such thatZ

Rd
Qn(x) dx = 1 and(11.19)

lim
n→∞

Z
|x|≥�

Qn(x)dx = 0 for all � > 0.(11.20)

For f ∈ BC(Rd), Qn ∗ f converges to f uniformly on compact subsets of Rd.

Proof. Let x ∈ Rd, then because of Eq. (11.19),

|Qn ∗ f(x)− f(x)| =
¯̄̄̄Z
Rd

Qn(y) (f(x− y)− f(x)) dy

¯̄̄̄
≤
Z
Rd

Qn(y) |f(x− y)− f(x)| dy.

Let M = sup
©|f(x)| : x ∈ Rdª and � > 0, then by and Eq. (11.19)

|Qn ∗ f(x)− f(x)| ≤
Z
|y|≤�

Qn(y) |f(x− y)− f(x)| dy

+

Z
|y|>�

Qn(y) |f(x− y)− f(x)| dy

≤ sup
|z|≤�

|f(x+ z)− f(x)|+ 2M
Z
|y|>�

Qn(y)dy.

Let K be a compact subset of Rd, then

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤�,x∈K

|f(x+ z)− f(x)|+ 2M
Z
|y|>�

Qn(y)dy

and hence by Eq. (11.20),

lim sup
n→∞

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤�,x∈K

|f(x+ z)− f(x)| .

This finishes the proof since the right member of this equation tends to 0 as � ↓ 0
by uniform continuity of f on compact subsets of Rn.
Let qn : R→[0,∞) be defined by

(11.21) qn(x) ≡ 1

cn
(1− x2)n1|x|≤1where cn :=

Z 1

−1
(1− x2)ndx.

Figure 26 displays the key features of the functions qn.
Define

(11.22) Qn : Rn → [0,∞) by Qn(x) = qn(x1) . . . qn(xd).

Lemma 11.39. The sequence {Qn}∞n=1 is an approximate δ — sequence, i.e. they
satisfy Eqs. (11.19) and (11.20).

Proof. The fact that Qn integrates to one is an easy consequence of Tonelli’s
theorem and the definition of cn. Since all norms on Rd are equivalent, we may
assume that |x| = max {|xi| : i = 1, 2, . . . , d} when proving Eq. (11.20). With this
norm ©

x ∈ Rd : |x| ≥ �
ª
= ∪di=1

©
x ∈ Rd : |xi| ≥ �

ª
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Figure 26. A plot of q1, q50, and q100. The most peaked curve is
q100 and the least is q1. The total area under each of these curves
is one.

and therefore by Tonelli’s theorem and the definition of cn,

Z
{|x|≥�}

Qn(x)dx ≤
dX
i=1

Z
{|xi|≥�}

Qn(x)dx = d

Z
{x∈R|x|≥�}

qn(x)dx.

Since

Z
|x|≥�

qn(x)dx =
2
R 1
�
(1− x2)ndx

2
R �
0
(1− x2)ndx+ 2

R 1
�
(1− x2)ndx

≤
R 1
�

x
� (1− x2)ndxR �

0
x
� (1− x2)ndx

=
(1− x2)n+1|1�
(1− x2)n+1|�0

=
(1− �2)n+1

1− (1− �2)n+1
→ 0 as n→∞,

the proof is complete.
We will now prove Corollary 11.35 which clearly implies Theorem 11.34.
Proof. Proof of Corollary 11.35. As in the beginning of the proof already given

for Corollary 11.35, we may assume that K = [a, b] for some a ≤ b and f = F |K
where F ∈ C(Rd,C) is a function such that F |Kc ≡ 0. Moreover, by replacing F (x)
by G(x) = F (a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) for x ∈ Rn we may further
assume K = [0,1].
Let Qn(x) be defined as in Eq. (11.22). Then by Lemma 11.39 and 11.38,

pn(x) := (Qn ∗ F )(x) → F (x) uniformly for x ∈ [0,1] as n → ∞. So to finish the
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proof it only remains to show pn(x) is a polynomial when x ∈ [0,1]. For x ∈ [0,1],

pn(x) =

Z
Rd

Qn(x− y)f(y)dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n1|xi−yi|≤1
¤
dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n
¤
dy.

Since the product in the above integrand is a polynomial if (x, y) ∈ Rn × Rn, it
follows easily that pn(x) is polynomial in x.

11.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 11.34
to more general topological spaces. We will first need some definitions.

Definition 11.40. Let X be a topological space and A ⊂ C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

(1) A is said to separate points if for all distinct points x, y ∈ X there exists
f ∈ A such that f(x) 6= f(y).

(2) A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

(3) A is called a lattice if f ∨ g := max(f, g) and f ∧ g = min(f, g) ∈ A for all
f, g ∈ A.

(4) A ⊂ C(X) is closed under conjugation if f̄ ∈ A whenever f ∈ A.24

Remark 11.41. If X is a topological space such that C(X,R) separates points then
X is Hausdorff. Indeed if x, y ∈ X and f ∈ C(X,R) such that f(x) 6= f(y), then
f−1(J) and f−1(I) are disjoint open sets containing x and y respectively when I
and J are disjoint intervals containing f(x) and f(y) respectively.

Lemma 11.42. If A ⊂ C(X,R) is a closed algebra then |f | ∈ A for all f ∈ A and
A is a lattice.

Proof. Let f ∈ A and let M = sup
x∈X

|f(x)|. Using Theorem 11.34 or Exercise

11.8, there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0.

By replacing pn by pn − pn(0) if necessary we may assume that pn(0) = 0. Since
A is an algebra, it follows that fn = pn(f) ∈ A and |f | ∈ A, because |f | is the
uniform limit of the fn’s. Since

f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|),

we have shown A is a lattice.

24This is of course no restriction when C(X) = C(X,R).
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Lemma 11.43. Let A ⊂ C(X,R) be an algebra which separates points and x, y ∈ X
be distinct points such that

(11.23) ∃ f, g ∈ A 3 f(x) 6= 0 and g(y) 6= 0.
Then

(11.24) V := {(f(x), f(y)) : f ∈ A}= R2.
Proof. It is clear that V is a non-zero subspace of R2. If dim(V ) = 1, then V =

span(a, b) with a 6= 0 and b 6= 0 by the assumption in Eq. (11.23). Since (a, b) =
(f(x), f(y)) for some f ∈ A and f2 ∈ A, it follows that (a2, b2) = (f2(x), f2(y)) ∈ V
as well. Since dimV = 1, (a, b) and (a2, b2) are linearly dependent and therefore

0 = det

µ
a a2

b b2

¶
= ab2 − ba2 = ab(b− a)

which implies that a = b. But this the implies that f(x) = f(y) for all f ∈ A,
violating the assumption that A separates points. Therefore we conclude that
dim(V ) = 2, i.e. V = R2.

Theorem 11.44 (Stone-Weierstrass Theorem). ppose X is a compact Hausdorff
space and A ⊂ C(X,R) is a closed subalgebra which separates points. For x ∈ X
let

Ax ≡ {f(x) : f ∈ A} and
Ix = {f ∈ C(X,R) : f(x) = 0}.

Then either one of the following two cases hold.
(1) Ax = R for all x ∈ X, i.e. for all x ∈ X there exists f ∈ A such that

f(x) 6= 0.25
(2) There exists a unique point x0 ∈ X such that Ax0 = {0} .
Moreover in case (1) A = C(X,R) and in case (2) A = Ix0 = {f ∈ C(X,R) :

f(x0) = 0}.
Proof. If there exists x0 such that Ax0 = {0} (x0 is unique since A separates

points) then A ⊂ Ix0 . If such an x0 exists let C = Ix0 and if Ax = R for all x, set
C = C(X,R). Let f ∈ C, then by Lemma 11.43, for all x, y ∈ X such that x 6= y
there exists gxy ∈ A such that f = gxy on {x, y}.26 The basic idea of the proof is
contained in the following identity,

(11.25) f(z) = inf
x∈X

sup
y∈X

gxy(z) for all z ∈ X.

To prove this identity, let gx := supy∈X gxy and notice that gx ≥ f since gxy(y) =
f(y) for all y ∈ X. Moreover, gx(x) = f(x) for all x ∈ X since gxy(x) = f(x) for all
x. Therefore,

inf
x∈X

sup
y∈X

gxy = inf
x∈X

gx = f.

The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (11.25) becoming only an approximate
identity.

25If A contains the constant function 1, then this hypothesis holds.
26If Ax0 = {0} and x = x0 or y = x0, then gxy exists merely by the fact that A separates

points.
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Claim 2. Given � > 0 and x ∈ X there exists gx ∈ A such that gx(x) = f(x) and
f < gx + � on X.

To prove the claim, let Vy be an open neighborhood of y such that |f − gxy| < �
on Vy so in particular f < � + gxy on Vy. By compactness, there exists Λ ⊂⊂ X
such that X =

S
y∈Λ

Vy. Set

gx(z) = max{gxy(z) : y ∈ Λ},
then for any y ∈ Λ, f < � + gxy < � + gx on Vy and therefore f < � + gx on X.
Moreover, by construction f(x) = gx(x), see Figure 27 below.

Figure 27. Constructing the funtions gx.

We now will finish the proof of the theorem. For each x ∈ X, let Ux be a
neighborhood of x such that |f − gx| < � on Ux. Choose Γ ⊂⊂ X such that
X =

S
x∈Γ

Ux and define

g = min{gx : x ∈ Γ} ∈ A.
Then f < g + � on X and for x ∈ Γ, gx < f + � on Ux and hence g < f + � on Ux.
Since X =

S
x∈Γ

Ux, we conclude

f < g + � and g < f + � on X,

i.e. |f − g| < � on X. Since � > 0 is arbitrary it follows that f ∈ Ā = A.
Theorem 11.45 (Complex Stone-Weierstrass Theorem). Let X be a compact
Hausdorff space. Suppose A ⊂ C(X,C) is closed in the uniform topology, sep-
arates points, and is closed under conjugation. Then either A = C(X,C) or
A = ICx0 := {f ∈ C(X,C) : f(x0) = 0} for some x0 ∈ X.

Proof. Since

Re f =
f + f̄

2
and Im f =

f − f̄

2i
,
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Re f and Im f are both in A. Therefore
AR = {Re f, Im f : f ∈ A}

is a real sub-algebra of C(X,R) which separates points. Therefore either AR =
C(X,R) or AR = Ix0 ∩ C(X,R) for some x0 and hence A = C(X,C) or ICx0
respectively.
As an easy application, Theorems 11.44 and 11.45 imply Corollaries 11.35 and

11.36 respectively.

Corollary 11.46. Suppose that X is a compact subset of Rn and µ is a finite
measure on (X,BX), then polynomials are dense in Lp(X,µ) for all 1 ≤ p <∞.

Proof. Consider X to be a metric space with usual metric induced from Rn.
Then X is a locally compact separable metric space and therefore Cc(X,C) =
C(X,C) is dense in Lp(µ) for all p ∈ [1,∞). Since, by the dominated convergence
theorem, uniform convergence implies Lp(µ) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in Lp(µ).
Here are a couple of more applications.

Example 11.47. Let f ∈ C([a, b]) be a positive function which is injective. Then
functions of the form

PN
k=1 akf

k with ak ∈ C and N ∈ N are dense in C([a, b]).
For example if a = 1 and b = 2, then one may take f(x) = xα for any α 6= 0, or
f(x) = ex, etc.

Exercise 11.3. Let (X, d) be a separable compact metric space. Show that C(X)
is also separable. Hint: Let E ⊂ X be a countable dense set and then consider the
algebra, A ⊂ C(X), generated by {d(x, ·)}x∈E .

11.4. Locally Compact Version of Stone-Weierstrass Theorem.

Theorem 11.48. Let X be non-compact locally compact Hausdorff space. If A is
a closed subalgebra of C0(X,R) which separates points. Then either A = C0(X,R)
or there exists x0 ∈ X such that A = {f ∈ C0(X,R) : f(x0) = 0}.
Proof. There are two cases to consider.
Case 1. There is no point x0 ∈ X such that A ⊂ {f ∈ C0(X,R) : f(x0) = 0}.

In this case let X∗ = X ∪ {∞} be the one point compactification of X. Because of
Proposition 10.31 to each f ∈ A there exists a unique extension f̃ ∈ C(X∗,R)
such that f = f̃ |X and moreover this extension is given by f̃(∞) = 0. LeteA := {f̃ ∈ C(X∗,R) : f ∈ A}. Then eA is a closed (you check) sub-algebra
of C(X∗,R) which separates points. An application of Theorem 11.44 implieseA = {F ∈ C(X∗,R) 3F (∞) = 0} and therefore by Proposition 10.31 A = {F |X :

F ∈ eA} = C0(X,R).
Case 2. There exists x0 ∈ X such A ⊂ {f ∈ C0(X,R) : f(x0) = 0}. In this

case let Y := X \ {x0} and AY := {f |Y : f ∈ A} . Since X is locally compact,
one easily checks AY ⊂ C0(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that AY = C0(Y,R). So if f ∈ C0(X,R) and f(x0) = 0,
f |Y ∈ C0(Y,R) =AY , i.e. there exists g ∈ A such that g|Y = f |Y . Since g(x0) =
f(x0) = 0, it follows that f = g ∈ A and therefore A = {f ∈ C0(X,R) : f(x0) = 0}.

Example 11.49. Let X = [0,∞), λ > 0 be fixed, A be the algebra generated by
t→ e−λt. So the general element f ∈ A is of the form f(t) = p(e−λt), where p(x)
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is a polynomial. Since A ⊂ C0(X,R) separates points and e−λt ∈ A is pointwise
positive, Ā = C0(X,R).

As an application of this example, we will show that the Laplace transform is
injective.

Theorem 11.50. For f ∈ L1([0,∞), dx), the Laplace transform of f is defined by

Lf(λ) ≡
Z ∞
0

e−λxf(x)dx for all λ > 0.

If Lf(λ) ≡ 0 then f(x) = 0 for m -a.e. x.

Proof. Suppose that f ∈ L1([0,∞), dx) such that Lf(λ) ≡ 0. Let g ∈
C0([0,∞),R) and � > 0 be given. Choose {aλ}λ>0 such that#({λ > 0 : aλ 6= 0}) <
∞ and

|g(x)−
X
λ>0

aλe
−λx| < � for all x ≥ 0.

Then ¯̄̄̄Z ∞
0

g(x)f(x)dx

¯̄̄̄
=

¯̄̄̄
¯
Z ∞
0

Ã
g(x)−

X
λ>0

aλe
−λx

!
f(x)dx

¯̄̄̄
¯

≤
Z ∞
0

¯̄̄̄
¯g(x)−X

λ>0

aλe
−λx

¯̄̄̄
¯ |f(x)| dx ≤ �kfk1.

Since � > 0 is arbitrary, it follows that
R∞
0

g(x)f(x)dx = 0 for all g ∈ C0([0,∞),R).
The proof is finished by an application of Lemma 11.7.

11.5. Dynkin’s Multiplicative System Theorem. This section is devoted to
an extension of Theorem 8.12 based on the Weierstrass approximation theorem. In
this section X is a set.

Definition 11.51 (Multiplicative System). A collection of real valued functions Q
on a set X is a multiplicative system provided f · g ∈ Q whenever f, g ∈ Q.

Theorem 11.52 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of B(X,R) which contains the constant functions and is closed under bounded
convergence. If Q ⊂ H is multiplicative system, then H contains all bounded real
valued σ(Q)-measurable functions.

Theorem 11.53 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of B(X,C) such that: 1 ∈ H, H is closed under complex conjugation,
and H is closed under bounded convergence. If Q ⊂ H is multiplicative system
which is closed under conjugation, then H contains all bounded complex valued
σ(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
(11.26) B := {x ∈ X : f1(x) ∈ R1, . . . , fm(x) ∈ Rm}
where m = 1, 2, . . . , and for k = 1, 2, . . . ,m, fk ∈ Q and Rk is an open interval if
F = R or Rk is an open rectangle in C if F = C. The family C is easily seen to be
a π — system such that σ(Q) = σ(C). So By Theorem 8.12, to finish the proof it
suffices to show 1B ∈ H for all B ∈ C.
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It is easy to construct, for each k, a uniformly bounded sequence of continuous
functions

©
φkn
ª∞
n=1

on F converging to the characteristic function 1Rk . By Weier-
strass’ theorem, there exists polynomials pkm(x) such that

¯̄
pkn(x)− φkn(x)

¯̄ ≤ 1/n
for |x| ≤ kφkk∞ in the real case and polynomials pkm(z, z̄) in z and z̄ such that¯̄
pkn(z, z̄)− φkn(z)

¯̄ ≤ 1/n for |z| ≤ kφkk∞ in the complex case. The functions

Fn :=p
1
n(f1)p

2
n(f2) . . . p

m
n (fm) (real case)

Fn :=p
1
n(f1f̄1)p

2
n(f2, f̄2) . . . p

m
n (fm, f̄m) (complex case)

on X are uniformly bounded, belong to H and converge pointwise to 1B as n→∞,
where B is the set in Eq. (11.26). Thus 1B ∈ H and the proof is complete.

Remark 11.54. Given any collection of bounded real valued functions F on X,
let H(F) be the subspace of B(X,R) generated by F , i.e. H(F) is the smallest
subspace of B(X,R) which is closed under bounded convergence and contains F .
With this notation, Theorem 11.52 may be stated as follows. If F is a multiplicative
system then H(F) = Bσ(F)(X,R) — the space of bounded σ (F) — measurable real
valued functions on X.

11.6. Exercises.

Exercise 11.4. Let (X, τ) be a topological space, µ a measure on BX = σ(τ) and
f : X → C be a measurable function. Letting ν be the measure, dν = |f | dµ, show
supp(ν) = suppµ(f), where supp(ν) is defined in Definition 9.41).

Exercise 11.5. Let (X, τ) be a topological space, µ a measure on BX = σ(τ) such
that supp(µ) = X (see Definition 9.41). Show suppµ(f) = supp(f) = {f 6= 0} for
all f ∈ C(X).

Exercise 11.6. Prove Proposition 11.24 by appealing to Corollary 7.43.

Exercise 11.7 (Integration by Parts). Suppose that (x, y) ∈ R×Rn−1 → f(x, y) ∈
C and (x, y) ∈ R×Rn−1 → g(x, y) ∈ C are measurable functions such that for each
fixed y ∈ Rn−1, x → f(x, y) and x → g(x, y) are continuously differentiable. Also
assume f · g, ∂xf · g and f · ∂xg are integrable relative to Lebesgue measure on
R×Rn−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. Show

(11.27)
Z
R×Rn−1

∂xf(x, y) · g(x, y)dxdy = −
Z
R×Rn−1

f(x, y) · ∂xg(x, y)dxdy.

(Note: this result and Fubini’s theorem proves Lemma 11.26.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of 0 ∈ R and

set ψ�(x) = ψ(�x). First verify Eq. (11.27) with f(x, y) replaced by ψ�(x)f(x, y) by
doing the x — integral first. Then use the dominated convergence theorem to prove
Eq. (11.27) by passing to the limit, � ↓ 0.
Exercise 11.8. Let M <∞, show there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0

as follows. Let f(t) =
√
1− t for |t| ≤ 1. By Taylor’s theorem with integral re-

mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
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constants27 αn > 0 for n ∈ N such that √1− x = 1 −P∞n=1 αnxn for all |x| < 1.
Use this to prove

P∞
n=1 αn = 1 and therefore qm(x) := 1−

Pm
n=1 αnx

n

lim
m→∞ sup

|x|≤1
|√1− x− qm(x)| = 0.

Let 1− x = t2/M2, i.e. x = 1− t2/M2, then

lim
m→∞ sup

|t|≤M

¯̄̄̄ |t|
M
− qm(1− t2/M2)

¯̄̄̄
= 0

so that pm(t) :=Mqm(1− t2/M2) are the desired polynomials.

Exercise 11.9. Given a continuous function f : R→ C which is 2π -periodic and
� > 0. Show there exists a trigonometric polynomial, p(θ) =

nP
n=−N

αne
inθ, such that

|f(θ)− P (θ)| < � for all θ ∈ R. Hint: show that there exists a unique function
F ∈ C(S1) such that f(θ) = F (eiθ) for all θ ∈ R.
Remark 11.55. Exercise 11.9 generalizes to 2π — periodic functions on Rd, i.e. func-
tions such that f(θ+2πei) = f(θ) for all i = 1, 2, . . . , d where {ei}di=1 is the standard
basis for Rd. A trigonometric polynomial p(θ) is a function of θ ∈ Rd of the form

p(θ) =
X
n∈Γ

αne
in·θ

where Γ is a finite subset of Zd. The assertion is again that these trigonometric
polynomials are dense in the 2π — periodic functions relative to the supremum
norm.

Exercise 11.10. Let µ be a finite measure on BRd , then D := span{eiλ·x : λ ∈ Rd}
is a dense subspace of Lp(µ) for all 1 ≤ p <∞.Hints: By Proposition 11.6, Cc(Rd)
is a dense subspace of Lp(µ). For f ∈ Cc(Rd) and N ∈ N, let

fN (x) :=
X
n∈Zd

f(x+ 2πNn).

Show fN ∈ BC(Rd) and x → fN (Nx) is 2π — periodic, so by Exercise 11.9, x →
fN(Nx) can be approximated uniformly by trigonometric polynomials. Use this
fact to conclude that fN ∈ D̄Lp(µ). After this show fN → f in Lp(µ).

Exercise 11.11. Suppose that µ and ν are two finite measures on Rd such that

(11.28)
Z
Rd

eiλ·xdµ(x) =
Z
Rd

eiλ·xdν(x)

for all λ ∈ Rd. Show µ = ν.
Hint: Perhaps the easiest way to do this is to use Exercise 11.10 with the

measure µ being replaced by µ+ν. Alternatively, use the method of proof of Exercise
11.9 to show Eq. (11.28) implies

R
Rd fdµ(x) =

R
Rd fdν(x) for all f ∈ Cc(Rd).

Exercise 11.12. Again let µ be a finite measure on BRd . Further assume that
CM :=

R
Rd e

M|x|dµ(x) < ∞ for all M ∈ (0,∞). Let P(Rd) be the space of
polynomials, ρ(x) =

P
|α|≤N ραx

α with ρα ∈ C, on Rd. (Notice that |ρ(x)|p ≤
C(ρ, p,M)eM|x|, so that P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞.) Show P(Rd) is dense
in Lp(µ) for all 1 ≤ p <∞. Here is a possible outline.

27In fact αn :=
(2n−3)!!
2nn!

, but this is not needed.
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Outline: For λ ∈ Rd and n ∈ N let fnλ (x) = (λ · x)n /n!
(1) Use calculus to verify supt≥0 tαe−Mt = (α/M)α e−α for all α ≥ 0 where

(0/M)
0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e−M|x|

´
|λ|pn eM|x|

to find an estimate on kfnλ kp .
(2) Use your estimate on kfnλ kp to show

P∞
n=0 kfnλ kp <∞ and conclude

lim
N→∞

°°°°°eiλ·(·) −
NX
n=0

fnλ

°°°°°
p

= 0.

(3) Now finish by appealing to Exercise 11.10.

Exercise 11.13. Again let µ be a finite measure on BRd but now assume there
exists an � > 0 such that C :=

R
Rd e

�|x|dµ(x) < ∞. Also let q > 1 and h ∈ Lq(µ)

be a function such that
R
Rd h(x)x

αdµ(x) = 0 for all α ∈ Nd0. (As mentioned in
Exercise 11.13, P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞, so x → h(x)xα is in L1(µ).)
Show h(x) = 0 for µ— a.e. x using the following outline.
Outline: For λ ∈ Rd and n ∈ N let fλn (x) = (λ · x)n /n! and let p = q/(q − 1)

be the conjugate exponent to q.
(1) Use calculus to verify supt≥0 tαe−�t = (α/�)

α
e−α for all α ≥ 0 where

(0/�)
0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e−�|x|

´
|λ|pn e�|x|

to find an estimate on
°°fλn°°p .

(2) Use your estimate on
°°fλn°°p to show there exists δ > 0 such thatP∞

n=0

°°fλn°°p <∞when |λ| ≤ δ and conclude for |λ| ≤ δ that eiλ·x = Lp(µ)—P∞
n=0 f

λ
n (x). Conclude from this thatZ

Rd
h(x)eiλ·xdµ(x) = 0 when |λ| ≤ δ.

(3) Let λ ∈ Rd (|λ| not necessarily small) and set g(t) := R
Rd e

itλ·xh(x)dµ(x)
for t ∈ R. Show g ∈ C∞(R) and

g(n)(t) =

Z
Rd
(iλ · x)neitλ·xh(x)dµ(x) for all n ∈ N.

(4) Let T = sup{τ ≥ 0 : g|[0,τ ] ≡ 0}. By Step 2., T ≥ δ. If T <∞, then

0 = g(n)(T ) =

Z
Rd
(iλ · x)neiTλ·xh(x)dµ(x) for all n ∈ N.

Use Step 3. with h replaced by eiTλ·xh(x) to conclude

g(T + t) =

Z
Rd

ei(T+t)λ·xh(x)dµ(x) = 0 for all t ≤ δ/ |λ| .
This violates the definition of T and therefore T =∞ and in particular we
may take T = 1 to learnZ

Rd
h(x)eiλ·xdµ(x) = 0 for all λ ∈ Rd.
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(5) Use Exercise 11.10 to conclude thatZ
Rd

h(x)g(x)dµ(x) = 0

for all g ∈ Lp(µ). Now choose g judiciously to finish the proof.



222 BRUCE K. DRIVER†

12. Hilbert Spaces

12.1. Hilbert Spaces Basics.

Definition 12.1. Let H be a complex vector space. An inner product on H is a
function, h·, ·i : H ×H → C, such that

(1) hax+ by, zi = ahx, zi+ bhy, zi i.e. x→ hx, zi is linear.
(2) hx, yi = hy, xi.
(3) kxk2 ≡ hx, xi ≥ 0 with equality kxk2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → hz, xi is anti-linear for
fixed z ∈ H, i.e.

hz, ax+ byi = āhz, xi+ b̄hz, yi.
We will often find the following formula useful:

kx+ yk2 = hx+ y, x+ yi = kxk2 + kyk2 + hx, yi+ hy, xi
= kxk2 + kyk2 + 2Rehx, yi(12.1)

Theorem 12.2 (Schwarz Inequality). Let (H, h·, ·i) be an inner product space, then
for all x, y ∈ H

|hx, yi| ≤ kxkkyk
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0. First off notice
that if x = αy for some α ∈ C, then hx, yi = α kyk2 and hence

|hx, yi| = |α| kyk2 = kxkkyk.
Moreover, in this case α := hx,yi

kyk2 .
Now suppose that x ∈ H is arbitrary, let z ≡ x − kyk−2hx, yiy. (So z is the

“orthogonal projection” of x onto y, see Figure 28.) Then

Figure 28. The picture behind the proof.

0 ≤ kzk2 =
°°°°x− hx, yikyk2 y

°°°°2 = kxk2 + |hx, yi|2kyk4 kyk2 − 2Rehx, hx, yikyk2 yi

= kxk2 − |hx, yi|
2

kyk2
from which it follows that 0 ≤ kyk2kxk2 − |hx, yi|2 with equality iff z = 0 or
equivalently iff x = kyk−2hx, yiy.
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Corollary 12.3. Let (H, h·, ·i) be an inner product space and kxk :=phx, xi. Then
k · k is a norm on H. Moreover h·, ·i is continuous on H ×H, where H is viewed as
the normed space (H, k·k).
Proof. The only non-trivial thing to verify that k·k is a norm is the triangle

inequality:

kx+ yk2 = kxk2 + kyk2 + 2Rehx, yi ≤ kxk2 + kyk2 + 2kxk kyk
= (kxk+ kyk)2

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows kx+ yk ≤ kxk+ kyk. For the continuity assertion:

|hx, yi− hx0, y0i| = |hx− x0, yi+ hx0, y − y0i|
≤ kykkx− x0k+ kx0kky − y0k
≤ kykkx− x0k+ (kxk+ kx− x0k) ky − y0k
= kykkx− x0k+ kxkky − y0k+ kx− x0kky − y0k

from which it follows that h·, ·i is continuous.
Definition 12.4. Let (H, h·, ·i) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff hx, yi = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A and write x ⊥ A iff hx, yi = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. We also say that a
set S ⊂ H is orthogonal if x ⊥ y for all x, y ∈ S such that x 6= y. If S further
satisfies, kxk = 1 for all x ∈ S, then S is said to be orthonormal.

Proposition 12.5. Let (H, h·, ·i) be an inner product space then
(1) (Parallelogram Law)

(12.2) kx+ yk2 + kx− yk2 = 2kxk2 + 2kyk2
for all x, y ∈ H.

(2) (Pythagorean Theorem) If S ⊂ H is a finite orthonormal set, then

(12.3) k
X
x∈S

xk2 =
X
x∈S

kxk2.

(3) If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Remark 12.6. See Proposition 12.40 in the appendix below for the “converse” of
the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

kx+ yk2 + kx− yk2 = kxk2 + kyk2 + 2Rehx, yi+ kxk2 + kyk2 − 2Rehx, yi
= 2kxk2 + 2kyk2,

and

k
X
x∈S

xk2 = h
X
x∈S

x,
X
y∈S

yi =
X
x,y∈S

hx, yi

=
X
x∈S

hx, xi =
X
x∈S

kxk2.
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Item 3. is a consequence of the continuity of h·, ·i and the fact that
A⊥ = ∩x∈A ker(h·, xi)

where ker(h·, xi) = {y ∈ H : hy, xi = 0} — a closed subspace of H.

Definition 12.7. A Hilbert space is an inner product space (H, h·, ·i) such that
the induced Hilbertian norm is complete.

Example 12.8. Let (X,M, µ) be a measure space then H := L2(X,M, µ) with
inner product

(f, g) =

Z
X

f · ḡdµ

is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv-
alent” to a Hilbert space of this form.

Definition 12.9. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.10. Suppose that H is a Hilbert space and M ⊂ H be a closed convex
subset of H. Then for any x ∈ H there exists a unique y ∈M such that

kx− yk = d(x,M) = inf
z∈M

kx− zk.

Moreover, ifM is a vector subspace of H, then the point y may also be characterized
as the unique point in M such that (x− y) ⊥M.

Proof. By replacing M by M − x := {m− x : m ∈ M} we may assume x = 0.
Let δ := d(0,M) = infm∈M kmk and y, z ∈M, see Figure 29.

Figure 29. The geometry of convex sets.

By the parallelogram law and the convexity of M,

(12.4) 2kyk2+2kzk2 = ky+zk2+ky−zk2 = 4ky + z

2
||2+ky−zk2 ≥ 4δ2+ky−zk2.

Hence if kyk = kzk = δ, then 2δ2 + 2δ2 ≥ 4δ2 + ky − zk2, so that ky − zk2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.
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Existence. Let yn ∈M be chosen such that kynk = δn → δ ≡ d(0,M). Taking
y = ym and z = yn in Eq. (12.4) shows 2δ2m + 2δ

2
n ≥ 4δ2 + kyn − ymk2. Passing to

the limit m,n→∞ in this equation implies,

2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

kyn − ymk2.

Therefore {yn}∞n=1 is Cauchy and hence convergent. Because M is closed, y :=
lim
n→∞ yn ∈M and because k·k is continuous,

kyk = lim
n→∞ kynk = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now for the second assertion we further assume that M is a closed subspace of

H and x ∈ H. Let y ∈ M be the closest point in M to x. Then for w ∈ M, the
function

g(t) ≡ kx− (y + tw)k2 = kx− yk2 − 2tRehx− y, wi+ t2kwk2

has a minimum at t = 0. Therefore 0 = g0(0) = −2Rehx − y, wi. Since w ∈ M is
arbitrary, this implies that (x− y) ⊥ M. Finally suppose y ∈ M is any point such
that (x− y) ⊥M. Then for z ∈M, by Pythagorean’s theorem,

kx− zk2 = kx− y + y − zk2 = kx− yk2 + ky − zk2 ≥ kx− yk2

which shows d(x,M)2 ≥ kx− yk2. That is to say y is the point in M closest to x.

Definition 12.11. Suppose that A : H → H is a bounded operator. The adjoint
of A, denote A∗, is the unique operator A∗ : H → H such that hAx, yi = hx,A∗yi.
(The proof that A∗ exists and is unique will be given in Proposition 12.16 below.)
A bounded operator A : H → H is self - adjoint or Hermitian if A = A∗.

Definition 12.12. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that for
x ∈ H, PM (x) is the unique element in M such that (x− PM (x)) ⊥M .

Proposition 12.13. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection PM satisfies:

(1) PM is linear (and hence we will write PMx rather than PM (x).
(2) P 2M = PM (PM is a projection).
(3) P ∗M = PM , (PM is self-adjoint).
(4) Ran(PM ) =M and ker(PM ) =M⊥.

Proof.

(1) Let x1, x2 ∈ H and α ∈ F, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
(2) Obviously Ran(PM ) = M and PMx = x for all x ∈ M . Therefore P 2M =

PM .
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(3) Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

hPMx, yi = hPMx, PMy + y − PMyi
= hPMx, PMyi
= hPMx+ (x− PM ), PMyi
= hx, PMyi.

(4) It is clear that Ran(PM ) ⊂M. Moreover, if x ∈M, then PMx = x implies
that Ran(PM ) =M. Now x ∈ ker(PM ) iff PMx = 0 iff x = x− 0 ∈M⊥.

Corollary 12.14. Suppose that M ⊂ H is a proper closed subspace of a Hilbert
space H, then H =M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x− y ∈M⊥. Then x = y+ (x− y) ∈
M +M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. kxk2 = hx, xi = 0. So M ∩M⊥ = {0} .

Proposition 12.15 (Riesz Theorem). Let H∗ be the dual space of H (Notation
3.63). The map

(12.5) z ∈ H
j−→ h·, zi ∈ H∗

is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|hx, zi| ≤ kxk kzk for all x ∈ H

with equality when x = z. This implies that kjzkH∗ = kh·, zikH∗ = kzk . Therefore
j is isometric and this shows that j is injective. To finish the proof we must show
that j is surjective. So let f ∈ H∗ which we assume with out loss of generality is
non-zero. Then M = ker(f) — a closed proper subspace of H. Since, by Corollary
12.14, H = M ⊕ M⊥, f : H/M ∼= M⊥ → F is a linear isomorphism. This
shows that dim(M⊥) = 1 and hence H = M ⊕ Fx0 where x0 ∈ M⊥ \ {0} .28
Choose z = λx0 ∈M⊥ such that f(x0) = hx0, zi. (So λ = f̄(x0)/ kx0k2 .) Then for
x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λhx0, zi = hλx0, zi = hm+ λx0, zi = hx, zi
which shows that f = jz.

Proposition 12.16 (Adjoints). Let H and K be Hilbert spaces and A : H → K
be a bounded operator. Then there exists a unique bounded operator A∗ : K → H
such that

(12.6) hAx, yiK = hx,A∗yiH for all x ∈ H and y ∈ K.

Moreover (A+ λB)∗ = A∗ + λ̄B∗, A∗∗ := (A∗)∗ = A, kA∗k = kAk and kA∗Ak =
kAk2 for all A,B ∈ L(H,K) and λ ∈ C.

28Alternatively, choose x0 ∈M⊥\{0} such that f(x0) = 1. For x ∈M⊥ we have f(x−λx0) = 0
provided that λ := f(x). Therefore x − λx0 ∈ M ∩M⊥ = {0} , i.e. x = λx0. This again shows
that M⊥ is spanned by x0.
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Proof. For each y ∈ K, then map x → hAx, yiK is in H∗ and therefore there
exists by Proposition 12.15 a unique vector z ∈ H such that

hAx, yiK = hx, ziH for all x ∈ H.

This shows there is a unique map A∗ : K → H such that hAx, yiK = hx,A∗(y)iH
for all x ∈ H and y ∈ K. To finish the proof, we need only show A∗ is linear and
bounded. To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

hAx, y1 + λy2iK = hAx, y1iK + λ̄hAx, y2iK
= hx,A∗(y1)iK + λ̄hx,A∗(y2)iK
= hx,A∗(y1) + λA∗(y2)iK

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y). Since

hA∗y, xiH = hx,A∗yiH = hAx, yiK = hy,AxiK
it follows that A∗∗ = A. he assertion that (A+ λB)

∗
= A∗ + λ̄B∗ is left to the

reader, see Exercise 12.1.
The following arguments prove the assertions about norms of A and A∗ :

kA∗k = sup
k∈K:kkk=1

kA∗kk = sup
k∈K:kkk=1

sup
h∈H:khk=1

|hA∗k, hi|

= sup
h∈H:khk=1

sup
k∈K:kkk=1

|hk,Ahi| = sup
h∈H:khk=1

kAhk = kAk ,

kA∗Ak ≤ kA∗k kAk = kAk2 and
kAk2 = sup

h∈H:khk=1
|hAh,Ahi| = sup

h∈H:khk=1
|hh,A∗Ahi|

≤ sup
h∈H:khk=1

kA∗Ahk = kA∗Ak .

Exercise 12.1. Let H,K,M be Hilbert space, A,B ∈ L(H,K), C ∈ L(K,M) and
λ ∈ C. Show (A+ λB)∗ = A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈ L(M,H).

Exercise 12.2. Let H = Cn and K = Cm equipped with the usual inner products,
i.e. hz, wiH = z · w̄ for z,w ∈ H. Let A be an m× n matrix thought of as a linear
operator from H to K. Show the matrix associated to A∗ : K → H is the conjugate
transpose of A.

Exercise 12.3. Let K : L2(ν) → L2(µ) be the operator defined in Exercise 9.12.
Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =
Z
X

k̄(x, y)g(x)dµ(x).

Definition 12.17. {uα}α∈A ⊂ H is an orthonormal set if uα ⊥ uβ for all α 6= β
and kuαk = 1.
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Proposition 12.18 (Bessel’s Inequality). Let {uα}α∈A be an orthonormal set, then
(12.7)

X
α∈A

|hx, uαi|2 ≤ kxk2 for all x ∈ H.

In particular the set {α ∈ A : hx, uαi 6= 0} is at most countable for all x ∈ H.

Proof. Let Γ ⊂ A be any finite set. Then

0 ≤ kx−
X
α∈Γ

hx, uαiuαk2 = kxk2 − 2Re
X
α∈Γ

hx, uαi huα, xi+
X
α∈Γ

|hx, uαi|2

= kxk2 −
X
α∈Γ

|hx, uαi|2

showing that X
α∈Γ

|hx, uαi|2 ≤ kxk2.

Taking the supremum of this equation of Γ ⊂⊂ A then proves Eq. (12.7).

Proposition 12.19. Suppose A ⊂ H is an orthogonal set. Then s =
P

v∈A v

exists in H iff
P

v∈A kvk2 <∞. (In particular A must be at most a countable set.)
Moreover, if

P
v∈A kvk2 <∞, then

(1) ksk2 =Pv∈A kvk2 and
(2) hs, xi =Pv∈Ahv, xi for all x ∈ H.

Similarly if {vn}∞n=1 is an orthogonal set, then s =
∞P
n=1

vn exists in H iff

∞P
n=1

kvnk2 < ∞. In particular if
∞P
n=1

vn exists, then it is independent of rearrange-

ments of {vn}∞n=1.
Proof. Suppose s =

P
v∈A v exists. Then there exists Γ ⊂⊂ A such thatX

v∈Λ
kvk2 =

°°°°°X
v∈Λ

v

°°°°°
2

≤ 1

for all Λ ⊂⊂ A\Γ ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such Λ shows that

P
v∈A\Γ kvk2 ≤ 1 and thereforeX

v∈A
kvk2 ≤ 1 +

X
v∈Γ

kvk2 <∞.

Conversely, suppose that
P

v∈A kvk2 <∞. Then for all � > 0 there exists Γ� ⊂⊂ A
such that if Λ ⊂⊂ A \ Γ�,

(12.8)

°°°°°X
v∈Λ

v

°°°°°
2

=
X
v∈Λ

kvk2 < �2.

Hence by Lemma 3.72,
P

v∈A v exists.
For item 1, let Γ� be as above and set s� :=

P
v∈Γ� v. Then

|ksk− ks�k| ≤ ks− s�k < �

and by Eq. (12.8),

0 ≤
X
v∈A

kvk2 − ks�k2 =
X
v/∈Γ�

kvk2 ≤ �2.
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Letting � ↓ 0 we deduce from the previous two equations that ks�k → ksk and
ks�k2 →

P
v∈A kvk2 as � ↓ 0 and therefore ksk2 =

P
v∈A kvk2.

Item 2. is a special case of Lemma 3.72.

For the final assertion, let sN ≡
NP
n=1

vn and suppose that limN→∞ sN = s exists

in H and in particular {sN}∞N=1 is Cauchy. So for N > M.

NX
n=M+1

kvnk2 = ksN − sMk2 → 0 as M,N →∞

which shows that
∞P
n=1

kvnk2 is convergent, i.e.
∞P
n=1

kvnk2 <∞.

Remark: We could use the last result to prove Item 1. Indeed, if
P

v∈A kvk2 <
∞, then A is countable and so we may writer A = {vn}∞n=1 . Then s = limN→∞ sN
with sN as above. Since the norm k·k is continuous on H, we have

ksk2 = lim
N→∞

ksNk2 = lim
N→∞

°°°°°
NX
n=1

vn

°°°°°
2

= lim
N→∞

NX
n=1

kvnk2 =
∞X
n=1

kvnk2 =
X
v∈A

kvk2.

Corollary 12.20. Suppose H is a Hilbert space, β ⊂ H is an orthonormal set and
M = span β. Then

PMx =
X
u∈β
hx, uiu,(12.9)

X
u∈β

|hx, ui|2 = kPMxk2 and(12.10)

X
u∈β
hx, uihu, yi = hPMx, yi(12.11)

for all x, y ∈ H.

Proof. By Bessel’s inequality,
P

u∈β |hx, ui|2 ≤ kxk2 for all x ∈ H and hence
by Proposition 12.18, Px :=

P
u∈βhx, uiu exists in H and for all x, y ∈ H,

(12.12) hPx, yi =
X
u∈β
hhx, uiu, yi =

X
u∈β
hx, uihu, yi.

Taking y ∈ β in Eq. (12.12) gives hPx, yi = hx, yi, i.e. that hx − Px, yi = 0
for all y ∈ β. So (x− Px) ⊥ span β and by continuity we also have (x− Px) ⊥
M = span β. Since Px is also in M, it follows from the definition of PM that
Px = PMx proving Eq. (12.9). Equations (12.10) and (12.11) now follow from
(12.12), Proposition 12.19 and the fact that hPMx, yi = hP 2Mx, yi = hPMx, PMyi
for all x, y ∈ H.

12.2. Hilbert Space Basis.

Definition 12.21 (Basis). Let H be a Hilbert space. A basis β of H is a maximal
orthonormal subset β ⊂ H.

Proposition 12.22. Every Hilbert space has an orthonormal basis.
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Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If Φ ⊂ F is linearly ordered then ∪Φ is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element β ∈ F .
An orthonormal set β ⊂ H is said to be complete if β⊥ = {0} . That is to say

if hx, ui = 0 for all u ∈ β then x = 0.

Lemma 12.23. Let β be an orthonormal subset of H then the following are equiv-
alent:

(1) β is a basis,
(2) β is complete and
(3) span β = H.

Proof. If β is not complete, then there exists a unit vector x ∈ β⊥ \ {0} .
The set β ∪ {x} is an orthonormal set properly containing β, so β is not maximal.
Conversely, if β is not maximal, there exists an orthonormal set β1 ⊂ H such that
β & β1. Then if x ∈ β1 \ β, we have hx, ui = 0 for all u ∈ β showing β is not
complete. This proves the equivalence of (1) and (2). If β is not complete and
x ∈ β⊥ \ {0} , then span β ⊂ x⊥ which is a proper subspace of H. Conversely

if span β is a proper subspace of H,β⊥ = span β
⊥
is a non-trivial subspace by

Corollary 12.14 and β is not complete. This shows that (2) and (3) are equivalent.

Theorem 12.24. Let β ⊂ H be an orthonormal set. Then the following are
equivalent:

(1) β is complete or equivalently a basis.
(2) x =

P
u∈β
hx, uiu for all x ∈ H.

(3) hx, yi = P
u∈β
hx, ui hu, yi for all x, y ∈ H.

(4) kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Proof. Let M = span β and P = PM .
(1) ⇒ (2) By Corollary 12.20,

P
u∈β
hx, uiu = PMx. Therefore

x−
X
u∈β
hx, uiu = x− PMx ∈M⊥ = β⊥ = {0} .

(2) ⇒ (3) is a consequence of Proposition 12.19.
(3) ⇒ (4) is obvious, just take y = x.
(4) ⇒ (1) If x ∈ β⊥, then by 4), kxk = 0, i.e. x = 0. This shows that β is

complete.

Proposition 12.25. A Hilbert space H is separable iff H has a countable ortho-
normal basis β ⊂ H. Moreover, if H is separable, all orthonormal bases of H are
countable.

Proof. Let D ⊂ H be a countable dense set D = {un}∞n=1. By Gram-Schmidt
process there exists β = {vn}∞n=1 an orthonormal set such that span{vn : n =
1, 2 . . . , N} ⊇ span{un : n = 1, 2 . . . ,N}. So if hx, vni = 0 for all n then hx, uni = 0
for all n. Since D ⊂ H is dense we may choose {wk} ⊂ D such that x = limk→∞wk

and therefore hx, xi = limk→∞hx,wki = 0. That is to say x = 0 and β is complete.
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Conversely if β ⊂ H is a countable orthonormal basis, then the countable set

D =

X
u∈β

auu : au ∈ Q+ iQ : #{u : au 6= 0} <∞


is dense in H.
Finally let β = {un}∞n=1 be an orthonormal basis and β1 ⊂ H be another ortho-

normal basis. Then the sets

Bn = {v ∈ β1 : hv, uni 6= 0}
are countable for each n ∈ N and hence B :=

∞S
n=1

Bn is a countable subset of β1.

Suppose there exists v ∈ β1 \ B, then hv, uni = 0 for all n and since β = {un}∞n=1
is an orthonormal basis, this implies v = 0 which is impossible since kvk = 1.
Therefore β1 \B = ∅ and hence β1 = B is countable.

Definition 12.26. A linear map U : H → K is an isometry if kUxkK = kxkH
for all x ∈ H and U is unitary if U is also surjective.

Exercise 12.4. Let U : H → K be a linear map, show the following are equivalent:
(1) U : H → K is an isometry,
(2) hUx,Ux0iK = hx, x0iH for all x, x0 ∈ H, (see Eq. (12.21) below)
(3) U∗U = idH .

Exercise 12.5. Let U : H → K be a linear map, show the following are equivalent:
(1) U : H → K is unitary
(2) U∗U = idH and UU∗ = idK .
(3) U is invertible and U−1 = U∗.

Exercise 12.6. Let H be a Hilbert space. Use Theorem 12.24 to show there exists
a set X and a unitary map U : H → c2(X). Moreover, if H is separable and
dim(H) = ∞, then X can be taken to be N so that H is unitarily equivalent to
c2 = c2(N).

Remark 12.27. Suppose that {un}∞n=1 is a total subset of H, i.e. span{un} = H.
Let {vn}∞n=1 be the vectors found by performing Gram-Schmidt on the set {un}∞n=1.
Then {vn}∞n=1 is an orthonormal basis for H.
Example 12.28. (1) Let H = L2([−π, π], dm) = L2((−π, π), dm) and

en(θ) =
1√
2π
einθ for n ∈ Z. Simple computations show β := {en}n∈Z is an

orthonormal set. We now claim that β is an orthonormal basis. To see this
recall that Cc((−π, π)) is dense in L2((−π, π), dm). Any f ∈ Cc((−π, π))
may be extended to be a continuous 2π — periodic function on R and hence
by Exercise 11.9), f may uniformly (and hence in L2) be approximated by
a trigonometric polynomial. Therefore β is a total orthonormal set, i.e. β
is an orthonormal basis. The expansion of f in this basis is the well known
Fourier series expansion of f.

(2) Let H = L2([−1, 1], dm) and A := {1, x, x2, x3 . . . }. Then A is total in
H by the Stone-Weierstrass theorem and a similar argument as in the first
example or directly from Exercise 11.12. The result of doing Gram-Schmidt
on this set gives an orthonormal basis of H consisting of the “Legendre
Polynomials.”
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(3) Let H = L2(R, e− 1
2x

2

dx).Exercise 11.12 implies A := {1, x, x2, x3 . . . } is
total in H and the result of doing Gram-Schmidt on A now gives an ortho-
normal basis for H consisting of “Hermite Polynomials.”

Remark 12.29 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and B :=
{1, x3, x6, x9, . . . }. Then again A is total in H by the same argument as in item 2.
Example 12.28. This is true even though B is a proper subset of A. Notice that A
is an algebraic basis for the polynomials on [−1, 1] while B is not! The following
computations may help relieve some of the reader’s anxiety. Let f ∈ L2([−1, 1], dm),
then, making the change of variables x = y1/3, shows that

(12.13)
Z 1

−1
|f(x)|2 dx =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2 1
3
y−2/3dy =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2
dµ(y)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite mea-

sure on [−1, 1] and hence by Exercise 11.12 A := {1, x, x2, x3 . . . } is a total in
L2([−1, 1], dµ). In particular for any � > 0 there exists a polynomial p(y) such thatZ 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) < �2.

However, by Eq. (12.13) we have

�2 >

Z 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) =

Z 1

−1

¯̄
f(x)− p(x3)

¯̄2
dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]). There-
fore for any � > 0, there exists a polynomial p(y) such that

� > kg − pku = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

©¯̄
g(x3)− p(x3)

¯̄
: x ∈ [−1, 1]ª = sup©¯̄f(x)− p(x3)

¯̄
: x ∈ [−1, 1]ª .

This gives another proof the polynomials in x3 are dense in C([−1, 1]) and hence
in L2([−1, 1]).
12.3. Fourier Series Considerations. (BRUCE: This needs work and some stuff
from Section 18.1 should be moved to here.) In this section we will examine item
1. of Example 12.28 in more detail. In the process we will give a direct and
constructive proof of the result in Exercise 11.9.
For α ∈ C, let dn(α) :=

Pn
k=−n α

k. Since αdn(α)− dn(α) = αn+1 − α−n,

dn(α) :=
nX

k=−n
αk =

αn+1 − α−n

α− 1
with the convention that

αn+1 − α−n

α− 1 |α=1 = lim
α→1

αn+1 − α−n

α− 1 = 2n+ 1 =
nX

k=−n
1k.

Writing α = eiθ, we find

Dn(θ) := dn(e
iθ) =

eiθ(n+1) − e−iθn

eiθ − 1 =
eiθ(n+1/2) − e−iθ(n+1/2)

eiθ/2 − e−iθ/2

=
sin(n+ 1

2 )θ

sin 12θ
.
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Definition 12.30. The function

(12.14) Dn(θ) :=
sin(n+ 1

2)θ

sin 12θ
=

nX
k=−n

eikθ

is called the Dirichlet kernel.

By the L2 — theory of the Fourier series (or other methods) one may shows that
Dn → δ0 as n → ∞ when acting on smooth periodic functions of θ. However this
kernel is not positive. In order to get a positive approximate δ — function sequence,
we might try squaring Dn to find

D2
n (θ) =

sin2(n+ 1
2)θ

sin2 12θ
=

"
nX

k=−n
αk

#2
=

nX
k,l=−n

αkαl =
nX

k,l=−n
αk+l

=
2nX

m=−2n

nX
k,l=−n

1k+l=m,k,l∈[−n,n]αm =
2nX

m=−2n

nX
k=−n

1|m−k|≤nαm

=
2nX

m=−2n
[n+ 1 + n− |m|]αm =

2nX
m=−2n

[2n+ 1− |m|]αm

=
2nX

m=−2n
[2n+ 1− |m|] eimθ.

In particular this implies

(12.15)
1

2n+ 1

sin2(n+ 1
2)θ

sin2 12θ
=

2nX
m=−2n

·
1− |m|

2n+ 1

¸
eimθ.

We will show in Lemma 12.32 below that Eq. (12.15) is valid for n ∈ 1
2N.

Definition 12.31. The function

(12.16) Kn(θ) :=
1

n+ 1

sin2(n+12 )θ

sin2 12θ

is called the Fejér kernel.

Lemma 12.32. The Fejér kernel Kn satisfies:
(1)

(12.17) Kn(θ) :=
nX

m=−n

·
1− |m|

n+ 1

¸
eimθ.

(2) Kn(θ) ≥ 0.
(3) 1

2π

R π
−πKn(θ)dθ = 1

(4) sup�≤|θ|≤πKn(θ)→ 0 as n→∞ for all � > 0, see Figure 12.3
(5) For any continuous 2π — periodic function f on R,

Kn ∗ f(θ) = 1

2π

Z π

−π
Kn(θ − α)f(α)dα

=
nX

m=−n

·
1− |m|

n+ 1

¸µ
1

2π

Z π

−π
e−imαf(α)dα

¶
eimθ(12.18)

and Kn ∗ f(θ)→ f(θ) uniformly in θ as n→∞.
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2.51.250-1.25-2.5

12.5

10

7.5

5

2.5

0

x

y

x

y

Plots of Kn(θ) for n = 2, 7 and 13.

Proof. 1. Using

sin2
1

2
θ =

·
eiθ/2 − e−iθ/2

2i

¸2
=
−2 + eiθ − e−iθ

−4 =
2− eiθ − e−iθ

4

we find

4 (n+ 1) sin2
1

2
θ

nX
m=−n

·
1− |m|

n+ 1

¸
eimθ

=
¡
2− eiθ − e−iθ

¢X
1|m|≤n [n+ 1− |m|] eimθ

=
X½

21|m|≤n [n+ 1− |m|]− 1|m−1|≤n [n+ 1− |m− 1|]
−1|m+1|≤n [n+ 1− |m+ 1|]

¾
eimθ

=
X

m∈{0,−n−1,n+1}

½
21|m|≤n [n+ 1− |m|]− 1|m−1|≤n [n+ 1− |m− 1|]

−1|m+1|≤n [n+ 1− |m+ 1|]
¾
eimθ

= 2− ei(n+1)θ − e−i(n+1)θ = 4 sin2(
n+ 1

2
)θ

which verifies item 1.
2.- 4. Clearly Kn(θ) ≥ 0 being the square of a function and item 3. follows by

integrating the formula in Eq. (12.17). Item 4. is elementary to check and is clearly
indicated in Figure 12.3.
5. Items 2-4 show that Kn(θ) has the classic properties of an approximate

δ — function when acting on 2π — periodic functions. Hence it is standard that
Kn ∗ f(θ) → f(θ) uniformly in θ as n → ∞. Eq. (12.18) is a consequence of the
simple computation,

Kn ∗ f(θ) = 1

2π

Z π

−π
Kn(θ − α)f(α)dα

=
nX

m=−n

·
1− |m|

n+ 1

¸µ
1

2π

Z π

−π
e−imαf(α)dα

¶
eimθ.

12.4. Weak Convergence. Suppose H is an infinite dimensional Hilbert space
and {xn}∞n=1 is an orthonormal subset of H. Then, by Eq. (12.1), kxn − xmk2 = 2
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for all m 6= n and in particular, {xn}∞n=1 has no convergent subsequences. From
this we conclude that C := {x ∈ H : kxk ≤ 1} , the closed unit ball in H, is not
compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C is compact.

Definition 12.33. Let (X, k·k) be a Banach space and X∗ be its continuous dual.
The weak topology, τw, on X is the topology generated by X∗. If {xn}∞n=1 ⊂ X

is a sequence we will write xn
w→ x as n → ∞ to mean that xn → x in the weak

topology.

Because τw = τ(X∗) ⊂ τk·k := τ({kx− ·k : x ∈ X} , it is harder for a function
f : X → F to be continuous in the τw — topology than in the norm topology, τk·k.
In particular if φ : X → F is a linear functional which is τw — continuous, then φ is
τk·k — continuous and hence φ ∈ X∗.

Proposition 12.34. Let {xn}∞n=1 ⊂ X be a sequence, then xn
w→ x ∈ X as n→∞

iff φ(x) = limn→∞ φ(xn) for all φ ∈ X∗.

Proof. By definition of τw, we have xn
w→ x ∈ X iff for all Γ ⊂⊂ X∗ and � > 0

there exists an N ∈ N such that |φ(x)− φ(xn)| < � for all n ≥ N and φ ∈ Γ.
This later condition is easily seen to be equivalent to φ(x) = limn→∞ φ(xn) for all
φ ∈ X∗.
The topological space (X, τw) is still Hausdorff, however to prove this one needs

to make use of the Hahn Banach Theorem 18.16 below. For the moment we will
concentrate on the special case where X = H is a Hilbert space in which case
H∗ = {φz := h·, zi : z ∈ H} , see Propositions 12.15. If x, y ∈ H and z := y−x 6= 0,
then

0 < � := kzk2 = φz(z) = φz(y)− φz(x).

Thus Vx := {w ∈ H : |φz(x)− φz(w)| < �/2} and Vy := {w ∈ H : |φz(y)− φz(w)| < �/2}
are disjoint sets from τw which contain x and y respectively. This shows that (H, τw)
is a Hausdorff space. In particular, this shows that weak limits are unique if they
exist.

Remark 12.35. Suppose that H is an infinite dimensional Hilbert space {xn}∞n=1 is
an orthonormal subset of H. Then Bessel’s inequality (Proposition 12.18) implies
xn

w→ 0 ∈ H as n→∞. This points out the fact that if xn
w→ x ∈ H as n→∞, it

is no longer necessarily true that kxk = limn→∞ kxnk . However we do always have
kxk ≤ lim infn→∞ kxnk because,

kxk2 = lim
n→∞hxn, xi ≤ lim infn→∞ [kxnk kxk] = kxk lim inf

n→∞ kxnk .
Proposition 12.36. Let H be a Hilbert space, β ⊂ H be an orthonormal basis for
H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are equivalent:

(1) xn
w→ x ∈ H as n→∞.

(2) hx, yi = limn→∞hxn, yi for all y ∈ H.
(3) hx, yi = limn→∞hxn, yi for all y ∈ β.

Moreover, if cy := limn→∞hxn, yi exists for all y ∈ β, then
P

y∈β |cy|2 <∞ and

xn
w→ x :=

P
y∈β cyy ∈ H as n→∞.

Proof. 1. =⇒ 2. This is a consequence of Propositions 12.15 and 12.34. 2. =⇒
3. is trivial.
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3. =⇒ 1. Let M := supn kxnk and H0 denote the algebraic span of β. Then for
y ∈ H and z ∈ H0,

|hx− xn, yi| ≤ |hx− xn, zi|+ |hx− xn, y − zi| ≤ |hx− xn, zi|+ 2M ky − zk .
Passing to the limit in this equation implies lim supn→∞ |hx− xn, yi| ≤ 2M ky − zk
which shows lim supn→∞ |hx− xn, yi| = 0 since H0 is dense in H.
To prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality (Proposition

12.18), X
y∈Γ

|cy|2 = lim
n→∞

X
y∈Γ

|hxn, yi|2 ≤ lim inf
n→∞ kxnk2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
P

y∈β |cy|2 ≤M <∞ and hence we
may define x :=

P
y∈β cyy. By construction we have

hx, yi = cy = lim
n→∞hxn, yi for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.

Theorem 12.37. Suppose that {xn}∞n=1 ⊂ H is a bounded sequence. Then there
exists a subsequence yk := xnk of {xn}∞n=1 and x ∈ X such that yk

w→ x as k →∞.

Proof. This is a consequence of Proposition 12.36 and a Cantor’s diagonalization
argument which is left to the reader, see Exercise 12.14.

Theorem 12.38 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that H is a
separable Hilbert space, C := {x ∈ H : kxk ≤ 1} is the closed unit ball in H and
{en}∞n=1 is an orthonormal basis for H. Then

(12.19) ρ(x, y) :=
∞X
n=1

1

2n
|hx− y, eni|

defines a metric on C which is compatible with the weak topology on C, τC :=
(τw)C = {V ∩ C : V ∈ τw} . Moreover (C, ρ) is a compact metric space.
Proof. The routine check that ρ is a metric is left to the reader. Let τρ be

the topology on C induced by ρ. For any y ∈ H and n ∈ N, the map x ∈ H →
hx− y, eni = hx, eni− hy, eni is τw continuous and since the sum in Eq. (12.19) is
uniformly convergent for x, y ∈ C, it follows that x → ρ(x, y) is τC — continuous.
This implies the open balls relative to ρ are contained in τC and therefore τρ ⊂
τC . For the converse inclusion, let z ∈ H, x → φz(x) = hz, xi be an element of
H∗, and for N ∈ N let zN :=

PN
n=1hz, enien. Then φzN =

PN
n=1hz, eniφen is ρ

continuous, being a finite linear combination of the φen which are easily seen to be
ρ — continuous. Because zN → z as N →∞ it follows that

sup
x∈C

|φz(x)− φzN (x)| = kz − zNk→ 0 as N →∞.

Therefore φz|C is ρ — continuous as well and hence τC = τ(φz|C : z ∈ H) ⊂ τρ.
The last assertion follows directly from Theorem 12.37 and the fact that sequen-

tial compactness is equivalent to compactness for metric spaces.

Theorem 12.39 (Weak and Strong Differentiability). Suppose that f ∈ L2(Rn)
and v ∈ Rn \ {0} . Then the following are equivalent:
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(1) There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

°°°°f(·+ tnv)− f(·)
tn

°°°°
2

<∞.

(2) There exists g ∈ L2(Rn) such that hf, ∂vφi = −hg, φi for all φ ∈ C∞c (Rn).
(3) There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn

L2→ f and ∂vfn
L2→ g

as n→∞.
(4) There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2→ g as t→ 0.

(See Theorem 19.18 for the Lp generalization of this theorem.)

Proof. 1. =⇒ 2. We may assume, using Theorem 12.37 and passing to a
subsequence if necessary, that f(·+tnv)−f(·)

tn

w→ g for some g ∈ L2(Rn). Now for
φ ∈ C∞c (Rn),

hg, φi = lim
n→∞h

f(·+ tnv)− f(·)
tn

, φi = lim
n→∞hf,

φ(·− tnv)− φ(·)
tn

i

= hf, lim
n→∞

φ(·− tnv)− φ(·)
tn

i = −hf, ∂vφi,

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.
2. =⇒ 3. Let φ ∈ C∞c (Rn,R) such that

R
Rn φ(x)dx = 1 and let φm(x) =

mnφ(mx), then by Proposition 11.24, hm := φm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
Z
Rn

∂vφm(x− y)f(y)dy = hf,−∂v [φm (x− ·)]i
= hg, φm (x− ·)i = φm ∗ g(x).

By Theorem 11.21, hm → f ∈ L2(Rn) and ∂vhm = φm ∗ g → g in L2(Rn) as
m → ∞. This shows 3. holds except for the fact that hm need not have compact
support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a neighborhood of 0
and let ψ�(x) = ψ(�x) and (∂vψ)� (x) := (∂vψ) (�x). Then

∂v (ψ�hm) = ∂vψ�hm + ψ�∂vhm = � (∂vψ)� hm + ψ�∂vhm

so that ψ�hm → hm in L2 and ∂v (ψ�hm)→ ∂vhm in L2 as � ↓ 0. Let fm = ψ�mhm
where �m is chosen to be greater than zero but small enough so that

kψ�mhm − hmk2 + k∂v (ψ�mhm)→ ∂vhmk2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

τ−tvfm(x)− fm(x)

t
=

fm(x+ tv)− fm(x)

t

=
1

t

Z 1

0

d

ds
fm(x+ stv)ds =

Z 1

0

(∂vfm) (x+ stv)ds.(12.20)

Let

Gt(x) :=

Z 1

0

τ−stvg(x)ds =
Z 1

0

g(x+ stv)ds
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which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality for
integrals, Theorem 9.27. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

Z 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,°°°°τ−tvfm − fm
t

−Gt

°°°°
2

≤
Z 1

0

kτ−stv (∂vfm)− τ−stvgk2 ds =
Z 1

0

k∂vfm − gk2 ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one more
application of Minkowski’s inequality for integrals implies,°°°°τ−tvf − f

t
− g

°°°°
2

= kGt − gk2 =
°°°°Z 1

0

(τ−stvg − g) ds

°°°°
2

≤
Z 1

0

kτ−stvg − gk2 ds.

By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as t→ 0 and this proves 4. The proof is now complete since 4. =⇒ 1. is trivial.

12.5. Supplement 1: Converse of the Parallelogram Law.

Proposition 12.40 (Parallelogram Law Converse). If (X, k·k) is a normed space
such that Eq. (12.2) holds for all x, y ∈ X, then there exists a unique inner product
on h·, ·i such that kxk := phx, xi for all x ∈ X. In this case we say that k·k is a
Hilbertian norm.

Proof. If k·k is going to come from an inner product h·, ·i, it follows from Eq.
(12.1) that

2Rehx, yi = kx+ yk2 − kxk2 − kyk2
and

−2Rehx, yi = kx− yk2 − kxk2 − kyk2.
Subtracting these two equations gives the “polarization identity,”

4Rehx, yi = kx+ yk2 − kx− yk2.
Replacing y by iy in this equation then implies that

4Imhx, yi = kx+ iyk2 − kx− iyk2
from which we find

(12.21) hx, yi = 1

4

X
�∈G

�kx+ �yk2

where G = {±1,±i} — a cyclic subgroup of S1 ⊂ C. Hence if h·, ·i is going to exists
we must define it by Eq. (12.21).
Notice that

hx, xi = 1

4

X
�∈G

�kx+ �xk2 = kxk2 + ikx+ ixk2 − ikx− ixk2

= kxk2 + i
¯̄
1 + i|2¯̄ kxk2 − i

¯̄
1− i|2 ¯̄ kxk2 = kxk2 .
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So to finish the proof of (4) we must show that hx, yi in Eq. (12.21) is an inner
product. Since

4hy, xi =
X
�∈G

�ky + �xk2 =
X
�∈G

�k� (y + �x) k2

=
X
�∈G

�k�y + �2xk2

= ky + xk2 + k− y + xk2 + ikiy − xk2 − ik− iy − xk2
= kx+ yk2 + kx− yk2 + ikx− iyk2 − ikx+ iyk2
= 4hx, yi

it suffices to show x → hx, yi is linear for all y ∈ H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity from
Eq. (12.2). To do this we make use of Eq. (12.2) three times to find

kx+ y + zk2 = −kx+ y − zk2 + 2kx+ yk2 + 2kzk2
= kx− y − zk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= ky + z − xk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= −ky + z + xk2 + 2ky + zk2 + 2kxk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2.

Solving this equation for kx+ y + zk2 gives
(12.22) kx+ y + zk2 = ky + zk2 + kx+ yk2 − kx− zk2 + kxk2 + kzk2 − kyk2.
Using Eq. (12.22), for x, y, z ∈ H,

4Rehx+ z, yi = kx+ z + yk2 − kx+ z − yk2
= ky + zk2 + kx+ yk2 − kx− zk2 + kxk2 + kzk2 − kyk2
− ¡kz − yk2 + kx− yk2 − kx− zk2 + kxk2 + kzk2 − kyk2¢
= kz + yk2 − kz − yk2 + kx+ yk2 − kx− yk2
= 4Rehx, yi+ 4Rehz, yi.(12.23)

Now suppose that δ ∈ G, then since |δ| = 1,
4hδx, yi = 1

4

X
�∈G

�kδx+ �yk2 = 1

4

X
�∈G

�kx+ δ−1�yk2

=
1

4

X
�∈G

�δkx+ δ�yk2 = 4δhx, yi(12.24)

where in the third inequality, the substitution �→ �δ was made in the sum. So Eq.
(12.24) says h±ix, yi = ±ihix, yi and h−x, yi = −hx, yi. Therefore

Imhx, yi = Re (−ihx, yi) = Reh−ix, yi
which combined with Eq. (12.23) shows

Imhx+ z, yi = Reh−ix− iz, yi = Reh−ix, yi+Reh−iz, yi
= Imhx, yi+ Imhz, yi

and therefore (again in combination with Eq. (12.23)),

hx+ z, yi = hx, yi+ hz, yi for all x, y ∈ H.
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Because of this equation and Eq. (12.24) to finish the proof that x → hx, yi is
linear, it suffices to show hλx, yi = λhx, yi for all λ > 0. Now if λ = m ∈ N, then

hmx, yi = hx+ (m− 1)x, yi = hx, yi+ h(m− 1)x, yi
so that by induction hmx, yi = mhx, yi. Replacing x by x/m then shows that
hx, yi = mhm−1x, yi so that hm−1x, yi = m−1hx, yi and so if m,n ∈ N, we find

h n
m
x, yi = nh 1

m
x, yi = n

m
hx, yi

so that hλx, yi = λhx, yi for all λ > 0 and λ ∈ Q. By continuity, it now follows that
hλx, yi = λhx, yi for all λ > 0.

12.6. Supplement 2. Non-complete inner product spaces. Part of Theorem
12.24 goes through when H is a not necessarily complete inner product space. We
have the following proposition.

Proposition 12.41. Let (H, h·, ·i) be a not necessarily complete inner product space
and β ⊂ H be an orthonormal set. Then the following two conditions are equivalent:

(1) x =
P
u∈β
hx, uiu for all x ∈ H.

(2) kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Moreover, either of these two conditions implies that β ⊂ H is a maximal ortho-
normal set. However β ⊂ H being a maximal orthonormal set is not sufficient to
conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.24, 1) implies 2). For 2) implies 1) let
Λ ⊂⊂ β and consider°°°°°x−X

u∈Λ
hx, uiu

°°°°°
2

= kxk2 − 2
X
u∈Λ

|hx, ui|2 +
X
u∈Λ

|hx, ui|2

= kxk2 −
X
u∈Λ

|hx, ui|2 .

Since kxk2 = P
u∈β

|hx, ui|2, it follows that for every � > 0 there exists Λ� ⊂⊂ β such

that for all Λ ⊂⊂ β such that Λ� ⊂ Λ,°°°°°x−X
u∈Λ

hx, uiu
°°°°°
2

= kxk2 −
X
u∈Λ

|hx, ui|2 < �

showing that x =
P
u∈β
hx, uiu.

Suppose x = (x1, x2, . . . , xn, . . . ) ∈ β⊥. If 2) is valid then kxk2 = 0, i.e. x = 0. So
β is maximal. Let us now construct a counter example to prove the last assertion.
Take H = Span{ei}∞i=1 ⊂ c2 and let ũn = e1−(n+1)en+1 for n = 1, 2 . . . . Apply-

ing Gramn-Schmidt to {ũn}∞n=1 we construct an orthonormal set β = {un}∞n=1 ⊂ H.
I now claim that β ⊂ H is maximal. Indeed if x = (x1, x2, . . . , xn, . . . ) ∈ β⊥ then
x ⊥ un for all n, i.e.

0 = (x, ũn) = x1 − (n+ 1)xn+1.
Therefore xn+1 = (n+ 1)

−1
x1 for all n. Since x ∈ Span{ei}∞i=1, xN = 0 for some

N sufficiently large and therefore x1 = 0 which in turn implies that xn = 0 for all
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n. So x = 0 and hence β is maximal in H. On the other hand, β is not maximal
in c2. In fact the above argument shows that β⊥ in c2 is given by the span of v =
(1, 12 ,

1
3 ,

1
4 ,

1
5 , . . . ). Let P be the orthogonal projection of c

2 onto the Span(β) = v⊥.
Then ∞X

i=1

hx, uniun = Px = x− hx, vikvk2 v,

so that
∞P
i=1
hx, uniun = x iff x ∈ Span(β) = v⊥ ⊂ c2. For example if x =

(1, 0, 0, . . . ) ∈ H (or more generally for x = ei for any i), x /∈ v⊥ and hence
∞P
i=1

hx, uniun 6= x.

12.7. Supplement 3: Conditional Expectation. In this section let (Ω,F , P )
be a probability space, i.e. (Ω,F , P ) is a measure space and P (Ω) = 1. Let G ⊂ F
be a sub — sigma algebra of F and write f ∈ Gb if f : Ω → C is bounded and f is
(G,BC) — measurable. In this section we will write

Ef :=

Z
Ω

fdP.

Definition 12.42 (Conditional Expectation). Let EG : L2(Ω,F , P )→ L2(Ω,G, P )
denote orthogonal projection of L2(Ω,F , P ) onto the closed subspace L2(Ω,G, P ).
For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the conditional expecta-
tion of f.

Theorem 12.43. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈ L2(Ω,F , P ).
(1) If f ≥ 0, P — a.e. then EGf ≥ 0, P — a.e.
(2) If f ≥ g, P — a.e. there EGf ≥ EGg, P — a.e.
(3) |EGf | ≤ EG |f |, P — a.e.
(4) kEGfkL1 ≤ kfkL1 for all f ∈ L2. So by the B.L.T. Theorem 4.1, EG extends

uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P ) which we
will still denote by EG .

(5) If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff
E(Fh) = E(fh) for all h ∈ Gb.

(6) If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g ·EGf, P — a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,
E(fh) = E(f ·EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf ·h) and since this holds for all h ≥ 0 in Gb,
EGf ≥ 0, P — a.e. This proves (1). Item (2) follows by applying item (1). to f − g.
If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f |, i.e. |EGf | ≤ EG |f |, P —
a.e. For complex f, let h ≥ 0 be a bounded and G — measurable function. Then

E [|EGf |h] = E
h
EGf · sgn (EGf)h

i
= E

h
f · sgn (EGf)h

i
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P — a.e. Integrating this
inequality implies

kEGfkL1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = kfkL1 .
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Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a
sequence of functions such that fn → f in L1(Ω,F , P ). Then

E(EGf · h) = E( lim
n→∞EGfn · h) = lim

n→∞E(EGfn · h)
= lim

n→∞E(fn · h) = E(f · h).(12.25)

This equation uniquely determinesEG , for if F ∈ L1(Ω,G, P ) also satisfies E(F ·h) =
E(f · h) for all h ∈ Gb, then taking h = sgn (F −EGf) in Eq. (12.25) gives

0 = E((F −EGf)h) = E(|F −EGf |).
This shows F = EGf, P — a.e. Item (6) is now an easy consequence of this charac-
terization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .
Thus EG (gf) = g ·EGf, P — a.e.

Proposition 12.44. If G0 ⊆ G1 ⊆ F . Then
(12.26) EG0EG1 = EG1EG0 = EG0 .

Proof. Equation (12.26) holds on L2(Ω,F , P ) by the basic properties of or-
thogonal projections. It then hold on L1(Ω,F , P ) by continuity and the density of
L2(Ω,F , P ) in L1(Ω,F , P ).
Example 12.45. Suppose that (X,M, µ) and (Y,N , ν) are two σ — finite measure
spaces. Let Ω = X × Y, F = M ⊗ N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy) where
ρ ∈ L1(Ω,F , µ ⊗ ν) is a positive function such that

R
X×Y ρd (µ⊗ ν) = 1. Let

πX : Ω→ X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1X (M) = {A× Y : A ∈M} .
Then f : Ω → R is G — measurable iff f = F ◦ πX for some function F : X → R
which is N — measurable, see Lemma 6.62. For f ∈ L1(Ω,F , P ), we will now show
EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

Z
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
R
Y
ρ(x, y)ν(dy). (By convention,

R
Y
f(x, y)ρ(x, y)ν(dy) := 0 if

R
Y
|f(x, y)| ρ(x, y)ν(dy) =

∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
½
x ∈ X :

Z
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
¾

is a µ — null set. Since

E [|F ◦ πX |] =
Z
X

dµ(x)

Z
Y

dν(y) |F (x)| ρ(x, y) =
Z
X

dµ(x) |F (x)| ρ̄(x)

=

Z
X

dµ(x)

¯̄̄̄Z
Y

ν(dy)f(x, y)ρ(x, y)

¯̄̄̄
≤
Z
X

dµ(x)

Z
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,
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F ◦πX ∈ L1(Ω,G, P ). Let h = H ◦πX be a bounded G — measurable function, then
E [F ◦ πX · h] =

Z
X

dµ(x)

Z
Y

dν(y)F (x)H(x)ρ(x, y)

=

Z
X

dµ(x)F (x)H(x)ρ̄(x)

=

Z
X

dµ(x)H(x)

Z
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]

and hence EGf = F ◦ πX as claimed.

This example shows that conditional expectation is a generalization of the notion
of performing integration over a partial subset of the variables in the integrand.
Whereas to compute the expectation, one should integrate over all of the variables.
See also Exercise 12.8 to gain more intuition about conditional expectations.

Theorem 12.46 (Jensen’s inequality). Let (Ω,F , P ) be a probability space and
ϕ : R → R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function such
that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] , P — a.e.

Proof. Let us first assume that φ is C1 and f is bounded. In this case

(12.27) ϕ(x)− ϕ(x0) ≥ ϕ0(x0)(x− x0) for all x0, x ∈ R.
Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ0(EGf)(f −EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)] ≥ ϕ0(EGf)(EGf −EGEGf) = 0

The same proof works for general φ, one need only use Proposition 9.7 to replace
Eq. (12.27) by

ϕ(x)− ϕ(x0) ≥ ϕ0−(x0)(x− x0) for all x0, x ∈ R
where ϕ0−(x0) is the left hand derivative of φ at x0.
If f is not bounded, apply what we have just proved to fM = f1|f |≤M , to find

(12.28) EG
£
ϕ(fM )

¤ ≥ ϕ(EGfM ).

Since EG : L1(Ω,F , P ;R) → L1(Ω,F , P ;R) is a bounded operator and fM → f
and ϕ(fM ) → φ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1 such that
Mk ↑ ∞ and fMk → f and ϕ(fMk)→ φ(f), P — a.e. So passing to the limit in Eq.
(12.28) shows EG [ϕ(f)] ≥ ϕ(EGf), P — a.e.

12.8. Exercises.

Exercise 12.7. Let (X,M, µ) be a measure space and H := L2(X,M, µ). Given
f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by Mfg = fg.
Show M2

f =Mf iff there exists A ∈M such that f = 1A a.e.

Exercise 12.8. Suppose (Ω,F , P ) is a probability space and A := {Ai}∞i=1 ⊂ F
is a partition of Ω. (Recall this means Ω =

`∞
i=1Ai.) Let G be the σ — algebra

generated by A. Show:
(1) B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
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(2) g : Ω→ R is G — measurable iff g =
P∞

i=1 λi1Ai for some λi ∈ R.
(3) For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and

E(f |Ai) = 0 otherwise. Show

EGf =
∞X
i=1

E(f |Ai)1Ai .

Exercise 12.9. Folland 5.60 on p. 177.

Exercise 12.10. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 12.11. Folland 5.67 on p. 178 regarding the mean ergodic theorem.

Exercise 12.12 (Haar Basis). In this problem, let L2 denote L2([0, 1],m) with the
standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)

and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let

ψkj(x) := 2
k/2ψ(2kx− j).

The following pictures shows the graphs of ψ00, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3 re-
spectively.

10.750.50.250

1

0.5

0

-0.5

-1

x

y

x

y

Plot of ψ0, 0.

10.750.50.250

1

0.5

0

-0.5

-1

x

y

x

y

Plot of ψ10.

10.750.50.250

1

0.5

0

-0.5

-1

x

y

x

y

Plot of ψ11.
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(1) Show β := {1} ∪ ©ψkj : 0 ≤ k and 0 ≤ j < 2k
ª
is an orthonormal set, 1

denotes the constant function 1.
(2) For n ∈ N, let Mn := span

¡{1} ∪ ©ψkj : 0 ≤ k < n and 0 ≤ j < 2k
ª¢

.
Show

Mn = span
¡{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

¢
.

(3) Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal
basis for L2. Hint: see Theorem 11.3.

(4) For f ∈ L2, let

Hnf := hf,1i1+
n−1X
k=0

2k−1X
j=0

hf, ψkjiψkj .

Show (compare with Exercise 12.8)

Hnf =
2n−1X
j=0

Ã
2n
Z (j+1)2−n

j2−n
f(x)dx

!
1[j2−n,(j+1)2−n)

and use this to show kf −Hnfku → 0 as n→∞ for all f ∈ C([0, 1]).

Exercise 12.13. Let O(n) be the orthogonal groups consisting of n × n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

(1) UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
(2) UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1UO2 = UO1O2 for all

O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) — the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

(3) For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continuous.
Take the topology on O(n) to be that inherited from the Euclidean topology
on the vector space of all n×n matrices. Hint: see the proof of Proposition
11.13.

Exercise 12.14. Prove Theorem 12.37. Hint: Let H0 := span {xn : n ∈ N} —
a separable Hilbert subspace of H. Let {λm}∞m=1 ⊂ H0 be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence yk := xnk such
that cm := limk→∞hyk, λmi exists for all m ∈ N. Finish the proof by appealing to
Proposition 12.36.

Exercise 12.15. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞. Show

xn → x as n→∞ (i.e. limn→∞ kx− xnk = 0) iff limn→∞ kxnk = kxk .
Exercise 12.16. Show the vector space operations of X are continuous in the weak
topology. More explicitly show
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(1) (x, y) ∈ X ×X → x+ y ∈ X is (τw ⊗ τw, τw) — continuous and
(2) (λ, x) ∈ F×X → λx ∈ X is (τF ⊗ τw, τw) — continuous.

Exercise 12.17. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 12.18. Spherical Harmonics.

Exercise 12.19. The gradient and the Laplacian in spherical coordinates.

Exercise 12.20. Legendre polynomials.

Exercise 12.21. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be more
precise, suppose H is an infinite dimensional Hilbert space and m is a count-
ably additive measure on BH which is invariant under translations and satisfies,
m(B0(�)) > 0 for all � > 0. Showm(V ) =∞ for all non-empty open subsets V ⊂ H.

12.9. Fourier Series Exercises.

Notation 12.47. Let Ck
per(Rd) denote the 2π — periodic functions in Ck(Rd),

Ck
per(Rd) :=

©
f ∈ Ck(Rd) : f(x+ 2πei) = f(x) for all x ∈ Rd and i = 1, 2, . . . , d

ª
.

Also let h·, ·i denote the inner product on the Hilbert space H := L2([−π, π]d) given
by

hf, gi :=
µ
1

2π

¶d Z
[−π,π]d

f(x)ḡ(x)dx.

Recall that
©
χk(x) := eik·x : k ∈ Zdª is an orthonormal basis for H in particular

for f ∈ H,

(12.29) f =
X
k∈Zd

hf, χkiχk

where the convergence takes place in L2([−π, π]d). For f ∈ L1([−π, π]d), we will
write f̃(k) for the Fourier coefficient,

(12.30) f̃(k) := hf, χki =
µ
1

2π

¶d Z
[−π,π]d

f(x)e−ik·xdx.

Lemma 12.48. Let s > 0, then the following are equivalent,

(12.31)
X
k∈Zd

1

(1 + |k|)s <∞,
X
k∈Zd

1

(1 + |k|2)s/2 <∞ and s > d.

Proof. Let Q := (0, 1]d and k ∈ Zd. For x = k + y ∈ (k +Q),

2 + |k| = 2 + |x− y| ≤ 2 + |x|+ |y| ≤ 3 + |x| and
2 + |k| = 2 + |x− y| ≥ 2 + |x|− |y| ≥ |x|+ 1

and therefore for s > 0,
1

(3 + |x|)s ≤
1

(2 + |k|)s ≤
1

(1 + |x|)s .
Thus we have shown

1

(3 + |x|)s ≤
X
k∈Zd

1

(2 + |k|)s 1Q+k(x) ≤
1

(1 + |x|)s for all x ∈ R
d.
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Integrating this equation then showsZ
Rd

1

(3 + |x|)s dx ≤
X
k∈Zd

1

(2 + |k|)s ≤
Z
Rd

1

(1 + |x|)s dx

from which we conclude that

(12.32)
X
k∈Zd

1

(2 + |k|)s <∞ iff s > d.

Because the functions 1+ t, 2+ t, and
√
1 + t2 all behave like t as t→∞, the sums

in Eq. (12.31) may be compared with the one in Eq. (12.32) to finish the proof.

Exercise 12.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f ∈
L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) = 0. Hint: If
f ∈ H, this follows form Bessel’s inequality. Now use a density argument.

Exercise 12.23. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ c1(Zd) and
set

g(x) :=
X
k∈Zd

f̃(k)eik·x (pointwise).

(1) Show g ∈ Cper(Rd).
(2) Show g(x) = f(x) for m — a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and

then use approximation arguments to showZ
[−π,π]d

f(x)h(x)dx =

Z
[−π,π]d

g(x)h(x)dx ∀ h ∈ C([−π, π]d).

(3) Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 12.24. Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and
f ∈ C2mper(Rd)29.

(1) Using integration by parts, show

(ik)αf̃(k) = h∂αf, χki.

Note: This equality implies¯̄̄
f̃(k)

¯̄̄
≤ 1

kα
k∂αfkH ≤

1

kα
k∂αfku .

(2) Now let ∆f =
Pd

i=1 ∂
2f/∂x2i , Working as in part 1) show

(12.33) h(1−∆)mf, χki = (1 + |k|2)mf̃(k).

29We view Cper(R) as a subspace of H by identifying f ∈ Cper(R) with f |[−π,π] ∈ H.
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Remark 12.49. Suppose that m is an even integer, α is a multi-index and f ∈
C
m+|α|
per (Rd), thenX

k∈Zd
|kα|

¯̄̄
f̃(k)

¯̄̄2

=

X
k∈Zd

|h∂αf, χki| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄
(1 + |k|2)−m/2

2

≤
X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄2
·
X
k∈Zd

(1 + |k|2)−m

= Cm

°°°(1−∆)m/2∂αf
°°°2
H

where Cm :=
P

k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the faster
f̃ decays at infinity. The next problem is the converse of this assertion and hence
smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 12.25. Suppose s ∈ R and ©ck ∈ C : k ∈ Zdª are coefficients such thatX
k∈Zd

|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f(x) =
X
k∈Zd

cke
ik·x

is in Cm
per(Rd). Hint: Work as in the above remark to showX

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 12.26 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
X
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)−d/2
Z
Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ c1(Zd).
(1) Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: ComputeR

[−π,π]d
P

k∈Zd |F (x+ 2πk)| dx.
(2) Let

f(x) :=

½ P
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)−d/2 F̂ (k).
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(3) Using item 2) and the assumptions on F, show f ∈ L1([−π, π]d) ∩
L∞([−π, π]d) and
f(x) =

X
k∈Zd

f̃(k)eik·x =
X
k∈Zd

(2π)
−d/2

F̂ (k)eik·x for m — a.e. x,

i.e.

(12.34)
X
k∈Zd

F (x+ 2πk) = (2π)−d/2
X
k∈Zd

F̂ (k)eik·x for m — a.e. x.

(4) Suppose we now assume that F ∈ C(Rd) and F satisfies 1) |F (x)| ≤ C(1+

|x|)−s for some s > d and C <∞ and 2) F̂ ∈ c1(Zd), then show Eq. (12.34)
holds for all x ∈ Rd and in particularX

k∈Zd
F (2πk) = (2π)

−d/2 X
k∈Zd

F̂ (k).

For simplicity, in the remaining problems we will assume that d = 1.

Exercise 12.27 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a contin-
uous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and uxx exists
and are continuous when t > 0. Further assume that u satisfies the heat equation
u̇ = 1

2uxx. Let ũ(t, k) := hu(t, ·), χki for k ∈ Z. Show for t > 0 and k ∈ Z that
ũ(t, k) is differentiable in t and d

dt ũ(t, k) = −k2ũ(t, k)/2. Use this result to show
(12.35) u(t, x) =

X
k∈Z

e−
t
2k

2

f̃(k)eikx

where f(x) := u(0, x) and as above

f̃(k) = hf, χki = 1

2π

Z π

−π
f(y)e−ikydy.

Notice from Eq. (12.35) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 12.28 (Heat Equation 2.). Let qt(x) := 1
2π

P
k∈Z e

− t
2k

2

eikx. Show that
Eq. (12.35) may be rewritten as

u(t, x) =

Z π

−π
qt(x− y)f(y)dy

and

qt(x) =
X
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
Z
Rd

pt(x− y)f(y)dy.

Hint: To show qt(x) =
P

k∈Z pt(x + k2π), use the Poisson summation formula
along with the Gaussian integration formula

p̂t(ω) =
1√
2π

Z
R
pt(x)e

iωxdx =
1√
2π

e−
t
2ω

2

.
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Exercise 12.29 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈ Cper(R)
for all t ∈ R. Further assume that u solves the wave equation, utt = uxx. Let
f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := hu(t, ·), χki for k ∈ Z is twice
continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use this result to show

(12.36) u(t, x) =
X
k∈Z

µ
f̃(k) cos(kt) + g̃(k)

sin kt

k

¶
eikx

with the sum converging absolutely. Also show that u(t, x) may be written as

(12.37) u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ τ)dτ.

Hint: To show Eq. (12.36) implies (12.37) use

cos kt =
eikt + e−ikt

2
, and sin kt =

eikt − e−ikt

2i

and
eik(x+t) − eik(x−t)

ik
=

Z t

−t
eik(x+τ)dτ.

12.10. Dirichlet Problems on D.

Exercise 12.30 (Worked Example). Let D := {z ∈ C : |z| < 1} be the open
unit disk in C ∼= R2, where we write z = x + iy = reiθ in the usual way. Also let
∆ = ∂2

∂x2 +
∂2

∂y2 and recall that ∆ may be computed in polar coordinates by the
formula,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu.

Suppose that u ∈ C(D̄) ∩C2(D) and ∆u(z) = 0 for z ∈ D. Let g = u|∂D and

g̃(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ.

(We are identifying S1 = ∂D :=
©
z ∈ D̄ : |z| = 1ª with [−π, π]/ (π ∼ −π) by the

map θ ∈ [−π, π]→ eiθ ∈ S1.) Let

(12.38) ũ(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ

then:

(1) ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rũ(r, k)) =
1

r2
k2ũ(r, k) for r ∈ (0, 1).

(2) Recall the general solution to

(12.39) r∂r (r∂ry(r)) = k2y(r)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
ũ(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (12.39) is gotten by simple integration and the
result is ũ(r, 0) = A0 +B0 ln r. Since ũ(r, k) is bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.
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(3) So we have shown

Akr
|k| = ũ(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ = g̃(k).

Therefore,

(12.40) u(reiθ) =
X
k∈Z

g̃(k)r|k|eikθ

for r < 1 or equivalently,

u(z) =
X
k∈N0

g̃(k)zk +
X
k∈N

g̃(−k)z̄k.

(4) Inserting the formula for g̃(k) into Eq. (12.40) gives

u(reiθ) =
1

2π

Z π

−π

ÃX
k∈Z

r|k|eik(θ−α)
!
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ − α,
thatX
k∈Z

r|k|eikδ =
∞X
k=0

rkeikδ +
∞X
k=0

rke−ikδ − 1 = 2Re
∞X
k=0

rkeikδ − 1

= Re

·
2

1

1− reiδ
− 1
¸
= Re

·
1 + reiδ

1− reiδ

¸
= Re

"¡
1 + reiδ

¢ ¡
1− re−iδ

¢
|1− reiδ|2

#
= Re

·
1− r2 + 2ir sin δ

1− 2r cos δ + r2

¸
(12.41)

=
1− r2

1− 2r cos δ + r2
.

Putting this altogether we have shown

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ)

=
1

2π
Re

Z π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα(12.42)

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2

is the so called Poisson kernel. (The fact that 1
2π Re

R π
−π Pr(θ)dθ = 1 follows

from the fact that
1

2π

Z π

−π
Pr(θ)dθ = Re

1

2π

Z π

−π

X
k∈Z

r|k|eikθdθ

= Re
1

2π

X
k∈Z

Z π

−π
r|k|eikθdθ = 1.)
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Writing z = reiθ, Eq. (12.42) may be rewritten as

u(z) =
1

2π
Re

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (12.41) that

ImF (reiθ) =
1

π
Im

Z π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
u(eiα)dα

=: Qr ∗ u(eiθ)
where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v is the harmonic conjugate of u and
P̃r = Qr.

Exercise 12.31. Show
P∞

k=1 k
−2 = π2/6, by taking f(x) = x on [−π, π] and

computing kfk22 directly and then in terms of the Fourier Coefficients f̃ of f.
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13. Construction of Measures

Now that we have developed integration theory relative to a measure on a σ —
algebra, it is time to show how to construct the measures that we have been using.
This is a bit technical because there tends to be no “explicit” description of the
general element of the typical σ — algebras. On the other hand, we do know how
to explicitly describe algebras which are generated by some class of sets E ⊂ P(X).
Therefore, we might try to define measures on σ(E) by there restrictions to A(E).
Theorem 8.5 shows this is a plausible method.
So the strategy of this section is as follows: 1) construct finitely additive mea-

sure on an algebra, 2) construct “integrals” associated to such finitely additive
measures, 3) extend these integrals (Daniell’s method) when possible to a larger
class of functions, 4) construct a measure from the extended integral (Daniell —
Stone construction theorem).

13.1. Finitely Additive Measures and Associated Integrals.

Definition 13.1. Suppose that E ⊂ P(X) is a collection of subsets of a set X and
µ : E → [0,∞] is a function. Then

(1) µ is additive on E if µ(E) =Pn
i=1 µ(Ei) whenever E =

`n
i=1Ei ∈ E with

Ei ∈ E for i = 1, 2, . . . , n <∞.
(2) µ is σ — additive (or countable additive) on E if Item 1. holds even

when n =∞.
(3) µ is subadditive on E if µ(E) ≤Pn

i=1 µ(Ei) whenever E =
`n

i=1Ei ∈ E
with Ei ∈ E and n ∈ N∪ {∞} .

(4) µ is σ — finite on E if there exist En ∈ E such that X = ∪nEn and
µ(En) <∞.

The reader should check if E = A is an algebra and µ is additive on A, then µ
is σ — finite on A iff there exists Xn ∈ A such that Xn ↑ X and µ(Xn) < ∞ for
all n.

Proposition 13.2. Suppose E ⊂ P(X) is an elementary family (see Definition
6.11) and A = A(E) is the algebra generated by E. Then every additive function
µ : E → [0,∞] extends uniquely to an additive measure (which we still denote by µ)
on A.
Proof. Since by Proposition 6.12, every element A ∈ A is of the form A =

`
iEi

with Ei ∈ E, it is clear that if µ extends to a measure the extension is unique and
must be given by

(13.1) µ(A) =
X
i

µ(Ei).

To prove the existence of the extension, the main point is to show that defining
µ(A) by Eq. (13.1) is well defined, i.e. if we also have A =

`
j Fj with Fj ∈ E , then

we must show

(13.2)
X
i

µ(Ei) =
X
j

µ(Fj).
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But Ei =
`

j (Ei ∩ Fj) and the property that µ is additive on E implies µ(Ei) =P
j µ(Ei ∩ Fj) and henceX

i

µ(Ei) =
X
i

X
j

µ(Ei ∩ Fj) =
X
i,j

µ(Ei ∩ Fj).

By symmetry or an analogous argument,X
j

µ(Fj) =
X
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (13.2) holds. It is now
easy to verify that µ extended to A as in Eq. (13.1) is an additive measure on A.

Proposition 13.3. Let X = R and E be the elementary class
E = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞},

and A = A(E) be the algebra of disjoint union of elements from E. Suppose that
µ0 : A→ [0,∞] is an additive measure such that µ0((a, b]) <∞ for all −∞ < a <
b <∞. Then there is a unique increasing function F : R̄→ R̄ such that F (0) = 0,
F−1({−∞}) ⊂ {−∞} , F−1({∞}) ⊂ {∞} and
(13.3) µ0((a, b] ∩R) = F (b)− F (a) ∀ a ≤ b in R̄.

Conversely, given an increasing function F : R̄→ R̄ such that F−1({−∞}) ⊂
{−∞} , F−1({∞}) ⊂ {∞} there is a unique measure µ0 = µ0F on A such that
the relation in Eq. (13.3) holds.

So the finitely additive measures µ0 on A(E) which are finite on bounded sets
are in one to one correspondence with increasing functions F : R̄→ R̄ such that
F (0) = 0, F−1({−∞}) ⊂ {−∞} , F−1({∞}) ⊂ {∞} .
Proof. If F is going to exist, then

µ0((0, b] ∩ R) = F (b)− F (0) = F (b) if b ∈ [0,∞],
µ0((a, 0]) = F (0)− F (a) = −F (a) if a ∈ [−∞, 0]

from which we learn

F (x) =

½ −µ0((x, 0]) if x ≤ 0
µ0((0, x] ∩ R) if x ≥ 0.

Moreover, one easily checks using the additivity of µ0 that Eq. (13.3) holds for this
F.
Conversely, suppose F : R̄→ R̄ is an increasing function such that F−1({−∞}) ⊂

{−∞}, F−1({∞}) ⊂ {∞}. Define µ0 on E using the formula in Eq. (13.3). I claim
that µ0 is additive on E and hence has a unique extension to A which will finish
the argument. Suppose that

(a, b] =
na
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 > b1 = a2 < b2 = a3 < · · · < an < bn = b.
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Therefore,

µ0((a, b]) = F (b)− F (a) =
nX
i=1

[F (bi)− F (ai)] =
nX
i=1

µ0((ai, bi])

as desired.

13.1.1. Integrals associated to finitely additive measures.

Definition 13.4. Let µ be a finitely additive measure on an algebra A ⊂ P(X),
S = Sf (A, µ) be the collection of simple functions defined in Notation 11.1 and for
f ∈ S defined the integral I(f) = Iµ(f) by

(13.4) Iµ(f) =
X
y∈R

yµ(f = y).

The same proof used for Proposition 7.14 shows Iµ : S→ R is linear and positive,
i.e. I(f) ≥ 0 if f ≥ 0. Taking absolute values of Eq. (13.4) gives
(13.5) |I(f)| ≤

X
y∈R

|y|µ(f = y) ≤ kfk∞ µ(f 6= 0)

where kfk∞ = supx∈X |f(x)| . For A ∈ A, let SA := {f ∈ S : {f 6= 0} ⊂ A}. The
estimate in Eq. (13.5) implies

(13.6) |I(f)| ≤ µ(A) kfk∞ for all f ∈ SA.
The B.L.T. Theorem 4.1 then implies that I has a unique extension IA to S̄A ⊂
B(X) for any A ∈ A such that µ(A) <∞. The extension IA is still positive. Indeed,
let f ∈ S̄A with f ≥ 0 and let fn ∈ SA be a sequence such that kf − fnk∞ → 0 as
n→∞. Then fn ∨ 0 ∈ SA and

kf − fn ∨ 0k∞ ≤ kf − fnk∞ → 0 as n→∞.

Therefore, IA(f) = limn→∞ IA(fn ∨ 0) ≥ 0.
Suppose that A,B ∈ A are sets such that µ(A)+µ(B) <∞, then SA∪SB ⊂ SA∪B

and so S̄A ∪ S̄B ⊂ S̄A∪B. Therefore IA(f) = IA∪B(f) = IB(f) for all f ∈ S̄A ∩ S̄B .
The next proposition summarizes these remarks.

Proposition 13.5. Let (A, µ, I = Iµ) be as in Definition 13.4, then we may extend
I to

S̃ := ∪{S̄A : A ∈ A with µ(A) <∞}
by defining I(f) = IA(f) when f ∈ S̄A with µ(A) <∞. Moreover this extension is
still positive.

Notation 13.6. Suppose X = R, A=A(E), F and µ0 are as in Proposition 13.3.
For f ∈ S̃, we will write I(f) as R∞−∞ fdF or

R∞
−∞ f(x)dF (x) and refer to

R∞
−∞ fdF

as the Riemann Stieljtes integral of f relative to F.

Lemma 13.7. Using the notation above, the map f ∈ S̃→ R∞−∞ fdF is linear,
positive and satisfies the estimate

(13.7)

¯̄̄̄Z ∞
−∞

fdF

¯̄̄̄
≤ (F (b)− F (a)) kfk∞

if supp(f) ⊂ (a, b). Moreover Cc(R,R) ⊂ S̃.
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Proof. The only new point of the lemma is to prove Cc(R,R) ⊂ S̃, the remaining
assertions follow directly from Proposition 13.5. The fact that Cc(R,R) ⊂ S̃ has
essentially already been done in Example 7.24. In more detail, let f ∈ Cc(R,R)
and choose a < b such that supp(f) ⊂ (a, b). Then define fk ∈ S as in Example
7.24, i.e.

fk(x) =

nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
1(akl ,akl+1](x)

where πk = {a = ak0 < ak1 < · · · < aknk = b}, for k = 1, 2, 3, . . . , is a sequence of
refining partitions such that mesh(πk) → 0 as k → ∞. Since supp(f) is compact
and f is continuous, f is uniformly continuous on R. Therefore kf − fkk∞ → 0 as
k →∞, showing f ∈ S̃. Incidentally, for f ∈ Cc(R,R), it follows that

(13.8)
Z ∞
−∞

fdF = lim
k→∞

nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª £
F (akl+1)− F (akl )

¤
.

The most important special case of a Riemann Stieljtes integral is when F (x) = x
in which case

R∞
−∞ f(x)dF (x) =

R∞
−∞ f(x)dx is the ordinary Riemann integral. The

following Exercise is an abstraction of Lemma 13.7.

Exercise 13.1. Continue the notation of Definition 13.4 and Proposition 13.5.
Further assume that X is a metric space, there exists open sets Xn ⊂o X such
that Xn ↑ X and for each n ∈ N and δ > 0 there exists a finite collection of
sets {Ai}ki=1 ⊂ A such that diam(Ai) < δ, µ(Ai) < ∞ and Xn ⊂ ∪ki=1Ai. Then
Cc(X,R) ⊂ S̃ and so I is well defined on Cc(X,R).

Proposition 13.8. Suppose that (X, τ) is locally compact Hausdorff space and I
is a positive linear functional on Cc(X,R). Then for each compact subset K ⊂ X
there is a constant CK <∞ such that |I(f)| ≤ CK kfk∞ for all f ∈ Cc(X,R) with
supp(f) ⊂ K. Moreover, if fn ∈ Cc(X, [0,∞)) and fn ↓ 0 (pointwise) as n→∞,
then I(fn) ↓ 0 as n→∞.

Proof. Let f ∈ Cc(X,R) with supp(f) ⊂ K. By Lemma 10.15 there exists
ψK ≺ X such that ψK = 1 on K. Since kfk∞ ψK ± f ≥ 0,

0 ≤ I(kfk∞ ψK ± f) = kfk∞ I(ψK)± I(f)

from which it follows that |I(f)| ≤ I(ψK) kfk∞ . So the first assertion holds with
CK = I(ψK) <∞.
Now suppose that fn ∈ Cc(X, [0,∞)) and fn ↓ 0 as n → ∞. Let K = supp(f1)

and notice that supp(fn) ⊂ K for all n. By Dini’s Theorem (see Exercise 3.11),
kfnk∞ ↓ 0 as n→∞ and hence

0 ≤ I(fn) ≤ CK kfnk∞ ↓ 0 as n→∞.

This result applies to the Riemann Stieljtes integral in Lemma 13.7 restricted to
Cc(R,R). However it is not generally true in this case that I(fn) ↓ 0 for all fn ∈ S
such that fn ↓ 0. Proposition 13.10 below addresses this question.
Definition 13.9. A countably additive function µ on an algebra A ⊂ 2X is called
a premeasure.
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As for measures (see Remark 7.2 and Proposition 7.3), one easily shows if µ is a
premeasure on A, {An}∞n=1 ⊂ A and if An ↑ A ∈ A then µ (An) ↑ µ(A) as n→∞
or if µ(A1) < ∞ and An ↓ ∅ then µ(An) ↓ 0 as n → ∞ Now suppose that µ in
Proposition 13.3 were a premeasure on A(E). Letting An = (a, bn] with bn ↓ b as
n→∞ we learn,

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a)

from which it follows that limy↓b F (y) = F (b), i.e. F is right continuous. We will
see below that in fact µ is a premeasure on A(E) iff F is right continuous.

Proposition 13.10. Let (A, µ,S = Sf (A, µ), I = Iµ) be as in Definition 13.4. If
µ is a premeasure on A, then
(13.9) ∀ fn ∈ S with fn ↓ 0 =⇒ I(fn) ↓ 0 as n→∞.

Proof. Let � > 0 be given. Then

fn = fn1fn>�f1 + fn1fn≤�f1 ≤ f11fn>�f1 + �f1,

I(fn) ≤ I (f11fn>�f1) + �I(f1) =
X
a>0

aµ (f1 = a, fn > �a) + �I(f1),

and hence

(13.10) lim sup
n→∞

I(fn) ≤
X
a>0

a lim sup
n→∞

µ (f1 = a, fn > �a) + �I(f1).

Because, for a > 0,

A 3 {f1 = a, fn > �a} := {f1 = a} ∩ { fn > �a} ↓ ∅ as n→∞
and µ (f1 = a) < ∞, lim supn→∞ µ (f1 = a, fn > �a) = 0. Combining this with
Eq. (13.10) and making use of the fact that � > 0 is arbitrary we learn
lim supn→∞ I(fn) = 0.

13.2. The Daniell-Stone Construction Theorem.

Definition 13.11. A vector subspace S of real valued functions on a set X is a
lattice if it is closed under the lattice operations; f ∨ g = max(f, g) and f ∧ g =
min(f, g).

Remark 13.12. Notice that a lattice S is closed under the absolute value operation
since |f | = f ∨0− f ∧ 0. Furthermore if S is a vector space of real valued functions,
to show that S is a lattice it suffices to show f+ = f ∨ 0 ∈ S for all f ∈ S. This is
because

|f | = f+ + (−f)+,
f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|) .

Notation 13.13. Given a collection of extended real valued functions C on X, let
C+ := {f ∈ C : f ≥ 0} — denote the subset of positive functions f ∈ C.
Definition 13.14. A linear functional I on S is said to be positive (i.e. non-
negative) if I(f) ≥ 0 for all f ∈ S+. (This is equivalent to the statement the
I(f) ≤ I(g) if f, g ∈ S and f ≤ g.)
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Definition 13.15 (Property (D)). A non-negative linear functional I on S is said
to be continuous under monotone limits if I(fn) ↓ 0 for all {fn}∞n=1 ⊂ S+ satisfying
(pointwise) fn ↓ 0. A positive linear functional on S satisfying property (D) is
called a Daniell integral on S. We will also write S as D(I) — the domain of I.

Example 13.16. Let (X, τ) be a locally compact Hausdorff space and I be a
positive linear functional on S := Cc(X,R). It is easily checked that S is a lattice
and Proposition 13.8 shows I is automatically a Daniell integral. In particular if
X = R and F is an increasing function on R, then the corresponding Riemann
Stieljtes integral restricted to S := Cc(R,R) (f ∈ Cc(R,R)→

R
R fdF ) is a Daniell

integral.

Example 13.17. Let (A, µ, S = Sf (A, µ), I = Iµ) be as in Definition 13.4. It is
easily checked that S is a lattice. Proposition 13.10 guarantees that I is a Daniell
integral on S when µ is a premeasure on A.
Lemma 13.18. Let I be a non-negative linear functional on a lattice S. Then
property (D) is equivalent to either of the following two properties:

D1: If φ, φn ∈ S satisfy; φn ≤ φn+1 for all n and φ ≤ limn→∞ φn, then
I(φ) ≤ limn→∞ I(φn).

D2: If uj ∈ S+ and φ ∈ S is such that φ ≤
P∞

j=1 uj then I(φ) ≤P∞j=1 I(uj).
Proof. (D) =⇒ (D1) Let φ, φn ∈ S be as in D1. Then φ∧φn ↑ φ and φ−(φ∧φn) ↓

0 which implies

I(φ)− I(φ ∧ φn) = I(φ− (φ ∧ φn)) ↓ 0.
Hence

I(φ) = lim
n→∞ I(φ ∧ φn) ≤ lim

n→∞ I(φn).

(D1) =⇒ (D2) Apply (D1) with φn =
Pn

j=1 uj .

(D2) =⇒ (D) Suppose φn ∈ S with φn ↓ 0 and let un = φn − φn+1. ThenPN
n=1 un = φ1 − φN+1 ↑ φ1 and hence

I(φ1) ≤
∞X
n=1

I(un) = lim
N→∞

NX
n=1

I(un) = lim
N→∞

I(φ1−φN+1) = I(φ1)− lim
N→∞

I(φN+1)

from which it follows that limN→∞ I(φN+1) ≤ 0. Since I(φN+1) ≥ 0 for all N we
conclude that limN→∞ I(φN+1) = 0.
In the remainder of this section, S will denote a lattice of bounded real valued

functions on a set X and I : S→ R will be a Daniell integral on S.

Lemma 13.19. Suppose that {fn} , {gn} ⊂ S.
(1) If fn ↑ f and gn ↑ g with f, g : X → (−∞,∞] such that f ≤ g, then

(13.11) lim
n→∞ I(fn) ≤ lim

n→∞ I(gn).

(2) If fn ↓ f and gn ↓ g with f, g : X → [−∞,∞) such that f ≤ g, then Eq.
(13.11) still holds.

In particular, in either case if f = g, then limn→∞ I(fn) = limn→∞ I(gn).

Proof.
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(1) Fix n ∈ N, then gk ∧ fn ↑ fn as k →∞ and gk ∧ fn ≤ gk and hence

I(fn) = lim
k→∞

I(gk ∧ fn) ≤ lim
k→∞

I(gk).

Passing to the limit n→∞ in this equation proves Eq. (13.11).
(2) Since −fn ↑ (−f) and −gn ↑ (−g) and −g ≤ (−f), what we just proved

shows

− lim
n→∞ I(gn) = lim

n→∞ I(−gn) ≤ lim
n→∞ I(−fn) = − lim

n→∞ I(fn)

which is equivalent to Eq. (13.11).

Definition 13.20. Let

S↑ = {f : X → (−∞,∞] : ∃ fn ∈ S such that fn ↑ f}
and for f ∈ S↑ let I(f) = limn→∞ I(fn) ∈ (−∞,∞].
Lemma 13.19 shows this extension of I to S↑ is well defined and positive, i.e.

I(f) ≤ I(g) if f ≤ g.

Definition 13.21. Let S↓ = {f : X → [−∞,∞) : ∃ fn ∈ S such that fn ↓ f} and
define I(f) = limn→∞ I(fn) on S↓.

Exercise 13.2. Show S↓ = −S↑ and for f ∈ S↓ ∪ S↑ that I(−f) = −I(f) ∈ R̄.
We are now in a position to state the main construction theorem. The theorem

we state here is not as general as possible but it will suffice for our present purposes.
See Section 14 for a more general version and the full proof.

Theorem 13.22 (Daniell-Stone). Let S be a lattice of bounded functions on a set
X such that 1 ∧ φ ∈ S and let I be a Daniel integral on S. Further assume there
exists χ ∈ S↑ such that I(χ) <∞ and χ(x) > 0 for all x ∈ X. Then there exists a
unique measure µ onM := σ(S) such that

(13.12) I(f) =

Z
X

fdµ for all f ∈ S.

Moreover, for all g ∈ L1(X,M, µ),

(13.13) sup {I(f) : S↓ 3 f ≤ g} =
Z
X

gdµ = inf {I(h) : g ≤ h ∈ S↑} .

Proof. Only a sketch of the proof will be given here. Full details may be found
in Section 14 below.
Existence. For g : X → R̄, define

Ī(g) := inf{I(h) : g ≤ h ∈ S↑},
I(g) := sup{I(f) : S↓ 3 f ≤ g}

and set
L1(I) := {g : X → R̄ : Ī(g) = I(g) ∈ R}.

For g ∈ L1(I), let Î(g) = Ī(g) = I(g). Then, as shown in Proposition 14.10, L1(I)
is a “extended” vector space and Î : L1(I) → R is linear as defined in Definition
14.1 below. By Proposition 14.6, if f ∈ S↑ with I(f) < ∞ then f ∈ L1(I).

Moreover, Î obeys the monotone convergence theorem, Fatou’s lemma, and the
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dominated convergence theorem, see Theorem 14.11, Lemma 14.12 and Theorem
14.15 respectively.
Let

R := ©A ⊂ X : 1A ∧ f ∈ L1(I) for all f ∈ Sª
and for A ∈ R set µ(A) := Ī(1A). It can then be shown: 1)R is a σ algebra (Lemma
14.23) containing σ(S) (Lemma 14.24), µ is a measure on R (Lemma 14.25), and
that Eq. (13.12) holds. In fact it is shown in Theorem 14.28 and Proposition 14.29
below that L1(X,M, µ) ⊂ L1(I) and

Î(g) =

Z
X

gdµ for all g ∈ L1(X,M, µ).

The assertion in Eq. (13.13) is a consequence of the definition of L1(I) and Î and
this last equation.
Uniqueness. Suppose that ν is another measure on σ(S) such that

I(f) =

Z
X

fdν for all f ∈ S.

By the monotone convergence theorem and the definition of I on S↑,

I(f) =

Z
X

fdν for all f ∈ S↑.

Therefore if A ∈ σ(S) ⊂ R,
µ(A) = Ī(1A) = inf{I(h) : 1A ≤ h ∈ S↑}

= inf{
Z
X

hdν : 1A ≤ h ∈ S↑} ≥
Z
X

1Adν = ν(A)

which shows ν ≤ µ. If A ∈ σ(S) ⊂ R with µ(A) <∞, then, by Remark 14.22 below,
1A ∈ L1(I) and therefore

µ(A) = Ī(1A) = Î(1A) = I(1A) = sup{I(f) : S↓ 3 f ≤ 1A}
= sup{

Z
X

fdν : S↓ 3 f ≤ 1A} ≤ ν(A).

Hence µ(A) ≤ ν(A) for all A ∈ σ(S) and ν(A) = µ(A) when µ(A) <∞.
To prove ν(A) = µ(A) for all A ∈ σ(S), let Xn := {χ ≥ 1/n} ∈ σ(S). Since

1Xn ≤ nχ,

µ(Xn) =

Z
X

1Xndµ ≤
Z
X

nχdµ = nI(χ) <∞.

Since χ > 0 on X, Xn ↑ X and therefore by continuity of ν and µ,

ν(A) = lim
n→∞ ν(A ∩Xn) = lim

n→∞µ(A ∩Xn) = µ(A)

for all A ∈ σ(S).
The rest of this chapter is devoted to applications of the Daniell — Stone con-

struction theorem.

Remark 13.23. To check the hypothesis in Theorem 13.22 that there exists χ ∈ S↑
such that I(χ) < ∞ and χ(x) > 0 for all x ∈ X, it suffices to find φn ∈ S+ such
that

P∞
n=1 φn > 0 on X. To see this let Mn := max (kφnku , I(φn) , 1) and define

χ :=
P∞

n=1
1

Mn2n
φn, then χ ∈ S↑, 0 < χ ≤ 1 and I(χ) ≤ 1 <∞.
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13.3. Extensions of premeasures to measures I. In this section let X be a
set, A be a subalgebra of 2X and µ0 : A→ [0,∞] be a premeasure on A.
Definition 13.24. Let E be a collection of subsets ofX, let Eσ denote the collection
of subsets of X which are finite or countable unions of sets from E. Similarly let Eδ
denote the collection of subsets of X which are finite or countable intersections of
sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ , etc.
Remark 13.25. Let µ0 be a premeasure on an algebra A. Any A = ∪∞n=1A0n ∈ Aσ

with A0n ∈ A may be written as A =
∞̀

n=1
An, with An ∈ A by setting An :=

A0n \ (A01 ∪ · · · ∪ A0n−1). If we also have A =
∞̀

n=1
Bn with Bn ∈ A, then An =`∞

k=1(An ∩Bk) and therefore because µ0 is a premeasure,

µ0(An) =
∞X
k=1

µ0(An ∩Bk).

Summing this equation on n shows,
∞X
n=1

µ0(An) =
∞X
n=1

∞X
k=1

µ0(An ∩Bk)

By symmetry (i.e. the same argument with the A’s and B’s interchanged) and
Fubini’s theorem for sums,

∞X
k=1

µ0(Bk) =
∞X
k=1

∞X
n=1

µ0(An ∩Bk) =
∞X
n=1

∞X
k=1

µ0(An ∩Bk)

and hence
P∞

n=1 µ0(An) =
P∞

k=1 µ0(Bk). Therefore we may extend µ0 to Aσ by
setting

µ0(A) :=
∞X
n=1

µ0(An)

if A =
∞̀

n=1
An, with An ∈ A. In future we will tacitly assume this extension has

been made.

Theorem 13.26. Let X be a set, A be a subalgebra of 2X and µ0 be a premeasure
on A which is σ — finite on A, i.e. there exists Xn ∈ A such that µ0(Xn) < ∞
and Xn ↑ X as n → ∞. Then µ0 has a unique extension to a measure, µ, on
M := σ(A). Moreover, if A ∈M and � > 0 is given, there exists B ∈ Aσ such that
A ⊂ B and µ(B \A) < �. In particular,

µ(A) = inf{µ0(B) : A ⊂ B ∈ Aσ}(13.14)

= inf{
∞X
n=1

µ0(An) : A ⊂
∞a
n=1

An with An ∈ A}.(13.15)

Proof. Let (A, µ0, I = Iµ0) be as in Definition 13.4. As mentioned in Example
13.17, I is a Daniell integral on the lattice S = Sf (A, µ0). It is clear that 1 ∧ φ ∈ S
for all φ ∈ S. Since 1Xn ∈ S+ and

P∞
n=1 1Xn > 0 on X, by Remark 13.23 there

exists χ ∈ S↑ such that I(χ) <∞ and χ > 0. So the hypothesis of Theorem 13.22
hold and hence there exists a unique measure µ onM such that I(f) =

R
X
fdµ for
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all f ∈ S. Taking f = 1A with A ∈ A and µ0(A) < ∞ shows µ(A) = µ0(A). For
general A ∈ A, we have

µ(A) = lim
n→∞µ(A ∩Xn) = lim

n→∞µ0(A ∩Xn) = µ0(A).

The fact that µ is the only extension of µ0 to M follows from Theorem 8.5 or
Theorem 8.8. It is also can be proved using Theorem 13.22. Indeed, if ν is another
measure onM such that ν = µ on A, then Iν = I on S. Therefore by the uniqueness
assertion in Theorem 13.22, µ = ν onM.
By Eq. (13.13), for A ∈M,

µ(A) = Ī(1A) = inf {I(f) : f ∈ S↑ with 1A ≤ f}

= inf

½Z
X

fdµ : f ∈ S↑ with 1A ≤ f

¾
.

For the moment suppose µ(A) < ∞ and � > 0 is given. Choose f ∈ S↑ such that
1A ≤ f and

(13.16)
Z
X

fdµ = I(f) < µ(A) + �.

Let fn ∈ S be a sequence such that fn ↑ f as n→∞ and for α ∈ (0, 1) set
Bα := {f > α} = ∪∞n=1 {fn > α} ∈ Aσ.

Then A ⊂ {f ≥ 1} ⊂ Bα and by Chebyshev’s inequality,

µ(Bα) ≤ α−1
Z
X

fdµ = α−1I(f)

which combined with Eq. (13.16) implies µ(Bα) < µ(A)+� for all α sufficiently close
to 1. For such α we then have A ⊂ Bα ∈ Aσ and µ(Bα \A) = µ(Bα)− µ(A) < �.
For general A ∈ A, choose Xn ↑ X with Xn ∈ A. Then there exists Bn ∈ Aσ

such that µ(Bn \ (An ∩Xn)) < �2−n. Define B := ∪∞n=1Bn ∈ Aσ. Then

µ(B \A) = µ (∪∞n=1 (Bn \A)) ≤
∞X
n=1

µ ((Bn \A))

≤
∞X
n=1

µ ((Bn \ (A ∩Xn)) < �.

Eq. (13.14) is an easy consequence of this result and the fact that µ(B) = µ0(B).

Corollary 13.27 (Regularity of µ). Let A ⊂ P(X) be an algebra of sets,M = σ(A)
and µ :M→ [0,∞] be a measure onM which is σ — finite on A. Then

(1) For all A ∈M,

(13.17) µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} .
(2) If A ∈M and � > 0 are given, there exists B ∈ Aσ such that A ⊂ B and

µ(B \A) < �.
(3) For all A ∈ M and � > 0 there exists B ∈ Aδ such that B ⊂ A and

µ(A \B) < �.
(4) For any B ∈M there exists A ∈ Aδσ and C ∈ Aσδ such that A ⊂ B ⊂ C

and µ(C \A) = 0.
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(5) The linear space S := Sf (A, µ) is dense in Lp(µ) for all p ∈ [1,∞), briefly
put, Sf (A, µ)L

p(µ)
= Lp(µ).

Proof. Items 1. and 2. follow by applying Theorem 13.26 to µ0 = µ|A. Items
3. and 4. follow from Items 1. and 2. as in the proof of Corollary 8.41 above.
Item 5. This has already been proved in Theorem 11.3 but we will give yet

another proof here. When p = 1 and g ∈ L1(µ;R), there exists, by Eq. (13.13),
h ∈ S↑ such that g ≤ h and kh− gk1 =

R
X
(h − g)dµ < �. Let {hn}∞n=1 ⊂ S be

chosen so that hn ↑ h as n → ∞. Then by the dominated convergence theorem,
khn − gk1 → kh− gk1 < � as n → ∞. Therefore for n large we have hn ∈ S with
khn − gk1 < �. Since � > 0 is arbitrary this shows, Sf (A, µ)L

1(µ)
= L1(µ).

Now suppose p > 1, g ∈ Lp(µ;R) and Xn ∈ A are sets such that Xn ↑ X and
µ(Xn) <∞. By the dominated convergence theorem, 1Xn · [(g ∧ n) ∨ (−n)]→ g in
Lp(µ) as n → ∞, so it suffices to consider g ∈ Lp(µ;R) with {g 6= 0} ⊂ Xn and
|g| ≤ n for some large n ∈ N. By Hölder’s inequality, such a g is in L1(µ). So if
� > 0, by the p = 1 case, we may find h ∈ S such that kh− gk1 < �. By replacing
h by (h ∧ n) ∨ (−n) ∈ S, we may assume h is bounded by n as well and hence

kh− gkpp =
Z
X

|h− g|p dµ =
Z
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
Z
X

|h− g| dµ < (2n)p−1 �.

Since � > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 13.28. If we drop the σ — finiteness assumption on µ0 we may loose unique-
ness assertion in Theorem 13.26. For example, let X = R, BR and A be the algebra
generated by E := {(a, b] ∩ R : −∞ ≤ a < b ≤ ∞}. Recall BR = σ(E). Let D ⊂ R
be a countable dense set and define µD(A) := #(D ∩ A). Then µD(A) = ∞ for
all A ∈ A such that A 6= ∅. So if D0 ⊂ R is another countable dense subset of R,
µD0 = µD on A while µD 6= µD0 on BR. Also notice that µD is σ — finite on BR but
not on A.
It is now possible to use Theorem 13.26 to give a proof of Theorem 7.8, see sub-

section 13.8 below. However rather than do this now let us give another application
of Theorem 13.26 based on Example 13.16 and use the result to prove Theorem 7.8.

13.4. Riesz Representation Theorem.

Definition 13.29. Given a second countable locally compact Hausdorff space
(X, τ), letM+ denote the collection of positive measures, µ, on BX := σ(τ) with the
property that µ(K) <∞ for all compact subsets K ⊂ X. Such a measure µ will be
called a Radon measure on X. For µ ∈M+ and f ∈ Cc(X,R) let Iµ(f) :=

R
X
fdµ.

Theorem 13.30 (Riesz Representation Theorem). Let (X, τ) be a second count-
able30 locally compact Hausdorff space. Then the map µ→ Iµ taking M+ to positive
linear functionals on Cc(X,R) is bijective. Moreover every measure µ ∈ M+ has
the following properties:

30The second countability is assumed here in order to avoid certain technical issues. Recall from
Lemma 10.17 that under these assumptions, σ(S) = BX . Also recall from Uryshon’s metrizatoin
theorem that X is metrizable. We will later remove the second countability assumption.
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(1) For all � > 0 and B ∈ BX , there exists F ⊂ B ⊂ U such that U is open
and F is closed and µ(U \ F ) < �. If µ(B) < ∞, F may be taken to be a
compact subset of X.

(2) For all B ∈ BX there exists A ∈ Fσ and C ∈ τδ (τδ is more conventionally
written as Gδ) such that A ⊂ B ⊂ C and µ(C \A) = 0.

(3) For all B ∈ BX ,
µ(B) = inf{µ(U) : B ⊂ U and U is open}(13.18)

= sup{µ(K) : K ⊂ B and K is compact}.(13.19)

(4) For all open subsets, U ⊂ X,

(13.20) µ(U) = sup{
Z
X

fdµ : f ≺ X} = sup{Iµ(f) : f ≺ X}.

(5) For all compact subsets K ⊂ X,

(13.21) µ(K) = inf{Iµ(f) : 1K ≤ f ≺ X}.
(6) If kIµk denotes the dual norm on Cc(X,R)∗, then kIµk = µ(X). In partic-

ular Iµ is bounded iff µ(X) <∞.
(7) Cc(X,R) is dense in Lp(µ;R) for all 1 ≤ p <∞.

Proof. First notice that Iµ is a positive linear functional on S := Cc(X,R) for
all µ ∈ M+ and S is a lattice such that 1 ∧ f ∈ S for all f ∈ S. Example 13.16
shows that any positive linear functional, I, on S := Cc(X,R) is a Daniell integral
on S. By Lemma 10.10, there exists compact sets Kn ⊂ X such that Kn ↑ X. By
Urysohn’s lemma, there exists φn ≺ X such that φn = 1 on Kn. Since φn ∈ S+
and

P∞
n=1 φn > 0 on X it follows from Remark 13.23 that there exists χ ∈ S↑ such

that χ > 0 on X and I(χ) <∞. So the hypothesis of the Daniell — Stone Theorem
13.22 hold and hence there exists a unique measure µ on σ(S) =BX (Lemma 10.17)
such that I = Iµ. Hence the map µ→ Iµ taking M+ to positive linear functionals
on Cc(X,R) is bijective. We will now prove the remaining seven assertions of the
theorem.

(1) Suppose � > 0 and B ∈ BX satisfies µ(B) <∞. Then 1B ∈ L1(µ) so there
exists functions fn ∈ Cc(X,R) such that fn ↑ f, 1B ≤ f, and

(13.22)
Z
X

fdµ = I(f) < µ(B) + �.

Let α ∈ (0, 1) and Ua := {f > α} ∪∞n=1 {fn > α} ∈ τ. Since 1B ≤ f,
B ⊂ {f ≥ 1} ⊂ Uα and by Chebyshev’s inequality, µ(Uα) ≤ α−1

R
X
fdµ =

α−1I(f). Combining this estimate with Eq. (13.22) shows µ(Uα \ B) =
µ(Uα)− µ(B) < � for α sufficiently closet to 1.
For general B ∈ BX , by what we have just proved, there exists open sets

Un ⊂ X such that B ∩Kn ⊂ Un and µ(Un \ (B ∩Kn)) < �2−n for all n.
Let U = ∪∞n=1Un, then B ⊂ U ∈ τ and

µ(U \B) = µ(∪∞n=1 (Un \B)) ≤
∞X
n=1

µ(Un \B)

≤
∞X
n=1

µ(Un \ (B ∩Kn)) ≤
∞X
n=1

�2−n = �.
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Applying this result to Bc shows there exists a closed set F @ X such
that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < �.

So we have produced F ⊂ B ⊂ U such that µ(U\F ) = µ(U\B)+µ(B\F ) <
2�.
If µ(B) < ∞, using B \ (Kn ∩ F ) ↑ B \ F as n → ∞, we may choose n

sufficiently large so that µ(B \ (Kn ∩ F )) < �. Hence we may replace F by
the compact set F ∩Kn if necessary.

(2) Choose Fn ⊂ B ⊂ Un such Fn is closed, Un is open and µ(Un \ Fn) < 1/n.
Let B = ∪nFn ∈ Fσ and C := ∩Un ∈ τδ. Then A ⊂ B ⊂ C and

µ(C \A) ≤ µ(Fn \ Un) < 1

n
→ 0 as n→∞.

(3) From Item 1, one easily concludes that

µ(B) = inf {µ(U) : B ⊂ U ⊂o X}
for all B ∈ BX and

µ(B) = sup {µ(K) : K @@ B}
for all B ∈ BX with µ(B) < ∞. So now suppose B ∈ BX and µ(B) = ∞.
Using the notation at the end of the proof of Item 1., we have µ(F ) =∞ and
µ(F ∩Kn) ↑ ∞ as n→∞. This shows sup {µ(K) : K @@ B} =∞ = µ(B)
as desired.

(4) For U ⊂o X, let

ν(U) := sup{Iµ(f) : f ≺ U}.
It is evident that ν(U) ≤ µ(U) because f ≺ U implies f ≤ 1U . Let K be a
compact subset of U. By Urysohn’s Lemma 10.15, there exists f ≺ U such
that f = 1 on K. Therefore,

(13.23) µ(K) ≤
Z
X

fdµ ≤ ν(U)

and we have

(13.24) µ(K) ≤ ν(U) ≤ µ(U) for all U ⊂o X and K @@ U.

By Item 3.,

µ(U) = sup{µ(K) : K @@ U} ≤ ν(U) ≤ µ(U)

which shows that µ(U) = ν(U), i.e. Eq. (13.20) holds.
(5) Now suppose K is a compact subset of X. From Eq. (13.23),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ µ(U)

for any open subset U such that K ⊂ U. Consequently by Eq. (13.18),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ inf{µ(U) : K ⊂ U ⊂o X} = µ(K)

which proves Eq. (13.21).
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(6) For f ∈ Cc(X,R),

(13.25) |Iµ(f)| ≤
Z
X

|f | dµ ≤ kfku µ(supp(f)) ≤ kfku µ(X)

which shows kIµk ≤ µ(X). Let K @@ X and f ≺ X such that f = 1 on K.
By Eq. (13.23),

µ(K) ≤
Z
X

fdµ = Iµ(f) ≤ kIµk kfku = kIµk

and therefore,

µ(X) = sup{µ(K) : K @@ X} ≤ kIµk .
(7) This has already been proved by two methods in Proposition 11.6 but we

will give yet another proof here. When p = 1 and g ∈ L1(µ;R), there
exists, by Eq. (13.13), h ∈ S↑ = Cc(X,R)↑ such that g ≤ h and kh− gk1 =R
X
(h− g)dµ < �. Let {hn}∞n=1 ⊂ S = Cc(X,R) be chosen so that hn ↑ h as

n → ∞. Then by the dominated convergence theorem (notice that |hn| ≤
|h1|+ |h|), khn − gk1 → kh− gk1 < � as n→∞. Therefore for n large we
have hn ∈ Cc(X,R) with khn − gk1 < �. Since � > 0 is arbitrary this shows,

Sf (A, µ)L
1(µ)

= L1(µ).
Now suppose p > 1, g ∈ Lp(µ;R) and {Kn}∞n=1 are as above. By the

dominated convergence theorem, 1Kn (g ∧ n) ∨ (−n)→ g in Lp(µ) as n→
∞, so it suffices to consider g ∈ Lp(µ;R) with supp(g) ⊂ Kn and |g| ≤ n
for some large n ∈ N. By Hölder’s inequality, such a g is in L1(µ). So if
� > 0, by the p = 1 case, there exists h ∈ S such that kh− gk1 < �. By
replacing h by (h ∧ n) ∨ (−n) ∈ S, we may assume h is bounded by n in
which case

kh− gkpp =
Z
X

|h− g|p dµ =
Z
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
Z
X

|h− g| dµ < (2n)
p−1

�.

Since � > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 13.31. We may give a direct proof of the fact that µ→ Iµ is injective. In-
deed, suppose µ, ν ∈M+ satisfy Iµ(f) = Iν(f) for all f ∈ Cc(X,R). By Proposition
11.6, if A ∈ BX is a set such that µ(A) + ν(A) < ∞, there exists fn ∈ Cc(X,R)
such that fn → 1A in L1(µ+ ν). Since fn → 1A in L1(µ) and L1(ν),

µ(A) = lim
n→∞ Iµ(fn) = lim

n→∞ Iν(fn) = ν(A).

For general A ∈ BX , choose compact subsets Kn ⊂ X such that Kn ↑ X. Then

µ(A) = lim
n→∞µ(A ∩Kn) = lim

n→∞ ν(A ∩Kn) = ν(A)

showing µ = ν. Therefore the map µ→ Iµ is injective.

Theorem 13.32 (Lusin’s Theorem). Suppose (X, τ) is a locally compact and second
countable Hausdorff space, BX is the Borel σ — algebra on X, and µ is a measure on
(X,BX) which is finite on compact sets of X. Also let � > 0 be given. If f : X → C
is a measurable function such that µ(f 6= 0) < ∞, there exists a compact set
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K ⊂ {f 6= 0} such that f |K is continuous and µ({f 6= 0} \K) < �. Moreover there
exists φ ∈ Cc(X) such that µ(f 6= φ) < � and if f is bounded the function φ may
be chosen so that kφku ≤ kfku := supx∈X |f(x)| .
Proof. Suppose first that f is bounded, in which caseZ

X

|f | dµ ≤ kfkµ µ(f 6= 0) <∞.

By Proposition 11.6 or Item 7. of Theorem 13.30, there exists fn ∈ Cc(X) such
that fn → f in L1(µ) as n→∞. By passing to a subsequence if necessary, we may
assume kf − fnk1 < �n−12−n for all n and thus µ

¡|f − fn| > n−1
¢
< �2−n for all

n. Let E := ∪∞n=1
©|f − fn| > n−1

ª
, so that µ(E) < �. On Ec, |f − fn| ≤ 1/n, i.e.

fn → f uniformly on Ec and hence f |Ec is continuous.
Let A := {f 6= 0}\E. By Theorem 13.30 (or see Exercises 8.4 and 8.5) there exists

a compact set K and open set V such that K ⊂ A ⊂ V such that µ(V \K) < �.
Notice that

µ({f 6= 0} \K) ≤ µ(A \K) + µ(E) < 2�.

By the Tietze extension Theorem 10.16, there exists F ∈ C(X) such that f =
F |K . By Urysohn’s Lemma 10.15 there exists ψ ≺ V such that ψ = 1 on K. So
letting φ = ψF ∈ Cc(X), we have φ = f on K, kφku ≤ kfku and since {φ 6= f} ⊂
E ∪ (V \K), µ(φ 6= f) < 3�. This proves the assertions in the theorem when f is
bounded.
Suppose that f : X → C is (possibly) unbounded. By Lemmas 10.17 and

10.10, there exists compact sets {KN}∞N=1 of X such that KN ↑ X. Hence BN :=
KN ∩ {0 < |f | ≤ N} ↑ {f 6= 0} as N → ∞. Therefore if � > 0 is given there
exists an N such that µ({f 6= 0} \ BN ) < �. We now apply what we have just
proved to 1BN f to find a compact set K ⊂ {1BN f 6= 0} , and open set V ⊂ X and
φ ∈ Cc(V ) ⊂ Cc(X) such that µ(V \K) < �, µ({1BN f 6= 0} \K) < � and φ = f on
K. The proof is now complete since

{φ 6= f} ⊂ ({f 6= 0} \BN ) ∪ ({1BN f 6= 0} \K) ∪ (V \K)
so that µ(φ 6= f) < 3�.
To illustrate Theorem 13.32, suppose thatX = (0, 1), µ = m is Lebesgue measure

and f = 1(0,1)∩Q. Then Lusin’s theorem asserts for any � > 0 there exists a compact
setK ⊂ (0, 1) such thatm((0, 1)\K) < � and f |K is continuous. To see this directly,
let {rn}∞n=1 be an enumeration of the rationales in (0, 1),

Jn = (rn − �2−n, rn + �2−n) ∩ (0, 1) and W = ∪∞n=1Jn.
Then W is an open subset of X and µ(W ) < �. Therefore Kn := [1/n, 1− 1/n] \W
is a compact subset of X and m(X \Kn) ≤ 2

n + µ(W ). Taking n sufficiently large
we have m(X \Kn) < � and f |Kn

≡ 0 is continuous.
13.4.1. The Riemann — Stieljtes — Lebesgue Integral.

Notation 13.33. Given an increasing function F : R→ R, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) ∈ R̄. Since F
is increasing all of theses limits exists.

Theorem 13.34. Let F : R→ R be increasing and define G(x) = F (x+). Then
(1) The function G is increasing and right continuous.
(2) For x ∈ R, G(x) = limy↓x F (y−).
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(3) The set {x ∈ R : F (x+) > F (x−)} is countable and for each N > 0, and
moreover,

(13.26)
X

x∈(−N,N ]
[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞.

Proof.
(1) The following observation shows G is increasing: if x < y then

(13.27) F (x−) ≤ F (x) ≤ F (x+) = G(x) ≤ F (y−) ≤ F (y) ≤ F (y+) = G(y).

Since G is increasing, G(x) ≤ G(x+). If y > x then G(x+) ≤ F (y) and
hence G(x+) ≤ F (x+) = G(x), i.e. G(x+) = G(x).

(2) Since G(x) ≤ F (y−) ≤ F (y) for all y > x, it follows that

G(x) ≤ lim
y↓x

F (y−) ≤ lim
y↓x

F (y) = G(x)

showing G(x) = limy↓x F (y−).
(3) By Eq. (13.27), if x 6= y then

(F (x−), F (x+)] ∩ (F (y−), F (y+)] = ∅.
Therefore, {(F (x−), F (x+)]}x∈R are disjoint possible empty intervals in R.
Let N ∈ N and α ⊂⊂ (−N,N) be a finite set, thena

x∈α
(F (x−), F (x+)] ⊂ (F (−N), F (N)]

and therefore,X
x∈α

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞.

Since this is true for all α ⊂⊂ (−N,N ], Eq. (13.26) holds. Eq. (13.26)
shows

ΓN := {x ∈ (−N,N)|F (x+)− F (x−) > 0}
is countable and hence so is

Γ := {x ∈ R|F (x+)− F (x−) > 0} = ∪∞N=1ΓN .

Theorem 13.35. If F : R→ R is an increasing function, there exists a unique
measure µ = µF on BR such that
(13.28)

Z ∞
−∞

fdF =

Z
R
fdµ for all f ∈ Cc(R,R),

where
R∞
−∞ fdF is as in Notation 13.6 above. This measure may also be character-

ized as the unique measure on BR such that
(13.29) µ ((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞.

Moreover, if A ∈ BR then

µF (A) = inf

( ∞X
i=1

(F (bi+)− F (ai+)) : A ⊂ ∪∞i=1(ai, bi]
)

= inf

( ∞X
i=1

(F (bi+)− F (ai+)) : A ⊂
∞a
i=1

(ai, bi]

)
.
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Proof. An application of Theorem 13.30 implies there exists a unique measure
µ on BR such Eq. (13.28) is valid. Let −∞ < a < b < ∞, � > 0 be small and
φ�(x) be the function defined in Figure 30, i.e. φ� is one on [a+ 2�, b+ �], linearly
interpolates to zero on [b+ �, b+2�] and on [a+ �, a+2�] and is zero on (a, b+2�)c.

Figure 30. The function φ� used to compute ν((a, b]).

Since φ� → 1(a,b] it follows by the dominated convergence theorem that

(13.30) µ((a, b]) = lim
�↓0

Z
R
φ�dµ = lim

�↓0

Z
R
φ�dF.

On the other hand we have 1(a+2�,b+�] ≤ φ� ≤ 1(a+�,b+2�] and therefore,

F (b+ �)− F (a+ 2�) =

Z
R
1(a+2�,b+�]dF

≤
Z
R
φ�dF ≤

Z
R
1(a+�,b+2�)dF = F (b+ 2�)− F (a+ �).

Letting � ↓ 0 in this equation and using Eq. (13.30) shows
F (b+)− F (a+) ≤ µ((a, b]) ≤ F (b+)− F (a+).

The last assertion in the theorem is now a consequence of Corollary 13.27.

Corollary 13.36. The positive linear functionals on Cc(R,R) are in one to one
correspondence with right continuous non-decreasing functions F such that F (0) =
0.

13.5. Metric space regularity results resisted.

Proposition 13.37. Let (X, d) be a metric space and µ be a measure onM = BX
which is σ — finite on τ := τd.

(1) For all � > 0 and B ∈M there exists an open set V ∈ τ and a closed set
F such that F ⊂ B ⊂ V and µ(V \ F ) ≤ �.

(2) For all B ∈M, there exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C and
µ(C \A) = 0. Here Fσ denotes the collection of subsets of X which may be
written as a countable union of closed sets and Gδ = τδ is the collection of
subsets of X which may be written as a countable intersection of open sets.

(3) The space BCf (X) of bounded continuous functions on X such that µ(f 6=
0) <∞ is dense in Lp(µ).
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Proof. Let S := BCf (X), I(f) :=
R
X
fdµ for f ∈ S and Xn ∈ τ be chosen

so that µ(Xn) < ∞ and Xn ↑ X as n → ∞. Then 1 ∧ f ∈ S for all f ∈ S and
if φn = 1 ∧ ¡ndXc

n

¢ ∈ S+, then φn ↑ 1 as n → ∞ and so by Remark 13.23 there
exists χ ∈ S↑ such that χ > 0 on X and I(χ) <∞. Similarly if V ∈ τ, the function
gn := 1 ∧

¡
nd(Xn∩V )c

¢ ∈ S and gn → 1V as n→∞ showing σ(S) =BX . If fn ∈ S+
and fn ↓ 0 as n → ∞, it follows by the dominated convergence theorem that
I(fn) ↓ 0 as n→∞. So the hypothesis of the Daniell — Stone Theorem 13.22 hold
and hence µ is the unique measure on BX such that I = Iµ and for B ∈ BX and

µ(B) = Ī(1B) = inf {I(f) : f ∈ S↑ with 1B ≤ f}

= inf

½Z
X

fdµ : f ∈ S↑ with 1B ≤ f

¾
.

Suppose � > 0 and B ∈ BX are given. There exists fn ∈ BCf (X) such that fn ↑
f, 1B ≤ f, and µ(f) < µ(B) + �. The condition 1B ≤ f, implies 1B ≤ 1{f≥1} ≤ f
and hence that

(13.31) µ(B) ≤ µ(f ≥ 1) ≤ µ(f) < µ(B) + �.

Moreover, letting Vm := ∪∞n=1 {fn ≥ 1− 1/m} ∈ τd, we have Vm ↓ {f ≥ 1} ⊃ B
hence µ(Vm) ↓ µ(f ≥ 1) ≥ µ(B) as m →∞. Combining this observation with Eq.
(13.31), we may choose m sufficiently large so that B ⊂ Vm and

µ(Vm \B) = µ(Vm)− µ(B) < �.

Hence there exists V ∈ τ such that B ⊂ V and µ(V \B) < �. Applying this result
to Bc shows there exists F @ X such that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < �.

So we have produced F ⊂ B ⊂ V such that µ(V \ F ) = µ(V \B) + µ(B \ F ) < 2�.
The second assertion is an easy consequence of the first and the third follows in

similar manner to any of the proofs of Item 7. in Theorem 13.30.

13.6. Measure on Products of Metric spaces. Let {(Xn, dn)}n∈N be a se-
quence of compact metric spaces, for N ∈ N letXN :=

QN
n=1Xn and πN : X → XN

be the projection map πN (x) = x|{1,2,...,N}. Recall from Exercise 3.27 and Ex-
ercise 6.15 that there is a metric d on X :=

Q
n∈N

Xn such that τd = ⊗∞n=1τdn
(= τ(πn : n ∈ N) — the product topology on X) and X is compact in this topology.
Also recall that compact metric spaces are second countable, Exercise 10.5.

Proposition 13.38. Continuing the notation above, suppose that {µN}N∈N are
given probability measures31 on BN := BXN

satisfying the compatibility conditions,
(πN )∗ µM = µN for all N ≤ M. Then there exists a unique measure µ on BX =
σ(τd) = σ(πn : n ∈ N) such that (πN )∗ µ = µN for all N ∈ N, i.e.

(13.32)
Z
X

f(πN (x))dµ(x) =

Z
XN

f(y)dµN (y)

for all N ∈ N and f : XN → R bounded a measurable.

31A typical example of such measures, µN , is to set µN := µ1 ⊗ · · · ⊗ µN where µn is a
probablity measure on BXn for each n ∈ N.
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Proof. An application of the Stone Weierstrass Theorem 11.44 shows that

D = {f ∈ C(X) : f = F ◦ πN with F ∈ C(XN ) and N ∈ N}
is dense in C(X). For f = F ◦ πN ∈ D let

I(f) =

Z
XN

F ◦ πN (x)dµN (x).

Let us verify that I is well defined. Suppose that f may also be expressed as
f = G ◦ πM with M ∈ N and G ∈ C(XM ). By interchanging M and N if necessary
we may assume M ≥ N. By the compatibility assumption,Z

XM

G(z)dµM (z) =

Z
XM

F ◦ πN (x)dµM (x) =
Z
XN

Fd [(πN )∗ µM ]

=

Z
XN

F ◦ πNdµN .

Since |I(f)| ≤ kfk∞, the B.L.T. Theorem 4.1 allows us to extend I uniquely to
a continuous linear functional on C(X) which we still denote by I. Because I was
positive on D, it is easy to check that I is positive on C(X) as well. So by the Riesz
Theorem 13.30, there exists a probability measure µ on BX such that I(f) =

R
X

fdµ

for all f ∈ C(X). By the definition of I in now follows thatZ
XN

Fd (πN )∗ µ =
Z
XN

F ◦ πNdµ = I(F ◦ πN ) =
Z
XN

FdµN

for all F ∈ C(XN ) and N ∈ N. It now follows from Theorem 11.44he uniqueness
assertion in the Riesz theorem 13.30 (applied with X replaced by XN ) that πN∗µ =
µN .

Corollary 13.39. Keeping the same assumptions from Proposition 13.38. Further
assume, for each n ∈ N, there exists measurable set Yn ⊂ Xn such that µN (YN ) = 1
with YN := Y1 × · · · × YN . Then µ(Y ) = 1 where Y =

Q∞
i=1 Yi ⊂ X.

Proof. Since Y = ∩∞N=1π−1N (YN ), we have X \ Y = ∪∞N=1π−1N (XN \ YN ) and
therefore,

µ(X \ Y ) ≤
∞X

N=1

µ
¡
π−1N (XN \ YN )

¢
=
∞X

N=1

µN (XN \ YN ) = 0.

Corollary 13.40. Suppose that {µn}n∈N are probability measures on BRd for all
n ∈ N, X :=

¡
Rd
¢N
and B := ⊗∞n=1 (BRd) . Then there exists a unique measure µ

on (X,B) such that
(13.33)

Z
X

f(x1, x2, . . . , xN )dµ(x) =

Z
(Rd)N

f(x1, x2, . . . , xN )dµ1(x1) . . . dµN (xN )

for all N ∈ N and bounded measurable functions f : ¡Rd¢N → R.

Proof. Let
¡
Rd
¢∗
denote the Alexandrov compactification of Rd. Recall form

Exercise 10.12 that
¡
Rd
¢∗
is homeomorphic to Sd and hence

¡
Rd
¢∗
is a compact

metric space. (Alternatively see Exercise 10.15.) Let µ̄n := i∗µn = µn ◦ i−1 where
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i : Rd → ¡
Rd
¢∗
is the inclusion map. Then µ̄n is a probability measure on B(Rd)∗

such that µ̄n ({∞}) = 0. An application of Proposition 13.38 and Corollary 13.39
completes the proof.

Exercise 13.3. Extend Corollary 13.40 to construct arbitrary (not necessarily
countable) products of Rd.

13.7. Measures on general infinite product spaces. In this section we drop
the topological assumptions used in the last section.

Proposition 13.41. Let {(Xα,Mα, µα)}α∈A be a collection of probability spaces,
that is µα(Xa) = 1 for all α ∈ A. Let X ≡ Q

α∈A
Xα, M = σ(πα : α ∈ A) and for

Λ ⊂⊂ A let XΛ :=
Q

α∈ΛXα and πΛ : X → XΛ be the projection map πΛ(x) = x|Λ
and µΛ :=

Q
α∈Λ µα be product measure on MΛ := ⊗α∈ΛMα. Then there exists a

unique measure µ onM such that (πΛ)∗ µ = µΛ for all Λ ⊂⊂ A, i.e. if f : XΛ → R
is a bounded measurable function then

(13.34)
Z
X

f(πΛ(x))dµ(x) =

Z
XΛ

f(y)dµΛ(y).

Proof. Let S denote the collection of functions f : X → R such that there exists
Λ ⊂⊂ A and a bounded measurable function F : XΛ → R such that f = F ◦ πΛ.
For f = F ◦ πΛ ∈ S, let I(f) =

R
XΛ

FdµΛ.
Let us verify that I is well defined. Suppose that f may also be expressed as

f = G ◦ πΓ with Γ ⊂⊂ A and G : XΓ → R bounded and measurable. By replacing
Γ by Γ∪Λ if necessary, we may assume that Λ ⊂ Γ.Making use of Fubini’s theorem
we learnZ

XΓ

G(z) dµΓ(z) =

Z
XΛ×XΓ\Λ

F ◦ πΛ(x) dµΛ(x)dµΓ\Λ(y)

=

Z
XΛ

F ◦ πΛ(x) dµΛ(x) ·
Z
XΓ\Λ

dµΓ\Λ(y)

= µΓ\Λ
¡
XΓ\Λ

¢ · Z
XΛ

F ◦ πΛ(x) dµΛ(x) =
Z
XΛ

F ◦ πΛ(x) dµΛ(x),

wherein we have used the fact that µΛ(XΛ) = 1 for all Λ ⊂⊂ A since µα(Xα) = 1
for all α ∈ A. It is now easy to check that I is a positive linear functional on the
lattice S. We will now show that I is a Daniel integral.
Suppose that fn ∈ S+ is a decreasing sequence such that infn I(fn) = � > 0.

We need to show f := limn→∞ fn is not identically zero. As in the proof that I is
well defined, there exists Λn ⊂⊂ A and bounded measurable functions Fn : XΛn →
[0,∞) such that Λn is increasing in n and fn = Fn ◦ πΛn for each n. For k ≤ n, let
F k
n : XΛk → [0,∞) be the bounded measurable function

F k
n (x) =

Z
XΛn\Λk

Fn(x× y)dµΛn\Λk(y)

where x×y ∈ XΛn is defined by (x× y) (α) = x(α) if α ∈ Λk and (x× y) (α) = y(α)
for α ∈ Λn \ Λk. By convention we set Fn

n = Fn. Since fn is decreasing it follows
that F k

n+1 ≤ F k
n for all k and n ≥ k and therefore F k := limn→∞ F k

n exists. By
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Fubini’s theorem,

F k
n (x) =

Z
XΛn\Λk

F k+1
n (x× y)dµΛk+1\Λk(y) when k + 1 ≤ n

and hence letting n→∞ in this equation shows

(13.35) F k(x) =

Z
XΛn\Λk

F k+1(x× y)dµΛk+1\Λk(y)

for all k. NowZ
XΛ1

F 1(x)dµΛ1(x) = lim
n→∞

Z
XΛ1

F 1n(x)dµΛ1(x) = lim
n→∞ I(fn) = � > 0

so there exists
x1 ∈ XΛ1 such that F

1(x1) ≥ �.

From Eq. (13.35) with k = 1 and x = x1 it follows that

� ≤
Z
XΛ2\Λ1

F 2(x1 × y)dµΛ2\Λ1(y)

and hence there exists

x2 ∈ XΛ2\Λ1 such that F
2(x1 × x2) ≥ �.

Working this way inductively using Eq. (13.35) implies there exists

xi ∈ XΛi\Λi−1 such that F
n(x1 × x2 × · · · × xn) ≥ �

for all n. Now Fn
k ≥ Fn for all k ≤ n and in particular for k = n, thus

Fn(x1 × x2 × · · · × xn) = Fn
n (x1 × x2 × · · · × xn)

≥ Fn(x1 × x2 × · · · × xn) ≥ �(13.36)

for all n. Let x ∈ X be any point such that

πΛn(x) = x1 × x2 × · · · × xn

for all n. From Eq. (13.36) it follows that

fn(x) = Fn ◦ πΛn(x) = Fn(x1 × x2 × · · · × xn) ≥ �

for all n and therefore f(x) := limn→∞ fn(x) ≥ � showing f is not zero.
Therefore, I is a Daniel integral and there exists by Theorem 13.30 a unique

measure µ on (X,σ(S) =M) such that

I(f) =

Z
X

fdµ for all f ∈ S.

Taking f = 1A ◦ πΛ in this equation implies
µΛ(A) = I(f) = µ ◦ π−1Λ (A)

and the result is proved.

Remark 13.42. (Notion of kernel needs more explanation here.) The above theorem
may be Jazzed up as follows. Let {(Xα,Mα)}α∈A be a collection of measurable
spaces. Suppose for each pair Λ ⊂ Γ ⊂⊂ A there is a kernel µΛ,Γ(x, dy) for x ∈ XΛ
and y ∈ XΓ\Λ such that if Λ ⊂ Γ ⊂ K ⊂⊂ A then

µΛ,K(x, dy × dz) = µΛ,Γ(x, dy)µΓ,K(x× y, dz).
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Then there exists a unique measure µ onM such thatZ
X

f(πΛ(x))dµ(x) =

Z
XΛ

f(y)dµ∅,Λ(y)

for all Λ ⊂⊂ A and f : XΛ → R bounded and measurable. To prove this assertion,
just use the proof of Proposition 13.41 replacing µΓ\Λ(dy) by µΛ,Γ(x, dy) everywhere
in the proof.

13.8. Extensions of premeasures to measures II.

Proposition 13.43. Suppose that A ⊂ P(X) is an algebra of sets and µ : A →
[0,∞] is a finitely additive measure on A. Then if A,Ai ∈ A and A =

∞̀

i=1
Ai we

have

(13.37)
∞X
i=1

µ(Ai) ≤ µ(A).

Proof. Since

A =

Ã
Na
i=1

Ai

!
∪
Ã
A \

N[
i=1

Ai

!
we find using the finite additivity of µ that

µ(A) =
NX
i=1

µ(Ai) + µ

Ã
A \

N[
i=1

Ai

!
≥

NX
i=1

µ(Ai).

Letting N →∞ in this last expression shows that
∞P
i=1

µ(Ai) ≤ µ(A).

Because of Proposition 13.43, in order to prove that µ is a premeasure on A, it
suffices to show µ is subadditive on A, namely

(13.38) µ(A) ≤
∞X
i=1

µ(Ai)

whenever A =
∞̀

i=1
Ai with A ∈ A and each {Ai}∞i=1 ⊂ A.

Proposition 13.44. Suppose that E ⊂ P(X) is an elementary family (see Def-
inition 6.11), A = A(E) and µ : A → [0,∞] is an additive measure. Then the
following are equivalent:

(1) µ is a premeasure on A.
(2) µ is subadditivity on E , i.e. whenever E ∈ E is of the form E =

`∞
i=1Ei ∈ E

with Ei ∈ E then

(13.39) µ(E) ≤
∞X
i=1

µ(Ei).

Proof. Item 1. trivially implies item 2. For the converse, it suffices to show,

by Proposition 13.43, that if A =
∞̀

n=1
An with A ∈ A and each An ∈ A then Eq.
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(13.38) holds. To prove this, write A =
`n

j=1Ej with Ej ∈ E and An =
`Nn

i=1En,i

with En,i ∈ E. Then

Ej = A ∩Ej =
∞a
n=1

An ∩Ej =
∞a
n=1

Nna
i=1

En,i ∩Ej

which is a countable union and hence by assumption,

µ(Ej) ≤
∞X
n=1

NnX
i=1

µ (En,i ∩Ej) .

Summing this equation on j and using the additivity of µ shows that

µ(A) =
nX
j=1

µ(Ej) ≤
nX
j=1

∞X
n=1

NnX
i=1

µ (En,i ∩Ej) =
∞X
n=1

NnX
i=1

nX
j=1

µ (En,i ∩Ej)

=
∞X
n=1

NnX
i=1

µ (En,i) =
∞X
n=1

µ (An)

as desired.
The following theorem summarizes the results of Proposition 13.3, Proposition

13.44 and Theorem 13.26 above.

Theorem 13.45. Suppose that E ⊂ P(X) is an elementary family and µ0 : E →
[0,∞] is a function.

(1) If µ0 is additive on E, then µ0 has a unique extension to a finitely additive
measure µ0 on A = A(E).

(2) If we further assume that µ0 is countably subadditive on E , then µ0 is a
premeasure on A.

(3) If we further assume that µ0 is σ — finite on E , then there exists a unique
measure µ on σ(E) such that µ|E = µ0. Moreover, for A ∈ σ(E),

µ(A) = inf{µ0(B) : A ⊂ B ∈ Aσ}

= inf{
∞X
n=1

µ0(En) : A ⊂
∞a
n=1

En with En ∈ E}.

13.8.1. “Radon” measures on (R,BR) Revisited. Here we will use Theorem 13.45
to give another proof of Theorem 7.8. The main point is to show that to each
right continuous function F : R→ R there exists a unique measure µF such that
µF ((a, b]) = F (b) − F (a) for all −∞ < a < b < ∞. We begin by extending F
to a function from R̄ → R̄ by defining F (±∞) := limx→±∞ F (x). As above let
E = {(a, b]∩R : −∞ ≤ a ≤ b ≤ ∞} and set µ0 ((a, b]) = F (b)−F (a) for all a, b ∈ R̄
with a ≤ b. The proof will be finished by Theorem 13.45 if we can show that µ0 is
sub-additive on E .
First suppose that −∞ < a < b < ∞, J = (a, b], Jn = (an, bn] such that

J =
∞̀

n=1
Jn. We wish to show

(13.40) µ0(J) ≤
∞X
i=1

µ0(Ji).
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To do this choose numbers ã > a, b̃n > bn and set I = (ã, b] ⊂ J, J̃n = (an, b̃n] ⊃ Jn

and J̃on = (an, b̃n). Since Ī is compact and Ī ⊂ J ⊂
∞S
n=1

J̃on there exists N < ∞
such that

I ⊂ Ī ⊂
N[
n=1

J̃on ⊂
N[
n=1

J̃n.

Hence by finite sub-additivity of µ0,

F (b)− F (ã) = µ0(I) ≤
NX
n=1

µ0(J̃n) ≤
∞X
n=1

µ0(J̃n).

Using the right continuity of F and letting ã ↓ a in the above inequality shows that

µ0((a, b]) = F (b)− F (a) ≤
∞X
n=1

µ0

³
J̃n

´
=
∞X
n=1

µ0 (Jn) +
∞X
n=1

µ0(J̃n \ Jn)(13.41)

Given � > 0 we may use the right continuity of F to choose b̃n so that

µ0(J̃n \ Jn) = F (b̃n)− F (bn) ≤ �2−n ∀n.
Using this in Eq. (13.41) show

µ0(J) = µ0((a, b]) ≤
∞X
n=1

µ0 (Jn) + �

and since � > 0 we have verified Eq. (13.40).
We have now done the hard work. We still have to check the cases where a = −∞

or b =∞ or both. For example, suppose that b =∞ so that

J = (a,∞) =
∞a
n=1

Jn

with Jn = (an, bn] ∩ R. Then let IM := (a,M ], and notice that

IM = J ∩ IM =
∞a
n=1

Jn ∩ IM

So by what we have already proved,

F (M)− F (a) = µ0(IM ) ≤
∞X
n=1

µ0(Jn ∩ IM ) ≤
∞X
n=1

µ0(Jn)

Now let M →∞ in this last inequality to find that

µ0((a,∞)) = F (∞)− F (a) ≤
∞X
n=1

µ0(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b = ∞ are handled
similarly.
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13.9. Supplement: Generalizations of Theorem 13.35 to Rn.
Theorem 13.46. Let A ⊂ P(X) and B ⊂ P(Y ) be algebras. Suppose that

µ : A× B → C
is a function such that for each A ∈ A, the function

B ∈ B → µ(A×B) ∈ C
is an additive measure on B and for each B ∈ B, the function

A ∈ A→ µ(A×B) ∈ C
is an additive measure on A. Then µ extends uniquely to an additive measure on
the product algebra C generated by A×B.
Proof. The collection

E = A×B = {A×B : A ∈ A and B ∈ B}
is an elementary family, see Exercise 6.2. Therefore, it suffices to show µ is additive
on E. To check this suppose that A×B ∈ E and

A×B =
na

k=1

(Ak ×Bk)

with Ak ×Bk ∈ E . We wish to shows

µ(A×B) =
nX

k=1

µ(Ak ×Bk).

For this consider the finite algebras A0 ⊂ P(A) and B0 ⊂ P(B) generated by
{Ak}nk=1 and {Bk}nk=1 respectively. Let B ⊂ A0 and G ⊂ B0 be partition of A and
B respectively as found Proposition 6.18. Then for each k we may write

Ak =
a

α∈F,α⊂Ak
α and Bk =

a
β∈G,β⊂Bk

β.

Therefore,

µ(Ak ×Bk) = µ(Ak ×
[

β⊂Bk
β) =

X
β⊂Bk

µ(Ak × β)

=
X
β⊂Bk

µ(

Ã [
α⊂Ak

α

!
× β) =

X
α⊂Ak,β⊂Bk

µ(α× β)

so that X
k

µ(Ak ×Bk) =
X
k

X
α⊂Ak,β⊂Bk

µ(α× β) =
X

α⊂A,β⊂B
µ(α× β)

=
X
β⊂B

µ(A× β) = µ(A×B)

as desired.

Proposition 13.47. Suppose that A ⊂ P(X) is an algebra and for each t ∈ R,
µt : A → C is a finitely additive measure. Let Y = (u, v] ⊂ R be a finite interval
and B ⊂ P(Y ) denote the algebra generated by E := {(a, b] : (a, b] ⊂ Y } . Then there
is a unique additive measure µ on C, the algebra generated by A× B such that

µ(A× (a, b]) = µb(A)− µa(A) ∀ (a, b] ∈ E and A ∈ A.
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Proof. By Proposition 13.3, for each A ∈ A, the function (a, b]→ µ(A× (a, b])
extends to a unique measure on B which we continue to denote by µ. Now if B ∈ B,
then B =

`
k Ik with Ik ∈ E, then

µ(A×B) =
X
k

µ(A× Ik)

from which we learn that A → µ(A × B) is still finitely additive. The proof is
complete with an application of Theorem 13.46.
For a, b ∈ Rn, write a < b (a ≤ b) if ai < bi (ai ≤ bi) for all i. For a < b, let (a, b]

denote the half open rectangle:

(a, b] = (a1, b1]× (a2, b2]× · · · × (an, bn],
E = {(a, b] : a < b} ∪ {Rn}

and A (Rn) ⊂ P(Rn) denote the algebra generated by E. Suppose that F : Rn → C
is a function, we wish to define a finitely additive complex valued measure µF on
A(Rn) associated to F. Intuitively the definition is to be

µF ((a, b]) =

Z
(a,b]

F (dt1, dt2, . . . , dtn)

=

Z
(a,b]

(∂1∂2 . . . ∂nF ) (t1, t2, . . . , tn)dt1, dt2, . . . , dtn

=

Z
(ã,b̃]

(∂1∂2 . . . ∂n−1F ) (t1, t2, . . . , tn)|tn=bntn=an dt1, dt2, . . . , dtn−1,

where
(ã, b̃] = (a1, b1]× (a2, b2]× · · · × (an−1, bn−1].

Using this expression as motivation we are led to define µF by induction on n. For
n = 1, let

µF ((a, b]) = F (b)− F (a)

and then inductively using

µF ((a, b]) = µF (·,t)((ã, b̃])|t=bnt=an .

Proposition 13.48. The function µF extends uniquely to an additive function on
A(Rn). Moreover,
(13.42) µF ((a, b]) =

X
Λ⊂S

(−1)|Λ|F (aΛ × bΛc)

where S = {1, 2, . . . , n} and

(aΛ × bΛc) (i) =

½
a(i) if i ∈ Λ
b(i) if i /∈ Λ.

Proof. Both statements of the proof will be by induction. For n = 1 we
have µF ((a, b]) = F (b) − F (a) so that Eq. (13.42) holds and we have already
seen that µF extends to a additive measure on A (R) . For general n, notice that
A(Rn) = A(Rn−1)⊗A(R). For t ∈ R and A ∈ A(Rn−1), let

µt(A) = µF (·,t)(A)

where µF (·,t) is defined by the induction hypothesis. Then

µF (A× (a, b]) = µb(A)− µa(A)
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and by Proposition 13.47 has a unique extension to A(Rn−1) ⊗A(R) as a finitely
additive measure.
For n = 1, Eq. (13.42) says that

µF ((a, b]) = F (b)− F (a)

where the first term corresponds to Λ = ∅ and second to Λ = {1}. This agrees with
the definition of µF for n = 1. Now for the induction step. Let T = {1, 2, . . . , n−1}
and suppose that a, b ∈ Rn, then

µF ((a, b]) = µF (·,t)((ã, b̃])|t=bnt=an

=
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , t)|t=bnt=an

=
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , bn)−
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , an)

=
X

Λ⊂S:n∈Λc
(−1)|Λ|F (aΛ × bΛc) +

X
Λ⊂S:n∈Λ

(−1)|Λ|F (aΛ × bΛc)

=
X
Λ⊂S

(−1)|Λ|F (aΛ × bΛc)

as desired.

13.10. Exercises.

Exercise 13.4. Let (X,A, µ) be as in Definition 13.4 and Proposition 13.5, Y be a
Banach space and S(Y ) := Sf (X,A, µ;Y ) be the collection of functions f : X → Y
such that #(f(X)) <∞, f−1({y}) ∈ A for all y ∈ Y and µ(f 6= 0) <∞. We may
define a linear functional I : S(Y )→ Y by

I(f) =
X
y∈Y

yµ(f = y).

Verify the following statements.

(1) Let kfk∞ = supx∈X kf(x)kY be the sup norm on c∞(X,Y ), then for f ∈
S(Y ),

kI(f)kY ≤ kfk∞ µ(f 6= 0).
Hence if µ(X) < ∞, I extends to a bounded linear transformation from
S̄(Y ) ⊂ c∞(X,Y ) to Y.

(2) Assuming (X,A, µ) satisfies the hypothesis in Exercise 13.1, then C(X,Y ) ⊂
S̄(Y ).

(3) Now assume the notation in Section 13.4.1, i.e. X = [−M,M ] for some
M ∈ R and µ is determined by an increasing function F. Let π ≡ {−M =
t0 < t1 < · · · < tn = M} denote a partition of J := [−M,M ] along with a
choice ci ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1. For f ∈ C([−M,M ], Y ), set

fπ ≡ f(c0)1[t0,t1] +
n−1X
i=1

f(ci)1(ti,ti+1].

Show that fπ ∈ S and
kf − fπkF → 0 as |π| ≡ max{(ti+1 − ti) : i = 0, 1, 2 . . . , n− 1}→ 0.
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Conclude from this that

I(f) = lim
|π|→0

n−1X
i=0

f(ci)(F (ti+1)− F (ti)).

As usual we will write this integral as
RM
−M fdF and as

RM
−M f(t)dt if F (t) =

t.

Exercise 13.5. Folland problem 1.28.

Exercise 13.6. Suppose that F ∈ C1(R) is an increasing function and µF is the
unique Borel measure on R such that µF ((a, b]) = F (b)− F (a) for all a ≤ b. Show
that dµF = ρdm for some function ρ ≥ 0. Find ρ explicitly in terms of F.

Exercise 13.7. Suppose that F (x) = e1x≥3 + π1x≥7 and µF is the is the unique
Borel measure on R such that µF ((a, b]) = F (b) − F (a) for all a ≤ b. Give an
explicit description of the measure µF .

Exercise 13.8. Let E ∈ BR with m(E) > 0. Then for any α ∈ (0, 1) there exists
an open interval J ⊂ R such that m(E ∩ J) ≥ αm(J).32 Hints: 1. Reduce to
the case where m(E) ∈ (0,∞). 2) Approximate E from the outside by an open set
V ⊂ R. 3. Make use of Exercise 3.43, which states that V may be written as a
disjoint union of open intervals.

Exercise 13.9. Let (X, τ) be a second countable locally compact Hausdorff space
and I : C0(X,R)→ R be a positive linear functional. Show I is necessarily bounded,
i.e. there exists a C < ∞ such that |I(f)| ≤ C kfku for all f ∈ C0(X,R). Hint:
Let µ be the measure on BX coming from the Riesz Representation theorem and for
sake of contradiction suppose µ(X) = kIk =∞. To reach a contradiction, construct
a function f ∈ C0(X,R) such that I(f) =∞.

Exercise 13.10. Suppose that I : C∞c (R,R)→ R is a positive linear functional.
Show

(1) For each compact subset K @@ R there exists a constant CK < ∞ such
that

|I(f)| ≤ CK kfku
whenever supp(f) ⊂ K.

(2) Show there exists a unique Radon measure µ on BR (the Borel σ — algebra
on R) such that I(f) =

R
R fdµ for all f ∈ C∞c (R,R).

13.10.1. The Laws of Large Number Exercises. For the rest of the problems of this
section, let ν be a probability measure on BR such that

R
R |x| dν(x) < ∞, µn := ν

for n ∈ N and µ denote the infinite product measure as constructed in Corollary
13.40. So µ is the unique measure on (X := RN,B := BRN) such that

(13.43)
Z
X

f(x1, x2, . . . , xN )dµ(x) =

Z
RN

f(x1, x2, . . . , xN )dν(x1) . . . dν(xN )

32See also the Lebesgue differentiation Theorem 16.13 from which one may prove the much
stronger form of this theorem, namely for m -a.e. x ∈ E there exits rα(x) > 0 such that m(E ∩
(x− r, x+ r)) ≥ αm((x− r, x+ r)) for all r ≤ rα(x).
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for all N ∈ N and bounded measurable functions f : RN → R. We will also use the
following notation:

Sn(x) :=
1

n

nX
k=1

xk for x ∈ X,

m :=

Z
R
xdν(x) the average of ν,

σ2 :=

Z
R
(x−m)2dν(x) the variance of ν and

γ :=

Z
R
(x−m)4dν(x).

The variance may also be written as σ2 =
R
R x

2dν(x)−m2.

Exercise 13.11 (Weak Law of Large Numbers). Suppose further that σ2 < ∞,
show

R
X
Sndµ = m,

kSn −mk22 =
Z
X

(Sn −m)
2
dµ =

σ2

n

and µ(|Sn −m| > �) ≤ σ2

n�2 for all � > 0 and n ∈ N.
Exercise 13.12 (A simple form of the Strong Law of Large Numbers). Suppose
now that γ :=

R
R(x−m)4dν(x) <∞. Show for all � > 0 and n ∈ N that

kSn −mk44 =
Z
X

(Sn −m)
4
dµ =

1

n4
¡
nγ + 3n(n− 1)σ4¢

=
1

n2
£
n−1γ + 3

¡
1− n−1

¢
σ4
¤
and

µ(|Sn −m| > �) ≤ n−1γ + 3
¡
1− n−1

¢
σ4

�4n2
.

Conclude from the last estimate and the first Borel Cantelli Lemma 7.22 that
limn→∞ Sn(x) = m for µ — a.e. x ∈ X.

Exercise 13.13. Suppose γ :=
R
R(x−m)4dν(x) <∞ andm =

R
R(x−m)dν(x) 6= 0.

For λ > 0 let Tλ : RN → RN be defined by Tλ(x) = (λx1, λx2, . . . , λxn, . . . ),
µλ = µ ◦ T−1λ and

Xλ :=

x ∈ RN : lim
n→∞

1

n

nX
j=1

xj = λ

 .

Show

µλ(Xλ0) = δλ,λ0 =

½
1 if λ = λ0

0 if λ 6= λ0

and use this to show if λ 6= 1, then dµλ 6= ρdµ for any measurable function ρ :
RN → [0,∞].
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14. Daniell Integral Proofs

(This section follows the exposition in Royden and Loomis.) In this section we
let X be a given set. We will be interested in certain spaces of extended real valued
functions f : X → R̄ on X.
Convention: Given functions f, g : X → R̄, let f + g denote the collection of

functions h : X → R̄ such that h(x) = f(x) + g(x) for all x for which f(x) + g(x)
is well defined, i.e. not of the form ∞ − ∞. For example, if X = {1, 2, 3} and
f(1) = ∞, f(2) = 2 and f(3) = 5 and g(1) = g(2) = −∞ and g(3) = 4, then
h ∈ f + g iff h(2) = −∞ and h(3) = 7. The value h(1) may be chosen freely. More
generally if a, b ∈ R and f, g : X → R̄ we will write af + bg for the collection
of functions h : X → R̄ such that h(x) = af(x) + bg(x) for those x ∈ X where
af(x) + bg(x) is well defined with the values of h(x) at the remaining points being
arbitrary. It will also be useful to have some explicit representatives for af + bg
which we define, for α ∈ R̄, by

(14.1) (af + bg)α(x) =

½
af(x) + bg(x) when defined

α otherwise.

We will make use of this definition with α = 0 and α =∞ below.

Definition 14.1. A set, L, of extended real valued functions on X is an extended
vector space (or a vector space for short) if L is closed under scalar multiplication
and addition in the following sense: if f, g ∈ L and λ ∈ R then (f + λg) ⊂ L. A
vector space L is said to be an extended lattice (or a lattice for short) if it is
also closed under the lattice operations; f ∨ g = max(f, g) and f ∧ g = min(f, g).
A linear functional I on L is a function I : L→ R such that

(14.2) I(f + λg) = I(f) + λI(g) for all f, g ∈ L and λ ∈ R.
Eq. (14.2) is to be interpreted as I(h) = I(f) + λI(g) for all h ∈ (f + λg), and
in particular I is required to take the same value on all members of (f + λg). A
linear functional I is positive if I(f) ≥ 0 when f ∈ L+, where L+ denotes the
non-negative elements of L as in Notation 13.13.

Remark 14.2. Notice that an extended lattice L is closed under the absolute value
operation since |f | = f ∨ 0 − f ∧ 0 = f ∨ (−f). Also if I is positive on L then
I(f) ≤ I(g) when f, g ∈ L and f ≤ g. Indeed, f ≤ g implies (g − f)0 ≥ 0, so
0 = I(0) = I((g − f)0) = I(g)− I(f) and hence I(f) ≤ I(g).

In the remainder of this chapter we fix a lattice, S, of bounded functions, f :
X → R, and a positive linear functional I : S → R satisfying Property (D) of
Definition 13.15.

14.1. Extension of Integrals.

Proposition 14.3. The set S↑ and the extension of I to S↑ in Definition 13.20
satisfies:

(1) (Monotonicity) I(f) ≤ I(g) if f, g ∈ S↑ with f ≤ g.
(2) S↑ is closed under the lattice operations, i.e. if f, g ∈ S↑ then f ∧ g ∈ S↑

and f ∨ g ∈ S↑. Moreover, if I(f) < ∞ and I(g) < ∞, then I(f ∨ g) < ∞
and I(f ∧ g) <∞.

(3) (Positive Linearity) I (f + λg) = I(f) + λI(g) for all f, g ∈ S↑ and λ ≥ 0.
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(4) f ∈ S+↑ iff there exists φn ∈ S+ such that f =
P∞

n=1 φn. Moreover, I(f) =P∞
m=1 I(φm).

(5) If fn ∈ S+↑ , then
P∞

n=1 fn =: f ∈ S+↑ and I(f) =
P∞

n=1 I(fn).

Remark 14.4. Similar results hold for the extension of I to S↓ in Definition 13.21.

Proof.
(1) Monotonicity follows directly from Lemma 13.19.
(2) If fn, gn ∈ S are chosen so that fn ↑ f and gn ↑ g, then fn ∧ gn ↑ f ∧ g and

fn ∨ gn ↑ f ∨ g. If we further assume that I(g) < ∞, then f ∧ g ≤ g and
hence I(f ∧ g) ≤ I(g) <∞. In particular it follows that I(f ∧ 0) ∈ (−∞, 0]
for all f ∈ S↑. Combining this with the identity,

I(f) = I (f ∧ 0 + f ∨ 0) = I (f ∧ 0) + I(f ∨ 0) ,
shows I(f) < ∞ iff I(f ∨ 0) < ∞. Since f ∨ g ≤ f ∨ 0 + g ∨ 0, if both
I(f) <∞ and I(g) <∞ then

I(f ∨ g) ≤ I (f ∨ 0) + I (g ∨ 0) <∞.

(3) Let fn, gn ∈ S be chosen so that fn ↑ f and gn ↑ g, then (fn + λgn) ↑
(f + λg) and therefore

I (f + λg) = lim
n→∞ I (fn + λgn) = lim

n→∞ I(fn) + λ lim
n→∞ I(gn)

= I(f) + λI(g).

(4) Let f ∈ S+↑ and fn ∈ S be chosen so that fn ↑ f. By replacing fn by fn ∨ 0
if necessary we may assume that fn ∈ S+. Now set φn = fn − fn−1 ∈ S for
n = 1, 2, 3, . . . with the convention that f0 = 0 ∈ S. Then P∞n=1 φn = f
and

I(f) = lim
n→∞ I(fn) = lim

n→∞ I(
nX

m=1

φm) = lim
n→∞

nX
m=1

I(φm) =
∞X

m=1

I(φm).

Conversely, if f =
P∞

m=1 φm with φm ∈ S+, then fn :=
Pn

m=1 φm ↑ f as
n→∞ and fn ∈ S+.

(5) Using Item 4., fn =
P∞

m=1 φn,m with φn,m ∈ S+. Thus

f =
∞X
n=1

∞X
m=1

φn,m = lim
N→∞

X
m,n≤N

φn,m ∈ S↑

and

I(f) = lim
N→∞

I(
X

m,n≤N
φn,m) = lim

N→∞

X
m,n≤N

I(φn,m)

=
∞X
n=1

∞X
m=1

I(φn,m) =
∞X
n=1

I(fn).

Definition 14.5. Given an arbitrary function g : X → R̄, let
Ī(g) = inf {I(f) : g ≤ f ∈ S↑} ∈ R̄ and
I(g) = sup {I(f) : S↓ 3 f ≤ g} ∈ R̄.

with the convention that sup ∅ = −∞ and inf ∅ = +∞.
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Proposition 14.6. Given functions f, g : X → R̄, then:
(1) Ī(λf) = λĪ(f) for all λ ≥ 0.
(2) (Chebyshev’s Inequality.) Suppose f : X → [0,∞] is a function and α ∈

(0,∞), then Ī(1{f≥α}) ≤ 1
α Ī(f) and if Ī(f) <∞ then Ī(1{f=∞}) = 0.

(3) Ī is subadditive, i.e. if Ī(f) + Ī(g) is not of the form ∞−∞ or −∞+∞,
then

(14.3) Ī(f + g) ≤ Ī(f) + Ī(g).

This inequality is to be interpreted to mean,

Ī(h) ≤ Ī(f) + Ī(g) for all h ∈ (f + g).

(4) I(−g) = −Ī(g).
(5) I(g) ≤ Ī(g).
(6) If f ≤ g then Ī(f) ≤ Ī(g) and I(f) ≤ I(g).
(7) If g ∈ S↑ and I(g) <∞ or g ∈ S↓ and I(g) > −∞ then I(g) = Ī(g) = I(g).

Proof.
(1) Suppose that λ > 0 (the λ = 0 case being trivial), then

Ī(λf) = inf {I(h) : λf ≤ h ∈ S↑} = inf
©
I(h) : f ≤ λ−1h ∈ S↑

ª
= inf {I(λg) : f ≤ g ∈ S↑} = λ inf {I(g) : f ≤ g ∈ S↑} = λĪ(f).

(2) For α ∈ (0,∞), α1{f≥α} ≤ f and therefore,

αĪ(1{f≥α}) = Ī(α1{f≥α}) ≤ Ī(f).

Since N1{f=∞} ≤ f for all N ∈ (0,∞),
NĪ(1{f=∞}) = Ī(N1{f=∞}) ≤ Ī(f).

So if Ī(f) < ∞, this inequality implies Ī(1{f=∞}) = 0 because N is arbi-
trary.

(3) If Ī(f) + Ī(g) = ∞ the inequality is trivial so we may assume that
Ī(f), Ī(g) ∈ [−∞,∞). If Ī(f) + Ī(g) = −∞ then we may assume, by inter-
changing f and g if necessary, that Ī(f) = −∞ and Ī(g) <∞. By definition
of Ī , there exists fn ∈ S↑ and gn ∈ S↑ such that f ≤ fn and g ≤ gn and
I(fn) ↓ −∞ and I(gn) ↓ Ī(g). Since f + g ≤ fn+ gn ∈ S↑, (i.e. h ≤ fn+ gn
for all h ∈ (f + g) which holds because fn, gn > −∞) and

I(fn + gn) = I(fn) + I(gn) ↓ −∞+ Ī(g) = −∞,

it follows that Ī(f +g) = −∞, i.e. Ī(h) = −∞ for all h ∈ f +g. Henceforth
we may assume Ī(f), Ī(g) ∈ R. Let k ∈ (f + g) and f ≤ h1 ∈ S↑ and
g ≤ h2 ∈ S↑. Then k ≤ h1 + h2 ∈ S↑ because if (for example) f(x) = ∞
and g(x) = −∞, then h1(x) = ∞ and h2(x) > −∞ since h2 ∈ S↑. Thus
h1(x) + h2(x) = ∞ ≥ k(x) no matter the value of k(x). It now follows
from the definitions that Ī(k) ≤ I(h1) + I(h2) for all f ≤ h1 ∈ S↑ and
g ≤ h2 ∈ S↑. Therefore,

Ī(k) ≤ inf {I(h1) + I(h2) : f ≤ h1 ∈ S↑ and g ≤ h2 ∈ S↑}
= Ī(f) + Ī(g)

and since k ∈ (f + g) is arbitrary we have proven Eq. (14.3).
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(4) From the definitions and Exercise 13.2,

I(−g) = sup {I(f) : f ≤ −g ∈ S↓} = sup {I(f) : g ≤ −f ∈ S↑}
= sup {I(−h) : g ≤ h ∈ S↑} = − inf {I(h) : g ≤ h ∈ S↑} = −Ī(g).

(5) The assertion is trivially true if Ī(g) = I(g) =∞ or Ī(g) = I(g) = −∞. So
we now assume that Ī(g) and I(g) are not both∞ or −∞. Since 0 ∈ (g−g)
and Ī(g − g) ≤ Ī(g) + Ī(−g) (by Item 1),

0 = Ī(0) ≤ Ī(g) + Ī(−g) = Ī(g)− I(g)

provided the right side is well defined which it is by assumption. So again
we deduce that I(g) ≤ Ī(g).

(6) If f ≤ g then

Ī(f) = inf {I(h) : f ≤ h ∈ S↑} ≤ inf {I(h) : g ≤ h ∈ S↑} = Ī(g)

and

I(f) = sup {I(h) : S↓ 3 h ≤ f} ≤ sup {I(h) : S↓ 3 h ≤ g} = I(g).

(7) Let g ∈ S↑ with I(g) <∞ and choose gn ∈ S such that gn ↑ g. Then
Ī(g) ≥ I(g) ≥ I(gn)→ I(g) as n→∞.

Combining this with

Ī(g) = inf {I(f) : g ≤ f ∈ S↑} = I(g)

shows
Ī(g) ≥ I(g) ≥ I(g) = Ī(g)

and hence I(g) = I(g) = Ī(g). If g ∈ S↓ and I(g) > −∞, then by what we
have just proved,

I(−g) = I(−g) = Ī(−g).
This finishes the proof since I(−g) = −Ī(g) and I(−g) = −I(g).

Lemma 14.7. Let fn : X → [0,∞] be a sequence of functions and F :=
P∞

n=1 fn.
Then

(14.4) Ī(F ) = Ī(
∞X
n=1

fn) ≤
∞X
n=1

Ī(fn).

Proof. Suppose
P∞

n=1 Ī(fn) < ∞, for otherwise the result is trivial. Let � > 0

be given and choose gn ∈ S+↑ such that fn ≤ gn and I(gn) = Ī(fn) + �n whereP∞
n=1 �n ≤ �. (For example take �n ≤ 2−n�.) Then

P∞
n=1 gn =: G ∈ S+↑ , F ≤ G

and so

Ī(F ) ≤ Ī(G) = I(G) =
∞X
n=1

I(gn) =
∞X
n=1

¡
Ī(fn) + �n

¢ ≤ ∞X
n=1

Ī(fn) + �.

Since � > 0 is arbitrary, the proof is complete.

Definition 14.8. A function g : X → R̄ is integrable if I(g) = Ī(g) ∈ R. Let
L1(I) :=

©
g : X → R̄ : I(g) = Ī(g) ∈ Rª

and for g ∈ L1(I), let Î(g) denote the common value I(g) = Ī(g).
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Remark 14.9. A function g : X → R̄ is integrable iff there exists f ∈ S↓∩L1(I) and
h ∈ S↑ ∩ L1(I)33 such that f ≤ g ≤ h and I(h − f) < �. Indeed if g is integrable,
then I(g) = Ī(g) and there exists f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I) such that
f ≤ g ≤ h and 0 ≤ I(g) − I(f) < �/2 and 0 ≤ I(h) − Ī(g) < �/2. Adding these
two inequalities implies 0 ≤ I(h)− I(f) = I(h− f) < �. Conversely, if there exists
f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I) such that f ≤ g ≤ h and I(h− f) < �, then

I(f) = I(f) ≤ I(g) ≤ I(h) = I(h) and

I(f) = Ī(f) ≤ Ī(g) ≤ Ī(h) = I(h)

and therefore
0 ≤ Ī(g)− I(g) ≤ I(h)− I(f) = I(h− f) < �.

Since � > 0 is arbitrary, this shows Ī(g) = I(g).

Proposition 14.10. The space L1(I) is an extended lattice and Î : L1(I) → R is
linear in the sense of Definition 14.1.

Proof. Let us begin by showing that L1(I) is a vector space. Suppose that
g1, g2 ∈ L1(I), and g ∈ (g1 + g2). Given � > 0 there exists fi ∈ S↓ ∩ L1(I) and
hi ∈ S↑ ∩ L1(I) such that fi ≤ gi ≤ hi and I(hi − fi) < �/2. Let us now show

(14.5) f1(x) + f2(x) ≤ g(x) ≤ h1(x) + h2(x) ∀x ∈ X.

This is clear at points x ∈ X where g1(x)+ g2(x) is well defined. The other case to
consider is where g1(x) =∞ = −g2(x) in which case h1(x) =∞ and f2(x) = −∞
while , h2(x) > −∞ and f1(x) < ∞ because h2 ∈ S↑ and f1 ∈ S↓. Therefore,
f1(x) + f2(x) = −∞ and h1(x) + h2(x) =∞ so that Eq. (14.5) is valid no matter
how g(x) is chosen.
Since f1 + f2 ∈ S↓ ∩ L1(I), h1 + h2 ∈ S↑ ∩ L1(I) and

Î(gi) ≤ I(fi) + �/2 and − �/2 + I(hi) ≤ Î(gi),

we find

Î(g1) + Î(g2)− � ≤ I(f1) + I(f2) = I(f1 + f2) ≤ I(g) ≤ Ī(g)

≤ I(h1 + h2) = I(h1) + I(h2) ≤ Î(g1) + Î(g2) + �.

Because � > 0 is arbitrary, we have shown that g ∈ L1(I) and Î(g1)+ Î(g2) = Î(g),

i.e. Î(g1 + g2) = Î(g1) + Î(g2).

It is a simple matter to show λg ∈ L1(I) and Î(λg) = λÎ(g) for all g ∈ L1(I) and
λ ∈ R. For example if λ = −1 (the most interesting case), choose f ∈ S↓ ∩ L1(I)
and h ∈ S↑ ∩ L1(I) such that f ≤ g ≤ h and I(h− f) < �. Therefore,

S↓ ∩ L1(I) 3 −h ≤ −g ≤ −f ∈ S↑ ∩ L1(I)
with I(−f − (−h)) = I(h − f) < � and this shows that −g ∈ L1(I) and Î(−g) =
−Î(g). We have now shown that L1(I) is a vector space of extended real valued
functions and Î : L1(I)→ R is linear.
To show L1(I) is a lattice, let g1, g2 ∈ L1(I) and fi ∈ S↓ ∩ L1(I) and hi ∈

S↑ ∩ L1(I) such that fi ≤ gi ≤ hi and I(hi − fi) < �/2 as above. Then using
Proposition 14.3 and Remark 14.4,

S↓ ∩ L1(I) 3 f1 ∧ f2 ≤ g1 ∧ g2 ≤ h1 ∧ h2 ∈ S↑ ∩ L1(I).
33Equivalently, f ∈ S↓ with I(f) > −∞ and h ∈ S↑ with I(h) <∞.
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Moreover,
0 ≤ h1 ∧ h2 − f1 ∧ f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1 ∧ h2 = h1 and f1 ∧ f2 = f2 then

h1 ∧ h2 − f1 ∧ f2 = h1 − f2 ≤ h2 − f2.

Therefore,
I (h1 ∧ h2 − f1 ∧ f2) ≤ I (h1 − f1 + h2 − f2) < �

and hence by Remark 14.9, g1 ∧ g2 ∈ L1(I). Similarly

0 ≤ h1∨h2 − f1∨f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1∨h2 = h1 and f1∨f2 = f2 then

h1∨h2 − f1∨f2 = h1 − f2 ≤ h1 − f1.

Therefore,
I (h1∨h2 − f1∨f2) ≤ I (h1 − f1 + h2 − f2) < �

and hence by Remark 14.9, g1∨g2 ∈ L1(I).

Theorem 14.11 (Monotone convergence theorem). If fn ∈ L1(I) and fn ↑ f, then
f ∈ L1(I) iff limn→∞ Î(fn) = supn Î(fn) <∞ in which case Î(f) = limn→∞ Î(fn).

Proof. If f ∈ L1(I), then by monotonicity Î(fn) ≤ Î(f) for all n and therefore
limn→∞ Î(fn) ≤ Î(f) < ∞. Conversely, suppose c := limn→∞ Î(fn) < ∞ and let
g :=

P∞
n=1(fn+1 − fn)0. The reader should check that f ≤ (f1 + g)∞ ∈ (f1 + g) .

So by Lemma 14.7,

Ī(f) ≤ Ī((f1 + g)∞) ≤ Ī(f1) + Ī(g)

≤ Ī(f1) +
∞X
n=1

Ī ((fn+1 − fn)0) = Î(f1) +
∞X
n=1

Î (fn+1 − fn)

= Î(f1) +
∞X
n=1

h
Î(fn+1)− Î(fn)

i
= Î(f1) + c− Î(f1) = c.(14.6)

Because fn ≤ f, it follows that Î(fn) = I(fn) ≤ I(f) which upon passing to limit
implies c ≤ I(f). This inequality and the one in Eq. (14.6) shows Ī(f) ≤ c ≤ I(f)

and therefore, f ∈ L1(I) and Î(f) = c = limn→∞ Î(fn).

Lemma 14.12 (Fatou’s Lemma). Suppose {fn} ⊂
£
L1(I)

¤+
, then inf fn ∈ L1(I).

If lim infn→∞ Î(fn) <∞, then lim infn→∞ fn ∈ L1(I) and in this case

Î(lim inf
n→∞ fn) ≤ lim inf

n→∞ Î(fn).

Proof. Let gk := f1 ∧ · · · ∧ fk ∈ L1(I), then gk ↓ g := infn fn. Since −gk ↑ −g,
−gk ∈ L1(I) for all k and Î(−gk) ≤ Î(0) = 0, it follow from Theorem 14.11 that
−g ∈ L1(I) and hence so is infn fn = g ∈ L1(I).
By what we have just proved, uk := infn≥k fn ∈ L1(I) for all k. Notice that

uk ↑ lim infn→∞ fn, and by monotonicity that Î(uk) ≤ Î(fk) for all k. Therefore,

lim
k→∞

Î(uk) = lim inf
k→∞

Î(uk) ≤ lim inf
k→∞

Î(fn) <∞
and by the monotone convergence Theorem 14.11, lim infn→∞ fn = limk→∞ uk ∈
L1(I) and

Î(lim inf
n→∞ fn) = lim

k→∞
Î(uk) ≤ lim inf

n→∞ Î(fn).
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Before stating the dominated convergence theorem, it is helpful to remove some
of the annoyances of dealing with extended real valued functions. As we have
done when studying integrals associated to a measure, we can do this by modifying
integrable functions by a “null” function.

Definition 14.13. A function n : X → R̄ is a null function if Ī(|n|) = 0. A
subset E ⊂ X is said to be a null set if 1E is a null function. Given two functions
f, g : X → R̄ we will write f = g a.e. if {f 6= g} is a null set.
Here are some basic properties of null functions and null sets.

Proposition 14.14. Suppose that n : X → R̄ is a null function and f : X → R̄ is
an arbitrary function. Then

(1) n ∈ L1(I) and Î(n) = 0.
(2) The function n · f is a null function.
(3) The set {x ∈ X : n(x) 6= 0} is a null set.
(4) If E is a null set and f ∈ L1(I), then 1Ecf ∈ L1(I) and Î(f) = Î(1Ecf).

(5) If g ∈ L1(I) and f = g a.e. then f ∈ L1(I) and Î(f) = Î(g).
(6) If f ∈ L1(I), then {|f | =∞} is a null set.
Proof.
(1) If n is null, using ±n ≤ |n| we find Ī(±n) ≤ Ī(|n|) = 0, i.e. Ī(n) ≤ 0 and
−I(n) = Ī(−n) ≤ 0. Thus it follows that Ī(n) ≤ 0 ≤ I(n) and therefore
n ∈ L1(I) with Î (n) = 0.

(2) Since |n · f | ≤ ∞ · |n| , Ī (|n · f |) ≤ Ī (∞ · |n|) . For k ∈ N, k |n| ∈ L1(I)

and Î(k |n|) = kI (|n|) = 0, so k |n| is a null function. By the monotone
convergence Theorem 14.11 and the fact k |n| ↑ ∞ · |n| ∈ L1(I) as k ↑ ∞,

Î (∞ · |n|) = limk→∞ Î (k |n|) = 0. Therefore ∞ · |n| is a null function and
hence so is n · f.

(3) Since 1{n6=0} ≤ ∞ · 1{n6=0} =∞ · |n| , Ī ¡1{n6=0}¢ ≤ Ī (∞ · |n|) = 0 showing
{n 6= 0} is a null set.

(4) Since 1Ef ∈ L1(I) and Î (1Ef) = 0,

f1Ec = (f − 1Ef)0 ∈ (f − 1Ef) ⊂ L1(I)

and Î(f1Ec) = Î(f)− Î(1Ef) = Î(f).
(5) Letting E be the null set {f 6= g} , then 1Ecf = 1Ecg ∈ L1(I) and 1Ef is a

null function and therefore, f = 1Ef + 1Ecf ∈ L1(I) and

Î(f) = Î(1Ef) + Î(f1Ec) = Î(1Ecf) = Î(1Ecg) = Î(g).

(6) By Proposition 14.10, |f | ∈ L1(I) and so by Chebyshev’s inequality (Item
2 of Proposition 14.6), {|f | =∞} is a null set.

Theorem 14.15 (Dominated Convergence Theorem). Suppose that {fn : n ∈ N} ⊂
L1(I) such that f := lim fn exists pointwise and there exists g ∈ L1(I) such that
|fn| ≤ g for all n. Then f ∈ L1(I) and

lim
n→∞ Î(fn) = Î( lim

n→∞ fn) = Î(f).
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Proof. By Proposition 14.14, the set E := {g =∞} is a null set and Î(1Ecfn) =

Î(fn) and Î(1Ecg) = Î(g). Since

Î(1Ec(g ± fn)) ≤ 2Î(1Ecg) = 2Î(g) <∞,

we may apply Fatou’s Lemma 14.12 to find 1Ec (g ± f) ∈ L1(I) and

Î(1Ec (g ± f)) ≤ lim inf
n→∞ Î(1Ec (g ± fn))

= lim inf
n→∞

n
Î(1Ecg)± Î(1Ecfn)

o
= lim inf

n→∞

n
Î(g)± Î(fn)

o
.

Since f = 1Ecf a.e. and 1Ecf = 1
21Ec (g + f − (g + f)) ∈ L1(I), Proposition 14.14

implies f ∈ L1(I). So the previous inequality may be written as

Î(g)± Î(f) = Î(1Ecg)± Î(1Ecf)

= Î(1Ec (g ± f)) ≤ Î(g) +

½
lim infn→∞ Î(fn)

− lim supn→∞ Î(fn),

wherein we have used lim infn→∞(−an) = − lim sup an. These two inequalities im-
ply lim supn→∞ Î(fn) ≤ Î(f) ≤ lim infn→∞ Î(fn) which shows that lim

n→∞ Î(fn)

exists and is equal to Î(f).

14.2. The Structure of L1(I). Let S↑↓ denote the collections of functions f :
X → R̄ for which there exists fn ∈ S↑ ∩ L1(I) such that fn ↓ f as n → ∞ and
limn→∞ Î(fn) > −∞. Applying the monotone convergence theorem to f1 − fn, it
follows that f1 − f ∈ L1(I) and hence −f ∈ L1(I) so that S↑↓ ⊂ L1(I).

Lemma 14.16. Let f : X → R̄ be a function. If Ī(f) ∈ R, then there exists g ∈ S↑↓
such that f ≤ g and Ī(f) = Î(g). (Consequently, n : X → [0, ,∞) is a positive null
function iff there exists g ∈ S↑↓ such that g ≥ n and Î(g) = 0.) Moreover, f ∈ L1(I)
iff there exists g ∈ S↑↓ such that g ≥ f and f = g a.e.

Proof. By definition of Ī(f) we may choose a sequence of functions gk ∈ S↑ ∩
L1(I) such that gk ≥ f and Î(gk) ↓ Ī(f). By replacing gk by g1∧· · ·∧gk if necessary
(g1∧· · ·∧gk ∈ S↑∩L1(I) by Proposition 14.3), we may assume that gk is a decreasing
sequence. Then limk→∞ gk =: g ≥ f and, since limk→∞ Î(gk) = Ī(f) > −∞,
g ∈ S↑↓. By the monotone convergence theorem applied to g1 − gk,

Î(g1 − g) = lim
k→∞

Î(g1 − gk) = Î(g1)− Ī(f),

so Î(g) = Ī(f).
Now suppose that f ∈ L1(I), then (g − f)0 ≥ 0 and

Î ((g − f)0) = Î (g)− Î(f) = Î(g)− Ī(f) = 0.

Therefore (g − f)0 is a null functions and hence so is ∞ · (g − f)0. Because

1{f 6=g} = 1{f<g} ≤ ∞ · (g − f)0,

{f 6= g} is a null set so if f ∈ L1(I) there exists g ∈ S↑↓ such that f = g a.e. The
converse statement has already been proved in Proposition 14.14.
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Proposition 14.17. Suppose that I and S are as above and J is another Daniell
integral on a vector lattice T such that S ⊂ T and I = J |S. (We abbreviate this by
writing I ⊂ J.) Then L1(I) ⊂ L1(J) and Î = Ĵ on L1(I), or in abbreviated form:
if I ⊂ J then Î ⊂ Ĵ .

Proof. From the construction of the extensions, it follows that S↑ ⊂ T↑ and the
I = J on S↑. Similarly, it follows that S↑↓ ⊂ T↑↓ and Î = Ĵ on S↑↓. From Lemma
14.16 we learn, if n ≥ 0 is an I — null function then there exists g ∈ S↑↓ ⊂ T↑↓ such
that n ≤ g and 0 = I(g) = J(g). This shows that n is also a J — null function and in
particular every I — null set is a J — null set. Again by Lemma 14.16, if f ∈ L1(I)
there exists g ∈ S↑↓ ⊂ T↑↓ such that {f 6= g} is an I — null set and hence a J — null
set. So by Proposition 14.14, f ∈ L1(J) and I(f) = I(g) = J(g) = J(f).

14.3. Relationship to Measure Theory.

Definition 14.18. A function f : X → [0,∞] is said to measurable if f ∧g ∈ L1(I)
for all g ∈ L1(I).

Lemma 14.19. The set of non-negative measurable functions is closed under pair-
wise minimums and maximums and pointwise limits.

Proof. Suppose that f, g : X → [0,∞] are measurable functions. The fact that
f ∧ g and f ∨ g are measurable (i.e. (f ∧ g) ∧ h and (f ∨ g) ∨ h are in L1(I) for all
h ∈ L1(I)) follows from the identities

(f ∧ g) ∧ h = f ∧ (g ∧ h) and (f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h)
and the fact that L1(I) is a lattice. If fn : X → [0,∞] is a sequence of measurable
functions such that f = limn→∞ fn exists pointwise, then for h ∈ L1(I), we have
h ∧ fn → h ∧ f . By the dominated convergence theorem (using |h ∧ fn| ≤ |h|)
it follows that h ∧ f ∈ L1(I). Since h ∈ L1(I) is arbitrary we conclude that f is
measurable as well.

Lemma 14.20. A non-negative function f on X is measurable iff φ ∧ f ∈ L1(I)
for all φ ∈ S.
Proof. Suppose f : X → [0,∞] is a function such that φ ∧ f ∈ L1(I) for all

φ ∈ S and let g ∈ S↑ ∩ L1(I). Choose φn ∈ S such that φn ↑ g as n → ∞, then
φn ∧ f ∈ L1(I) and by the monotone convergence Theorem 14.11, φn ∧ f ↑ g ∧ f ∈
L1(I). Similarly, using the dominated convergence Theorem 14.15, it follows that
g ∧ f ∈ L1(I) for all g ∈ S↑↓. Finally for any h ∈ L1(I), there exists g ∈ S↑↓ such
that h = g a.e. and hence h ∧ f = g ∧ f a.e. and therefore by Proposition 14.14,
h ∧ f ∈ L1(I). This completes the proof since the converse direction is trivial.

Definition 14.21. A set A ⊂ X is measurable if 1A is measurable and A inte-
grable if 1A ∈ L1(I). Let R denote the collection of measurable subsets of X.

Remark 14.22. Suppose that f ≥ 0, then f ∈ L1(I) iff f is measurable and Ī(f) <
∞. Indeed, if f is measurable and Ī(f) <∞, there exists g ∈ S↑ ∩ L1(I) such that
f ≤ g. Since f is measurable, f = f ∧ g ∈ L1(I). In particular if A ∈ R, then A is
integrable iff Ī(1A) <∞.

Lemma 14.23. The set R is a ring which is a σ — algebra if 1 is measurable.
(Notice that 1 is measurable iff 1 ∧ φ ∈ L1(I) for all φ ∈ S. This condition is
clearly implied by assuming 1 ∧ φ ∈ S for all φ ∈ S. This will be the typical case in
applications.)
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Proof. Suppose that A,B ∈ R, then A∩B and A∪B are in R by Lemma 14.19
because

1A∩B = 1A ∧ 1B and 1A∪B = 1A ∨ 1B.
If Ak ∈ R, then the identities,

1∪∞k=1Ak = lim
n→∞ 1∪

n
k=1Ak

and 1∩∞k=1Ak = lim
n→∞ 1∩

n
k=1Ak

along with Lemma 14.19 shows that ∪∞k=1Ak and ∩∞k=1Ak are in R as well. Also if
A,B ∈ R and g ∈ S, then
(14.7) g ∧ 1A\B = g ∧ 1A − g ∧ 1A∩B + g ∧ 0 ∈ L1(I)

showing the A \B ∈ R as well.34 Thus we have shown that R is a ring. If 1 = 1X
is measurable it follows that X ∈ R and R becomes a σ — algebra.

Lemma 14.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.

(1) If f ∈ £L1(I)¤+ then, for all α ∈ R, the set {f > α} is measurable. More-
over, if α > 0 then {f > α} is integrable and Î(1{f>α}) ≤ α−1Î(f).

(2) σ(S) ⊂ R.
Proof.
(1) If α < 0, {f > α} = X ∈ R since 1 is measurable. So now assume that

α ≥ 0. If α = 0 let g = f ∈ L1(I) and if α > 0 let g = α−1f − ¡α−1f¢ ∧ 1.
(Notice that g is a difference of two L1(I) — functions and hence in L1(I).)

The function g ∈ £L1(I)¤+ has been manufactured so that {g > 0} = {f >

α}. Now let φn := (ng)∧1 ∈
£
L1(I)

¤+
then φn ↑ 1{f>α} as n→∞ showing

1{f>α} is measurable and hence that {f > α} is measurable. Finally if
α > 0,

1{f>α} = 1{f>α} ∧
¡
α−1f

¢ ∈ L1(I)

showing the {f > α} is integrable and
Î(1{f>α}) = Î(1{f>α} ∧

¡
α−1f

¢
) ≤ Î(α−1f) = α−1Î(f).

(2) Since f ∈ S+ is R measurable by (1) and S = S+ − S+, it follows that any
f ∈ S is R measurable, σ(S) ⊂ R.

Lemma 14.25. Let 1 be measurable. Define µ± : R→ [0,∞] by
µ+(A) = Ī(1A) and µ−(A) = I(1A)

Then µ± are measures on R such that µ− ≤ µ+ and µ−(A) = µ+(A) whenever
µ+(A) <∞.

34Indeed, for x ∈ A ∩B, x ∈ A \B and x ∈ Ac, Eq. (14.7) evaluated at x states, respectively,
that

g ∧ 0 = g ∧ 1− g ∧ 1 + g ∧ 0,
g ∧ 1 = g ∧ 1− g ∧ 0 + g ∧ 0 and
g ∧ 0 = g ∧ 0− g ∧ 0 + g ∧ 0,

all of which are true.
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Notice by Remark 14.22 that

µ+(A) =

½
Î(1A) if A is integrable
∞ if A ∈ R but A is not integrable.

Proof. Since 1∅ = 0, µ±(∅) = Î(0) = 0 and if A,B ∈ R, A ⊂ B then µ+(A) =
Ī(1A) ≤ Ī(1B) = µ+(B) and similarly, µ−(A) = I(1A) ≤ I(1B) = µ−(B). Hence
µ± are monotonic. By Remark 14.22 if µ+(A) <∞ then A is integrable so

µ−(A) = I(1A) = Î(1A) = Ī(1A) = µ+(A).

Now suppose that {Ej}∞j=1 ⊂ R is a sequence of pairwise disjoint sets and let
E := ∪∞j=1Ej ∈ R. If µ+(Ei) = ∞ for some i then by monotonicity µ+(E) = ∞
as well. If µ+(Ej) < ∞ for all j then fn :=

Pn
j=1 1Ej ∈

£
L1(I)

¤+
with fn ↑ 1E .

Therefore, by the monotone convergence theorem, 1E is integrable iff

lim
n→∞ Î(fn) =

∞X
j=1

µ+(Ej) <∞

in which case 1E ∈ L1(I) and limn→∞ Î(fn) = Î(1E) = µ+(E). Thus we have
shown that µ+ is a measure and µ−(E) = µ+(E) whenever µ+(E) <∞. The fact
the µ− is a measure will be shown in the course of the proof of Theorem 14.28.

Example 14.26. Suppose X is a set, S = {0} is the trivial vector space and
I(0) = 0. Then clearly I is a Daniel integral,

Ī(g) =

½ ∞ if g(x) > 0 for some x
0 if g ≤ 0

and similarly,

I(g) =

½ −∞ if g(x) < 0 for some x
0 if g ≥ 0.

Therefore, L1(I) = {0} and for any A ⊂ X we have 1A∧0 = 0 ∈ S so that R = 2X .
Since 1A /∈ L1(I) = {0} unless A = ∅ set, the measure µ+ in Lemma 14.25 is given
by µ+(A) =∞ if A 6= ∅ and µ+(∅) = 0, i.e. µ+(A) = Ī(1A) while µ− ≡ 0.
Lemma 14.27. For A ∈ R, let

α(A) := sup{µ+(B) : B ∈ R, B ⊂ A and µ+(B) <∞},
then α is a measure on R such that α(A) = µ+(A) whenever µ+(A) < ∞. If ν
is any measure on R such that ν(B) = µ+(B) when µ+(B) < ∞, then α ≤ ν.
Moreover, α ≤ µ−.

Proof. Clearly α(A) = µ+(A) whenever µ+(A) < ∞. Now let A = ∪∞n=1An

with{An}∞n=1 ⊂ R being a collection of pairwise disjoint subsets. Let Bn ⊂ An

with µ+(Bn) <∞, then BN := ∪Nn=1Bn ⊂ A and µ+(B
N) <∞ and hence

α(A) ≥ µ+(B
N ) =

NX
n=1

µ+(Bn)

and since Bn ⊂ An with µ+(Bn) < ∞ is arbitrary it follows that α(A) ≥PN
n=1 α(An) and hence letting N → ∞ implies α(A) ≥ P∞n=1 α(An). Conversely,
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if B ⊂ A with µ+(B) <∞, then B ∩An ⊂ An and µ+(B ∩An) <∞. Therefore,

µ+(B) =
∞X
n=1

µ+(B ∩An) ≤
∞X
n=1

α(An)

for all such B and hence α(A) ≤P∞n=1 α(An).
Using the definition of α and the assumption that ν(B) = µ+(B) when µ+(B) <

∞,
α(A) = sup{ν(B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ ν(A),

showing α ≤ ν. Similarly,

α(A) = sup{Î(1B) : B ∈ R, B ⊂ A and µ+(B) <∞}
= sup{I(1B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ I(1A) = µ−(A).

Theorem 14.28 (Stone). Suppose that 1 is measurable and µ+ and µ− are as
defined in Lemma 14.25, then:

(1) L1(I) = L1(X,R, µ+) = L1(µ+) and for integrable f ∈ L1(µ+),

(14.8) Î(f) =

Z
X

fdµ+.

(2) If ν is any measure on R such that S ⊂ L1(ν) and

(14.9) Î(f) =

Z
X

fdν for all f ∈ S

then µ−(A) ≤ ν(A) ≤ µ+(A) for all A ∈ R with µ−(A) = ν(A) = µ+(A)
whenever µ+(A) <∞.

(3) Letting α be as defined in Lemma 14.27, µ− = α and hence µ− is a measure.
(So µ+ is the maximal and µ− is the minimal measure for which Eq. (14.9)
holds.)

(4) Conversely if ν is any measure on σ(S) such that ν(A) = µ+(A) when
A ∈ σ(S) and µ+(A) <∞, then Eq. (14.9) is valid.

Proof.
(1) Suppose that f ∈ £L1(I)¤+ , then Lemma 14.24 implies that f is R mea-

surable. Given n ∈ N, let

(14.10) φn :=
22nX
k=1

k

2n
1{ k

2n<f≤k+1
2n } = 2

−n
22nX
k=1

1{ k
2n<f}.

Then we know { k
2n < f} ∈ R and that 1{ k

2n<f} = 1{ k
2n<f}∧

¡
2n

k f
¢ ∈ L1(I),

i.e. µ+
¡
k
2n < f

¢
<∞. Therefore φn ∈

£
L1(I)

¤+
and φn ↑ f. Suppose that

ν is any measure such that ν(A) = µ+(A) when µ+(A) < ∞, then by the
monotone convergence theorems for Î and the Lebesgue integral,

Î(f) = lim
n→∞ Î(φn) = lim

n→∞ 2
−n

22nX
k=1

Î(1{ k
2n<f}) = lim

n→∞ 2
−n

22nX
k=1

µ+

µ
k

2n
< f

¶

= lim
n→∞ 2

−n
22nX
k=1

ν

µ
k

2n
< f

¶
= lim

n→∞

Z
X

φndν =

Z
X

fdν.(14.11)
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This shows that f ∈ £L1(ν)¤+ and that Î(f) =
R
X
fdν. Since every f ∈

L1(I) is of the form f = f+ − f− with f± ∈ £L1(I)¤+ , it follows that
L1(I) ⊂ L1(µ+) ⊂ L1(ν) ⊂ L1(α) and Eq. (14.9) holds for all f ∈ L1(I).

Conversely suppose that f ∈ £L1(µ+)¤+ . Define φn as in Eq. (14.10).
Chebyshev’s inequality implies that µ+( k2n < f) <∞ and hence { k

2n < f}
is I — integrable. Again by the monotone convergence for Lebesgue integrals
and the computations in Eq. (14.11),

∞ >

Z
X

fdµ+ = lim
n→∞ Î(φn)

and therefore by the monotone convergence theorem for Î , f ∈ L1(I) andZ
X

fdµ+ = lim
n→∞ Î(φn) = Î(f).

(2) Suppose that ν is any measure such that Eq. (14.9) holds. Then by the
monotone convergence theorem,

I(f) =

Z
X

fdν for all f ∈ S↑ ∪ S↓.

Let A ∈ R and assume that µ+(A) <∞, i.e. 1A ∈ L1(I). Then there exists
f ∈ S↑ ∩ L1(I) such that 1A ≤ f and integrating this inequality relative to
ν implies

ν(A) =

Z
X

1Adν ≤
Z
X

fdν = Î(f).

Taking the infinum of this equation over those f ∈ S↑ such that 1A ≤ f
implies ν(A) ≤ Ī(1A) = µ+(A). If µ+(A) = ∞ in this inequality holds
trivially.
Similarly, if A ∈ R and f ∈ S↓ such that 0 ≤ f ≤ 1A, then

ν(A) =

Z
X

1Adν ≥
Z
X

fdν = Î(f).

Taking the supremum of this equation over those f ∈ S↓ such that 0 ≤ f ≤
1A then implies ν(A) ≥ µ−(A). So we have shown that µ− ≤ ν ≤ µ+.

(3) By Lemma 14.27, ν = α is a measure as in (2) satisfying α ≤ µ− and
therefore µ− ≤ α and hence we have shown that α = µ−. This also shows
that µ− is a measure.

(4) This can be done by the same type of argument used in the proof of (1).

Proposition 14.29 (Uniqueness). Suppose that 1 is measurable and there exists a
function χ ∈ L1(I) such that χ(x) > 0 for all x. Then there is only one measure µ
on σ(S) such that

Î(f) =

Z
X

fdµ for all f ∈ S.

Remark 14.30. The existence of a function χ ∈ L1(I) such that χ(x) > 0 for all x is
equivalent to the existence of a function χ ∈ S↑ such that Î(χ) <∞ and χ(x) > 0
for all x ∈ X. Indeed by Lemma 14.16, if χ ∈ L1(I) there exists χ̃ ∈ S↑ ∩ L1(I)
such χ̃ ≥ χ.
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Proof. As in Remark 14.30, we may assume χ ∈ S↑ ∩ L1(I). The sets Xn :=

{χ > 1/n} ∈ σ(S) ⊂ R satisfy µ(Xn) ≤ nÎ(χ) < ∞. The proof is completed using
Theorem 14.28 to conclude, for any A ∈ σ(S), that

µ+(A) = lim
n→∞µ+(A ∩Xn) = lim

n→∞µ−(A ∩Xn) = µ−(A).

Since µ− ≤ µ ≤ µ+ = µ−, we see that µ = µ+ = µ−.
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15. Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

Definition 15.1. A signed measure ν on a measurable space (X,M) is a function
ν :M→ R such that

(1) Either ν(M) ⊂ (−∞,∞] or ν(M) ⊂ [−∞,∞).
(2) ν is countably additive, this is to say if E =

`∞
j=1Ej with Ej ∈M, then

ν(E) =
∞P
j=1

ν(Ej).
35

(3) ν(∅) = 0.
If there exists Xn ∈M such that |ν(Xn)| <∞ and X = ∪∞n=1Xn, then ν is said

to be σ — finite and if ν(M) ⊂ R then ν is said to be a finite signed measure.
Similarly, a countably additive set function ν :M→ C such that ν(∅) = 0 is called
a complex measure.

A finite signed measure is clearly a complex measure.

Example 15.2. Suppose that µ+ and µ− are two positive measures on M such
that either µ+(X) <∞ or µ−(X) <∞, then ν = µ+ − µ− is a signed measure. If
both µ+(X) and µ−(X) are finite then ν is a finite signed measure.

Example 15.3. Suppose that g : X → R is measurable and either
R
E
g+dµ orR

E
g−dµ <∞, then

(15.1) ν(A) =

Z
A

gdµ∀A ∈M

defines a signed measure. This is actually a special case of the last example with
µ±(A) ≡

R
A
g±dµ. Notice that the measure µ± in this example have the property

that they are concentrated on disjoint sets, namely µ+ “lives” on {g > 0} and µ−
“lives” on the set {g < 0} .
Example 15.4. Suppose that µ is a positive measure on (X,M) and g ∈ L1(µ),
then ν given as in Eq. (15.1) is a complex measure on (X,M). Also if

©
µr±, µi±

ª
is

any collection of four positive measures on (X,M), then

(15.2) ν := µr+ − µr− + i
¡
µi+ − µi−

¢
is a complex measure.

If ν is given as in Eq. 15.1, then ν may be written as in Eq. (15.2) with
dµr± = (Re g)± dµ and dµi± = (Im g)± dµ.

Definition 15.5. Let ν be a complex or signed measure on (X,M). A set E ∈M is
a null set or precisely a ν — null set if ν(A) = 0 for all A ∈M such that A ⊂ E, i.e.
ν|ME = 0. Recall thatME := {A ∩ E : A ∈M} = i−1E (M) is the “trace of M on
E.

35If ν(E) ∈ R then the series
∞P
j=1

ν(Ej) is absolutely convergent since it is independent of

rearrangements.
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15.1. Radon-Nikodym Theorem I. We will eventually show that every complex
and σ — finite signed measure ν may be described as in Eq. (15.1). The next theorem
is the first result in this direction.

Theorem 15.6. Suppose (X,M) is a measurable space, µ is a positive finite mea-
sure on M and ν is a complex measure on M such that |ν(A)| ≤ µ(A) for all
A ∈M. Then dν = ρdµ where |ρ| ≤ 1. Moreover if ν is a positive measure, then
0 ≤ ρ ≤ 1.
Proof. For a simple function, f ∈ S(X,M), let ν(f) :=

P
a∈C aν(f = a). Then

|ν(f)| ≤
X
a∈C

|a| |ν(f = a)| ≤
X
a∈C

|a|µ(f = a) =

Z
X

|f | dµ.

So, by the B.L.T. Theorem 4.1, ν extends to a continuous linear functional on L1(µ)
satisfying the bounds

|ν(f)| ≤
Z
X

|f | dµ ≤
p
µ(X) kfkL2(µ) for all f ∈ L1(µ).

The Riesz representation Theorem (Proposition 12.15) then implies there exists a
unique ρ ∈ L2(µ) such that

ν(f) =

Z
X

fρdµ for all f ∈ L2(µ).

Taking f = sgn(ρ)1A in this equation showsZ
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =

Z
A

1dµ

from which it follows that |ρ| ≤ 1, µ — a.e. If ν is a positive measure, then for real
f, 0 = Im [ν(f)] =

R
X
Im ρfdµ and taking f = Im ρ shows 0 =

R
X
[Im ρ]

2
dµ, i.e.

Im(ρ(x)) = 0 for µ — a.e. x and we have shown ρ is real a.e. Similarly,

0 ≤ ν(Re ρ < 0) =

Z
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.
Definition 15.7. Let µ and ν be two signed or complex measures on (X,M). Then
µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M such
that A is a ν — null set and Ac is a µ — null set. The measure ν is absolutely
continuous relative to µ (written as ν ¿ µ) provided ν(A) = 0 whenever A is a
µ — null set, i.e. all µ — null sets are ν — null sets as well.

Remark 15.8. If µ1, µ2 and ν are signed measures on (X,M) such that µ1 ⊥ ν and
µ2 ⊥ ν and µ1 + µ2 is well defined, then (µ1 + µ2) ⊥ ν. If {µi}∞i=1 is a sequence of
positive measures such that µi ⊥ ν for all i then µ =

P∞
i=1 µi ⊥ ν as well.

Proof. In both cases, choose Ai ∈M such that Ai is ν — null and Ac
i is µi-null

for all i. Then by Lemma 15.17, A := ∪iAi is still a ν —null set. Since

Ac = ∩iAc
i ⊂ Ac

m for all m

we see that Ac is a µi - null set for all i and is therefore a null set for µ =
P∞

i=1 µi.
This shows that µ ⊥ ν.
Throughout the remainder of this section µ will be always be a positive measure.



298 BRUCE K. DRIVER†

Definition 15.9 (Lebesgue Decomposition). Suppose that ν is a signed (complex)
measure and µ is a positive measure on (X,M). Two signed (complex) measures
νa and νs form a Lebesgue decomposition of ν relative to µ if

(1) If ν = νa + νs where implicit in this statement is the assertion that if ν
takes on the value ∞ (−∞) then νa and νs do not take on the value −∞
(∞).

(2) νa ¿ µ and νs ⊥ µ.

Lemma 15.10. Let ν is a signed (complex) measure and µ is a positive measure on
(X,M). If there exists a Lebesgue decomposition of ν relative to µ then it is unique.
Moreover, if ν is a positive measure and ν = νs+ νa is the Lebesgue decomposition
of ν relative to µ then:

(1) if ν is positive then νs and νa are positive.
(2) If ν is a σ — finite measure then so are νs and νa.

Proof. Since νs ⊥ µ, there exists A ∈ M such that µ(A) = 0 and Ac is νs —
null and because νa ¿ µ, A is also a null set for νa. So for C ∈M, νa(C ∩A) = 0
and νs (C ∩Ac) = 0 from which it follows that

ν(C) = ν(C ∩A) + ν(C ∩Ac) = νs(C ∩A) + νa(C ∩Ac)

and hence,

νs(C) = νs(C ∩A) = ν(C ∩A) and
νa(C) = νa(C ∩Ac) = ν(C ∩Ac).(15.3)

Item 1. is now obvious from Eq. (15.3). For Item 2., if ν is a σ — finite measure
then there exists Xn ∈M such that X = ∪∞n=1Xn and |ν(Xn)| <∞ for all n. Since
ν(Xn) = νa(Xn) + νs(Xn), we must have νa(Xn) ∈ R and νs(Xn) ∈ R showing νa
and νs are σ — finite as well.
For the uniqueness assertion, if we have another decomposition ν = ν̃a+ ν̃s with

ν̃s ⊥ µ̃ and ν̃a ¿ µ̃ we may choose Ã ∈M such that µ(Ã) = 0 and Ãc is ν̃s — null.
Letting B = A ∪ Ã we have

µ(B) ≤ µ(A) + µ(Ã) = 0

and Bc = Ac ∩ Ãc is both a νs and a ν̃s null set. Therefore by the same arguments
that proves Eqs. (15.3), for all C ∈M,

νs(C) = ν(C ∩B) = ν̃s(C) and

νa(C) = ν(C ∩Bc) = ν̃a(C).

Lemma 15.11. Suppose µ is a positive measure on (X,M) and f, g : X → R̄ are
extended integrable functions such that

(15.4)
Z
A

fdµ =

Z
A

gdµ for all A ∈M,R
X
f−dµ < ∞,

R
X
g−dµ < ∞, and the measures |f | dµ and |g| dµ are σ — finite.

Then f(x) = g(x) for µ — a.e. x.
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Proof. By assumption there exists Xn ∈M such that Xn ↑ X and
R
Xn
|f | dµ <

∞ and
R
Xn
|g| dµ <∞ for all n. Replacing A by A ∩Xn in Eq. (15.4) impliesZ

A

1Xn
fdµ =

Z
A∩Xn

fdµ =

Z
A∩Xn

gdµ =

Z
A

1Xn
gdµ

for all A ∈M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation implies
1Xn

f = 1Xn
g, µ — a.e. Letting n→∞ then shows that f = g, µ — a.e.

Remark 15.12. Suppose that f and g are two positive measurable functions on
(X,M, µ) such that Eq. (15.4) holds. It is not in general true that f = g, µ —
a.e. A trivial counter example is to takeM = P(X), µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (15.4) holds yet f 6= g.

Theorem 15.13 (Radon Nikodym Theorem for Positive Measures). Suppose that
µ, ν are σ — finite positive measures on (X,M). Then ν has a unique Lebesgue
decomposition ν = νa + νs relative to µ and there exists a unique (modulo sets of
µ — measure 0) function ρ : X → [0,∞) such that dνa = ρdµ. Moreover, νs = 0 iff
ν ¿ µ.

Proof. The uniqueness assertions follow directly from Lemmas 15.10 and 15.11.
Existence. (Von-Neumann’s Proof.) First suppose that µ and ν are finite

measures and let λ = µ+ ν. By Theorem 15.6, dν = hdλ with 0 ≤ h ≤ 1 and this
implies, for all non-negative measurable functions f, that

(15.5) ν(f) = λ(fh) = µ(fh) + ν(fh)

or equivalently

(15.6) ν(f(1− h)) = µ(fh).

Taking f = 1{h=1} and f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (15.6)
µ ({h = 1}) = 0 and ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg)

where ρ := 1{h<1} h
1−h and νs(g) := ν(g1{h=1}). This gives the desired decomposi-

tion36 since
ν(g) = ν(g1{h=1}) + ν(g1{h<1}) = νs(g) + µ(ρg)

and
νs (h 6= 1) = 0 while µ (h = 1) = µ({h 6= 1}c) = 0.

If ν ¿ µ, then µ (h = 1) = 0 implies ν (h = 1) = 0 and hence that νs = 0. If
νs = 0, then dν = ρdµ and so if µ(A) = 0, then ν(A) = µ(ρ1A) = 0 as well.

36Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is the Radon-
Nikodym decompostion and X = A

`
B such that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν —a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that
ρ(1− g) = ρ1B(1− g) = g µ− a.e..

This shows that ρ = g
1−g µ — a.e.
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For the σ — finite case, write X =
`∞

n=1Xn where Xn ∈M are chosen so that
µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let dµn = 1Xn

dµ and dνn = 1Xn
dν. Then

by what we have just proved there exists ρn ∈ L1(X,µn) and measure νsn such that
dνn = ρndµn + dνsn with νsn ⊥ µn, i.e. there exists An, Bn ∈MXn and µ(An) = 0
and νsn(Bn) = 0. Define νs :=

P∞
n=1 ν

s
n and ρ :=

P∞
n=1 1Xn

ρn, then

ν =
∞X
n=1

νn =
∞X
n=1

(ρnµn + νsn) =
∞X
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs

and letting A := ∪∞n=1An and B := ∪∞n=1Bn, we have A = Bc and

µ(A) =
∞X
n=1

µ(An) = 0 and ν(B) =
∞X
n=1

ν(Bn) = 0.

Theorem 15.14 (Dual of Lp — spaces). Let (X,M, µ) be a σ — finite measure
space and suppose that p, q ∈ [1,∞] are conjugate exponents. Then for p ∈ [1,∞),
the map g ∈ Lq → φg ∈ (Lp)∗ is an isometric isomorphism of Banach spaces.
(Recall that φg(f) :=

R
X

fgdµ.) We summarize this by writing (Lp)∗ = Lq for all
1 ≤ p <∞.

Proof. The only point that we have not yet proved is the surjectivity of the
map g ∈ Lq → φg ∈ (Lp)∗. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that µ(X) < ∞ in
which cased bounded functions are in Lp(µ) for all p. So let φ ∈ (Lp)∗ . We need
to find g ∈ Lq(µ) such that φ = φg. When p ∈ [1, 2], L2(µ) ⊂ Lp(µ) so that we
may restrict φ to L2(µ) and again the result follows fairly easily from the Riesz
Theorem, see Exercise 15.1 below.
To handle general p ∈ [1,∞), define ν(A) := φ(1A). If A =

`∞
n=1An with

An ∈M, then

k1A −
NX
n=1

1AnkLp = k1∪∞n=N+1An
kLp =

£
µ(∪∞n=N+1An)

¤ 1
p → 0 as N →∞.

Therefore

ν(A) = φ(1A) =
∞X
1

φ(1An) =
∞X
1

ν(An)

showing ν is a complex measure.37

For A ∈M, let |ν| (A) be the “total variation” of A defined by

|ν| (A) := sup {|φ(f1A)| : |f | ≤ 1}
and notice that

(15.7) |ν(A)| ≤ |ν| (A) ≤ kφk(Lp)∗ µ(A)1/p for all A ∈M.

You are asked to show in Exercise 15.2 that |ν| is a measure on (X,M). (This can
also be deduced from Lemma 15.31 and Proposition 15.35 below.) By Eq. (15.7)
|ν| ¿ µ, by Theorem 15.6 dν = hd |ν| for some |h| ≤ 1 and by Theorem 15.13

37It is at this point that the proof breaks down when p =∞.
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d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting g = ρh ∈ L1(µ), dν = gdµ or
equivalently

(15.8) φ(1A) =

Z
X

g1Adµ ∀ A ∈M.

By linearity this equation implies

(15.9) φ(f) =

Z
X

gfdµ

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (15.9) shows

φ(f1{|g|≤M}) =
Z
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By the
converse to Holder’s inequality, (Proposition 9.26) we learn that°°1{|g|≤M}g

°°
q
= sup
kfkp=1

¯̄
φ(f1{|g|≤M})

¯̄ ≤ sup
kfkp=1

kφk(Lp)∗
°°f1{|g|≤M}

°°
p
≤ kφk(Lp)∗ .

Using the monotone convergence theorem we may letM →∞ in the previous equa-
tion to learn kgkq ≤ kφk(Lp)∗ .With this result, Eq. (15.9) extends by continuity to
hold for all f ∈ Lp(µ) and hence we have shown that φ = φg.
Case 2. Now suppose that µ is σ — finite and Xn ∈M are sets such that µ(Xn) <

∞ and Xn ↑ X as n → ∞. We will identify f ∈ Lp(Xn, µ) with f1Xn
∈ Lp(X,µ)

and this way we may consider Lp(Xn, µ) as a subspace of Lp(X,µ) for all n and
p ∈ [1,∞].
By Case 1. there exists gn ∈ Lq(Xn, µ) such that

φ(f) =

Z
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and

kgnkq = sup
©|φ(f)| : f ∈ Lp(Xn, µ) and kfkLp(Xn,µ) = 1

ª ≤ kφk[Lp(µ)]∗ .
It is easy to see that gn = gm a.e. on Xn ∩Xm for all m,n so that g := limn→∞ gn
exists µ — a.e. By the above inequality and Fatou’s lemma, kgkq ≤ kφk[Lp(µ)]∗ <∞
and since φ(f) =

R
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n and ∪∞n=1Lp(Xn, µ) is dense
in Lp(X,µ) it follows by continuity that φ(f) =

R
X
gfdµ for all f ∈ Lp(X,µ),i.e.

φ = φg.

Example 15.15. Theorem 15.14 fails in general when p =∞. Consider X = [0, 1],
M = B, and µ = m. Then (L∞)∗ 6= L1.

Proof. Let M := C([0, 1])“ ⊂ ”L∞([0, 1], dm). It is easily seen for f ∈ M, that
kfk∞ = sup {|f(x)| : x ∈ [0, 1]} for all f ∈M. Therefore M is a closed subspace of
L∞. Define c(f) = f(0) for all f ∈ M. Then c ∈ M∗ with norm 1. Appealing to
the Hahn-Banach Theorem 18.16 below, there exists an extension L ∈ (L∞)∗ such
that L = c on M and kLk = 1. If L 6= φg for some g ∈ L1, i.e.

L(f) = φg(f) =

Z
[0,1]

fgdm for all f ∈ L∞,
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then replacing f by fn(x) = (1− nx) 1x≤n−1 and letting n→∞ implies, (using the
dominated convergence theorem)

1 = lim
n→∞L(fn) = lim

n→∞

Z
[0,1]

fngdm =

Z
{0}

gdm = 0.

From this contradiction, we conclude that L 6= φg for any g ∈ L1.

15.2. Signed Measures.

Definition 15.16. Let ν be a signed measure on (X,M) and E ∈M, then
(1) E is positive if for all A ∈M such that A ⊂ E, ν(A) ≥ 0, i.e. ν|ME ≥ 0.
(2) E is negative if for all A ∈M such that A ⊂ E, ν(A) ≤ 0, i.e. ν|ME ≤ 0.

Lemma 15.17. Suppose that ν is a signed measure on (X,M). Then
(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-

ative or null).
(3) Let us now further assume that ν(M) ⊂ [−∞,∞) and E ∈ M is a set

such that ν (E) ∈ (0,∞). Then there exists a positive set P ⊂ E such that
ν(P ) ≥ ν(E).

Proof. The first assertion is obvious. If Pj ∈ M are positive sets, let P =
∞S
n=1

Pn. By replacing Pn by the positive set Pn \
Ã
n−1S
j=1

Pj

!
we may assume that

the {Pn}∞n=1 are pairwise disjoint so that P =
∞̀

n=1
Pn. Now if E ⊂ P and E ∈M,

E =
∞̀

n=1
(E ∩ Pn) so ν(E) =

P∞
n=1 ν(E ∩ Pn) ≥ 0.which shows that P is positive.

The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of negative

measure from E. The set remaining from this procedure will be P.We now proceed
to the formal proof.
For all A ∈M let n(A) = 1 ∧ sup{−ν(B) : B ⊂ A}. Since ν(∅) = 0, n(A) ≥ 0

and n(A) = 0 iff A is positive. Choose A0 ⊂ E such that −ν(A0) ≥ 1
2n(E) and

set E1 = E \ A0, then choose A1 ⊂ E1 such that −ν(A1) ≥ 1
2n(E1) and set

E2 = E \ (A0 ∪A1) . Continue this procedure inductively, namely if A0, . . . , Ak−1

have been chosen let Ek = E \
³ k−1̀

i=0
Ai

´
and choose Ak ⊂ Ek such that −ν(Ak) ≥

1
2n(Ek). Let P := E \

∞̀

k=0

Ak =
∞T
k=0

Ek, then E = P ∪
∞̀

k=0

Ak and hence

(15.10) (0,∞) 3 v(E) = ν(P ) +
∞X
k=0

ν(Ak) = ν(P )−
∞X
k=0

−ν(Ak) ≤ ν(P ).

From Eq. (15.10) we learn that
P∞

k=0−ν(Ak) < ∞ and in particular that
limk→∞(−ν(Ak)) = 0. Since 0 ≤ 1

2n(Ek) ≤ −ν(Ak), this also implies
limk→∞ n(Ek) = 0. If A ⊂ P, then A ⊂ Ek for all k and so, for k large so
that n(Ek) < 1, we find −ν(A) ≤ n(Ek). Letting k → ∞ in this estimate shows
−ν(A) ≤ 0 or equivalently ν(A) ≥ 0. Since A ⊂ P was arbitrary, we conclude that
P is a positive set such that ν(P ) ≥ ν(E).
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15.2.1. Hahn Decomposition Theorem.

Definition 15.18. Suppose that ν is a signed measure on (X,M). A Hahn de-
composition for ν is a partition {P,N} of X such that P is positive and N is
negative.

Theorem 15.19 (Hahn Decomposition Theorem). Every signed measure space
(X,M, ν) has a Hahn decomposition, {P,N}. Moreover, if {P̃ , Ñ} is another Hahn
decomposition, then P∆P̃ = N∆Ñ is a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that ν(M) ⊂ [−∞,∞). If
not just consider −ν instead. Let us begin with the uniqueness assertion. Suppose
that A ∈M, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) ≤ ν(A ∩ P ) ≤ ν(P )

and similarly ν(A) ≤ ν(P̃ ) for all A ∈M. Therefore

ν(P ) ≤ ν(P ∪ P̃ ) ≤ ν(P̃ ) and ν(P̃ ) ≤ ν(P ∪ P̃ ) ≤ ν(P )

which shows that

s := ν(P̃ ) = ν(P ∪ P̃ ) = ν(P ).

Since

s = ν(P ∪ P̃ ) = ν(P ) + ν(P̃ )− ν(P ∩ P̃ ) = 2s− ν(P ∩ P̃ )
we see that ν(P ∩ P̃ ) = s and since

s = ν(P ∪ P̃ ) = ν(P ∩ P̃ ) + ν(P̃∆P )

it follows that ν(P̃∆P ) = 0. ThusN∆Ñ = P̃∆P is a positive set with zero measure,
i.e. N∆Ñ = P̃∆P is a null set and this proves the uniqueness assertion.
Let

s ≡ sup{ν(A) : A ∈M}
which is non-negative since ν(∅) = 0. If s = 0, we are done since P = ∅ and
N = X is the desired decomposition. So assume s > 0 and choose An ∈M such
that ν(An) > 0 and limn→∞ ν(An) = s. By Lemma 15.17here exists positive sets
Pn ⊂ An such that ν(Pn) ≥ ν(An). Then s ≥ ν(Pn) ≥ ν(An) → s as n → ∞
implies that s = limn→∞ ν(Pn). The set P ≡ ∪∞n=1Pn is a positive set being the
union of positive sets and since Pn ⊂ P for all n,

ν(P ) ≥ ν(Pn)→ s as n→∞.

This shows that ν(P ) ≥ s and hence by the definition of s, s = ν(P ) <∞.
We now claim that N = P c is a negative set and therefore, {P,N} is the desired

Hahn decomposition. If N were not negative, we could find E ⊂ N = P c such that
ν(E) > 0. We then would have

ν(P ∪E) = ν(P ) + ν(E) = s+ ν(E) > s

which contradicts the definition of s.
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15.2.2. Jordan Decomposition.

Definition 15.20. Let X = P ∪N be a Hahn decomposition of ν and define

ν+(E) = ν(P ∩E) and ν−(E) = −ν(N ∩E) ∀ E ∈M.

Suppose X = eP ∪ eN is another Hahn Decomposition and eν± are define as above
with P and N replaced by eP and eN respectively. Theneν+(E) = ν(E ∩ eP ) = ν(E ∩ eP ∩ P ) + ν((E ∩ eP ∩N) = ν(E ∩ eP ∩ P )
since N ∩ P̃ is both positive and negative and hence null. Similarly ν+(E) =

ν(E ∩ eP ∩ P ) showing that ν+ = eν+ and therefore also that ν− = eν−.
Theorem 15.21 (Jordan Decomposition). There exists unique positive measure
ν± such that ν+ ⊥ ν− and ν = ν+ − ν−.

Proof. Existence has been proved. For uniqueness suppose ν = ν+ − ν− is a
Jordan Decomposition. Since ν+ ⊥ ν− there exists P,N = P c ∈ M such that
ν+(N) = 0 and ν−(P ) = 0. Then clearly P is positive for ν and N is negative for
ν. Now ν(E ∩ P ) = ν+(E) and ν(E ∩ N) = ν−(E). The uniqueness now follows
from the remarks after Definition 15.20.

Definition 15.22. |ν|(E) = ν+(E) + ν−(E) is called the total variation of ν. A
signed measure is called σ — finite provided that |ν| := ν+ + ν− is a σ finite
measure.

(BRUCE: Use Exercise 15.7 to prove the uniqueness of the Jordan decomposi-
tions, or make an exercise.)

Lemma 15.23. Let ν be a signed measure on (X,M) and A ∈M. If ν(A) ∈ R
then ν(B) ∈ R for all B ⊂ A. Moreover, ν(A) ∈ R iff |ν| (A) <∞. In particular, ν
is σ finite iff |ν| is σ — finite. Furthermore if P,N ∈M is a Hahn decomposition
for ν and g = 1P − 1N , then dν = gd |ν| , i.e.

ν(A) =

Z
A

gd |ν| for all A ∈M.

Proof. Suppose that B ⊂ A and |ν(B)| =∞ then since ν(A) = ν(B)+ν(A\B)
we must have |ν(A)| =∞. Let P,N ∈M be a Hahn decomposition for ν, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) = |ν(A ∩ P )|− |ν(A ∩N)| and
|ν| (A) = ν(A ∩ P )− ν(A ∩N) = |ν(A ∩ P )|+ |ν(A ∩N)| .(15.11)

Therefore ν(A) ∈ R iff ν(A ∩ P ) ∈ R and ν(A ∩N) ∈ R iff |ν| (A) <∞. Finally,

ν(A) = ν(A ∩ P ) + ν(A ∩N)
= |ν|(A ∩ P )− |ν|(A ∩N)
=

Z
A

(1P − 1N )d|ν|

which shows that dν = gd |ν| .
Definition 15.24. Let ν be a signed measure on (X,M), let

L1(ν) := L1(ν+) ∩ L1(ν−) = L1(|ν|)
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and for f ∈ L1(ν) we defineZ
X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Lemma 15.25. Let µ be a positive measure on (X,M), g be an extended integrable
function on (X,M, µ) and dν = gdµ. Then L1(ν) = L1(|g| dµ) and for f ∈ L1(ν),Z

X

fdν =

Z
X

fgdµ.

Proof. We have already seen that dν+ = g+dµ, dν− = g−dµ, and d |ν| = |g| dµ
so that L1(ν) = L1(|ν|) = L1(|g| dµ) and for f ∈ L1(ν),Z

X

fdν =

Z
X

fdν+ −
Z
X

fdν− =
Z
X

fg+dµ−
Z
X

fg−dµ

=

Z
X

f (g+ − g−) dµ =
Z
X

fgdµ.

Lemma 15.26. Suppose that µ is a positive measure on (X,M) and g : X → R
is an extended integrable function. If ν is the signed measure dν = gdµ, then
dν± = g±dµ and d |ν| = |g| dµ. We also have

(15.12) |ν|(A) = sup{
Z
A

f dν : |f | ≤ 1} for all A ∈M.

Proof. The pair, P = {g > 0} and N = {g ≤ 0} = P c is a Hahn decomposition
for ν. Therefore

ν+(A) = ν(A ∩ P ) =
Z
A∩P

gdµ =

Z
A

1{g>0}gdµ =
Z
A

g+dµ,

ν−(A) = −ν(A ∩N) = −
Z
A∩N

gdµ = −
Z
A

1{g≤0}gdµ = −
Z
A

g−dµ.

and

|ν| (A) = ν+(A) + ν−(A) =
Z
A

g+dµ−
Z
A

g−dµ

=

Z
A

(g+ − g−) dµ =
Z
A

|g| dµ.

If A ∈M and |f | ≤ 1, then¯̄̄̄Z
A

f dν

¯̄̄̄
=

¯̄̄̄Z
A

f dν+ −
Z
A

f dν−
¯̄̄̄
≤
¯̄̄̄Z
A

f dν+

¯̄̄̄
+

¯̄̄̄Z
A

f dν−
¯̄̄̄

≤
Z
A

|f |dν+ +
Z
A

|f |dν− =
Z
A

|f | d|ν| ≤ |ν| (A).

For the reverse inequality, let f ≡ 1P − 1N thenZ
A

f dν = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν|(A).

Lemma 15.27. Suppose ν is a signed measure, µ is a positive measure and ν =
νa + νs is a Lebesgue decomposition of ν relative to µ, then |ν| = |νa|+ |νs| .
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Proof. Let A ∈ M be chosen so that A is a null set for νa and Ac is a null
set for νs. Let A = P 0

`
N 0 be a Hahn decomposition of νs|MA

and Ac = P̃
`

Ñ

be a Hahn decomposition of νa|MAc
. Let P = P 0 ∪ P̃ and N = N 0 ∪ Ñ . Since for

C ∈M,

ν(C ∩ P ) = ν(C ∩ P 0) + ν(C ∩ P̃ )
= νs(C ∩ P 0) + νa(C ∩ P̃ ) ≥ 0

and

ν(C ∩N) = ν(C ∩N 0) + ν(C ∩ Ñ)
= νs(C ∩N 0) + νa(C ∩ Ñ) ≤ 0

we see that {P,N} is a Hahn decomposition for ν. It also easy to see that {P,N}
is a Hahn decomposition for both νs and νa as well. Therefore,

|ν| (C) = ν(C ∩ P )− ν(C ∩N)
= νs(C ∩ P )− νs(C ∩N) + νa(C ∩ P )− νa(C ∩N)
= |νs| (C) + |νa| (C).

Lemma 15.28. 1) Let ν be a signed measure and µ be a positive measure on
(X,M) such that ν ¿ µ and ν ⊥ µ, then ν ≡ 0. 2) Suppose that ν =

P∞
i=1 νi

where νi are positive measures on (X,M) such that νi ¿ µ, then ν ¿ µ. Also if ν1
and ν2 are two signed measure such that νi ¿ µ for i = 1, 2 and ν = ν1+ ν2 is well
defined, then ν ¿ µ.

Proof. (1) Because ν ⊥ µ, there exists A ∈M such that A is a ν — null set and
B = Ac is a µ - null set. Since B is µ — null and ν ¿ µ, B is also ν — null. This
shows by Lemma 15.17 that X = A ∪B is also ν — null, i.e. ν is the zero measure.
The proof of (2) is easy and is left to the reader.

Theorem 15.29 (Radon Nikodym Theorem for Signed Measures). Let ν be a σ —
finite signed measure and µ be a σ — finite positive measure on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa+νs relative to µ and there exists a unique
(modulo sets of µ — measure 0) extended integrable function ρ : X → R such that
dνa = ρdµ. Moreover, νs = 0 iff ν ¿ µ, i.e. dν = ρdµ iff ν ¿ µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.
Existence. Let ν = ν+−ν− be the Jordan decomposition of ν. Assume, without

loss of generality, that ν+(X) < ∞, i.e. ν(A) < ∞ for all A ∈M. By the Radon
Nikodym Theorem 15.13 for positive measures there exist functions f± : X → [0,∞)
and measures λ± such that ν± = µf± + λ± with λ± ⊥ µ. Since

∞ > ν+(X) = µf+(X) + λ+(X),

f+ ∈ L1(µ) and λ+(X) <∞ so that f = f+−f− is an extended integrable function,
dνa := fdµ and νs = λ+−λ− are signed measures. This finishes the existence proof
since

ν = ν+ − ν− = µf+ + λ+ −
¡
µf− + λ−

¢
= νa + νs

and νs = (λ+ − λ−) ⊥ µ by Remark 15.8.
For the final statement, if νs = 0, then dν = ρdµ and hence ν ¿ µ. Conversely

if ν ¿ µ, then dνs = dν − ρdµ¿ µ, so by Lemma 15.17, νs = 0. Alternatively just
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use the uniqueness of the Lebesgue decomposition to conclude νa = ν and νs = 0.
Or more directly, choose B ∈ M such that µ(Bc) = 0 and B is a νs — null set.
Since ν ¿ µ, Bc is also a ν — null set so that, for A ∈M,

ν(A) = ν(A ∩B) = νa(A ∩B) + νs(A ∩B) = νa(A ∩B).

Notation 15.30. The function f is called the Radon-Nikodym derivative of ν
relative to µ and we will denote this function by dν

dµ .

15.3. Complex Measures II. Suppose that ν is a complex measure on (X,M),
let νr := Re ν, νi := Im ν and µ := |νr| + |νi|. Then µ is a finite positive measure
onM such that νr ¿ µ and νi ¿ µ. By the Radon-Nikodym Theorem 15.29, there
exists real functions h, k ∈ L1(µ) such that dνr = h dµ and dνi = k dµ. So letting
g := h+ ik ∈ L1(µ),

dν = (h+ ik)dµ = gdµ

showing every complex measure may be written as in Eq. (15.1).

Lemma 15.31. Suppose that ν is a complex measure on (X,M), and for i = 1, 2
let µi be a finite positive measure on (X,M) such that dν = gidµi with gi ∈ L1(µi).
Then Z

A

|g1| dµ1 =
Z
A

|g2| dµ2 for all A ∈M.

In particular, we may define a positive measure |ν| on (X,M) by

|ν| (A) =
Z
A

|g1| dµ1 for all A ∈M.

The finite positive measure |ν| is called the total variation measure of ν.
Proof. Let λ = µ1 + µ2 so that µi ¿ λ. Let ρi = dµi/dλ ≥ 0 and hi = ρigi.

Since

ν(A) =

Z
A

gidµi =

Z
A

giρidλ =

Z
A

hidλ for all A ∈M,

h1 = h2, λ —a.e. ThereforeZ
A

|g1| dµ1 =
Z
A

|g1| ρ1dλ =
Z
A

|h1| dλ =
Z
A

|h2| dλ =
Z
A

|g2| ρ2dλ =
Z
A

|g2| dµ2.

Definition 15.32. Given a complex measure ν, let νr = Re ν and νi = Im ν so
that νr and νi are finite signed measures such that

ν(A) = νr(A) + iνi(A) for all A ∈M.

Let L1(ν) := L1(νr) ∩ L1(νi) and for f ∈ L1(ν) defineZ
X

fdν :=

Z
X

fdνr + i

Z
X

fdνi.

Example 15.33. Suppose that µ is a positive measure on (X,M), g ∈ L1(µ) and
ν(A) =

R
A
gdµ as in Example 15.4, then L1(ν) = L1(|g| dµ) and for f ∈ L1(ν)

(15.13)
Z
X

fdν =

Z
X

fgdµ.
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To check Eq. (15.13), notice that dνr = Re g dµ and dνi = Im g dµ so that
(using Lemma 15.25)

L1(ν) = L1(Re gdµ) ∩ L1(Im gdµ) = L1(|Re g| dµ) ∩ L1(|Im g| dµ) = L1(|g| dµ).
If f ∈ L1(ν), thenZ

X

fdν :=

Z
X

f Re gdµ+ i

Z
X

f Im gdµ =

Z
X

fgdµ.

Remark 15.34. Suppose that ν is a complex measure on (X,M) such that dν = gdµ
and as above d |ν| = |g| dµ. Letting

ρ = sgn(ρ) :=

½ g
|g| if |g| 6= 0
1 if |g| = 0

we see that
dν = gdµ = ρ |g| dµ = ρd |ν|

and |ρ| = 1 and ρ is uniquely defined modulo |ν| — null sets. We will denote ρ by
dν/d |ν| . With this notation, it follows from Example 15.33 that L1(ν) := L1 (|ν|)
and for f ∈ L1(ν), Z

X

fdν =

Z
X

f
dν

d |ν|d |ν| .

Proposition 15.35 (Total Variation). Suppose A ⊂ P(X) is an algebra, M =
σ(A), ν is a complex (or a signed measure which is σ — finite on A) on (X,M)
and for E ∈M let

µ0(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ AE 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ1(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ2(E) = sup

( ∞X
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi

)

µ3(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f is measurable with |f | ≤ 1

¾
µ4(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f ∈ Sf (A, |ν|) with |f | ≤ 1

¾
.

then µ0 = µ1 = µ2 = µ3 = µ4 = |ν| .
Proof. Let ρ = dν/d |ν| and recall that |ρ| = 1, |ν| — a.e. We will start by

showing |ν| = µ3 = µ4. If f is measurable with |f | ≤ 1 then¯̄̄̄Z
E

f dν

¯̄̄̄
=

¯̄̄̄Z
E

f ρd |ν|
¯̄̄̄
≤
Z
E

|f | d|ν| ≤
Z
E

1d|ν| = |ν|(E)

from which we conclude that µ4 ≤ µ3 ≤ |ν|. Taking f = ρ̄ above shows¯̄̄̄Z
E

f dν

¯̄̄̄
=

Z
E

ρ̄ ρ d|ν| =
Z
E

1 d|ν| = |ν| (E)

which shows that |ν| ≤ µ3 and hence |ν| = µ3. To show |ν| = µ4 as well let Xm ∈ A
be chosen so that |ν| (Xm) < ∞ and Xm ↑ X as m → ∞. By Theorem 11.3 of
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Corollary 13.27, there exists ρn ∈ Sf (A, µ) such that ρn → ρ1Xm
in L1(|ν|) and

each ρn may be written in the form

(15.14) ρn =
NX
k=1

zk1Ak

where zk ∈ C and Ak ∈ A and Ak ∩ Aj = ∅ if k 6= j. I claim that we may assume
that |zk| ≤ 1 in Eq. (15.14) for if |zk| > 1 and x ∈ Ak,

|ρ(x)− zk| ≥
¯̄̄
ρ(x)− |zk|−1 zk

¯̄̄
.

This is evident from Figure 31 and formally follows from the fact that

d

dt

¯̄̄
ρ(x)− t |zk|−1 zk

¯̄̄2
= 2

h
t− Re(|zk|−1 zkρ(x))

i
≥ 0

when t ≥ 1.

Figure 31. Sliding points to the unit circle.

Therefore if we define

wk :=

½ |zk|−1 zk if |zk| > 1
zk if |zk| ≤ 1

and ρ̃n =
NP
k=1

wk1Ak then

|ρ(x)− ρn(x)| ≥ |ρ(x)− ρ̃n(x)|
and therefore ρ̃n → ρ1Xm in L

1(|ν|). So we now assume that ρn is as in Eq. (15.14)
with |zk| ≤ 1.
Now¯̄̄̄Z
E

ρ̄ndν −
Z
E

ρ̄1Xmdν

¯̄̄̄
≤
¯̄̄̄Z
E

(ρ̄ndν − ρ̄1Xm) ρd |ν|
¯̄̄̄
≤
Z
E

|ρ̄n − ρ̄1Xm | d |ν|→ 0 as n→∞

and hence

µ4(E) ≥
¯̄̄̄Z
E

ρ̄1Xmdν

¯̄̄̄
= |ν| (E ∩Xm) for all m.

Letting m ↑ ∞ in this equation shows µ4 ≥ |ν| .
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We will now show µ0 = µ1 = µ2 = |ν| . Clearly µ0 ≤ µ1 ≤ µ2. Suppose Ej ∈ME

such that Ei ∩Ej = δijEi, thenX
|ν(Ej)| =

X
|
Z
Ej

ρd |ν| ≤
X

|ν|(Ej) = |ν|(∪Ej) ≤ |ν| (E)

which shows that µ2 ≤ |ν| = µ4. So it suffices to show µ4 ≤ µ0. But if f ∈ Sf (A, |ν|)
with |f | ≤ 1, then f may be expressed as f =

PN
k=1 zk1Ak with |zk| ≤ 1 and

Ak ∩Aj = δijAk. Therefore,¯̄̄̄Z
E

fdν

¯̄̄̄
=

¯̄̄̄
¯
NX
k=1

zkν(Ak ∩E)
¯̄̄̄
¯ ≤

NX
k=1

|zk| |ν(Ak ∩E)| ≤
NX
k=1

|ν(Ak ∩E)| ≤ µ0(A).

Since this equation holds for all f ∈ Sf (A, |ν|) with |f | ≤ 1, µ4 ≤ µ0 as claimed.

Theorem 15.36 (Radon Nikodym Theorem for Complex Measures). Let ν be a
complex measure and µ be a σ — finite positive measure on (X,M). Then ν has a
unique Lebesgue decomposition ν = νa + νs relative to µ and there exists a unique
element ρ ∈ L1(µ) such that such that dνa = ρdµ. Moreover, νs = 0 iff ν ¿ µ, i.e.
dν = ρdµ iff ν ¿ µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.
Existence. Let g : X → S1 ⊂ C be a function such that dν = gd |ν| . By

Theorem 15.13, there exists h ∈ L1(µ) and a positive measure |ν|s such that |ν|s ⊥ µ
and d |ν| = hdµ+ d |ν|s . Hence we have dν = ρdµ+ dνs with ρ := gh ∈ L1(µ) and
dνs := gd |ν|s . This finishes the proof since, as is easily verified, νs ⊥ µ.

15.4. Absolute Continuity on an Algebra. The following results will be useful
in Section 16.4 below.

Lemma 15.37. Let ν be a complex or a signed measure on (X,M). Then A ∈M
is a ν — null set iff |ν| (A) = 0. In particular if µ is a positive measure on (X,M),
ν ¿ µ iff |ν| ¿ µ.

Proof. In all cases we have |ν(A)| ≤ |ν| (A) for all A ∈M which clearly shows
that |ν| (A) = 0 implies A is a ν — null set. Conversely if A is a ν — null set, then,
by definition, ν|MA ≡ 0 so by Proposition 15.35

|ν| (A) = sup
( ∞X

1

|ν(Ej)| : Ej ∈MA 3 Ei ∩Ej = δijEi

)
= 0.

since Ej ⊂ A implies µ(Ej) = 0 and hence ν(Ej) = 0.
Alternate Proofs that A is ν — null implies |ν| (A) = 0.
1) Suppose ν is a signed measure and {P,N = P c} ⊂M is a Hahn decomposition

for ν. Then
|ν| (A) = ν(A ∩ P )− ν(A ∩N) = 0.

Now suppose that ν is a complex measure. Then A is a null set for both νr := Re ν
and νi := Im ν. Therefore |ν| (A) ≤ |νr| (A) + |νi| (A) = 0.
2) Here is another proof in the complex case. Let ρ = dν

d|ν| , then by assumption
of A being ν — null,

0 = ν(B) =

Z
B

ρd |ν| for all B ∈MA.
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This shows that ρ1A = 0, |ν| — a.e. and hence
|ν| (A) =

Z
A

|ρ| d |ν| =
Z
X

1A |ρ| d |ν| = 0.

Theorem 15.38 (� — δ Definition of Absolute Continuity). Let ν be a complex
measure and µ be a positive measure on (X,M). Then ν ¿ µ iff for all � > 0 there
exists a δ > 0 such that |ν(A)| < � whenever A ∈M and µ(A) < δ.

Proof. (⇐=) If µ(A) = 0 then |ν(A)| < � for all � > 0 which shows that
ν(A) = 0, i.e. ν ¿ µ.
(=⇒) Since ν ¿ µ iff |ν| ¿ µ and |ν(A)| ≤ |ν|(A) for all A ∈M, it suffices to

assume ν ≥ 0 with ν(X) < ∞. Suppose for the sake of contradiction there exists
� > 0 and An ∈M such that ν(An) ≥ � > 0 while µ(An) ≤ 1

2n . Let

A = {An i.o.} =
∞\

N=1

[
n≥N

An

so that

µ(A) = lim
N→∞

µ (∪n≥NAn) ≤ lim
N→∞

∞X
n=N

µ(An) ≤ lim
N→∞

2−(N−1) = 0.

On the other hand,

ν(A) = lim
N→∞

ν (∪n≥NAn) ≥ lim
n→∞ inf ν(An) ≥ � > 0

showing that ν is not absolutely continuous relative to µ.

Corollary 15.39. Let µ be a positive measure on (X,M) and f ∈ L1(dµ). Then

for all � > 0 there exists δ > 0 such that

¯̄̄̄R
A

f dµ

¯̄̄̄
< � for all A ∈ M such that

µ(A) < δ.

Proof. Apply theorem 15.38 to the signed measure ν(A) =
R
A

f dµ for all A ∈M.

Theorem 15.40 (Absolute Continuity on an Algebra). Let ν be a complex measure
and µ be a positive measure on (X,M). Suppose that A ⊂M is an algebra such
that σ(A) =M and that µ is σ — finite on A. Then ν ¿ µ iff for all � > 0 there
exists a δ > 0 such that |ν(A)| < � for all A ∈ A with µ(A) < δ.

Proof. (=⇒) This implication is a consequence of Theorem 15.38.
(⇐=) Let us begin by showing the hypothesis |ν(A)| < � for all A ∈ A with

µ(A) < δ implies |ν| (A) ≤ 4� for all A ∈ A with µ(A) < δ. To prove this decompose
ν into its real and imaginary parts; ν = νr + iνi.and suppose that A =

`n
j=1Aj

with Aj ∈ A. Then
nX
j=1

|νr(Aj)| =
X

j:νr(Aj)≥0
νr(Aj)−

X
j:νr(Aj)≤0

νr(Aj)

= νr(∪j:νr(Aj)≥0Aj)− νr(∪j:νr(Aj)≤0Aj)

≤ ¯̄ν(∪j:νr(Aj)≥0Aj)
¯̄
+
¯̄
ν(∪j:νr(Aj)≤0Aj)

¯̄
< 2�
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using the hypothesis and the fact µ
¡∪j:νr(Aj)≥0Aj

¢ ≤ µ(A) < δ and µ
¡∪j:νr(Aj)≤0Aj

¢ ≤
µ(A) < δ. Similarly,

Pn
j=1 |νi(Aj)| < 2� and therefore

nX
j=1

|ν(Aj)| ≤
nX
j=1

|νr(Aj)|+
nX
j=1

|νi(Aj)| < 4�.

Using Proposition 15.35, it follows that

|ν| (A) = sup


nX
j=1

|ν(Aj)| : A =
na
j=1

Aj with Aj ∈ A and n ∈ N
 ≤ 4�.

Because of this argument, we may now replace ν by |ν| and hence we may assume
that ν is a positive finite measure.
Let � > 0 and δ > 0 be such that ν(A) < � for all A ∈ A with µ(A) < δ. Suppose

that B ∈M with µ(B) < δ. Use the regularity Theorem 8.40 or Corollary 13.27 to
find A ∈ Aσ such that B ⊂ A and µ(B) ≤ µ(A) < δ.Write A = ∪nAn with An ∈ A.
By replacing An by ∪nj=1Aj if necessary we may assume that An is increasing in
n. Then µ(An) ≤ µ(A) < δ for each n and hence by assumption ν(An) < �. Since
B ⊂ A = ∪nAn it follows that ν(B) ≤ ν(A) = limn→∞ ν(An) ≤ �. Thus we have
shown that ν(B) ≤ � for all B ∈M such that µ(B) < δ.

15.5. Dual Spaces and the Complex Riesz Theorem.

Proposition 15.41. Let S be a vector lattice of bounded real functions on a set
X. We equip S with the sup-norm topology and suppose I ∈ S∗. Then there exists
I± ∈ S∗ which are positive such that then I = I+ − I−.

Proof. For f ∈ S+, let
I+(f) := sup

©
I(g) : g ∈ S+ and g ≤ f

ª
.

One easily sees that |I+(f)| ≤ kIk kfk for all f ∈ S+ and I+(cf) = cI+(f) for all
f ∈ S+ and c > 0. Let f1, f2 ∈ S+. Then for any gi ∈ S+ such that gi ≤ fi, we have
S+ 3 g1 + g2 ≤ f1 + f2 and hence

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2).

Therefore,

(15.15) I+(f1) + I+(f2) = sup{I(g1) + I(g2) : S+ 3 gi ≤ fi} ≤ I+(f1 + f2).

For the opposite inequality, suppose g ∈ S+ and g ≤ f1 + f2. Let g1 = f1 ∧ g, then

0 ≤ g2 := g − g1 = g − f1 ∧ g =
½

0 if g ≤ f1
g − f1 if g ≥ f1

≤
½

0 if g ≤ f1
f1 + f2 − f1 if g ≥ f1

≤ f2.

Since g = g1 + g2 with S+ 3 gi ≤ fi,

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2)

and since S+ 3 g ≤ f1 + f2 was arbitrary, we may conclude

(15.16) I+(f1 + f2) ≤ I+(f1) + I+(f2).

Combining Eqs. (15.15) and (15.16) shows that

(15.17) I+(f1 + f2) = I+(f1) + I+(f2) for all fi ∈ S+.
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We now extend I+ to S by defining, for f ∈ S,
I+(f) = I+(f+)− I+(f−)

where f+ = f ∨ 0 and f− = − (f ∧ 0) = (−f) ∨ 0. (Notice that f = f+ − f−.) We
will now shows that I+ is linear.
If c ≥ 0, we may use (cf)± = cf± to conclude that

I+(cf) = I+(cf+)− I+(cf−) = cI+(f+)− cI+(f−) = cI+(f).

Similarly, using (−f)± = f∓ it follows that I+(−f) = I+(f−)− I+(f+) = −I+(f).
Therefore we have shown

I+(cf) = cI+(f) for all c ∈ R and f ∈ S.
If f = u− v with u, v ∈ S+ then

v + f+ = u+ f− ∈ S+
and so by Eq. (15.17), I+(v) + I+(f+) = I+(u) + I+(f−) or equivalently

(15.18) I+(f) = I+(f+)− I+(f−) = I+(u)− I+(v).

Now if f, g ∈ S, then
I+(f + g) = I+(f+ + g+ − (f− + g−))

= I+(f+ + g+)− I+(f− + g−)

= I+(f+) + I+(g+)− I+(f−)− I+(g−)

= I+(f) + I+(g),

wherein the second equality we used Eq. (15.18).
The last two paragraphs show I+ : S→ R is linear. Moreover,

|I+(f)| = |I+(f+)− I+(f−)| ≤ max (|I+(f+)| , |I+(f−)|)
≤ kIkmax (kf+k , kf−k) = kIk kfk

which shows that kI+k ≤ kIk . That is I+ is a bounded positive linear functional
on S. Let I− = I+− I ∈ S∗. Then by definition of I+(f), I−(f) = I+(f)− I(f) ≥ 0
for all S 3 f ≥ 0. Therefore I = I+ − I− with I± being positive linear functionals
on S.

Corollary 15.42. Suppose X is a second countable locally compact Hausdorff space
and I ∈ C0(X,R)∗, then there exists µ = µ+−µ− where µ is a finite signed measure
on BR such that I(f) =

R
R fdµ for all f ∈ C0(X,R). Similarly if I ∈ C0(X,C)∗

there exists a complex measure µ such that I(f) =
R
R fdµ for all f ∈ C0(X,C).

TODO Add in the isometry statement here.

Proof. Let I = I+ − I− be the decomposition given as above. Then we know
there exists finite measure µ± such that

I±(f) =
Z
X

fdµ± for all f ∈ C0(X,R).

and therefore I(f) =
R
X
fdµ for all f ∈ C0(X,R) where µ = µ+−µ−.Moreover the

measure µ is unique. Indeed if I(f) =
R
X
fdµ for some finite signed measure µ, then

the next result shows that I±(f) =
R
X
fdµ± where µ± is the Hahn decomposition

of µ. Now the measures µ± are uniquely determined by I±. The complex case is a
consequence of applying the real case just proved to Re I and Im I.
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Proposition 15.43. Suppose that µ is a signed Radon measure and I = Iµ. Let µ+
and µ− be the Radon measures associated to I±, then µ = µ+ − µ− is the Jordan
decomposition of µ.

Proof. Let X = P ∪P c where P is a positive set for µ and P c is a negative set.
Then for A ∈ BX ,
(15.19) µ(P ∩A) = µ+(P ∩A)− µ−(P ∩A) ≤ µ+(P ∩A) ≤ µ+(A).

To finish the proof we need only prove the reverse inequality. To this end let � > 0
and choose K @@ P ∩A ⊂ U ⊂o X such that |µ| (U \K) < �. Let f, g ∈ Cc(U, [0, 1])
with f ≤ g, then

I(f) = µ(f) = µ(f : K) + µ(f : U \K) ≤ µ(g : K) +O(�)

≤ µ(K) +O(�) ≤ µ(P ∩A) +O(�).

Taking the supremum over all such f ≤ g, we learn that I+(g) ≤ µ(P ∩A) +O(�)
and then taking the supremum over all such g shows that

µ+(U) ≤ µ(P ∩A) +O(�).

Taking the infimum over all U ⊂o X such that P ∩A ⊂ U shows that

(15.20) µ+(P ∩A) ≤ µ(P ∩A) +O(�)

From Eqs. (15.19) and (15.20) it follows that µ(P ∩A) = µ+(P ∩A). Since
I−(f) = sup

0≤g≤f
I(g)− I(f) = sup

0≤g≤f
I(g − f) = sup

0≤g≤f
−I(f − g) = sup

0≤h≤f
−I(h)

the same argument applied to −I shows that
−µ(P c ∩A) = µ−(P c ∩A).

Since

µ(A) = µ(P ∩A) + µ(P c ∩A) = µ+(P ∩A)− µ−(P c ∩A) and
µ(A) = µ+(A)− µ−(A)

it follows that
µ+(A \ P ) = µ−(A \ P c) = µ−(A ∩ P ).

Taking A = P then shows that µ−(P ) = 0 and taking A = P c shows that µ+(P c) =
0 and hence

µ(P ∩A) = µ+(P ∩A) = µ+(A) and

−µ(P c ∩A) = µ−(P c ∩A) = µ−(A)

as was to be proved.

15.6. Exercises.

Exercise 15.1. Prove Theorem 15.14 for p ∈ [1, 2] by directly applying the Riesz
theorem to φ|L2(µ).
Exercise 15.2. Show |ν| be defined as in Eq. (15.7) is a positive measure. Here is
an outline.

(1) Show

(15.21) |ν| (A) + |ν| (B) ≤ |ν| (A ∪B).
when A,B are disjoint sets inM.
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(2) If A =
`∞

n=1An with An ∈M then

(15.22) |ν| (A) ≤
∞X
n=1

|ν| (An).

(3) From Eqs. (15.21) and (15.22) it follows that ν is finitely additive, and
hence

|ν| (A) =
NX
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
NX
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥ P∞
n=1 |ν| (An) which

combined with Eq. (15.22) shows |ν| is countable additive.
Exercise 15.3. Suppose µi, νi are σ — finite positive measures on measurable
spaces, (Xi,Mi), for i = 1, 2. If νi ¿ µi for i = 1, 2 then ν1 ⊗ ν2 ¿ µ1 ⊗ µ2
and in fact

d(ν1 ⊗ ν2)

d(µ1 ⊗ µ2)
(x1, x2) = ρ1 ⊗ ρ2(x1, x2) := ρ1(x1)ρ2(x2)

where ρi := dνi/dµi for i = 1, 2.

Exercise 15.4. Folland 3.13 on p. 92.

Exercise 15.5. Let ν be a σ — finite signed measure, f ∈ L1(|ν|) and defineZ
X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Suppose that µ is a σ — finite measure and ν ¿ µ. Show

(15.23)
Z
X

fdν =

Z
X

f
dν

dµ
dµ.

Exercise 15.6. Suppose that ν is a signed or complex measure on (X,M) and
An ∈ M such that either An ↑ A or An ↓ A and ν(A1) ∈ R, then show ν(A) =
limn→∞ ν(An).

Exercise 15.7. Suppose that µ and λ are positive measures and µ(X) < ∞. Let
ν := λ− µ, then show λ ≥ ν+ and µ ≥ ν−.

Exercise 15.8. Folland Exercise 3.5 on p. 88 showing |ν1 + ν2| ≤ |ν1|+ |ν2| .
Exercise 15.9. Folland Exercise 3.7a on p. 88.

Exercise 15.10. Show Theorem 15.38 may fail if ν is not finite. (For a hint, see
problem 3.10 on p. 92 of Folland.)

Exercise 15.11. Folland 3.14 on p. 92.

Exercise 15.12. Folland 3.15 on p. 92.

Exercise 15.13. Folland 3.20 on p. 94.
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16. Lebesgue Differentiation and the Fundamental Theorem of
Calculus

Notation 16.1. In this chapter, let B = BRn denote the Borel σ — algebra on Rn
and m be Lebesgue measure on B. If V is an open subset of Rn, let L1loc(V ) :=
L1loc(V,m) and simply write L

1
loc for L

1
loc(Rn).We will also write |A| for m(A) when

A ∈ B.
Definition 16.2. A collection of measurable sets {E}r>0 ⊂ B is said to shrink
nicely to x ∈ Rn if (i) Er ⊂ Bx(r) for all r > 0 and (ii) there exists α > 0 such that
m(Er) ≥ αm(Bx(r)). We will abbreviate this by writing Er ↓ {x} nicely. (Notice
that it is not required that x ∈ Er for any r > 0.

The main result of this chapter is the following theorem.

Theorem 16.3. Suppose that ν is a complex measure on (Rn,B) , then there exists
g ∈ L1(Rn,m) and a complex measure νs such that νs ⊥ m, dν = gdm+ dνs, and
for m - a.e. x,

(16.1) g(x) = lim
r↓0

ν(Er)

m(Er)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} .
Proof. The existence of g and νs such that νs ⊥ m and dν = gdm + dνs is a

consequence of the Radon-Nikodym Theorem 15.36. Since

ν(Er)

m(Er)
=

1

m(Er)

Z
Er

g(x)dm(x) +
νs(Er)

m(Er)

Eq. (16.1) is a consequence of Theorem 16.13 and Corollary 16.15 below.
The rest of this chapter will be devoted to filling in the details of the proof of

this theorem.

16.1. A Covering Lemma and Averaging Operators.

Lemma 16.4 (Covering Lemma). Let E be a collection of open balls in Rn and
U = ∪B∈EB. If c < m(U), then there exists disjoint balls B1, . . . , Bk ∈ E such that
c < 3n

kP
j=1

m(Bj).

Proof. Choose a compact set K ⊂ U such that m(K) > c and then let E1 ⊂ E
be a finite subcover of K. Choose B1 ∈ E1 to be a ball with largest diameter in E1.
Let E2 = {A ∈ E1 : A∩B1 = ∅}. If E2 is not empty, choose B2 ∈ E2 to be a ball with
largest diameter in E2. Similarly let E3 = {A ∈ E2 : A ∩ B2 = ∅} and if E3 is not
empty, choose B3 ∈ E3 to be a ball with largest diameter in E3. Continue choosing
Bi ∈ E for i = 1, 2, . . . , k this way until Ek+1 is empty, see Figure 32 below.
If B = B(x0, r) ⊂ Rn, let B∗ = B(x0, 3r) ⊂ Rn, that is B∗ is the ball concentric

with B which has three times the radius of B. We will now show K ⊂ ∪ki=1B∗i . For
each A ∈ E1 there exists a first i such that Bi ∩ A 6= ∅. In this case diam(A) ≤
diam(Bi) and A ⊂ B∗i . Therefore A ⊂ ∪ki=1B∗i and hence K ⊂ ∪{A : A ∈ E1} ⊂
∪ki=1B∗i . Hence by subadditivity,

c < m(K) ≤
kX
i=1

m(B∗i ) ≤ 3n
kX
i=1

m(Bi).
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Figure 32. Picking out the large disjoint balls.

Definition 16.5. For f ∈ L1loc, x ∈ Rn and r > 0 let

(16.2) (Arf)(x) =
1

|Bx(r)|
Z

Bx(r)

fdm

where Bx(r) = B(x, r) ⊂ Rn, and |A| := m(A).

Lemma 16.6. Let f ∈ L1loc, then for each x ∈ Rn, (0,∞)such that r → (Arf)(x)
is continuous and for each r > 0, Rn such that x→ (Arf) (x) is measurable.

Proof. Recall that |Bx(r)| = m(E1)r
n which is continuous in r. Also

limr→r0 1Bx(r)(y) = 1Bx(r0)(y) if |y| 6= r0 and since m ({y : |y| 6= r0}) = 0 (you
prove!), limr→r0 1Bx(r)(y) = 1Bx(r0)(y) for m -a.e. y. So by the dominated conver-
gence theorem,

lim
r→r0

Z
Bx(r)

fdm =

Z
Bx(r0)

fdm

and therefore

(Arf)(x) =
1

m(E1)rn

Z
Bx(r)

fdm

is continuous in r. Let gr(x, y) := 1Bx(r)(y) = 1|x−y|<r. Then gr is B ⊗ B — mea-
surable (for example write it as a limit of continuous functions or just notice that
F : Rn × Rn → R defined by F (x, y) := |x− y| is continuous) and so that by
Fubini’s theorem

x→
Z

Bx(r)

fdm =

Z
Bx(r)

gr(x, y)f(y)dm(y)

is B — measurable and hence so is x→ (Arf) (x).

16.2. Maximal Functions.

Definition 16.7. For f ∈ L1(m), the Hardy - Littlewood maximal function Hf is
defined by

(Hf)(x) = sup
r>0

Ar|f |(x).
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Lemma 16.6 allows us to write

(Hf)(x) = sup
r∈Q, r>0

Ar|f |(x)

and then to concluded that Hf is measurable.

Theorem 16.8 (Maximal Inequality). If f ∈ L1(m) and α > 0, then

m (Hf > α) ≤ 3
n

α
kfkL1 .

This should be compared with Chebyshev’s inequality which states that

m (|f | > α) ≤ kfkL1
α

.

Proof. Let Eα ≡ {Hf > α}. For all x ∈ Eα there exists rx such that
Arx |f |(x) > α, i.e.

|Bx(rx)| < 1

α

Z
Bx(rx)

fdm.

Since Eα ⊂ ∪x∈EαBx(rx), if c < m(Eα) ≤ m(∪x∈EαBx(rx)) then, using Lemma
16.4, there exists x1, . . . , xk ∈ Eα and disjoint balls Bi = Bxi(rxi) for i = 1, 2, . . . , k
such that

c <
kX
i=1

3n |Bi| <
X 3n

α

Z
Bi

|f |dm ≤ 3
n

α

Z
Rn
|f |dm =

3n

α
kfkL1 .

This shows that c < 3nα−1kfkL1 for all c < m(Eα) which proves m(Eα) ≤
3nα−1kfk.
Theorem 16.9. If f ∈ L1loc then lim

r↓0
(Arf)(x) = f(x) for m — a.e. x ∈ Rn.

Proof. With out loss of generality we may assume f ∈ L1(m). We now begin
with the special case where f = g ∈ L1(m) is also continuous. In this case we find:

|(Arg)(x)− g(x)| ≤ 1

|Bx(r)|
Z
Bx(r)

|g(y)− g(x)|dm(y)

≤ sup
y∈Bx(r)

|g(y)− g(x)|→ 0 as r → 0.

In fact we have shown that (Arg)(x)→ g(x) as r → 0 uniformly for x in compact
subsets of Rn.
For general f ∈ L1(m),

|Arf(x)− f(x)| ≤ |Arf(x)−Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
= |Ar(f − g)(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ H(f − g)(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|

and therefore,

lim
r↓0
|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

So if α > 0, then

Eα ≡
½
lim
r↓0
|Arf(x)− f(x)| > α

¾
⊂
n
H(f − g) >

α

2

o
∪
n
|g − f | > α

2

o
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and thus

m(Eα) ≤ m
³
H(f − g) >

α

2

´
+m

³
|g − f | > α

2

´
≤ 3n

α/2
kf − gkL1 + 1

α/2
kf − gkL1

≤ 2(3n + 1)α−1kf − gkL1 ,
where in the second inequality we have used the Maximal inequality (Theorem 16.8)
and Chebyshev’s inequality. Since this is true for all continuous g ∈ C(Rn)∩L1(m)
and this set is dense in L1(m), we may make kf − gkL1 as small as we please. This
shows that

m

µ½
x : lim

r↓0
|Arf(x)− f(x)| > 0

¾¶
= m(∪∞n=1E1/n) ≤

∞X
n=1

m(E1/n) = 0.

Corollary 16.10. If dµ = gdm with g ∈ L1loc then

µ(Bx(r))

|Bx(r)| = Arg(x)→ g(x) for m — a.e. x.

16.3. Lebesque Set.

Definition 16.11. For f ∈ L1loc(m), the Lebesgue set of f is

Lf :=

x ∈ Rn : lim
r↓0

1

|Bx(r)|
Z

Bx(r)

|f(y)− f(x)|dy = 0


=

½
x ∈ Rn : lim

r↓0
(Ar |f(·)− f(x)|) (x) = 0

¾
.

Theorem 16.12. Suppose 1 ≤ p < ∞ and f ∈ Lploc(m), then m
³
Rd \ Lpf

´
= 0

where

Lpf :=

x ∈ Rn : lim
r↓0

1

|Bx(r)|
Z

Bx(r)

|f(y)− f(x)|pdy = 0

 .

Proof. For w ∈ C define gw(x) = |f(x)−w|p andEw ≡ {x : limr↓0 (Argw) (x) 6= gw(x)} .
Then by Theorem 16.9 m(Ew) = 0 for all w ∈ C and therefore m(E) = 0 where

E =
[

w∈Q+iQ
Ew.

By definition of E, if x /∈ E then.

lim
r↓0
(Ar|f(·)− w|p)(x) = |f(x)− w|p

for all w ∈ Q+ iQ. Letting q := p
p−1 we have

|f(·)− f(x)|p ≤ (|f(·)− w|+ |w − f(x)|)p ≤ 2q (|f(·)− w|p + |w − f(x)|p) ,
(Ar|f(·)− f(x)|p)(x) ≤ 2q (Ar |f(·)− w|p) (x) + (Ar|w − f(x)|p) (x)

= 2q (Ar |f(·)− w|p) (x) + 2q|w − f(x)|
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and hence for x /∈ E,

lim
r↓0
(Ar|f(·)− f(x)|p)(x) ≤ 2q|f(x)− w|p + 2q|w − f(x)|p = 22q|f(x)− w|p.

Since this is true for all w ∈ Q+ iQ, we see that

lim
r↓0
(Ar|f(·)− f(x)|p)(x) = 0 for all x /∈ E,

i.e. Ec ⊂ Lpf or equivalently
³
Lpf
´c
⊂ E. So m

³
Rd \ Lpf

´
≤ m(E) = 0.

Theorem 16.13 (Lebesque Differentiation Theorem). Suppose f ∈ L1loc for all
x ∈ Lf (so in particular for m — a.e. x)

lim
r↓0

1

m(Er)

Z
Er

|f(y)− f(x)|dy = 0

and

lim
r↓0

1

m(Er)

Z
Er

f(y)dy = f(x)

when Er ↓ {x} nicely.
Proof. For all x ∈ Lf ,¯̄̄̄

1

m(Er)

Z
Er

f(y)dy − f(x)

¯̄̄̄
=

¯̄̄̄
1

m(Er)

Z
Er

(f(y)− f(x)) dy

¯̄̄̄
≤ 1

m(Er)

Z
Er

|f(y)− f(x)|dy

≤ 1

αm(Bx(r))

Z
Bx(r)

|f(y)− f(x)|dy

which tends to zero as r ↓ 0 by Theorem 16.12. In the second inequality we have
used the fact that m(Bx(r) \Bx(r)) = 0.
BRUCE: ADD an Lp — version of this theorem.

Lemma 16.14. Suppose λ is positive σ — finite measure on B ≡ BRn such that
λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Bx(r))

m(Bx(r))
= 0.

Proof. Let A ∈ B such that λ(A) = 0 andm(Ac) = 0. By the regularity theorem
(Corollary 13.27 or Exercise 8.4), for all � > 0 there exists an open set V� ⊂ Rn
such that A ⊂ V� and λ(V�) < �. Let

Fk ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
>
1

k

¾
the for x ∈ Fk choose rx > 0 such that Bx(rx) ⊂ V� (see Figure 33) and

λ(Bx(rx))
m(Bx(rx))

>
1
k , i.e.

m(Bx(rx)) < k λ(Bx(rx)).
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Figure 33. Covering a small set with balls.

Let E = {Bx(rx)}x∈Fk and U ≡ S
x∈Fk

Bx(rx) ⊂ V�. Heuristically if all the balls

in E were disjoint and E were countable, then
m(Fk) ≤

X
x∈Fk

m(Bx(rx)) < k
X
x∈Fk

λ(Bx(rx))

= kλ(U) ≤ k λ(V�) ≤ k�.

Since � > 0 is arbitrary this would imply that m(Fk) = 0.
To fix the above argument, suppose that c < m(U) and use the covering lemma

to find disjoint balls B1, . . . , BN ∈ E such that

c < 3n
NX
i=1

m(Bi) < k3n
NX
i=1

λ(Bi)

≤ k3nλ(U) ≤ k3nλ(V�) ≤ k3n�.

Since c < m(U) is arbitrary we learn that m(Fk) ≤ m(U) ≤ k3n� and in particular
that m(Fk) ≤ k3n�. Since � > 0 is arbitrary, this shows that m(Fk) = 0 and
therefore, m(F∞) = 0 where

F∞ ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
> 0

¾
= ∪∞k=1Fk.

Since

{x ∈ Rn : lim
r↓0

λ(Bx(r))

m(Bx(r))
> 0} ⊂ F∞ ∪Ac

and m(Ac) = 0, we have shown

m({x ∈ Rn : lim
r↓0

λ(Bx(r))

m(Bx(r))
> 0}) = 0.

Corollary 16.15. Let λ be a complex or a σ — finite signed measure such that
λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Er)

m(Er)
= 0
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whenever Er ↓ {x} nicely.
Proof. Recalling the λ ⊥ m implies |λ| ⊥ m, Lemma 16.14 and the inequalities,

|λ(Er)|
m(Er)

≤ |λ|(Er)

αm(Bx(r))
≤ |λ|(Bx(r))

αm(Bx(r))
≤ |λ|(Bx(2r))

α2−nm(Bx(2r))

proves the result.

Proposition 16.16. TODO Add in almost everywhere convergence result of con-
volutions by approximate δ — functions.

16.4. The Fundamental Theorem of Calculus. In this section we will restrict
the results above to the one dimensional setting. The following notation will be in
force for the rest of this chapter: m denotes one dimensional Lebesgue measure on
B := BR, −∞ ≤ α < β ≤ ∞, A = A[α,β] denote the algebra generated by sets of
the form (a, b] ∩ [α, β] with −∞ ≤ a < b ≤ ∞, Ac denotes those sets in A which
are bounded, and B[α,β] is the Borel σ — algebra on [α, β] ∩R.
Notation 16.17. Given a function F : R→ R̄ or F : R→ C, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) whenever the
limits exist. Notice that if F is a monotone functions then F (±∞) and F (x±)
exist for all x.

Theorem 16.18. Let F : R→ R be increasing and define G(x) = F (x+). Then

(1) {x ∈ R : F (x+) > F (x−)} is countable.
(2) The function G increasing and right continuous.
(3) For m — a.e. x, F 0(x) and G0(x) exists and F 0(x) = G0(x).
(4) The function F 0 is in L1loc(m) and there exists a unique positive measure

νs on (R,BR) such that

F (b+)− F (a+) =

Z b

a

F 0dm+ νs((a, b]) for all −∞ < a < b <∞.

Moreover the measure νs is singular relative to m.

Proof. Properties (1) and (2) have already been proved in Theorem 13.34.
(3) Let νG denote the unique measure on B such that νG((a, b]) = G(b) −G(a)

for all a < b. By Theorem 16.3, for m - a.e. x, for all sequences {Er}r>0 which
shrink nicely to {x} , lim

r↓0
(νG(Er)/m(Er)) exists and is independent of the choice

of sequence {Er}r>0 shrinking to {x} . Since (x, x + r] ↓ {x} and (x − r, x] ↓ {x}
nicely,

(16.3) lim
r↓0

νG(x, x+ r])

m((x, x+ r])
= lim

r↓0
G(x+ r)−G(x)

r
=

d

dx+
G(x)

and
(16.4)

lim
r↓0

νG((x− r, x])

m((x− r, x])
= lim

r↓0
G(x)−G(x− r)

r
= lim

r↓0
G(x− r)−G(x)

−r =
d

dx−
G(x)

exist and are equal for m - a.e. x, i.e. G0(x) exists for m -a.e. x.
For x ∈ R, let

H(x) ≡ G(x)− F (x) = F (x+)− F (x) ≥ 0.
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Since F (x) = G(x)−H(x), the proof of (3) will be complete once we showH 0(x) = 0
for m — a.e. x.
From Theorem 13.34,

Λ := {x ∈ R : F (x+) > F (x)} ⊂ {x ∈ R : F (x+) > F (x−)}
is a countable set andX

x∈(−N,N)
H(x) =

X
x∈(−N,N)

(F (x+)− F (x)) ≤
X

x∈(−N,N)
(F (x+)− F (x−)) <∞

for all N <∞. Therefore λ :=
P
x∈R

H(x)δx (i.e. λ(A) :=
P

x∈AH(x) for all A ∈ BR)
defines a Radon measure on BR. Since λ(Λc) = 0 andm(Λ) = 0, the measure λ ⊥ m.
By Corollary 16.15 for m - a.e. x,¯̄̄̄

H(x+ r)−H(x)

r

¯̄̄̄
≤ |H(x+ r)|+ |H(x)|

|r| ≤ H(x+ |r|) +H(x− |r|) +H(x)

|r|
≤ 2λ([x− |r| , x+ |r|])

2 |r|
and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks nicely
to {x} as r ↓ 0 and m([x− |r| , x+ |r|]) = 2 |r| . Hence we conclude for m — a.e. x
that H 0(x) = 0.
(4) From Theorem 16.3, item (3) and Eqs. (16.3) and (16.4), F 0 = G0 ∈ L1loc(m)

and dνG = F 0dm+ dνs where νs is a positive measure such that νs ⊥ m. Applying
this equation to an interval of the form (a, b] gives

F (b+)− F (a+) = νG((a, b]) =

Z b

a

F 0dm+ νs((a, b]).

The uniqueness of νs such that this equation holds is a consequence of Theorem
8.8.
Our next goal is to prove an analogue of Theorem 16.18 for complex valued F.

Definition 16.19. For −∞ ≤ a < b < ∞, a partition P of [a, b] is a finite subset
of [a, b] ∩R such that {a, b} ∩R ⊂ P. For x ∈ P\ {b} , let x+ = min {y ∈ P : y > x}
and if x = b let x+ = b.

Proposition 16.20. Let ν be a complex measure on BR and let F be a function
such that

F (b)− F (a) = ν((a, b]) for all a < b,

for example let F (x) = ν((−∞, x]) in which case F (−∞) = 0. The function F is
right continuous and for −∞ < a < b <∞,

(16.5) |ν|(a, b] = sup
P

X
x∈P

|ν(x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)|

where supremum is over all partitions P of [a, b]. Moreover ν ¿ m iff for all � > 0
there exists δ > 0 such that

(16.6)
nX
i=1

|ν ((ai, bi])| =
nX
i=1

|F (bi)− F (ai)| < �

whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi−

ai) < δ.
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Proof. Eq. (16.5) follows from Proposition 15.35 and the fact that B = σ(A)
where A is the algebra generated by (a, b] ∩ R with a, b ∈ R̄. Equation (16.6) is a
consequence of Theorem 15.40 with A being the algebra of half open intervals as
above. Notice that {(ai, bi) ∩ (a, b]}ni=1 are disjoint intervals iff {(ai, bi] ∩ (a, b]}ni=1
are disjoint intervals,

nP
i=1
(bi− ai) = m ((a, b] ∩ ∪ni=1(ai, bi]) and the general element

A ∈ A(a,b] is of the form A = (a, b] ∩ ∪ni=1(ai, bi].
Definition 16.21. Given a function F : R∩[α, β]→ C let νF be the unique additive
measure on Ac such that νF ((a, b]) = F (b) − F (a) for all a, b ∈ [α, β] with a < b
and also define

TF ([a, b]) = sup
P

X
x∈P

|νF (x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)|

where supremum is over all partitions P of [a, b]. We will also abuse notation and
define TF (b) := TF ([α, b]). A function F : R ∩ [α, β]→ C is said to be of bounded
variation if TF (β) := TF ([α, β]) < ∞ and we write F ∈ BV ([α, β]). If α = −∞
and β = +∞, we will simply denote BV ([−∞,+∞]) by BV.
Definition 16.22. A function F : R→ C is said to be of normalized bounded
variation if F ∈ BV, F is right continuous and F (−∞) := limx→−∞ F (x) = 0.
We will abbreviate this by saying F ∈ NBV. (The condition: F (−∞) = 0 is not
essential and plays no role in the discussion below.)

Definition 16.23. A function F : R∩ [α, β]→ C is absolutely continuous if for
all � > 0 there exists δ > 0 such that

(16.7)
nX
i=1

|F (bi)− F (ai)| < �

whenever {(ai, bi)}ni=1 are disjoint open intervals in R∩[α, β] such that
nP
i=1
(bi−ai) <

δ.

Lemma 16.24. Let F : R ∩ [α, β]→ C be any function and and a < b < c with
a, b, c ∈ R ∩ [α, β] then

(1)

(16.8) TF ([a, c]) = TF ([a, b]) + TF ([b, c]).

(2) Letting a = α in this expression implies

(16.9) TF (c) = TF (b) + TF ([b, c])

and in particular TF is monotone increasing.
(3) If TF (b) <∞ for some b ∈ R ∩ [α, β] then

(16.10) TF (a+)− TF (a) ≤ lim sup
y↓a

|F (y)− F (a)|

for all a ∈ R ∩ [α, b). In particular TF is right continuous if F is right
continuous.

(4) If α = −∞ and TF (b) < ∞ for some b ∈ (−∞, β] ∩ R then TF (−∞) :=
limb↓−∞ TF (b) = 0.
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Proof. (1 — 2) By the triangle inequality, if P and P0 are partition of [a, c] such
that P ⊂ P0, then X

x∈P
|F (x+)− F (x)| ≤

X
x∈P0

|F (x+)− F (x)|.

So if P is a partition of [a, c], then P ⊂ P0 := P∪ {b} impliesX
x∈P

|F (x+)− F (x)| ≤
X
x∈P0

|F (x+)− F (x)|

=
X

x∈P0∩[a,b]
|F (x+)− F (x)|+

X
x∈P0∩[b,c]

|F (x+)− F (x)|

≤ TF ([a, b]) + TF ([b, c]).

Thus we see that TF ([a, c]) ≤ TF ([a, b]) + TF ([b, c]). Similarly if P1 is a partition of
[a, b] and P2 is a partition of [b, c], then P = P1 ∪ P2 is a partition of [a, c] andX

x∈P1
|F (x+)− F (x)|+

X
x∈P2

|F (x+)− F (x)| =
X
x∈P

|F (x+)− F (x)| ≤ TF ([a, c]).

From this we conclude TF ([a, b])+TF ([b, c]) ≤ TF ([a, c]) which finishes the proof of
Eqs. (16.8) and (16.9).
(3) Let a ∈ R∩[α, b) and given � > 0 let P be a partition of [a, b] such that

(16.11) TF (b)− TF (a) = TF ([a, b]) ≤
X
x∈P

|F (x+)− F (x)|+ �.

Let y ∈ (a, a+), thenX
x∈P

|F (x+)− F (x)|+ � ≤
X

x∈P∪{y}
|F (x+)− F (x)|+ �

= |F (y)− F (a)|+
X

x∈P\{y}
|F (x+)− F (x)|+ �

≤ |F (y)− F (a)|+ TF ([y, b]) + �.(16.12)

Combining Eqs. (16.11) and (16.12) shows

TF (y)− TF (a) + TF ([y, b]) = TF (b)− TF (a)

≤ |F (y)− F (a)|+ TF ([y, b]) + �.

Since y ∈ (a, a+) is arbitrary we conclude that
TF (a+)− TF (a) = lim sup

y↓a
TF (y)− TF (a) ≤ lim sup

y↓a
|F (y)− F (a)|+ �.

Since � > 0 is arbitrary this proves Eq. (16.10).
(4) Suppose that TF (b) < ∞ and given � > 0 let P be a partition of [α, b] such

that
TF (b) ≤

X
x∈P

|F (x+)− F (x)|+ �.

Let x0 = minP then by the previous equation

TF (x0) + TF ([x0, b]) = TF (b) ≤
X
x∈P

|F (x+)− F (x)|+ � ≤ TF ([x0, b]) + �

which shows, using the monotonicity of TF , that TF (−∞) ≤ TF (x0) ≤ �. Since
� > 0 we conclude that TF (−∞) = 0.
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The following lemma should help to clarify Proposition 16.20 and Definition
16.23.

Lemma 16.25. Let ν and F be as in Proposition 16.20 and A be the algebra
generated by (a, b] ∩ R with a, b ∈ R̄.. Then the following are equivalent:

(1) ν ¿ m
(2) |ν| ¿ m
(3) For all � > 0 there exists a δ > 0 such that TF (A) < � whenever m(A) < δ.
(4) For all � > 0 there exists a δ > 0 such that |νF (A)| < � whenever m(A) < δ.

Moreover, condition 4. shows that we could replace the last statement in Propo-
sition 16.20 by: ν ¿ m iff for all � > 0 there exists δ > 0 such that¯̄̄̄

¯
nX
i=1

ν ((ai, bi])

¯̄̄̄
¯ =

¯̄̄̄
¯
nX
i=1

[F (bi)− F (ai)]

¯̄̄̄
¯ < �

whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi−

ai) < δ.

Proof. This follows directly from Lemma 15.37 and Theorem 15.40.

Lemma 16.26.
(1) Monotone functions F : R ∩ [α, β]→ R are in BV ([α, β]).
(2) Linear combinations of functions in BV are in BV, i.e. BV is a vector

space.
(3) If F : R ∩ [α, β]→ C is absolutely continuous then F is continuous and

F ∈ BV ([α, β]).
(4) If −∞ < α < β < ∞ and F : R ∩ [α, β]→ R is a differentiable function

such that supx∈R |F 0(x)| = M < ∞, then F is absolutely continuous and
TF ([a, b]) ≤M(b− a) for all α ≤ a < b ≤ β.

(5) Let f ∈ L1(R ∩ [α, β],m) and set

(16.13) F (x) =

Z
(α,x]

fdm

for x ∈ [α, b] ∩R. Then F : R ∩ [α, β]→ C is absolutely continuous.

Proof.
(1) If F is monotone increasing and P is a partition of (a, b] thenX

x∈P
|F (x+)− F (x)| =

X
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF ([a, b]) = F (b) − F (a). Also note that F ∈ BV iff F (∞) −
F (−∞) <∞.

(2) Item 2. follows from the triangle inequality.
(3) Since F is absolutely continuous, there exists δ > 0 such that whenever

a < b < a+ δ and P is a partition of (a, b],X
x∈P

|F (x+)− F (x)| ≤ 1.

This shows that TF ([a, b]) ≤ 1 for all a < b with b− a < δ. Thus using Eq.
(16.8), it follows that TF ([a, b]) ≤ N <∞ if b− a < Nδ for an N ∈ N.
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(4) Suppose that {(ai, bi)}ni=1 ⊂ (a, b] are disjoint intervals, then by the mean
value theorem,

nX
i=1

|F (bi)− F (ai)| ≤
nX
i=1

|F 0(ci)| (bi − ai) ≤Mm (∪ni=1(ai, bi))

≤M
nX
i=1

(bi − ai) ≤M(b− a)

form which it clearly follows that F is absolutely continuous. Moreover we
may conclude that TF ([a, b]) ≤M(b− a).

(5) Let ν be the positive measure dν = |f | dm on (a, b]. Let {(ai, bi)}ni=1 ⊂ (a, b]
be disjoint intervals as above, then

nX
i=1

|F (bi)− F (ai)| =
nX
i=1

¯̄̄̄
¯
Z
(ai,bi]

fdm

¯̄̄̄
¯

≤
nX
i=1

Z
(ai,bi]

|f | dm

=

Z
∪ni=1(ai,bi]

|f | dm = ν(∪ni=1(ai, bi]).(16.14)

Since ν is absolutely continuous relative to m for all � > 0 there exist
δ > 0 such that ν(A) < � if m(A) < δ. Taking A = ∪ni=1(ai, bi] in Eq.
(16.14) shows that F is absolutely continuous. It is also easy to see from
Eq. (16.14) that TF ([a, b]) ≤

R
(a,b]

|f | dm.

Theorem 16.27. Let F : R→ C be a function, then
(1) F ∈ BV iff ReF ∈ BV and ImF ∈ BV.
(2) If F : R → R is in BV then the functions F± := (TF ± F ) /2 are bounded

and increasing functions.
(3) F : R → R is in BV iff F = F+ − F− where F± are bounded increasing

functions.
(4) If F ∈ BV then F (x±) exist for all x ∈ R̄. Let G(x) := F (x+).
(5) F ∈ BV then {x : limy→x F (y) 6= F (x)} is a countable set and in particular

G(x) = F (x+) for all but a countable number of x ∈ R.
(6) If F ∈ BV, then for m — a.e. x, F 0(x) and G0(x) exist and F 0(x) = G0(x).

Proof.

(1) Item 1. is a consequence of the inequalities

|F (b)− F (a)| ≤ |ReF (b)−ReF (a)|+ |ImF (b)− ImF (a)| ≤ 2 |F (b)− F (a)| .
(2) By Lemma 16.24, for all a < b,

(16.15) TF (b)− TF (a) = TF ([a, b]) ≥ |F (b)− F (a)|
and therefore

TF (b)± F (b) ≥ TF (a)± F (a)
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which shows that F± are increasing. Moreover from Eq. (16.15), for b ≥ 0
and a ≤ 0,

|F (b)| ≤ |F (b)− F (0)|+ |F (0)| ≤ TF (0, b] + |F (0)|
≤ TF (0,∞) + |F (0)|

and similarly
|F (a)| ≤ |F (0)|+ TF (−∞, 0)

which shows that F is bounded by |F (0)|+TF (∞). Therefore F± is bounded
as well.

(3) By Lemma 16.26 if F = F+ − F−, then

TF ([a, b]) ≤ TF+([a, b]) + TF−([a, b]) = |F+(b)− F+(a)|+ |F−(b)− F−(a)|
which is bounded showing that F ∈ BV. Conversely if F is bounded varia-
tion, then F = F+ − F− where F± are defined as in Item 2.

Items 4. — 6. follow from Items 1. — 3. and Theorem 16.18.

Theorem 16.28. Suppose that F : R→ C is in BV, then

(16.16) |TF (x+)− TF (x)| ≤ |F (x+)− F (x)|
for all x ∈ R. If we further assume that F is right continuous then there exists a
unique measure ν on B = BR. such that
(16.17) ν((−∞, x]) = F (x)− F (−∞) for all x ∈ R.
Proof. Since F ∈ BV, F (x+) exists for all x ∈ R and hence Eq. (16.16) is a

consequence of Eq. (16.10). Now assume that F is right continuous. In this case
Eq. (16.16) shows that TF (x) is also right continuous. By considering the real
and imaginary parts of F separately it suffices to prove there exists a unique finite
signed measure ν satisfying Eq. (16.17) in the case that F is real valued. Now
let F± = (TF ± F ) /2, then F± are increasing right continuous bounded functions.
Hence there exists unique measure ν± on B such that

ν±((−∞, x]) = F±(x)− F±(−∞) ∀x ∈ R.
The finite signed measure ν ≡ ν+ − ν− satisfies Eq. (16.17). So it only remains to
prove that ν is unique.
Suppose that ν̃ is another such measure such that (16.17) holds with ν replaced

by ν̃. Then for (a, b],

|ν| (a, b] = sup
P

X
x∈P

|F (x+)− F (x)| = |ν̃| (a, b]

where the supremum is over all partition of (a, b]. This shows that |ν| = |ν̃| on
A ⊂ B — the algebra generated by half open intervals and hence |ν| = |ν̃| . It now
follows that |ν|+ ν and |ν̃|+ ν̃ are finite positive measure on B such that

(|ν|+ ν) ((a, b]) = |ν| ((a, b]) + (F (b)− F (a))

= |ν̃| ((a, b]) + (F (b)− F (a))

= (|ν̃|+ ν̃) ((a, b])

from which we infer that |ν|+ ν = |ν̃|+ ν̃ = |ν|+ ν̃ on B. Thus ν = ν̃.
Alternatively, one may prove the uniqueness by showing that C := {A ∈ B :

ν(A) = eν(A)} is a monotone class which contains A or using the π — λ theorem.
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Theorem 16.29. Suppose that F ∈ NBV and νF is the measure defined by Eq.
(16.17), then

(16.18) dνF = F 0dm+ dνs

where νs ⊥ m and in particular for −∞ < a < b <∞,

(16.19) F (b)− F (a) =

Z b

a

F 0dm+ νs((a, b]).

Proof. By Theorem 16.3, there exists f ∈ L1(m) and a complex measure νs
such that for m -a.e. x,

(16.20) f(x) = lim
r↓0

ν(Er)

m(Er)
,

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} , νs ⊥ m and

dνF = fdm+ dνs.

From Eq. (16.20) it follows that

lim
h↓0

F (x+ h)− F (x)

h
= lim

h↓0
νF ((x, x+ h])

h
= f(x) and

lim
h↓0

F (x− h)− F (x)

−h = lim
h↓0

νF ((x− h, x])

h
= f(x)

for m — a.e. x, i.e. d
dx+F (x) =

d
dx−F (x) = f(x) for m —a.e. x. This implies that F

is m — a.e. differentiable and F 0(x) = f(x) for m — a.e. x.

Corollary 16.30. Let F : R→ C be in NBV, then
(1) νF ⊥ m iff F 0 = 0 m a.e.
(2) νF ¿ m iff νs = 0 iff

(16.21) νF ((a, b]) =

Z
(a,b]

F 0(x)dm(x) for all a < b.

Proof.
(1) If F 0(x) = 0 for m a.e. x, then by Eq. (16.18), νF = νs ⊥ m. If νF ⊥ m,

then by Eq. (16.18), F 0dm = dνF −dνs ⊥ dm and by Remark 15.8 F 0dm =
0, i.e. F 0 = 0 m -a.e.

(2) If νF ¿ m, then dνs = dνF −F 0dm¿ dm which implies, by Lemma 15.28,
that νs = 0. Therefore Eq. (16.19) becomes (16.21). Now let

ρ(A) :=

Z
A

F 0(x)dm(x) for all A ∈ B.

Recall by the Radon - Nikodym theorem that
R
R |F 0(x)| dm(x) < ∞ so

that ρ is a complex measure on B. So if Eq. (16.21) holds, then ρ = νF on
the algebra generated by half open intervals. Therefore ρ = νF as in the
uniqueness part of the proof of Theorem 16.28. Therefore dνF = F 0dm and
hence νs = 0.

Theorem 16.31. Suppose that F : [a, b] → C is a measurable function. Then the
following are equivalent:
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(1) F is absolutely continuous on [a, b].
(2) There exists f ∈ L1([a, b]), dm) such that

(16.22) F (x)− F (a) =

Z x

a

fdm ∀x ∈ [a, b]

(3) F 0 exists a.e., F 0 ∈ L1([a, b], dm) and

(16.23) F (x)− F (a) =

Z x

a

F 0dm∀x ∈ [a, b].

Proof. In order to apply the previous results, extend F to R by F (x) = F (b) if
x ≥ b and F (x) = F (a) if x ≤ a.
1. =⇒ 3. If F is absolutely continuous then F is continuous on [a, b] and

F −F (a) = F −F (−∞) ∈ NBV by Lemma 16.26. By Proposition 16.20, νF ¿ m
and hence Item 3. is now a consequence of Item 2. of Corollary 16.30. The assertion
3. =⇒ 2. is trivial.
2. =⇒ 1. If 2. holds then F is absolutely continuous on [a, b] by Lemma 16.26.

Corollary 16.32 (Integration by parts). Suppose −∞ < a < b < ∞ and F,G :
[a, b]→ C are two absoutely continuous functions. ThenZ b

a

F 0Gdm = −
Z b

a

FG0dm+ FG|ba.

Proof. Suppose that {(ai, bi)}ni=1 is a sequence of disjoint intervals in [a, b], then
nX
i=1

|F (bi)G(bi)− F (ai)G(ai)| ≤
nX
i=1

|F (bi)| |G(bi)−G(ai)|+
nX
i=1

|F (bi)− F (ai)| |G(ai)|

≤ kFku
nX
i=1

|G(bi)−G(ai)|+ kGku
nX
i=1

|F (bi)− F (ai)| .

From this inequality, one easily deduces the absolutely continuity of the product
FG from the absolutely continuity of F and G. Therefore,

FG|ba =
Z b

a

(FG)0dm =

Z b

a

(F 0G+ FG0)dm.

16.5. Alternative method to the Fundamental Theorem of Calculus. For
simplicity assume that α = −∞, β =∞ and F ∈ BV. Let ν0 = ν0F be the finitely
additive set function on Ac such that ν0((a, b]) = F (b) − F (a) for all −∞ < a <
b <∞.As in the real increasing case (Notation 13.6 above) we may define a linear
functional, IF : Sc(A)→ C, by

IF (f) =
X
λ∈C

λν0(f = λ).

If we write f =
PN

i=1 λi1(ai,bi] with {(ai, bi]}Ni=1 pairwise disjoint subsets of Ac

inside (a, b] we learn
(16.24)

|IF (f)| =
¯̄̄̄
¯
NX
i=1

λi(F (bi)− F (ai)

¯̄̄̄
¯ ≤

NX
i=1

|λi| |F (bi)− F (ai)| ≤ kfku TF ((a, b]).
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In the usual way this estimate allows us to extend IF to the those compactly
supported functions Sc(A) in the closure of Sc(A). As usual we will still denote
the extension of IF to Sc(A) by IF and recall that Sc(A) contains Cc(R,C). The
estimate in Eq. (16.24) still holds for this extension and in particular we have
|I(f)| ≤ TF (∞) · kfku for all f ∈ Cc(R,C). Therefore I extends uniquely by conti-
nuity to an element of C0(R,C)∗. So by appealing to the complex Riesz Theorem
(Corollary 15.42) there exists a unique complex measure ν = νF such that

(16.25) IF (f) =

Z
R
fdν for all f ∈ Cc(R).

This leads to the following theorem.

Theorem 16.33. To each function F ∈ BV there exists a unique measure ν = νF
on (R,BR) such that Eq. (16.25) holds. Moreover, F (x+) = limy↓x F (y) exists for
all x ∈ R and the measure ν satisfies
(16.26) ν((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞.

Remark 16.34. By applying Theorem 16.33 to the function x→ F (−x) one shows
every F ∈ BV has left hand limits as well, i.e F (x−) = limy↑x F (y) exists for all
x ∈ R.
Proof. We must still prove F (x+) exists for all x ∈ R and Eq. (16.26) holds.

To prove let ψb and φ� be the functions shown in Figure 34 below. The reader
should check that ψb ∈ Sc(A). Notice that

Figure 34. A couple of functions in Sc(A).

IF (ψb+�) = IF (ψα + 1(α,b+�]) = IF (ψα) + F (b+ �)− F (α)
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and since kφ� − ψb+�ku = 1,
|I(φ�)− IF (ψb+�)| = |IF (φ� − ψb+�)|

≤ TF ([b+ �, b+ 2�]) = TF (b+ 2�)− TF (b+ �),

which implies O(�) := I(φ�) − IF (ψb+�) → 0 as � ↓ 0 because TF is monotonic.
Therefore,

(16.27) I(φ�) = IF (ψb+�) + I(φ�)− IF (ψb+�) = IF (ψα) +F (b+ �)− F (α) +O(�).

Because φ� converges boundedly to ψb as � ↓ 0, the dominated convergence theorem
implies

lim
�↓0

I(φ�) = lim
�↓0

Z
R
φ�dν =

Z
R
ψbdν =

Z
R
ψαdν + ν((α, b]).

So we may let � ↓ 0 in Eq. (16.27) to learn F (b+) exists andZ
R
ψαdν + ν((α, b]) = IF (ψα) + F (b+)− F (α).

Similarly this equation holds with b replaced by a, i.e.Z
R
ψαdν + ν((α, a]) = IF (ψα) + F (a+)− F (α).

Subtracting the last two equations proves Eq. (16.26).

16.5.1. Proof of Theorem 16.29. Proof. Given Theorem 16.33 we may now prove
Theorem 16.29 in the same we proved Theorem 16.18.

16.6. Examples: These are taken from I. P. Natanson,“Theory of functions of a
real variable,” p.269. Note it is proved in Natanson or in Rudin that the fundamen-
tal theorem of calculus holds for f ∈ C([0, 1]) such that f 0(x) exists for all x ∈ [0, 1]
and f 0 ∈ L1. Now we give a couple of examples.

Example 16.35. In each case f ∈ C([−1, 1]).
(1) Let f(x) = |x|3/2 sin 1

x with f(0) = 0, then f is everywhere differentiable
but f 0 is not bounded near zero. However, the function f 0 ∈ L1([−1, 1]).

(2) Let f(x) = x2 cos π
x2 with f(0) = 0, then f is everywhere differentiable but

f 0 /∈ L1loc(−�, �). Indeed, if 0 /∈ (α, β) thenZ β

α

f 0(x)dx = f(β)− f(α) = β2 cos
π

β2
− α2 cos

π

α2
.

Now take αn :=
q

2
4n+1 and βn = 1/

√
2n. ThenZ βn

αn

f 0(x)dx =
2

4n+ 1
cos

π(4n+ 1)

2
− 1

2n
cos 2nπ =

1

2n

and noting that {(αn, βn)}∞n=1 are all disjoint, we find
R �
0
|f 0(x)| dx =∞.

Example 16.36. Let C ⊂ [0, 1] denote the cantor set constructed as follows. Let
C1 = [0, 1] \ (1/3, 2/3), C2 := C1 \ [(1/9, 2/9) ∪ (7/9, 8/9)] , etc., so that we keep
removing the middle thirds at each stage in the construction. Then

C := ∩∞n=1Cn =

x =
∞X
j=0

aj3
−j : aj ∈ {0, 2}


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and

m(C) = 1−
µ
1

3
+
2

9
+
22

33
+ . . .

¶
= 1− 1

3

∞X
n=0

µ
2

3

¶n
= 1− 1

3

1

1− 2/3 = 0.

Associated to this set is the so called cantor function F (x) := limn→∞ fn(x) where
the {fn}∞n=1 are continuous non-decreasing functions such that fn(0) = 0, fn(1) = 1
with the fn pictured in Figure 35 below. From the pictures one sees that {fn} are

Figure 35. Constructing the Cantor function.

uniformly Cauchy, hence there exists F ∈ C([0, 1]) such that F (x) := limn→∞ fn(x).
The function F has the following properties,

(1) F is continuous and non-decreasing.
(2) F 0(x) = 0 for m — a.e. x ∈ [0, 1] because F is flat on all of the middle third

open intervals used to construct the cantor set C and the total measure of
these intervals is 1 as proved above.

(3) The measure on B[0,1] associated to F, namely ν([0, b]) = F (b) is singular
relative to Lebesgue measure and ν ({x}) = 0 for all x ∈ [0, 1]. Notice that
ν ([0, 1]) = 1.

16.7. Exercises.

Exercise 16.1. Folland 3.22 on p. 100.

Exercise 16.2. Folland 3.24 on p. 100.
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Exercise 16.3. Folland 3.25 on p. 100.

Exercise 16.4. Folland 3.27 on p. 107.

Exercise 16.5. Folland 3.29 on p. 107.

Exercise 16.6. Folland 3.30 on p. 107.

Exercise 16.7. Folland 3.33 on p. 108.

Exercise 16.8. Folland 3.35 on p. 108.

Exercise 16.9. Folland 3.37 on p. 108.

Exercise 16.10. Folland 3.39 on p. 108.

Exercise 16.11. Folland 3.40 on p. 108.

Exercise 16.12. Folland 8.4 on p. 239.

Solution. 16.12Notice that

Arf =
1

|B0(r)|1B0(r) ∗ f

and there for x→ Arf(x) ∈ C0(Rn) for all r > 0 by Proposition 11.18. Since

Arf(x)−f(x) = 1

|B0(r)|
Z
B0(r)

f(x+y)−f(x)dy = 1

|B0(r)|
Z
B0(r)

(τ−yf − f) (x)dy

it follows from Minikowski’s inequality for integrals (Theorem 9.27) that

kArf − fk∞ ≤
1

|B0(r)|
Z
B0(r)

kτ−yf − fk∞ dy ≤ sup
|y|≤r

kτyf − fk∞
and the latter goes to zero as r ↓ 0 by assumption. In particular we learn that

kArf −Aρfku ≤ kArf − fk∞ + kf −Aρfk∞ → 0 as r, ρ→ 0

showing {Arf}r>0 is uniformly Cauchy as r ↓ 0. Therefore limr↓0Arf(x) = g(x)
exists for all x ∈ Rn and g = f a.e.
Solution.
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17. More Point Set Topology

17.1. Connectedness. The reader may wish to review the topological notions and
results introduced in Section 3.3 above before proceeding.

Definition 17.1. (X, τ) is disconnected if there exists non-empty open sets U
and V of X such that U∩V = ∅ andX = U∪V . We say {U, V } is a disconnection
of X. The topological space (X, τ) is called connected if it is not disconnected,
i.e. if there are no disconnection of X. If A ⊂ X we say A is connected iff (A, τA)
is connected where τA is the relative topology on A. Explicitly, A is disconnected
in (X, τ) iff there exists U, V ∈ τ such that U ∩ A 6= ∅, U ∩ A 6= ∅, A ∩ U ∩ V = ∅
and A ⊂ U ∪ V.
The reader should check that the following statement is an equivalent definition

of connectivity. A topological space (X, τ) is connected iff the only sets A ⊂ X
which are both open and closed are the sets X and ∅.
Remark 17.2. Let A ⊂ Y ⊂ X. Then A is connected in X iff A is connected in Y .

Proof. Since

τA ≡ {V ∩A : V ⊂ X} = {V ∩A ∩ Y : V ⊂ X} = {U ∩A : U ⊂o Y },
the relative topology on A inherited from X is the same as the relative topology on
A inherited from Y . Since connectivity is a statement about the relative topologies
on A, A is connected in X iff A is connected in Y.
The following elementary but important lemma is left as an exercise to the reader.

Lemma 17.3. Suppose that f : X → Y is a continuous map between topological
spaces. Then f(X) ⊂ Y is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 17.4. Suppose that f : X → Y is a continuous map between topological
spaces, X is connected, Y is Hausdorff, and f is locally constant, i.e. for all x ∈ X
there exists an open neighborhood V of x in X such that f |V is constant. Then f
is constant, i.e. f(X) = {y0} for some y0 ∈ Y. To prove this, let y0 ∈ f(X) and
let W := f−1({y0}). Since Y is Hausdorff, {y0} ⊂ Y is a closed set and since f is
continuous W ⊂ X is also closed. Since f is locally constant, W is open as well
and since X is connected it follows that W = X, i.e. f(X) = {y0} .
Proposition 17.5. Let (X, τ) be a topological space.

(1) If B ⊂ X is a connected set and X is the disjoint union of two open sets
U and V, then either B ⊂ U or B ⊂ V.

(2) a. If A ⊂ X is connected, then Ā is connected.
b. More generally, if A is connected and B ⊂ acc(A), then A ∪ B is

connected as well. (Recall that acc(A) — the set of accumulation points of
A was defined in Definition 3.19 above.)

(3) If {Eα}α∈A is a collection of connected sets such that
T
α∈AEα 6= ∅, then

Y :=
S
α∈AEα is connected as well.

(4) Suppose A,B ⊂ X are non-empty connected subsets of X such that Ā∩B 6=
∅, then A ∪B is connected in X.
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(5) Every point x ∈ X is contained in a unique maximal connected subset Cx of
X and this subset is closed. The set Cx is called the connected component
of x.

Proof.
(1) Since B is the disjoint union of the relatively open sets B∩U and B∩V, we

must have B ∩ U = B or B ∩ V = B for otherwise {B ∩ U,B ∩ V } would
be a disconnection of B.

(2) a. Let Y = Ā equipped with the relative topology from X. Suppose that
U,V ⊂o Y form a disconnection of Y = Ā. Then by 1. either A ⊂ U or
A ⊂ V. Say that A ⊂ U. Since U is both open an closed in Y, it follows that
Y = Ā ⊂ U. Therefore V = ∅ and we have a contradiction to the assumption
that {U, V } is a disconnection of Y = Ā. Hence we must conclude that
Y = Ā is connected as well.
b. Now let Y = A ∪B with B ⊂ acc(A), then

ĀY = Ā ∩ Y = (A ∪ acc(A)) ∩ Y = A ∪B.
Because A is connected in Y, by (2a) Y = A ∪B = ĀY is also connected.

(3) Let Y :=
S
α∈AEα. By Remark 17.2, we know that Eα is connected in Y

for each α ∈ A. If {U, V } were a disconnection of Y, by item (1), either
Eα ⊂ U or Eα ⊂ V for all α. Let Λ = {α ∈ A : Eα ⊂ U} then U = ∪α∈ΛEα

and V = ∪α∈A\ΛEα. (Notice that neither Λ or A \Λ can be empty since U
and V are not empty.) Since

∅ = U ∩ V =
[

α∈Λ,β∈Λc (Eα ∩Eβ) ⊃
\
α∈A

Eα 6= ∅.

we have reached a contradiction and hence no such disconnection exists.
(4) (A good example to keep in mind here is X = R, A = (0, 1) and B = [1, 2).)

For sake of contradiction suppose that {U,V } were a disconnection of Y =
A∪B. By item (1) either A ⊂ U or A ⊂ V, say A ⊂ U in which case B ⊂ V.
Since Y = A∪B we must have A = U and B = V and so we may conclude:
A and B are disjoint subsets of Y which are both open and closed. This
implies

A = ĀY = Ā ∩ Y = Ā ∩ (A ∪B) = A ∪ ¡Ā ∩B¢
and therefore

∅ 6= Ā ∩B ⊂ A ∩B = ∅,
which gives us the desired contradiction.

(5) Let C denote the collection of connected subsets C ⊂ X such that x ∈ C.
Then by item 3., the set Cx := ∪C is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C̄x is also connected by item (2) and Cx is maximal, Cx = C̄x, i.e.
Cx is closed.

Theorem 17.6. The connected subsets of R are intervals.

Proof. Suppose that A ⊂ R is a connected subset and that a, b ∈ A with
a < b. If there exists c ∈ (a, b) such that c /∈ A, then U := (−∞, c) ∩ A and
V := (c,∞)∩A would form a disconnection of A. Hence (a, b) ⊂ A. Let α := inf(A)
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and β := sup(A) and choose αn, βn ∈ A such that αn < βn and αn ↓ α and
βn ↑ β as n → ∞. By what we have just shown, (αn, βn) ⊂ A for all n and hence
(α, β) = ∪∞n=1(αn, βn) ⊂ A. From this it follows that A = (α, β), [α, β), (α, β] or
[α, β], i.e. A is an interval.
Conversely suppose that A is an interval, and for sake of contradiction, suppose

that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After relabeling U and
V if necessary we may assume that a < b. Since A is an interval [a, b] ⊂ A. Let
p = sup ([a, b] ∩ U) , then because U and V are open, a < p < b. Now p can not
be in U for otherwise sup ([a, b] ∩ U) > p and p can not be in V for otherwise
p < sup ([a, b] ∩ U) . From this it follows that p /∈ U ∪ V and hence A 6= U ∪ V
contradicting the assumption that {U, V } is a disconnection.
Definition 17.7. A topological space X is path connected if to every pair of
points {x0, x1} ⊂ X there exists a continuous path σ ∈ C([0, 1],X) such that
σ(0) = x0 and σ(1) = x1. The space X is said to be locally path connected if for
each x ∈ X, there is an open neighborhood V ⊂ X of x which is path connected.

Proposition 17.8. Let X be a topological space.
(1) If X is path connected then X is connected.
(2) If X is connected and locally path connected, then X is path connected.
(3) If X is any connected open subset of Rn, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 17.1 — 17.3
below.

17.2. Product Spaces. Let {(Xα, τα)}α∈A be a collection of topological spaces
(we assume Xα 6= ∅) and let XA =

Q
α∈A

Xα. Recall that x ∈ XA is a function

x : A→
a
α∈A

Xα

such that xα := x(α) ∈ Xα for all α ∈ A. An element x ∈ XA is called a choice
function and the axiom of choice states that XA 6= ∅ provided that Xα 6= ∅ for
each α ∈ A. If each Xα above is the same set X, we will denote XA =

Q
α∈A

Xα by

XA. So x ∈ XA is a function from A to X.

Notation 17.9. For α ∈ A, let πα : XA → Xα be the canonical projection map,
πα(x) = xα. The product topology τ = ⊗α∈Aτα is the smallest topology on XA

such that each projection πα is continuous. Explicitly, τ is the topology generated
by

(17.1) E = {π−1α (Vα) : α ∈ A, Vα ∈ τα}.
A “basic” open set in this topology is of the form

(17.2) V = {x ∈ XA : πα(x) ∈ Vα for α ∈ Λ}
where Λ is a finite subset of A and Vα ∈ τα for all α ∈ Λ. We will sometimes write
V above as

V =
Y
α∈Λ

Vα ×
Y
α/∈Λ

Xα = VΛ ×XA\Λ.

Proposition 17.10. Suppose Y is a topological space and f : Y → XA is a map.
Then f is continuous iff πα ◦ f : Y → Xα is continuous for all α ∈ A.
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Proof. If f is continuous then πα ◦ f is the composition of two continuous
functions and hence is continuous. Conversely if πα ◦ f is continuous for all α ∈ A,
the (πα ◦f)−1(Vα) = f−1(π−1α (Vα)) is open in Y for all α ∈ A and Vα ⊂o Xα. That
is to say, f−1(E) consists of open sets, and therefore f is continuous since E is a
sub-basis for the product topology.

Proposition 17.11. Suppose that (X, τ) is a topological space and {fn} ⊂ XA is
a sequence. Then fn → f in the product topology of XA iff fn(α) → f(α) for all
α ∈ A.

Proof. Since πα is continuous, if fn → f then fn(α) = πα(fn)→ πα(f) = f(α)
for all α ∈ A. Conversely, fn(α) → f(α) for all α ∈ A iff πα(fn) → πα(f) for all
α ∈ A. Therefore if V = π−1α (Vα) ∈ E and f ∈ V, then πα(f) ∈ Vα and πα(fn) ∈ Vα
a.a. and hence fn ∈ V a.a.. This shows that fn → f as n→∞.

Proposition 17.12. Let (Xα, τα) be topological spaces and XA be the product space
with the product topology.

(1) If Xα is Hausdorff for all α ∈ A, then so is XA.
(2) If each Xα is connected for all α ∈ A, then so is XA.

Proof.
(1) Let x, y ∈ XA be distinct points. Then there exists α ∈ A such that

πα(x) = xα 6= yα = πα(y). Since Xα is Hausdorff, there exists disjoint open
sets U, V ⊂ Xα such πα(x) ∈ U and πα(y) ∈ V. Then π−1α (U) and π−1α (V )
are disjoint open sets in XA containing x and y respectively.

(2) Let us begin with the case of two factors, namely assume that X and Y are
connected topological spaces, then we will show that X × Y is connected
as well. To do this let p = (x0, y0) ∈ X × Y and E denote the connected
component of p. Since {x0}×Y is homeomorphic to Y, {x0}×Y is connected
in X × Y and therefore {x0} × Y ⊂ E, i.e. (x0, y) ∈ E for all y ∈ Y. A
similar argument now shows that X × {y} ⊂ E for any y ∈ Y, that is to
X × Y = E. By induction the theorem holds whenever A is a finite set.
For the general case, again choose a point p ∈ XA = XA and let C =

Cp be the connected component of p in XA. Recall that Cp is closed and
therefore if Cp is a proper subset of XA, then XA \ Cp is a non-empty
open set. By the definition of the product topology, this would imply that
XA \ Cp contains an open set of the form

V := ∩α∈Λπ−1α (Vα) = VΛ ×XA\Λ

where Λ ⊂⊂ A and Vα ∈ τα for all α ∈ Λ. We will now show that no such
V can exist and hence XA = Cp, i.e. XA is connected.
Define φ : XΛ → XA by φ(y) = x where

xα =

½
yα if α ∈ Λ
pα if α /∈ Λ.

If α ∈ Λ, πα ◦ φ(y) = yα = πα(y) and if α ∈ A \ Λ then πα ◦ φ(y) = pα
so that in every case πα ◦ φ : XΛ → Xα is continuous and therefore φ is
continuous.
Since XΛ is a product of a finite number of connected spaces it is con-

nected by step 1. above. Hence so is the continuous image, φ(XΛ) =
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XΛ × {pα}α∈A\Λ , of XΛ. Now p ∈ φ(XΛ) and φ(XΛ) is connected implies
that φ(XΛ) ⊂ C. On the other hand one easily sees that

∅ 6= V ∩ φ(XΛ) ⊂ V ∩ C
contradicting the assumption that V ⊂ Cc.

17.3. Tychonoff ’s Theorem. The main theorem of this subsection is that the
product of compact spaces is compact. Before going to the general case an arbitrary
number of factors let us start with only two factors.

Proposition 17.13. Suppose that X and Y are non-empty compact topological
spaces, then X × Y is compact in the product topology.

Proof. Let U be an open cover of X × Y. Then for each (x, y) ∈ X × Y
there exist U ∈ U such that (x, y) ∈ U. By definition of the product topology,
there also exist Vx ∈ τXx and Wy ∈ τYy such that Vx ×Wy ⊂ U. Therefore V :=
{Vx ×Wy : (x, y) ∈ X × Y } is also an open cover of X × Y. We will now show that
V has a finite sub-cover, say V0 ⊂⊂ V. Assuming this is proved for the moment,
this implies that U also has a finite subcover because each V ∈ V0 is contained in
some UV ∈ U . So to complete the proof it suffices to show every cover V of the form
V = {Vα ×Wα : α ∈ A} where Vα ⊂o X and Wα ⊂o Y has a finite subcover.
Given x ∈ X, let fx : Y → X × Y be the map fx(y) = (x, y) and notice that

fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are continuous maps.
From this we conclude that {x} × Y = fx(Y ) is compact. Similarly, it follows that
X × {y} is compact for all y ∈ Y.
Since V is a cover of {x} × Y, there exist Γx ⊂⊂ A such that {x} × Y ⊂S

α∈Γx
(Vα×Wα) without loss of generality we may assume that Γx is chosen so that

x ∈ Vα for all α ∈ Γx. Let Ux ≡
T

α∈Γx
Vα ⊂o X, and notice that

(17.3)
[
α∈Γx

(Vα ×Wα) ⊃
[
α∈Γx

(Ux ×Wα) = Ux × Y,

see Figure 36 below.
Since {Ux}x∈X is now an open cover ofX andX is compact, there exists Λ ⊂⊂ X

such that X = ∪x∈ΛUx. The finite subcollection, V0 := {Vα ×Wα : α ∈ ∪x∈ΛΓx},
of V is the desired finite subcover. Indeed using Eq. (17.3),

∪V0 = ∪x∈Λ ∪α∈Γx (Vα ×Wα) ⊃ ∪x∈Λ (Ux × Y ) = X × Y.

The results of Exercises 3.27 and 6.15 prove Tychonoff’s Theorem for a countable
product of compact metric spaces. We now state the general version of the theorem.

Theorem 17.14 (Tychonoff’s Theorem). Let {Xα}α∈A be a collection of non-
empty compact spaces. Then X := XA =

Q
α∈A

Xα is compact in the product space

topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom of
choice, see Theorem B.7 of Appendix B below. For α ∈ A let πα denote the
projection map from X to Xα. Suppose that F is a family of closed subsets of X
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Figure 36. Constructing the open set Ux.

which has the finite intersection property, see Definition 3.25. By Proposition 3.26
the proof will be complete if we can show ∩F 6= ∅.
The first step is to apply Zorn’s lemma to construct a maximal collection F0

of (not necessarily closed) subsets of X with the finite intersection property. To
do this, let Γ :=

©G ⊂ 2X : F ⊂ Gª equipped with the partial order, G1 < G2 if
G1 ⊂ G2. If Φ is a linearly ordered subset of Γ, then G:= ∪Φ is an upper bound for
Γ which still has the finite intersection property as the reader should check. So by
Zorn’s lemma, Γ has a maximal element F0.
The maximal F0 has the following properties.
(1) If {Fi}ni=1 ⊂ F0 then ∩ni=1Fi ∈ F0 as well. Indeed, if we let (F0)f denote

the collection of all finite intersections of elements from F0, then (F0)f has
the finite intersection property and contains F0. Since F0 is maximal, this
implies (F0)f = F0.

(2) If A ⊂ X and A ∩ F 6= ∅ for all F ∈ F0 then A ∈ F0. For if not F0 ∪
{A} would still satisfy the finite intersection property and would properly
contain F0. this would violate the maximallity of F0.

(3) For each α ∈ A, πa(F0) := {πα(F ) ⊂ Xα : F ∈ F0} has the finite intersec-
tion property. Indeed, if {Fi}ni=1 ⊂ F0, then ∩ni=1πα(Fi) ⊃ πα (∩ni=1Fi) 6= ∅.

Since Xα is compact, item 3. above along with Proposition 3.26 implies
∩F∈F0πα(F ) 6= ∅. Since this true for each α ∈ A, using the axiom of choice,
there exists p ∈ X such that pα = πα(p) ∈ ∩F∈F0πα(F ) for all α ∈ A. The
proof will be completed by showing p ∈ ∩F , hence ∩F is not empty as desired.
Since ∩©F̄ : F ∈ F0ª ⊂ ∩F , it suffices to show p ∈ C := ∩©F̄ : F ∈ F0ª . For
this suppose that U is an open neighborhood of p in X. By the definition of the
product topology, there exists Λ ⊂⊂ A and open sets Uα ⊂ Xα for all α ∈ Λ such
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that p ∈ ∩α∈Λπ−1α (Uα) ⊂ U. Since pα ∈ ∩F∈F0πα(F ) and pα ∈ Uα for all α ∈ Λ,
it follows that Uα ∩ πα(F ) 6= ∅ for all F ∈ F0 and all α ∈ Λ and this implies
π−1α (Uα) ∩ F 6= ∅ for all F ∈ F0 and all α ∈ Λ. By item 2. above we concluded
that π−1α (Uα) ∈ F0 for all α ∈ Λ and by then by item 1., ∩α∈Λπ−1α (Uα) ∈ F0. In
particular ∅ 6= F ∩ ¡∩α∈Λπ−1α (Uα)

¢ ⊂ F ∩ U for all F ∈ F0 which shows p ∈ F̄ for
each F ∈ F0.
17.4. Baire Category Theorem.

Definition 17.15. Let (X, τ) be a topological space. A set E ⊂ X is said to be
nowhere dense if

¡
Ē
¢o
= ∅ i.e. Ē has empty interior.

Notice that E is nowhere dense is equivalent to

X =
¡¡
Ē
¢o¢c

=
¡
Ē
¢c
= (Ec)

o
.

That is to say E is nowhere dense iff Ec has dense interior.

17.5. Baire Category Theorem.

Theorem 17.16 (Baire Category Theorem). Let (X, ρ) be a complete metric space.

(1) If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
(2) If {En}∞n=1 is a sequence of nowhere dense sets, then

S∞
n=1En ⊂S∞

n=1 Ēn & X and in particular X 6= S∞n=1En.

Proof. 1) We must shows that Ḡ = X which is equivalent to showing that
W ∩G 6= ∅ for all non-empty open sets W ⊂ X. Since V1 is dense, W ∩ V1 6= ∅ and
hence there exists x1 ∈ X and �1 > 0 such that

B(x1, �1) ⊂W ∩ V1.
Since V2 is dense, B(x1, �1)∩V2 6= ∅ and hence there exists x2 ∈ X and �2 > 0 such
that

B(x2, �2) ⊂ B(x1, �1) ∩ V2.
Continuing this way inductively, we may choose {xn ∈ X and �n > 0}∞n=1 such that

B(xn, �n) ⊂ B(xn−1, �n−1) ∩ Vn ∀n.
Furthermore we can clearly do this construction in such a way that �n ↓ 0 as
n ↑ ∞. Hence {xn}∞n=1 is Cauchy sequence and x = lim

n→∞xn exists in X since X

is complete. Since B(xn, �n) is closed, x ∈ B(xn, �n) ⊂ Vn so that x ∈ Vn for all
n and hence x ∈ G. Moreover, x ∈ B(x1, �1) ⊂ W ∩ V1 implies x ∈ W and hence
x ∈W ∩G showing W ∩G 6= ∅.
2) The second assertion is equivalently to showing

∅ 6=
Ã ∞[
n=1

Ēn

!c

=
∞\
n=1

¡
Ēn

¢c
=
∞\
n=1

(Ec
n)

o .

As we have observed, En is nowhere dense is equivalent to (Ec
n)

o being a dense
open set, hence by part 1),

T∞
n=1 (E

c
n)

o is dense in X and hence not empty.
Here is another version of the Baire Category theorem when X is a locally

compact Hausdorff space.

Proposition 17.17. Let X be a locally compact Hausdorff space.
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(1) If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
(2) If {En}∞n=1 is a sequence of nowhere dense sets, then X 6= S∞n=1En.

Proof. As in the previous proof, the second assertion is a consequence of the
first. To finish the proof, if suffices to show G ∩W 6= ∅ for all open sets W ⊂ X.
Since V1 is dense, there exists x1 ∈ V1 ∩W and by Proposition 10.13 there exists
U1 ⊂o X such that x1 ∈ U1 ⊂ Ū1 ⊂ V1∩W with Ū1 being compact. Similarly, there
exists a non-empty open set U2 such that U2 ⊂ Ū2 ⊂ U1 ∩ V2. Working inductively,
we may find non-empty open sets {Uk}∞k=1 such that Uk ⊂ Ūk ⊂ Uk−1 ∩ Vk. Since
∩nk=1Ūk = Ūn 6= ∅ for all n, the finite intersection characterization of Ū1 being
compact implies that

∅ 6= ∩∞k=1Ūk ⊂ G ∩W.

Definition 17.18. A subset E ⊂ X is meager or of the first category if E =
∞S
n=1

En where each En is nowhere dense. And a set R ⊂ X is called residual if Rc

is meager.

Remarks 17.19. The reader should think of meager as being the topological ana-
logue of sets of measure 0 and residual as being the topological analogue of sets of
full measure.

(1) R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {En}
such that

Rc = ∪∞n=1En ⊂ ∪∞n=1Ēn.

Taking complements of this equation shows that

∩∞n=1Ēc
n ⊂ R,

i.e. R contains a set of the form ∩∞n=1Vn with each Vn (= Ēc
n) being an

open dense subset of X.
Conversely, if ∩∞n=1Vn ⊂ R with each Vn being an open dense subset of

X, then Rc ⊂ ∪∞n=1V c
n and hence R

c = ∪∞n=1En where each En = Rc ∩ V c
n ,

is a nowhere dense subset of X.
(2) A countable union of meager sets is meager and any subset of a meager set

is meager.
(3) A countable intersection of residual sets is residual.

Remarks 17.20. The Baire Category Theorems may now be stated as follows. If X
is a complete metric space or X is a locally compact Hausdorff space, then

Remark 17.21. (1) all residual sets are dense in X and
(2) X is not meager.
It should also be remarked that incomplete metric spaces may be meager. For ex-

ample, let X ⊂ C([0, 1]) be the subspace of polynomial functions on [0, 1] equipped
with the supremum norm. Then X = ∪∞n=1En where En ⊂ X denotes the subspace
of polynomials of degree less than or equal to n. You are asked to show in Exercise
17.7 below that En is nowhere dense for all n. Hence X is meager and the empty
set is residual in X.
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Here is an application of Theorem 17.16.

Theorem 17.22. Let N ⊂ C([0, 1],R) be the set of nowhere differentiable func-
tions. (Here a function f is said to be differentiable at 0 if f 0(0) := limt↓0

f(t)−f(0)
t

exists and at 1 if f 0(1) := limt↑0
f(1)−f(t)

1−t exists.) Then N is a residual set so the
“generic” continuous functions is nowhere differentiable.

Proof. If f /∈ N , then f 0(x0) exists for some x0 ∈ [0, 1] and by the defi-
nition of the derivative and compactness of [0, 1], there exists n ∈ N such that
|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]. Thus if we define
En := {f ∈ C([0, 1]) : ∃ x0 ∈ [0, 1] 3 |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]} ,

then we have just shown N c ⊂ E := ∪∞n=1En. So to finish the proof it suffices to
show (for each n) En is a closed subset of C([0, 1],R) with empty interior.
1) To prove En is closed, let {fm}∞m=1 ⊂ En be a sequence of functions such that

there exists f ∈ C([0, 1],R) such that kf − fmku → 0 as m → ∞. Since fm ∈ En,
there exists xm ∈ [0, 1] such that
(17.4) |fm(x)− fm(xm)| ≤ n|x− xm| ∀ x ∈ [0, 1].
Since [0, 1] is a compact metric space, by passing to a subsequence if necessary, we
may assume x0 = limm→∞ xm ∈ [0, 1] exists. Passing to the limit in Eq. (17.4),
making use of the uniform convergence of fn → f to show limm→∞ fm(xm) = f(x0),
implies

|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]
and therefore that f ∈ En. This shows En is a closed subset of C([0, 1],R).
2) To finish the proof, we will show E0

n = ∅ by showing for each f ∈ En and
� > 0 given, there exists g ∈ C([0, 1],R) \ En such that kf − gku < �. We now
construct g.
Since [0, 1] is compact and f is continuous there exists N ∈ N such that

|f(x)− f(y)| < �/2 whenever |y − x| < 1/N. Let k denote the piecewise linear
function on [0, 1] such that k(mN ) = f(mN ) for m = 0, 1, . . . , N and k00(x) = 0 for
x /∈ πN := {m/N : m = 0, 1, . . . ,N} . Then it is easily seen that kf − kku < �/2
and for x ∈ (mN , m+1N ) that

|k0(x)| = |f(m+1N )− f(mN )|
1
N

< N�/2.

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M ∈ N be chosen so that 4�M > 2n and define h uniquely by
h(mM ) = (−1)m�/2 for m = 0, 1, . . . ,M and h00(x) = 0 for x /∈ πM . Then khku < �
and |h0(x)| = 4�M > 2n for x /∈ πM . See Figure 37 below.
Finally define g := k + h. Then

kf − gku ≤ kf − kku + khku < �/2 + �/2 = �

and
|g0(x)| ≥ |h0(x)|− |k0 (x)| > 2n− n = n ∀x /∈ πM ∪ πN .

It now follows from this last equation and the mean value theorem that for any
x0 ∈ [0, 1], ¯̄̄̄

g(x)− g(x0)

x− x0

¯̄̄̄
> n
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Figure 37. Constgructing a rough approximation, g, to a contin-
uous function f.

for all x ∈ [0, 1] sufficiently close to x0. This shows g /∈ En and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 17.17.

Proposition 17.23. Suppose that f : R→ R is a function such that f 0(x) exists
for all x ∈ R. Let

U := ∪�>0
(
x ∈ R : sup

|y|<�
|f 0(x+ y)| <∞

)
.

Then U is a dense open set. (It is not true that U = R in general, see Example
16.35 above.)

Proof. It is easily seen from the definition of U that U is open. Let W ⊂o R be
an open subset of R. For k ∈ N, let

Ek :=

½
x ∈W : |f(y)− f(x)| ≤ k |y − x| when |y − x| ≤ 1

k

¾
=

\
z:|z|≤k−1

{x ∈W : |f(x+ z)− f(x)| ≤ k |z|} ,

which is a closed subset of R since f is continuous. Moreover, if x ∈ W and
M = |f 0(x)| , then

|f(y)− f(x)| = |f 0(x) (y − x) + o (y − x)|
≤ (M + 1) |y − x|

for y close to x. (Here o(y−x) denotes a function such that limy→x o(y−x)/(y−x) =
0.) In particular, this shows that x ∈ Ek for all k sufficiently large. Therefore
W= ∪∞k=1Ek and since W is not meager by the Baire category Theorem in Propo-
sition 17.17, some Ek has non-empty interior. That is there exists x0 ∈ Ek ⊂ W
and � > 0 such that

J := (x0 − �, x0 + �) ⊂ Ek ⊂W.

For x ∈ J, we have |f(x+ z)− f(x)| ≤ k |z| provided that |z| ≤ k−1 and therefore
that |f 0(x)| ≤ k for x ∈ J. Therefore x0 ∈ U ∩W showing U is dense.
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Remark 17.24. This proposition generalizes to functions f : Rn → Rm in an obvious
way.

For our next application of Theorem 17.16, let X := BC∞ ((−1, 1)) denote the
set of smooth functions f on (−1, 1) such that f and all of its derivatives are
bounded. In the metric

ρ(f, g) :=
∞X
k=0

2−k
°°f (k) − g(k)

°°
∞

1 +
°°f (k) − g(k)

°°
∞
for f, g ∈ X,

X becomes a complete metric space.

Theorem 17.25. Given an increasing sequence of positive numbers {Mn}∞n=1 , the
set

F :=
½
f ∈ X : lim sup

n→∞

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1

¾
is dense in X. In particular, there is a dense set of f ∈ X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n ∈ N. Choose g ∈ C∞c ((−1, 1)) such that kgk∞ < 2−n

while g0(0) = 2Mn and define

fn(x) :=

Z x

0

dtn−1
Z tn−1

0

dtn−2 . . .
Z t2

0

dt1g(t1).

Then for k < n,

f (k)n (x) =

Z x

0

dtn−k−1
Z tn−k−1

0

dtn−k−2 . . .
Z t2

0

dt1g(t1),

f (n)(x) = g0(x), f (n)n (0) = 2Mn and f
(k)
n satisfies°°°f (k)n

°°°
∞
≤ 2−n

(n− 1− k)!
≤ 2−n for k < n.

Consequently,

ρ(fn, 0) =
∞X
k=0

2−k

°°°f (k)n

°°°
∞

1 +
°°°f (k)n

°°°
∞

≤
n−1X
k=0

2−k2−n +
∞X
k=n

2−k · 1 ≤ 2 ¡2−n + 2−n¢ = 4 · 2−n.
Thus we have constructed fn ∈ X such that limn→∞ ρ(fn, 0) = 0 while f

(n)
n (0) =

2Mn for all n.
Step 2. The set

Gn := ∪m≥n
n
f ∈ X :

¯̄̄
f (m)(0)

¯̄̄
> Mm

o
is a dense open subset of X. The fact that Gn is open is clear. To see that Gn is
dense, let g ∈ X be given and define gm := g + �mfm where �m := sgn(g(m)(0)).
Then ¯̄̄

g(m)m (0)
¯̄̄
=
¯̄̄
g(m)(0)

¯̄̄
+
¯̄̄
f (m)m (0)

¯̄̄
≥ 2Mm > Mm for all m.

Therefore, gm ∈ Gn for all m ≥ n and since

ρ(gm, g) = ρ(fm, 0)→ 0 as m→∞
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it follows that g ∈ Ḡn.
Step 3. By the Baire Category theorem, ∩Gn is a dense subset of X. This

completes the proof of the first assertion since

F =
½
f ∈ X : lim sup

n→∞

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1

¾
= ∩∞n=1

½
f ∈ X :

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1 for some n ≥ m

¾
⊃ ∩∞n=1Gn.

Step 4. Take Mn = (n!)
2 and recall that the power series expansion for f near

0 is given by
P∞

n=0
fn(0)
n! xn. This series can not converge for any f ∈ F and any

x 6= 0 because

lim sup
n→∞

¯̄̄̄
fn(0)

n!
xn
¯̄̄̄
= lim sup

n→∞

¯̄̄̄
¯fn(0)(n!)

2 n!x
n

¯̄̄̄
¯ = lim supn→∞

¯̄̄̄
¯fn(0)(n!)

2

¯̄̄̄
¯ · limn→∞n! |xn| =∞

where we have used limn→∞ n! |xn| =∞ and lim supn→∞
¯̄̄
fn(0)

(n!)2

¯̄̄
≥ 1.

Remark 17.26. Given a sequence of real number {an}∞n=0 there always exists f ∈ X

such that f (n)(0) = an. To construct such a function f, let φ ∈ C∞c (−1, 1) be a
function such that φ = 1 in a neighborhood of 0 and �n ∈ (0, 1) be chosen so that
�n ↓ 0 as n→∞ and

P∞
n=0 |an| �nn <∞. The desired function f can then be defined

by

(17.5) f(x) =
∞X
n=0

an
n!

xnφ(x/�n) =:
∞X
n=0

gn(x).

The fact that f is well defined and continuous follows from the estimate:

|gn(x)| =
¯̄̄an
n!

xnφ(x/�n)
¯̄̄
≤ kφk∞

n!
|an| �nn

and the assumption that
P∞

n=0 |an| �nn <∞. The estimate

|g0n(x)| =
¯̄̄̄

an
(n− 1)!x

n−1φ(x/�n) +
an
n!�n

xnφ0(x/�n)
¯̄̄̄

≤ kφk∞
(n− 1)! |an| �

n−1
n +

kφ0k∞
n!

|an| �nn
≤ (kφk∞ + kφ0k∞) |an| �nn

and the assumption that
P∞

n=0 |an| �nn < ∞ shows f ∈ C1(−1, 1) and f 0(x) =P∞
n=0 g

0
n(x). Similar arguments show f ∈ Ck

c (−1, 1) and f (k)(x) =
P∞

n=0 g
(k)
n (x)

for all x and k ∈ N. This completes the proof since, using φ(x/�n) = 1 for x in a
neighborhood of 0, g(k)n (0) = δk,nak and hence

f (k)(0) =
∞X
n=0

g(k)n (0) = ak.

17.6. Exercises.

Exercise 17.1. Prove item 1. of Proposition 17.8. Hint: show X is not connected
implies X is not path connected.
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Exercise 17.2. Prove item 2. of Proposition 17.8. Hint: fix x0 ∈ X and let W
denote the set of x ∈ X such that there exists σ ∈ C([0, 1],X) satisfying σ(0) = x0
and σ(1) = x. Then show W is both open and closed.

Exercise 17.3. Prove item 3. of Proposition 17.8.

Exercise 17.4. Let

X :=
©
(x, y) ∈ R2 : y = sin(x−1)ª ∪ {(0, 0)}

equipped with the relative topology induced from the standard topology on R2.
Show X is connected but not path connected.

Exercise 17.5. Prove the following strong version of item 3. of Proposition 17.8,
namely to every pair of points x0, x1 in a connected open subset V of Rn there
exists σ ∈ C∞(R, V ) such that σ(0) = x0 and σ(1) = x1. Hint: Use a convolution
argument.

Exercise 17.6. Folland 5.27. Hint: Consider the generalized cantor sets discussed
on p. 39 of Folland.

Exercise 17.7. Let (X, k·k) be an infinite dimensional normed space and E ⊂ X
be a finite dimensional subspace. Show that E ⊂ X is nowhere dense.

Exercise 17.8. Now suppose that (X, k·k) is an infinite dimensional Banach space.
Show that X can not have a countable algebraic basis. More explicitly, there is
no countable subset S ⊂ X such that every element x ∈ X may be written as a
finite linear combination of elements from S. Hint: make use of Exercise 17.7 and
the Baire category theorem.
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18. Banach Spaces II

Theorem 18.1 (Open Mapping Theorem). Let X,Y be Banach spaces, T ∈
L(X,Y ). If T is surjective then T is an open mapping, i.e. T (V ) is open in
Y for all open subsets V ⊂ X.

Proof. For all α > 0 let BX
α = {x ∈ X : kxkX < α} ⊂ X, BY

α =
{y ∈ Y : kykY < α} ⊂ Y and Eα = T (BX

α ) ⊂ Y. The proof will be carried out
by proving the following three assertions.

(1) There exists δ > 0 such that BY
δα ⊂ Eα for all α > 0.

(2) For the same δ > 0, BY
δα ⊂ Eα, i.e. we may remove the closure in assertion

1.
(3) The last assertion implies T is an open mapping.

1. Since Y =
∞S
n−1

En, the Baire category Theorem 17.16 implies there exists

n such that E
0

n 6= ∅, i.e. there exists y ∈ En and � > 0 such that BY (y, �) ⊂ En.
Suppose ky0k < � then y and y + y0 are in BY (y, �) ⊂ En hence there exists
x0, x ∈ BX

n such that kTx0 − (y + y0)k and kTx− yk may be made as small as we
please, which we abbreviate as follows

kTx0 − (y + y0)k ≈ 0 and kTx− yk ≈ 0.
Hence by the triangle inequality,

kT (x0 − x)− y0k = kTx0 − (y + y0)− (Tx− y)k
≤ kTx0 − (y + y0)k+ kTx− yk ≈ 0

with x0 − x ∈ BX
2n. This shows that y

0 ∈ E2n which implies BY (0, �) ⊂ E2n. Since
the map φα : Y → Y given by φα(y) =

α
2ny is a homeomorphism, φα(E2n) = Eα

and φα(B
Y (0, �)) = BY (0, α�2n), it follows that B

Y
δα ⊂ Eα where δ ≡ �

2n > 0.

2. Let δ be as in assertion 1., y ∈ BY
δ and α1 ∈ (kyk /δ, 1). Choose {αn}∞n=2 ⊂

(0,∞) such that P∞n=1 αn < 1. Since y ∈ BY
α1δ
⊂ Eα1 = T

¡
BX
α1

¢
by assertion 1.

there exists x1 ∈ BX
α1 such that ky − Tx1k < α2δ. (Notice that ky − Tx1k can be

made as small as we please.) Similarly, since y−Tx1 ∈ BY
α2δ
⊂ Ēα2 = T

¡
BX
α2

¢
there

exists x2 ∈ BX
α2 such that ky − Tx1 − Tx2k < α3δ. Continuing this way inductively,

there exists xn ∈ BX
αn such that

(18.1) ky −
nX

k=1

Txkk < αn+1δ for all n ∈ N.

Since
∞P
n=1

kxnk <
∞P
n=1

αn < 1, x ≡
∞P
n=1

xn exists and kxk < 1, i.e. x ∈ BX
1 . Passing

to the limit in Eq. (18.1) shows, ky − Txk = 0 and hence y ∈ T (BX
1 ) = E1.

Therefore we have shown BX
δ ⊂ E1. The same scaling argument as above then

shows BX
αδ ⊂ Eα for all α > 0.

3. If x ∈ V ⊂o X and y = Tx ∈ TV we must show that TV contains a
ball BY (y, �) = Tx + BY

� for some � > 0. Now BY (y, �) = Tx + BY
� ⊂ TV iff

BY
� ⊂ TV − Tx = T (V − x). Since V − x is a neighborhood of 0 ∈ X, there exists

α > 0 such that BX
α ⊂ (V − x) and hence by assertion 2., BY

αδ ⊂ TBX
α ⊂ T (V − x)

and therefore BY (y, �) ⊂ TV with � := αδ.
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Corollary 18.2. If X,Y are Banach spaces and T ∈ L(X,Y ) is invertible (i.e. a
bijective linear transformation) then the inverse map, T−1, is bounded, i.e. T−1 ∈
L(Y,X). (Note that T−1 is automatically linear.)

Theorem 18.3 (Closed Graph Theorem). Let X and Y be Banach space T : X →
Y linear is continuous iff T is closed i.e. Γ(T ) ⊂ X × Y is closed.

Proof. If T continuous and (xn, Txn) → (x, y) ∈ X × Y as n → ∞ then
Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ(T ).
Conversely: If T is closed then the following diagram commutes

X Y-
T

Γ(T )

Γ

¡
¡
¡
¡µ

π2
@
@
@
@R

where Γ(x) := (x, Tx).
The map π2 : X × Y → X is continuous and π1|Γ(T ) : Γ(T ) → X is continuous

bijection which implies π1|−1Γ(T ) is bounded by the open mapping Theorem 18.1.

Hence T = π2 ◦ π1|−1Γ(T ) is bounded, being the composition of bounded operators.

As an application we have the following proposition.

Proposition 18.4. Let H be a Hilbert space. Suppose that T : H → H is a linear
(not necessarily bounded) map such that there exists T ∗ : H → H such that

hTx, Y i = hx, T ∗Y i ∀ x, y ∈ H.

Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that xn ∈ H such
that (xn, Txn)→ (x, y) ∈ H ×H. Then for any z ∈ H,

hTxn, zi = hxn, T ∗zi −→ hx, T ∗zi = hTx, zi as n→∞.

On the other hand limn→∞hTxn, zi = hy, zi as well and therefore hTx, zi = hy, zi
for all z ∈ H. This shows that Tx = y and proves that T is closed.
Here is another example.

Example 18.5. Suppose that M ⊂ L2([0, 1],m) is a closed subspace such that
each element of M has a representative in C([0, 1]). We will abuse notation and
simply writeM ⊂ C([0, 1]). Then

(1) There exists A ∈ (0,∞) such that kfk∞ ≤ AkfkL2 for all f ∈M.
(2) For all x ∈ [0, 1] there exists gx ∈M such that

f(x) = hf, gxi for all f ∈M.

Moreover we have kgxk ≤ A.
(3) The subspaceM is finite dimensional and dim(M) ≤ A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, k · k∞) is a complete space. To prove this it suffices to show M
is a closed subspace of C([0, 1]). So let {fn} ⊂ M and f ∈ C([0, 1]) such that
kfn − fk∞ → 0 as n → ∞. Then kfn − fmkL2 ≤ kfn − fmk∞ → 0 as m,n → ∞,
and since M is closed in L2([0, 1]), L2 − limn→∞ fn = g ∈ M. By passing to a
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subsequence if necessary we know that g(x) = limn→∞ fn(x) = f(x) for m - a.e. x.
So f = g ∈M.
i)Let i : (M, k · k∞)→ (M, k · k2) be the identity map. Then i is bounded and

bijective. By the open mapping theorem, j = i−1 is bounded as well. Hence there
exists A <∞ such that kfk∞ = kj(f)k ≤ A kfk2 for all f ∈M.
ii) Let j : (M, k · k2)→ (M, k · k∞) be the identity map. We will shows that j is

a closed operator and hence bounded by the closed graph theorem. Suppose that
fn ∈M such that fn → f in L2 and fn = j(fn) → g in C([0, 1]). Then as in the
first paragraph, we conclude that g = f = j(f) a.e. showing j is closed. Now finish
as in last line of proof i).
2) For x ∈ [0, 1], let ex :M→ C be the evaluation map ex(f) = f(x). Then

|ex(f)| ≤ |f(x)| ≤ kfk∞ ≤ AkfkL2
which shows that ex ∈M∗. Hence there exists a unique element gx ∈M such that

f(x) = ex(f) = hf, gxi for all f ∈M.

Moreover kgxkL2 = kexkM∗ ≤ A.
3) Let {fj}nj=1 be an L2 — orthonormal subset ofM. Then

A2 ≥ kexk2M∗ = kgxk2L2 ≥
nX
j=1

|hfj , gxi|2 =
nX
j=1

|fj(x)|2

and integrating this equation over x ∈ [0, 1] implies that

A2 ≥
nX
j=1

Z 1

0

|fj(x)|2dx =
nX
j=1

1 = n

which shows that n ≤ A2. Hence dim(M) ≤ A2.

Remark 18.6. Keeping the notation in Example 18.5, G(x, y) = gx(y) for all x, y ∈
[0, 1]. Then

f(x) = ex(f) =

Z 1

0

f(y)G(x, y)dy for all f ∈M.

The function G is called the reproducing kernel forM.

The above example generalizes as follows.

Proposition 18.7. Suppose that (X,M, µ) is a finite measure space, p ∈ [1,∞)
andW is a closed subspace of Lp(µ) such thatW ⊂ Lp(µ)∩L∞(µ). Then dim(W ) <
∞.

Proof. With out loss of generality we may assume that µ(X) = 1. As in Example
18.5, we shows thatW is a closed subspace of L∞(µ) and hence by the open mapping
theorem, there exists a constant A < ∞ such that kfk∞ ≤ A kfkp for all f ∈ W.
Now if 1 ≤ p ≤ 2, then

kfk∞ ≤ A kfkp ≤ A kfk2
and if p ∈ (2,∞), then kfkpp ≤ kfk22 kfkp−2∞ or equivalently,

kfkp ≤ kfk2/p2 kfk1−2/p∞ ≤ kfk2/p2

³
A kfkp

´1−2/p
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from which we learn that kfkp ≤ A1−2/p kfk2 and therefore that kfk∞ ≤
AA1−2/p kfk2 so that in any case there exists a constant B < ∞ such that
kfk∞ ≤ B kfk2 .
Let {fn}Nn=1 be an orthonormal subset of W and f =

PN
n=1 cnfn with cn ∈ C,

then °°°°°
NX
n=1

cnfn

°°°°°
2

∞
≤ B2

NX
n=1

|cn|2 ≤ B2 |c|2

where |c|2 :=PN
n=1 |cn|2 . For each c ∈ CN , there is an exception set Ec such that

for x /∈ Ec, ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 .

Let D := (Q+ iQ)N and E = ∩c∈DEc. Then µ(E) = 0 and for x /∈ E,¯̄̄PN
n=1 cnfn(x)

¯̄̄
≤ B2 |c|2 for all c ∈ D. By continuity it then follows for x /∈ E

that ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 for all c ∈ CN .

Taking cn = fn(x) in this inequality implies that¯̄̄̄
¯
NX
n=1

|fn(x)|2
¯̄̄̄
¯
2

≤ B2
NX
n=1

|fn(x)|2 for all x /∈ E

and therefore that
NX
n=1

|fn(x)|2 ≤ B2 for all x /∈ E.

Integrating this equation over x then implies that N ≤ B2, i.e. dim(W ) ≤ B2.

Theorem 18.8 (Uniform Boundedness Principle). Let X and Y be a normed vector
spaces, A ⊂ L(X,Y ) be a collection of bounded linear operators from X to Y,

F = FA = {x ∈ X : sup
A∈A

kAxk <∞} and
R = RA = F c = {x ∈ X : sup

A∈A
kAxk =∞}.(18.2)

(1) If sup
A∈A

kAk <∞ then F = X.

(2) If F is not meager, then sup
A∈A

kAk <∞.

(3) If X is a Banach space, F is not meager iff sup
A∈A

kAk <∞. In particular,

if sup
A∈A

kAxk <∞ for all x ∈ X then sup
A∈A

kAk <∞.

(4) If X is a Banach space, then sup
A∈A

kAk =∞ iff R is residual. In particular

if sup
A∈A

kAk =∞ then sup
A∈A

kAxk =∞ for x in a dense subset of X.
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Proof. 1. If M := sup
A∈A

kAk < ∞, then sup
A∈A

kAxk ≤ M kxk < ∞ for all x ∈ X

showing F = X.
2. For each n ∈ N, let En ⊂ X be the closed sets given by

En = {x : sup
A∈A

kAxk ≤ n} =
\
A∈A

{x : kAxk ≤ n}.

Then F = ∪∞n=1En which is assumed to be non-meager and hence there exists
an n ∈ N such that En has non-empty interior. Let Bx(δ) be a ball such that
Bx(δ) ⊂ En. Then for y ∈ X with kyk = δ we know x − y ∈ Bx(δ) ⊂ En, so that
Ay = Ax−A(x− y) and hence for any A ∈ A,

kAyk ≤ kAxk+ kA(x− y)k ≤ n+ n = 2n.

Hence it follows that kAk ≤ 2n/δ for all A ∈ A, i.e. sup
A∈A

kAk ≤ 2n/δ <∞.

3. If X is a Banach space, F = X is not meager by the Baire Category Theorem
17.16. So item 3. follows from items 1. and 2 and the fact that F = X iff
sup
A∈A

kAxk <∞ for all x ∈ X.

4. Item 3. is equivalent to F is meager iff sup
A∈A

kAk = ∞. Since R = F c, R is

residual iff F is meager, so R is residual iff sup
A∈A

kAk =∞.

Remarks 18.9. Let S ⊂ X be the unit sphere in X, fA(x) = Ax for x ∈ S and
A ∈ A.

(1) The assertion sup
A∈A

kAxk < ∞ for all x ∈ X implies sup
A∈A

kAk < ∞ may

be interpreted as follows. If supA∈A kfA (x)k < ∞ for all x ∈ S, then
sup
A∈A

kfAku <∞ where kfAku := supx∈S kfA (x)k = kAk .
(2) If dim(X) < ∞ we may give a simple proof of this assertion. Indeed

if {en}Nn=1 ⊂ S is a basis for X there is a constant � > 0 such that°°°PN
n=1 λnen

°°° ≥ �
PN

n=1 |λn| and so the assumption supA∈A kfA (x)k <∞
implies

sup
A∈A

kAk = sup
A∈A

sup
λ6=0

°°°PN
n=1 λnAen

°°°°°°PN
n=1 λnen

°°° ≤ supA∈A
sup
λ6=0

PN
n=1 |λn| kAenk
�
PN

n=1 |λn|
≤ �−1 sup

A∈A
sup
n
kAenk = �−1 sup

n
sup
A∈A

kAenk <∞.

Notice that we have used the linearity of each A ∈ A in a crucial way.
(3) If we drop the linearity assumption, so that fA ∈ C(S, Y ) for all A ∈ A

— some index set, then it is no longer true that supA∈A kfA (x)k < ∞
for all x ∈ S, then sup

A∈A
kfAku < ∞. The reader is invited to construct a

counter example when X = R2 and Y = R by finding a sequence {fn}∞n=1
of continuous functions on S1 such that limn→∞ fn(x) = 0 for all x ∈ S1

while limn→∞ kfnkC(S1) =∞.

(4) The assumption that X is a Banach space in item 3.of Theorem 18.8 can
not be dropped. For example, let X ⊂ C([0, 1]) be the polynomial functions
on [0, 1] equipped with the uniform norm k·ku and for t ∈ (0, 1], let ft(x) :=
(x(t)− x(0)) /t for all x ∈ X. Then limt→0 ft(x) = d

dt |0x(t) and therefore
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supt∈(0,1] |ft(x)| <∞ for all x ∈ X. If the conclusion of Theorem 18.8 (item
3.) were true we would have M := supt∈(0,1] kftk < ∞. This would then
imply ¯̄̄̄

x(t)− x(0)

t

¯̄̄̄
≤M kxku for all x ∈ X and t ∈ (0, 1].

Letting t ↓ 0 in this equation gives, |ẋ(0)| ≤ M kxku for all x ∈ X. But
taking x(t) = tn in this inequality shows M =∞.

Example 18.10. Suppose that {cn}∞n=1 ⊂ C is a sequence of numbers such that

lim
N→∞

NX
n=1

ancn exists in C for all a ∈ c1.

Then c ∈ c∞.

Proof. Let fN ∈
¡
c1
¢∗
be given by fN (a) =

PN
n=1 ancn and set MN :=

max {|cn| : n = 1, . . . , N} . Then
|fN (a)| ≤MN kakc1

and by taking a = ek with k such MN = |ck| , we learn that kfNk = MN . Now by
assumption, limN→∞ fN (a) exists for all a ∈ c1 and in particular,

sup
N
|fN (a)| <∞ for all a ∈ c1.

So by the Theorem 18.8,

∞ > sup
N
kfNk = sup

N
MN = sup {|cn| : n = 1, 2, 3, . . . } .

18.1. Applications to Fourier Series. Let T = S1 be the unit circle in S1 andm
denote the normalized arc length measure on T. So if f : T → [0,∞) is measurable,
then Z

T

f(w)dw :=

Z
T

fdm :=
1

2π

Z π

−π
f(eiθ)dθ.

Also let φn(z) = zn for all n ∈ Z. Recall that {φn}n∈Z is an orthonormal basis for
L2(T ). For n ∈ N let

sn(f, z) :=
nX

k=−n
hf, φniφk(z) =

nX
k=−n

hf, φnizk =
nX

k=−n

µZ
T

f(w)w̄kdw

¶
zk

=

Z
T

f(w)

Ã
nX

k=−n
w̄kzk

!
dw =

Z
T

f(w)dn(zw̄)dw

where dn(α) :=
Pn

k=−n α
k. Now αdn(α)− dn(α) = αn+1 − α−n, so that

dn(α) :=
nX

k=−n
αk =

αn+1 − α−n

α− 1
with the convention that

αn+1 − α−n

α− 1 |α=1 = lim
α→1

αn+1 − α−n

α− 1 = 2n+ 1 =
nX

k=−n
1k.
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Writing α = eiθ, we find

Dn(θ) := dn(e
iθ) =

eiθ(n+1) − e−iθn

eiθ − 1 =
eiθ(n+1/2) − e−iθ(n+1/2)

eiθ/2 − e−iθ/2

=
sin(n+ 1

2 )θ

sin 12θ
.

Recall by Hilbert space theory, L2(T ) — limn→∞ sn(f, ·) = f for all f ∈ L2(T ). We
will now show that the convergence is not pointwise for all f ∈ C(T ) ⊂ L2(T ).

Proposition 18.11. For each z ∈ T, there exists a residual set Rz ⊂ C(T ) such
that supn |sn(f, z)| =∞ for all f ∈ Rz. Recall that C(T ) is a complete metric space,
hence Rz is a dense subset of C(T ).

Proof. By symmetry considerations, it suffices to take z = 1 ∈ T. Let Λn :
C(T )→ C be given by

Λnf := sn(f, 1) =

Z
T

f(w)dn(w̄)dw.

From Corollary 15.42 we know that

kΛnk = kdnk1 =
Z
T

|dn(w̄)| dw

=
1

2π

Z π

−π

¯̄
dn(e

−iθ)
¯̄
dθ =

1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2)θ

sin 12θ

¯̄̄̄
dθ.(18.3)

which can also be proved directly as follows. Since

|Λnf | =
¯̄̄̄Z
T

f(w)dn(w̄)dw

¯̄̄̄
≤
Z
T

|f(w)dn(w̄)| dw ≤ kfk∞
Z
T

|dn(w̄)| dw,

we learn kΛnk ≤
R
T
|dn(w̄)| dw. Since C(T ) is dense in L1(T ), there exists fk ∈

C(T,R) such that fk(w)→ sgndk(w̄) in L1. By replacing fk by (fk ∧ 1) ∨ (−1) we
may assume that kfkk∞ ≤ 1. It now follows that

kΛnk ≥ |Λnfk|
kfkk∞

≥
¯̄̄̄Z
T

fk(w)dn(w̄)dw

¯̄̄̄
and passing to the limit as k →∞ implies that kΛnk ≥

R
T
|dn(w̄)| dw.

Since

sinx =

Z x

0

cos ydy ≤
Z x

0

|cos y| dy ≤ x

for all x ≥ 0. Since sinx is odd, |sinx| ≤ |x| for all x ∈ R. Using this in Eq. (18.3)
implies that

kΛnk ≥ 1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2)θ
1
2θ

¯̄̄̄
dθ =

2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
.

=
2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
=

Z (n+ 1
2 )π

0

|sin y| dy
y
→∞ as n→∞

and hence supn kΛnk =∞. So by Theorem 18.8,

R1 = {f ∈ C(T ) : sup
n
|Λnf | =∞}

is a residual set.
See Rudin Chapter 5 for more details.
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Lemma 18.12. For f ∈ L1(T ), let

f̃(n) := hf, φni =
Z
T

f(w)w̄ndw.

Then f̃ ∈ c0 := C0(Z) (i.e limn→∞ f̃(n) = 0) and the map f ∈ L1(T )→ f̃ ∈ c0 is
a one to one bounded linear transformation into but not onto c0.

Proof. By Bessel’s inequality,
P

n∈Z
¯̄̄
f̃(n)

¯̄̄2
< ∞ for all f ∈ L2(T ) and in

particular lim|n|→∞
¯̄̄
f̃(n)

¯̄̄
= 0. Given f ∈ L1(T ) and g ∈ L2(T ) we have¯̄̄

f̃(n)− ĝ(n)
¯̄̄
=

¯̄̄̄Z
T

[f(w)− g(w)] w̄ndw

¯̄̄̄
≤ kf − gk1

and hence

lim sup
n→∞

¯̄̄
f̃(n)

¯̄̄
= lim sup

n→∞

¯̄̄
f̃(n)− ĝ(n)

¯̄̄
≤ kf − gk1

for all g ∈ L2(T ). Since L2(T ) is dense in L1(T ), it follows that lim supn→∞
¯̄̄
f̃(n)

¯̄̄
=

0 for all f ∈ L1, i.e. f̃ ∈ c0.

Since
¯̄̄
f̃(n)

¯̄̄
≤ kfk1 , we have

°°°f̃°°°
c0
≤ kfk1 showing that Λf := f̃ is a bounded

linear transformation from L1(T ) to c0.
To see that Λ is injective, suppose f̃ = Λf ≡ 0, then

R
T
f(w)p(w, w̄)dw = 0

for all polynomials p in w and w̄. By the Stone - Wierestrass and the dominated
convergence theorem, this implies thatZ

T

f(w)g(w)dw = 0

for all g ∈ C(T ). Lemma 11.7 now implies f = 0 a.e.
If Λ were surjective, the open mapping theorem would imply that Λ−1 : c0 →

L1(T ) is bounded. In particular this implies there exists C <∞ such that

(18.4) kfkL1 ≤ C
°°°f̃°°°

c0
for all f ∈ L1(T ).

Taking f = dn, we find
°°°d̃n°°°

c0
= 1 while limn→∞ kdnkL1 = ∞ contradicting Eq.

(18.4). Therefore RanΛ) 6= c0.

18.2. Hahn Banach Theorem. Our next goal is to show that continuous dual
X∗ of a Banach space X is always large. This will be the content of the Hahn —
Banach Theorem 18.16 below.

Proposition 18.13. Let X be a complex vector space over C. If f ∈ X∗ and
u = Ref ∈ X∗R then

(18.5) f(x) = u(x)− iu(ix).

Conversely if u ∈ X∗R and f is defined by Eq. (18.5), then f ∈ X∗ and kukX∗R =kfkX∗ . More generally if p is a semi-norm on X, then

|f | ≤ p iff u ≤ p.
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Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx) = au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear.
Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that kuk ≤ kfk. For x ∈ X choose

λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so

|f(x)| = f(λx) = u(λx) ≤ kuk kλxk = kukkxk.
Since x ∈ X is arbitrary, this shows that kfk ≤ kuk so kfk = kuk.38
For the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.

Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x). Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.

Definition 18.14 (Minkowski functional). p : X → R is a Minkowski functional if
(1) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
(2) p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 18.15. Suppose that X = R and
p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .

Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =

½
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ, then
x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]
38

Proof. To understand better why kfk = kuk, notice that
kfk2 = sup

kxk=1
|f(x)|2 = sup

kxk=1
(|u(x)|2 + |u(ix)|2).

Supppose that M = sup
kxk=1

|u(x)| and this supremum is attained at x0 ∈ X with kx0k = 1.

Replacing x0 by −x0 if necessary, we may assume that u(x0) = M. Since u has a maximum at
x0,

0 =
d

dt

¯̄̄̄
0

u

µ
x0 + itx0

kx0 + itx0k
¶

=
d

dt

¯̄̄̄
0

½
1

|1 + it| (u(x0) + tu(ix0))

¾
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√
1 + t2 = 0.This explains why kfk = kuk.
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which shows that p(x + y) ≤ λ + µ = p(x) + p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

λa+ µb = (λ+ µ)

µ
λ

λ+ µ
a+

µ

λ+ µ
b

¶
∈ (λ+ µ) [−1, 2]

since [−1, 2] is a convex set and λ
λ+µ +

µ
λ+µ = 1.

TODO: Add in the relationship to convex sets and separation theorems, see Reed
and Simon Vol. 1. for example.

Theorem 18.16 (Hahn-Banach). Let X be a real vector space, M ⊂ X be a
subspace f : M → R be a linear functional such that f ≤ p on M . Then there
exists a linear functional F : X → R such that F |M = f and F ≤ p.

Proof. Step (1) We show for all x ∈ X \M there exists and extension F to
M ⊕ Rx with the desired properties. If F exists and α = F (x), then for all y ∈M
and λ ∈ R we must have f(y)+λα = F (y+λx) ≤ p(y+λx) i.e. λα ≤ p(y+λx)−f(y).
Equivalently put we must find α ∈ R such that

α ≤ p(y + λx)− f(y)

λ
for all y ∈M and λ > 0

α ≥ p(z − µx)− f(z)

µ
for all z ∈M and µ > 0.

So if α ∈ R is going to exist, we have to prove, for all y, z ∈M and λ, µ > 0 that

f(z)− p(z − µx)

µ
≤ p(y + λx)− f(y)

λ

or equivalently

f(λz + µy) ≤ µp(y + λx) + λp(z − µx)(18.6)

= p(µy + µλx) + p(λz − λµx).

But by assumtion and the triangle inequality for p,

f(λz + µy) ≤ p(λz + µy) = p(λz + µλx+ λz − λµx)

≤ p(λz + µλx) + p(λz − λµx)

which shows that Eq. (18.6) is true and by working backwards, there exist an α ∈ R
such that f(y) + λα ≤ p(y + λx). Therefore F (y + λx) := f(y) + λα is the desired
extension.
Step (2) Let us now write F : X → R to mean F is defined on a linear subspace

D(F ) ⊂ X and F : D(F ) → R is linear. For F,G : X → R we will say F ≺ G if
D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F. Let

F = {F : X → R : f ≺ F and F ≤ p on D(F )}.
Then (F ,≺) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly ordered
subset of F) then Φ has an upper bound G ∈ F defined by D(G) =

S
F∈Φ

D(F )

and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that D(G) is a linear
subspace, G ∈ F , and F ≺ G for all F ∈ Φ. We may now apply Zorn’s Lemma
(see Theorem B.7) to conclude there exists a maximal element F ∈ F . Necessarily,
D(F ) = X for otherwise we could extend F by step (1), violating the maximality
of F. Thus F is the desired extension of f.
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The use of Zorn’s lemma in Step (2) above may be avoided in the case that
X may be written as M ⊕ span(β) where β := {xn}∞n=1 is a countable subset of
X. In this case f : M → R may be extended to a linear functional F : X → R
with the desired properties by step (1) and induction. If p(x) is a norm on X and
X =M ⊕ span(β) with β as above, then this function F constructed above extends
by continuity to X.

Corollary 18.17. Suppose that X is a complex vector space, p : X → [0,∞) is a
semi-norm, M ⊂ X is a linear subspace, and f : M → C is linear functional such
that |f(x)| ≤ p(x) for all x ∈ M. Then there exists F ∈ X 0 (X 0 is the algebraic
dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p onM and hence by Theorem 18.16, there exists
U ∈ X 0

R such that U |M = u and U ≤ p on M . Define F (x) = U(x)− iU(ix) then
as in Proposition 18.13, F = f on M and |F | ≤ p.

Theorem 18.18. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that kfk = 1, f(x) = δ = d(x,M) and
f = 0 on M .

Proof. Define h :M ⊕ Cx→ C by h(m+λx) ≡ λδ for all m ∈M and λ ∈ C.
Then

khk := sup
m∈M and λ6=0

|λ| δ
km+ λxk = sup

m∈M and λ6=0
δ

kx+m/λk =
δ

δ
= 1

and by the Hahn-Banach theorem there exists f ∈ X∗ such that f |M⊕Cx = h and
kfk ≤ 1. Since 1 = khk ≤ kfk ≤ 1, it follows that kfk = 1.
Corollary 18.19. The linear map x ∈ X → x̂ ∈ X∗∗ where x̂(f) = f(x) for all
x ∈ X is an isometry. (This isometry need not be surjective.)

Proof. Since |x̂(f)| = |f(x)| ≤ kfkX∗ kxkX for all f ∈ X∗, it follows that
kx̂kX∗∗ ≤ kxkX . Now applying Theorem 18.18 with M = {0} , there exists f ∈ X∗

such that kfk = 1 and |x̂(f)| = f(x) = kxk , which shows that kx̂kX∗∗ ≥ kxkX .
This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since isometries are necessarily
injective, we are done.

Definition 18.20. A Banach space X is reflexive if the map x ∈ X → x̂ ∈ X∗∗ is
surjective.

Example 18.21. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem, Proposition 12.15.

Example 18.22. Suppose that µ is a σ — finite measure on a measurable space
(X,M), then Lp(X,M, µ) is reflexive for all p ∈ (1,∞), see Theorem 15.14.

Example 18.23 (Following Riesz and Nagy, p. 214). The Banach space X :=
C([0, 1]) is not reflexive. To prove this recall thatX∗ may be identified with complex
measures µ on [0, 1] which may be identified with right continuous functions of
bounded variation (F ) on [0, 1], namely

F → µF → (f ∈ X →
Z
[0,1]

fdµF =

Z 1

0

fdF ).
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Define λ ∈ X∗∗ by

λ(µ) =
X

x∈[0,1]
µ({x}) =

X
x∈[0,1]

(F (x)− F (x−)) ,

so λ(µ) is the sum of the “atoms” of µ. Suppose there existed an f ∈ X such that
λ(µ) =

R
[0,1]

fdµ for all µ ∈ X∗. Choosing µ = δx for some x ∈ (0, 1) would then
imply that

f(x) =

Z
[0,1]

fδx = λ(δx) = 1

showing f would have to be the constant function,1, which clearly can not work.

Example 18.24. The Banach space X := L1([0, 1],m) is not reflexive. As we
have seen in Theorem 15.14, X∗ ∼= L∞([0, 1],m). The argument in Example 15.15
shows (L∞([0, 1],m))∗ À L1([0, 1],m). Recall in that example, we show there exists
L ∈ X∗∗ ∼= (L∞([0, 1],m))∗ such that L(f) = f(0) for all f in the closed subspace,
C([0, 1]) of X∗. If there were to exist a g ∈ X such that ĝ = L, we would have

(18.7) f(0) = L(f) = ĝ(φf ) = φf (g) :=

Z 1

0

f(x)g(x)dx

for all f ∈ C([0, 1]) ⊂ L∞([0, 1],m). Taking f ∈ Cc((0, 1]) in this equation and
making use of Lemma 11.7, it would follow that g(x) = 0 for a.e. x ∈ (0, 1]. But
this is clearly inconsistent with Eq. (18.7).

18.3. Weak and Strong Topologies.

Definition 18.25. Let X and Y be be a normed vector spaces and L(X,Y ) the
normed space of bounded linear transformations from X to Y.

(1) The weak topology on X is the topology generated by X∗, i.e. sets of
the form

N = ∩ni=1{x ∈ X : |fi(x)− fi(x0)| < �}
where fi ∈ X∗ and � > 0 form a neighborhood base for the weak topology
on X at x0.

(2) The weak-∗ topology on X∗ is the topology generated by X, i.e.

N ≡ ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < �}
where xi ∈ X and � > 0 forms a neighborhood base for the weak—∗ topology
on X∗ at f ∈ X∗.

(3) The strong operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

(4) The weak operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Theorem 18.26 (Alaoglu’s Theorem). If X is a normed space the unit ball in X∗

is weak - ∗ compact.
Proof. For all x ∈ X let Dx = {z ∈ C : |z| ≤ kxk}. Then Dx ⊂ C is a

compact set and so by Tychonoff’s Theorem Ω ≡ Q
x∈X

Dx is compact in the product

topology. If f ∈ C∗ := {f ∈ X∗ : kfk ≤ 1}, |f(x)| ≤ kfk kxk ≤ kxk which implies
that f(x) ∈ Dx for all x ∈ X, i.e. C∗ ⊂ Ω. The topology on C∗ inherited from
the weak—∗ topology on X∗ is the same as that relative topology coming from the
product topology on Ω. So to finish the proof it suffices to show C∗ is a closed
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subset of the compact space Ω. To prove this let πx(f) = f(x) be the projection
maps. Then

C∗ = {f ∈ Ω : f is linear}
= {f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0 for all x, y ∈ X and c ∈ C}
=

\
x,y∈X

\
c∈C
{f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0}

=
\

x,y∈X

\
c∈C

(πx+cy − πx − cπy)
−1
({0})

which is closed because (πx+cy − πx − cπy) : Ω→ C is continuous.
Theorem 18.27 (Alaoglu’s Theorem for separable spaces). Suppose that X is a
separable Banach space, C∗ := {f ∈ X∗ : kfk ≤ 1} is the closed unit ball in X∗ and
{xn}∞n=1 is an countable dense subset of C := {x ∈ X : kxk ≤ 1} . Then

(18.8) ρ(f, g) :=
∞X
n=1

1

2n
|f(xn)− g(xn)|

defines a metric on C∗ which is compatible with the weak topology on C∗, τC∗ :=
(τw∗)C∗ = {V ∩ C : V ∈ τw∗} . Moreover (C∗, ρ) is a compact metric space.
Proof. The routine check that ρ is a metric is left to the reader. Let τρ be

the topology on C∗ induced by ρ. For any g ∈ X and n ∈ N, the map f ∈ X∗ →
(f(xn)− g(xn))∈C is τw∗ continuous and since the sum in Eq. (18.8) is uniformly
convergent for f ∈ C∗, it follows that f → ρ(f, g) is τC∗ — continuous. This implies
the open balls relative to ρ are contained in τC∗ and therefore τρ ⊂ τC∗ .
We now wish to prove τC∗ ⊂ τρ. Since τC∗ is the topology generated by

{x̂|C∗ : x ∈ C} , it suffices to show x̂ is τρ — continuous for all x ∈ C. But given x ∈ C
there exists a subsequence yk := xnk of {xn}∞n=1 such that such that x = limk→∞ yk.
Since

sup
f∈C∗

|x̂(f)− ŷk(f)| = sup
f∈C∗

|f(x− yk)| ≤ kx− ykk→ 0 as k →∞,

ŷk → x̂ uniformly on C∗ and using ŷk is τρ — continuous for all k (as is easily
checked) we learn x̂ is also τρ continuous. Hence τC∗ = τ(x̂|C∗ : x ∈ X) ⊂ τρ.
The compactness assertion follows from Theorem 18.26. The compactness as-

sertion may also be verified directly using: 1) sequential compactness is equivalent
to compactness for metric spaces and 2) a Cantor’s diagonalization argument as in
the proof of Theorem 12.38. (See Proposition 19.16 below.)

18.4. Weak Convergence Results. The following is an application of theorem
3.48 characterizing compact sets in metric spaces.

Proposition 18.28. Suppose that (X, ρ) is a complete separable metric space and
µ is a probability measure on B = σ(τρ). Then for all � > 0, there exists K� @@ X
such that µ(K�) ≥ 1− �.

Proof. Let {xk}∞k=1 be a countable dense subset of X. Then X = ∪kCxk(1/n)
for all n ∈ N. Hence by continuity of µ, there exists, for all n ∈ N, Nn < ∞ such
that µ(Fn) ≥ 1− �2−n where Fn := ∪Nn

k=1Cxk(1/n). Let K := ∩∞n=1Fn then

µ(X \K) = µ(∪∞n=1F c
n) ≤

∞X
n=1

µ(F c
n) =

∞X
n=1

(1− µ(Fn)) ≤
∞X
n=1

�2−n = �
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so that µ(K) ≥ 1−�.MoreoverK is compact since K is closed and totally bounded;
K ⊂ Fn for all n and each Fn is 1/n — bounded.

Definition 18.29. A sequence of probability measures {Pn}∞n=1 is said to converge
to a probability P if for every f ∈ BC(X), Pn(f)→ P (f). This is actually weak-*
convergence when viewing Pn ∈ BC(X)∗.

Proposition 18.30. The following are equivalent:
(1) Pn

w→ P as n→∞
(2) Pn(f)→ P (f) for every f ∈ BC(X) which is uniformly continuous.
(3) lim supn→∞ Pn(F ) ≤ P (F ) for all F @ X.
(4) lim infn→∞ Pn(G) ≥ P (G) for all G ⊂o X.
(5) limn→∞ Pn(A) = P (A) for all A ∈ B such that P (bd(A)) = 0.
Proof. 1. =⇒ 2. is obvious. For 2. =⇒ 3.,

(18.9) φ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1
0 if t ≥ 1

and let fn(x) := φ(nd(x, F )). Then fn ∈ BC(X, [0, 1]) is uniformly continuous,
0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n → ∞. Passing to the limit n → ∞ in the
equation

0 ≤ Pn(F ) ≤ Pn(fm)

gives
0 ≤ lim sup

n→∞
Pn(F ) ≤ P (fm)

and then letting m→∞ in this inequality implies item 3.
3. ⇐⇒ 4. Assuming item 3., let F = Gc, then

1− lim inf
n→∞Pn(G) = lim sup

n→∞
(1− Pn(G)) = lim sup

n→∞
Pn(G

c)

≤ P (Gc) = 1− P (G)

which implies 4. Similarly 4. =⇒ 3.
3. ⇐⇒ 5. Recall that bd(A) = Ā \ Ao, so if P (bd(A)) = 0 and 3. (and hence

also 4. holds) we have

lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (A) and

lim inf
n→∞Pn(A) ≥ lim inf

n→∞Pn(A
o) ≥ P (Ao) = P (A)

from which it follows that limn→∞ Pn(A) = P (A). Conversely, let F @ X and set
Fδ := {x ∈ X : ρ(x,F ) ≤ δ} . Then

bd(Fδ) ⊂ Fδ \ {x ∈ X : ρ(x, F ) < δ} = {x ∈ X : ρ(x, F ) = δ} =: Aδ.

Since {Aδ}δ>0 are all disjoint, we must haveX
δ>0

P (Aδ) ≤ P (X) ≤ 1

and in particular the set Λ := {δ > 0 : P (Aδ) > 0} is at most countable. Let δn /∈ Λ
be chosen so that δn ↓ 0 as n→∞, then

P (Fδm) = lim
n→∞Pn(Fδn) ≥ lim sup

n→∞
Pn(F ).

Let m→∞ this equation to conclude P (F ) ≥ lim supn→∞ Pn(F ) as desired.
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To finish the proof we will now show 3. =⇒ 1. By an affine change of variables
it suffices to consider f ∈ C(X, (0, 1)) in which case we have

(18.10)
kX
i=1

(i− 1)
k

1{ (i−1)k ≤f< i
k} ≤ f ≤

kX
i=1

i

k
1{ (i−1)k ≤f< i

k}.

Let Fi :=
©
i
k ≤ f

ª
and notice that Fk = ∅, then we for any probability P that

(18.11)
kX
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)] ≤ P (f) ≤
kX
i=1

i

k
[P (Fi−1)− P (Fi)] .

Now
kX
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)] =
kX
i=1

(i− 1)
k

P (Fi−1)−
kX
i=1

(i− 1)
k

P (Fi)

=
k−1X
i=1

i

k
P (Fi)−

kX
i=1

i− 1
k

P (Fi) =
1

k

k−1X
i=1

P (Fi)

and
kX
i=1

i

k
[P (Fi−1)− P (Fi)] =

kX
i=1

i− 1
k

[P (Fi−1)− P (Fi)] +
kX
i=1

1

k
[P (Fi−1)− P (Fi)]

=
k−1X
i=1

P (Fi) +
1

k

so that Eq. (18.11) becomes,

1

k

k−1X
i=1

P (Fi) ≤ P (f) ≤ 1

k

k−1X
i=1

P (Fi) + 1/k.

Using this equation with P = Pn and then with P = P we find

lim sup
n→∞

Pn(f) ≤ lim sup
n→∞

"
1

k

k−1X
i=1

Pn(Fi) + 1/k

#

≤ 1

k

k−1X
i=1

P (Fi) + 1/k ≤ P (f) + 1/k.

≤
Since k is arbitary,

lim sup
n→∞

Pn(f) ≤ P (f).

This inequality also hold for 1− f and this implies lim infn→∞ Pn(f) ≥ P (f) and
hence limn→∞ Pn(f) = P (f) as claimed.
Let Q := [0, 1]N and for a, b ∈ Q let

d(a, b) :=
∞X
n=1

1

2n
|an − bn|

as in Notation 10.19 and recall that in this metric (Q, d) is a complete metric space
that τd is the product topology on Q, see Exercises 3.27 and 6.15.
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Theorem 18.31. To every separable metric space (X, ρ), there exists a continuous
injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeomorphism. In
short, any separable metrizable space X is homeomorphic to a subset of (Q, d).

Remark 18.32. Notice that if we let ρ0(x, y) := d(G(x), G(y)), then ρ0 induces the
same topology on X as ρ and G : (X, ρ0)→ (Q, d) is isometric.

Proof. Let D = {xn}∞n=1 be a countable dense subset of X and for m,n ∈ N let
fm,n(x) := 1− φ (mρ(xn, x)),

where φ is as in Eq. (18.9). Then fm,n = 0 if ρ(x, xn) < 1/m and fm,n = 1 if
ρ(x, xn) > 2/m. Let {gk}∞k=1 be an enumeration of {fm,n : m,n ∈ N} and define
G : X → Q by

G(x) = (g1(x), g2(x), . . . ) ∈ Q.

We will now show G : X → G(X) ⊂ Q is a homeomorphism. To show G is injective
suppose x, y ∈ X and ρ(x, y) = δ ≥ 1/m. In this case we may find xn ∈ X such that
ρ(x, xn) ≤ 1

2m , ρ(y, xn) ≥ δ− 1
2m ≥ 1

2m and hence f4m,n(y) = 1 while f4m,n(y) = 0.
From this it follows that G(x) 6= G(y) if x 6= y and hence G is injective.
The continuity of G is a consequence of the continuity of each of the components

gi of G. So it only remains to show G−1 : G(X) → X is continuous. Given
a = G(x) ∈ G(X) ⊂ Q and � > 0, choose m ∈ N and xn ∈ X such that ρ(xn, x) <
1
2m < �

2 . Then fm,n(x) = 0 and for y /∈ B(xn,
2
m), fm,n(y) = 1. So if k is chosen so

that gk = fm,n, we have shown that for

d(G(y),G(x)) ≥ 2−k for y /∈ B(xn, 2/m)

or equivalently put, if

d(G(y), G(x)) < 2−k then y ∈ B(xn, 2/m) ⊂ B(x, 1/m) ⊂ B(x, �).

This shows that if G(y) is sufficiently close to G(x) then ρ(y, x) < �, i.e. G−1 is
continuous at a = G(x).

Definition 18.33. Let X be a topological space. A collection of probability mea-
sures Λ on (X,BX) is said to be tight if for every � > 0 there exists a compact set
K� ∈ BX such that P (K�) ≥ 1− � for all P ∈ Λ.
Theorem 18.34. Suppose X is a separable metrizable space and Λ = {Pn}∞n=1
is a tight sequence of probability measures on BX . Then there exists a subsequence
{Pnk}∞k=1 which is weakly convergent to a probability measure P on BX .
Proof. First suppose that X is compact. In this case C(X) is a Banach space

which is separable by the Stone — Weirstrass theorem. By the Riesz theorem,
Corollary 15.42, we know that C(X)∗ is in one to one correspondence with complex
measure on (X,BX). We have also seen that C(X)∗ is metrizable and the unit ball
in C(X)∗ is weak - * compact. Hence there exists a subsequence {Pnk}∞k=1 which is
weak -* convergent to a probability measure P on X. Alternatively, use the cantor’s
diagonalization procedure on a countable dense set Γ ⊂ C(X) so find {Pnk}∞k=1 such
that Λ(f) := limk→∞ Pnk(f) exists for all f ∈ Γ. Then for g ∈ C(X) and f ∈ Γ,
we have

|Pnk(g)− Pnl(g)| ≤ |Pnk(g)− Pnk(f)|+ |Pnk(f)− Pnl(f)|+ |Pnl(f)− Pnl(g)|
≤ 2 kg − fk∞ + |Pnk(f)− Pnl(f)|
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which shows

lim sup
k,l→∞

|Pnk(g)− Pnl(g)| ≤ 2 kg − fk∞ .

Letting f ∈ Λ tend to g in C(X) shows lim supk,l→∞ |Pnk(g)− Pnl(g)| = 0 and
hence Λ(g) := limk→∞ Pnk(g) for all g ∈ C(X). It is now clear that Λ(g) ≥ 0 for all
g ≥ 0 so that Λ is a positive linear functional on X and thus there is a probability
measure P such that Λ(g) = P (g).
For the general case, by Theorem 18.31 we may assume that X is a subset of

a compact metric space which we will denote by X̄. We now extend Pn to X̄ by
setting P̄n(A) := P̄n(A ∩ X̄) for all A ∈ BX̄ . By what we have just proved, there
is a subsequence

©
P̄ 0k := P̄nk

ª∞
k=1

such that P̄ 0k converges weakly to a probability
measure P̄ on X̄. The main thing we now have to prove is that “P̄ (X) = 1,” this
is where the tightness assuption is going to be used.
Given � > 0, let K� ⊂ X be a compact set such that P̄n(K�) ≥ 1 − � for all n.

Since K� is compact in X it is compact in X̄ as well and in particular a closesd
subset of X̄. Therefore by Proposition 18.30

P̄ (K�) ≥ lim sup
k→∞

P̄
0
k(K�) = 1− �.

Since � > 0 is arbitary, this shows with X0 := ∪∞n=1K1/n satisfies P̄ (X0) = 1.

Because X0 ∈ BX ∩ BX̄ , we may view P̄ as a measure on BX by letting P (A) :=
P̄ (A ∩X0) for all A ∈ BX .
Given a closed subset F ⊂ X, choose F̃ @ X̄ such that F = F̃ ∩X. Then

lim sup
k→∞

P 0k(F ) = lim sup
k→∞

P̄ 0k(F̃ ) ≤ P̄ (F̃ ) = P̄ (F̃ ∩X0) = P (F ),

which shows P 0k
w→ P.

18.5. Supplement: Quotient spaces, adjoints, and more reflexivity.

Definition 18.35. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined by¡
A†f

¢
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the subspace

Nul(A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and
N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Proposition 18.36 (Basic Properties). (1) kAk = °°A†°° and A††x̂ = cAx for
all x ∈ X.

(2) M0 and N⊥ are always closed subspace of X∗ and X respectively.
(3)

¡
M0

¢⊥
= M̄.

(4) N̄ ⊂ ¡N⊥¢0 with equality when X is reflexive.
(5) Nul(A) = RanA†)⊥ and Nul(A†) = Ran(A)0. Moreover, Ran(A) =

Nul(A†)⊥ and if X is reflexive, then Ran(A†) = Nul(A)0.
(6) X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = cX∗ ⊕ X̂0.

Proof.
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(1)

kAk = sup
kxk=1

kAxk = sup
kxk=1

sup
kfk=1

|f(Ax)|

= sup
kfk=1

sup
kxk=1

¯̄
A†f(x)

¯̄
= sup

kfk=1

°°A†f°° = °°A†°° .
(2) This is an easy consequence of the assumed continuity off all linear func-

tionals involved.
(3) If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈ ¡M0

¢⊥
. Therefore

M̄ ⊂ ¡M0
¢⊥

. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0 while

f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈ ¡M0
¢⊥
and we have

shown
¡
M0

¢⊥ ⊂ M̄.

(4) It is again simple to showN ⊂ ¡N⊥¢0 and therefore N̄ ⊂ ¡N⊥¢0 .Moreover,
as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0 while ψ(f) 6= 0.
If X is reflexive, ψ = x̂ for some x ∈ X and since g(x) = ψ(g) = 0 for
all g ∈ N̄, we have x ∈ N⊥. On the other hand, f(x) = ψ(f) 6= 0 so
f /∈ ¡N⊥¢0 . Thus again ¡N⊥¢0 ⊂ N̄ .

(5)

Nul(A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
©
x ∈ X : A†f(x) = 0 ∀ f ∈ X∗

ª
=
©
x ∈ X : g(x) = 0 ∀ g ∈ Ran(A†)ª = Ran(A†)⊥.

Similarly,

Nul(A†) =
©
f ∈ Y ∗ : A†f = 0

ª
=
©
f ∈ Y ∗ : (A†f)(x) = 0 ∀ x ∈ X

ª
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}
=
©
f ∈ Y ∗ : f |Ran(A) = 0

ª
= Ran(A)0.

(6) Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) = ψ(x̂) for all x ∈ X and set
ψ0 := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ0(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ0 ∈ X̂0 and we have shown X∗∗∗ = cX∗+ X̂0. If ψ ∈ cX∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X,

i.e. f = 0 so ψ = 0. Therefore X∗∗∗ = cX∗ ⊕ X̂0 as claimed. If X is
reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = cX∗, i.e. X∗

is reflexive. Conversely if X∗ is reflexive we conclude that X̂0 = {0} and
therefore X∗∗ = {0}⊥ =

³
X̂0
´⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J†→ J†f̂ ∈ X∗

is the identity map since
³
J†f̂

´
(x) = f̂(Jx) = f̂(x̂) = x̂(f) = f(x) for all

x ∈ X. Thus it follows that X∗ ˆ→ X∗∗∗ is invertible iff J† is its inverse
which can happen iff Nul(J†) = {0} . But as above Nul(J†) = RanJ)0
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which will be zero iff Ran(J) = X∗∗ and since J is an isometry this is
equivalent to saying RanJ) = X∗∗. So we have again shown X∗ is reflexive
iff X is reflexive.

Theorem 18.37. Let X be a Banach space, M ⊂ X be a proper closed subspace,
X/M the quotient space, π : X → X/M the projection map π(x) = x +M for
x ∈ X and define the quotient norm on X/M by

kπ(x)kX/M = kx+MkX/M = inf
m∈M

kx+mkX .

Then

(1) k·kX/M is a norm on X/M.

(2) The projection map π : X → X/M has norm 1, kπk = 1.
(3) (X/M, k·kX/M ) is a Banach space.
(4) If Y is another normed space and T : X → Y is a bounded linear transfor-

mation such that M ⊂ Nul(T ), then there exists a unique linear transfor-
mation S : X/M → Y such that T = S ◦ π and moreover kTk = kSk .

Proof. 1) Clearly kx+Mk ≥ 0 and if kx+Mk = 0, then there exists mn ∈M
such that kx +mnk → 0 as n → ∞, i.e. x = lim

n→∞mn ∈ M̄ = M. Since x ∈ M,

x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

kcx+Mk = inf
m∈M

kcx+mk = |c| inf
m∈M

kx+m/ck = |c| kx+Mk

becausem/c runs throughM asm runs throughM. Let x1, x2 ∈ X andm1,m2 ∈M
then

kx1 + x2 +Mk ≤ kx1 + x2 +m1 +m2k ≤ kx1 +m1k+ kx2 +m2k.
Taking infinums over m1,m2 ∈M then implies

kx1 + x2 +Mk ≤ kx1 +Mk+ kx2 +Mk.
and we have completed the proof the (X/M, k · k) is a normed space.
2) Since kπ(x)k = infm∈M kx+mk ≤ kxk for all x ∈ X, kπk ≤ 1. To see kπk = 1,

let x ∈ X \M so that π(x) 6= 0. Given α ∈ (0, 1), there exists m ∈M such that

kx+mk ≤ α−1 kπ(x)k .
Therefore,

kπ(x+m)k
kx+mk =

kπ(x)k
kx+mk ≥

α kx+mk
kx+mk = α

which shows kπk ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that kπ(x)k = 1.
3) Let π(xn) ∈ X/M be a sequence such that

P kπ(xn)k < ∞. As above there
exists mn ∈ M such that kπ(xn)k ≥ 1

2kxn + mnk and hence
P kxn + mnk ≤

2
P kπ(xn)k <∞. SinceX is complete, x :=

∞P
n=1
(xn+mn) exists inX and therefore

by the continuity of π,

π(x) =
∞X
n=1

π(xn +mn) =
∞X
n=1

π(xn)

showing X/M is complete.
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4) The existence of S is guaranteed by the “factor theorem” from linear algebra.
Moreover kSk = kTk because

kTk = kS ◦ πk ≤ kSk kπk = kSk
and

kSk = sup
x/∈M

kS(π(x))k
kπ(x)k = sup

x/∈M

kTxk
kπ(x)k

≥ sup
x/∈M

kTxk
kxk = sup

x6=0
kTxk
kxk = kTk .

Theorem 18.38. Let X be a Banach space. Then

(1) Identifying X with X̂ ⊂ X∗∗, the weak — ∗ topology on X∗∗ induces the
weak topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a homeo-
morphism when X is equipped with its weak topology and X̂ with the relative
topology coming from the weak-∗ topology on X∗∗.

(2) X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
(3) Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then

Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak — ∗ topology on X∗∗..
(4) X is reflexive iff C is weakly compact.

Proof.
(1) The weak — ∗ topology on X∗∗ is generated byn

f̂ : f ∈ X∗
o
= {ψ ∈ X∗∗ → ψ(f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂(f) = f(x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
(2) A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

(18.12) N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < �}
for some {fk}nk=1 ⊂ X∗ and � > 0. be given. We must now find x ∈ X such
that x̂ ∈ N , or equivalently so that

(18.13) |x̂(fk)− λ(fk)| = |fk(x)− λ(fk)| < � for k = 1, 2, . . . , n.

In fact we will show there exists x ∈ X such that λ(fk) = fk(x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discard-
ing some of the fk’s if necessary, assume that {fk}nk=1 is a linearly in-
dependent set. Since the {fk}nk=1 are linearly independent, the map
x ∈ X → (f1(x), . . . , fn(x)) ∈ Cn is surjective (why) and hence there
exists x ∈ X such that

(18.14) (f1(x), . . . , fn(x)) = Tx = (λ (f1) , . . . , λ(fn))

as desired.
(3) Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of λ as

in Eq. (18.12). Working as before, given � > 0, we need to find x ∈ C
such that Eq. (18.13). It will be left to the reader to verify that it suffices
again to assume {fk}nk=1 is a linearly independent set. (Hint: Suppose that
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{f1, . . . , fm} were a maximal linearly dependent subset of {fk}nk=1 , then
each fk with k > m may be written as a linear combination {f1, . . . , fm} .)
As in the proof of item 2., there exists x ∈ X such that Eq. (18.14)
holds. The problem is that x may not be in C. To remedy this, let N :=
∩nk=1Nul(fk) = Nul(T ), π : X → X/N ∼= Cn be the projection map and f̄k
∈ (X/N)

∗ be chosen so that fk = f̄k ◦ π for k = 1, 2, . . . , n. Then we have
produced x ∈ X such that

(λ (f1) , . . . , λ(fn)) = (f1(x), . . . , fn(x)) = (f̄1(π(x)), . . . , f̄n(π(x))).

Since
©
f̄1, . . . , f̄n

ª
is a basis for (X/N)∗ we find

kπ(x)k = sup
α∈Cn\{0}

¯̄Pn
i=1 αif̄i(π(x))

¯̄°°Pn
i=1 αif̄i

°° = sup
α∈Cn\{0}

|Pn
i=1 αiλ(fi)|

kPn
i=1 αifik

= sup
α∈Cn\{0}

|λ(Pn
i=1 αifi)|

kPn
i=1 αifik

≤ kλk sup
α∈Cn\{0}

kPn
i=1 αifik

kPn
i=1 αifik

= 1.

Hence we have shown kπ(x)k ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that kyk < α and (λ (f1) , . . . , λ(fn)) =
(f1(y), . . . , fn(y)). Hence

|λ(fi)− fi(y/α)| ≤
¯̄
fi(y)− α−1fi(y)

¯̄ ≤ (1− α−1) |fi(y)|
which can be arbitrarily small (i.e. less than �) by choosing α sufficiently
close to 1.

(4) Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak
- ∗ compact and hence by item 1., C is weakly compact in X. Conversely
if C is weakly compact, then Ĉ ⊂ C∗∗ is weak — ∗ compact being the
continuous image of a continuous map. Since the weak — ∗ topology on
X∗∗ is Hausdorff, it follows that Ĉ is weak — ∗ closed and so by item 3,

C∗∗ = Ĉ
weak—∗

= Ĉ. So if λ ∈ X∗∗, λ/ kλk ∈ C∗∗ = Ĉ, i.e. there exists
x ∈ C such that x̂ = λ/ kλk . This shows λ = (kλkx)ˆ and therefore
X̂ = X∗∗.

18.6. Exercises.

18.6.1. More Examples of Banach Spaces.

Exercise 18.1. Let (X,M) be a measurable space and M(X) denote the space
of complex measures on (X,M) and for µ ∈ M(X) let kµk ≡ |µk(X). Show
(M(X), k·k) is a Banach space. (Move to Section 16.)
Exercise 18.2. Folland 5.9, p. 155.

Exercise 18.3. Folland 5.10, p. 155.

Exercise 18.4. Folland 5.11, p. 155.
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18.6.2. Hahn-Banach Theorem Problems.

Exercise 18.5. Folland 5.17, p. 159.

Exercise 18.6. Folland 5.18, p. 159.

Exercise 18.7. Folland 5.19, p. 160.

Exercise 18.8. Folland 5.20, p. 160.

Exercise 18.9. Folland 5.21, p. 160.

Exercise 18.10. Let X be a Banach space such that X∗ is separable. Show X
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e. suppose
D ⊂ X∗ \{0} is a countable dense subset of X∗, for c ∈ D choose xc ∈ X such that
kxck = 1 and |c(xc)| ≥ 1

2kck.
Exercise 18.11. Folland 5.26.

Exercise 18.12. Give another proof Corollary 4.10 based on Remark 4.8. Hint:
the Hahn Banach theorem implies

kf(b)− f(a)k = sup
λ∈X∗, λ6=0

|λ(f(b))− λ(f(a))|
kλk .

18.6.3. Baire Category Result Problems.

Exercise 18.13. Folland 5.29, p. 164.

Exercise 18.14. Folland 5.30, p. 164.

Exercise 18.15. Folland 5.31, p. 164.

Exercise 18.16. Folland 5.32, p. 164.

Exercise 18.17. Folland 5.33, p. 164.

Exercise 18.18. Folland 5.34, p. 164.

Exercise 18.19. Folland 5.35, p. 164.

Exercise 18.20. Folland 5.36, p. 164.

Exercise 18.21. Folland 5.37, p. 165.

Exercise 18.22. Folland 5.38, p. 165.

Exercise 18.23. Folland 5.39, p. 165.

Exercise 18.24. Folland 5.40, p. 165.

Exercise 18.25. Folland 5.41, p. 165.

18.6.4. Weak Topology and Convergence Problems.

Exercise 18.26. Folland 5.47, p. 171.

Definition 18.39. A sequence {xn}∞n=1 ⊂ X is weakly Cauchy if for all V ∈ τw
such that 0 ∈ V, xn − xm ∈ V for all m,n sufficiently large. Similarly a sequence
{fn}∞n=1 ⊂ X∗ is weak—∗ Cauchy if for all V ∈ τw∗ such that 0 ∈ V, fn− fm ∈ V
for all m,n sufficiently large.
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Remark 18.40. These conditions are equivalent to {f(xn)}∞n=1 being Cauchy for all
f ∈ X∗ and {fn(x)}∞n=1 being Cauchy for all x ∈ X respectively.

Exercise 18.27. Folland 5.48, p. 171.

Exercise 18.28. Folland 5.49, p. 171.

Exercise 18.29. land 5.50, p. 172.

Exercise 18.30. Let X be a Banach space. Show every weakly compact subset of
X is norm bounded and every weak—∗ compact subset of X∗ is norm bounded.

Exercise 18.31. Folland 5.51, p. 172.

Exercise 18.32. Folland 5.53, p. 172.
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19. Weak and Strong Derivatives

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ,m) and Lploc(Ω) = Lploc(Ω,BΩ,m), where m is Lebesgue measure on BRd
and BΩ is the Borel σ — algebra on Ω. If Ω = Rd, we will simply write Lp and Lploc
for Lp(Rd) and Lploc(Rd) respectively. Also let

hf, gi :=
Z
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω). For
example, by Hölder’s inequality, if hf, gi is defined for f ∈ Lp(Ω) and g ∈ Lq(Ω)
when q = p

p−1 .

Definition 19.1. A sequence {un}∞n=1 ⊂ Lploc(Ω) is said to converge to u ∈ Lploc(Ω)
if limn→∞ ku− unkLq(K) = 0 for all compact subsets K ⊂ Ω.
The following simple but useful remark will be used (typically without further

comment) in the sequel.

Remark 19.2. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 + q−1 and ft → f
in Lp(Ω) and gt → g in Lq(Ω) as t→ 0, then ftgt → fg in Lr(Ω). Indeed,

kftgt − fgkr = k(ft − f) gt + f (gt − g)kr
≤ kft − fkp kgtkq + kfkp kgt − gkq → 0 as t→ 0

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Ω) (u ∈ Lploc(Ω))
then ∂vu is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there exists a function
g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that

(19.1) hu, ∂vφi = −hg, φi for all φ ∈ C∞c (Ω).

The function g if it exists will be denoted by ∂
(w)
v u. Similarly if α ∈ Nd0 and ∂α is

as in Notation 11.10, we say ∂αu exists weakly in Lp(Ω) (Lploc(Ω)) iff there exists
g ∈ Lp(Ω) (Lploc(Ω)) such that

hu, ∂αφi = (−1)|α|hg, φi for all φ ∈ C∞c (Ω).

More generally if p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn, then p(∂)u exists
weakly in Lp(Ω) (Lploc(Ω)) iff there exists g ∈ Lp(Ω) (Lploc(Ω)) such that

(19.2) hu, p(−∂)φi = hg, φi for all φ ∈ C∞c (Ω)

and we denote g by w−p(∂)u.
By Corollary 11.28, there is at most one g ∈ L1loc(Ω) such that Eq. (19.2) holds,

so w−p(∂)u is well defined.
Lemma 19.4. Let p(ξ) be a polynomial on Rd, k = deg (p) ∈ N, and u ∈ L1loc(Ω)
such that p(∂)u exists weakly in L1loc(Ω). Then

(1) suppm(w−p(∂)u) ⊂ suppm(u), where suppm(u) is the essential support of
u relative to Lebesgue measure, see Definition 11.14.

(2) If deg p = k and u|U ∈ Ck (U,C) for some open set U ⊂ Ω, then w−p(∂)u =
p (∂)u a.e. on U.

Proof.
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(1) Since

hw−p(∂)u, φi = −hu, p(−∂)φi = 0 for all φ ∈ C∞c (Ω \ suppm(u)),
an application of Corollary 11.28 shows w−p(∂)u = 0 a.e. on Ω \
suppm(u). So by Lemma 11.15, Ω \ suppm(u) ⊂ Ω \ suppm(w−p(∂)u), i.e.
suppm(w−p(∂)u) ⊂ suppm(u).

(2) Suppose that u|U is Ck and let ψ ∈ C∞c (U). (We view ψ as a function
in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U.) By Corollary 11.25, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γu = 0 on Rd \ supp(γ) we may view γu ∈ Ck

c (Rd) and
so by standard integration by parts (see Lemma 11.26) and the ordinary
product rule,

hw−p(∂)u, ψi = hu, p(−∂)ψi = −hγu, p(−∂)ψi
= hp(∂) (γu) , ψi = hp(∂)u, ψi(19.3)

wherein the last equality we have γ is constant on supp(ψ). Since Eq.
(19.3) is true for all ψ ∈ C∞c (U), an application of Corollary 11.28 with
h = w−p(∂)u− p (∂)u and µ = m shows w−p(∂)u = p (∂)u a.e. on U.

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing p (∂)u
for w−p(∂)u. So in the sequel we will always interpret p(∂)u in the weak or “dis-
tributional” sense.

Example 19.6. Suppose u(x) = |x| for x ∈ R, then ∂u(x) = sgn(x) in L1loc (R)
while ∂2u(x) = 2δ(x) so ∂2u(x) does not exist weakly in L1loc (R) .

Example 19.7. Suppose d = 2 and u(x, y) = 1y>x. Then u ∈ L1loc
¡
R2
¢
, while

∂x1y>x = −δ (y − x) and ∂y1y>x = δ (y − x) and so that neither ∂xu or ∂yu exists
weakly. On the other hand (∂x + ∂y)u = 0 weakly. To prove these assertions,
notice u ∈ C∞

¡
R2 \∆¢ where ∆ = ©(x, x) : x ∈ R2ª . So by Lemma 19.4, for any

polynomial p (ξ) without constant term, if p (∂)u exists weakly then p (∂)u = 0.
However,

hu,−∂xφi = −
Z
y>x

φx(x, y)dxdy = −
Z
R
φ(y, y)dy,

hu,−∂yφi = −
Z
y>x

φy(x, y)dxdy =

Z
R
φ(x, x)dx and

hu,−(∂x + ∂y)φi = 0
from which it follows that ∂xu and ∂yu can not be zero while (∂x + ∂y)u = 0.
On the other hand if p(ξ) and q (ξ) are two polynomials and u ∈ L1loc (Ω) is a

function such that p(∂)u exists weakly in L1loc (Ω) and q (∂) [p (∂)u] exists weakly
in L1loc (Ω) then (qp) (∂)u exists weakly in L1loc (Ω) . This is because

hu, (qp) (−∂)φi = hu, p (−∂) q(−∂)φi
= hp (∂)u, q(−∂)φi = hq(∂)p (∂)u, φi for all φ ∈ C∞c (Ω) .

Example 19.8. Let u(x, y) = 1x>0 + 1y>0 in L1loc
¡
R2
¢
. Then ∂xu(x, y) = δ(x)

and ∂yu(x, y) = δ(y) so ∂xu(x, y) and ∂yu(x, y) do not exist weakly in L1loc
¡
R2
¢
.

However ∂y∂xu does exists weakly and is the zero function. This shows ∂y∂xu may
exists weakly despite the fact both ∂xu and ∂yu do not exists weakly in L1loc

¡
R2
¢
.
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Lemma 19.9. Suppose u ∈ L1loc (Ω) and p(ξ) is a polynomial of degree k such that
p (∂)u exists weakly in L1loc (Ω) then

(19.4) hp (∂)u, φi = hu, p (−∂)φi for all φ ∈ Ck
c (Ω) .

Note: The point here is that Eq. (19.4) holds for all φ ∈ Ck
c (Ω) not just φ ∈

C∞c (Ω) .

Proof. Let φ ∈ Ck
c (Ω) and choose η ∈ C∞c (B (0, 1)) such that

R
Rd η(x)dx = 1

and let η�(x) := �−dη(x/�). Then η� ∗ φ ∈ C∞c (Ω) for � sufficiently small and
p (−∂) [η� ∗ φ] = η� ∗ p (−∂)φ → p (−∂)φ and η� ∗ φ → φ uniformly on compact
sets as � ↓ 0. Therefore by the dominated convergence theorem,

hp (∂)u, φi = lim
�↓0
hp (∂)u, η� ∗ φi = lim

�↓0
hu, p (−∂) (η� ∗ φ)i = hu, p (−∂)φi.

Lemma 19.10 (Product Rule). Let u ∈ L1loc(Ω), v ∈ Rd and φ ∈ C1(Ω). If ∂(w)v u

exists in L1loc(Ω), then ∂
(w)
v (φu) exists in L1loc(Ω) and

∂(w)v (φu) = ∂vφ · u+ φ∂(w)v u a.e.

Moreover if φ ∈ C1c (Ω) and F := φu ∈ L1 (here we define F on Rd by setting F = 0
on Rd \ Ω ), then ∂(w)F = ∂vφ · u+ φ∂

(w)
v u exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then using Lemma 19.9,

−hφu, ∂vψi = −hu, φ∂vψi = −hu, ∂v (φψ)− ∂vφ · ψi = h∂(w)v u, φψi+ h∂vφ · u,ψi
= hφ∂(w)v u,ψi+ h∂vφ · u,ψi.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω) such
that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(φ). So for ψ ∈ C∞c (Rd), using
∂vγ = 0 on supp(φ) and γψ ∈ C∞c (Ω), we find

hF, ∂vψi = hγF, ∂vψi = hF, γ∂vψi = h(φu) , ∂v (γψ)− ∂vγ · ψi
= h(φu) , ∂v (γψ)i = −h∂(w)v (φu) , (γψ)i
= −h∂vφ · u+ φ∂(w)v u, γψi = −h∂vφ · u+ φ∂(w)v u, ψi.

This show ∂
(w)
v F = ∂vφ · u+ φ∂

(w)
v u as desired.

Lemma 19.11. Suppose q ∈ [1,∞), p(ξ) is a polynomial in ξ ∈ Rd and u ∈ Lqloc(Ω).
If there exists {um}∞m=1 ⊂ Lqloc(Ω) such that p (∂)um exists in Lqloc(Ω) for all m
and there exists g ∈ Lqloc(Ω) such that for all φ ∈ C∞c (Ω),

lim
m→∞hum, φi = hu, φi and lim

m→∞hp (∂)um, φi = hg, φi

then p (∂)u exists in Lqloc(Ω) and p (∂)u = g.

Proof. Since

hu, p (∂)φi = lim
m→∞hum, p (∂)φi = − lim

m→∞hp (∂)um, φi = hg, φi

for all φ ∈ C∞c (Ω), p (∂)u exists and is equal to g ∈ Lqloc(Ω).
Conversely we have the following proposition.
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Proposition 19.12 (Mollification). Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a col-
lection of polynomials in ξ ∈ Rd and u ∈ Lqloc(Ω) such that pl(∂)u exists weakly in
Lqloc(Ω) for l = 1, 2, . . . , N. Then there exists un ∈ C∞c (Ω) such that un → u in
Lqloc(Ω) and pl (∂)un → pl (∂)u in Lqloc(Ω) for l = 1, 2, . . . , N.

Proof. Let η ∈ C∞c (B(0, 1)) such that
R
Rd ηdm = 1 and η�(x) := �−dη(x/�)

be as in the proof of Lemma 19.9. For any function f ∈ L1loc (Ω) , � > 0 and
x ∈ Ω� := {y ∈ Ω : dist(y,Ωc) > �} , let

f�(x) := f ∗ η�(x) := 1Ωf ∗ η�(x) =
Z
Ω

f(y)η�(x− y)dy.

Notice that f� ∈ C∞(Ω�) and Ω� ↑ Ω as � ↓ 0.
Given a compact set K ⊂ Ω let K� := {x ∈ Ω : dist(x,K) ≤ �} . Then K� ↓ K as

� ↓ 0, there exists �0 > 0 such that K0 := K�0 is a compact subset of Ω0 := Ω�0 ⊂ Ω
(see Figure 38) and for x ∈ K,

f ∗ η�(x) :=
Z
Ω

f(y)η�(x− y)dy =

Z
K�

f(y)η�(x− y)dy.

Therefore, using Theorem 11.21,

0

Ω

Figure 38. The geomentry of K ⊂ K0 ⊂ Ω0 ⊂ Ω.

kf ∗ η� − fkLp(K) = k(1K0f) ∗ η� − 1K0fkLp(K) ≤ k(1K0f) ∗ η� − 1K0fkLp(Rd) → 0 as � ↓ 0.
Hence, for all f ∈ Lqloc(Ω), f ∗ η� ∈ C∞(Ω�) and

(19.5) lim
�↓0
kf ∗ η� − fkLp(K) = 0.

Now let p(ξ) be a polynomial on Rd, u ∈ Lqloc(Ω) such that p (∂)u ∈ Lqloc(Ω) and
v� := η� ∗ u ∈ C∞(Ω�) as above. Then for x ∈ K and � < �0,

p(∂)v�(x) =

Z
Ω

u(y)p(∂x)η�(x− y)dy =

Z
Ω

u(y)p(−∂y)η�(x− y)dy

=

Z
Ω

u(y)p(−∂y)η�(x− y)dy = hu, p(∂)η�(x− ·)i
= hp(∂)u, η�(x− ·)i = (p(∂)u)� (x).(19.6)
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From Eq. (19.6) we may now apply Eq. (19.5) with f = u and f = pl(∂)u for
1 ≤ l ≤ N to find

kv� − ukLp(K) +
NX
l=1

kpl(∂)v� − pl(∂)ukLp(K) → 0 as � ↓ 0.

For n ∈ N, let
Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 1/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n → ∞ or see Lemma 10.10)

and choose ψn ∈ C∞c (K
o
n+1, [0, 1]), using Corollary 11.25, so that ψn = 1 on a

neighborhood of Kn. Choose �n ↓ 0 such that Kn+1 ⊂ Ω�n and

kv�n − ukLp(Kn)
+

NX
l=1

kpl(∂)v�n − pl(∂)ukLp(Kn)
≤ 1/n.

Then un := ψn · v�n ∈ C∞c (Ω) and since un = v�n on Kn we still have

(19.7) kun − ukLp(Kn)
+

NX
l=1

kpl(∂)un − pl(∂)ukLp(Kn)
≤ 1/n.

Since any compact set K ⊂ Ω is contained in Ko
n for all n sufficiently large, Eq.

(19.7) implies

lim
n→∞

"
kun − ukLp(K) +

NX
l=1

kpl(∂)un − pl(∂)ukLp(K)
#
= 0.

The following proposition is another variant of Proposition 19.12 which the
reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a collection of poly-
nomials in ξ ∈ Rd and u ∈ Lq = Lq

¡
Rd
¢
such that pl(∂)u ∈ Lq for l = 1, 2, . . . ,N.

Then there exists un ∈ C∞c
¡
Rd
¢
such that

lim
n→∞

"
kun − ukLp +

NX
l=1

kpl(∂)un − pl(∂)ukLp
#
= 0.

Notation 19.14 (Difference quotients). For v ∈ Rd and h ∈ R\{0} and a function
u : Ω→ C, let

∂hvu(x) :=
u(x+ hv)− u(x)

h
for those x ∈ Ω such that x+hv ∈ Ω.When v is one of the standard basis elements,
ei for 1 ≤ i ≤ d, we will write ∂hi u(x) rather than ∂heiu(x). Also let

∇hu(x) :=
¡
∂h1u(x), . . . , ∂

h
nu(x)

¢
be the difference quotient approximation to the gradient.

Definition 19.15 (Strong Differentiability). Let v ∈ Rd and u ∈ Lp, then ∂vu is
said to exist strongly in Lp if the limh→0 ∂hvu exists in Lp.We will denote the limit
by ∂(s)v u.
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It is easily verified that if u ∈ Lp, v ∈ Rd and ∂(s)v u ∈ Lp exists then ∂(w)v u exists
and ∂

(w)
v u = ∂

(s)
v u. The key to checking this assetion is the identity,

h∂hvu, φi =
Z
Rd

u(x+ hv)− u(x)

h
φ(x)dx

=

Z
Rd

u(x)
φ(x− hv)− φ(x)

h
dx = hu, ∂h−vφi.(19.8)

Hence if ∂(s)v u = limh→0 ∂hv u exists in Lp and φ ∈ C∞c (Rd), then

h∂(s)v u, φi = lim
h→0

h∂hvu, φi = lim
h→0

hu, ∂h−vφi =
d

dh
|0hu, φ (·− hv)i = −hu, ∂vφi

wherein Corollary 7.43 has been used in the last equality to bring the derivative
past the integral. This shows ∂(w)v u exists and is equal to ∂(s)v u.What is somewhat
more surprising is that the converse assertion that if ∂(w)v u exists then so does
∂
(s)
v u. Theorem 19.18 is a generalization of Theorem 12.39 from L2 to Lp. For the
reader’s convenience, let us give a self-contained proof of the version of the Banach
- Alaoglu’s Theorem which will be used in the proof of Theorem 19.18. (This is the
same as Theorem 18.27 above.)

Proposition 19.16 (Weak-∗ Compactness: Banach - Alaoglu’s Theorem). Let X
be a separable Banach space and {fn} ⊂ X∗ be a bounded sequence, then there exist
a subsequence {f̃n} ⊂ {fn} such that lim

n→∞ fn(x) = f(x) for all x ∈ X with f ∈ X∗.

Proof. Let D ⊂ X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f̃n} ⊆ {fn} such that
λx := lim

n→∞ f̃n(x) exist for all x ∈ D. Define f : span(D)→ R by the formula

f(
X
x∈D

axx) =
X
x∈D

axλx

where by assumption #({x ∈ D : ax 6= 0}) < ∞. Then f : span(D) → R is linear
and moreover f̃n(y)→ f(y) for all y ∈ span(D). Now

|f(y)| = lim
n→∞ |f̃n(y)| ≤ lim supn→∞

kf̃nk kyk ≤ Ckyk for all y ∈ span(D).

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional
on X. We still denote the extension of f by f ∈ X∗. Finally, if x ∈ X and y ∈
span(D)

|f(x)− f̃n(x)| ≤ |f(x)− f(y)|+ |f(y)− f̃n(y)|+ |f̃n(y)− f̃n(x)|
≤ kfk kx− yk+ kf̃nk kx− yk+ |f(y)− f̃n(y)k
≤ 2Ckx− yk+ |f(y)− f̃n(y)|→ 2Ckx− yk as n→∞.

Therefore lim sup
n→∞

|f(x)− f̃n(x)| ≤ 2Ckx− yk→ 0 as y → x.

Corollary 19.17. Let p ∈ (1,∞] and q = p
p−1 . Then to every bounded sequence

{un}∞n=1 ⊂ Lp (Ω) there is a subsequence {ũn}∞n=1 and an element u ∈ Lp(Ω) such
that

lim
n→∞hũn, gi = hu, gi for all g ∈ Lq (Ω) .



ANALYSIS TOOLS WITH APPLICATIONS 377

Proof. By Theorem 15.14, the map

v ∈ Lp(Ω)→ hv, ·i ∈ (Lq(Ω))∗
is an isometric isomorphism of Banach spaces. By Theorem 11.3, Lq(Ω) is separable
for all q ∈ [1,∞) and hence the result now follows from Proposition 19.16.

Theorem 19.18 (Weak and Strong Differentiability). Suppose p ∈ [1,∞), u ∈
Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:

(1) There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞h∂

hn
v u, φi = hg, φi for all φ ∈ C∞c (Rd).

(2) ∂
(w)
v u exists and is equal to g ∈ Lp(Rd), i.e. hu, ∂vφi = −hg, φi for all
φ ∈ C∞c (Rd).

(3) There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp→ u and ∂vun

Lp→ g
as n→∞.

(4) ∂
(s)
v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hv u→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.

10. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and supn
°°∂hnv u

°°
p
<

∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies weak
convergence.
1. =⇒ 2. For φ ∈ C∞c (Rd), Eq. (19.8) and the dominated convergence theorem

implies
hg, φi = lim

n→∞h∂
hn
v u, φi = lim

n→∞hu, ∂
hn−vφi = −hu, ∂vφi.

2. =⇒ 3. Let η ∈ C∞c (Rd,R) such that
R
Rd η(x)dx = 1 and let ηm(x) =

mdη(mx), then by Proposition 11.24, hm := ηm ∗ u ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vηm ∗ u(x) =
Z
Rd

∂vηm(x− y)u(y)dy = hu,−∂v [ηm (x− ·)]i
= hg, ηm (x− ·)i = ηm ∗ g(x).

By Theorem 11.21, hm → u ∈ Lp(Rd) and ∂vhm = ηm∗g → g in Lp(Rd) asm→∞.
This shows 3. holds except for the fact that hm need not have compact support.
To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a neighborhood of 0 and let
ψ�(x) = ψ(�x) and (∂vψ)� (x) := (∂vψ) (�x). Then

∂v (ψ�hm) = ∂vψ�hm + ψ�∂vhm = � (∂vψ)� hm + ψ�∂vhm

so that ψ�hm → hm in Lp and ∂v (ψ�hm)→ ∂vhm in Lp as � ↓ 0. Let um = ψ�mhm
where �m is chosen to be greater than zero but small enough so that

kψ�mhm − hmkp + k∂v (ψ�mhm)→ ∂vhmkp < 1/m.

Then um ∈ C∞c (Rd), um → u and ∂vum → g in Lp as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

∂hvum(x) =
um(x+ hv)− um(x)

h

=
1

h

Z 1

0

d

ds
um(x+ shv)ds =

Z 1

0

(∂vum) (x+ shv)ds.(19.9)
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and therefore,

∂hvum(x)− ∂vum(x) =

Z 1

0

[(∂vum) (x+ shv)− ∂vum(x)] ds.

So by Minkowski’s inequality for integrals, Theorem 9.27,°°∂hvum(x)− ∂vum
°°
p
≤
Z 1

0

k(∂vum) (·+ shv)− ∂vumkp ds
and letting m→∞ in this equation then implies°°∂hvu− g

°°
p
≤
Z 1

0

kg(·+ shv)− gkp ds.
By the dominated convergence theorem and Proposition 11.13, the right member
of this equation tends to zero as h→ 0 and this shows item 4. holds.
(10. =⇒ 1. when p > 1) This is a consequence of Corollary 19.17 (or see Theorem

18.27 above) which asserts, by passing to a subsequence if necessary, that ∂hnv u
w→ g

for some g ∈ Lp(Rd).

Example 19.19. The fact that (10) does not imply the equivalent conditions 1 —
4 in Theorem 19.18 when p = 1 is demonstrated by the following example. Let
u := 1[0,1], thenZ

R

¯̄̄̄
u(x+ h)− u(x)

h

¯̄̄̄
dx =

1

|h|
Z
R

¯̄
1[−h,1−h](x)− 1[0,1](x)

¯̄
dx = 2

for |h| < 1. On the other hand the distributional derivative of u is ∂u(x) = δ(x)−
δ(x− 1) which is not in L1.
Alternatively, if there exists g ∈ L1(R, dm) such that

lim
n→∞

u(x+ hn)− u(x)

hn
= g(x) in L1

for some sequence {hn}∞n=1 as above. Then for φ ∈ C∞c (R) we would have on one
hand,Z

R

u(x+ hn)− u(x)

hn
φ(x)dx =

Z
R

φ(x− hn)− φ(x)

hn
u(x)dx

→ −
Z 1

0

φ0(x)dx = (φ(0)− φ(1)) as n→∞,

while on the other hand,Z
R

u(x+ hn)− u(x)

hn
φ(x)dx→

Z
R
g(x)φ(x)dx.

These two equations imply

(19.10)
Z
R
g(x)φ(x)dx = φ(0)− φ(1) for all φ ∈ C∞c (R)

and in particular that
R
R g(x)φ(x)dx = 0 for all φ ∈ Cc(R\ {0, 1}). By Corollary

11.28, g(x) = 0 for m — a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m — a.e. x ∈ R.
But this clearly contradicts Eq. (19.10). This example also shows that the unit ball
in L1(R, dm) is not weakly sequentially compact. Compare with Example 18.24.

Corollary 19.20. If 1 ≤ p < ∞, u ∈ Lp such that ∂vu ∈ Lp, then
°°∂hv u°°Lp ≤

k∂vukLp for all h 6= 0 and v ∈ Rd.
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Proof. By Minkowski’s inequality for integrals, Theorem 9.27, we may let m→
∞ in Eq. (19.9) to find

∂hv u(x) =

Z 1

0

(∂vu) (x+ shv)ds for a.e. x ∈ Rd

and °°∂hv u°°Lp ≤ Z 1

0

k(∂vu) (·+ shv)kLp ds = k∂vukLp .

Proposition 19.21 (A weak form of Weyls Lemma). If u ∈ L2(Rd) such that
f := 4u ∈ L2(Rd) then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ 2. Furthermore if k ∈ N0 and

∂βf ∈ L2
¡
Rd
¢
for all |β| ≤ k, then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ k + 2.

Proof. By Proposition 19.13, there exists un ∈ C∞c
¡
Rd
¢
such that un → u and

∆un → ∆u = f in L2
¡
Rd
¢
. By integration by parts we findZ

Rd
|∇(un − um)|2 dm = (−∆(un−um), (un−um))L2 → − (f − f, u− u) = 0 as m,n→∞

and hence by item 3. of Theorem 19.18, ∂iu ∈ L2 for each i. Since

k∇uk2L2 = lim
n→∞

Z
Rd
|∇un|2 dm = (−∆un, un)L2 → −(f, u) as n→∞

we also learn that

(19.11) k∇uk2L2 = −(f, u) ≤ kfkL2 · kukL2 .
Let us now consider

dX
i,j=1

Z
Rd
|∂i∂jun|2 dm = −

dX
i,j=1

Z
Rd

∂jun∂
2
i ∂jundm

= −
dX

j=1

Z
Rd

∂jun∂j∆undm =
dX

j=1

Z
Rd

∂2j un∆undm

=

Z
Rd
|∆un|2 dm = k∆unk2L2 .

Replacing un by un − um in this calculation shows
dX

i,j=1

Z
Rd
|∂i∂j(un − um)|2 dm = k∆(un − um)k2L2 → 0 as m,n→∞

and therefore by Lemma 19.4 (also see Exercise 19.4), ∂i∂ju ∈ L2
¡
Rd
¢
for all i, j

and

(19.12)
dX

i,j=1

Z
Rd
|∂i∂ju|2 dm = k∆uk2L2 = kfk2L2 .

Combining Eqs. (19.11) and (19.12) gives the estimateX
|α|≤2

k∂αuk2L2 ≤ kuk2L2 + kfkL2 · kukL2 + kfk2L2

= kuk2L2 + k∆ukL2 · kukL2 + k∆uk2L2 .(19.13)
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Let us now further assume ∂if = ∂i∆u ∈ L2
¡
Rd
¢
. Then for h ∈ R \ {0} ,

∂hi u ∈ L2(Rd) and ∆∂hi u = ∂hi ∆u = ∂hi f ∈ L2(Rd) and hence by Eq. (19.13) and
what we have just proved, ∂α∂hi u = ∂hi ∂

αu ∈ L2 andX
|α|≤2

°°∂hi ∂αu°°2L2(Rd) ≤ °°∂hi u°°2L2 + °°∂hi f°°L2 · °°∂hi u°°L2 + °°∂hi f°°2L2
≤ k∂iuk2L2 + k∂ifkL2 · k∂iukL2 + k∂ifk2L2

where the last inequality follows from Corollary 19.20. Therefore applying Theorem
19.18 again we learn that ∂i∂αu ∈ L2(Rd) for all |α| ≤ 2 andX

|α|≤2
k∂i∂αuk2L2(Rd) ≤ k∂iuk2L2 + k∂ifkL2 · k∂iukL2 + k∂ifk2L2

≤ k∇uk2L2 + k∂ifkL2 · k∇ukL2 + k∂ifk2L2
≤ kfkL2 · kukL2 + k∂ifkL2 ·

q
kfkL2 · kukL2 + k∂ifk2L2 .

The remainder of the proof, which is now an induction argument using the above
ideas, is left as an exercise to the reader.

Theorem 19.22. Suppose that Ω is a precompact open subset of Rd and V is an
open precompact subset of Ω.

(1) If 1 ≤ p < ∞, u ∈ Lp(Ω) and ∂iu ∈ Lp(Ω), then k∂hi ukLp(V ) ≤ k∂iukLp(Ω)
for all 0 < |h| < 1

2dist(V,Ω
c).

(2) Suppose that 1 < p ≤ ∞, u ∈ Lp(Ω) and assume there exists a constants
CV <∞ and �V ∈ (0, 12dist(V,Ωc)) such that

k∂hi ukLp(V ) ≤ CV for all 0 < |h| < �V .

Then ∂iu ∈ Lp(V ) and k∂iukLp(V ) ≤ CV . Moreover if C := supV⊂⊂ΩCV <
∞ then in fact ∂iu ∈ Lp(Ω) and k∂iukLp(Ω) ≤ C.

Proof. 1. Let U ⊂o Ω such that V̄ ⊂ U and Ū is a compact subset of Ω. For
u ∈ C1 (Ω) ∩ Lp(Ω), x ∈ B and 0 < |h| < 1

2dist(V,U
c),

∂hi u(x) =
u(x+ hei)− u(x)

h
=

Z 1

0

∂iu(x+ thei) dt

and in particular,

|∂hi u(x)| ≤
Z 1

0

|∂u(x+ thei)|dt.

Therefore by Minikowski’s inequality for integrals,

(19.14) k∂hi ukLp(V ) ≤
Z 1

0

k∂u(·+ thei)kLp(V )dt ≤ k∂iukLp(U).

For general u ∈ Lp(Ω) with ∂iu ∈ Lp(Ω), by Proposition 19.12, there exists
un ∈ C∞c (Ω) such that un → u and ∂iun → ∂iu in Lploc(Ω). Therefore we may
replace u by un in Eq. (19.14) and then pass to the limit to find

k∂hi ukLp(V ) ≤ k∂iukLp(U) ≤ k∂iukLp(Ω).
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2. If k∂hi ukLp(V ) ≤ CV for all h sufficiently small then by Corollary 19.17 there
exists hn → 0 such that ∂hni u

w→ v ∈ Lp(V ). Hence if ϕ ∈ C∞c (V ),Z
V

vϕdm = lim
n→∞

Z
Ω

∂hni uϕdm = lim
n→∞

Z
Ω

u∂−hni ϕdm

= −
Z
Ω

u∂iϕ dm = −
Z
V

u∂iϕ dm.

Therefore ∂iu = v ∈ Lp(V ) and k∂iukLp(V ) ≤ kvkLp(V ) ≤ CV . Finally if C :=
supV⊂⊂ΩCV <∞, then by the dominated convergence theorem,

k∂iukLp(Ω) = lim
V ↑Ω

k∂iukLp(V ) ≤ C.

We will now give a couple of applications of Theorem 19.18.

Lemma 19.23. Let v ∈ Rd.
(1) If h ∈ L1 and ∂vh exists in L1, then

R
Rd ∂vh(x)dx = 0.

(2) If p, q, r ∈ [1,∞) satisfy r−1 = p−1+ q−1, f ∈ Lp and g ∈ Lq are functions
such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf ·g+f ·∂vg. Moreover if r = 1 we have the integration
by parts formula,

(19.15) h∂vf, gi = −hf, ∂vgi.
(3) If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with g and

its first derivatives being bounded) then ∂v(gf) exists in L1 and ∂v(fg) =
∂vf · g + f · ∂vg and again Eq. (19.15) holds.

Proof. 1) By item 3. of Theorem 19.18 there exists hn ∈ C∞c (Rd) such that
hn → h and ∂vhn → ∂vh in L1. ThenZ

Rd
∂vhn(x)dx =

d

dt
|0
Z
Rd

hn(x+ hv)dx =
d

dt
|0
Z
Rd

hn(x)dx = 0

and letting n→∞ proves the first assertion.
2) Similarly there exists fn, gn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in

Lp and gn → g and ∂vgn → ∂vg in Lq as n→∞. So by the standard product rule
and Remark 19.2, fngn → fg ∈ Lr as n→∞ and

∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 19.18 that ∂v(fg) exists in Lr

and ∂v(fg) = ∂vf · g+ f · ∂vg. Eq. (19.15) follows from this product rule and item
1. when r = 1.
3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in L1 as n→∞. Then

as above, gfn → gf in L1 and ∂v(gfn) → ∂vg · f + g∂vf in L1 as n → ∞. In
particular if φ ∈ C∞c (Rd), then

hgf, ∂vφi = lim
n→∞hgfn, ∂vφi = − lim

n→∞h∂v (gfn) , φi
= − lim

n→∞h∂vg · fn + g∂vfn, φi = −h∂vg · f + g∂vf, φi.
This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf ·g+f ·∂vg. Again Eq. (19.15)
holds in this case by item 1. already proved.
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Lemma 19.24. Let p, q, r ∈ [1,∞] satisfy p−1 + q−1 = 1 + r−1, f ∈ Lp, g ∈ Lq

and v ∈ Rd.
(1) If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.
(2) If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.
(3) If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗ g ∈ C∞(Rd), ∂v(f ∗ g)

exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.
Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple

computations:°°°°τ−hv(f ∗ g)− f ∗ g
h

− (∂vf) ∗ g
°°°°
r

=

°°°°τ−hvf ∗ g − f ∗ g
h

− (∂vf) ∗ g
°°°°
r

=

°°°°·τ−hvf − f

h
− (∂vf)

¸
∗ g
°°°°
r

≤
°°°°τ−hvf − f

h
− (∂vf)

°°°°
p

kgkq

which tends to zero as h→ 0. The second item is proved analogously, or just make
use of the fact that f ∗ g = g ∗ f and apply Item 1.
Using the fact that g(x− ·) ∈ C∞c (Rd) and the definition of the weak derivative,

f ∗ ∂vg(x) =
Z
Rd

f(y) (∂vg) (x− y)dy = −
Z
Rd

f(y) (∂vg(x− ·)) (y)dy

=

Z
Rd

∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.25. Let Ω = (α, β) ⊂ R be an open interval and f ∈ L1loc(Ω) such
that ∂(w)f = 0 in L1loc(Ω). Then there exists c ∈ C such that f = c a.e. More
generally, suppose F : C∞c (Ω) → C is a linear functional such that F (φ0) = 0 for
all φ ∈ C∞c (Ω), where φ

0(x) = d
dxφ(x), then there exists c ∈ C such that

(19.16) F (φ) = hc, φi =
Z
Ω

cφ(x)dx for all φ ∈ C∞c (Ω).

Proof. Before giving a proof of the second assertion, let us show it includes the
first. Indeed, if F (φ) :=

R
Ω
φfdm and ∂(w)f = 0, then F (φ0) = 0 for all φ ∈ C∞c (Ω)

and therefore there exists c ∈ C such thatZ
Ω

φfdm = F (φ) = chφ, 1i = c

Z
Ω

φfdm.

But this implies f = c a.e. So it only remains to prove the second assertion.
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Let η ∈ C∞c (Ω) such that
R
Ω
ηdm = 1. Given φ ∈ C∞c (Ω) ⊂ C∞c (R) , let

ψ(x) =
R x
−∞ (φ(y)− η(y)hφ, 1i) dy. Then ψ0(x) = φ(x)−η(x)hφ, 1i and ψ ∈ C∞c (Ω)

as the reader should check. Therefore,

0 = F (ψ) = F (φ− hφ, ηiη) = F (φ)− hφ, 1iF (η)
which shows Eq. (19.16) holds with c = F (η). This concludes the proof, however
it will be instructive to give another proof of the first assertion.
Alternative proof of first assertion. Suppose f ∈ L1loc(Ω) and ∂(w)f = 0

and fm := f ∗ ηm as is in the proof of Lemma 19.9. Then f 0m = ∂(w)f ∗ ηm = 0,
so fm = cm for some constant cm ∈ C. By Theorem 11.21, fm → f in L1loc(Ω) and
therefore if J = [a, b] is a compact subinterval of Ω,

|cm − ck| = 1

b− a

Z
J

|fm − fk| dm→ 0 as m, k →∞.

So {cm}∞m=1 is a Cauchy sequence and therefore c := limm→∞ cm exists and f =
limm→∞ fm = c a.e.

Theorem 19.26. Suppose f ∈ L1loc(Ω). Then there exists a complex measure µ on
BΩ such that
(19.17) −hf, φ0i = µ(φ) :=

Z
Ω

φdµ for all φ ∈ C∞c (Ω)

iff there exists a right continuous function F of bounded variation such that F = f
a.e. In this case µ = µF , i.e. µ((a, b]) = F (b)− F (a) for all −∞ < a < b <∞.

Proof. Suppose f = F a.e. where F is as above and let µ = µF be the
associated measure on BΩ. Let G(t) = F (t) − F (−∞) = µ((−∞, t]), then using
Fubini’s theorem and the fundamental theorem of calculus,

−hf, φ0i = −hF, φ0i = −hG,φ0i = −
Z
Ω

φ0(t)
·Z
Ω

1(−∞,t](s)dµ(s)

¸
dt

= −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s) =

Z
Ω

φ(s)dµ(s) = µ(φ).

Conversely if Eq. (19.17) holds for some measure µ, let F (t) := µ((−∞, t]) then
working backwards from above,

−hf, φ0i = µ(φ) =

Z
Ω

φ(s)dµ(s) = −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s) = −
Z
Ω

φ0(t)F (t)dt.

This shows ∂(w) (f − F ) = 0 and therefore by Proposition 19.25, f = F + c a.e. for
some constant c ∈ C. Since F + c is right continuous with bounded variation, the
proof is complete.

Proposition 19.27. Let Ω ⊂ R be an open interval and f ∈ L1loc(Ω). Then ∂wf

exists in L1loc(Ω) iff f has a continuous version f̃ which is absolutely continuous on
all compact subintervals of Ω. Moreover, ∂wf = f̃ 0 a.e., where f̃ 0(x) is the usual
pointwise derivative.

Proof. If f is locally absolutely continuous and φ ∈ C∞c (Ω) with supp(φ) ⊂
[a, b] ⊂ Ω, then by integration by parts, Corollary 16.32,Z

Ω

f 0φdm =

Z b

a

f 0φdm = −
Z b

a

fφ0dm+ fφ|ba = −
Z
Ω

fφ0dm.
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This shows ∂wf exists and ∂wf = f 0 ∈ L1loc(Ω).
Now suppose that ∂wf exists in L1loc(Ω) and a ∈ Ω. Define F ∈ C (Ω) by

F (x) :=
R x
a
∂wf(y)dy. Then F is absolutely continuous on compacts and therefore

by fundamental theorem of calculus for absolutely continuous functions (Theorem
16.31), F 0(x) exists and is equal to ∂wf(x) for a.e. x ∈ Ω. Moreover, by the first
part of the argument, ∂wF exists and ∂wF = ∂wf, and so by Proposition 19.25
there is a constant c such that

f̃(x) := F (x) + c = f(x) for a.e. x ∈ Ω.

Definition 19.28. Let X and Y be metric spaces. A function u : X → Y is said
to be Lipschitz if there exists C <∞ such that

dY (u(x), u(x0)) ≤ CdX(x, x0) for all x, x0 ∈ X

and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (u(x), u(x0)) ≤ CKd
X(x, x0) for all x, x0 ∈ K.

Proposition 19.29. Let u ∈ L1loc(Ω). Then there exists a locally Lipschitz function
ũ : Ω → C such that ũ = u a.e. iff ∂iu ∈ L1loc(Ω) exists and is locally (essentially)
bounded for i = 1, 2, . . . , d.

Proof. Suppose u = ũ a.e. and ũ is Lipschitz and let p ∈ (1,∞) and V be
a precompact open set such that V̄ ⊂ W and let V� :=

©
x ∈ Ω : dist(x, V̄ ) ≤ �

ª
.

Then for � < dist(V̄ ,Ωc), V� ⊂ Ω and therefore there is constant C(V, �) <∞ such
that |ũ(y)− ũ(x)| ≤ C(V, �) |y − x| for all x, y ∈ V�. So for 0 < |h| ≤ 1 and v ∈ Rd
with |v| = 1,Z

V

¯̄̄̄
u(x+ hv)− u(x)

h

¯̄̄̄p
dx =

Z
V

¯̄̄̄
ũ(x+ hv)− ũ(x)

h

¯̄̄̄p
dx ≤ C(V, �) |v|p .

Therefore Theorem 19.18 may be applied to conclude ∂vu exists in Lp and moreover,

lim
h→0

ũ(x+ hv)− ũ(x)

h
= ∂vu(x) for m — a.e. x ∈ V.

Since there exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and

|∂vu(x)| = lim
n→∞

¯̄̄̄
ũ(x+ hnv)− ũ(x)

hn

¯̄̄̄
≤ C(V ) for a.e. x ∈ V,

it follows that k∂vuk∞ ≤ C(V ) where C(V ) := lim�↓0C(V, �).
Conversely, let Ω� := {x ∈ Ω : dist(x,Ωc) > �} and η ∈ C∞c (B(0, 1), [0,∞)) such

that
R
Rn η(x)dx = 1, ηm(x) = mnη(mx) and um := u ∗ ηm as in the proof of

Theorem 19.18. Suppose V ⊂o Ω with V̄ ⊂ Ω and � is sufficiently small. Then
um ∈ C∞(Ω�), ∂vum = ∂vu∗ηm, |∂vum(x)| ≤ k∂vukL∞(Vm−1 ) =: C(V,m) <∞ and

therefore for x, y ∈ V̄ with |y − x| ≤ �,

|um(y)− um(x)| =
¯̄̄̄Z 1

0

d

dt
um(x+ t(y − x))dt

¯̄̄̄
=

¯̄̄̄Z 1

0

(y − x) ·∇um(x+ t(y − x))dt

¯̄̄̄
≤
Z 1

0

|y − x| · |∇um(x+ t(y − x))| dt ≤ C(V,m) |y − x|(19.18)
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By passing to a subsequence if necessary, we may assume that limm→∞ um(x) =
u(x) for m — a.e. x ∈ V̄ and then letting m→∞ in Eq. (19.18) implies

(19.19) |u(y)− u(x)| ≤ C(V ) |y − x| for all x, y ∈ V \E and |y − x| ≤ �

where E ⊂ V̄ is a m — null set. Define ũV : V̄ → C by ũV = u on V̄ \ Ec and
ũV (x) = limy→x

y/∈E
u(y) if x ∈ E. Then clearly ũV = u a.e. on V̄ and it is easy to

show ũV is well defined and ũV : V̄ → C is continuous and still satisfies

|ũV (y)− ũV (x)| ≤ CV |y − x| for x, y ∈ V̄ with |y − x| ≤ �.

Since ũV is continuous on V̄ there exists MV < ∞ such that |ũV | ≤ MV on V̄ .
Hence if x, y ∈ V̄ with |x− y| ≥ �, we find

|ũV (y)− ũV (x)|
|y − x| ≤ 2M

�

and hence

|ũV (y)− ũV (x)| ≤ max
½
CV ,

2MV

�

¾
|y − x| for x, y ∈ V̄

showing ũV is Lipschitz on V̄ . To complete the proof, choose precompact open sets
Vn such that Vn ⊂ V̄n ⊂ Vn+1 ⊂ Ω for all n and for x ∈ Vn let ũ(x) := ũVn(x).
Here is an alternative way to construct the function ũV above. For x ∈ V \E,

|um(x)− u(x)| =
¯̄̄̄Z
V

u(x− y)η(my)mndy − u(x)

¯̄̄̄
=

¯̄̄̄Z
V

[u(x− y/m)− u(x)] η(y)dy

¯̄̄̄
≤
Z
V

|u(x− y/m)− u(x)| η(y)dy ≤ C

m

Z
V

|y| η(y)dy

wherein the last equality we have used Eq. (19.19) with V replaced by V� for some
small � > 0. Letting K := C

R
V
|y| η(y)dy <∞ we have shown

kum − uk∞ ≤ K/m→ 0 as m→∞
and consequently

kum − unku = kum − unk∞ ≤ 2K/m→ 0 as m→∞.

Therefore, un converges uniformly to a continuous function ũV .
The next theorem is from Chapter 1. of Maz’ja [2].

Theorem 19.30. Let p ≥ 1 and Ω be an open subset of Rd, x ∈ Rd be written as
x = (y, t) ∈ Rd−1 ×R,

Y :=
©
y ∈ Rd−1 : ({y} ×R) ∩Ω 6= ∅ª

and u ∈ Lp(Ω). Then ∂tu exists weakly in Lp(Ω) iff there is a version ũ of u such that
for a.e. y ∈ Y the function t→ ũ(y, t) is absolutely continuous, ∂tu(y, t) =

∂ũ(y,t)
∂t

a.e., and
°°∂ũ
∂t

°°
Lp(Ω)

<∞.

Proof. For the proof of Theorem 19.30, it suffices to consider the case where
Ω = (0, 1)d. Write x ∈ Ω as x = (y, t) ∈ Y × (0, 1) = (0, 1)d−1 × (0, 1) and ∂tu for
the weak derivative ∂edu. By assumptionZ

Ω

|∂tu(y, t)| dydt = k∂tuk1 ≤ k∂tukp <∞
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and so by Fubini’s theorem there exists a set of full measure, Y0 ⊂ Y, such thatZ 1

0

|∂tu(y, t)| dt <∞ for y ∈ Y0.

So for y ∈ Y0, the function v(y, t) :=
R t
0
∂tu(y, τ)dτ is well defined and absolutely

continuous in t with ∂
∂tv(y, t) = ∂tu(y, t) for a.e. t ∈ (0, 1). Let ξ ∈ C∞c (Y ) and

η ∈ C∞c ((0, 1)) , then integration by parts for absolutely functions impliesZ 1

0

v(y, t)η̇(t)dt = −
Z 1

0

∂

∂t
v(y, t)η(t)dt for all y ∈ Y0.

Multiplying both sides of this equation by ξ(y) and integrating in y showsZ
Ω

v(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂

∂t
v(y, t)η(t)ξ(y)dydt = −

Z
Ω

∂tu(y, t)η(t)ξ(y)dydt.

Using the definition of the weak derivative, this equation may be written asZ
Ω

u(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂tu(x)η(t)ξ(y)dydt

and comparing the last two equations showsZ
Ω

[v(x)− u(x)] η̇(t)ξ(y)dydt = 0.

Since ξ ∈ C∞c (Y ) is arbitrary, this implies there exists a set Y1 ⊂ Y0 of full measure
such that Z

Ω

[v(y, t)− u(y, t)] η̇(t)dt = 0 for all y ∈ Y1

from which we conclude, using Proposition 19.25, that u(y, t) = v(y, t) + C(y) for
t ∈ Jy where md−1 (Jy) = 1, here mk denotes k — dimensional Lebesgue measure.
In conclusion we have shown that

(19.20) u(y, t) = ũ(y, t) :=

Z t

0

∂tu(y, τ)dτ + C(y) for all y ∈ Y1 and t ∈ Jy.

We can be more precise about the formula for ũ(y, t) by integrating both sides
of Eq. (19.20) on t we learn

C(y) =

Z 1

0

dt

Z t

0

∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt =

Z 1

0

(1− τ) ∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt

=

Z 1

0

[(1− t) ∂tu(y, t)− u(y, t)] dt

and hence

ũ(y, t) :=

Z t

0

∂τu(y, τ)dτ +

Z 1

0

[(1− τ) ∂τu(y, τ)− u(y, τ)] dτ

which is well defined for y ∈ Y0.
For the converse suppose that such a ũ exists, then for φ ∈ C∞c (Ω) ,Z
Ω

u(y, t)∂tφ(y, t)dydt =

Z
Ω

ũ(y, t)∂tφ(y, t)dtdy = −
Z
Ω

∂ũ(y, t)

∂t
φ(y, t)dtdy

wherein we have used integration by parts for absolutely continuous functions. From
this equation we learn the weak derivative ∂tu(y, t) exists and is given by

∂ũ(y,t)
∂t

a.e.
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19.3. Exercises.

Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use u� as defined in the proof
of Proposition 19.12 to show it suffices to consider the case where u ∈ C∞

¡
Rd
¢ ∩

Lp
¡
Rd
¢
with ∂αu ∈ Lp

¡
Rd
¢
for all α ∈ Nd0. 2. Then let ψ ∈ C∞c (B(0, 1), [0, 1])

such that ψ = 1 on a neighborhood of 0 and let un(x) := u(x)ψ(x/n).

Exercise 19.3. Suppose p(ξ) is a polynomial in ξ ∈ Rd, p ∈ (1,∞), q := p
p−1 ,

u ∈ Lp such that p(∂)u ∈ Lp and v ∈ Lq such that p (−∂) v ∈ Lq. Show hp (∂)u, vi =
hu, p (−∂) vi.
Exercise 19.4. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the identity
operator on Lp),

D(∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}
and for f ∈ D(∂α) (the domain of ∂α) let ∂αf denote the α — weak derivative of f.
(See Definition 19.3.)

(1) Show ∂α is a densely defined operator on Lp, i.e. D(∂α) is a dense linear
subspace of Lp and ∂α : D(∂α)→ Lp is a linear transformation.

(2) Show ∂α : D(∂α)→ Lp is a closed operator, i.e. the graph,

Γ(∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D(∂α)} ,
is a closed subspace of Lp × Lp.

(3) Show ∂α : D(∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D(∂α) is taken to be the Lp — norm.)

Exercise 19.5. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf exists
weakly (see Definition 19.3) in Lp iff there exists fn ∈ C∞c (Rn) and g ∈ Lp such
that fn → f and ∂αfn → g in Lp as n→∞. Hints: See exercises 19.2 and 19.4.

Exercise 19.6. Folland 8.8 on p. 246.

Exercise 19.7. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.
(1) Let f(x) = |x| , show ∂f exists weakly in L1loc(R) and ∂f(x) = sgn(x) for

m — a.e. x.
(2) Show ∂(∂f) does not exists weakly in L1loc(R).
(3) Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a finite

set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R). Assuming
∂f ∈ L1loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x) for m — a.e. x.

Exercise 19.8. Suppose that f ∈ L1loc(Ω) and v ∈ Rd and {ej}nj=1 is the standard
basis for Rd. If ∂jf := ∂ejf exists weakly in L1loc(Ω) for all j = 1, 2, . . . , n then ∂vf

exists weakly in L1loc(Ω) and ∂vf =
Pn

j=1 vj∂jf.

Exercise 19.9. Suppose, f ∈ L1loc(Rd) and ∂vf exists weakly and ∂vf = 0 in
L1loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m — a.e.
x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 19.10 below.
Exercise 19.10 (A generalization of Exercise 19.9). Suppose Ω is a connected
open subset of Rd and f ∈ L1loc(Ω). If ∂

αf = 0 weakly for α ∈ Zn+ with |α| = N+1,
then f(x) = p(x) for m — a.e. x where p(x) is a polynomial of degree at most N.
Here is an outline.
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(1) Suppose x0 ∈ Ω and � > 0 such that C := Cx0(�) ⊂ Ω and let ηn be a
sequence of approximate δ — functions such supp(ηn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗ηn) = (∂αf)∗ηn on C for |α| = N+1. Now
use Taylor’s theorem to conclude there exists a polynomial pn of degree at
most N such that fn = pn on C.

(2) Show p := limn→∞ pn exists on C and then let n →∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 19.11. Suppose Ω ⊂o Rd and v,w ∈ Rd. Assume f ∈ L1loc(Ω) and that
∂v∂wf exists weakly in L1loc(Ω), show ∂w∂vf also exists weakly and ∂w∂vf = ∂v∂wf.

Exercise 19.12. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in L1loc
despite the fact that ∂1f does not exist weakly in L1loc!
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20. Fourier Transform

The underlying space in this section is Rn with Lebesgue measure. The Fourier
inversion formula is going to state that

(20.1) f(x) =

µ
1

2π

¶n Z
Rn

dξeiξx
Z
Rn

dyf(y)e−iyξ.

If we let ξ = 2πη, this may be written as

f(x) =

Z
Rn

dηei2πηx
Z
Rn

dyf(y)e−iy2πη

and we have removed the multiplicative factor of
¡
1
2π

¢n
in Eq. (20.1) at the expense

of placing factors of 2π in the arguments of the exponential. Another way to avoid
writing the 2π’s altogether is to redefine dx and dξ and this is what we will do here.

Notation 20.1. Let m be Lebesgue measure on Rn and define:

dx =

µ
1√
2π

¶n
dm(x) and dξ ≡

µ
1√
2π

¶n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will redefine
kfkp and hf, gi as

kfkp =
µZ

Rn
|f(x)|p dx

¶1/p
=

Ãµ
1

2π

¶n/2 Z
Rn
|f(x)|p dm(x)

!1/p
and

hf, gi :=
Z
Rn

f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by fFg :=¡
1
2π

¢n/2
f ∗ g, i.e.

fFg(x) =

Z
Rn

f(x− y)g(y)dy =

Z
Rn

f(x− y)g(y)

µ
1

2π

¶n/2
dm(y).

The following notation will also be convenient; given a multi-index α ∈ Zn+, let
|α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
and

Dα
x =

µ
1

i

¶|α|µ
∂

∂x

¶α
=

µ
1

i

∂

∂x

¶α
.

Also let

hxi := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.
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20.1. Fourier Transform.

Definition 20.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
Z
Rn

e−ix·ξf(x)dx(20.2)

g∨(x) = F−1g(x) =
Z
Rn

eix·ξg(ξ)dξ = Fg(−x)(20.3)

The next theorem summarizes some more basic properties of the Fourier trans-
form.

Theorem 20.3. Suppose that f, g ∈ L1. Then

(1) f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ kfk1 .

(2) For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξf̂(ξ) where, as usual, τyf(x) := f(x− y).

(3) The Fourier transform takes convolution to products, i.e. (fFg)ˆ = f̂ ĝ.

(4) For f, g ∈ L1, hf̂ , gi = hf, ĝi.
(5) If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )∧ (ξ) = |detT |−1 f̂(¡T−1¢∗ ξ) and
(f ◦ T )∨ (ξ) = |detT |−1 f∨(¡T−1¢∗ ξ)

(6) If (1+ |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k. Moreover,

(20.4) ∂αξ f̂(ξ) = F [(−ix)α f(x)] (ξ)
for all |α| ≤ k.

(7) If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(20.5) (∂αf)ˆ (ξ) = (iξ)αf̂(ξ)

for all |α| ≤ k.
(8) Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 11.27. Items 2. — 5. are
proved by the following straight forward computations:

(τyf) ˆ(ξ) =

Z
Rn

e−ix·ξf(x− y)dx =

Z
Rn

e−i(x+y)·ξf(x)dx = e−iy·ξf̂(ξ),

hf̂ , gi =
Z
Rn

f̂(ξ)g(ξ)dξ =

Z
Rn
dξg(ξ)

Z
Rn
dxe−ix·ξf(x)

=

Z
Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =
Z
Rn×Rn

dxĝ(x)f(x) = hf, ĝi,

(fFg)
ˆ
(ξ) =

Z
Rn

e−ix·ξfFg(x)dx =

Z
Rn

e−ix·ξ
µZ

Rn
f(x− y)g(y)dy

¶
dx

=

Z
Rn
dy

Z
Rn
dxe−ix·ξf(x− y)g(y) =

Z
Rn
dy

Z
Rn
dxe−i(x+y)·ξf(x)g(y)

=

Z
Rn
dye−iy·ξg(y)

Z
Rn
dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)
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and letting y = Tx so that dx = |detT |−1 dy
(f ◦ T )ˆ (ξ) =

Z
Rn

e−ix·ξf(Tx)dx =
Z
Rn

e−iT
−1y·ξf(y) |detT |−1 dy

= |detT |−1 f̂(¡T−1¢∗ ξ).
Item 6. is simply a matter of differentiating under the integral sign which is easily
justified because (1 + |x|)kf(x) ∈ L1.
Item 7. follows by using Lemma 11.26 repeatedly (i.e. integration by parts) to

find

(∂αf)ˆ (ξ) =

Z
Rn

∂αx f(x)e
−ix·ξdx = (−1)|α|

Z
Rn

f(x)∂αx e
−ix·ξdx

= (−1)|α|
Z
Rn

f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).

Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)ˆ (ξ) ∈ C0 for all
|α| ≤ k. Since

(1 + |ξ|)k ≤
Ã
1 +

nX
i=1

|ξi|
!k

=
X
|α|≤k

cα |ξα|

where 0 < cα <∞,¯̄̄
(1 + |ξ|)k f̂(ξ)

¯̄̄
≤
X
|α|≤k

cα

¯̄̄
ξαf̂(ξ)

¯̄̄
→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 20.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

(20.6) Fe−|x|2/2 = e−|ξ|
2/2 and F−1e−|ξ|2/2 = e−|x|

2/2.

More generally, for t > 0 let

(20.7) pt(x) := t−n/2e−
1
2t |x|2

then

(20.8) bpt(ξ) = e−
t
2 |ξ|2 and (bpt)∨(x) = pt(x).

By Item 8. of Theorem 20.3, to prove Eq. (20.6) it suffices to consider the 1 —

dimensional case because e−|x|
2/2 =

Qn
i=1 e

−x2i/2. Let g(ξ) :=
³
Fe−x2/2

´
(ξ) , then

by Eq. (20.4) and Eq. (20.5),
(20.9)

g0(ξ) = F
h
(−ix) e−x2/2

i
(ξ) = iF

·
d

dx
e−x

2/2

¸
(ξ) = i(iξ)F

h
e−x

2/2
i
(ξ) = −ξg(ξ).

Lemma 8.36 implies

g(0) =

Z
R
e−x

2/2dx =
1√
2π

Z
R
e−x

2/2dm(x) = 1,

and so solving Eq. (20.9) with g(0) = 1 gives F
h
e−x

2/2
i
(ξ) = g(ξ) = e−ξ

2/2 as

desired. The assertion that F−1e−|ξ|2/2 = e−|x|
2/2 follows similarly or by using Eq.

(20.3) to conclude,

F−1
h
e−|ξ|

2/2
i
(x) = F

h
e−|−ξ|

2/2
i
(x) = F

h
e−|ξ|

2/2
i
(x) = e−|x|

2/2.
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The results in Eq. (20.8) now follow from Eq. (20.6) and item 5 of Theorem 20.3.
For example, since pt(x) = t−n/2p1(x/

√
t),

(bpt)(ξ) = t−n/2
³√

t
´n

p̂1(
√
tξ) = e−

t
2 |ξ|2 .

This may also be written as (bpt)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that pt

is an even function,

(bpt)∨(x) = Fbpt(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).

20.2. Schwartz Test Functions.

Definition 20.5. A function f ∈ C(Rn,C) is said to have rapid decay or rapid
decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at most)
polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C <∞ such that |f(x)| ≤ C(1 + |x|)N for all x ∈ Rn.
Definition 20.6 (Schwartz Test Functions). Let S denote the space of functions
f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid decay and let

kfkN,α = sup
x∈Rn

¯̄
(1 + |x|)N∂αf(x)¯̄

so that
S =

n
f ∈ C∞(Rn) : kfkN,α <∞ for all N and α

o
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its derivatives
have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-indices
α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)
Remark 20.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in L2(Rn).

Exercise 20.1. Let

(20.10) L =
X
|α|≤k

aα(x)∂
α

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S for all
multi-indices α.

Notation 20.8. Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function aα(x)
is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 20.9. Let p(x, ξ) be as above and assume each aα(x) is a polynomial
in x. Then for f ∈ S,
(20.11) (p(x,Dx)f)

∧
(ξ) = p(−Dξ, ξ)f̂ (ξ)

and

(20.12) p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ).
Proof. The identities (−Dξ)

α e−ix·ξ = xαe−ix·ξ and Dα
x e

ix·ξ = ξαeix·ξ imply,
for any polynomial function q on Rn,

(20.13) q(−Dξ)e
−ix·ξ = q(x)e−ix·ξ and q(Dx)e

ix·ξ = q(ξ)eix·ξ.

Therefore using Eq. (20.13) repeatedly,

(p(x,Dx)f)
∧
(ξ) =

Z
Rn

X
|α|≤N

aα(x)D
α
xf(x) · e−ix·ξdξ

=

Z
Rn

X
|α|≤N

Dα
xf(x) · aα(−Dξ)e

−ix·ξdξ

=

Z
Rn

f(x)
X
|α|≤N

(−Dx)
α £aα(−Dξ)e

−ix·ξ¤dξ
=

Z
Rn

f(x)
X
|α|≤N

aα(−Dξ)
£
ξαe−ix·ξ

¤
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 11.26 to do repeated integration
by parts, the fact that mixed partial derivatives commute in the fourth, and in the
last we have repeatedly used Corollary 7.43 to differentiate under the integral. The
proof of Eq. (20.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

Z
Rn

f(x)e−ix·ξdx =
Z
Rn

f(x)p(ξ,−x)e−ix·ξdx

=
X
|α|≤N

Z
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx =
X
|α|≤N

Z
Rn

f(x)(−x)αaα(−Dx)e
−ix·ξdx

=
X
|α|≤N

Z
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx = [p(Dx,−x)f(x)]∧(ξ).

Corollary 20.10. The Fourier transform preserves the space S, i.e. F(S) ⊂ S.
Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial func-

tion in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (20.12), p(ξ,Dξ)f̂(ξ)
is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |ξ|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and all of
its derivatives have rapid decay, i.e. f̂ is in S.
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20.3. Fourier Inversion Formula .

Theorem 20.11 (Fourier Inversion Theorem). Suppose that f ∈ L1 and f̂ ∈ L1,
then

(1) there exists f0 ∈ C0(Rn) such that f = f0 a.e.
(2) f0 = F−1F f and f0 = FF−1f,
(3) f and f̂ are in L1 ∩ L∞ and

(4) kfk2 =
°°°f̂°°°

2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption, so that
f̂ ∈ L1∩L∞. Let pt(x) ≡ t−n/2e−

1
2t |x|2 be as in Example 20.4 so that bpt(ξ) = e−

t
2 |ξ|2

and bp∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)
∨(x) =

Z
Rn

f̂(ξ)eiξ·xdξ = lim
t↓0

Z
Rn

f̂(ξ)eiξ·xbpt(ξ)dξ
= lim

t↓0

Z
Rn

Z
Rn

f(y)eiξ·(x−y)bpt(ξ)dξ dy
= lim

t↓0

Z
Rn

f(y)pt(y)dy = f(x) a.e.

wherein we have used Theorem 11.21 in the last equality along with the observations
that pt(y) = p1(y/

√
t) and

R
Rn p1(y)dy = 1. In particular this shows that f ∈

L1 ∩ L∞. A similar argument shows that F−1F f = f0 as well.
Let us now compute the L2 — norm of f̂ ,

kf̂k22 =
Z
Rn

f̂(ξ)f̂(ξ)dξ =

Z
Rn
dξf̂(ξ)

Z
Rn
dxf(x)eix·ξ

=

Z
Rn
dx f(x)

Z
Rn
dξf̂(ξ)eix·ξ

=

Z
Rn
dx f(x)f(x) = kfk22

because
R
Rn dξf̂(ξ)e

ix·ξ = F−1f̂(x) = f(x) a.e.

Corollary 20.12. By the B.L.T. Theorem 4.1, the maps F|S and F−1|S extend to
bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy the following
properties:

(1) F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.

(2) For f ∈ L2 we may compute F̄ and F̄−1 by
F̄f(ξ) = L2— lim

R→∞

Z
|x|≤R

f(x)e−ix·ξdx and(20.14)

F̄−1f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)eix·ξdx.(20.15)

(3) We may further extend F̄ to a map from L1 + L2 → C0 + L2 (still denote
by F̄) defined by F̄f = ĥ+ F̄g where f = h+g ∈ L1+L2. For f ∈ L1+L2,
F̄f may be characterized as the unique function F ∈ L1loc(Rn) such that

(20.16) hF, φi = hf, φ̂i for all φ ∈ C∞c (Rn).
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Moreover if Eq. (20.16) holds then F ∈ C0+L2 ⊂ L1loc(Rn) and Eq.(20.16)
is valid for all φ ∈ S.

Proof. Item 1., If f ∈ L2 and φn ∈ S such that φn → f in L2, then F̄f :=
limn→∞ φ̂n. Since φ̂n ∈ S ⊂ L1, we may concluded that

°°°φ̂n°°°
2
= kφnk2 for all n.

Thus °°F̄f°°
2
= lim

n→∞

°°°φ̂n°°°
2
= lim

n→∞ kφnk2 = kfk2
which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an isometry.
Since F̄−1F̄ = F−1F = id on the dense set S, it follows by continuity that F̄−1F̄ =
id on all of L2. Hence F̄F̄−1 = id, and thus F̄−1 is the inverse of F̄ . This proves
item 1.
Item 2. Let f ∈ L2 and R <∞ and set fR(x) := f(x)1|x|≤R. Then fR ∈ L1∩L2.

Let φ ∈ C∞c (Rn) be a function such that
R
Rn φ(x)dx = 1 and set φk(x) = knφ(kx).

Then fRFφk → fR ∈ L1 ∩ L2 with fRFφk ∈ C∞c (Rn) ⊂ S. Hence
F̄fR = L2— lim

k→∞
F (fRFφk) = FfR a.e.

where in the second equality we used the fact that F is continuous on L1. HenceR
|x|≤R f(x)e−ix·ξdx represents F̄fR(ξ) in L2. Since fR → f in L2, Eq. (20.14)

follows by the continuity of F̄ on L2.
Item 3. If f = h+ g ∈ L1 + L2 and φ ∈ S, then

hĥ+ F̄g, φi = hh, φi+ hF̄g, φi = hh, φ̂i+ lim
R→∞

hF ¡g1|·|≤R¢ , φi
= hh, φ̂i+ lim

R→∞
hg1|·|≤R, φ̂i = hh+ g, φ̂i.(20.17)

In particular if h + g = 0 a.e., then hĥ + F̄g, φi = 0 for all φ ∈ S and since
ĥ+ F̄g ∈ L1loc it follows from Corollary 11.28 that ĥ+ F̄g = 0 a.e. This shows that
F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into the sum
of an L1 and an L2 function. Moreover Eq. (20.17) shows Eq. (20.16) holds with
F = ĥ + F̄g ∈ C0 + L2 and φ ∈ S. Now suppose G ∈ L1loc and hG,φi = hf, φ̂i for
all φ ∈ C∞c (Rn). Then by what we just proved, hG,φi = hF, φi for all φ ∈ C∞c (Rn)
and so an application of Corollary 11.28 shows G = F ∈ C0 + L2.

Notation 20.13. Given the results of Corollary 20.12, there is little danger in
writing f̂ or Ff for F̄f when f ∈ L1 + L2.

Corollary 20.14. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism it
follows that S is closed under convolution as well.
Proof. By Theorem 20.11, f, g, f̂ , ĝ ∈ L1 ∩ L∞ and hence f · g ∈ L1 ∩ L∞ and

f̂Fĝ ∈ L1 ∩ L∞. Since
F−1

³
f̂Fĝ

´
= F−1

³
f̂
´
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 20.11 that

f̂Fĝ = FF−1
³
f̂Fĝ

´
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.
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Corollary 20.15. Let p(x, ξ) and p(x,Dx) be as in Notation 20.8 with each func-
tion aα(x) being a smooth function of x ∈ Rn. Then for f ∈ S,

(20.18) p(x,Dx)f(x) =

Z
Rn

p(x, ξ)f̂ (ξ) eix·ξdξ.

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
³
F−1f̂

´
(x) = p(x,Dx)

Z
Rn

f̂ (ξ) eix·ξdξ

=

Z
Rn

f̂ (ξ) p(x,Dx)e
ix·ξdξ =

Z
Rn

f̂ (ξ) p(x, ξ)eix·ξdξ.

If p(x, ξ) is a more general function of (x, ξ) then that given in Notation 20.8,
the right member of Eq. (20.18) may still make sense, in which case we may use it
as a definition of p(x,Dx). A linear operator defined this way is called a pseudo
differential operator and they turn out to be a useful class of operators to study
when working with partial differential equations.

Corollary 20.16. Suppose p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn and
f ∈ L2. Then p(∂)f exists in L2 (see Definition 19.3) iff ξ → p(iξ)f̂(ξ) ∈ L2 in
which case

(p(∂)f)
ˆ
(ξ) = p(iξ)f̂(ξ) for a.e. ξ.

In particular, if g ∈ L2 then f ∈ L2 solves the equation, p(∂)f = g iff p(iξ)f̂(ξ) =
ĝ(ξ) for a.e. ξ.

Proof. By definition p(∂)f = g in L2 iff

(20.19) hg, φi = hf, p(−∂)φi for all φ ∈ C∞c (Rn).

If follows from repeated use of Lemma 19.23 that the previous equation is equivalent
to

(20.20) hg, φi = hf, p(−∂)φi for all φ ∈ S(Rn).
This may also be easily proved directly as well as follows. Choose ψ ∈ C∞c (Rn)
such that ψ(x) = 1 for x ∈ B0(1) and for φ ∈ S(Rn) let φn(x) := ψ(x/n)φ(x). By
the chain rule and the product rule (Eq. A.5 of Appendix A),

∂αφn(x) =
X
β≤α

µ
α

β

¶
n−|β|

¡
∂βψ

¢
(x/n) · ∂α−βφ(x)

along with the dominated convergence theorem shows φn → φ and ∂αφn → ∂αφ in
L2 as n→∞. Therefore if Eq. (20.19) holds, we find Eq. (20.20) holds because

hg, φi = lim
n→∞hg, φni = lim

n→∞hf, p(−∂)φni = hf, p(−∂)φi.
To complete the proof simply observe that hg, φi = hĝ, φ∨i and

hf, p(−∂)φi = hf̂ , [p(−∂)φ]∨i = hf̂(ξ), p(iξ)φ∨(ξ)i
= hp(iξ)f̂(ξ), φ∨(ξ)i

for all φ ∈ S(Rn). From these two observations and the fact that F is bijective on
S, one sees that Eq. (20.20) holds iff ξ → p(iξ)f̂(ξ) ∈ L2 and ĝ(ξ) = p(iξ)f̂(ξ) for
a.e. ξ.



ANALYSIS TOOLS WITH APPLICATIONS 397

20.4. Summary of Basic Properties of F and F−1. The following table sum-
marizes some of the basic properties of the Fourier transform and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution ←→ Products.

20.5. Fourier Transforms of Measures and Bochner’s Theorem. To moti-
vate the next definition suppose that µ is a finite measure on Rn which is absolutely
continuous relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then it is reasonable to
require

µ̂(ξ) := ρ̂(ξ) =

Z
Rn

e−iξ·xρ(x)dx =
Z
Rn

e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =

Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for example
assume g is bounded. These considerations lead to the following definitions.

Definition 20.17. The Fourier transform, µ̂, of a complex measure µ on BRn is
defined by

(20.21) µ̂(ξ) =

Z
Rn

e−iξ·xdµ(x)

and the convolution with a function g is defined by

(µFg) (x) =

Z
Rn

g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous. Also
by a variant of Exercise 11.11, if µ and ν are two complex measure on BRn such
that µ̂ = ν̂, then µ = ν. The reader is asked to give another proof of this fact in
Exercise 20.4 below.

Example 20.18. Let σt be the surface measure on the sphere St of radius t centered
at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .
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Definition 20.19. A function χ : Rn → C is said to be positive (semi) definite
iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all m ∈ N and
{ξj}mj=1 ⊂ Rn.
Lemma 20.20. If χ ∈ C(Rn,C) is a positive definite function, then

(1) χ(0) ≥ 0.
(2) χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
(3) |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
(4) For all f ∈ S(Rd),

(20.22)
Z
Rn×Rn

χ(ξ − η)f(ξ)f(η)dξdη ≥ 0.

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C which
proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=

·
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

¸
is positive definite from which we conclude χ(ξ − η) = χ(η − ξ) (since A = A∗ by
definition) and

0 ≤ det
·

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

¸
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (20.22) by Riemann sums,Z

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη = lim

mesh→0

X
χ(ξk − ξj)f(ξj)f(ξk) ≥ 0.

The details are left to the reader.

Lemma 20.21. If µ is a finite positive measure on BRn , then χ := µ̂ ∈ C(Rn,C)
is a positive definite function.

Proof. As has already been observed after Definition 20.17, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =
Z
Rn

eiξ·xdµ(x) =
Z
Rn

e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ Rn, the matrix A :=

{µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,
mX

k,j=1

µ̂(ξk − ξj)λkλ̄j =

Z
Rn

mX
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x) =
Z
Rn

mX
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

Z
Rn

¯̄̄̄
¯
mX
k=1

e−iξk·xλk

¯̄̄̄
¯
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 20.22 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive definite
function, then there exists a unique positive measure µ on BRn such that χ = µ̂.
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Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would haveZ
Rn

fdµ =

Z
Rn
(f∨)ˆ dµ =

Z
Rn

f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0. For
general f ∈ S we have

I(|f |2) =
Z
Rn

χ(ξ)
³
|f |2

´∨
(ξ)dξ =

Z
Rn

χ(ξ)
¡
f∨Ff̄∨

¢
(ξ)dξ

=

Z
Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
Z
Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

Z
Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0.

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

IFpt(x) := I(pt(x− ·)) = I(
¯̄̄p

pt(x− ·)
¯̄̄2
)

which is non-negative by above computation and because
p
pt(x− ·) ∈ S.

Using

[pt(x− ·)]∨ (ξ) =
Z
Rn

pt(x− y)eiy·ξdy =
Z
Rn

pt(y)e
i(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,

hIFpt, ψi =
Z
Rn

I(pt(x− ·))ψ(x)dx =
Z
Rn

Z
Rn

χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξdx

=

Z
Rn

χ(ξ)ψ∨(ξ)e−t|ξ|
2/2dξ

which coupled with the dominated convergence theorem shows

hIFpt, ψi→
Z
Rn

χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0hIFpt, ψi ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that

ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ kfk∞ ψ − f ∈ S and hence

0 ≤ hI, kfk∞ ψ − fi = kfk∞ hI, ψi− hI, fi
and therefore hI, fi ≤ kfk∞ hI, ψi. Replacing f by −f implies, −hI, fi ≤
kfk∞ hI, ψi and hence we have proved
(20.23) |hI, fi| ≤ C(supp(f)) kfk∞
for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (20.23), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (20.23) and
moreover this extension is still positive. So by the Riesz — Markov theorem, there



400 BRUCE K. DRIVER†

exists a unique Radon — measure µ on Rn such that such that hI, fi = µ(f) for all
f ∈ Cc(Rn,R).
To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R).

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing as
|x| increases. Let f�(x) := f(�x), then by Theorem 20.3,

F−1 £e−iηxf�(x)¤ (ξ) = �−nf∨(
ξ − η

�
)

and therefore

(20.24)
Z
Rn

e−iηxf�(x)dµ(x) =
Z
Rn

χ(ξ)�−nf∨(
ξ − η

�
)dξ.

Because
R
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ —
function Theorem 11.21 to Eq. (20.24) to find

(20.25)
Z
Rn

e−iηxf�(x)dµ(x)→ χ(η) as � ↓ 0.

On the the other hand, when η = 0, the monotone convergence theorem implies
µ(f�) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing the
µ is a finite measure we may use the dominated convergence theorem to concluded

µ(e−iηxf�(x))→ µ(e−iηx) = µ̂(η) as � ↓ 0
for all η. Combining this equation with Eq. (20.25) shows µ̂(η) = χ(η) for all
η ∈ Rn.

20.6. Supplement: Heisenberg Uncertainty Principle. Suppose that H is a
Hilbert space and A,B are two densely defined symmetric operators on H. More
explicitly, A is a densely defined symmetric linear operator on H means there is
a dense subspace DA ⊂ H and a linear map A : DA → H such that (Aφ,ψ) =
(φ,Aψ) for all φ, ψ ∈ DA. Let DAB := {φ ∈ H : φ ∈ DB and Bφ ∈ DA} and for
φ ∈ DAB let (AB)φ = A(Bφ) with a similar definition of DBA and BA. Moreover,
let DC := DAB ∩DBA and for φ ∈ DC , let

Cφ =
1

i
[A,B]φ =

1

i
(AB −BA)φ.

Notice that for φ, ψ ∈ DC we have

(Cφ,ψ) =
1

i
{(ABφ,ψ)− (BAφ,ψ)} = 1

i
{(Bφ,Aψ)− (Aφ,Bψ)}

=
1

i
{(φ,BAψ)− (φ,ABψ)} = (φ,Cψ),

so that C is symmetric as well.

Theorem 20.23 (Heisenberg Uncertainty Principle). Continue the above notation
and assumptions,

(20.26)
1

2
|(ψ,Cψ)| ≤

q
kAψk2 − (ψ,Aψ) ·

q
kBψk2 − (ψ,Bψ)
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for all ψ ∈ DC . Moreover if kψk = 1 and equality holds in Eq. (20.26), then
(A− (ψ,Aψ))ψ = iλ(B − (ψ,Bψ))ψ or
(B − (ψ,Bψ)) = iλψ(A− (ψ,Aψ))ψ(20.27)

for some λ ∈ R.
Proof. By homogeneity (20.26) we may assume that kψk = 1. Let a := (ψ,Aψ),

b = (ψ,Bψ), Ã = A− aI, and B̃ = B − bI. Then we have still have

[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i(ψ,Cψ) = (ψ, iCψ) = (ψ, [Ã, B̃]ψ) = (ψ, ÃB̃ψ)− (ψ, B̃Ãψ)
= (Ãψ, B̃ψ)− (B̃ψ, Ãψ) = 2i Im(Ãψ, B̃ψ)

from which we learn

|(ψ,Cψ)| = 2
¯̄̄
Im(Ãψ, B̃ψ)

¯̄̄
≤ 2

¯̄̄
(Ãψ, B̃ψ)

¯̄̄
≤ 2

°°°Ãψ°°°°°°B̃ψ°°°
with equality iff Re(Ãψ, B̃ψ) = 0 and Ãψ and B̃ψ are linearly dependent, i.e. iff
Eq. (20.27) holds.
The result follows from this equality and the identities°°°Ãψ°°°2 = kAψ − aψk2 = kAψk2 + a2 kψk2 − 2aRe(Aψ,ψ)

= kAψk2 + a2 − 2a2 = kAψk2 − (Aψ,ψ)
and °°°B̃ψ°°° = kBψk2 − (Bψ,ψ).
Example 20.24. As an example, take H = L2(R), A = 1

i ∂x and B =
Mx with DA := {f ∈ H : f 0 ∈ H} (f 0 is the weak derivative) and DB :=n
f ∈ H :

R
R |xf(x)|2 dx <∞

o
. In this case,

DC = {f ∈ H : f 0, xf and xf 0 are in H}
and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1

2
≤
°°°°1i ψ0 − aψ

°°°°
2

· kxψ − bψk2

where a = i
R
R ψψ̄

0dm 39 and b =
R
R x |ψ(x)|2 dm(x). Thus we have

(20.28)
1

4
=
1

4

Z
R
|ψ|2 dm ≤

Z
R
(k − a)2

¯̄̄
ψ̂(k)

¯̄̄2
dk ·

Z
R
(x− b)2 |ψ(x)|2 dx.

39The constant a may also be described as

a = i

Z
R
ψψ̄0dm =

√
2πi

Z
R
ψ̂(ξ)

¡
ψ̄0
¢ˆ
(ξ)dξ

=

Z
R
ξ
¯̄̄
ψ̂(ξ)

¯̄̄2
dm(ξ).
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Equality occurs if there exists λ ∈ R such that
iλ (x− b)ψ(x) = (

1

i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak form),

(20.29) ψx = [−λ(x− b) + ia]ψ

which has solutions (see Exercise 20.5 below)

(20.30) ψ = C exp

µZ
R
[−λ(x− b) + ia] dx

¶
= C exp

µ
−λ
2
(x− b)2 + iax

¶
.

Let λ = 1
2t and choose C so that kψk2 = 1 to find

ψt,a,b(x) =

µ
1

2t

¶1/4
exp

µ
− 1
4t
(x− b)2 + iax

¶
are the functions which saturate the Heisenberg uncertainty principle in Eq. (20.28).

20.6.1. Exercises.

Exercise 20.2. Let f ∈ L2(Rn) and α be a multi-index. If ∂αf exists in L2(Rn)
then F(∂αf) = (iξ)α f̂(ξ) in L2(Rn) and conversely if

³
ξ → ξαf̂(ξ)

´
∈ L2(Rn) then

∂αf exists.

Exercise 20.3. Suppose p(ξ) is a polynomial in ξ ∈ Rd and u ∈ L2 such that
p (∂)u ∈ L2. Show

F (p (∂)u) (ξ) = p(iξ)û (ξ) ∈ L2.

Conversely if u ∈ L2 such that p(iξ)û (ξ) ∈ L2, show p (∂)u ∈ L2.

Exercise 20.4. Suppose µ is a complex measure on Rn and µ̂(ξ) is its Fourier
transform as defined in Definition 20.17. Show µ satisfies,

hµ̂, φi :=
Z
Rn

µ̂(ξ)φ(ξ)dξ = µ(φ̂) :=

Z
Rn

φ̂dµ for all φ ∈ S

and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.
Exercise 20.5. Show that ψ described in Eq. (20.30) is the general solution to
Eq. (20.29). Hint: Suppose that φ is any solution to Eq. (20.29) and ψ is given
as in Eq. (20.30) with C = 1. Consider the weak — differential equation solved by
φ/ψ.

20.6.2. More Proofs of the Fourier Inversion Theorem.

Exercise 20.6. Suppose that f ∈ L1(R) and assume that f continuously differen-
tiable in a neighborhood of 0, show

(20.31) lim
M→∞

Z ∞
−∞

sinMx

x
f(x)dx = πf(0)

using the following steps.

(1) Use Example 8.26 to deduce,

lim
M→∞

Z 1

−1

sinMx

x
dx = lim

M→∞

Z M

−M

sinx

x
dx = π.
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(2) Explain why

0 = lim
M→∞

Z
|x|≥1

sinMx · f(x)
x

dx and

0 = lim
M→∞

Z
|x|≤1

sinMx · f(x)− f(0)

x
dx.

(3) Add the previous two equations and use part (1) to prove Eq. (20.31).

Exercise 20.7 (Fourier Inversion Formula). Suppose that f ∈ L1(R) such that
f̂ ∈ L1(R).

(1) Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=

Z
R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
R
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 20.6.
(2) Apply part 1. of this exercise with f replace by τyf for some y ∈ R to

prove

(20.32) f(y) =

Z
R
f̂(ξ)eiy·ξdξ

provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier inversion
formula.

Notation 20.25. For L > 0, let Ck
L(R) denote the space of Ck — 2πL periodic

functions:

Ck
L(R) :=

©
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ Rª .

Also let h·, ·iL denote the inner product on the Hilbert space HL := L2([−πL, πL])
given by

(f, g)L :=
1

2πL

Z
[−πL,πL]

f(x)ḡ(x)dx.

Exercise 20.8. Recall that
©
χLk (x) := eikx/L : k ∈ Zª is an orthonormal basis for

HL and in particular for f ∈ HL,

(20.33) f =
X
k∈Z
hf, χLk iLχLk

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2L(R)40. Show (by two integration by parts)¯̄

(fL, χ
L
k )L

¯̄ ≤ L2

k2
kf 00ku

where kgku denote the uniform norm of a function g. Use this to conclude that the
sum in Eq. (20.33) is uniformly convergent and from this conclude that Eq. (20.33)
holds pointwise.

40We view C2L(R) as a subspace of HL by identifying f ∈ C2L(R) with f |[−πL,πL] ∈ HL.
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Exercise 20.9 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0 and

(20.34) fL(x) :=
X
k∈Z

f(x+ 2πkL).

Show:
(1) The sum defining fL is convergent and moreover that fL ∈ C∞L (R).
(2) Show (fL, χLk )L =

1√
2πL

f̂(k/L).

(3) Conclude from Exercise 20.8 that

(20.35) fL(x) =
1√
2πL

X
k∈Z

f̂(k/L)eikx/L for all x ∈ R.

(4) Show, by passing to the limit, L → ∞, in Eq. (20.35) that Eq. (20.32)
holds for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 20.10. Folland 8.13 on p. 254.

Exercise 20.11. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 20.12. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution F.20 below.)

Exercise 20.13. Folland 8.16 on p. 255.

Exercise 20.14. Folland 8.17 on p. 255.

Exercise 20.15. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 20.16. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 20.17. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 20.18. Folland 8.31 on p. 263. (Poisson Summation formula problem.)
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21. Constant Coefficient partial differential equations

Suppose that p(ξ) =
P
|α|≤k aαξ

α with aα ∈ C and

(21.1) L = p(Dx) := Σ|α|≤NaαDα
x = Σ|α|≤Naα

µ
1

i
∂x

¶α
.

Then for f ∈ S cLf(ξ) = p(ξ)f̂(ξ),

that is to say the Fourier transform takes a constant coefficient partial differential
operator to multiplication by a polynomial. This fact can often be used to solve
constant coefficient partial differential equation. For example suppose g : Rn → C is
a given function and we want to find a solution to the equation Lf = g. Taking the
Fourier transform of both sides of the equation Lf = g would imply p(ξ)f̂(ξ) = ĝ(ξ)

and therefore f̂(ξ) = ĝ(ξ)/p(ξ) provided p(ξ) is never zero. (We will discuss what
happens when p(ξ) has zeros a bit more later on.) So we should expect

f(x) = F−1
µ
1

p(ξ)
ĝ(ξ)

¶
(x) = F−1

µ
1

p(ξ)

¶
Fg(x).

Definition 21.1. Let L = p(Dx) as in Eq. (21.1). Then we let σ(L) :=Ran(p) ⊂ C
and call σ(L) the spectrum of L. Given a measurable function G : σ(L)→ C, we
define (a possibly unbounded operator) G(L) : L2(Rn,m)→ L2(Rn,m) by

G(L)f := F−1MG◦pF
where MG◦p denotes the operation on L2(Rn,m) of multiplication by G ◦ p, i.e.

MG◦pf = (G ◦ p) f
with domain given by those f ∈ L2 such that (G ◦ p) f ∈ L2.

At a formal level we expect

G(L)f = F−1 (G ◦ p)Fg.

21.0.3. Elliptic examples. As a specific example consider the equation

(21.2)
¡−∆+m2

¢
f = g

where f, g : Rn → C and ∆ =
Pn

i=1 ∂
2/∂x2i is the usual Laplacian on Rn. By

Corollary 20.16 (i.e. taking the Fourier transform of this equation), solving Eq.
(21.2) with f, g ∈ L2 is equivalent to solving

(21.3)
¡|ξ|2 +m2

¢
f̂(ξ) = ĝ(ξ).

The unique solution to this latter equation is

f̂(ξ) =
¡|ξ|2 +m2

¢−1
ĝ(ξ)

and therefore,

f(x) = F−1
³¡|ξ|2 +m2

¢−1
ĝ(ξ)

´
(x) =:

¡−∆+m2
¢−1

g(x).

We expect

F−1
³¡|ξ|2 +m2

¢−1
ĝ(ξ)

´
(x) = GmFg(x) =

Z
Rn

Gm(x− y)g(y)dy,
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where

Gm(x) := F−1
¡|ξ|2 +m2

¢−1
(x) =

Z
Rn

1

m2 + |ξ|2 e
iξ·xdξ.

At the moment F−1 ¡|ξ|2 +m2
¢−1

only makes sense when n = 1, 2, or 3 because

only then is
¡|ξ|2 +m2

¢−1 ∈ L2(Rn).
For now we will restrict our attention to the one dimensional case, n = 1, in

which case

(21.4) Gm(x) =
1√
2π

Z
R

1

(ξ +mi) (ξ −mi)
eiξxdξ.

The function Gm may be computed using standard complex variable contour inte-
gration methods to find, for x ≥ 0,

Gm(x) =
1√
2π
2πi

ei
2mx

2im
=

1

2m

√
2πe−mx

and since Gm is an even function,

(21.5) Gm(x) = F−1
¡|ξ|2 +m2

¢−1
(x) =

√
2π

2m
e−m|x|.

This result is easily verified to be correct, since

F
"√

2π

2m
e−m|x|

#
(ξ) =

√
2π

2m

Z
R
e−m|x|e−ix·ξdx

=
1

2m

µZ ∞
0

e−mxe−ix·ξdx+
Z 0

−∞
emxe−ix·ξdx

¶
=

1

2m

µ
1

m+ iξ
+

1

m− iξ

¶
=

1

m2 + ξ2
.

Hence in conclusion we find that
¡−∆+m2

¢
f = g has solution given by

f(x) = GmFg(x) =

√
2π

2m

Z
R
e−m|x−y|g(y)dy =

1

2m

Z
R
e−m|x−y|g(y)dy.

Question. Why do we get a unique answer here given that f(x) = A sinh(x) +
B cosh(x) solves ¡−∆+m2

¢
f = 0?

The answer is that such an f is not in L2 unless f = 0! More generally it is worth
noting that A sinh(x) +B cosh(x) is not in P unless A = B = 0.
What about when m = 0 in which case m2 + ξ2 becomes ξ2 which has a zero at

0. Noting that constants are solutions to ∆f = 0, we might look at

lim
m↓0

(Gm(x)− 1) = lim
m↓0

√
2π

2m
(e−m|x| − 1) = −

√
2π

2
|x| .

as a solution, i.e. we might conjecture that

f(x) := −1
2

Z
R
|x− y| g(y)dy

solves the equation −f 00 = g. To verify this we have

f(x) := −1
2

Z x

−∞
(x− y) g(y)dy − 1

2

Z ∞
x

(y − x) g(y)dy
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so that

f 0(x) = −1
2

Z x

−∞
g(y)dy +

1

2

Z ∞
x

g(y)dy and

f 00(x) = −1
2
g(x)− 1

2
g(x).

21.0.4. Poisson Semi-Group. Let us now consider the problems of finding a function
(x0, x) ∈ [0,∞)×Rn → u(x0, x) ∈ C such that

(21.6)
µ

∂2

∂x20
+∆

¶
u = 0 with u(0, ·) = f ∈ L2(Rn).

Let û(x0, ξ) :=
R
Rn u(x0, x)e

−ix·ξdx denote the Fourier transform of u in the x ∈ Rn
variable. Then Eq. (21.6) becomes

(21.7)
µ

∂2

∂x20
− |ξ|2

¶
û(x0, ξ) = 0 with û(0, ξ) = f̂(ξ)

and the general solution to this differential equation ignoring the initial condition
is of the form

(21.8) û(x0, ξ) = A(ξ)e−x0|ξ| +B(ξ)ex0|ξ|

for some function A(ξ) and B(ξ). Let us now impose the extra condition that
u(x0, ·) ∈ L2(Rn) or equivalently that û(x0, ·) ∈ L2(Rn) for all x0 ≥ 0. The solution
in Eq. (21.8) will not have this property unless B(ξ) decays very rapidly at∞. The
simplest way to achieve this is to assume B = 0 in which case we now get a unique
solution to Eq. (21.7), namely

û(x0, ξ) = f̂(ξ)e−x0|ξ|.

Applying the inverse Fourier transform gives

u(x0, x) = F−1
h
f̂(ξ)e−x0|ξ|

i
(x) =:

³
e−x0

√−∆f
´
(x)

and moreover ³
e−x0

√−∆f
´
(x) = Px0 ∗ f(x)

where Px0(x) = (2π)
−n/2 ¡F−1e−x0|ξ|¢ (x). From Exercise 21.1,

Px0(x) = (2π)
−n/2 ³F−1e−x0|ξ|´ (x) = cn

x0
(x20 + |x|2)(n+1)/2

where

cn = (2π)
−n/2 Γ((n+ 1)/2)√

π2n/2
=
Γ((n+ 1)/2)

2nπ(n+1)/2
.

Hence we have proved the following proposition.

Proposition 21.2. For f ∈ L2(Rn),

e−x0
√−∆f = Px0 ∗ f for all x0 ≥ 0

and the function u(x0, x) := e−x0
√−∆f(x) is C∞ for (x0, x) ∈ (0,∞) × Rn and

solves Eq. (21.6).
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21.0.5. Heat Equation on Rn. The heat equation for a function u : R+ × Rn → C
is the partial differential equation

(21.9)
µ
∂t − 1

2
∆

¶
u = 0 with u(0, x) = f(x),

where f is a given function on Rn. By Fourier transforming Eq. (21.9) in the x —
variables only, one finds that (21.9) implies that

(21.10)
µ
∂t +

1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ).

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then shows

that

u(t, x) = F−1
³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
Ff

´
(x) =: et∆/2f(x).

From Example 20.4,

F−1
³
e−t|ξ|

2/2
´
(x) = pt(x) = t−n/2e−

1
2t |x|2

and therefore,

u(t, x) =

Z
Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 21.3. Let

(21.11) ρ(t, x, y) := (2πt)
−n/2

e−|x−y|
2/2t

be the heat kernel on Rn. Then

(21.12)
µ
∂t − 1

2
∆x

¶
ρ(t, x, y) = 0 and lim

t↓0
ρ(t, x, y) = δx(y),

where δx is the δ — function at x in Rn. More precisely, if f is a continuous bounded
(can be relaxed considerably) function on Rn, then u(t, x) =

R
Rn ρ(t, x, y)f(y)dy is

a solution to Eq. (21.9) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
ρ(t, x, y) = 0 and an ap-

plication of Theorem 11.21 shows limt↓0 ρ(t, x, y) = δx(y) or equivalently that
limt↓0

R
Rn ρ(t, x, y)f(y)dy = f(x) uniformly on compact subsets of Rn. This shows

that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.
This notation suggests that we should be able to compute the solution to g to

(∆−m2)g = f using

g(x) =
¡
m2 −∆¢−1 f(x) = Z ∞

0

³
e−(m

2−∆)tf
´
(x)dt =

Z ∞
0

³
e−m

2tp2tFf
´
(x)dt,

a fact which is easily verified using the Fourier transform. This gives us a method
to compute Gm(x) from the previous section, namely

Gm(x) =

Z ∞
0

e−m
2tp2t(x)dt =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt.



ANALYSIS TOOLS WITH APPLICATIONS 409

We make the change of variables, λ = |x|2 /4t (t = |x|2 /4λ, dt = − |x|24λ2 dλ) to find

Gm(x) =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt =
Z ∞
0

Ã
|x|2
2λ

!−n/2
e−m

2|x|2/4λ−λ |x|2
(2λ)

2 dλ

=
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ.(21.13)

In case n = 3, Eq. (21.13) becomes

Gm(x) =

√
π√
2 |x|

Z ∞
0

1√
πλ

e−λe−m
2|x|2/4λdλ =

√
π√
2 |x|e

−m|x|

where the last equality follows from Exercise 21.1. Hence when n = 3 we have
found¡

m2 −∆¢−1 f(x) = GmFf(x) = (2π)−3/2
Z
R3

√
π√

2 |x− y|e
−m|x−y|f(y)dy

=

Z
R3

1

4π |x− y|e
−m|x−y|f(y)dy.(21.14)

The function 1
4π|x|e

−m|x| is called the Yukawa potential.
Let us work out Gm(x) for n odd. By differentiating Eq. (21.26) of Exercise

21.1 we findZ ∞
0

dλλk−1/2e−
1
4λx

2

e−λm
2

=

Z ∞
0

dλ
1√
λ
e−

1
4λx

2

µ
− d

da

¶k
e−λa|a=m2

=

µ
− d

da

¶k √
π√
a
e−
√
ax = pm,k(x)e

−mx

where pm,k(x) is a polynomial in x with deg pm = k with

pm,k(0) =
√
π

µ
− d

da

¶k
a−1/2|a=m2 =

√
π(
1

2

3

2
. . .
2k − 1
2

)m2k+1 = m2k+1
√
π2−k(2k−1)!!.

Letting k − 1/2 = n/2 − 2 and m = 1 we find k = n−1
2 − 2 ∈ N for n = 3, 5, . . . .

and we find Z ∞
0

λn/2−2e−
1
4λx

2

e−λdλ = p1,k(x)e
−x for all x > 0.

Therefore,

Gm(x) =
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ =

2(n/2−2)

|x|n−2 p1,n/2−2(m |x|)e−m|x|.

Now for even m, I think we get Bessel functions in the answer. (BRUCE: look
this up.) Let us at least work out the asymptotics of Gm(x) for x → ∞. To this
end let

ψ(y) :=

Z ∞
0

λn/2−2e−(λ+λ
−1y2)dλ = yn−2

Z ∞
0

λn/2−2e−(λy
2+λ−1)dλ

The function fy(λ) := (y
2λ+ λ−1) satisfies,

f 0y(λ) =
¡
y2 − λ−2

¢
and f 00y (λ) = 2λ

−3 and f 000y (λ) = −6λ−4
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so by Taylor’s theorem with remainder we learn

fy(λ) ∼= 2y + y3(λ− y−1)2 for all λ > 0,

see Figure 21.0.5 below.
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Plot of f4 and its second order Taylor approximation.

So by the usual asymptotics arguments,

ψ(y) ∼= yn−2
Z
(−�+y−1,y−1+�)

λn/2−2e−(λy
2+λ−1)dλ

∼= yn−2
Z
(−�+y−1,y−1+�)

λn/2−2 exp
¡−2y − y3(λ− y−1)2

¢
dλ

∼= yn−2e−2y
Z
R
λn/2−2 exp

¡−y3(λ− y−1)2
¢
dλ (let λ→ λy−1)

= e−2yyn−2y−n/2+1
Z
R
λn/2−2 exp

¡−y(λ− 1)2¢ dλ
= e−2yyn−2y−n/2+1

Z
R
(λ+ 1)n/2−2 exp

¡−yλ2¢ dλ.
The point is we are still going to get exponential decay at ∞.
When m = 0, Eq. (21.13) becomes

G0(x) =
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−1e−λ
dλ

λ
=
2(n/2−2)

|x|n−2 Γ(n/2− 1)

where Γ(x) in the gamma function defined in Eq. (8.30). Hence for “reasonable”
functions f (and n 6= 2)

(−∆)−1f(x) = G0Ff(x) = 2(n/2−2)Γ(n/2− 1)(2π)−n/2
Z
Rn

1

|x− y|n−2 f(y)dy

=
1

4πn/2
Γ(n/2− 1)

Z
Rn

1

|x− y|n−2 f(y)dy.

The function

G̃0(x, y) :=
1

4πn/2
Γ(n/2− 1) 1

|x− y|n−2
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is a “Green’s function” for −∆. Recall from Exercise 8.16 that, for n = 2k, Γ(n2 −
1) = Γ(k − 1) = (k − 2)!, and for n = 2k + 1,

Γ(
n

2
− 1) = Γ(k − 1/2) = Γ(k − 1 + 1/2) = √π1 · 3 · 5 · · · · · (2k − 3)

2k−1

=
√
π
(2k − 3)!!
2k−1

where (−1)!! ≡ 1.
Hence

G̃0(x, y) =
1

4

1

|x− y|n−2
½ 1

πk
(k − 2)! if n = 2k

1
πk

(2k−3)!!
2k−1 if n = 2k + 1

and in particular when n = 3,

G̃0(x, y) =
1

4π

1

|x− y|
which is consistent with Eq. (21.14) with m = 0.

21.0.6. Wave Equation on Rn. Let us now consider the wave equation on Rn,

0 =
¡
∂2t −∆

¢
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).(21.15)

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ) with
û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).(21.16)

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t|ξ|
|ξ|

and hence we should have

u(t, x) = F−1
µ
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t|ξ|
|ξ|

¶
(x)

= F−1 cos (t |ξ|)Ff(x) + F−1 sin t|ξ||ξ| Fg (x)

=
d

dt
F−1

·
sin t|ξ|
|ξ|

¸
Ff(x) + F−1

·
sin t|ξ|
|ξ|

¸
Fg (x) .(21.17)

The question now is how interpret this equation. In particular what are the inverse
Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ||ξ| . Since d

dtF−1 sin t|ξ||ξ| Ff(x) =

F−1 cos (t |ξ|)Ff(x), it really suffices to understand F−1
h
sin t|ξ|
|ξ|

i
. The problem we

immediately run into here is that sin t|ξ|
|ξ| ∈ L2(Rn) iff n = 1 so that is the case we

should start with.
Again by complex contour integration methods one can show¡F−1ξ−1 sin tξ¢ (x) = π√

2π

¡
1x+t>0 − 1(x−t)>0

¢
=

π√
2π
(1x>−t − 1x>t) = π√

2π
1[−t,t](x)
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where in writing the last line we have assume that t ≥ 0. Again this easily seen to
be correct because

F
·

π√
2π
1[−t,t](x)

¸
(ξ) =

1

2

Z
R
1[−t,t](x)e−iξ·xdx =

1

−2iξ e
−iξ·x|t−t

=
1

2iξ

£
eiξt − e−iξt

¤
= ξ−1 sin tξ.

Therefore, ¡F−1ξ−1 sin tξ¢Ff(x) =
1

2

Z t

−t
f(x− y)dy

and the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

Z t

−t
f(x− y)dy +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0 =
¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0 and
hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f 0(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f 0(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f 0(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

Z t

0

{g(x+ 2τ) + f 0(x+ 2τ)} dτ

= f(x) +

Z t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

Z t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

Z t

0

g(x− t+ 2τ)dτ

and then letting y = x− t+ 2τ in the last integral shows again that

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.
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When n > 3 it is necessary to treat F−1
h
sin t|ξ|
|ξ|

i
as a “distribution” or “gener-

alized function,” see Section 30 below. So for now let us take n = 3, in which case
from Example 20.18 it follows that

(21.18) F−1
·
sin t |ξ|
|ξ|

¸
=

t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one. Hence from Eq. (21.17) the solution to the three dimensional wave equation
should be given by

(21.19) u(t, x) =
d

dt
(tσ̄tFf(x)) + tσ̄tFg (x) .

Using this definition in Eq. (21.19) gives

u(t, x) =
d

dt

½
t

Z
St

f(x− y)dσ̄t(y)

¾
+ t

Z
St

g(x− y)dσ̄t(y)

=
d

dt

½
t

Z
S1

f(x− tω)dσ̄1(ω)

¾
+ t

Z
S1

g(x− tω)dσ̄1(ω)

=
d

dt

½
t

Z
S1

f(x+ tω)dσ̄1(ω)

¾
+ t

Z
S1

g(x+ tω)dσ̄1(ω).(21.20)

Proposition 21.4. Suppose f ∈ C3(R3) and g ∈ C2(R3), then u(t, x) defined by
Eq. (21.20) is in C2

¡
R×R3¢ and is a classical solution of the wave equation in

Eq. (21.15).

Proof. The fact that u ∈ C2
¡
R×R3¢ follows by the usual differentiation under

the integral arguments. Suppose we can prove the proposition in the special case
that f ≡ 0. Then for f ∈ C3(R3), the function v(t, x) = +t

R
S1

g(x + tω)dσ̄1(ω)

solves the wave equation 0 =
¡
∂2t −∆

¢
v(t, x) with v(0, x) = 0 and vt(0, x) = g(x).

Differentiating the wave equation in t shows u = vt also solves the wave equation
with u(0, x) = g(x) and ut(0, x) = vtt(0, x) = −∆xv(0, x) = 0.
These remarks reduced the problems to showing u in Eq. (21.20) with f ≡ 0

solves the wave equation. So let

(21.21) u(t, x) := t

Z
S1

g(x+ tω)dσ̄1(ω).

We now give two proofs the u solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and u(t, x) only

depends on the values of g in B(x, t) we it suffices to consider the case where
g ∈ C2c

¡
R3
¢
. Taking the Fourier transform of Eq. (21.21) in the x variable shows

û(t, ξ) = t

Z
S1

dσ̄1(ω)

Z
R3

g(x+ tω)e−iξ·xdx

= t

Z
S1

dσ̄1(ω)

Z
R3

g(x)e−iξ·xeitω·ξdx = ĝ(ξ)t

Z
S1

eitω·ξdσ̄1(ω)

= ĝ(ξ)t
sin |tk|
|tk| = ĝ(ξ)

sin (t |ξ|)
|ξ|

wherein we have made use of Example 20.18. This completes the proof since û(t, ξ)
solves Eq. (21.16) as desired.
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Proof 2. Differentiating

S(t, x) :=

Z
S1

g(x+ tω)dσ̄1(ω)

in t gives

St(t, x) =
1

4π

Z
S1

∇g(x+ tω) · ωdσ(ω) = 1

4π

Z
B(0,1)

∇ω ·∇g(x+ tω)dm(ω)

=
t

4π

Z
B(0,1)

∆g(x+ tω)dm(ω) =
1

4πt2

Z
B(0,t)

∆g(x+ y)dm(y)

=
1

4πt2

Z t

0

dr r2
Z
|y|=r

∆g(x+ y)dσ(y)

where we have used the divergence theorem, made the change of variables y = tω
and used the disintegration formula in Eq. (8.27),Z

Rd

f(x)dm(x) =

Z
[0,∞)×Sn−1

f(r ω) dσ(ω)rn−1dr =
Z ∞
0

dr

Z
|y|=r

f(y)dσ(y).

Since u(t, x) = tS(t, x) if follows that

utt(t, x) =
∂

∂t
[S(t, x) + tSt(t, x)]

= St(t, x) +
∂

∂t

"
1

4πt

Z t

0

dr r2
Z
|y|=r

∆g(x+ y)dσ(y)

#

= St(t, x)− 1

4πt2

Z t

0

dr

Z
|y|=r

∆g(x+ y)dσ(y) +
1

4πt

Z
|y|=t

∆g(x+ y)dσ(y)

= St(t, x)− St(t, x) +
t

4πt2

Z
|y|=1

∆g(x+ tω)dσ(ω) = t∆u(t, x)

as required.
The solution in Eq. (21.20) exhibits a basic property of wave equations, namely

finite propagation speed. To exhibit the finite propagation speed, suppose that
f = 0 (for simplicity) and g has compact support near the origin, for example
think of g = δ0(x). Then x+ tw = 0 for some w iff |x| = t. Hence the “wave front”
propagates at unit speed and the wave front is sharp. See Figure 39 below.
The solution of the two dimensional wave equation may be found using

“Hadamard’s method of decent” which we now describe. Suppose now that f and
g are functions on R2 which we may view as functions on R3 which happen not to
depend on the third coordinate. We now go ahead and solve the three dimensional
wave equation using Eq. (21.20) and f and g as initial conditions. It is easily seen
that the solution u(t, x, y, z) is again independent of z and hence is a solution to
the two dimensional wave equation. See figure 40 below.
Notice that we still have finite speed of propagation but no longer sharp propa-

gation. The explicit formula for u is given in the next proposition.

Proposition 21.5. Suppose f ∈ C3(R2) and g ∈ C2(R2), then

u(t, x) :=
∂

∂t

"
t

2π

ZZ
D1

f(x+ tw)p
1− |w|2 dm(w)

#
+

t

2π

ZZ
D1

g(x+ tw)p
1− |w|2 dm(w)
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Figure 39. The geometry of the solution to the wave equation in
three dimensions. The observer sees a flash at t = 0 and x = 0
only at time t = |x| . The wave progates sharply with speed 1.

Figure 40. The geometry of the solution to the wave equation in
two dimensions. A flash at 0 ∈ R2 looks like a line of flashes to the
fictitious 3 — d observer and hence she sees the effect of the flash
for t ≥ |x| . The wave still propagates with speed 1. However there
is no longer sharp propagation of the wave front, similar to water
waves.
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is in C2
¡
R×R2¢ and solves the wave equation in Eq. (21.15).

Proof. As usual it suffices to consider the case where f ≡ 0. By symmetry u
may be written as

u(t, x) = 2t

Z
S+t

g(x− y)dσ̄t(y) = 2t

Z
S+t

g(x+ y)dσ̄t(y)

where S+t is the portion of St with z ≥ 0. The surface S+t may be parametrized by
R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

©
(u, v) : u2 + v2 ≤ t2

ª
. In these

coordinates we have

4πt2dσ̄t =
¯̄̄³
−∂u

p
t2 − u2 − v2,−∂v

p
t2 − u2 − v2, 1

´¯̄̄
dudv

=

¯̄̄̄µ
u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1

¶¯̄̄̄
dudv

=

r
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

Z
Dt

g(x+ (u, v,
p
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

Z
Dt

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

ZZ
Dt

g(x+ w)p
t2 − |w|2 dm(w) =

1

2π
sgn(t)

t2

|t|
ZZ

D1

g(x+ tw)p
1− |w|2 dm(w)

=
1

2π
t

ZZ
D1

g(x+ tw)p
1− |w|2 dm(w)

21.1. Elliptic Regularity. The following theorem is a special case of the main
theorem (Theorem 21.10) of this section.

Theorem 21.6. Suppose that M ⊂o Rn, v ∈ C∞(M) and u ∈ L1loc(M) satisfies
∆u = v weakly, then u has a (necessarily unique) version ũ ∈ C∞(M).

Proof. We may always assume n ≥ 3, by embedding the n = 1 and n = 2 cases
in the n = 3 cases. For notational simplicity, assume 0 ∈M and we will show u is
smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a neighborhood of 0
and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} and α = 1 in a neighborhood of 0
as well. Then formally, we have with β := 1− α,

G ∗ (θv) = G ∗ (θ∆u) = G ∗ (θ∆(αu+ βu))

= G ∗ (∆(αu) + θ∆(βu)) = αu+G ∗ (θ∆(βu))
so that

u(x) = G ∗ (θv) (x)−G ∗ (θ∆(βu))(x)
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for x ∈ supp(α). The last term is formally given by

G ∗ (θ∆(βu))(x) =
Z
Rn

G(x− y)θ(y)∆(β(y)u(y))dy

=

Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy
which makes sense for x near 0. Therefore we find

u(x) = G ∗ (θv) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.

Clearly all of the above manipulations were correct if we know u were C2 to begin
with. So for the general case, let un = u ∗ δn with {δn}∞n=1 — the usual sort of δ —
sequence approximation. Then ∆un = v ∗ δn =: vn away from ∂M and

(21.22) un(x) = G ∗ (θvn) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · un(y)dy.

Since un → u in L1loc(O) where O is a sufficiently small neighborhood of 0, we may
pass to the limit in Eq. (21.22) to find u(x) = ũ(x) for a.e. x ∈ O where

ũ(x) := G ∗ (θv) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.
This concluded the proof since ũ is smooth for x near 0.

Definition 21.7. We say L = p(Dx) as defined in Eq. (21.1) is elliptic if pk(ξ) :=P
|α|=k aαξ

α is zero iff ξ = 0. We will also say the polynomial p(ξ) :=
P
|α|≤k aαξ

α

is elliptic if this condition holds.

Remark 21.8. If p(ξ) :=
P

|α|≤k aαξ
α is an elliptic polynomial, then there exists

A <∞ such that inf |ξ|≥A |p(ξ)| > 0. Since pk(ξ) is everywhere non-zero for ξ ∈ Sn−1

and Sn−1 ⊂ Rn is compact, � := inf |ξ|=1 |pk(ξ)| > 0. By homogeneity this implies
|pk(ξ)| ≥ � |ξ|k for all ξ ∈ An.

Since

|p(ξ)| =
¯̄̄̄
¯̄pk(ξ) + X

|α|<k
aαξ

α

¯̄̄̄
¯̄ ≥ |pk(ξ)|−

¯̄̄̄
¯̄ X
|α|<k

aαξ
α

¯̄̄̄
¯̄

≥ � |ξ|k − C
³
1 + |ξ|k−1

´
for some constant C <∞ from which it is easily seen that for A sufficiently large,

|p(ξ)| ≥ �

2
|ξ|k for all |ξ| ≥ A.

For the rest of this section, let L = p(Dx) be an elliptic operator and M ⊂0 Rn.
As mentioned at the beginning of this section, the formal solution to Lu = v for
v ∈ L2 (Rn) is given by

u = L−1v = G ∗ v
where

G(x) :=

Z
Rn

1

p(ξ)
eix·ξdξ.

Of course this integral may not be convergent because of the possible zeros of p
and the fact 1

p(ξ) may not decay fast enough at infinity. We we will introduce
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a smooth cut off function χ(ξ) which is 1 on C0(A) := {x ∈ Rn : |x| ≤ A} and
supp(χ) ⊂ C0(2A) where A is as in Remark 21.8. Then for M > 0 let

GM (x) =

Z
Rn

(1− χ(ξ))χ(ξ/M)

p(ξ)
eix·ξdξ,(21.23)

δ(x) := χ∨(x) =
Z
Rn

χ(ξ)eix·ξdξ, and δM (x) =Mnδ(Mx).(21.24)

Notice
R
Rn δ(x)dx = Fδ(0) = χ(0) = 1, δ ∈ S since χ ∈ S and

LGM (x) =

Z
Rn
(1− χ(ξ))χ(ξ/M)eix·ξdξ =

Z
Rn
[χ(ξ/M)− χ(ξ)] eix·ξdξ

= δM (x)− δ(x)

provided M > 2.

Proposition 21.9. Let p be an elliptic polynomial of degree m. The function GM

defined in Eq. (21.23) satisfies the following properties,
(1) GM ∈ S for all M > 0.
(2) LGM (x) =Mnδ(Mx)− δ(x).
(3) There exists G ∈ C∞c (Rn \ {0}) such that for all multi-indecies α,

limM→∞ ∂αGM (x) = ∂αG(x) uniformly on compact subsets in Rn \ {0} .
Proof. We have already proved the first two items. For item 3., we notice that

(−x)β DαGM (x) =

Z
Rn

(1− χ(ξ))χ(ξ/M)ξα

p(ξ)
(−D)βξ eix·ξdξ

=

Z
Rn

Dβ
ξ

·
(1− χ(ξ)) ξα

p(ξ)
χ(ξ/M)

¸
eix·ξdξ

=

Z
Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· χ(ξ/M)eix·ξdξ +RM (x)

where

RM (x) =
X
γ<β

µ
β

γ

¶
M |γ|−|β|

Z
Rn

Dγ
ξ

(1− χ(ξ)) ξα

p(ξ)
· ¡Dβ−γχ

¢
(ξ/M)eix·ξdξ.

Using ¯̄̄̄
Dγ
ξ

·
ξα

p(ξ)
(1− χ(ξ))

¸¯̄̄̄
≤ C |ξ||α|−m−|γ|

and the fact that

supp(
¡
Dβ−γχ

¢
(ξ/M)) ⊂ {ξ ∈ Rn : A ≤ |ξ| /M ≤ 2A} = {ξ ∈ Rn : AM ≤ |ξ| ≤ 2AM}

we easily estimate

|RM (x)| ≤ C
X
γ<β

µ
β

γ

¶
M |γ|−|β|

Z
{ξ∈Rn:AM≤|ξ|≤2AM}

|ξ||α|−m−|γ| dξ

≤ C
X
γ<β

µ
β

γ

¶
M |γ|−|β|M |α|−m−|γ|+n = CM |α|−|β|−m+n.

Therefore, RM → 0 uniformly in x asM →∞ provided |β| > |α|−m+n. It follows
easily now that GM → G in C∞c (Rn \ {0}) and furthermore that

(−x)β DαG(x) =

Z
Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ
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provided β is sufficiently large. In particular we have shown,

DαG(x) =
1

|x|2k
Z
Rn
(−∆ξ)

k (1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided m− |α|+ 2k > n, i.e. k > (n−m+ |α|) /2.
We are now ready to use this result to prove elliptic regularity for the constant

coefficient case.

Theorem 21.10. Suppose L = p(Dξ) is an elliptic differential operator on Rn,
M ⊂o Rn, v ∈ C∞(M) and u ∈ L1loc(M) satisfies Lu = v weakly, then u has a
(necessarily unique) version ũ ∈ C∞(M).

Proof. For notational simplicity, assume 0 ∈ M and we will show u is smooth
near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a neighborhood of 0 and
α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} , and α = 1 in a neighborhood of 0 as
well. Then formally, we have with β := 1− α,

GM ∗ (θv) = GM ∗ (θLu) = GM ∗ (θL(αu+ βu))

= GM ∗ (L(αu) + θL(βu)) = δM ∗ (αu)− δ ∗ (αu) +GM ∗ (θL(βu))
so that

(21.25) δM ∗ (αu) (x) = GM ∗ (θv) (x)−GM ∗ (θL(βu))(x) + δ ∗ (αu) .
Since

F [GM ∗ (θv)] (ξ) = ĜM (ξ) (θv)
ˆ
(ξ) =

(1− χ(ξ))χ(ξ/M)

p(ξ)
(θv)

ˆ
(ξ)

→ (1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ) as M →∞

with the convergence taking place in L2 (actually in S), it follows that

GM ∗ (θv)→ “G ∗ (θv) ”(x) :=
Z
Rn

(1− χ(ξ))

p(ξ)
(θv)ˆ (ξ)eix·ξdξ

= F−1
·
(1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ)

¸
(x) ∈ S.

So passing the the limit, M →∞, in Eq. (21.25) we learn for almost every x ∈ Rn,
u(x) = G ∗ (θv) (x)− lim

M→∞
GM ∗ (θL(βu))(x) + δ ∗ (αu) (x)

for a.e. x ∈ supp(α). Using the support properties of θ and β we see for x near 0
that (θL(βu))(y) = 0 unless y ∈ supp(θ) and y /∈ {α = 1} , i.e. unless y is in an
annulus centered at 0. So taking x sufficiently close to 0, we find x− y stays away
from 0 as y varies through the above mentioned annulus, and therefore

GM ∗ (θL(βu))(x) =
Z
Rn

GM (x− y)(θL(βu))(y)dy

=

Z
Rn

L∗y {θ(y)GM (x− y)} · (βu) (y)dy

→
Z
Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy as M →∞.
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Therefore we have shown,

u(x) = G ∗ (θv) (x)−
Z
Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy + δ ∗ (αu) (x)
for almost every x in a neighborhood of 0. (Again it suffices to prove this equation
and in particular Eq. (21.25) assuming u ∈ C2(M) because of the same convo-
lution argument we have use above.) Since the right side of this equation is the
linear combination of smooth functions we have shown u has a smooth version in a
neighborhood of 0.

Remarks 21.11. We could avoid introducing GM (x) if deg(p) > n, in which case
(1−χ(ξ))
p(ξ) ∈ L1 and so

G(x) :=

Z
Rn

(1− χ(ξ))

p(ξ)
eix·ξdξ

is already well defined function with G ∈ C∞(Rn \ {0}) ∩BC(Rn). If deg(p) < n,

we may consider the operator Lk = [p(Dx)]
k = pk(Dx) where k is chosen so that

k · deg(p) > n. Since Lu = v implies Lku = Lk−1v weakly, we see to prove the
hypoellipticity of L it suffices to prove the hypoellipticity of Lk.

21.2. Exercises.

Exercise 21.1. Using
1

|ξ|2 +m2
=

Z ∞
0

e−λ(|ξ|
2+m2)dλ,

the identity in Eq. (21.5) and Example 20.4, show for m > 0 and x ≥ 0 that

e−mx =
m√
π

Z ∞
0

dλ
1√
λ
e−

1
4λx

2

e−λm
2

(let λ→ λ/m2)(21.26)

=

Z ∞
0

dλ
1√
πλ

e−λe−
m2

4λ x2 .(21.27)

Use this formula and Example 20.4 to show, in dimension n, that

F
h
e−m|x|

i
(ξ) = 2n/2

Γ((n+ 1)/2)√
π

m

(m2 + |ξ|2)(n+1)/2
where Γ(x) in the gamma function defined in Eq. (8.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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22. L2 — Sobolev spaces on Rn

Recall the following notation and definitions from Section 20. TODO Introduce
S 0 so that one may define negative Sobolev spaces here and do the embedding
theorems. Localize to open sets, add in trace theorems to hyperplanes and sub-
manifolds and give some application to PDE.

Notation 22.1. Let

dx =

µ
1√
2π

¶n
dm(x) and dξ ≡

µ
1√
2π

¶n
dm(ξ)

where m is Lebesgue measure on Rn. Also let hξi =p1 + |ξ|2,
∂αx =

µ
∂

∂x

¶α
and Dα

x =

µ
1

i

¶|α|µ
∂

∂x

¶α
=

µ
1

i

∂

∂x

¶α
.

Definition 22.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
Z
Rn

e−ix·ξf(x)dx

g∨(x) = F−1g(x) =
Z
Rn

eix·ξg(ξ)dξ = Fg(−x)

22.1. Sobolev Spaces.

Definition 22.3. To each s ∈ R and f ∈ S let

|f |2s ≡
Z
|f̂(ξ)|2(1 + |ξ|2)sdξ =

Z
|f̂(ξ)|2hξi2sdξ.

This norm may also be described by

|f |s = k(1−∆)s/2fkL2
We call |·|s — the L2 — Sobolev norm with s — derivatives.

It will sometime be useful to use the following norms,

kfk2s ≡
Z
|f̂(ξ)|2(1 + |ξ|)2sdξ for all s ∈ R and f ∈ S.

For each s ∈ R, k · ks is equivalent to |·|s because
1 + |ξ|2 ≤ (1 + |ξ|)2 ≤ 2(1 + |ξ|2).

Lemma 22.4. The Hilbert space L2(Rn, (1+ |ξ|2)sdξ) may be viewed as a subspace
of S 0 under the map

g ∈ L2(Rn, (1 + |ξ|2)sdξ)→ (ψ ∈ S →
Z
Rn

g(ξ)ψ(ξ)dξ) ∈ S 0.

Proof. Let g ∈ L2(Rn, (1 + |ξ|2)sdξ) and ψ ∈ S, thenZ
Rn
|g(ξ)ψ(ξ)| dξ =

Z
Rn
|g(ξ)| (1 + |ξ|2)s/2 |ψ(ξ)| (1 + |ξ|2)−s/2dξ

≤ kgkL2(Rn,(1+|ξ|2)sdξ) · kψkL2(Rn,(1+|ξ|2)−sdξ) .
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Now

kψk2L2(Rn,(1+|ξ|2)−sdξ) =
Z
Rn
|ψ(ξ)|2 (1 + |ξ|2)−sdξ

≤
Z
Rn
(1 + |ξ|2)−s(1 + |ξ|2)−tdξ · sup

ξ

h
|ψ(ξ)|2 (1 + |ξ|2)t

i
= C(s+ t) · sup

ξ

h
|ψ(ξ)|2 (1 + |ξ|2)t

i
where

C(s+ t) :=

Z
Rn
(1 + |ξ|2)−s−tdξ <∞

provided s+ t > n/2. So by choosing t > n/2− s, we have shown gψ ∈ L1(dξ) and
that ¯̄̄̄Z

Rn
g(ξ)ψ(ξ)dξ

¯̄̄̄
≤ C(s+ t) sup

ξ

h
|ψ(ξ)|2 (1 + |ξ|2)t

i
.

Therefore ψ ∈ S → R
Rn g(ξ)ψ(ξ)dξ is an element of S 0.

Definition 22.5. The Sobolev space of order s on Rn is the normed vector space

Hs(Rn) = F−1(L2(Rn, (1 + |ξ|2)sdξ)) ⊂ S 0

or equivalently,

Hs(Rn) =
n
f ∈ S 0 : f̂ ∈ L2(Rn, (1 + |ξ|2)sdξ)

o
.

We make Hs(Rn) into a Hilbert space by requiring

F−1|L2(Rn,(1+|ξ|2)sdξ) : L2(Rn, (1 + |ξ|2)sdξ)→ Hs(Rn)

to be a unitary map. So the inner product on Hs is given by

(22.1) hf, gis :=
Z

f̂(ξ)ĝ(ξ)(1 + |ξ|2)sdξ for all f, g ∈ Hs(Rn)

and the associated norm is

(22.2) |f |2s ≡
Z
Rn
|f̂(ξ)|2(1 + |ξ|2)sdξ.

Remark 22.6. We may also describe Hs(Rn) as

Hs(Rn) = (1−∆)−s/2L2(Rn, dx)
= {f ∈ S 0 : (1−∆)s/2f ∈ L2(Rn, dx)}

and the inner product may be described as

hf, gis = h(1−∆)s/2f, (1−∆)s/2giL2 .
Here we define (1−∆)s/2 acting on S 0 as the transpose of its action on S which is
determined by

F
h
(1−∆)s/2f

i
(ξ) = (1 + |ξ|2)s/2f̂(ξ) for all f ∈ S.
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It will be useful to notice later that ∆ commutes with complex conjugation and

therefore so does (1 − ∆)s/2. To check this formally, recall that F f̄(ξ) = f̂(−ξ),
therefore,

F
h
(1−∆)s/2f

i
(ξ) = F(1−∆)s/2f(−ξ) = (1 + |−ξ|2)s/2f̂(−ξ)

= (1 + |ξ|2)s/2f̂(−ξ) = (1 + |ξ|2)s/2F f̄(ξ)
= F

³
(1−∆)s/2f̄

´
(ξ).

This shows that (1−∆)s/2f = (1 − ∆)s/2f̄ for f ∈ S and hence by duality for
f ∈ S 0 as well.
Lemma 22.7. S is dense in Hs(Rn) for all s ∈ R and (1−∆)t/2 : Hs → Hs−t is
unitary for all s, t ∈ R.
Proof. Because F : Hs(Rn)→ L2(Rn, (1+ |ξ|2)sdξ) is unitary and F(S) = S, it

suffices to show S is dense in L2(Rn, (1 + |ξ|2)sdξ). Since dνs(ξ) := (1 + |ξ|2)sdξ is
a Radon measure on Rn, we know that C∞c (Rn) is dense in L2(dνs) and therefore
by the virtue that C∞c (Rn) ⊂ S, S is dense as well.
Because the map

f ∈ L2(Rn, (1 + |ξ|2)sdξ)→ (1 + |ξ|2)t/2f(ξ) ∈ L2(Rn, (1 + |ξ|2)s−tdξ)
is unitary, it follows that (1−∆)t/2 : Hs → Hs−t is unitary for all s, t ∈ R as well.

Lemma 22.8. For each multi-index α, the operator Dα
x : S 0→ S 0 restricts to a

contraction from Hs → Hs−|α|. We also have the relation

(22.3) F (Dα
xf) (ξ) = ξαf̂ (ξ) for all f ∈ Hs.

Proof. Recall the Eq. (22.3) holds for all f ∈ S 0 in the sense
(22.4) F (Dα

xf) = mαf̂

where mα(ξ) := ξα. Now if f ∈ Hs, f̂ is represented by a tempered function,
therefore mαf̂ is represented by the tempered function ξ → ξαf̂ (ξ) . That is Eq.
(22.3) holds and therefore,

|Dα
xf |2s−|α| =

Z
|ξαf̂(ξ)|2(1 + |ξ|2)s−|α|dξ

=

Z
|f̂(ξ)|2(1 + |ξ|2)s−|α| |ξα|2 dξ

≤
Z
|f̂(ξ)|2(1 + |ξ|2)s−|α|(1 + |ξ|2)|α|dξ

≤
Z
|f̂(ξ)|2(1 + |ξ|2)sdξ = |f |2s ,

wherein the third line we have used the estimate

|ξα|2 = ξ2α11 · · · ξ2αnn ≤ |ξ|2|α| ≤ (1 + |ξ|2)|α|

which follows from ξ2i ≤ |ξ|2 for all i.
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Lemma 22.9. Suppose s ∈ N. Then Hs may be characterized by

(22.5) Hs = {f ∈ L2(dξ) : Dαf exists in L2(dξ) for all |α| ≤ s},
where Dαf denotes the distributional or weak derivatives of f. (See Theorem 19.18
for other characterizations of these derivatives.) Also if we let

kfk2s :=
X
|α|≤s

kDαfk2L2 for f ∈ Hs,

then k·ks and |·|s are equivalent norms on Hs.

Proof. Let H̃s denote the right side of Eq. (22.5). If f ∈ Hs and |α| ≤ s, then
Lemma 22.8,

|Dαf |20 ≤ |Dαf |2s−|α| ≤ |f |2s <∞.

This shows that f ∈ H̃s and

(22.6) kfk2s ≤
X
|α|≤s

|f |2s ≤ Cs |f |2s .

Conversely if f ∈ H̃s (letting mα(ξ) := ξα as above),

∞ > kfk2s =
X
|α|≤s

kDαfk2L2 =
X
|α|≤s

°°°mαf̂
°°°2
L2
=
X
|α|≤s

Z
Rn
(ξα)

2
¯̄̄
f̂(ξ)

¯̄̄2
dξ

=

Z
Rn

X
|α|≤s

(ξα)2
¯̄̄
f̂(ξ)

¯̄̄2
dξ.(22.7)

Let ξ0 = 1, then by the multinomial theorem

(1 + |ξ|2)s = (
nX
i=0

ξ2i )
s =

X
|α|=s

µ
s

α

¶
ξ2α

where α = (α0, α1, . . . , αn) ∈ Nn+1 andµ
s

α

¶
=

s!Qn
j=0 αj !

.

We may rewrite this using α = (α1, . . . , αn) ∈ Nn as follows

(1 + |ξ|2)s =
X
|α|≤s

µ
s

(s− |α| , α)
¶
ξ2α

so that

(22.8)
X
|α|≤s

ξ2α ≥ cs(1 + |ξ|2)s with c−1s := max
|α|≤s

µ
s

(s− |α| , α)
¶
.

Using this estimate in with Eq. (22.7) implies

(22.9) ∞ > kfk2s ≥ cs

Z
Rn
(1 + |ξ|2)s

¯̄̄
f̂(ξ)

¯̄̄2
dξ = cs |f |2s .

This shows that f ∈ Hs and Eqs. (22.6) and (22.9) prove k·ks and |·|s are equivalent.
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Definition 22.10. Let Ck
0 (Rn) denote the Banach space of Ck — functions on Rn

for which Dαf ∈ C0(Rn) for |α| ≤ k. The norm on Ck
0 (Rn) is defined by

|f |∞,k =
X
|α|≤k

kDα
xfk∞ ≈ sup

x

X
|α|≤k

|Dα
xf |.

Theorem 22.11 (Sobolev Embedding Theorem). Let k ∈ N. If s > k + n
2 (or

k − s < −n
2 ) then every f ∈ Hs has a representative i(f) ∈ Ck

0 (R
n) which is given

by

(22.10) i(f)(x) =

Z
Rn

f̂(ξ)eix·ξdξ.

The map i : Hs → Ck
0 (Rn) is bounded and linear.

Proof. For α ∈ Nn·Z
Rn
|ξα|

¯̄̄
f̂(ξ)

¯̄̄
dξ

¸2
≤
Z
Rn
(1 + |ξ|2)s

¯̄̄
f̂(ξ)

¯̄̄2
dξ ·

Z
Rn
|ξα|2 (1 + |ξ|2)−sdξ

= C2α |f |2s
where

C2α :=

Z
Rn
|ξα|2 (1 + |ξ|2)−sdξ.

If |α| ≤ k, then

|ξα|2 (1 + |ξ|2)−s ≤ (1 + |ξ|2)k(1 + |ξ|2)−s = (1 + |ξ|2)k−s ∈ L1(dξ)

provided k − s < −n/2. So we have shown,
(22.11) ξαf̂(ξ) ∈ L1(dξ) for all |α| ≤ k.

Using this result for α = 0, we deduce f̂ ∈ L1 ∩ L2 and therefore the continuous
version of f is given by Eq. (22.10). Using the integrability of ξαf̂(ξ) in Eq. (22.11)
we may differentiate this expression to find

Dαi(f)(x) =

Z
Rn

ξαf̂(ξ)eix·ξdξ for all |α| ≤ k.

By the dominated convergence theorem and the Riemann Lebesgue lemma,
Dαi(f) ∈ C0(Rn) for all |α| ≤ k. Moreover,

|Dαi(f)|∞ ≤
Z
Rn

¯̄̄
ξαf̂(ξ)

¯̄̄
dξ ≤ Cα |f |s for all |α| ≤ k.

This shows that |i(f)|∞,k ≤ (const.) |f |s .
Let us now improve the above result to get some Hölder continuity for f, for this

|f(x)− f(y)| =
¯̄̄̄Z
Rn

f̂(ξ)
¡
eix·ξ − eiy·ξ

¢
dξ

¯̄̄̄
≤
Z
Rn

¯̄̄
f̂(ξ)

¯̄̄ ¯̄
eix·ξ − eiy·ξ

¯̄
dξ

=

Z
Rn

¯̄̄
f̂(ξ)

¯̄̄
(1 + |ξ|2)s/2

¯̄̄
1− ei(y−x)·ξ

¯̄̄
(1 + |ξ|2)−s/2dξ

≤
µZ

Rn
(1 + |ξ|2)s

¯̄̄
f̂(ξ)

¯̄̄2
dξ

¶1/2
·
µZ

Rn

¯̄̄
1− ei(y−x)·ξ

¯̄̄2
(1 + |ξ|2)−sdξ

¶1/2
= |f |s Cs (|y − x|)
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where

Cs (|x|) =
µZ

Rn

¯̄
1− eiξ·x

¯̄2
(1 + |ξ|2)−sdξ

¶1/2
=

µZ
Rn

¯̄̄
1− ei|x|ξn

¯̄̄2
(1 + |ξ|2)−sdξ

¶1/2
.

Making the change of variables ξ → ξ/ |x| in the above formula gives

Cs (|x|) =
|x|−n Z

Rn

¯̄
1− eiξn

¯̄2 1

(1 + |ξ|2
|x|2 )

s
dξ

1/2

= |x|s−n/2
ÃZ

Rn

¯̄
1− eiξn

¯̄2 1

(|x|2 + |ξ|2)s dξ
!1/2

≤ |x|s−n/2
µZ

Rn

¯̄
1− eiξn

¯̄2 1

|ξ|2s dξ
¶1/2

≤
p
σ (Sn−1) |x|s−n/2

µZ ∞
0

2 ∧ r2
r2s

rn−1dr
¶1/2

.

Supposing the s− n/2 = γ ∈ (0, 1), we findZ ∞
0

2 ∧ r2
r2s

rn−1dr =
Z ∞
0

2 ∧ r2
rn+2γ

rn−1dr =
Z ∞
0

2 ∧ r2
r1+2γ

dr <∞

since 2/r1+2γ is integrable near infinity and r2/r1+2γ = 1/r2γ−1 is integrable near
0. Thus we have shown, for s− n/2 ∈ (0, 1) that

|f(x)− f(y)| ≤ Ks |f |s |x− y|s−n/2
where

Ks :=
p
σ (Sn−1)

µZ ∞
0

2 ∧ r2
r2s

rn−1dr
¶1/2

.

Notation 22.12. In the sequel, we will simply write f for i(f) with the under-
standing that if f ∈ L1loc(Rn) has a continuous version, then we will identify f with
its (necessarily unique) continuous version.

Definition 22.13. In the future we will work with the following two subspaces of
S 0 :

H∞ = ∩s∈RHs = ∩s≥0Hs and

H−∞ = ∪s∈RHs = ∪s≥0H−s.
We also set

(22.12) hf, gi :=
Z
Rn

f̂(ξ)g∨(ξ)dξ

for all f, g ∈ H−∞ such that f̂g∨ ∈ L1(dξ).

Notice that H∞ ⊂ Hs ⊂ L2 ⊂ H−s ⊂ H−∞ for all s ∈ R. Also if f, g ∈ H0 = L2,

then f̂ , g∨ ∈ L2(dξ) so that f̂ g∨ ∈ L1(dξ) andZ
Rn

f̂(ξ)g∨(ξ)dξ =
Z
Rn

f̂(ξ)b̄g(ξ)dξ = Z
Rn

f(x)ḡ(x)dx =

Z
Rn

f(x)g(x)dx.
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Therefore, h·, ·i is an extension of the pairing
f, g ∈ L2 →

Z
Rn

f(x)g(x)dx =: hf, giL2 .

Proposition 22.14. Let s ∈ R. If f ∈ H−s and g ∈ Hs, then hf, gi is well defined
and satisfies

hf, gi = h(1−∆)−s/2f, (1−∆)s/2giL2 = h(1−∆)−s/2f, (1−∆)s/2gi.
If we further assume that g ∈ S, then hf, gi = hf, giS0×S where h·, ·iS0×S denotes

the natural pairing between S 0 and S. Moreover, if s ≥ 0, the map
(22.13) f ∈ H−s

T−→ hf, ·i ∈ H∗s
is a unitary map (i.e. a Hilbert space isomorphism) and the |f |−s may be computed
using

(22.14) |f |−s = sup
½ |hf, giS0×S |

|g|s
: 0 6= g ∈ S

¾
.

Proof. Let s ∈ R, f ∈ H−s and g ∈ Hs, then

f̂(ξ)g∨(ξ) = (1 + |ξ|2)−s/2f̂(ξ) · (1 + |ξ|2)s/2g∨(ξ) ∈ L1

since (1+|ξ|2)−s/2f̂(ξ) and (1+|ξ|2)s/2g∨(ξ) = (1+|ξ|2)s/2ĝ(−ξ) are L2 — functions
by definition of H−s and Hs respectively. Therefore hf, gi is well defined and

hf, gi =
Z
Rn
(1 + |ξ|2)−s/2f̂(ξ) · (1 + |ξ|2)s/2g∨(ξ)dξ

=

Z
Rn
(1 + |ξ|2)−s/2f̂(ξ) · (1 + |ξ|2)s/2b̄g(ξ)dξ

= hF−1(1 + |ξ|2)−s/2f̂(ξ),F−1(1 + |ξ|2)s/2b̄g(ξ)iL2
= h(1−∆)−s/2f, (1−∆)s/2giL2 = h(1−∆)−s/2f, (1−∆)s/2gi.(22.15)

If g ∈ S, then by definition of the Fourier transform for tempered distributions,Z
Rn

f̂(ξ)g∨(ξ)dξ = hf̂ , g∨iS0×S = hf, (g∨)ˆiS0×S = hf, giS0×S .
By Eq. (22.15),

|hf, gi| ≤
¯̄̄
(1−∆)−s/2f

¯̄̄
0

¯̄̄
(1−∆)s/2g

¯̄̄
0
= |f |−s · |g|s

with equality if (1 − ∆)s/2g = (1 − ∆)−s/2f, i.e. if g = (1 − ∆)−sf ∈ Hs. This
shows that

|f |−s = sup
½ |hf, gi|

|g|s
: g ∈ Hs

¾
= sup

½ |hf, gi|
|g|s

: g ∈ S
¾

= khf, ·ikH∗s ,
where the second equality is a consequence of S being dense in Hs. This proves Eq.
(22.14) and the fact the map, T, in Eq. (22.13) is isometric. So to finish the proof
we need only prove T is surjective.
By the Riesz theorem, every element of H∗s may be written in the form (·, F )s

for a unique element F ∈ Hs. So we must find f ∈ H−s such that hf, gi = (g, F )s
for all g ∈ Hs, i.e.

((1−∆)−s/2f, (1−∆)s/2g)0 = hf, gi = (g, F )s = ((1−∆)s/2g, (1−∆)s/2F )0 ∀g ∈ Hs



428 BRUCE K. DRIVER†

from which we conclude

(1−∆)−s/2f = (1−∆)s/2F.
So

f := (1−∆)s/2(1−∆)s/2F = (1−∆)sF̄ ∈ H−s
is the desired function.

Lemma 22.15. Useful inequality: kf ∗ gk2 ≤ kfk1 kgk2. (Already proved some-
where else.)

Proof. We will give two the proofs, the first is

kf ∗ gk2 = kf̂ ĝk2 ≤ kf̂k∞kgk2 ≤ kfk1kgk2
and the second is

kf ∗ gk22 =
Z ¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄2
dx

≤
Z µZ

|f(x− y)| |g(y)|dy
¶2

dx

≤
Z Z

|f(x− y)|2 |g(y)|dy ·
µZ

12|g(y)|dy
¶
dx

= kfk22 kgk21.

Lemma 22.16 (Rellich’s). For s < t in R, the inclusion map i : Hs /→ Ht is
“locally compact” in the sense that if {fl}∞l=1 ⊂ Hs is a sequence of distributions
such that supp (fl) ⊂ K @@ Rn for all l and supl |fl|s = C <∞, then there exists
a subsequence of {fl}∞l=1 which is convergent in Ht.

Proof. Recall for χ ∈ C∞c (Rn) ⊂ S, χ̂ ∈ S and hence, for all k ∈ N, there exists
Ck <∞ such that

|χ̂(ξ)| ≤ Ck(1 + |ξ|)−k.
Choose χ ∈ C∞c (Rn) such that χ ≡1 on a neighborhood of K @@ Rn so that
fl = χ · fl for all l. We then have

|f̂l(ξ)| = |χ̂ ∗ f̂l|(ξ) ≤
Z
|f̂l(η)| |χ̂(ξ − η)|dη(22.16)

≤ Ck

Z
|f̂l(η)|(1 + |η|)s(1 + |η|)−s(1 + |ξ − η|)−kdη

≤ Ck|fl|s
µZ

(1 + |η|)−2s(1 + |ξ − η|)−2kdη
¶ 1

2

≤ Ck|fl|s
µZ

(1 + |η|)−2s−2kdη
¶ 1

2

(1 + |ξ|)k

wherein the last inequality we have used Peetre’s inequality (Lemma 30.31). SinceR
(1 + |η|)−2s−2kdη < ∞ if k is chosen so that 2s + 2k > n, we have shown there
exists C̃k <∞ for all k > n−s

2 such that learn that

|f̂l(ξ)| ≤ C̃k|fl|s(1 + |ξ|)k for all ξ ∈ Rn.
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BecauseDif̂l(ξ) = f̂l∗Diχ, the same argument shows (by increasing C̃k if necessary)
that there exists C̃k <∞ for all k > n−s

2 such that

|Dif̂l|(ξ) ≤ C̃k(1 + |ξ|)k for all ξ ∈ Rn.
The Ascolli-Arzela Theorem 3.59 now allows us to conclude there exists a subse-

quence f̂l which is convergent uniformly on compact subsets of Rn. For notational
simplicity we will continue to denote this subsequence by {fl} . For anyM ∈ (0,∞),Z

|ξ|≥M
|f̂l − f̂m|2(ξ)(1 + |ξ|2)tdξ =

Z
|ξ|≥M

|f̂l − f̂m|2(ξ)(1 + |ξ|2)s(1 + |ξ|2)t−sdξ

≤ (1 +M2)t−s|f |2s =
1

(1 +M2)t−s
|f |2s

and

|fl − fm|2t =
Z

|ξ|≤M

|f̂l − f̂m|2(ξ)(1 + |ξ|2)tdξ +
Z
|ξ|≥M

|f̂l − f̂m|2(ξ)(1 + |ξ|2)tdξ.

Using these equations and the uniform convergence on compact just proved,

lim sup
l,m→∞

|fl − fm|2t ≤ lim sup
l,m→∞

Z
|ξ|≥M

|f̂l − f̂m|2(ξ)(1 + |ξ|2)tdξ

≤ 1

(1 +M2)t−s
|f |2s → 0 as M →∞.

Therefore {fl}∞l=1 is Cauchy and hence convergent.
22.2. Examples.

Example 22.17. Let δ ∈ H−∞ be given by δ̂(ξ) = 1, then δ ∈ H−n
s−� for any

� > 0 and hδ, fi ≡ R f̂(−ξ)dξ = f(0). That is to say δ is the delta distribution.

Example 22.18. (P (Dx)δ)
∧(ξ) = p(ξ). So hP (Dx)δ, fi =

R
P (ξ)f̂(−ξ)dξ =

(P (−Dx)f)(0).

Example 22.19. Let g ∈ H−∞ ∼=
S
s≥0

H∗s . Then Dα
xg ∈ H−∞ and

hDα
x g, fi =

Z
ξαĝ(ξ)f̂(−ξ)dξ =

Z
ĝ(−ξ)ξαf̂(−ξ)dξ(22.17)

=

Z
ĝ(ξ)((−Dx)

αf)∧(−ξ)dξ
= hg, (−Dx)

αfi
Note If θ ∈ H−∞. Then θ0 = δ implies bθ0 = 1 or −iξθ̂(ξ) = 1 implies θ̂(ξ) = − 1

iξ /∈
L1loc implies θ̂ /∈ H−∞. So hP (Dx)g, fi = hg, P (−Dx)fi for all g ∈ H−∞ and f ∈ S.
General Idea Suppose c ∈ S

s≥0
H∗s , how do we compute ĉ. Recall ĉ(ξ) ∈ H−∞

and hc, fi = R
ĉ(ξ)f̂(−ξ)dξ = hĉ, f̌i. Replace f → f̂ implies hĉ, fi = hc, f̂i. So if

c ∈ S
s≥0

H∗s , then the function f in ĉ is characterized by

(22.18) hĉ, fi = hc, f̂i
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Example 22.20. Say hδ, fi = f(0). Then hδ̂, fi = hδ, f̂i = f̂(0) =
R
f(ξ)dξ ≡R

δ̂(ξ)f(x)dξ. implies δ̂(ξ) = 1.

Example 22.21. Take n = 3. Consider h 1|x| , fi ≡
R

1
|x|f(x)dx for f ∈ S. “Claim”

(False) h 1|x| , ·i ∈ H−∞ and
³
1
|x|
´∧
(ξ) = 4π 1

|ξ|2 and ∆
1
|x| = −4πδ not zero.

Proof. Dµ 1

|x|
¶∧

, f
E
=
D 1
|x| ,

Z
f̂(x)

E
=

Z
1

|x| δ̂(x) dx

= lim
R%∞

Z
|x|≤R

1

|x| f̂(x)dx = lim
R%∞

Z
χ|x|≤R

1

|x| f̂

= lim
R%∞

Z µ
χ|x|≤R

1

|x|
¶∧
(ξ)f(ξ)dξ

Now

µ
χ|x|≤R

1

|x|
¶∧
(ξ) =

Z
|x|≤R

1

|x|e
−ix·ξdξ

= 2π

Z R

0

dr

Z 1

−1
d cos θe+ir|ξ| cos θr

=

Z R

0

dr 2π
eir|ξ| − e−ir|ξ|

i|ξ| = 4π

Z R

0

dr sin(r|ξ|)

= −4π cos(r|ξ|)|ξ|2
¯̄̄R
0
= − 4π|ξ|2 (cos(R|ξ|)− 1)

So
D³

1
|x|
´∧

, f
E
= 4π

µR
1

|xi|2 f̂(ξ)dξ − lim
R%∞

R cos(R|ξ|)f̂(ξ)
|ξ|2 dξ

¶
Claim 3.

(22.19) lim
R→∞

Z
Rn
cos(R|ξ|) ĝ(ξ)|ξ|2 dξ = 0

Proof. Let IR :=
R
Rn cos(R|ξ|) ĝ(ξ)

|ξ|2 dξ which in polar coordinates may be written
as

IR =

Z
cos(Rt)

ĝ(t, θ, ϕ)

t2
t2dtd cos θdϕ

=

Z ∞
0

cos(Rt)f(t)dt

where f ∈ L1. The result follows by Riemann Lebesgue Lemma. lim
R→∞

IR = 0. So

we have finally shown
³
1
|x|
´∧
(ξ) = 4π

|ξ|2 /∈ L2. As a Corollary·
∆

µ
1

|x|
¶¸∧

= −|ξ|2 4π|ξ|2 = −4π = −4πδ̂ (ξ) .

So ∆ 1
|x| = −4πδ and not 0 as a naive direct calculation would show.
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Example 22.22. Set g(x) = χ[−1,1](x). Then |hg, fi| ≤ 2kfk∞ ≤ C|f |s for s >

n/2. implies g ∈ H∗s = H−s what are ĝ and dg
dx? Answer:Ddg

dx
, f
E
=

Z
ξĝ(ξ)f̂(−ξ) =

Z
ĝ(ξ)(−Dxf)

∧(ξ)dξ

= hg,−Dxfi = −1
i

Z 1

−1
f 0(x)dx = −1

i
(f(r)− f(−r)

Taking the Fourier transform of the equation Dxg = i(δ1 − δ−1) gives

ξĝ(ξ) = 2i
eiξ − e−iξ

2i
= −2 sin(ξ).

which shows

(22.20) ĝ(ξ) = −2 sin(ξ)
ξ

∈ L2 = H0.

Note Dxg 6≡ 0.
Second Method of Computation. Let fl(x) ∈ S = fl → g ∈ L2 then on one

hand

hDxfl, fi = −hfl,Dxfi→ −hg,Dxfi = −
Z 1

−1
Dxf(x)dx

= i(f(1)− f(−1)) = i(δ1 − δ−1, f)

while on the other hand

hDxfl, fi→ hDxg, fi ∈ H−1.

Combining these two equations shows that Dxg = i(δ1 − δ−1).

22.3. Summary of operations on H−∞.

Example 22.23. hDα
xg, fi = hg, (−Dx)

αfi for all g ∈ H−∞ and f ∈ S. Suppose
h ∈ C∞ such that h and all its derivatives have at most polynomial growth then
Mh : S → S and Mh extends to H−∞.

Lemma 22.24. For all f ∈ S the sum f� ≡
P

yt∈Zn
�nf(y)δy converges in H−s for

all s > n
2 . Furthermore lim�→0

|f� − f |s = 0.
Proof. Let ∧ ⊂⊂ Zn be a finite set, put gΛ ≡

P
y∈¤

�nf(y)δy. Then

(22.21) |g¤ |2s ≡
Z ¯̄̄̄
¯̄X
y∈¤

�nf(y)e−iy·ξ

¯̄̄̄
¯̄
2

dν−s(ξ)

where dνs(x) ≡ (1 + |ξ|2)sdξ for all s ∈ R. Therefore f ∈ S we know |F (y)| ≤
c(1 + |y|)−m so

|g¤ |2s ≤ c�n
Z ¯̄̄̄
¯̄X
y∈¤

(1 + |y|)−m
¯̄̄̄
¯̄
2

dν−s(ξ)

≤ c�n

¯̄̄̄
¯̄X
y∈¤

(1 + |y|)−m
¯̄̄̄
¯̄
2

.



432 BRUCE K. DRIVER†

Now
P

y∈�Zn
(1 + |y|)−m < ∞ if m > n. Therefore if Γ and ¤ are two finite subsets

of �Zn,
|gΓ − g¤ |2s = |gΓ∆¤ |2s → 0 as Γ,¤% �Zn.

So the sums exists. Now consider

|f − f�|2−s =
Z
|f̂(ξ)−

X
�nf(y)e−iy·ξ|2dν−s(ξ).

Set f̃�(x) = f(y) if |x− y|box ≤ �
z where y ∈ �Zn. Then

ˆ̃
�f(ξ) =

X
�nf(y)e−iy·ξ.

So |f − f�|2−s =
R |f̂(ξ)− ˆ̃

�f(ξ)|2dν−s(ξ). Now

|f̂(ξ)− ˆ̃
�f(ξ)| ≤

Z
|f(x)− f̃�(x)|dx→ 0 as � ↓ 0.

So |f − f�|2−s → 0 as � ↓ 0 by dominated convergence theorem.
Lemma 22.25. The map x ∈ Rn → δx ∈ H−s is Ckfor all s > n

2 + k.

Proof. Since ˆ : H−s → L2(dν−s) is a unitary map it suffices to prove that the
map

x ∈ Rn → e−ix·ξ ≡ f(−x)(ξ) ∈ L2(dν−s)

is Ck. So we will show x→ f(x)(·) = eix· is Ck.
Consider

f(x+ te1)− f(x)

x
=
1

t

Z 1

0

d

ds
f(x+ ste1)ds

=
1

t
(−iξ1t)

Z 1

0

f(x+ ste1)dx.

So (Fix)
(22.22)¯̄̄̄

f(x+ te1)− f(x)

x
− iξ1f(x)

¯̄̄̄
−s
=

Z ¯̄̄̄Z 1

0

(ei(x+ste1)·ξ − eix·ξ)ds
¯̄̄̄2
ξ21dν−s(ξ).

This shows ∂f
∂x1 (x) exists, and this derivative is easily seen to be continuous in

L2(dν−s) norm. The other derivatives may be computed similarly.

Proposition 22.26. Suppose K : H−s → Hs is a bounded operator and s > n
2 + k

for some K = 0, 1, 2, . . . . Then exists a Ck
b -function k(x, y) such that (Kf)(x) =R

k(x, y)f(y)dy for all F ∈ S. Furthermore

(22.23) |k|∞,k ≤ C(s)kKkH−s→Hs .

Corollary 22.27. If K : H−∞ −→ H+∞ then k(x, y) is C∞.

Proof. Define k(x, y) ≡ hkδy, δxi
Claim 4. k is Ck.
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Reasons:

Rn×Rn Ck−→ H−s ×H−s
C∞−→ Hs ×H−s

C∞−→ C
(x, y) −→ (δx, δy) −→ (Kδy, δx) −→ hKδy, δxi

so k(x, y) is the composition of two C∞ — maps and a Ck-map. So k(x, y) is Ck.
Note |k(x, y)| ≤ C(s)kKk−s,s. So k is bounded.
Claim 5. For F ∈ S, Kf(x) =

R
k(x, y)f(y)dy. Indeed,Z

k(x, y)f(y)dy = lim
�↓0

�n
X
y∈�Zn

k(x, y)δ(y)(22.24)

= hK lim
�↓0

X
�nhf(y)δy, δxi

= hKf, δxi = (Kf)(x).

Finally: ¯̄
Dα
xD

β
y k(x, y)

¯̄
= |hKDβ

y δy,D
α
x δxi|(22.25)

= |hK (−D)β δy, (−D)αδxi|
≤ kKk−s,s|Dβδy|−s|Dαδx|−s ≤ C(s)kKk−s,s

implies
¯̄
Dα
xD

β
y k(x, y)

¯̄
∞ ≤ C(s)kKk−s,s if |α|, |β| ≤ k.

22.4. Application to Differential Equations.

22.4.1. Dirichlet problem . Consider the following Dirichlet problem in one dimen-
sion written in Divergence form as

Lf(x) :=
d

dx
(a(x)

df

dx
(x)) = g(x) where a ∈ C∞([0, 1], (0,∞)),(22.26)

f ∈ C2([0, 1],R) such that f(0) = f(1) = 0 and g ∈ C0([0, 1],R).

Theorem 22.28. There exists a solution to (22.26).

Proof. Suppose f solves (22.26) and φ ∈ C1([0, 1]),R) such that φ(0) = φ(1) =
0. Then

−(f, φ)a = −
Z 1

0

a(x)f 0(x)φ0(x)dx =
Z 1

0

g(x)φ(x)dx =: cg(φ).

Define

H ≡ {f ∈ AC([0, 1],R) : f(0) = f(1) = 0 and (f, f) ≡
Z 1

0

|f 0(x)|2 dx <∞}.
Since

|f(x)| =
¯̄̄̄Z x

0

f 0(y)dy
¯̄̄̄
=

¯̄̄̄Z 1

0

f 0(y)1[0,x](y)dy
¯̄̄̄
≤ kf 0k2

√
x ≤ kf 0k2

we find conclude the following Poincaré inequality holds,

kfk2 ≤ kfk∞ ≤ kf 0k2 = kfk ≡
p
(f, f).

In particular this shows that k · k is a norm. Since that map f ∈ H → f 0 ∈
L2([0, 1]) is unitary, it follows that H is complete, i.e. H is a Hilbert space. Also

kcg(φ)k ≤ kgk2 kφk2 ≤ kgk2 kφk2
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which implies cg : H → R is bounded and linear. We also notice that (·, ·)a is an
equivalent inner product on H so by the Riesz theorem, there exists f ∈ H such
that

−(f, φ)a = cg(φ) =

Z 1

0

g(x)φ(x)dx

for all φ ∈ H i.e.

(22.27) −
Z 1

0

a(x)f 0(x)φ0(x)dx =
Z 1

0

g(x)φ(x)dx.

At this point we have produced a so called weak solution of (22.26).
Let G(x) =

R x
0
g(y)dy so G0(x) = g(x) a.e. Then by integration by parts

(Justification: See Theorem 3.30 and Proposition 3.31),Z 1

0

g(x)φ(x)dx =

Z 1

0

G0(x)φ(x)dx = −
Z 1

0

G(x)φ0(x)dx.

Using this in Eq. (22.27) we learnZ 1

0

[a(x)f 0(x)−G(x)]φ0(x)dx = 0 for all φ ∈ H

By Lemma 22.29 below, this implies there is a constant C such that a(x)f 0(x) +
G(x) = C for almost every x. Solving this equation givesf 0(x) = (C −G(x)) /a(x)
a.e. or

f(x) =

Z x

0

C −G(y)

a(y)
∈ C2([0, 1])

showing f is in fact a strong solution.

Lemma 22.29. Suppose h ∈ L1([0, 1], dx) and
R 1
0
h(x)φ0(x)dx = 0 for all φ ∈

C∞c ((0, 1)) ten h = constant a.e.

Proposition 22.30. Suppose f is C2, f(0) = 0 = f(1) and f 00 = g ∈ C0([0, 1])
then

f(x) = −
Z 1

0

k(x, y)g(y)dy

where

k(x, y) =

½
x(1− y) x ≤ y
y(1− x) x ≥ y.

Proof. By the fundamental theorem of calculus, f 0(x) = f 0(0) +
R x
0
g(y)dy and

therefore

f(x) = 0 + f 0(0)x+
Z x

0

dy

Z y

0

dzg(y)

= f(0)x+

Z
1z≤y≤xg(z)dz dy

= f 0(0)x+
Z x

0

(x− z)g(z)dz.

Since

0 = f(1) = f 0(0) +
Z 1

0

(1− z)g(z)dz
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we have

f(x) =

Z 1

0

[1z≤x(x− z)− x(1− z)| {z }
−k(x,z)

]g(z)dz

So if we let

(Kg)(x) =

Z 1

0

k(x, y)g(y)dy

then we have shown K
³
− d2

dx2

´
= I.

Exercise 22.1. (See previous test) Show − d2

dx2K = I.
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23. Sobolev Spaces

Definition 23.1. For p ∈ [1,∞], k ∈ N and Ω an open subset of Rd, let
W k,p

loc (Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lploc(Ω) (weakly) for all |α| ≤ k} ,

W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) (weakly) for all |α| ≤ k} ,

(23.1) kfkWk,p(Ω) :=

X
|α|≤k

k∂αfkpLp(Ω)

1/p

if p <∞

and

(23.2) kfkWk,p(Ω) =
X
|α|≤k

k∂αfkL∞(Ω) if p =∞.

In the special case of p = 2, we write W k,2
loc (Ω) =: H

k
loc (Ω) and W

k,2 (Ω) =: Hk (Ω)
in which case k·kWk,2(Ω) = k·kHk(Ω) is a Hilbertian norm associated to the inner
product

(23.3) (f, g)Hk(Ω) =
X
|α|≤k

Z
Ω

∂αf · ∂αg dm.

Theorem 23.2. The function, k·kWk,p(Ω) , is a norm which makes W k,p(Ω) into a
Banach space.

Proof. Let f, g ∈ W k,p(Ω), then the triangle inequality for the p — norms on
Lp (Ω) and lp ({α : |α| ≤ k}) implies

kf + gkWk,p(Ω) =

X
|α|≤k

k∂αf + ∂αgkpLp(Ω)

1/p

≤
X
|α|≤k

h
k∂αfkLp(Ω) + k∂αgkLp(Ω)

ip1/p

≤
X
|α|≤k

k∂αfkpLp(Ω)

1/p

+

X
|α|≤k

k∂αgkpLp(Ω)

1/p

= kfkWk,p(Ω) + kgkWk,p(Ω) .

This shows k·kWk,p(Ω) defined in Eq. (23.1) is a norm. We now show completeness.
If {fn}∞n=1 ⊂ W k,p(Ω) is a Cauchy sequence, then {∂αfn}∞n=1 is a Cauchy

sequence in Lp(Ω) for all |α| ≤ k. By the completeness of Lp(Ω), there exists
gα ∈ Lp(Ω) such that gα = Lp— limn→∞ ∂αfn for all |α| ≤ k. Therefore, for all
φ ∈ C∞c (Ω),

hf, ∂αφi = lim
n→∞hfn, ∂

αφi = (−1)|α| lim
n→∞h∂

αfn, φi = (−1)|α| lim
n→∞hgα, φi.

This shows ∂αf exists weakly and gα = ∂αf a.e. This shows f ∈W k,p(Ω) and that
fn → f ∈W k,p(Ω) as n→∞.
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Example 23.3. Let u(x) := |x|−α for x ∈ Rd and α ∈ R. ThenZ
B(0,R)

|u(x)|p dx = σ
¡
Sd−1

¢ Z R

0

1

rαp
rd−1dr = σ

¡
Sd−1

¢ Z R

0

rd−αp−1dr

= σ
¡
Sd−1

¢ ·( Rd−αp
d−αp if d− αp > 0

∞ otherwise
(23.4)

and hence u ∈ Lploc
¡
Rd
¢
iff α < d/p. Now ∇u(x) = −α |x|−α−1 x̂ where x̂ := x/ |x| .

Hence if ∇u(x) is to exist in Lploc
¡
Rd
¢
it is given by −α |x|−α−1 x̂ which is in

Lploc
¡
Rd
¢
iff α + 1 < d/p, i.e. if α < d/p − 1 = d−p

p . Let us not check that

u ∈ W 1,p
loc

¡
Rd
¢
provided α < d/p − 1. To do this suppose φ ∈ C∞c (Rd) and � > 0,

then

−hu, ∂iφi = − lim
�↓0

Z
|x|>�

u(x)∂iφ(x)dx

= lim
�↓0

(Z
|x|>�

∂iu(x)φ(x)dx+

Z
|x|=�

u(x)φ(x)
xi
�
dσ(x)

)
.

Since ¯̄̄̄
¯
Z
|x|=�

u(x)φ(x)
xi
�
dσ(x)

¯̄̄̄
¯ ≤ kφk∞ σ

¡
Sd−1

¢
�d−1−α → 0 as � ↓ 0

and ∂iu(x) = −α |x|−α−1 x̂ · ei is locally integrable we conclude that
−hu, ∂iφi =

Z
Rd

∂iu(x)φ(x)dx

showing that the weak derivative ∂iu exists and is given by the usual pointwise
derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let Ω be an open subset of Rd, k ∈ N0 :=
N∪ {0} , p ∈ [1,∞) and u ∈ W k,p

loc (Ω). Then there exists un ∈ C∞c (Ω) such that
un → u in W k,p

loc (Ω).

Proof. Apply Proposition 19.12 with polynomials, pα (ξ) = ξα, for |α| ≤ k.

Proposition 23.5. C∞c (Rd) is dense in W k,p(Rd) for all 1 ≤ p <∞.

Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2
in place of Proposition 19.12.

Proposition 23.6. Let Ω be an open subset of Rd, k ∈ N0 := N∪ {0} and p ≥ 1,
then

(1) for any α with |α| ≤ k, ∂α :W k,p (Ω)→W k−|α|,p (Ω) is a contraction.
(2) For any open subset V ⊂ Ω, the restriction map u → u|V is bounded from

W k,p (Ω)→W k,p (V ) .

(3) For any f ∈ Ck (Ω) and u ∈W k,p
loc (Ω), the fu ∈W k,p

loc (Ω) and for |α| ≤ k,

(23.5) ∂α (fu) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βu

where
¡
α
β

¢
:= α!

β!(α−β)! .
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(4) For any f ∈ BCk (Ω) and u ∈W k,p
loc (Ω), the fu ∈W k,p

loc (Ω) and for |α| ≤ k
Eq. (23.5) still holds. Moreover, the linear map u ∈ W k,p(Ω) → fu ∈
W k,p (Ω) is a bounded operator.

Proof. 1. Let φ ∈ C∞c (Ω) and u ∈W k,p (Ω) , then for β with |β| ≤ k − |α| ,
h∂αu, ∂βφi = (−1)|α|hu, ∂α∂βφi = (−1)|α|hu, ∂α+βφi = (−1)|β|h∂α+βu, φi

from which it follows that ∂β(∂αu) exists weakly and ∂β(∂αu) = ∂α+βu. This shows
that ∂αu ∈W k−|α|,p (Ω) and it should be clear that k∂αukWk−|α|,p(Ω) ≤ kukWk,p(Ω) .

Item 2. is trivial.
3 - 4. Given u ∈ W k,p

loc (Ω) , by Proposition 23.4 there exists un ∈ C∞c (Ω) such
that un → u in W k,p

loc (Ω) . From the results in Appendix A.1, fun ∈ Ck
c (Ω) ⊂

W k,p(Ω) and

(23.6) ∂α (fun) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βun

holds. Given V ⊂o Ω such that V̄ is compactly contained in Ω, we may use the
above equation to find the estimate

k∂α (fun)kLp(V ) ≤
X
β≤α

µ
α

β

¶°°∂βf°°
L∞(V )

°°∂α−βun°°Lp(V )
≤ Cα(f, V )

X
β≤α

°°∂α−βun°°Lp(V ) ≤ Cα(f, V ) kunkWk,p(V )

wherein the last equality we have used Exercise 23.1 below. Summing this equation
on |α| ≤ k shows

(23.7) kfunkWk,p(V ) ≤ C(f, V ) kunkWk,p(V ) for all n

where C(f, V ) :=
P
|α|≤k Cα(f, V ). By replacing un by un − um in the above

inequality it follows that {fun}∞n=1 is convergent in W k,p(V ) and since V was
arbitrary fun → fu in W k,p

loc (Ω). Moreover, we may pass to the limit in Eq. (23.6)
and in Eq. (23.7) to see that Eq. (23.5) holds and that

kfukWk,p(V ) ≤ C(f, V ) kukWk,p(V ) ≤ C(f, V ) kukWk,p(Ω)

Moreover if f ∈ BC (Ω) then constant C(f, V ) may be chosen to be independent
of V and therefore, if u ∈W k,p(Ω) then fu ∈W k,p(Ω).
Alternative direct proof of 4. We will prove this by induction on |α| . If

α = ei then, using Lemma 19.9,

−hfu, ∂iφi = −hu, f∂iφi = −hu, ∂i [fφ]− ∂if · φi
= h∂iu, fφi+ hu, ∂if · φi = hf∂iu+ ∂if · u, φi

showing ∂i (fu) exists weakly and is equal to ∂i (fu) = f∂iu + ∂if · u ∈ Lp (Ω) .
Supposing the result has been proved for all α such that |α| ≤ m with m ∈ [1, k).
Let γ = α+ ei with |α| = m, then by what we have just proved each summand in
Eq. (23.5) satisfies ∂i

£
∂βf · ∂α−βu¤ exists weakly and

∂i
£
∂βf · ∂α−βu¤ = ∂β+eif · ∂α−βu+ ∂βif · ∂α−β+eu ∈ Lp (Ω) .
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Therefore ∂γ (fu) = ∂i∂
α (fu) exists weakly in Lp (Ω) and

∂γ (fu) =
X
β≤α

µ
α

β

¶£
∂β+eif · ∂α−βu+ ∂βf · ∂α−β+eiu¤ =X

β≤γ

µ
γ

β

¶£
∂βf · ∂γ−βu¤ .

For the last equality see the combinatorics in Appendix A.1.

Theorem 23.7. Let Ω be an open subset of Rd, k ∈ N0 := N∪ {0} and p ∈ [1,∞).
Then C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Proof. Let Ωn := {x ∈ Ω : dist(x,Ω) > 1/n} ∩B (0, n) , then
Ω̄n ⊂ {x ∈ Ω : dist(x,Ω) ≥ 1/n} ∩B (0, n) ⊂ Ωn+1,

Ω̄n is compact for every n and Ωn ↑ Ω as n→∞. Let V0 = Ω3, Vj := Ωj+3 \ Ω̄j for
j ≥ 1, K0 := Ω̄2 and Kj := Ω̄j+2 \Ωj+1 for j ≥ 1 as in figure 41. Then Kn @@ Vn

1

0

Ω1

Ω5

Ω2

Ω4

Ω3

1

20

Figure 41. Decomposing Ω into compact pieces. The compact
sets K0, K1 and K2 are the shaded annular regions while V0, V1
and V2 are the indicated open annular regions.

for all n and ∪Kn = Ω. Choose φn ∈ C∞c (Vn, [0, 1]) such that φn = 1 on Kn and
set ψ0 = φ0 and

ψj = (1− ψ1 − · · ·− ψj−1)φj = φj

j−1Y
k=1

(1− φk)

for j ≥ 1. Then ψj ∈ C∞c (Vn, [0, 1]),

1−
nX

k=0

ψk =
nY

k=1

(1− φk)→ 0 as n→∞

so that
P∞

k=0 ψk = 1 on Ω with the sum being locally finite.
Let � > 0 be given. By Proposition 23.6, un := ψnu ∈ W k,p (Ω) with

supp(un) @@ Vn. By Proposition 23.4, we may find vn ∈ C∞c (Vn) such that
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kun − vnkWk,p(Ω) ≤ �/2n+1 for all n. Let v :=
P∞

n=1 vn, then v ∈ C∞(Ω) because
the sum is locally finite. Since

∞X
n=0

kun − vnkWk,p(Ω) ≤
∞X
n=0

�/2n+1 = � <∞,

the sum
P∞

n=0 (un − vn) converges in W k,p (Ω) . The sum,
P∞

n=0 (un − vn) , also
converges pointwise to u − v and hence u − v =

P∞
n=0 (un − vn) is in W k,p (Ω) .

Therefore v ∈W k,p (Ω) ∩ C∞(Ω) and

ku− vk ≤
∞X
n=0

kun − vnkWk,p(Ω) ≤ �.

Theorem 23.8 (Density of W k,p (Ω) ∩ C∞
¡
Ω̄
¢
in W k,p (Ω)). Let Ω ⊂ Rd be a

manifold with C0 — boundary, then for k ∈ N0 and p ∈ [1,∞), W k,p
¡
Ω0
¢∩C∞ ¡Ω̄¢

is dense in W k,p
¡
Ω0
¢
. This may alternatively be stated by assuming Ω ⊂ Rd is

an open set such that Ω̄ = Ω0 and Ω̄ is a manifold with C0 — boundary, then
W k,p (Ω) ∩ C∞ ¡Ω̄¢ is dense in W k,p (Ω) .

Before going into the proof, let us point out that some restriction on the boundary
of Ω is needed for assertion in Theorem 23.8 to be valid. For example, suppose

Ω0 :=
©
x ∈ R2 : 1 < |x| < 2ª and Ω := Ω0 \ {(1, 2)× {0}}

and θ : Ω → (0, 2π) is defined so that x1 = |x| cos θ(x) and x2 = |x| sin θ(x),
see Figure 42. Then θ ∈ BC∞ (Ω) ⊂ W k,∞ (Ω) for all k ∈ N0 yet θ can not be

Figure 42. The region Ω0 along with a vertical in Ω.

approximated by functions from C∞
¡
Ω̄
¢ ⊂ BC∞ (Ω0) in W 1,p (Ω) . Indeed, if this

were possible, it would follows that θ ∈ W 1,p (Ω0) . However, θ is not continuous
(and hence not absolutely continuous) on the lines {x1 = ρ} ∩ Ω for all ρ ∈ (1, 2)
and so by Theorem 19.30, θ /∈W 1,p (Ω0) .
The following is a warm-up to the proof of Theorem 23.8.

Proposition 23.9 (Warm-up). Let Ω := Hd :=
©
x ∈ Rd : xd > 0

ª
and C∞(Ω̄)

denote those u ∈ C
¡
Ω̄
¢
which are restrictions of C∞ — functions defined on an open

neighborhood of Ω̄. Then for p ∈ [1,∞), C∞(Ω̄) ∩W k,p (Ω) is dense in W k,p (Ω) .
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Proof. Let u ∈W k,p (Ω) and for s > 0 let us(x) := u(x+ sed). Then it is easily
seen that us ∈ W k,p(Ω − sed) and for |α| ≤ k that ∂αus = (∂αu)s because for
φ ∈ C∞c (Ω− sed) ,

h∂αus, φi = hus, (−∂)α φi =
Z
Rd

u(x+ sed) (−∂)α φ(x)dx

=

Z
Rd

u(x) (−∂)α φ(x− sed)dx =

Z
Rd

∂αu(x)φ(x− sed)dx

=

Z
Rd
(∂αu) (x+ sed)φ(x)dx = h(∂αu)s , φi.

This result and by the strong continuity of translations in Lp (see Proposition
11.13), it follows that lims↓0 ku− uskWk,p(Ω) = 0. By Theorem 23.7, we may choose
vs ∈ C∞ (Ω− sed) ⊂ C∞

¡
Ω̄
¢
such that kvs − uskWk,p(Ω) ≤ s for all s > 0. Then

kvs − ukWk,p(Ω) ≤ kvs − uskWk,p(Ω) + kus − ukWk,p(Ω) → 0 as s ↓ 0.

23.1.1. Proof of Theorem 23.8. Proof. By Theorem 23.7, it suffices to show than
any u ∈ C∞ (Ω) ∩W k,p (Ω) may be approximated by C∞

¡
Ω̄
¢
. To understand the

main ideas of the proof, suppose that Ω is the triangular region in Figure 43 and
suppose that we have used a partition of unity relative to the cover shown so that
u = u1 + u2 + u3 with supp(ui) ⊂ Bi. Now concentrating on u1 whose support is

Figure 43. Splitting and moving a function in C∞ (Ω) so that
the result is in C∞

¡
Ω̄
¢
.

depicted as the grey shaded area in Figure 43. We now simply translate u1 in the
direction v shown in Figure 43. That is for any small s > 0, let ws(x) := u1(x+sv),
then vs lives on the translated grey area as seen in Figure 43. The function ws

extended to be zero off its domain of definition is an element of C∞
¡
Ω̄
¢
moreover

it is easily seen, using the same methods as in the proof of Proposition 23.9, that
ws → u1 in W k,p (Ω) .
The formal proof follows along these same lines. To do this choose an at most

countable locally finite cover {Vi}∞i=0 of Ω̄ such that V̄0 ⊂ Ω and for each i ≥ 1,
after making an affine change of coordinates, Vi = (−�, �)d for some � > 0 and

Vi ∩ Ω̄ = {(y, z) ∈ Vi : � > z > fi(y)}
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where fi : (−�, �)d−1 → (−�, �), see Figure 44 below. Let {ηi}∞i=0 be a partition of

Ω

Figure 44. The shaded area depicts the support of ui = uηi.

unity subordinated to {Vi} and let ui := uηi ∈ C∞ (Vi ∩Ω) . Given δ > 0, we choose
s so small that wi(x) := ui(x+sed) (extended to be zero off its domain of definition)
may be viewed as an element of C∞(Ω̄) and such that kui − wikWk,p(Ω) < δ/2i. For
i = 0 we set w0 := u0 = uη0. Then, since {Vi}∞i=1 is a locally finite cover of Ω̄, it
follows that w :=

P∞
i=0wi ∈ C∞

¡
Ω̄
¢
and further we have

∞X
i=0

kui − wikWk,p(Ω) ≤
∞X
i=1

δ/2i = δ.

This shows

u− w =
∞X
i=0

(ui − wi) ∈W k,p(Ω)

and ku− wkWk,p(Ω) < δ. Hence w ∈ C∞
¡
Ω̄
¢ ∩W k,p (Ω) is a δ — approximation of

u and since δ > 0 arbitrary the proof is complete.

23.2. Difference quotients.

Theorem 23.10. Suppose k ∈ N0, Ω is a precompact open subset of Rd and V is
an open precompact subset of Ω.

(1) If 1 ≤ p <∞ u ∈W k,p(Ω) and ∂iu ∈W k,p(Ω), then

(23.8) k∂hi ukWk,p(V ) ≤ k∂iukWk,p(Ω)

for all 0 < |h| < 1
2dist(V,Ω

c).

(2) Suppose that 1 < p ≤ ∞, u ∈ W k,p(Ω) and assume there exists a constant
C(V ) <∞ such that

k∂hi ukWk,p(V ) ≤ C(V ) for all 0 < |h| < 1

2
dist(V,Ωc).

Then ∂iu ∈ W k,p(V ) and k∂iukWk,p(V ) ≤ C(V ). Moreover if C :=

supV⊂⊂ΩC(V ) < ∞ then in fact ∂iu ∈ W k,p(Ω) and there is a constant
c <∞ such that

k∂iukWk,p(Ω) ≤ c
³
C + kukLp(Ω)

´
.
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Proof. 1. Let |α| ≤ k, then

k∂α∂hi ukLp(V ) = k∂hi ∂αukLp(V ) ≤ k∂i∂αukLp(Ω)
wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily
follows.
2. If k∂hi ukWk,p(V ) ≤ C(V ) then for all |α| ≤ k,

k∂hi ∂αukLp(V ) = k∂α∂hi ukLp(V ) ≤ C(V ).

So by Theorem 19.22, ∂i∂αu ∈ Lp(V ) and k∂i∂αukLp(V ) ≤ C(V ). From this we
conclude that k∂βukLp(V ) ≤ C(V ) for all 0 < |β| ≤ k+1 and hence kukWk+1,p(V ) ≤
c
£
C(V ) + kukLp(V )

¤
for some constant c.

23.3. Application to regularity.

Definition 23.11 (Negative order Sobolev space). Let H−1(Ω) = H1(Ω)∗ and
recall that

kukH−1(Ω) := sup
ϕ∈H1(Ω)

|hu, ϕi|
kϕkH1(Ω)

.

When Ω = Rd, C∞c
¡
Rd
¢
is dense in H1(Rd) and hence

kukH−1(Rd) := sup
ϕ∈C∞c (Rd)

|hu, ϕi|
kϕkH1(Rd)

and we may identify H−1
¡
Rd
¢
with

©
u ∈ D0(Rd) : ukH−1(Ω) <∞

ª ⊂ D0(Rd).
Theorem 23.12. Suppose u ∈ H1(Rd) and 4u ∈ Hk(Rd) for k ∈ {0, 1, 2, . . . }
then u ∈ Hk+2(Rd).

Proof. Fourier transform proof. Since (1 + |ξ|2) + |ξ|2(1 + |ξ|2)k ³ (1 +
|ξ|2)k+2 we are given

û(ξ) ∈ L2((1 + |ξ|2)dξ) and |ξ|2û(ξ) ∈ L2((1 + |ξ|2)kdξ).
But this implies u ∈ Hk+2(Rd).
Proof with out the Fourier transform. For u ∈ H1(Rd),

kukH1 =

sZ
Rd
(|∇u|2 + u2)dm = sup

ϕ∈C∞c (Rd)

¯̄R
Rd(∇u ·∇φ+ uφ)dm

¯̄
kϕkH1(Rd)

= sup
ϕ∈C∞c (Rd)

|h−∆u+ u, φi|
kϕkH1(Rd)

= k(−4+ 1)ukH−1(Rd)(23.9)

which shows (−4+ 1) : H1(Rd)→ H−1(Rd) is an isometry.
Now suppose that u ∈ H1 and (−4+ 1)u ∈ L2 ⊂ H−1(Rd). Then

k∂hi ukH1 = k(−4+ 1)∂hi ukH−1 = sup
kϕkH1=1

|h∂hi u, (−4+ 1)ϕi|

= sup
kϕkH1=1

|hu, ∂hi (−4+ 1)ϕi| = sup
kϕkH1=1

{h(−4+ 1)u, ∂hi ϕi}

≤ sup
kϕkH1=1

k(−4+ 1)ukL2 k∂−hi ϕkL2 = sup
kϕkH1=1

k(−4+ 1)ukL2 k∇ϕkL2

≤ k(−4+ 1)ukL2 .
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Therefore by Theorem 23.10 ∂iu ∈ H1 and since this is true for i = 1, 2, . . . , d,
u ∈ H2 and

k∇ukH1 ≤ Ck(−4+ 1)ukL2 .
Combining this with Eq. (23.9) allows us to conclude

kukH2 ≤ Ck(−4+ 1)ukL2 .
The argument may now be repeated. For example if −4u ∈ H1, then u ∈ H2 and
∂hi u ∈ H2 and

k∂hi ukH2 ≤ k(−4+ 1)∂hi ukL2 ≤ Ck∂hi (−4+ 1)ukL2 ≤ Ck(−4+ 1)ukH1 .

Therefore u ∈ H3 and k∇ukH2 ≤ Ck(−4 + 1)ukH1 and so kukH3 ≤ Ck(−4 +
1)ukH1 .

23.4. Sobolev Spaces on Compact Manifolds.

Theorem 23.13 (Change of Variables). Suppose that U and V are open subsets
of Rd, χ ∈ Ck (U, V ) be a Ck — diffeomorphism such that k∂αχkBC(U) <∞ for all
1 ≤ |α| ≤ k and � := infU |detχ0| > 0. Then the map χ∗ : W k,p (V ) → W k,p (U)
defined by u ∈W k,p (V )→ χ∗u := u ◦χ ∈W k,p (U) is well defined and is bounded.

Proof. For u ∈W k,p (V )∩C∞ (V ) , repeated use of the chain and product rule
implies,

(u ◦ χ)0 = (u0 ◦ χ)χ0
(u ◦ χ)00 = (u0 ◦ χ)0 χ0 + (u0 ◦ χ)χ00 = (u00 ◦ χ)χ0 ⊗ χ0 + (u0 ◦ χ)χ00

(u ◦ χ)(3) =
³
u(3) ◦ χ

´
χ0 ⊗ χ0 ⊗ χ0 + (u00 ◦ χ) (χ0 ⊗ χ0)0

+ (u00 ◦ χ)χ0 ⊗ χ00 + (u0 ◦ χ)χ(3)
...

(u ◦ χ)(l) =
³
u(l) ◦ χ

´ l timesz }| {
χ⊗ · · ·⊗ χ+

l−1X
j=1

³
u(j) ◦ χ

´
pj

³
χ0, χ00, . . . , χ(l+1−j)

´
.

(23.10)

This equation and the boundedness assumptions on χ(j) for 1 ≤ j ≤ k implies there
is a finite constant K such that¯̄̄

(u ◦ χ)(l)
¯̄̄
≤ K

lX
j=1

¯̄̄
u(j) ◦ χ

¯̄̄
for all 1 ≤ l ≤ k.

By Hölder’s inequality for sums we conclude there is a constant Kp such thatX
|α|≤k

|∂α (u ◦ χ)|p ≤ Kp

X
|α|≤k

|∂αu|p ◦ χ

and therefore

ku ◦ χkpWk,p(U) ≤ Kp

X
|α|≤k

Z
U

|∂αu|p (χ(x)) dx.

Making the change of variables, y = χ(x) and using

dy = |detχ0(x)| dx ≥ �dx,
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we find

ku ◦ χkpWk,p(U) ≤ Kp

X
|α|≤k

Z
U

|∂αu|p (χ(x)) dx

≤ Kp

�

X
|α|≤k

Z
V

|∂αu|p (y) dy = Kp

�
kukpWk,p(V ) .(23.11)

This shows that χ∗ : W k,p (V ) ∩ C∞ (V ) → W k,p (U) ∩ C∞ (U) is a bounded
operator. For general u ∈W k,p (V ) , we may choose un ∈W k,p (V ) ∩C∞ (V ) such
that un → u in W k,p (V ) . Since χ∗ is bounded, it follows that χ∗un is Cauchy
in W k,p (U) and hence convergent. Finally, using the change of variables theorem
again we know,

kχ∗u− χ∗unkpLp(V ) ≤ �−1 ku− unkpLp(U) → 0 as n→∞
and therefore χ∗u = limn→∞ χ∗un and by continuity Eq. (23.11) still holds for
u ∈W k,p (V ) .
Let M be a compact Ck — manifolds without boundary, i.e. M is a compact

Hausdorff space with a collection of charts χ in an “atlas” A such that x : D(x) ⊂o
M → R(x) ⊂o Rd is a homeomorphism such that

x ◦ y−1 ∈ Ck (y (D(x) ∩D(y))) , x (D(x) ∩D(y))) for all x, y ∈ A.
Definition 23.14. Let {xi}Ni=1 ⊂ A such that M = ∪Ni=1D(xi) and let {φi}Ni=1
be a partition of unity subordinate do the cover {D(xi)}Ni=1 . We now define u ∈
W k,p(M) if u :M → C is a function such that

(23.12) kukWk,p(M) :=
NX
i=1

°°(φiu) ◦ x−1i °°
Wk,p(R(xi))

<∞.

Since k·kWk,p(R(xi))
is a norm for all i, it easily verified that k·kWk,p(M) is a norm

on W k,p(M).

Proposition 23.15. If f ∈ Ck(M) and u ∈W k,p (M) then fu ∈W k,p (M) and

(23.13) kfukWk,p(M) ≤ C kukWk,p(M)

where C is a finite constant not depending on u. Recall that f : M → R is said to
be Cj with j ≤ k if f ◦ x−1 ∈ Cj(R(x),R) for all x ∈ A.
Proof. Since

£
f ◦ x−1i

¤
has bounded derivatives on supp(φi ◦ x−1i ), it follows

from Proposition 23.6 that there is a constant Ci <∞ such that°°(φifu) ◦ x−1i °°
Wk,p(R(xi))

=
°°£f ◦ x−1i ¤

(φiu) ◦ x−1i
°°
Wk,p(R(xi))

≤ Ci

°°(φiu) ◦ x−1i °°
Wk,p(R(xi))

and summing this equation on i shows Eq. (23.13) holds with C := maxi Ci.

Theorem 23.16. If {yj}Kj=1 ⊂ A such that M = ∪Kj=1D(yj) and {ψj}Kj=1 is a
partition of unity subordinate to the cover {D(yj)}Kj=1 , then the norm

(23.14) |u|Wk,p(M) :=
KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

is equivalent to the norm in Eq. (23.12). That is to say the space W k,p (M) along
with its topology is well defined independent of the choice of charts and partitions
of unity used in defining the norm on W k,p (M) .
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Proof. Since |·|Wk,p(M) is a norm,

|u|Wk,p(M) =

¯̄̄̄
¯
NX
i=1

φiu

¯̄̄̄
¯
Wk,p(M)

≤
NX
i=1

|φiu|Wk,p(M)

=
KX
j=1

°°°°°
NX
i=1

(ψjφiu) ◦ y−1j
°°°°°
Wk,p(R(yj))

≤
KX
j=1

NX
i=1

°°(ψjφiu) ◦ y−1j °°
Wk,p(R(yj))

(23.15)

and since xi◦y−1j and yj◦x−1i are Ck diffeomorphism and the sets yj (supp(φi) ∩ supp(ψj))
and xi (supp(φi) ∩ supp(ψj)) are compact, an application of Theorem 23.13 and
Proposition 23.6 shows there are finite constants Cij such that°°(ψjφiu) ◦ y−1j °°

Wk,p(R(yj))
≤ Cij

°°(ψjφiu) ◦ x−1i °°
Wk,p(R(xi))

≤ Cij

°°φiu ◦ x−1i °°
Wk,p(R(xi))

which combined with Eq. (23.15) implies

|u|Wk,p(M) ≤
KX
j=1

NX
i=1

Cij

°°φiu ◦ x−1i °°
Wk,p(R(xi))

≤ C kukWk,p(M)

where C := maxi
PK

j=1Cij <∞. Analogously, one shows there is a constantK <∞
such that kukWk,p(M) ≤ K |u|Wk,p(M) .

Lemma 23.17. Suppose x ∈ A(M) and U ⊂o M such that U ⊂ Ū ⊂ D(x), then
there is a constant C <∞ such that

(23.16)
°°u ◦ x−1°°

Wk,p(x(U))
≤ C kukWk,p(M) for all u ∈W k,p(M).

Conversely a function u : M → C with supp(u) ⊂ U is in W k,p(M) iff°°u ◦ x−1°°
Wk,p(x(U))

<∞ and in any case there is a finite constant such that

(23.17) kukWk,p(M) ≤ C
°°u ◦ x−1°°

Wk,p(x(U))
.

Proof. Choose charts y1 := x, y2, . . . , yK ∈ A such that {D (yi)}Kj=1 is an
open cover of M and choose a partition of unity {ψj}Kj=1 subordinate to the cover
{D(yj)}Kj=1 such that ψ1 = 1 on a neighborhood of Ū . To construct such a partition
of unity choose Uj ⊂o M such that Uj ⊂ Ūj ⊂ D(yj), Ū ⊂ U1 and ∪Kj=1Uj = M

and for each j let ηj ∈ Ck
c (D(yj), [0, 1]) such that ηj = 1 on a neighborhood of

Ūj . Then define ψj := ηj (1− η0) · · · (1− ηj−1) where by convention η0 ≡ 0. Then
{ψj}Kj=1 is the desired partition, indeed by induction one shows

1−
lX

j=1

ψj = (1− η1) · · · (1− ηl)

and in particular

1−
KX
j=1

ψj = (1− η1) · · · (1− ηK) = 0.
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Using Theorem 23.16, it follows that°°u ◦ x−1°°
Wk,p(x(U))

=
°°(ψ1u) ◦ x−1°°Wk,p(x(U))

≤ °°(ψ1u) ◦ x−1°°Wk,p(R(y1))
≤

KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

= |u|Wk,p(M) ≤ C kukWk,p(M)

which proves Eq. (23.16).
Using Theorems 23.16 and 23.13 there are constants Cj for j = 0, 1, 2 . . . , N such

that

kukWk,p(M) ≤ C0

KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

= C0

KX
j=1

°°(ψju) ◦ y−11 ◦ y1 ◦ y−1j °°
Wk,p(R(yj))

≤ C0

KX
j=1

Cj

°°(ψju) ◦ x−1°°Wk,p(R(y1))
= C0

KX
j=1

Cj

°°ψj ◦ x−1 · u ◦ x−1°°Wk,p(R(y1))
.

This inequality along with K — applications of Proposition 23.6 proves Eq. (23.17).

Theorem 23.18. The space (W k,p(M), k·kWk,p(M)) is a Banach space.

Proof. Let {xi}Ni=1 ⊂ A and {φi}Ni=1 be as in Definition 23.14 and choose Ui ⊂o
M such that supp(φi) ⊂ Ui ⊂ Ūi ⊂ D(xi). If {un}∞n=1 ⊂ W k,p(M) is a Cauchy
sequence, then by Lemma 23.17,

©
un ◦ x−1i

ª∞
n=1
⊂ W k,p(xi(Ui)) is a Cauchy se-

quence for all i. SinceW k,p(xi(Ui)) is complete, there exists vi ∈W k,p(xi(Ui)) such
that un ◦ x−1i → ṽi in W k,p(xi(Ui)). For each i let vi := φi (ṽi ◦ xi) and notice by
Lemma 23.17 that

kvikWk,p(M) ≤ C
°°vi ◦ x−1i °°

Wk,p(xi(Ui))
= C kṽikWk,p(xi(Ui))

<∞

so that u :=
PN

i=1 vi ∈W k,p(M). Since supp(vi − φiun) ⊂ Ui, it follows that

ku− unkWk,p(M) =

°°°°°
NX
i=1

vi −
NX
i=1

φiun

°°°°°
Wk,p(M)

≤
NX
i=1

kvi − φiunkWk,p(M) ≤ C
NX
i=1

°°[φi (ṽi ◦ xi − un)] ◦ x−1i
°°
Wk,p(xi(Ui))

= C
NX
i=1

°°£φi ◦ x−1i ¡
ṽi − un ◦ x−1i

¢¤°°
Wk,p(xi(Ui))

≤ C
NX
i=1

Ci

°°ṽi − un ◦ x−1i
°°
Wk,p(xi(Ui))

→ 0 as n→∞

wherein the last inequality we have used Proposition 23.6 again.

23.5. Trace Theorems. For many more general results on this subject matter,
see E. Stein [7, Chapter VI].
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Lemma 23.19. Suppose k ≥ 1, Hd :=
©
x ∈ Rd : xd > 0

ª ⊂o Rd, u ∈ Ck
c

³
Hd
´

and D is the smallest constant so that supp(u) ⊂ Rd−1 × [0,D]. Then there is a
constant C = C(p, k,D, d) such that

(23.18) kukWk−1,p(∂Hd) ≤ C(p,D, k, d) kukWk,p(Hd) .

Proof. Write x ∈ Hd as x = (y, z) ∈ Rd−1 × [0,∞), then by the fundamental
theorem of calculus we have for any α ∈ Nd−10 with |α| ≤ k − 1 that

(23.19) ∂αy u(y, 0) = ∂αy u(y, z)−
Z z

0

∂αy ut(y, t)dt.

Therefore, for p ∈ [1,∞)
¯̄
∂αy u(y, 0)

¯̄p ≤ 2p/q · ·¯̄∂αy u(y, z)¯̄p + ¯̄̄̄Z z

0

∂αy ut(y, t)dt

¯̄̄̄p¸
≤ 2p/q ·

·¯̄
∂αy u(y, z)

¯̄p
+

Z z

0

¯̄
∂αy ut(y, t)

¯̄p
dt · |z|q/p

¸
≤ 2p−1 ·

"¯̄
∂αy u(y, z)

¯̄p
+

Z D

0

¯̄
∂αy ut(y, t)

¯̄p
dt · zp−1

#
where q := p

p−1 is the conjugate exponent to p. Integrating this inequality over
Rd−1 × [0,D] implies

D k∂αukpLp(∂Hd) ≤ 2p−1
·
k∂αukpLp(Hd) +

°°∂α+edu°°p
Lp(Hd)

Dp

p

¸
or equivalently that

k∂αukpLp(∂Hd) ≤ 2p−1D−1 k∂αukpLp(Hd) + 2p−1
Dp−1

p

°°∂α+edu°°p
Lp(Hd)

from which implies Eq. (23.18).
Similarly, if p =∞, then from Eq. (23.19) we find

k∂αukL∞(∂Hd) = k∂αukL∞(Hd) +D
°°∂α+edu°°

L∞(Hd)

and again the result follows.

Theorem 23.20 (Trace Theorem). Suppose k ≥ 1 and Ω ⊂o Rd such that Ω̄ is
a compact manifold with Ck — boundary. Then there exists a unique linear map
T :W k,p (Ω)→W k−1,p (∂Ω) such that Tu = u|∂Ω for all u ∈ Ck

¡
Ω̄
¢
.

Proof. Choose a covering {Vi}Ni=0 of Ω̄ such that V̄0 ⊂ Ω and for each i ≥ 1,
there is Ck — diffeomorphism xi : Vi → R(xi) ⊂o Rd such that

xi (∂Ω ∩ Vi) = R(xi) ∩ bd(Hd) and

xi (Ω ∩ Vi) = R(xi) ∩Hd

as in Figure 45. Further choose φi ∈ C∞c (Vi, [0, 1]) such that
PN

i=0 φi = 1 on a
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(Ω )

Figure 45. Covering Ω (the shaded region) as described in the text.

neighborhood of Ω̄ and set yi := xi|∂Ω∩Vi for i ≥ 1. Given u ∈ Ck
¡
Ω̄
¢
, we compute

ku|∂Ω̄kWk−1,p(∂Ω̄) =
NX
i=1

°°(φiu) |∂Ω̄ ◦ y−1i °°
Wk−1,p(R(xi)∩bd(Hd))

=
NX
i=1

°°£(φiu) ◦ x−1i ¤ |bd(Hd)°°Wk−1,p(R(xi)∩bd(Hd))

≤
NX
i=1

Ci

°°£(φiu) ◦ x−1i ¤°°
Wk,p(R(xi))

≤ maxCi ·
NX
i=1

°°£(φiu) ◦ x−1i ¤°°
Wk,p(R(xi)∩Hd) +

°°£(φ0u) ◦ x−10 ¤°°
Wk,p(R(x0))

≤ C kukWk,p(Ω)

where C = max {1, C1, . . . , CN} . The result now follows by the B.L.T. Theorem
4.1 and the fact that Ck

¡
Ω̄
¢
is dense inside W k,p (Ω) .

Notation 23.21. In the sequel will often abuse notation and simply write u|∂Ω̄ for
the “function” Tu ∈W k−1,p(∂Ω̄).

Proposition 23.22 (Integration by parts). Suppose Ω ⊂o Rd such that Ω̄ is a
compact manifold with C1 — boundary, p ∈ [1,∞] and q = p

p−1 is the conjugate
exponent. Then for u ∈W k,p (Ω) and v ∈W k,q (Ω) ,

(23.20)
Z
Ω

∂iu · vdm = −
Z
Ω

u · ∂ivdm+

Z
∂Ω̄

u|∂Ω̄ · v|∂Ω̄nidσ

where n : ∂Ω̄→ Rd is unit outward pointing norm to ∂Ω̄.
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Proof. Equation 23.20 holds for u, v ∈ C2
¡
Ω̄
¢
and therefore for (u, v) ∈

W k,p (Ω) × W k,q (Ω) since both sides of the equality are continuous in (u, v) ∈
W k,p (Ω)×W k,q (Ω) as the reader should verify.

Definition 23.23. LetW k,p
0 (Ω) := C∞c (Ω)

Wk,p(Ω)
be the closure of C∞c (Ω) inside

W k,p (Ω) .

Remark 23.24. Notice that if T :W k,p (Ω)→W k−1,p ¡∂Ω̄¢ is the trace operator in
Theorem 23.20, then T

³
W k,p
0 (Ω)

´
= {0} ⊂ W k−1,p ¡∂Ω̄¢ since Tu = u|∂Ω̄ = 0 for

all u ∈ C∞c (Ω).

Corollary 23.25. Suppose Ω ⊂o Rd such that Ω̄ is a compact manifold with C1 —
boundary, p ∈ [1,∞] and T : W 1,p (Ω)→ Lp(∂Ω) is the trace operator of Theorem
23.20. Then W 1,p

0 (Ω) = Nul(T ).

Proof. It has already been observed in Remark 23.24 that W 1,p
0 (Ω) ⊂ Nul(T ).

Suppose u ∈ Nul(T ) and supp(u) is compactly contained in Ω. The mollification
u�(x) defined in Proposition 23.4 will be in C∞c (Ω) for � > 0 sufficiently small and
by Proposition 23.4, u� → u in W 1,p (Ω) . Thus u ∈ W 1,p

0 (Ω) . We will now give
two proofs for Nul(T ) ⊂W 1,p

0 (Ω) .
Proof 1. For u ∈ Nul(T ) ⊂W 1,p (Ω) define

ũ(x) =

½
u(x) for x ∈ Ω̄
0 for x /∈ Ω̄.

Then clearly ũ ∈ Lp
¡
Rd
¢
and moreover by Proposition 23.22, for v ∈ C∞c (Rd),Z

Rd
ũ · ∂ivdm =

Z
Ω

u · ∂ivdm = −
Z
Ω

∂iu · vdm

from which it follows that ∂iũ exists weakly in Lp
¡
Rd
¢
and ∂iũ = 1Ω∂iu a.e.. Thus

ũ ∈W 1,p
¡
Rd
¢
with kũkW 1,p(Rd) = kukW 1,p(Ω) and supp(ũ) ⊂ Ω.

Choose V ∈ C1c
¡
Rd,Rd

¢
such that V (x) · n(x) > 0 for all x ∈ ∂Ω̄ and define

ũ�(x) = T�ũ(x) := ũ ◦ e�V (x).
Notice that supp(ũ�) ⊂ e−�V

¡
Ω̄
¢
@@ Ω for all � sufficiently small. By the change

of variables Theorem 23.13, we know that ũ� ∈ W 1,p (Ω) and since supp(ũ�) is a
compact subset of Ω, it follows from the first paragraph that ũ� ∈W 1,p

0 (Ω) .
To so finish this proof, it only remains to show ũ� → u in W 1,p (Ω) as � ↓ 0.

Looking at the proof of Theorem 23.13, the reader may show there are constants
δ > 0 and C <∞ such that

(23.21) kT�vkW1,p(Rd) ≤ C kvkW 1,p(Rd) for all v ∈W 1,p
¡
Rd
¢
.

By direct computation along with the dominated convergence it may be shown
that

(23.22) T�v → v in W 1,p
¡
Rd
¢
for all v ∈ C∞c (Rd).

As is now standard, Eqs. (23.21) and (23.22) along with the density of C∞c (Rd) in
W 1,p

¡
Rd
¢
allows us to conclude T�v → v in W 1,p

¡
Rd
¢
for all v ∈W 1,p

¡
Rd
¢
which

completes the proof that ũ� → u in W 1,p (Ω) as �→ 0.

Proof 2. As in the first proof it suffices to show that any u ∈ W 1,p
0 (Ω) may

be approximated by v ∈ W 1,p (Ω) with supp(v) @ Ω. As above extend u to Ωc
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by 0 so that ũ ∈ W 1,p
¡
Rd
¢
. Using the notation in the proof of 23.20, it suffices

to show ui := φiũ ∈ W 1,p
¡
Rd
¢
may be approximated by ui ∈ W 1,p (Ω) with

supp(ui) @ Ω. Using the change of variables Theorem 23.13, the problem may be
reduced to working with wi = ui ◦x−1i on B = R(xi). But in this case we need only
define w�

i (y) := w�
i (y − �ed) for � > 0 sufficiently small. Then supp(w�

i ) ⊂ Hd ∩ B
and as we have already seen w�

i → wi inW 1,p
¡
Hd
¢
. Thus u�i := w�

i ◦xi ∈W 1,p (Ω) ,
u�i → ui as � ↓ 0 with supp(ui) @ Ω.
23.6. Extension Theorems.

Lemma 23.26. Let R > 0, B := B(0, R) ⊂ Rd, B± := {x ∈ B : ±xd > 0} and
Γ := {x ∈ B : xd = 0} . Suppose that u ∈ Ck(B \ Γ) ∩ C(B) and for each |α| ≤ k,
∂αu extends to a continuous function vα on B. Then u ∈ Ck(B) and ∂αu = vα for
all |α| ≤ k.

Proof. For x ∈ Γ and i < d, then by continuity, the fundamental theorem of
calculus and the dominated convergence theorem,

u(x+∆ei)− u(x) = lim
y→x

y∈B\Γ

[u(y +∆ei)− u(y)] = lim
y→x

y∈B\Γ

Z ∆
0

∂iu(y + sei)ds

= lim
y→x

y∈B\Γ

Z ∆
0

vei(y + sei)ds =

Z ∆
0

vei(x+ sei)ds

and similarly, for i = d,

u(x+∆ed)− u(x) = lim
y→x

y∈Bsgn(∆)\Γ

[u(y +∆ed)− u(y)] = lim
y→x

y∈Bsgn(∆)\Γ

Z ∆
0

∂du(y + sed)ds

= lim
y→x

y∈Bsgn(∆)\Γ

Z ∆
0

ved(y + sed)ds =

Z ∆
0

ved(x+ sed)ds.

These two equations show, for each i, ∂iu(x) exits and ∂iu(x) = vei(x). Hence we
have shown u ∈ C1 (B) .
Suppose it has been proven for some l ≥ 1 that ∂αu(x) exists and is given by

vα(x) for all |α| ≤ l < k. Then applying the results of the previous paragraph to
∂αu(x) with |α| = l shows that ∂i∂αu(x) exits and is given by vα+ei(x) for all i
and x ∈ B and from this we conclude that ∂αu(x) exists and is given by vα(x) for
all |α| ≤ l+1. So by induction we conclude ∂αu(x) exists and is given by vα(x) for
all |α| ≤ k, i.e. u ∈ Ck(B).

Lemma 23.27. Given any k+1 distinct points, {ci}ki=0 , in R\ {0} , the (k + 1)×
(k + 1) matrix C with entries Cij := (ci)

j is invertible.

Proof. Let a ∈ Rk+1 and define p(x) :=Pk
j=0 ajx

j . If a ∈ Nul(C), then

0 =
kX

j=0

(ci)
j
aj = p (ci) for i = 0, 1, . . . , k.

Since deg (p) ≤ k and the above equation says that p has k + 1 distinct roots, we
conclude that a ∈ Nul(C) implies p ≡ 0 which implies a = 0. Therefore Nul(C) =
{0} and C is invertible.
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Lemma 23.28. Let B, B± and Γ be as in Lemma 23.26 and {ci}ki=0 , be k + 1
distinct points in (∞,−1] for example ci = − (i+ 1) will work. Also let a ∈ Rk+1
be the unique solution (see Lemma 23.27 to Ctra = 1 where 1 denotes the vector
of all ones in Rk+1, i.e. a satisfies

(23.23) 1 =
kX

j=0

(ci)
j ai for j = 0, 1, 2 . . . , k.

For u ∈ Ck(Hd) ∩ Cc(Hd) with supp(u) ⊂ B and x = (y, z) ∈ Rd define

(23.24) ũ(x) = ũ(y, z) =

½
u(y, z) if z ≥ 0Pk

i=0 aiu(y, ciz) if z ≤ 0.
Then ũ ∈ Ck

c (Rd) with supp(ũ) ⊂ B and moreover there exists a constant M
independent of u such that

(23.25) kũkWk,p(B) ≤M kukWk,p(B+) .

Proof. By Eq. (23.23) with j = 0,

kX
i=0

aiu(y, ci0) = u(y, 0)
kX
i=0

ai = u(y, 0).

This shows that ũ in Eq. (23.24) is well defined and that ũ ∈ C
¡
Hd
¢
. Let K− :=

{(y, z) : (y,−z) ∈ supp(u)} . Since ci ∈ (∞,−1], if x = (y, z) /∈ K− and z < 0
then (y, ciz) /∈ supp(u) and therefore ũ(x) = 0 and therefore supp(ũ) is compactly
contained inside of B. Similarly if α ∈ Nd0 with |α| ≤ k, Eq. (23.23) with j = αd
implies

vα(x) :=

½
(∂αu) (y, z) if z ≥ 0Pk

i=0 aic
αd
i (∂αu) (y, ciz) if z ≤ 0.

is well defined and vα ∈ C
¡
Rd
¢
. Differentiating Eq. (23.24) shows ∂αũ(x) = vα(x)

for x ∈ B \Γ and therefore we may conclude from Lemma 23.26 that u ∈ Ck
c (B) ⊂

Ck
¡
Rd
¢
and ∂αu = vα for all |α| ≤ k.

We now verify Eq. (23.25) as follows. For |α| ≤ k,

k∂αũkpLp(B−) =
Z
Rd
1z<0

¯̄̄̄
¯
kX
i=0

aic
αd
i (∂αu) (y, ciz)

¯̄̄̄
¯
p

dydz

≤ C

Z
Rd
1z<0

kX
i=0

|(∂αu) (y, ciz)|p dydz

= C

Z
Rd
1z>0

kX
i=0

1

|ci| |(∂
αu) (y, z)|p dydz

= C

Ã
kX
i=0

1

|ci|

!
k∂αukpLp(B+)

where C :=
³Pk

i=0 |aicαdi |q
´p/q

. Summing this equation on |α| ≤ k shows there ex-

ists a constantM 0 such that kũkWk,p(B−) ≤M 0 kukWk,p(B+) and hence Eq. (23.25)
holds with M =M 0 + 1.
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Theorem 23.29 (Extension Theorem). Suppose k ≥ 1 and Ω ⊂o Rd such that Ω̄
is a compact manifold with Ck — boundary. Given U ⊂o Rd such that Ω̄ ⊂ U, there
exists a bounded linear (extension) operator E :W k,p (Ω)→W k,p

¡
Rd
¢
such that

(1) Eu = u a.e. in Ω and
(2) supp(Eu) ⊂ U.

Proof. As in the proof of Theorem 23.20, choose a covering {Vi}Ni=0 of Ω̄ such
that V̄0 ⊂ Ω, ∪Ni=0V̄i ⊂ U and for each i ≥ 1, there is Ck — diffeomorphism xi :
Vi → R(xi) ⊂o Rd such that

xi (∂Ω ∩ Vi) = R(xi) ∩ bd(Hd) and xi (Ω ∩ Vi) = R(xi) ∩Hd = B+

where B+ is as in Lemma 23.28, refer to Figure 45. Further choose φi ∈
C∞c (Vi, [0, 1]) such that

PN
i=0 φi = 1 on a neighborhood of Ω̄ and set yi := xi|∂Ω∩Vi

for i ≥ 1. Given u ∈ Ck
¡
Ω̄
¢
and i ≥ 1, the function vi := (φiu) ◦ x−1i may be

viewed as a function in Ck(Hd) ∩ Cc(Hd) with supp(u) ⊂ B. Let ṽi ∈ Ck
c (B) be

defined as in Eq. (23.24) above and define ũ := φ0u+
PN

i=1 ṽi ◦xi ∈ C∞c
¡
Rd
¢
with

supp(u) ⊂ U. Notice that ũ = u on Ω̄ and making use of Lemma 23.17 we learn

kũkWk,p(Rd) ≤ kφ0ukWk,p(Rd) +
NX
i=1

kṽi ◦ xikWk,p(Rd)

≤ kφ0ukWk,p(Ω) +
NX
i=1

kṽikWk,p(R(xi))

≤ C (φ0) kukWk,p(Ω) +
NX
i=1

kvikWk,p(B+)

= C (φ0) kukWk,p(Ω) +
NX
i=1

°°(φiu) ◦ x−1i °°
Wk,p(B+)

≤ C (φ0) kukWk,p(Ω) +
NX
i=1

Ci kukWk,p(Ω) .

This shows the map u ∈ Ck(Ω̄) → Eu := ũ ∈ Ck
c (U) is bounded as map from

W k,p (Ω) to W k,p (U) . As usual, we now extend E using the B.L.T. Theorem 4.1
to a bounded linear map from W k,p (Ω) to W k,p (U) . So for general u ∈W k,p (Ω) ,
Eu = W k,p (U) — limn→∞ ũn where un ∈ Ck(Ω̄) and u = W k,p (Ω) — limn→∞ un.
By passing to a subsequence if necessary, we may assume that ũn converges a.e. to
Eu from which it follows that Eu = u a.e. on Ω̄ and supp(Eu) ⊂ U.

23.7. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

|f |Wk,p(Ω) :=
X
|α|≤k

k∂αfkLp(Ω) .
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Solution. 23.1This is a consequence of the fact that all norms on lp ({α : |α| ≤ k})
are equivalent. To be more explicit, let aα = k∂αfkLp(Ω) , then

X
|α|≤k

|aα| ≤
X
|α|≤k

|aα|p
1/pX

|α|≤k
1q

1/q

whileX
|α|≤k

|aα|p
1/p

≤
 pX
|α|≤k

X
|β|≤k

|aβ|
p1/p

≤ [# {α : |α| ≤ k}]1/p
X
|β|≤k

|aβ| .



ANALYSIS TOOLS WITH APPLICATIONS 455

24. Hölder Spaces

Notation 24.1. Let Ω be an open subset of Rd, BC(Ω) and BC(Ω̄) be the bounded
continuous functions on Ω and Ω̄ respectively. By identifying f ∈ BC(Ω̄) with
f |Ω ∈ BC(Ω), we will consider BC(Ω̄) as a subset of BC(Ω). For u ∈ BC(Ω) and
0 < β ≤ 1 let

kuku := sup
x∈Ω

|u(x)| and [u]β := sup
x,y∈Ω
x6=y

½ |u(x)− u(y)|
|x− y|β

¾
.

If [u]β <∞, then u isHölder continuous with holder exponent41 β. The collection
of β — Hölder continuous function on Ω will be denoted by

C0,β(Ω) := {u ∈ BC(Ω) : [u]β <∞}
and for u ∈ C0,β(Ω) let

(24.1) kukC0,β(Ω) := kuku + [u]β .
Remark 24.2. If u : Ω → C and [u]β < ∞ for some β > 1, then u is constant on
each connected component of Ω. Indeed, if x ∈ Ω and h ∈ Rd then¯̄̄̄

u(x+ th)− u(x)

t

¯̄̄̄
≤ [u]βtβ/t→ 0 as t→ 0

which shows ∂hu(x) = 0 for all x ∈ Ω. If y ∈ Ω is in the same connected component
as x, then by Exercise 17.5 there exists a smooth curve σ : [0, 1] → Ω such that
σ(0) = x and σ(1) = y. So by the fundamental theorem of calculus and the chain
rule,

u(y)− u(x) =

Z 1

0

d

dt
u(σ(t))dt =

Z 1

0

0 dt = 0.

This is why we do not talk about Hölder spaces with Hölder exponents larger than
1.

Lemma 24.3. Suppose u ∈ C1(Ω) ∩ BC(Ω) and ∂iu ∈ BC(Ω) for i = 1, 2, . . . , d,
then u ∈ C0,1(Ω), i.e. [u]1 <∞.

The proof of this lemma is left to the reader as Exercise 24.1.

Theorem 24.4. Let Ω be an open subset of Rd. Then
(1) Under the identification of u ∈ BC

¡
Ω̄
¢
with u|Ω ∈ BC (Ω) , BC(Ω̄) is a

closed subspace of BC(Ω).
(2) Every element u ∈ C0,β(Ω) has a unique extension to a continuous func-

tion (still denoted by u) on Ω̄. Therefore we may identify C0,β(Ω) with
C0,β(Ω̄) ⊂ BC(Ω̄).

(3) The function u ∈ C0,β(Ω) → kukC0,β(Ω) ∈ [0,∞) is a norm on C0,β(Ω)

which make C0,β(Ω) into a Banach space.

Proof. 1. The first item is trivial since for u ∈ BC(Ω̄), the sup-norm of u on Ω̄
agrees with the sup-norm on Ω and BC(Ω̄) is complete in this norm.
2. Suppose that [u]β < ∞ and x0 ∈ ∂Ω. Let {xn}∞n=1 ⊂ Ω be a sequence such

that x0 = limn→∞ xn. Then

|u(xn)− u(xm)| ≤ [u]β |xn − xm|β → 0 as m,n→∞
41If β = 1, u is is said to be Lipschitz continuous.
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showing {u(xn)}∞n=1 is Cauchy so that ū(x0) := limn→∞ u(xn) exists. If {yn}∞n=1 ⊂
Ω is another sequence converging to x0, then

|u(xn)− u(yn)| ≤ [u]β |xn − yn|β → 0 as n→∞,

showing ū(x0) is well defined. In this way we define ū(x) for all x ∈ ∂Ω and let
ū(x) = u(x) for x ∈ Ω. Since a similar limiting argument shows

|ū(x)− ū(y)| ≤ [u]β |x− y|β for all x, y ∈ Ω̄
it follows that ū is still continuous and [ū]β = [u]β . In the sequel we will abuse
notation and simply denote ū by u.
3. For u, v ∈ C0,β(Ω),

[v + u]β = sup
x,y∈Ω
x6=y

½ |v(y) + u(y)− v(x)− u(x)|
|x− y|β

¾

≤ sup
x,y∈Ω
x6=y

½ |v(y)− v(x)|+ |u(y)− u(x)|
|x− y|β

¾
≤ [v]β + [u]β

and for λ ∈ C it is easily seen that [λu]β = |λ| [u]β . This shows [·]β is a semi-norm
on C0,β(Ω) and therefore k · kC0,β(Ω) defined in Eq. (24.1) is a norm.
To see that C0,β(Ω) is complete, let {un}∞n=1 be a C0,β(Ω)—Cauchy sequence.

Since BC(Ω̄) is complete, there exists u ∈ BC(Ω̄) such that ku− unku → 0 as
n→∞. For x, y ∈ Ω with x 6= y,

|u(x)− u(y)|
|x− y|β

= lim
n→∞

|un(x)− un(y)|
|x− y|β

≤ lim sup
n→∞

[un]β ≤ lim
n→∞ kunkC0,β(Ω) <∞,

and so we see that u ∈ C0,β(Ω). Similarly,

|u(x)− un(x)− (u(y)− un(y))|
|x− y|β

= lim
m→∞

|(um − un)(x)− (um − un)(y)|
|x− y|β

≤ lim sup
m→∞

[um − un]β → 0 as n→∞,

showing [u− un]β → 0 as n→∞ and therefore limn→∞ ku− unkC0,β(Ω) = 0.

Notation 24.5. Since Ω and Ω̄ are locally compact Hausdorff spaces, we may
define C0(Ω) and C0(Ω̄) as in Definition 10.29. We will also let

C0,β0 (Ω) := C0,β(Ω) ∩ C0(Ω) and C0,β0 (Ω̄) := C0,β(Ω) ∩ C0(Ω̄).
It has already been shown in Proposition 10.30 that C0(Ω) and C0(Ω̄) are closed

subspaces of BC(Ω) and BC(Ω̄) respectively. The next proposition describes the
relation between C0(Ω) and C0(Ω̄).

Proposition 24.6. Each u ∈ C0(Ω) has a unique extension to a continuous func-
tion on Ω̄ given by ū = u on Ω and ū = 0 on ∂Ω and the extension ū is in C0(Ω̄).
Conversely if u ∈ C0(Ω̄) and u|∂Ω = 0, then u|Ω ∈ C0(Ω). In this way we may
identify C0(Ω) with those u ∈ C0(Ω̄) such that u|∂Ω = 0.
Proof. Any extension u ∈ C0(Ω) to an element ū ∈ C(Ω̄) is necessarily unique,

since Ω is dense inside Ω̄. So define ū = u on Ω and ū = 0 on ∂Ω. We must show ū
is continuous on Ω̄ and ū ∈ C0(Ω̄).
For the continuity assertion it is enough to show ū is continuous at all points

in ∂Ω. For any � > 0, by assumption, the set K� := {x ∈ Ω : |u(x)| ≥ �} is a
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compact subset of Ω. Since ∂Ω = Ω̄ \ Ω, ∂Ω ∩K� = ∅ and therefore the distance,
δ := d(K�, ∂Ω), between K� and ∂Ω is positive. So if x ∈ ∂Ω and y ∈ Ω̄ and
|y − x| < δ, then |ū(x)− ū(y)| = |u(y)| < � which shows ū : Ω̄ → C is continuous.
This also shows {|ū| ≥ �} = {|u| ≥ �} = K� is compact in Ω and hence also in Ω̄.
Since � > 0 was arbitrary, this shows ū ∈ C0(Ω̄).
Conversely if u ∈ C0(Ω̄) such that u|∂Ω = 0 and � > 0, then K� :=©

x ∈ Ω̄ : |u(x)| ≥ �
ª
is a compact subset of Ω̄ which is contained in Ω since

∂Ω ∩K� = ∅. Therefore K� is a compact subset of Ω showing u|Ω ∈ C0(Ω̄).

Definition 24.7. Let Ω be an open subset of Rd, k ∈ N∪ {0} and β ∈ (0, 1]. Let
BCk(Ω) (BCk(Ω̄)) denote the set of k — times continuously differentiable functions
u on Ω such that ∂αu ∈ BC(Ω) (∂αu ∈ BC(Ω̄))42 for all |α| ≤ k. Similarly, let
BCk,β(Ω) denote those u ∈ BCk(Ω) such that [∂αu]β < ∞ for all |α| = k. For
u ∈ BCk(Ω) let

kukCk(Ω) =
X
|α|≤k

k∂αuku and

kukCk,β(Ω) =
X
|α|≤k

k∂αuku +
X
|α|=k

[∂αu]β .

Theorem 24.8. The spaces BCk(Ω) and BCk,β(Ω) equipped with k · kCk(Ω) and
k · kCk,β(Ω) respectively are Banach spaces and BCk(Ω̄) is a closed subspace of
BCk(Ω) and BCk,β(Ω) ⊂ BCk(Ω̄). Also

Ck,β
0 (Ω) = Ck,β

0 (Ω̄) = {u ∈ BCk,β(Ω) : ∂αu ∈ C0(Ω) ∀ |α| ≤ k}
is a closed subspace of BCk,β(Ω).

Proof. Suppose that {un}∞n=1 ⊂ BCk(Ω) is a Cauchy sequence, then {∂αun}∞n=1
is a Cauchy sequence in BC(Ω) for |α| ≤ k. Since BC(Ω) is complete, there exists
gα ∈ BC(Ω) such that limn→∞ k∂αun − gαku = 0 for all |α| ≤ k. Letting u := g0,
we must show u ∈ Ck(Ω) and ∂αu = gα for all |α| ≤ k. This will be done by
induction on |α| . If |α| = 0 there is nothing to prove. Suppose that we have
verified u ∈ Cl(Ω) and ∂αu = gα for all |α| ≤ l for some l < k. Then for x ∈ Ω,
i ∈ {1, 2, . . . , d} and t ∈ R sufficiently small,

∂aun(x+ tei) = ∂aun(x) +

Z t

0

∂i∂
aun(x+ τei)dτ.

Letting n→∞ in this equation gives

∂au(x+ tei) = ∂au(x) +

Z t

0

gα+ei(x+ τei)dτ

from which it follows that ∂i∂αu(x) exists for all x ∈ Ω and ∂i∂
αu = gα+ei . This

completes the induction argument and also the proof that BCk(Ω) is complete.
It is easy to check that BCk(Ω̄) is a closed subspace of BCk(Ω) and by using

Exercise 24.1 and Theorem 24.4 that that BCk,β(Ω) is a subspace of BCk(Ω̄). The
fact that Ck,β

0 (Ω) is a closed subspace of BCk,β(Ω) is a consequence of Proposition
10.30.

42To say ∂αu ∈ BC(Ω̄) means that ∂αu ∈ BC(Ω) and ∂αu extends to a continuous function
on Ω̄.
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To prove BCk,β(Ω) is complete, let {un}∞n=1 ⊂ BCk,β(Ω) be a k · kCk,β(Ω) —
Cauchy sequence. By the completeness of BCk(Ω) just proved, there exists u ∈
BCk(Ω) such that limn→∞ ku−unkCk(Ω) = 0. An application of Theorem 24.4 then
shows limn→∞ k∂αun − ∂αukC0,β(Ω) = 0 for |α| = k and therefore limn→∞ ku −
unkCk,β(Ω) = 0.

The reader is asked to supply the proof of the following lemma.

Lemma 24.9. The following inclusions hold. For any β ∈ [0, 1]
BCk+1,0(Ω) ⊂ BCk,1(Ω) ⊂ BCk,β(Ω)

BCk+1,0(Ω̄) ⊂ BCk,1(Ω̄) ⊂ BCk,β(Ω).

Definition 24.10. Let A : X → Y be a bounded operator between two (sep-
arable) Banach spaces. Then A is compact if A [BX(0, 1)] is precompact in Y
or equivalently for any {xn}∞n=1 ⊂ X such that kxnk ≤ 1 for all n the sequence
yn := Axn ∈ Y has a convergent subsequence.

Example 24.11. Let X = c2 = Y and λn ∈ C such that limn→∞ λn = 0, then
A : X → Y defined by (Ax)(n) = λnx(n) is compact.

Proof. Suppose {xj}∞j=1 ⊂ c2 such that kxjk2 =
P |xj(n)|2 ≤ 1 for all j. By

Cantor’s Diagonalization argument, there exists {jk} ⊆ {j} such that, for each n,
x̃k(n) = xjk(n) converges to some x̃(n) ∈ C as k →∞. Since for any M <∞,

MX
n=1

|x̃(n)|2 = lim
k→∞

MX
n=1

|x̃k(n)|2 ≤ 1

we may conclude that
∞P
n=1

|x̃(n)|2 ≤ 1, i.e. x̃ ∈ c2.

Let yk := Ax̃k and y := Ax̃. We will finish the verification of this example by
showing yk → y in c2 as k →∞. Indeed if λ∗M = max

n≥M
|λn|, then

kAx̃k −Ax̃k2 =
∞X
n=1

|λn|2 |x̃k(n)− x̃(n)|2

=
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2
∞X

M+1

|x̃k(n)− x̃(n)|2

≤
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2 kx̃k − x̃k2

≤
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + 4|λ∗M |2.

Passing to the limit in this inequality then implies

lim sup
k→∞

kAx̃k −Ax̃k2 ≤ 4|λ∗M |2 → 0 as M →∞.

Lemma 24.12. If X A−→ Y
B−→ Z are continuous operators such the either A or

B is compact then the composition BA : X → Z is also compact.
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Proof. If A is compact and B is bounded, then BA(BX(0, 1)) ⊂ B(ABX(0, 1))
which is compact since the image of compact sets under continuous maps are com-
pact. Hence we conclude that BA(BX(0, 1)) is compact, being the closed subset of
the compact set B(ABX(0, 1)).
If A is continuos and B is compact, then A(BX(0, 1)) is a bounded set and so

by the compactness of B, BA(BX(0, 1)) is a precompact subset of Z, i.e. BA is
compact.

Proposition 24.13. Let Ω ⊂o Rd such that Ω̄ is compact and 0 ≤ α < β ≤ 1.
Then the inclusion map i : Cβ(Ω) /→ Cα(Ω) is compact.

Let {un}∞n=1 ⊂ Cβ(Ω) such that kunkCβ ≤ 1, i.e. kunk∞ ≤ 1 and
|un(x)− un(y)| ≤ |x− y|β for all x, y ∈ Ω.

By Arzela-Ascoli, there exists a subsequence of {ũn}∞n=1 of {un}∞n=1 and u ∈ Co(Ω̄)
such that ũn → u in C0. Since

|u(x)− u(y)| = lim
n→∞ |ũn(x)− ũn(y)| ≤ |x− y|β,

u ∈ Cβ as well. Define gn := u− ũn ∈ Cβ , then kgnkCβ ≤ 2 and gn → 0 in C0. To
finish the proof we must show that gn → 0 in Cα. Given δ > 0,

sup
x6=y

|gn(x)− gn(y)|
|x− y|α ≤: An +Bn

where

+

An := sup
x 6= y

|x− y| ≤ δ

|gn(x)− gn(y)|
|x− y|α

≤ 1
δ
sup
x6=y

|gn(x)− gn(y)| ≤ 2
δ
kgnk∞ → 0 as n→∞

and

Bn := sup
x 6= y

|x− y| > δ

|gn(x)− gn(y)|
|x− y|α

≤ sup
x 6= y

|x− y| ≤ δ

|x− y|β
|x− y|α = sup

x 6= y
|x− y| ≤ δ

|x− y|β−α ≤ δβ−α.

Therefore,

lim sup
n→∞

[gn]α ≤ lim sup
n→∞

An + lim sup
n→∞

Bn ≤ 0 + δβ−α → 0 as δ ↓ 0.

This proposition generalizes to the following theorem which the reader is asked to
prove in Exercise 24.2 below.

Theorem 24.14. Let Ω be a precompact open subset of Rd, α, β ∈ [0, 1] and k, j ∈
N0. If j + β > k + α, then Cj,β

¡
Ω̄
¢
is compactly contained in Ck,α

¡
Ω̄
¢
.
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24.1. Exercises.

Exercise 24.1. Prove Lemma 24.3.

Exercise 24.2. Prove Theorem 24.14. Hint: First prove Cj,β
¡
Ω̄
¢
@@ Cj,α

¡
Ω̄
¢
is

compact if 0 ≤ α < β ≤ 1. Then use Lemma 24.12 repeatedly to handle all of the
other cases.
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25. Sobolev Inequalities

25.1. Gagliardo-Nirenberg-Sobolev Inequality. In this section our goal is to
prove an inequality of the form:

(25.1) kukLq ≤ Ck∇ukLp(Rd) for u ∈ C1c (Rd).

For λ > 0, let uλ(x) = u(λx). Then

kuλkqLq =
Z
|u(λx)|qdx =

Z
|u(y)|q dy

λd

and hence kuλkLq = λ−d/qkukLq . Moreover, ∇uλ(x) = λ(∇u)(λx) and thus
k∇uλkLp = λk(∇u)λkLp = λλ−d/pk∇ukLp .

If (25.1) is to hold for all u ∈ C1c (Rd) then we must have

λ−d/qkukLq = kuλkLq ≤ Ck∇uλkLp(Rd) = Cλ1−d/pk∇ukLp for all λ > 0

which only possible if 1 − d/p + d/q = 0, i.e. 1/p = 1/d + 1/q. Let us denote the
solution, q, to this equation by p∗ so p∗ := dp

d−p .

Theorem 25.1. Let p = 1 so 1∗ = d
d−1 , then

(25.2) kuk1∗ = kuk d
d−1
≤ d−

1
2 k∇uk1 for all u ∈ C1c (Rd).

Proof. To help the reader understand the proof, let us give the proof for d = 1,
d = 2 and d = 3 first and with the constant d−1/2 being replaced by 1. After that
the general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (25.3) below.)
(d = 1, p∗ =∞) By the fundamental theorem of calculus,

|u(x)| =
¯̄̄̄Z x

−∞
u0(y)dy

¯̄̄̄
≤
Z x

−∞
|u0(y)| dy ≤

Z
R
|u0(x)| dx.

Therefore kukL∞ ≤ ku0kL1 , proving the d = 1 case.
(d = 2, p∗ = 2) Applying the same argument as above to y1 → u(y1, x2) and

y2 → u(x1, y2),,

|u(x1, x2)| ≤
Z ∞
−∞

|∂1u(y1, x2)| dy1 ≤
Z ∞
−∞

|∇u(y1, x2)| dy1 and

|u(x1, x2)| ≤
Z ∞
−∞

|∂2u(x1, y2)| dy2 ≤
Z ∞
−∞

|∇u(x1, y2)| dy2

and therefore

|u(x1, x2)|2 ≤
Z ∞
−∞

|∂1u(y1, x2)|dy1 ·
Z ∞
−∞

|∂2u(x1, y2)| dy2.

Integrating this equation relative to x1 and x2 gives

kuk2L2 =
Z
R2
|u(x)|2dx ≤

µZ ∞
−∞

|∂1u(x)| dx
¶µZ ∞

−∞
|∂2u(x)| dx

¶
≤
µZ ∞
−∞

|∇u(x)| dx
¶2

which proves the d = 2 case.
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(d = 3, p∗ = 3/2) Let x1 = (y1, x2, x3), x2 = (x1, y2, x3), and x3 = (x1, x2, y3) if
i = 3, then as above,

|u(x)| ≤
Z ∞
−∞

|∂iu(xi)|dyi for i = 1, 2, 3

and hence

|u(x)| 32 ≤
3Y

i=1

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

2

.

Integrating this equation on x1 gives,Z
R
|u(x)| 32 dx1 ≤

µZ ∞
−∞

|∂1u(x1)|dy1
¶ 1

2
Z 3Y

i=2

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

2

dx1

≤
µZ ∞
−∞

|∂1u(x)|dx1
¶ 1

2
3Y

i=2

µZ ∞
−∞

|∂iu(xi)|dx1dyi
¶ 1

2

wherein the second equality we have used the Hölder’s inequality with p = q = 2.
Integrating this result on x2 and using Hölder’s inequality givesZ
R2
|u(x)| 32 dx1dx2 ≤

µZ
R2
|∂2u(x)|dx1dx2

¶ 1
2
Z
R
dx2

µZ ∞
−∞

|∂1u(x)|dx1
¶ 1

2
µZ

R2
|∂3u(x3)|dx1dy3

¶ 1
2

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
2
µZ

R2
|∂1u(x)|dx1dx2

¶ 1
2
µZ

R3
|∂3u(x)|dx

¶ 1
2

.

One more integration of x3 and application of Hölder’s inequality, impliesZ
R3
|u(x)| 32 dx ≤

3Y
i=1

µZ
R3
|∂iu(x)|dx

¶ 1
2

≤
µZ

R3
|∇u(x)|dx

¶ 3
2

proving the d = 3 case.
For general d (p∗ = d

d−1), as above let x
i = (x1, . . . , yi, . . . , xd). Then

|u(x)| ≤
µZ ∞
−∞

|∂iu(xi)|dyi
¶

and

(25.3) |u(x)| d
d−1 ≤

dY
i=1

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

d−1
.

Integrating this equation relative to x1 and making use of Hölder’s inequality in
the form

(25.4)

°°°°°°
d−1Y
j=1

fj

°°°°°°
1

≤
d−1Y
j=1

kfjkd−1



ANALYSIS TOOLS WITH APPLICATIONS 463

(see Corollary 9.3) we findZ
R
|u(x)| d

d−1 dx1 ≤
µZ

R
∂1u(x)dx1

¶ 1
d−1 Z

R
dx1

dY
i=2

µZ
R
|∂iu(xi)|dyi

¶ 1
d−1

≤
µZ

R
∂1u(x)dx1

¶ 1
d−1 dY

i=2

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

=

µZ
R
∂1u(x)dx1

¶ 1
d−1

µZ
R2
|∂2u(x)|dx1dx2

¶ 1
d−1 dY

i=3

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

.

Integrating this equation on x2 and using Eq. (25.4) once again implies,Z
R2
|u(x)| d

d−1 dx1dx2 ≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
d−1 Z

R
dx2

µZ
R
∂1u(x)dx1

¶ 1
d−1

×
dY
i=3

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
d−1

µZ
R2
|∂1u(x)|dx1dx2

¶ 1
d−1

×
dY
i=3

µZ
R3
|∂iu(xi)|dx1dx2dyi

¶ 1
d−1

.

Continuing this way inductively, one showsZ
Rk
|u(x)| d

d−1 dx1dx2 . . . dxk ≤
kY
i=1

µZ
Rk
|∂iu(x)|dx1dx2 . . . dxk

¶ 1
d−1

×
dY

i=k+1

µZ
R3
|∂iu(xi)|dx1dx2 . . . dxkdyk+1

¶ 1
d−1

and in particular when k = d,Z
Rd
|u(x)| d

d−1 dx ≤
dY
i=1

µZ
Rd
|∂iu(x)|dx1dx2 . . . dxd

¶ 1
d−1

(25.5)

≤
dY
i=1

µZ
Rd
|∇u(x)|dx

¶ 1
d−1

=

µZ
Rd
|∇u(x)|dx

¶ d
d−1

.

We can improve on this estimate by using Young’s inequality (see Exercise 25.1) in

the form
dQ
i=1

ai ≤ 1
d

Pd
i=1 a

d
i . Indeed by Eq. (25.5) and Young’s inequality,

kuk d
d−1
≤

dY
i=1

µZ
Rd
|∂iu(x)|dx

¶ 1
d

≤ 1
d

dX
i=1

µZ
Rd
|∂iu(x)|dx

¶

=
1

d

Z
Rd

dX
i=1

|∂iu(x)|dx ≤ 1
d

Z
Rd

√
d |∇u(x)| dx
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wherein the last inequality we have used Hölder’s inequality for sums,

dX
i=1

|ai| ≤
Ã

dX
i=1

1

!1/2Ã dX
i=1

|ai|2
!1/2

=
√
d |a| .

The next theorem generalizes Theorem 25.1 to an inequality of the form in Eq.
(25.1).

Notation 25.2. For p ∈ [1, d), let p∗ := pd
d−p so that 1/p

∗+1/d = 1/p. In particular
1∗ = d

d−1 .

Theorem 25.3. If p ∈ [1, d) then

(25.6) kukLp∗ ≤ d−1/2
p(d− 1)
d− p

k∇ukLp for all u ∈ C1c (Rd).

Proof. Let u ∈ C1c (Rd) and s > 1, then |u|s ∈ C1c (Rd) and ∇ |u|s =
s|u|s−1sgn(u)∇u. Applying Eq. (25.2) with u replaced by |u|s and then using
Holder’s inequality gives

(25.7) k|u|sk d
d−1
≤ d−

1
2 k∇ |u|sk1 = sd−

1
2 k|u|s−1∇ukL1 ≤ s√

d
k∇ukLp ·k|u|s−1kLq

where q = p
p−1 . Let us now choose s so that

s1∗ = s
d

d− 1 = (s− 1)q = (s− 1)
p

p− 1 =: p
∗,

i.e.

s =
q

q − 1∗ =
p

p−1
p

p−1 − d
d−1

=
p(d− 1)

p(d− 1)− d(p− 1) =
p(d− 1)
d− p

and p∗ = p(d−1)
d−p

d
d−1 =

pd
d−p . Using this s in Eq. (25.7) gives

kukp
∗ d−1

d
p∗ ≤ d−1/2

p(d− 1)
d− p

k∇ukLp · kukp
∗/q
p∗ .

This proves Eq. (25.6) since

p∗
d− 1
d
− p∗/q = p∗

µ
s

p∗
− s− 1

p∗

¶
= 1.

Corollary 25.4. The estimate kukLp∗ ≤ p(d−1)√
d(d−p) k∇ukLp holds for all u ∈

W 1,p(Rd).

Corollary 25.5. Suppose U ⊆ Rd is bounded with C1-boundary, then for all 1 ≤
p < d and 1 ≤ q ≤ p∗ there exists C = C(U) such that kukLq(U) ≤ CkukW 1,p(U).

Proof. Let u ∈ C1(U) ∩W 1,p(U) and Eu denote an extension operator. Then

kukLp∗ (u) ≤ kEukLp∗ (Rd) ≤ Ck∇(Eu)kLp(Rd) ≤ CkukW1,p(u).

Therefore

(25.8) kukLp∗ (U) ≤ CkukW1,p(U)
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Since C1(U) is dense in W 1,p(U), Eq. (25.8) holds for all u ∈W 1,p(U). Finally for
all 1 ≤ q < p∗,

kukLq ≤ kukLP∗ · k1kLr = kukLp∗ (λ(U))
I
r

where 1
r +

1
p∗ =

1
q .

Corollary 25.6. Suppose n > 2 then

kuk2+4/d2 ≤ Cdk∇uk22 kuk4/d1

for all u ∈ C1c .

Proof. Recall kuk2∗ ≤ Ck∇uk2 where 2∗ = 2d
d−2 . Now

kuk2 ≤ kukθp kuk1−θq

where θ
p +

1−θ
q = 1

2 . Taking p = 2∗ and q = 1 implies θ
2∗ + 1 − θ = 1

2 , i.e.
θ
¡
1
2∗ − 1

¢
= − 12 and hence

θ =
1
2

1− 1
2∗
=

2∗

2(2∗ − 1) =
d

(d− 2) ·
1

2d
d−2 − 1

=
d

d− 2
d− 2
d+ 2

=
d

d+ 2
and

1− θ =
2

d+ 2
.

Hence
kuk2 ≤ kuk

d
d+2

2∗ kuk
2

d+2

1 ≤ C
d

d+2 k∇uk d
d=2
2 kuk

2
d+2

1

and therefore
kuk

d+2
d

2 ≤ Ck∇uk2 kuk
2
d
1 .

and squaring this equation then gives

kuk2+4/d2 ≤ C2k∇uk22 kuk
4
d
1 .

25.2. Morrey’s Inequality.

Notation 25.7. Let Sd−1 be the sphere of radius one centered at zero inside Rd.
For Γ ⊂ Sd−1, x ∈ Rd, and r ∈ (0,∞), let

Γx,r ≡ {x+ sω : ω ∈ Γ 3 0 ≤ s ≤ r}.
So Γx,r = x+ Γ0,r where Γ0,r is a cone based on Γ.

Notation 25.8. If Γ ⊂ Sd−1 is a measurable set let |Γ| = σ(Γ) be the surface
“area” of Γ. If Ω ⊂ Rd is a measurable set, letZ

Ω

f(x)dx =
1

m(Ω)

Z
Ω

f(x)dx.

By Theorem 8.35,

(25.9)
Z
Γx,r

f(y)dy =

Z
Γ0,r

f(x+ y)dy =

Z r

0

dt td−1
Z
Γ

f(x+ tω) dσ(ω)

and letting f = 1 in this equation implies

(25.10) m(Γx,r) = |Γ| rd/d.
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Lemma 25.9. Let Γ ⊂ Sd−1 be a measurable set. For u ∈ C1(Γx,r),

(25.11)
Z
Γx,r

|u(y)− u(x)|dy ≤ 1

|Γ|
Z
Γx,r

|∇u(y)|
|x− y|d−1 dy.

Proof. Write y = x + sω with ω ∈ Sd−1, then by the fundamental theorem of
calculus,

u(x+ sω)− u(x) =

Z s

0

∇u(x+ tω) · ω dt

and therefore,Z
Γ

|u(x+ sω)− u(x)|dσ(ω) ≤
Z s

0

Z
Γ

|∇u(x+ tω)|dσ(ω)dt

=

Z s

0

td−1dt
Z
Γ

|∇u(x+ tω)|
|x+ tω − x|d−1

dσ(ω)

=

Z
Γx,s

|∇u(y)|
|y − x|d−1 dy ≤

Z
Γx,r

|∇u(y)|
|x− y|d−1 dy,

wherein the second equality we have used Eq. (25.9). Multiplying this inequality
by sd−1 and integrating on s ∈ [0, r] givesZ

Γx,r

|u(y)− u(x)|dy ≤ rd

d

Z
Γx,r

|∇u(y)|
|x− y|d−1 dy =

m(Γx,r)

|Γ|
Z
Γx,r

|∇u(y)|
|x− y|d−1 dy

which proves Eq. (25.11).

Corollary 25.10. For d ∈ N and p ∈ (d,∞] there is a constant C = C(p, d) <∞
such that if u ∈ C1(Rd) then for all x, y ∈ Rd,

(25.12) |u(y)− u(x)| ≤ C k∇ukLp(B(x,r)∩B(y,r)) · |x− y|(1− d
p)

where r := |x− y| .
Proof. The case p =∞ is easy and will be left to the reader. Let r := |x− y| ,

V ≡ Bx(r) ∩ By(r) and Γ,Λ ⊆ Sd−1 be chosen so that x + rΓ = ∂Bx(r) ∩ By(r)
and y + rΛ = ∂By(r) ∩Bx(r), i.e.

Γ =
1

r
(∂Bx(r) ∩By(r)− x) and Λ =

1

r
(∂By(r) ∩Bx(r)− y) = −Γ.

Also let W = Γx,r ∩ Λy,r, see Figure 46 below. By a scaling,

βd :=
|Γx,r ∩ Λy,r|
|Γx,r| =

|Γx,1 ∩ Λy,1|
|Γx,1| ∈ (0, 1)

is a constant only depending on d, i.e. we have |Γx,r| = |Λy,r| = β|W |. Integrating
the inequality

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|
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Γ

Γ

Λ

Figure 46. The geometry of two intersecting balls of radius r := |x− y| .

over z ∈W gives

|u(x)− u(y)| ≤
Z
W

|u(x)− u(z)|dz +
Z
W

|u(z)− u(y)|dz

=
β

|Γx,r|

Z
W

|u(x)− u(z)|dz +
Z
W

|u(z)− u(y)|dz


≤ β

|Γx,r|

 Z
Γx,r

|u(x)− u(z)|dz +
Z
Λy,r

|u(z)− u(y)|dz

 .

Hence by Lemma 25.9, Hölder’s inequality and translation and rotation invariance
of Lebesgue measure,

|u(x)− u(y)| ≤ β

|Γ|

 Z
Γx,r

|∇u(z)|
|x− z|d−1 dz +

Z
Λy,r

|∇u(z)|
|z − y|d−1 dz


≤ β

|Γ|
µ
k∇ukLp(Γx,r)k

1

|x− ·|d−1 kLq(Γx,r) + k∇ukLp(Λy,r)k
1

|y − ·|d−1 kLq(Λy,r)
¶

≤ 2β

|Γ| k∇ukLp(V )k
1

| · |d−1 kLq(Γ0,r)
(25.13)
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where q = p
p−1 is the conjugate exponent to p. Now

k 1

| · |d−1 k
q
Lq(Γ0,r)

=

Z r

0

dt td−1
Z
Γ

¡
td−1

¢−q
dσ(ω)

= |Γ|
Z r

0

dt
¡
td−1

¢1− p
p−1 = |Γ|

Z r

0

dt t−
d−1
p−1

and since −d−1
p−1 + 1 =

p−d
p−1 we find

(25.14) k 1

| · |d−1 kLq(Γ0,r) =
µ
p− 1
p− d

|Γ| r p−dp−1

¶1/q
=

µ
p− 1
p− d

|Γ|
¶ p−1

p

r1−
d
p .

Combining Eqs. (25.13) and (25.14) gives

|u(x)− u(y)| ≤ 2β

|Γ|1/p
µ
p− 1
p− d

¶ p−1
p

k∇ukLp(V ) · r1−
d
p .

Corollary 25.11. Suppose d < p < ∞, Γ ∈ BSd−1 , r ∈ (0,∞) and u ∈ C1(Γx,r).
Then

(25.15) |u(x)| ≤ C(|Γ|, r, d, p) kukW1,p(Γx,r) · r1−d/p
where

C(|Γ|, r, d, p) := 1

|Γ|1/p max
Ã
d−1/p

r
,

µ
p− 1
p− d

¶1−1/p!
.

Proof. For y ∈ Γx,r,
|u(x)| ≤ |u(y)|+ |u(y)− u(x)|

and hence using Eq. (25.11) and Hölder’s inequality,

|u(x)| ≤
Z
Γx,r

|u(y)|dy + 1

|Γ|
Z
Γx,r

|∇u(y)|
|x− y|d−1 dy

≤ 1

m(Γx,r)
kukLp(Γx,r) k1kLp(Γx,r) +

1

|Γ| k∇ukLp(Γx,r)k
1

|x− ·|d−1 kLq(Γx,r)
where q = p

p−1 as before. This equation combined with Eq. (25.14) and the equality,

(25.16)
1

m(Γx,r)
k1kLq(Γx,r) =

1

m(Γx,r)
m(Γx,r)

1/q =
¡|Γ| rd/d¢−1/p

shows

|u(x)| ≤ kukLp(Γx,r)
¡|Γ| rd/d¢−1/p + 1

|Γ| k∇ukLp(Γx,r)
µ
p− 1
p− d

|Γ|
¶1−1/p

r1−d/p

=
1

|Γ|1/p
"
kukLp(Γx,r)

d−1/p

r
+ k∇ukLp(Γx,r)

µ
p− 1
p− d

¶1−1/p#
r1−d/p.

≤ 1

|Γ|1/p max
Ã
d−1/p

r
,

µ
p− 1
p− d

¶1−1/p!
kukW1,p(Γx,r) · r1−d/p.
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Theorem 25.12 (Morrey’s Inequality). If d < p < ∞, u ∈ W 1,p(Rd), then there
exists a unique version u∗ of u (i.e. u∗ = u a.e.) such that u∗ is continuous.
Moreover u∗ ∈ C0,1−

p
d (Rd) and

(25.17) ku∗k
C0,1− p

d (Rd) ≤ CkukW 1,p

where C = C(p, d) is a universal constant.

Proof. First assume that u ∈ C1c (Rd) then by Corollary 25.11 kukC(Rd) ≤
CkukW 1,p(Rd) and by Corollary 25.10

|u(y)− u(x)|
|x− y|1− d

p

≤ Ck∇ukLp(Rd).

Therefore

[u]1− d
p
≤ Ck∇ukLp(Rd) ≤ CkukW1,p(Rd)

and hence

(25.18) kuk
C0,1− p

d (Rd) ≤ CkukW 1,p(Rd).

Now suppose u ∈ W 1,p(Rd), choose (using Exercise 19.8 and Theorem G.67) ud ∈
C1c (Rd) such that ud → u inW 1,p(Rd). Then by Eq. (25.18), kun−umkC0,1− p

d (Rd) →
0 as m,n → ∞ and therefore there exists u∗ ∈ C0,1−

p
d (Rd) such that un → u∗ in

C0,1−
p
d (Rd). Clearly u∗ = u a.e. and Eq. (25.17) holds.

The following example shows that L∞(Rd) 6⊆W 1,d(Rd) in general.

Example 25.13. Let u(x) = ψ(x) log log
³
1 + 1

|x|
´
where ψ ∈ C∞c (Rd) is chosen

so that ψ(x) = 1 for |x| ≤ 1. Then u /∈ L∞(Rd) while u ∈ W 1,d(Rd). Let us check
this claim. Using Theorem 8.35, one easily shows u ∈ Lp(Rd). A short computation
shows, for |x| < 1, that

∇u(x) = 1

log
³
1 + 1

|x|
´ 1

1 + 1
|x|
∇ 1

|x|

=
1

1 + 1
|x|

1

log
³
1 + 1

|x|
´ µ
− 1

|x| x̂
¶

where x̂ = x/ |x| and so again by Theorem 8.35,

Z
Rd

|∇u(x)|ddx ≥
Z
|x|<1

 1

|x|2 + |x|
1

log
³
1 + 1

|x|
´
d

dx

≥ σ(Sd−1)
Z 1

0

Ã
2

r log
¡
1 + 1

r

¢!d

rd−1dr =∞.

Corollary 25.14. The above them holds with Rd replaced by Ω ⊂o Rd such that Ω
is compact C1-manifold with boundary.

Proof. Use Extension Theory.
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25.3. Rademacher’s Theorem.

Theorem 25.15. Suppose that u ∈ W 1,p
loc (Ω) for some d < p ≤ ∞. Then u is

differentiable almost everywhere and w-∂iu = ∂iu a.e. on Ω.

Proof. We clearly may assume that p <∞. For v ∈W 1,p
loc (Ω) and x, y ∈ Ω such

that B(x, r) ∩B(y, r) ⊂ Ω where r := |x− y| , the estimate in Corollary 25.10,
gives

|v(y)− v(x)| ≤ Ck∇ukLp(B(x,r)∩B(y,r)) · |x− y|(1− d
p)

= Ck∇vkLp(B(x,r)∩B(y,r)) · r(1−
d
p ).(25.19)

Let u now denote the unique continuous version of u ∈ W 1,p
loc (Ω). The by the

Lebesgue differentiation Theorem 16.12, there exists an exceptional set E ⊂ Ω such
that m(E) = 0 and

lim
r↓0

1

m(B(x, r))

Z
B(x,r)

|∇u(y)−∇u(x)|pdy = 0 for x ∈ Ω \E.

Fix a point x ∈ Ω \E and let v(y) := u(y)− u(x)−∇u(x) · (y− x) and notice that
∇v(y) = ∇u(y)−∇u(x). Applying Eq. (25.19) to v then implies
|u(y)− u(x)−∇u(x) · (y − x)|

≤ Ck∇u(·)−∇u(x)kLp(B(x,r)∩B(y,r)) · r(1−
d
p)

≤ C

ÃZ
B(x,r)

|∇u(y)−∇u(x)|pdy
!1/p

· r(1− d
p)

= C p

q
σ (Sd−1))rd/p

Ã
1

m(B(x, r))

Z
B(x,r)

|∇u(y)−∇u(x)|pdy
!1/p

· r(1− d
p)

= C p

q
σ (Sd−1))

Ã
1

m(B(x, r))

Z
B(x,r)

|∇u(y)−∇u(x)|pdy
!1/p

· |x− y|

which shows u is differentiable at x and ∇u(x) = w-∇u(x).
Theorem 25.16 (Rademacher’s Theorem). Let u be locally Lipschitz continuous
on Ω ⊂o Rd. Then u is differentiable almost everywhere and w-∂iu = ∂iu a.e. on
Ω.

Proof. By Proposition 19.29 ∂
(w)
i u exists weakly and is in ∂iu ∈ L∞(Rd) for

i = 1, 2, . . . , d. The result now follows from Theorem 25.15.

25.4. Sobolev Embedding Theorems Summary.

Space Degree of Reguilarity
W k,p k − d/p

Ck,α = Ck+α k + α.

Summary A space embeds continuously in the other if it has a higher or equal
degree of regularity. Here are some examples:

(1) W k−c,q ⊃W k,p ⇔ k − d
p ≥ k − c− d

q i.e. c ≥ d
p − d

q or

1

q
≥ 1

p
=

c

d
.
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(2) W k,p ⊆ Cα ⇔ k −
³
d
p

´
+
≥ α

The embeddings are compact if the above inequalities are strict and in the case
of considering W k,p ⊂W 1,q we must have k > j!
Example L2([0, 1]) /→ L1([0, 1]) but this is not compact. To see this, take {ud}∞d=1

to be the Haar basis for L2. Then ud → 0 in L2 and L1, while kudk2 ≥ kudk1 ≥ 1
since |ud| = 1.

25.5. Other Theorems along these lines. Another theorem of this form is de-
rived as follows. Let ρ > 0 be fixed and g ∈ Cc ((0, 1) , [0, 1]) such that g(t) = 1 for
|t| ≤ 1/2 and set τ(t) := g(t/ρ). Then for x ∈ Rd and ω ∈ Γ we haveZ ρ

0

d

dt
[τ(t)u(x+ tω)] dt = −u(x)

and then by integration by parts repeatedly we learn that

u(x) =

Z ρ

0

∂2t [τ(t)u(x+ tω)] tdt =

Z ρ

0

∂2t [τ(t)u(x+ tω)] d
t2

2

= −
Z ρ

0

∂3t [τ(t)u(x+ tω)] d
t3

3!
= . . .

= (−1)m
Z ρ

0

∂mt [τ(t)u(x+ tω)] d
tm

m!

= (−1)m
Z ρ

0

∂mt [τ(t)u(x+ tω)]
tm−1

(m− 1)!dt.

Integrating this equatoin on ω ∈ Γ then implies

|Γ|u(x) = (−1)m
Z
γ

dω

Z ρ

0

∂mt [τ(t)u(x+ tω)]
tm−1

(m− 1)!dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d∂mt [τ(t)u(x+ tω)] td−1dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d
mX
k=0

µ
m

k

¶h
τ (m−k)(t)

¡
∂kωu

¢
(x+ tω)

i
td−1dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d
mX
k=0

µ
m

k

¶
ρk−m

h
g(m−k)(t)

¡
∂kωu

¢
(x+ tω)

i
td−1dt

=
(−1)m
(m− 1)!

mX
k=0

µ
m

k

¶
ρk−m

Z
Γx,ρ

|y − x|m−d
h
g(m−k)(|y − x|)

³
∂k[y−xu

´
(y)
i
dy

and hence

u(x) =
(−1)m

|Γ| (m− 1)!
mX
k=0

µ
m

k

¶
ρk−m

Z
Γx,ρ

|y − x|m−d
h
g(m−k)(|y − x|)

³
∂k[y−xu

´
(y)
i
dy

and hence by the Hölder’s inequality,

|u(x)| ≤ C(g)
(−1)m

|Γ| (m− 1)!
mX
k=0

µ
m

k

¶
ρk−m

"Z
Γx,ρ

|y − x|q(m−d) dy
#1/q "Z

Γx,ρ

¯̄̄³
∂k[y−xu

´
(y)
¯̄̄p
dy

#1/p
.
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From the same computation as in Eq. (23.4) we findZ
Γx,ρ

|y − x|q(m−d) dy = σ (Γ)

Z ρ

0

rq(m−d)rd−1dr = σ (Γ)
ρq(m−d)+d

q (m− d) + d

= σ (Γ)
ρ
pm−d
p−1

pm− d
(p− 1).

provided that pm− d > 0 (i.e. m > d/p) wherein we have used

q (m− d) + d =
p

p− 1 (m− d) + d =
p (m− d) + d (p− 1)

p− 1 =
pm− d

p− 1 .

This gives the estimate"Z
Γx,ρ

|y − x|q(m−d) dy
#1/q

≤
·
σ (Γ) (p− 1)

pm− d

¸ p−1
p

ρ
pm−d
p =

·
σ (Γ) (p− 1)

pm− d

¸ p−1
p

ρm−d/p.

Thus we have obtained the estimate that

|u(x)| ≤ C(g)

|Γ| (m− 1)!
·
σ (Γ) (p− 1)

pm− d

¸ p−1
p

ρm−d/p
mX
k=0

µ
m

k

¶
ρk−m

°°°∂k[y−xu°°°Lp(Γx,p) .
25.6. Exercises.

Exercise 25.1. Let ai ≥ 0 and pi ∈ [1,∞) for i = 1, 2, . . . , d satisfy
Pd

i=1 p
−1
i = 1,

then
dY
i=1

ai ≤
dX
i=1

1

pi
apii .

Hint: This may be proved by induction on d making use of Lemma 2.27 or by
using Jensen’s inequality analogously to how the d = 2 case was done in Example
9.11.
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26. Banach Spaces III: Calculus

In this section, X and Y will be Banach space and U will be an open subset of
X.

Notation 26.1 (�, O, and o notation). Let 0 ∈ U ⊂o X, and f : U −→ Y be a
function. We will write:

(1) f(x) = �(x) if limx→0 kf(x)k = 0.
(2) f(x) = O(x) if there are constants C < ∞ and r > 0 such that

kf(x)k ≤ Ckxk for all x ∈ B(0, r). This is equivalent to the condition
that lim supx→0

kf(x)k
kxk <∞, where

lim sup
x→0

kf(x)k
kxk ≡ lim

r↓0
sup{kf(x)k : 0 < kxk ≤ r}.

(3) f(x) = o(x) if f(x) = �(x)O(x), i.e. limx→0 kf(x)k/kxk = 0.
Example 26.2. Here are some examples of properties of these symbols.

(1) A function f : U ⊂o X → Y is continuous at x0 ∈ U if f(x0 + h) =
f(x0) + �(h).

(2) If f(x) = �(x) and g(x) = �(x) then f(x) + g(x) = �(x).
Now let g : Y → Z be another function where Z is another Banach

space.
(3) If f(x) = O(x) and g(y) = o(y) then g ◦ f(x) = o(x).
(4) If f(x) = �(x) and g(y) = �(y) then g ◦ f(x) = �(x).

26.1. The Differential.

Definition 26.3. A function f : U ⊂o X → Y is differentiable at x0 + h0 ∈ U
if there exists a linear transformation Λ ∈ L(X,Y ) such that

(26.1) f(x0 + h)− f(x0 + h0)− Λh = o(h).

We denote Λ by f 0(x0) orDf(x0) if it exists. As with continuity, f is differentiable
on U if f is differentiable at all points in U.

Remark 26.4. The linear transformation Λ in Definition 26.3 is necessarily unique.
Indeed if Λ1 is another linear transformation such that Eq. (26.1) holds with Λ
replaced by Λ1, then

(Λ− Λ1)h = o(h),

i.e.

lim sup
h→0

k(Λ− Λ1)hk
khk = 0.

On the other hand, by definition of the operator norm,

lim sup
h→0

k(Λ− Λ1)hk
khk = kΛ− Λ1k.

The last two equations show that Λ = Λ1.

Exercise 26.1. Show that a function f : (a, b)→ X is a differentiable at t ∈ (a, b)
in the sense of Definition 4.6 iff it is differentiable in the sense of Definition 26.3.
Also show Df(t)v = vḟ(t) for all v ∈ R.
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Example 26.5. Assume that GL(X,Y ) is non-empty. Then f : GL(X,Y ) →
GL(Y,X) defined by f(A) ≡ A−1 is differentiable and

f 0(A)B = −A−1BA−1 for all B ∈ L(X,Y ).

Indeed (by Eq. (3.13)),

f(A+H)− f(A) = (A+H)−1 −A−1 = (A
¡
I +A−1H

¢
)−1 −A−1

=
¡
I +A−1H

¢
)−1A−1 −A−1 =

∞X
n=0

(−A−1H)n ·A−1 −A−1

= −A−1HA−1 +
∞X
n=2

(−A−1H)n.

Since

k
∞X
n=2

(−A−1H)nk ≤
∞X
n=2

kA−1Hkn ≤ kA
−1k2kHk2

1− kA−1Hk ,

we find that
f(A+H)− f(A) = −A−1HA−1 + o(H).

26.2. Product and Chain Rules. The following theorem summarizes some basic
properties of the differential.

Theorem 26.6. The differential D has the following properties:

Linearity: D is linear, i.e. D(f + λg) = Df + λDg.
Product Rule: If f : U ⊂o X → Y and A : U ⊂o X → L(X,Z) are
differentiable at x0 then so is x→ (Af)(x) ≡ A(x)f(x) and

D(Af)(x0)h = (DA(x0)h)f(x0) +A(x0)Df(x0)h.

Chain Rule: If f : U ⊂o X → V ⊂o Y is differentiable at x0 ∈ U, and
g : V ⊂o Y → Z is differentiable at y0 ≡ f(ho), then g ◦ f is differentiable
at x0 and (g ◦ f)0(x0) = g0(y0)f 0(x0).

Converse Chain Rule: Suppose that f : U ⊂o X → V ⊂o Y is continuous
at x0 ∈ U, g : V ⊂o Y → Z is differentiable y0 ≡ f(ho), g

0(y0) is invertible,
and g ◦ f is differentiable at x0, then f is differentiable at x0 and

(26.2) f 0(x0) ≡ [g0(x0)]−1(g ◦ f)0(x0).
Proof. For the proof of linearity, let f, g : U ⊂o X → Y be two functions which

are differentiable at x0 ∈ U and c ∈ R, then
(f + cg)(x0 + h) = f(x0) +Df(x0)h+ o(h) + c(g(x0) +Dg(x0)h+ o(h)

= (f + cg)(x0) + (Df(x0) + cDg(x0))h+ o(h),

which implies that (f + cg) is differentiable at x0 and that

D(f + cg)(x0) = Df(x0) + cDg(x0).

For item 2, we have

A(x0 + h)f(x0 + h) = (A(x0) +DA(x0)h+ o(h))(f(x0) + f 0(x0)h+ o(h))

= A(x0)f(x0) +A(x0)f
0(x0)h+ [DA(x0)h]f(x0) + o(h),

which proves item 2.
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Similarly for item 3,

(g ◦ f)(x0 + h) = g(f(x0)) + g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g(f(x0)) + g0(f(x0))(Df(x0)x0 + o(h)) + o(f(x0 + h)− f(x0)

= g(f(x0)) + g0(f(x0))Df(x0)h+ o(h),

where in the last line we have used the fact that f(x0+h)− f(x0) = O(h) (see Eq.
(26.1)) and o(O(h)) = o(h).
Item 4. Since g is differentiable at y0 = f(x0),

g(f(x0 + h))− g(f(x0)) = g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0)).

And since g ◦ f is differentiable at x0,
(g ◦ f)(x0 + h)− g(f(x0)) = (g ◦ f)0(x0)h+ o(h).

Comparing these two equations shows that

f(x0 + h)− f(x0) = g0(f(x0))−1{(g ◦ f)0(x0)h+ o(h)− o(f(x0 + h)− f(x0))}
= g0(f(x0))−1(g ◦ f)0(x0)h+ o(h)

− g0(f(x0))−1o(f(x0 + h)− f(x0)).(26.3)

Using the continuity of f, f(x0 + h)− f(x0) is close to 0 if h is close to zero, and
hence ko(f(x0 + h)− f(x0))k ≤ 1

2kf(x0 + h)− f(x0)k for all h sufficiently close to
0. (We may replace 1

2 by any number α > 0 above.) Using this remark, we may
take the norm of both sides of equation (26.3) to find

kf(x0+ h)− f(x0)k ≤ kg0(f(x0))−1(g ◦ f)0(x0)kkhk+ o(h) +
1

2
kf(x0 + h)− f(x0)k

for h close to 0. Solving for kf(x0 + h)− f(x0)k in this last equation shows that
(26.4) f(x0 + h)− f(x0) = O(h).

(This is an improvement, since the continuity of f only guaranteed that f(x0+h)−
f(x0) = �(h).) Because of Eq. (25.4), we now know that o(f(x0+h)−f(x0)) = o(h),
which combined with Eq. (26.3) shows that

f(x0 + h)− f(x0) = g0(f(x0))−1(g ◦ f)0(x0)h+ o(h),

i.e. f is differentiable at x0 and f 0(x0) = g0(f(x0))−1(g ◦ f)0(x0).
Corollary 26.7. Suppose that σ : (a, b) → U ⊂o X is differentiable at t ∈ (a, b)
and f : U ⊂o X → Y is differentiable at σ(t) ∈ U. Then f ◦ σ is differentiable at t
and

d(f ◦ σ)(t)/dt = f 0(σ(t))σ̇(t).

Example 26.8. Let us continue on with Example 26.5 but now let X = Y to
simplify the notation. So f : GL(X)→ GL(X) is the map f(A) = A−1 and

f 0(A) = −LA−1RA−1 , i.e. f
0 = −LfRf .

where LAB = AB and RAB = AB for all A,B ∈ L(X). As the reader may easily
check, the maps

A ∈ L(X)→ LA, RA ∈ L(L(X))

are linear and bounded. So by the chain and the product rule we find f 00(A) exists
for all A ∈ L(X) and

f 00(A)B = −Lf 0(A)BRf − LfRf 0(A)B.
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More explicitly

(26.5) [f 00(A)B]C = A−1BA−1CA−1 +A−1CA−1BA−1.

Working inductively one shows f : GL(X) → GL(X) defined by f(A) ≡ A−1 is
C∞.

26.3. Partial Derivatives.

Definition 26.9 (Partial or Directional Derivative). Let f : U ⊂o X → Y be a
function, x0 ∈ U, and v ∈ X.We say that f is differentiable at x0 in the direction v
iff d

dt |0(f(x0+ tv)) =: (∂vf)(x0) exists. We call (∂vf)(x0) the directional or partial
derivative of f at x0 in the direction v.

Notice that if f is differentiable at x0, then ∂vf(x0) exists and is equal to f 0(x0)v,
see Corollary 26.7.

Proposition 26.10. Let f : U ⊂o X → Y be a continuous function and D ⊂ X be
a dense subspace of X. Assume ∂vf(x) exists for all x ∈ U and v ∈ D, and there
exists a continuous function A : U → L(X,Y ) such that ∂vf(x) = A(x)v for all
v ∈ D and x ∈ U ∩D. Then f ∈ C1(U, Y ) and Df = A.

Proof. Let x0 ∈ U, � > 0 such that B(x0, 2�) ⊂ U and M ≡ sup{kA(x)k : x ∈
B(x0, 2�)} < ∞43. For x ∈ B(x0, �) ∩D and v ∈ D ∩ B(0, �), by the fundamental
theorem of calculus,
(26.6)

f(x+ v)− f(x) =

Z 1

0

df(x+ tv)

dt
dt =

Z 1

0

(∂vf)(x+ tv) dt =

Z 1

0

A(x+ tv) v dt.

For general x ∈ B(x0, �) and v ∈ B(0, �), choose xn ∈ B(x0, �) ∩ D and vn ∈
D ∩B(0, �) such that xn → x and vn → v. Then

(26.7) f(xn + vn)− f(xn) =

Z 1

0

A(xn + tvn) vn dt

holds for all n. The left side of this last equation tends to f(x + v) − f(x) by the
continuity of f. For the right side of Eq. (26.7) we have

k
Z 1

0

A(x+ tv) v dt−
Z 1

0

A(xn + tvn) vn dtk ≤
Z 1

0

kA(x+ tv)−A(xn + tvn) kkvk dt
+Mkv − vnk.

It now follows by the continuity of A, the fact that kA(x+ tv)−A(xn+ tvn) k ≤M,
and the dominated convergence theorem that right side of Eq. (26.7) converges toR 1
0
A(x+ tv) v dt. Hence Eq. (26.6) is valid for all x ∈ B(x0, �) and v ∈ B(0, �). We

also see that

(26.8) f(x+ v)− f(x)−A(x)v = �(v)v,

43It should be noted well, unlike in finite dimensions closed and bounded sets need not be
compact, so it is not sufficient to choose � sufficiently small so that B(x0, 2�) ⊂ U. Here is a
counter example. Let X ≡ H be a Hilbert space, {en}∞n=1 be an orthonormal set. Define
f(x) ≡ P∞

n=1 nφ(kx − enk), where φ is any continuous function on R such that φ(0) = 1 and φ

is supported in (−1, 1). Notice that ken − emk2 = 2 for all m 6= n, so that ken − emk =
√
2.

Using this fact it is rather easy to check that for any x0 ∈ H, there is an � > 0 such that for all
x ∈ B(x0, �), only one term in the sum defining f is non-zero. Hence, f is continuous. However,
f(en) = n→∞ as n→∞.
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where �(v) ≡ R 1
0
[A(x+ tv) −A(x)] dt. Now

k�(v)k ≤
Z 1

0

kA(x+ tv) −A(x)k dt ≤ max
t∈[0,1]

kA(x+ tv) −A(x)k → 0 as v → 0,

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x).

26.4. Smooth Dependence of ODE’s on Initial Conditions . In this subsec-
tion, let X be a Banach space, U ⊂o X and J be an open interval with 0 ∈ J.

Lemma 26.11. If Z ∈ C(J×U,X) such that DxZ(t, x) exists for all (t, x) ∈ J×U
and DxZ(t, x) ∈ C(J × U,X) then Z is locally Lipschitz in x, see Definition 5.12.

Proof. Suppose I @@ J and x ∈ U. By the continuity of DZ, for every t ∈ I
there an open neighborhood Nt of t ∈ I and �t > 0 such that B(x, �t) ⊂ U and

sup {kDxZ(t
0, x0)k : (t0, x0) ∈ Nt ×B(x, �t)} <∞.

By the compactness of I, there exists a finite subset Λ ⊂ I such that I ⊂ ∪t∈INt.
Let �(x, I) := min {�t : t ∈ Λ} and

K(x, I) ≡ sup {kDZ(t, x0)k(t, x0) ∈ I ×B(x, �(x, I))} <∞.

Then by the fundamental theorem of calculus and the triangle inequality,

kZ(t, x1)−Z(t, x0)k ≤
µZ 1

0

kDxZ(t, x0 + s(x1 − x0)k ds
¶
kx1−x0k ≤ K(x, I)kx1−x0k

for all x0, x1 ∈ B(x, �(x, I)) and t ∈ I.

Theorem 26.12 (Smooth Dependence of ODE’s on Initial Conditions). Let X be
a Banach space, U ⊂o X, Z ∈ C(R × U,X) such that DxZ ∈ C(R × U,X) and
φ : D(Z) ⊂ R × X → X denote the maximal solution operator to the ordinary
differential equation

(26.9) ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U,

see Notation 5.15 and Theorem 5.21. Then φ ∈ C1(D(Z), U), ∂tDxφ(t, x) exists
and is continuous for (t, x) ∈ D(Z) and Dxφ(t, x) satisfies the linear differential
equation,

(26.10)
d

dt
Dxφ(t, x) = [(DxZ) (t, φ(t, x))]Dxφ(t, x) with Dxφ(0, x) = IX

for t ∈ Jx.

Proof. Let x0 ∈ U and J be an open interval such that 0 ∈ J ⊂ J̄ @@ Jx0 ,
y0 := y(·, x0)|J and

O� := {y ∈ BC(J, U) : ky − y0k∞ < �} ⊂o BC(J,X).
By Lemma 26.11, Z is locally Lipschitz and therefore Theorem 5.21 is applicable.
By Eq. (5.30) of Theorem 5.21, there exists � > 0 and δ > 0 such that G :
B(x0, δ) → O� defined by G(x) ≡ φ(·, x)|J is continuous. By Lemma 26.13 below,
for � > 0 sufficiently small the function F : O� → BC(J,X) defined by

(26.11) F (y) ≡ y −
Z ·

0

Z(t, y(t))dt.
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is C1 and

(26.12) DF (y)v = v −
Z ·

0

DyZ(t, y(t))v(t)dt.

By the existence and uniqueness Theorem 5.5 for linear ordinary differential
equations, DF (y) is invertible for any y ∈ BC(J,U). By the definition of φ,
F (G(x)) = h(x) for all x ∈ B(x0, δ) where h : X → BC(J,X) is defined by
h(x)(t) = x for all t ∈ J, i.e. h(x) is the constant path at x. Since h is a bounded
linear map, h is smooth and Dh(x) = h for all x ∈ X. We may now apply the
converse to the chain rule in Theorem 26.6 to conclude G ∈ C1 (B(x0, δ),O) and
DG(x) = [DF (G(x))]−1Dh(x) or equivalently, DF (G(x))DG(x) = h which in turn
is equivalent to

Dxφ(t, x)−
Z t

0

[DZ(φ(τ, x)]Dxφ(τ, x) dτ = IX .

As usual this equation impliesDxφ(t, x) is differentiable in t, Dxφ(t, x) is continuous
in (t, x) and Dxφ(t, x) satisfies Eq. (26.10).

Lemma 26.13. Continuing the notation used in the proof of Theorem 26.12 and
further let

f(y) ≡
Z ·

0

Z(τ, y(τ)) dτ for y ∈ O�.

Then f ∈ C1(O�, Y ) and for all y ∈ O�,

f 0(y)h =
Z ·

0

DxZ(τ, y(τ))h(τ) dτ =: Λyh.

Proof. Let h ∈ Y be sufficiently small and τ ∈ J, then by fundamental theorem
of calculus,

Z(τ, y(τ) + h(τ))− Z(τ, y(τ)) =

Z 1

0

[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]dr

and therefore,

(f(y + h)− f(y)− Λyh) (t) =
Z t

0

[Z(τ, y(τ) + h(τ))− Z(τ, y(τ))−DxZ(τ, y(τ))h(τ) ] dτ

=

Z t

0

dτ

Z 1

0

dr[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]h(τ).

Therefore,

(26.13) k(f(y + h)− f(y)− Λyh)k∞ ≤ khk∞δ(h)
where

δ(h) :=

Z
J

dτ

Z 1

0

dr kDxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))k .
With the aide of Lemmas 26.11 and Lemma 5.13,

(r, τ, h) ∈ [0, 1]× J × Y → kDxZ(τ, y(τ) + rh(τ))k
is bounded for small h provided � > 0 is sufficiently small. Thus it follows from the
dominated convergence theorem that δ(h) → 0 as h → 0 and hence Eq. (26.13)
implies f 0(y) exists and is given by Λy. Similarly,

kf 0(y + h)− f 0(y)kop ≤
Z
J

kDxZ(τ, y(τ) + h(τ))−DxZ(τ, y(τ))k dτ → 0 as h→ 0
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showing f 0 is continuous.

Remark 26.14. If Z ∈ Ck(U,X), then an inductive argument shows that φ ∈
Ck(D(Z),X). For example if Z ∈ C2(U,X) then (y(t), u(t)) := (φ(t, x),Dxφ(t, x))
solves the ODE,

d

dt
(y(t), u(t)) = Z̃ ((y(t), u(t))) with (y(0), u(0)) = (x, IdX)

where Z̃ is the C1 — vector field defined by

Z̃ (x, u) = (Z(x),DxZ(x)u) .

Therefore Theorem 26.12 may be applied to this equation to deduce: D2
xφ(t, x) and

D2
xφ̇(t, x) exist and are continuous. We may now differentiate Eq. (26.10) to find

D2
xφ(t, x) satisfies the ODE,

d

dt
D2
xφ(t, x) = [

¡
∂Dxφ(t,x)DxZ

¢
(t, φ(t, x))]Dxφ(t, x) + [(DxZ) (t, φ(t, x))]D

2
xφ(t, x)

with D2
xφ(0, x) = 0.

26.5. Higher Order Derivatives. As above, let f : U ⊂o X −→ Y be a function.
If f is differentiable on U, then the differential Df of f is a function from U to
the Banach space L(X,Y ). If the function Df : U −→ L(X,Y ) is also differen-
tiable on U, then its differential D2f = D(Df) : U −→ L(X,L(X,Y )). Similarly,
D3f = D(D(Df)) : U −→ L(X,L(X,L(X,Y ))) if the differential of D(Df) ex-
ists. In general, let L1(X,Y ) ≡ L(X,Y ) and Lk(X,Y ) be defined inductively by
Lk+1(X,Y ) = L(X,Lk(X,Y )). Then (Dkf)(x) ∈ Lk(X,Y ) if it exists. It will be
convenient to identify the space Lk(X,Y ) with the Banach space defined in the
next definition.

Definition 26.15. For k ∈ {1, 2, 3, . . .}, let Mk(X,Y ) denote the set of functions
f : Xk −→ Y such that

(1) For i ∈ {1, 2, . . . , k}, v ∈ X −→ fhv1, v2, . . . , vi−1, v, vi+1, . . . , vki ∈ Y is
linear 44 for all {vi}ni=1 ⊂ X.

(2) The norm kfkMk(X,Y ) should be finite, where

kfkMk(X,Y ) ≡ sup{
kfhv1, v2, . . . , vkikY
kv1kkv2k · · · kvkk : {vi}ki=1 ⊂ X \ {0}}.

Lemma 26.16. There are linear operators jk : Lk(X,Y )→Mk(X,Y ) defined in-
ductively as follows: j1 = IdL(X,Y ) (notice that M1(X,Y ) = L1(X,Y ) = L(X,Y ))
and

(jk+1A)hv0, v1, . . . , vki = (jk(Av0))hv1, v2, . . . , vki ∀vi ∈ X.

(Notice that Av0 ∈ Lk(X,Y ).) Moreover, the maps jk are isometric isomorphisms.

Proof. To get a feeling for what jk is let us write out j2 and j3 explicitly. If A ∈
L2(X,Y ) = L(X,L(X,Y )), then (j2A)hv1, v2i = (Av1)v2 and if A ∈ L3(X,Y ) =
L(X,L(X,L(X,Y ))), (j3A)hv1, v2, v3i = ((Av1)v2)v3 for all vi ∈ X.
It is easily checked that jk is linear for all k.We will now show by induction that

jk is an isometry and in particular that jk is injective. Clearly this is true if k = 1
since j1 is the identity map. For A ∈ Lk+1(X,Y ),

44I will routinely write fhv1, v2, . . . , vki rather than f(v1, v2, . . . , vk) when the function f
depends on each of variables linearly, i.e. f is a multi-linear function.
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kjk+1AkMk+1(X,Y ) ≡ sup{
k(jk(Av0))hv1, v2, . . . , vkikY
kv0kkv1kkv2k · · · kvkk : {vi}ki=0 ⊂ X \ {0}}

≡ sup{k(jk(Av0))kMk(X,Y )

kv0k : v0 ∈ X \ {0}}

= sup{kAv0kLk(X,Y )kv0k : v0 ∈ X \ {0}}
= kAkL(X,Lk(X,Y )) ≡ kAkLk+1(X,Y ),

wherein the second to last inequality we have used the induction hypothesis. This
shows that jk+1 is an isometry provided jk is an isometry.
To finish the proof it suffices to shows that jk is surjective for all k. Again this is

true for k = 1. Suppose that jk is invertible for some k ≥ 1. Given f ∈Mk+1(X,Y )
we must produce A ∈ Lk+1(X,Y ) = L(X,Lk(X,Y )) such that jk+1A = f. If such
an equation is to hold, then for v0 ∈ X, we would have jk(Av0) = fhv0, · · · i. That
is Av0 = j−1k (fhv0, · · · i). It is easily checked that A so defined is linear, bounded,
and jk+1A = f.
From now on we will identify Lk withMk without further mention. In particular,

we will view Dkf as function on U with values in Mk(X,Y ).

Theorem 26.17 (Differentiability). Suppose k ∈ {1, 2, . . .} and D is a dense
subspace of X, f : U ⊂o X −→ Y is a function such that (∂v1∂v2 · · · ∂vlf)(x)
exists for all x ∈ D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k. Further assume
there exists continuous functions Al : U ⊂o X −→ Ml(X,Y ) such that such
that (∂v1∂v2 · · · ∂vlf)(x) = Al(x)hv1, v2, . . . , vli for all x ∈ D ∩ U, {vi}li=1 ⊂ D,
and l = 1, 2, . . . k. Then Dlf(x) exists and is equal to Al(x) for all x ∈ U and
l = 1, 2, . . . , k.

Proof. We will prove the theorem by induction on k. We have already proved
the theorem when k = 1, see Proposition 26.10. Now suppose that k > 1 and that
the statement of the theorem holds when k is replaced by k − 1. Hence we know
that Dlf(x) = Al(x) for all x ∈ U and l = 1, 2, . . . , k − 1. We are also given that
(26.14) (∂v1∂v2 · · · ∂vkf)(x) = Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D.

Now we may write (∂v2 · · ·∂vkf)(x) as (Dk−1f)(x)hv2, v3, . . . , vki so that Eq.
(26.14) may be written as
(26.15)
∂v1(D

k−1f)(x)hv2, v3, . . . , vki) = Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D.

So by the fundamental theorem of calculus, we have that
(26.16)

((Dk−1f)(x+ v1)− (Dk−1f)(x))hv2, v3, . . . , vki =
Z 1

0

Ak(x+ tv1)hv1, v2, . . . , vki dt

for all x ∈ U ∩D and {vi} ⊂ D with v1 sufficiently small. By the same argument
given in the proof of Proposition 26.10, Eq. (26.16) remains valid for all x ∈ U and
{vi} ⊂ X with v1 sufficiently small. We may write this last equation alternatively
as,

(26.17) (Dk−1f)(x+ v1)− (Dk−1f)(x) =
Z 1

0

Ak(x+ tv1)hv1, · · · i dt.
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Hence

(Dk−1f)(x+v1)−(Dk−1f)(x)−Ak(x)hv1, · · · i =
Z 1

0

[Ak(x+tv1)−Ak(x)]hv1, · · · i dt

from which we get the estimate,

(26.18) k(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)hv1, · · · ik ≤ �(v1)kv1k
where �(v1) ≡

R 1
0
kAk(x + tv1) − Ak(x)k dt. Notice by the continuity of Ak that

�(v1) −→ 0 as v1 −→ 0. Thus it follow from Eq. (26.18) that Dk−1f is differentiable
and that (Dkf)(x) = Ak(x).

Example 26.18. Let f : L∗(X,Y ) −→ L∗(Y,X) be defined by f(A) ≡ A−1. We
assume that L∗(X,Y ) is not empty. Then f is infinitely differentiable and
(26.19)
(Dkf)(A)hV1, V2, . . . , Vki = (−1)k

X
σ

{B−1Vσ(1)B−1Vσ(2)B−1 · · ·B−1Vσ(k)B−1},

where sum is over all permutations of σ of {1, 2, . . . , k}.
Let me check Eq. (26.19) in the case that k = 2. Notice that we have already

shown that (∂V1f)(B) = Df(B)V1 = −B−1V1B−1. Using the product rule we find
that

(∂V2∂V1f)(B) = B−1V2B−1V1B−1 +B−1V1B−1V2B−1 =: A2(B)hV1, V2i.
Notice that kA2(B)hV1, V2ik ≤ 2kB−1k3kV1k · kV2k, so that kA2(B)k ≤ 2kB−1k3 <
∞. Hence A2 : L∗(X,Y ) −→M2(L(X,Y ), L(Y,X)). Also

k(A2(B)−A2(C))hV1, V2ik ≤ 2kB−1V2B−1V1B−1 − C−1V2C−1V1C−1k
≤ 2kB−1V2B−1V1B−1 −B−1V2B−1V1C−1k
+ 2kB−1V2B−1V1C−1 −B−1V2C−1V1C−1k
+ 2kB−1V2C−1V1C−1 − C−1V2C−1V1C−1k

≤ 2kB−1k2kV2kkV1kkB−1 − C−1k
+ 2kB−1kkC−1kkV2kkV1kkB−1 − C−1k
+ 2kC−1k2kV2kkV1kkB−1 − C−1k.

This shows that

kA2(B)−A2(C)k ≤ 2kB−1 − C−1k{kB−1k2 + kB−1kkC−1k+ kC−1k2}.
Since B −→ B−1 is differentiable and hence continuous, it follows that A2(B) is
also continuous in B. Hence by Theorem 26.17 D2f(A) exists and is given as in Eq.
(26.19)

Example 26.19. Suppose that f : R −→ R is a C∞— function and
F (x) ≡ R 1

0
f(x(t)) dt for x ∈ X ≡ C([0, 1],R) equipped with the norm kxk ≡

maxt∈[0,1] |x(t)|. Then F : X −→ R is also infinitely differentiable and

(26.20) (DkF )(x)hv1, v2, . . . , vki =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt,

for all x ∈ X and {vi} ⊂ X.



482 BRUCE K. DRIVER†

To verify this example, notice that

(∂vF )(x) ≡ d

ds
|0F (x+ sv) =

d

ds
|0
Z 1

0

f(x(t) + sv(t)) dt

=

Z 1

0

d

ds
|0f(x(t) + sv(t)) dt =

Z 1

0

f 0(x(t))v(t) dt.

Similar computations show that

(∂v1∂v2 · · · ∂vkf)(x) =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt =: Ak(x)hv1, v2, . . . , vki.

Now for x, y ∈ X,

|Ak(x)hv1, v2, . . . , vki−Ak(y)hv1, v2, . . . , vki| ≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))| · |v1(t) · · · vk(t) |dt

≤
kY
i=1

kvik
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt,

which shows that

kAk(x)−Ak(y)k ≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt.

This last expression is easily seen to go to zero as y → x in X. Hence Ak is
continuous. Thus we may apply Theorem 26.17 to conclude that Eq. (26.20) is
valid.

26.6. Contraction Mapping Principle.

Theorem 26.20. Suppose that (X, ρ) is a complete metric space and S : X → X
is a contraction, i.e. there exists α ∈ (0, 1) such that ρ(S(x), S(y)) ≤ αρ(x, y) for
all x, y ∈ X. Then S has a unique fixed point in X, i.e. there exists a unique point
x ∈ X such that S(x) = x.

Proof. For uniqueness suppose that x and x0 are two fixed points of S, then

ρ(x, x0) = ρ(S(x), S(x0)) ≤ αρ(x, x0).

Therefore (1−α)ρ(x, x0) ≤ 0 which implies that ρ(x, x0) = 0 since 1− α > 0. Thus
x = x0.
For existence, let x0 ∈ X be any point in X and define xn ∈ X inductively by

xn+1 = S(xn) for n ≥ 0.We will show that x ≡ limn→∞ xn exists in X and because
S is continuous this will imply,

x = lim
n→∞xn+1 = lim

n→∞S(xn) = S( lim
n→∞xn) = S(x),

showing x is a fixed point of S.
So to finish the proof, because X is complete, it suffices to show {xn}∞n=1 is a

Cauchy sequence in X. An easy inductive computation shows, for n ≥ 0, that
ρ(xn+1, xn) = ρ(S(xn), S(xn−1)) ≤ αρ(xn, xn−1) ≤ · · · ≤ αnρ(x1, x0).

Another inductive argument using the triangle inequality shows, for m > n, that,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xn) ≤ · · · ≤
m−1X
k=n

ρ(xk+1, xk).
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Combining the last two inequalities gives (using again that α ∈ (0, 1)),

ρ(xm, xn) ≤
m−1X
k=n

αkρ(x1, x0) ≤ ρ(x1, x0)α
n
∞X
l=0

αl = ρ(x1, x0)
αn

1− α
.

This last equation shows that ρ(xm, xn) → 0 as m,n → ∞, i.e. {xn}∞n=0 is a
Cauchy sequence.

Corollary 26.21 (Contraction Mapping Principle II). Suppose that (X,ρ) is a
complete metric space and S : X −→ X is a continuous map such that S(n) is a
contraction for some n ∈ N. Here

S(n) ≡
n timesz }| {

S ◦ S ◦ . . . ◦ S
and we are assuming there exists α ∈ (0, 1) such that ρ(S(n)(x), S(n)(y)) ≤ αρ(x, y)
for all x, y ∈ X. Then S has a unique fixed point in X.

Proof. Let T ≡ S(n), then T : X −→ X is a contraction and hence T has a
unique fixed point x ∈ X. Since any fixed point of S is also a fixed point of T, we
see if S has a fixed point then it must be x. Now

T (S(x)) = S(n)(S(x)) = S(S(n)(x)) = S(T (x)) = S(x),

which shows that S(x) is also a fixed point of T. Since T has only one fixed point,
we must have that S(x) = x. So we have shown that x is a fixed point of S and
this fixed point is unique.

Lemma 26.22. Suppose that (X,ρ) is a complete metric space, n ∈ N, Z is a
topological space, and α ∈ (0, 1). Suppose for each z ∈ Z there is a map Sz : X → X
with the following properties:

Contraction property: ρ(S(n)z (x), S
(n)
z (y)) ≤ αρ(x, y) for all x, y ∈ X and

z ∈ Z.
Continuity in z: For each x ∈ X the map z ∈ Z → Sz(x) ∈ X is continu-
ous.

By Corollary 26.21 above, for each z ∈ Z there is a unique fixed point G(z) ∈ X
of Sz.
Conclusion: The map G : Z → X is continuous.

Proof. Let Tz ≡ S
(n)
z . If z, w ∈ Z, then

ρ(G(z), G(w)) = ρ(Tz(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + ρ(Tw(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + αρ(G(z), G(w)).

Solving this inequality for ρ(G(z), G(w)) gives

ρ(G(z), G(w)) ≤ 1

1− α
ρ(Tz(G(z)), Tw(G(z))).

Since w → Tw(G(z)) is continuous it follows from the above equation that G(w)→
G(z) as w→ z, i.e. G is continuous.
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26.7. Inverse and Implicit Function Theorems. In this section, let X be a
Banach space, U ⊂ X be an open set, and F : U → X and � : U → X be
continuous functions. Question: under what conditions on � is F (x) := x + �(x)
a homeomorphism from B0(δ) to F (B0(δ)) for some small δ > 0? Let’s start by
looking at the one dimensional case first. So for the moment assume that X = R,
U = (−1, 1), and � : U → R is C1. Then F will be one to one iff F is monotonic.
This will be the case, for example, if F 0 = 1 + �0 > 0. This in turn is guaranteed
by assuming that |�0| ≤ α < 1. (This last condition makes sense on a Banach space
whereas assuming 1 + �0 > 0 is not as easily interpreted.)

Lemma 26.23. Suppose that U = B = B(0, r) (r > 0) is a ball in X and � : B
−→ X is a C1 function such that kD�k ≤ α < ∞ on U. Then for all x, y ∈ U we
have:

(26.21) k�(x)− �(y)k ≤ αkx− yk.
Proof. By the fundamental theorem of calculus and the chain rule:

�(y)− �(x) =

Z 1

0

d

dt
�(x+ t(y − x))dt

=

Z 1

0

[D�(x+ t(y − x))](y − x)dt.

Therefore, by the triangle inequality and the assumption that kD�(x)k ≤ α on B,

k�(y)− �(x)k ≤
Z 1

0

kD�(x+ t(y − x))kdt · k(y − x)k ≤ αk(y − x)k.

Remark 26.24. It is easily checked that if � : B = B(0, r) → X is C1 and satisfies
(26.21) then kD�k ≤ α on B.

Using the above remark and the analogy to the one dimensional example, one is
lead to the following proposition.

Proposition 26.25. Suppose that U = B = B(0, r) (r > 0) is a ball in X, α ∈
(0, 1), � : U → X is continuous, F (x) ≡ x+ �(x) for x ∈ U, and � satisfies:

(26.22) k�(x)− �(y)k ≤ αkx− yk ∀x, y ∈ B.

Then F (B) is open in X and F : B → V := F (B) is a homeomorphism.

Proof. First notice from (26.22) that

kx− yk = k(F (x)− F (y))− (�(x)− �(y))k
≤ kF (x)− F (y)k+ k�(x)− �(y)k
≤ kF (x)− F (y)k+ αk(x− y)k

from which it follows that kx− yk ≤ (1− α)−1kF (x)− F (y)k. Thus F is injective
on B. Let V .

= F (B) and G = F−1 : V −→ B denote the inverse function which
exists since F is injective.
We will now show that V is open. For this let x0 ∈ B and z0 = F (x0) =

x0 + �(x0) ∈ V. We wish to show for z close to z0 that there is an x ∈ B such that
F (x) = x+ �(x) = z or equivalently x = z− �(x). Set Sz(x)

.
= z− �(x), then we are

looking for x ∈ B such that x = Sz(x), i.e. we want to find a fixed point of Sz. We
will show that such a fixed point exists by using the contraction mapping theorem.
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Step 1. Sz is contractive for all z ∈ X. In fact for x, y ∈ B,

(26.23) kSz(x)− Sz(y)k = k�(x)− �(y))k ≤ αkx− yk.
Step 2. For any δ > 0 such the C

.
= B(x0, δ) ⊂ B and z ∈ X such that

kz − z0k < (1− α)δ, we have Sz(C) ⊂ C. Indeed, let x ∈ C and compute:

kSz(x)− x0k = kSz(x)− Sz0(x0)k
= kz − �(x)− (z0 − �(x0))k
= kz − z0 − (�(x)− �(x0))k
≤ kz − z0k+ αkx− x0k
< (1− α)δ + αδ = δ.

wherein we have used z0 = F (x0) and (26.22).
Since C is a closed subset of a Banach space X, we may apply the contraction

mapping principle, Theorem 26.20 and Lemma 26.22, to Sz to show there is a
continuous function G : B(z0, (1− α)δ)→ C such that

G(z) = Sz(G(z)) = z − �(G(z)) = z − F (G(z)) +G(z),

i.e. F (G(z)) = z. This shows that B(z0, (1 − α)δ) ⊂ F (C) ⊂ F (B) = V. That is
z0 is in the interior of V. Since F−1|B(z0,(1−α)δ) is necessarily equal to G which is
continuous, we have also shown that F−1 is continuous in a neighborhood of z0.
Since z0 ∈ V was arbitrary, we have shown that V is open and that F−1 : V → U
is continuous.

Theorem 26.26 (Inverse Function Theorem). Suppose X and Y are Banach
spaces, U ⊂o X, f ∈ Ck(U → X) with k ≥ 1, x0 ∈ U and Df(x0) is invert-
ible. Then there is a ball B = B(x0, r) in U centered at x0 such that

(1) V = f(B) is open,
(2) f |B : B → V is a homeomorphism,
(3) g

.
= (f |B)−1 ∈ Ck(V,B) and

(26.24) g0(y) = [f 0(g(y))]−1 for all y ∈ V.

Proof. Define F (x) ≡ [Df(x0)]
−1f(x + x0) and �(x) ≡ x − F (x) ∈ X for

x ∈ (U − x0). Notice that 0 ∈ U − x0, DF (0) = I, and that D�(0) = I − I = 0.

Choose r > 0 such that B̃ ≡ B(0, r) ⊂ U − x0 and kD�(x)k ≤ 1
2 for x ∈ B̃. By

Lemma 26.23, � satisfies (26.23) with α = 1/2. By Proposition 26.25, F (B̃) is open
and F |B̃ : B̃ → F (B̃) is a homeomorphism. Let G ≡ F |−1

B̃
which we know to be a

continuous map from F (B̃)→ B̃.

Since kD�(x)k ≤ 1/2 for x ∈ B̃, DF (x) = I +D�(x) is invertible, see Corollary
3.70. Since H(z) .

= z is C1 and H = F ◦G on F (B̃), it follows from the converse
to the chain rule, Theorem 26.6, that G is differentiable and

DG(z) = [DF (G(z))]−1DH(z) = [DF (G(z))]−1.

Since G, DF, and the map A ∈ GL(X)→ A−1 ∈ GL(X) are all continuous maps,
(see Example 26.5) the map z ∈ F (B̃)→ DG(z) ∈ L(X) is also continuous, i.e. G
is C1.
Let B = B̃+ x0 = B(x0, r) ⊂ U. Since f(x) = [Df(x0)]F (x− x0) and Df(x0) is

invertible (hence an open mapping), V := f(B) = [Df(x0)]F (B̃) is open in X. It
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is also easily checked that f |−1B exists and is given by

(26.25) f |−1B (y) = x0 +G([Df(x0)]
−1y)

for y ∈ V = f(B). This shows that f |B : B → V is a homeomorphism and it follows
from (26.25) that g .

= (f |B)−1 ∈ C1(V,B). Eq. (26.24) now follows from the chain
rule and the fact that

f ◦ g(y) = y for all y ∈ B.

Since f 0 ∈ Ck−1(B,L(X)) and i(A) := A−1 is a smooth map by Example 26.18,
g0 = i ◦ f 0 ◦ g is C1 if k ≥ 2, i.e. g is C2 if k ≥ 2. Again using g0 = i ◦ f 0 ◦ g, we may
conclude g0 is C2 if k ≥ 3, i.e. g is C3 if k ≥ 3. Continuing bootstrapping our way
up we eventually learn g

.
= (f |B)−1 ∈ Ck(V,B) if f is Ck.

Theorem 26.27 (Implicit Function Theorem). Now suppose that X, Y, and W
are three Banach spaces, k ≥ 1, A ⊂ X × Y is an open set, (x0, y0) is a
point in A, and f : A → W is a Ck — map such f(x0, y0) = 0. Assume that
D2f(x0, y0) ≡ D(f(x0, ·))(y0) : Y → W is a bounded invertible linear transforma-
tion. Then there is an open neighborhood U0 of x0 in X such that for all connected
open neighborhoods U of x0 contained in U0, there is a unique continuous function
u : U → Y such that u(x0) = yo, (x, u(x)) ∈ A and f(x, u(x)) = 0 for all x ∈ U.
Moreover u is necessarily Ck and

(26.26) Du(x) = −D2f(x, u(x))
−1D1f(x, u(x)) for all x ∈ U.

Proof. Proof of 26.27. By replacing f by (x, y) → D2f(x0, y0)
−1f(x, y) if

necessary, we may assume with out loss of generality thatW = Y andD2f(x0, y0) =
IY . Define F : A→ X × Y by F (x, y) ≡ (x, f(x, y)) for all (x, y) ∈ A. Notice that

DF (x, y) =

·
I D1f(x, y)
0 D2f(x, y)

¸
which is invertible iff D2f(x, y) is invertible and if D2f(x, y) is invertible then

DF (x, y)−1 =
·
I −D1f(x, y)D2f(x, y)

−1

0 D2f(x, y)
−1

¸
.

Since D2f(x0, y0) = I is invertible, the implicit function theorem guarantees that
there exists a neighborhood U0 of x0 and V0 of y0 such that U0×V0 ⊂ A, F (U0×V0)
is open in X × Y, F |(U0×V0) has a Ck—inverse which we call F−1. Let π2(x, y) ≡ y

for all (x, y) ∈ X×Y and define Ck — function u0 on U0 by u0(x) ≡ π2 ◦F−1(x, 0).
Since F−1(x, 0) = (x̃, u0(x)) iff (x, 0) = F (x̃, u0(x)) = (x̃, f(x̃, u0(x))), it follows
that x = x̃ and f(x, u0(x)) = 0. Thus (x, u0(x)) = F−1(x, 0) ∈ U0 × V0 ⊂ A and
f(x, u0(x)) = 0 for all x ∈ U0. Moreover, u0 is Ck being the composition of the Ck—
functions, x→ (x, 0), F−1, and π2. So if U ⊂ U0 is a connected set containing x0,
we may define u ≡ u0|U to show the existence of the functions u as described in
the statement of the theorem. The only statement left to prove is the uniqueness
of such a function u.
Suppose that u1 : U → Y is another continuous function such that u1(x0) = y0,

and (x, u1(x)) ∈ A and f(x, u1(x)) = 0 for all x ∈ U. Let

O ≡ {x ∈ U |u(x) = u1(x)} = {x ∈ U |u0(x) = u1(x)}.
Clearly O is a (relatively) closed subset of U which is not empty since x0 ∈ O.
Because U is connected, if we show that O is also an open set we will have shown
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that O = U or equivalently that u1 = u0 on U. So suppose that x ∈ O, i.e.
u0(x) = u1(x). For x̃ near x ∈ U,

(26.27) 0 = 0− 0 = f(x̃, u0(x̃))− f(x̃, u1(x̃)) = R(x̃)(u1(x̃)− u0(x̃))

where

(26.28) R(x̃) ≡
Z 1

0

D2f((x̃, u0(x̃) + t(u1(x̃)− u0(x̃)))dt.

From Eq. (26.28) and the continuity of u0 and u1, limx̃→xR(x̃) = D2f(x, u0(x))
which is invertible45. Thus R(x̃) is invertible for all x̃ sufficiently close to x. Using
Eq. (26.27), this last remark implies that u1(x̃) = u0(x̃) for all x̃ sufficiently close
to x. Since x ∈ O was arbitrary, we have shown that O is open.

26.8. More on the Inverse Function Theorem. In this section X and Y will
denote two Banach spaces, U ⊂o X, k ≥ 1, and f ∈ Ck(U, Y ). Suppose x0 ∈ U,
h ∈ X, and f 0(x0) is invertible, then

f(x0 + h)− f(x0) = f 0(x0)h+ o(h) = f 0(x0) [h+ �(h)]

where
�(h) = f 0(x0)−1 [f(x0 + h)− f(x0)]− h = o(h).

In fact by the fundamental theorem of calculus,

�(h) =

Z 1

0

¡
f 0(x0)−1f 0(x0 + th)− I

¢
hdt

but we will not use this here.
Let h, h0 ∈ BX(0, R) and apply the fundamental theorem of calculus to t →

f(x0 + t(h0 − h)) to conclude

�(h0)− �(h) = f 0(x0)−1 [f(x0 + h0)− f(x0 + h)]− (h0 − h)

=

·Z 1

0

¡
f 0(x0)−1f 0(x0 + t(h0 − h))− I

¢
dt

¸
(h0 − h).

Taking norms of this equation gives

k�(h0)− �(h)k ≤
·Z 1

0

°°f 0(x0)−1f 0(x0 + t(h0 − h))− I
°° dt¸ kh0 − hk ≤ α kh0 − hk

where

(26.29) α := sup
x∈BX(x0,R)

°°f 0(x0)−1f 0(x)− I
°°
L(X)

.

We summarize these comments in the following lemma.

Lemma 26.28. Suppose x0 ∈ U, R > 0, f : BX(x0, R) → Y be a C1 — function
such that f 0(x0) is invertible, α is as in Eq. (26.29) and � ∈ C1

¡
BX(0, R),X

¢
is

defined by

(26.30) f(x0 + h) = f(x0) + f 0(x0) (h+ �(h)) .

Then

(26.31) k�(h0)− �(h)k ≤ α kh0 − hk for all h, h0 ∈ BX(0, R).

45Notice that DF (x, u0(x)) is invertible for all x ∈ U0 since F |U0×V0 has a C1 inverse. There-
fore D2f(x, u0(x)) is also invertible for all x ∈ U0.
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Furthermore if α < 1 (which may be achieved by shrinking R if necessary) then
f 0(x) is invertible for all x ∈ BX(x0, R) and

(26.32) sup
x∈BX(x0,R)

°°f 0(x)−1°°
L(Y,X)

≤ 1

1− α

°°f 0(x0)−1°°L(Y,X) .
Proof. It only remains to prove Eq. (26.32), so suppose now that α < 1. Then

by Proposition 3.69 f 0(x0)−1f 0(x) is invertible and°°°£f 0(x0)−1f 0(x)¤−1°°° ≤ 1

1− α
for all x ∈ BX(x0, R).

Since f 0(x) = f 0(x0)
£
f 0(x0)−1f 0(x)

¤
this implies f 0(x) is invertible and°°f 0(x)−1°° = °°°£f 0(x0)−1f 0(x)¤−1 f 0(x0)−1°°° ≤ 1

1− α

°°f 0(x0)−1°° for all x ∈ BX(x0, R).

Theorem 26.29 (Inverse Function Theorem). Suppose U ⊂o X, k ≥ 1 and f ∈
Ck(U, Y ) such that f 0(x) is invertible for all x ∈ U. Then:

(1) f : U → Y is an open mapping, in particular V := f(U) ⊂o Y.
(2) If f is injective, then f−1 : V → U is also a Ck — map and¡

f−1
¢0
(y) =

£
f 0(f−1(y))

¤−1
for all y ∈ V.

(3) If x0 ∈ U and R > 0 such that BX(x0, R) ⊂ U and

sup
x∈BX(x0,R)

°°f 0(x0)−1f 0(x)− I
°° = α < 1

(which may always be achieved by taking R sufficiently small by continuity
of f 0(x)) then f |BX(x0,R) : B

X(x0, R) → f(BX(x0, R)) is invertible and
f |−1
BX(x0,R)

: f
¡
BX(x0, R)

¢→ BX(x0, R) is Ck.

(4) Keeping the same hypothesis as in item 3. and letting y0 = f(x0) ∈ Y,

f(BX(x0, r)) ⊂ BY (y0, kf 0(x0)k (1 + α)r) for all r ≤ R

and
BY (y0, δ) ⊂ f(BX(x0, (1− α)−1

°°f 0(x0)−1°° δ))
for all δ < δ(x0) := (1− α)R/

°°f 0(x0)−1°° .
Proof. Let x0 and R > 0 be as in item 3. above and � be as defined in Eq.

(26.30) above, so that for x, x0 ∈ BX(x0, R),

f(x) = f(x0) + f 0(x0) [(x− x0) + �(x− x0)] and

f(x0) = f(x0) + f 0(x0) [(x0 − x0) + �(x0 − x0)] .

Subtracting these two equations implies

f(x0)− f(x) = f 0(x0) [x0 − x+ �(x0 − x0)− �(x− x0)]

or equivalently

x0 − x = f 0(x0)−1 [f(x0)− f(x)] + �(x− x0)− �(x0 − x0).

Taking norms of this equation and making use of Lemma 26.28 implies

kx0 − xk ≤ °°f 0(x0)−1°° kf(x0)− f(x)k+ α kx0 − xk
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which implies

(26.33) kx0 − xk ≤
°°f 0(x0)−1°°
1− α

kf(x0)− f(x)k for all x, x0 ∈ BX(x0, R).

This shows that f |BX(x0,R) is injective and that f |−1BX(x0,R)
: f

¡
BX(x0, R)

¢ →
BX(x0, R) is Lipschitz continuous because°°°f |−1BX(x0,R)

(y0)− f |−1
BX(x0,R)

(y)
°°° ≤ °°f 0(x0)−1°°

1− α
ky0 − yk for all y, y0 ∈ f

¡
BX(x0, R)

¢
.

Since x0 ∈ X was chosen arbitrarily, if we know f : U → Y is injective, we then
know that f−1 : V = f(U)→ U is necessarily continuous. The remaining assertions
of the theorem now follow from the converse to the chain rule in Theorem 26.6 and
the fact that f is an open mapping (as we shall now show) so that in particular
f
¡
BX(x0, R)

¢
is open.

Let y ∈ BY (0, δ), with δ to be determined later, we wish to solve the equation,
for x ∈ BX(0, R),

f(x0) + y = f(x0 + x) = f(x0) + f 0(x0) (x+ �(x)) .

Equivalently we are trying to find x ∈ BX(0, R) such that

x = f 0(x0)−1y − �(x) =: Sy(x).

Now using Lemma 26.28 and the fact that �(0) = 0,

kSy(x)k ≤
°°f 0(x0)−1y°°+ k�(x)k ≤ °°f 0(x0)−1°° kyk+ α kxk

≤ °°f 0(x0)−1°° δ + αR.

Therefore if we assume δ is chosen so that°°f 0(x0)−1°° δ + αR < R, i.e. δ < (1− α)R/
°°f 0(x0)−1°° := δ(x0),

then Sy : BX(0, R)→ BX(0, R) ⊂ BX(0, R).

Similarly by Lemma 26.28, for all x, z ∈ BX(0, R),

kSy(x)− Sy(z)k = k�(z)− �(x)k ≤ α kx− zk
which shows Sy is a contraction on BX(0, R). Hence by the contraction mapping
principle in Theorem 26.20, for every y ∈ BY (0, δ) there exists a unique solution
x ∈ BX(0, R) such that x = Sy(x) or equivalently

f(x0 + x) = f(x0) + y.

Letting y0 = f(x0), this last statement implies there exists a unique function g :
BY (y0, δ(x0)) → BX(x0, R) such that f(g(y)) = y ∈ BY (y0, δ(x0)). From Eq.
(26.33) it follows that

kg(y)− x0k = kg(y)− g(y0)k

≤
°°f 0(x0)−1°°
1− α

kf(g(y))− f(g(y0))k =
°°f 0(x0)−1°°
1− α

ky − y0k .
This shows

g(BY (y0, δ)) ⊂ BX(x0, (1− α)−1
°°f 0(x0)−1°° δ)

and therefore

BY (y0, δ) = f
¡
g(BY (y0, δ))

¢ ⊂ f
³
BX(x0, (1− α)

−1 °°f 0(x0)−1°° δ)´



490 BRUCE K. DRIVER†

for all δ < δ(x0).
This last assertion implies f(x0) ∈ f(W )o for any W ⊂o U with x0 ∈ W. Since

x0 ∈ U was arbitrary, this shows f is an open mapping.

26.8.1. Alternate construction of g. Suppose U ⊂o X and f : U → Y is a C2 —
function. Then we are looking for a function g(y) such that f(g(y)) = y. Fix an
x0 ∈ U and y0 = f(x0) ∈ Y. Suppose such a g exists and let x(t) = g(y0 + th) for
some h ∈ Y. Then differentiating f(x(t)) = y0 + th implies

d

dt
f(x(t)) = f 0(x(t))ẋ(t) = h

or equivalently that

(26.34) ẋ(t) = [f 0(x(t))]−1 h = Z(h, x(t)) with x(0) = x0

where Z(h, x) = [f 0(x(t))]−1 h. Conversely if x solves Eq. (26.34) we have
d
dtf(x(t)) = h and hence that

f(x(1)) = y0 + h.

Thus if we define
g(y0 + h) := eZ(h,·)(x0),

then f(g(y0 + h)) = y0 + h for all h sufficiently small. This shows f is an open
mapping.

26.9. Applications. A detailed discussion of the inverse function theorem on Ba-
nach and Fréchet spaces may be found in Richard Hamilton’s, “The Inverse Func-
tion Theorem of Nash and Moser.” The applications in this section are taken from
this paper.

Theorem 26.30 (Hamilton’s Theorem on p. 110.). Let p : U := (a, b) → V :=
(c, d) be a smooth function with p0 > 0 on (a, b). For every g ∈ C∞2π(R, (c, d)) there
exists a unique function y ∈ C∞2π(R, (a, b)) such that

ẏ(t) + p(y(t)) = g(t).

Proof. Let Ṽ := C02π(R, (c, d)) ⊂o C02π(R,R) and
Ũ :=

©
y ∈ C12π(R,R) : a < y(t) < b and c < ẏ(t) + p(y(t)) < d for all t

ª ⊂o C12π(R, (a, b)).
The proof will be completed by showing P : Ũ → Ṽ defined by

P (y)(t) = ẏ(t) + p(y(t)) for y ∈ Ũ and t ∈ R
is bijective.
Step 1. The differential of P is given by P 0(y)h = ḣ + p0(y)h, see Exercise

26.7. We will now show that the linear mapping P 0(y) is invertible. Indeed let
f = p0(y) > 0, then the general solution to the Eq. ḣ+ fh = k is given by

h(t) = e−
R t
0
f(τ)dτh0 +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

where h0 is a constant. We wish to choose h0 so that h(2π) = h0, i.e. so that

h0

³
1− e−c(f)

´
=

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ
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where

c(f) =

Z 2π

0

f(τ)dτ =

Z 2π

0

p0(y(τ))dτ > 0.

The unique solution h ∈ C12π(R,R) to P 0(y)h = k is given by

h(t) =
³
1− e−c(f)

´−1
e−

R t
0
f(τ)dτ

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

=
³
1− e−c(f)

´−1
e−

R t
0
f(s)ds

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ.

Therefore P 0(y) is invertible for all y. Hence by the implicit function theorem,
P : Ũ → Ṽ is an open mapping which is locally invertible.
Step 2. Let us now prove P : Ũ → Ṽ is injective. For this suppose y1, y2 ∈ Ũ

such that P (y1) = g = P (y2) and let z = y2 − y1. Since

ż(t) + p(y2(t))− p(y1(t)) = g(t)− g(t) = 0,

if tm ∈ R is point where z(tm) takes on its maximum, then ż(tm) = 0 and hence

p(y2(tm))− p(y1(tm)) = 0.

Since p is increasing this implies y2(tm) = y1(tm) and hence z(tm) = 0. This shows
z(t) ≤ 0 for all t and a similar argument using a minimizer of z shows z(t) ≥ 0 for
all t. So we conclude y1 = y2.
Step 3. Let W := P (Ũ), we wish to show W = Ṽ . By step 1., we know W is

an open subset of Ṽ and since Ṽ is connected, to finish the proof it suffices to show
W is relatively closed in Ṽ . So suppose yj ∈ Ũ such that gj := P (yj) → g ∈ Ṽ .
We must now show g ∈ W, i.e. g = P (y) for some y ∈ W. If tm is a maximizer of
yj , then ẏj(tm) = 0 and hence gj(tm) = p(yj(tm)) < d and therefore yj(tm) < b
because p is increasing. A similar argument works for the minimizers then allows us
to conclude Ranp◦yj) ⊂ Rangj) @@ (c, d) for all j. Since gj is converging uniformly
to g, there exists c < γ < δ < d such that Ran(p ◦ yj) ⊂ Ran(gj) ⊂ [γ, δ] for all j.
Again since p0 > 0,

Ran(yj) ⊂ p−1 ([γ, δ]) = [α, β] @@ (a, b) for all j.

In particular sup {|ẏj(t)| : t ∈ R and j} <∞ since

(26.35) ẏj(t) = gj(t)− p(yj(t)) ⊂ [γ, δ]− [γ, δ]

which is a compact subset of R. The Ascoli-Arzela Theorem 3.59 now allows us to
assume, by passing to a subsequence if necessary, that yj is converging uniformly
to y ∈ C02π(R, [α, β]). It now follows that

ẏj(t) = gj(t)− p(yj(t))→ g − p(y)

uniformly in t. Hence we concluded that y ∈ C12π(R,R)∩C02π(R, [α, β]), ẏj → y and
P (y) = g. This has proved that g ∈W and hence that W is relatively closed in Ṽ .
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26.10. Exercises.

Exercise 26.2. Suppose that A : R→ L(X) is a continuous function and V : R→
L(X) is the unique solution to the linear differential equation

(26.36) V̇ (t) = A(t)V (t) with V (0) = I.

Assuming that V (t) is invertible for all t ∈ R, show that V −1(t) ≡ [V (t)]−1 must
solve the differential equation

(26.37)
d

dt
V −1(t) = −V −1(t)A(t) with V −1(0) = I.

See Exercise 5.14 as well.

Exercise 26.3 (Differential Equations with Parameters). Let W be another Ba-
nach space, U × V ⊂o X ×W and Z ∈ C1(U × V,X). For each (x,w) ∈ U × V, let
t ∈ Jx,w → φ(t, x, w) denote the maximal solution to the ODE

(26.38) ẏ(t) = Z(y(t), w) with y(0) = x

and
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}

as in Exercise 5.18.

(1) Prove that φ is C1 and that Dwφ(t, x, w) solves the differential equation:

d

dt
Dwφ(t, x,w) = (DxZ)(φ(t, x, w), w)Dwφ(t, x,w) + (DwZ)(φ(t, x, w), w)

with Dwφ(0, x, w) = 0 ∈ L(W,X). Hint: See the hint for Exercise 5.18
with the reference to Theorem 5.21 being replace by Theorem 26.12.

(2) Also show with the aid of Duhamel’s principle (Exercise 5.16) and Theorem
26.12 that

Dwφ(t, x, w) = Dxφ(t, x, w)

Z t

0

Dxφ(τ, x, w)
−1(DwZ)(φ(τ, x, w), w)dτ

Exercise 26.4. (Differential of eA) Let f : L(X) → L∗(X) be the exponential
function f(A) = eA. Prove that f is differentiable and that

(26.39) Df(A)B =

Z 1

0

e(1−t)ABetA dt.

Hint: Let B ∈ L(X) and define w(t, s) = et(A+sB) for all t, s ∈ R. Notice that
(26.40) dw(t, s)/dt = (A+ sB)w(t, s) with w(0, s) = I ∈ L(X).

Use Exercise 26.3 to conclude that w is C1 and that w0(t, 0) ≡ dw(t, s)/ds|s=0
satisfies the differential equation,

(26.41)
d

dt
w0(t, 0) = Aw0(t, 0) +BetA with w(0, 0) = 0 ∈ L(X).

Solve this equation by Duhamel’s principle (Exercise 5.16) and then apply Proposi-
tion 26.10 to conclude that f is differentiable with differential given by Eq. (26.39).

Exercise 26.5 (Local ODE Existence). Let Sx be defined as in Eq. (5.22) from the
proof of Theorem 5.10. Verify that Sx satisfies the hypothesis of Corollary 26.21.
In particular we could have used Corollary 26.21 to prove Theorem 5.10.
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Exercise 26.6 (Local ODE Existence Again). Let J = [−1, 1], Z ∈ C1(X,X),
Y := C(J,X) and for y ∈ Y and s ∈ J let ys ∈ Y be defined by ys(t) := y(st). Use
the following outline to prove the ODE

(26.42) ẏ(t) = Z(y(t)) with y(0) = x

has a unique solution for small t and this solution is C1 in x.

(1) If y solves Eq. (26.42) then ys solves

ẏs(t) = sZ(ys(t)) with ys(0) = x

or equivalently

(26.43) ys(t) = x+ s

Z t

0

Z(ys(τ))dτ.

Notice that when s = 0, the unique solution to this equation is y0(t) = x.
(2) Let F : J × Y → J × Y be defined by

F (s, y) := (s, y(t)− s

Z t

0

Z(y(τ))dτ).

Show the differential of F is given by

F 0(s, y)(a, v) =
µ
a, t→ v(t)− s

Z t

0

Z0(y(τ))v(τ)dτ − a

Z ·

0

Z(y(τ))dτ

¶
.

(3) Verify F 0(0, y) : R× Y → R× Y is invertible for all y ∈ Y and notice that
F (0, y) = (0, y).

(4) For x ∈ X, let Cx ∈ Y be the constant path at x, i.e. Cx(t) = x for all
t ∈ J. Use the inverse function Theorem 26.26 to conclude there exists � > 0
and a C1 map φ : (−�, �)×B(x0, �)→ Y such that

F (s, φ(s, x)) = (s, Cx) for all (s, x) ∈ (−�, �)×B(x0, �).

(5) Show, for s ≤ � that ys(t) := φ(s, x)(t) satisfies Eq. (26.43). Now define
y(t, x) = φ(�/2, x)(2t/�) and show y(t, x) solve Eq. (26.42) for |t| < �/2
and x ∈ B(x0, �).

Exercise 26.7. Show P defined in Theorem 26.30 is continuously differentiable
and P 0(y)h = ḣ+ p0(y)h.
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27. Proof of the Change of Variable Theorem

This section is devoted to the proof of the change of variables theorem 8.31. For
convenience we restate the theorem here.

Theorem 27.1 (Change of Variables Theorem). Let Ω ⊂o Rd be an open set and
T : Ω → T (Ω) ⊂o Rd be a C1 — diffeomorphism. Then for any Borel measurable
f : T (Ω)→ [0,∞] we have

(27.1)
Z
Ω

f ◦ T |detT 0|dm =

Z
T (Ω)

f dm.

Proof. We will carry out the proof in a number of steps.
Step 1. Eq. (27.1) holds when Ω = Rd and T is linear and invertible. This was

proved in Theorem 8.33 above using Fubini’s theorem, the scaling and translation
invariance properties of one dimensional Lebesgue measure and the fact that by
row reduction arguments T may be written as a product of “elementary” transfor-
mations.
Step 2. For all A ∈ BΩ,

(27.2) m(T (A)) ≤
Z
A

|detT 0| dm.

This will be proved in Theorem 27.4below.
Step 3. Step 2. implies the general case. To see this, let B ∈ BT (Ω) and

A = T−1(B) in Eq. (27.2) to learn thatZ
Ω

1Adm = m(A) ≤
Z
T−1(A)

|detT 0| dm =

Z
Ω

1A ◦ T |detT 0| dm.

Using linearity we may conclude from this equation that

(27.3)
Z
T (Ω)

fdm ≤
Z
Ω

f ◦ T |detT 0| dm

for all non-negative simple functions f on T (Ω). Using Theorem 7.12 and the
monotone convergence theorem one easily extends this equation to hold for all
nonnegative measurable functions f on T (Ω).
Applying Eq. (27.3) with Ω replaced by T (Ω), T replaced by T−1 and f by

g : Ω→ [0,∞], we see that

(27.4)
Z
Ω

gdm =

Z
T−1(T (Ω))

gdm ≤
Z
T (Ω)

g ◦ T−1
¯̄̄
det

¡
T−1

¢0 ¯̄̄
dm

for all Borel measurable g. Taking g = (f ◦ T ) |detT 0| in this equation shows,Z
Ω

f ◦ T |detT 0| dm ≤
Z
T (Ω)

f
¯̄
detT 0 ◦ T−1 ¯̄ ¯̄̄det ¡T−1¢0 ¯̄̄ dm

=

Z
T (Ω)

fdm(27.5)

wherein the last equality we used the fact that T ◦ T−1 = id so that¡
T 0 ◦ T−1¢ ¡T−1¢0 = id and hence detT 0 ◦ T−1 det ¡T−1¢0 = 1.
Combining Eqs. (27.3) and (27.5) proves Eq. (27.1). Thus the proof is complete

modulo Eq. (27.3) which we prove in Theorem 27.4 below.
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Notation 27.2. For a, b ∈ Rd we will write a ≤ b is ai ≤ bi for all i and a < b

if ai < bi for all i. Given a < b let [a, b] =
Qd

i=1[ai, bi] and (a, b] =
Qd

i=1(ai, bi].
(Notice that the closure of (a, b] is [a, b].) We will say that Q = (a, b] is a cube
provided that bi − ai = 2δ > 0 is a constant independent of i. When Q is a cube,
let

xQ := a+ (δ, δ, . . . , δ)

be the center of the cube.

Notice that with this notation, if Q is a cube of side length 2δ,

(27.6) Q̄ = {x ∈ Rd : |x− xQ| ≤ δ}
and the interior (Q0) of Q may be written as

Q0 = {x ∈ Rd : |x− xQ| < δ}.
Notation 27.3. For a ∈ Rd, let |a| = maxi |ai| and if T is a d × d matrix let
kTk = maxi

P
j |Tij | .

A key point of this notation is that

|Ta| = max
i

¯̄̄̄
¯̄X
j

Tijaj

¯̄̄̄
¯̄ ≤ maxi X

j

|Tij | |aj |

≤ kTk |a| .(27.7)

Theorem 27.4. Let Ω ⊂o Rd be an open set and T : Ω → T (Ω) ⊂o Rd be a C1 —
diffeomorphism. Then for any A ∈ BΩ,

(27.8) m(T (A)) ≤
Z
A

|detT 0(x)|dx.

Proof. Step 1. We will first assume that A = Q = (a, b] is a cube such that
Q̄ = [a, b] ⊂ Ω. Let δ = (bi−ai)/2 be half the side length of Q. By the fundamental
theorem of calculus (for Riemann integrals) for x ∈ Q,

T (x) = T (xQ) +

Z 1

0

T 0(xQ + t(x− xQ))(x− xQ)dt

= T (xQ) + T 0(xQ)S(x)

where

S(x) =

·Z 1

0

T 0(xQ)−1T 0(xQ + t(x− xQ))dt

¸
(x− xQ).

Therefore T (Q) = T (xQ) + T 0(xQ)S(Q) and hence

m(T (Q)) = m (T (xQ) + T 0(xQ)S(Q)) = m (T 0(xQ)S(Q))

= |detT 0(xQ)|m (S(Q)) .(27.9)

Now for x ∈ Q̄, i.e. |x− xQ| ≤ δ,

|S(x)| ≤
°°°°Z 1

0

T 0(xQ)−1T 0(xQ + t(x− xQ))dt

°°°° |x− xQ|
≤ h(xQ, x)δ
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where

(27.10) h(xQ, x) :=

Z 1

0

°°T 0(xQ)−1T 0(xQ + t(x− xQ))
°° dt.

Hence
S(Q) ⊂ max

x∈Q
h(xQ, x){x ∈ Rd : |x| ≤ δmax

x∈Q
hd(xQ, x)}

and

(27.11) m(S(Q)) ≤ max
x∈Q

h(xQ, x)
d (2δ)

d
= max

x∈Q
hd(xQ, x)m(Q).

Combining Eqs. (27.9) and (27.11) shows that

(27.12) m(T (Q)) ≤ |detT 0(xQ)|m(Q) ·max
x∈Q

hd(xQ, x).

To refine this estimate, we will subdivide Q into smaller cubes, i.e. for n ∈ N let

Qn =

½
(a, a+

2

n
(δ, δ, . . . , δ)] +

2δ

n
ξ : ξ ∈ {0, 1, 2, . . . , n}d

¾
.

Notice that Q =
`

A∈Qn
A. By Eq. (27.12),

m(T (A)) ≤ |detT 0(xA)|m(A) ·max
x∈A

hd(xA, x)

and summing the equation on A gives

m(T (Q)) =
X
A∈Qn

m(T (A)) ≤
X
A∈Qn

|detT 0(xA)|m(A) ·max
x∈A

hd(xA, x).

Since hd(x, x) = 1 for all x ∈ Q̄ and hd : Q̄× Q̄→ [0,∞) is continuous function on
a compact set, for any � > 0 there exists n such that if x, y ∈ Q̄ and |x− y| ≤ δ/n
then hd(x, y) ≤ 1 + �. Using this in the previously displayed equation, we find that

m(T (Q) ≤ (1 + �)
X
A∈Qn

|detT 0(xA)|m(A)

= (1 + �)

Z
Q

X
A∈Qn

|detT 0(xA)| 1A(x)dm(x).(27.13)

Since |detT 0(x)| is continuous on the compact set Q̄, it easily follows by uniform
continuity that X

A∈Qn

|detT 0(xA)| 1A(x)→ |detT 0(x)| as n→∞

and the convergence in uniform on Q̄. Therefore the dominated convergence theorem
enables us to pass to the limit, n→∞, in Eq. (27.13) to find

m(T (Q)) ≤ (1 + �)

Z
Q

|detT 0(x)| dm(x).

Since � > 0 is arbitrary we are done we have shown that

m(T (Q)) ≤
Z
Q

|detT 0(x)| dm(x).

Step 2. We will now show that Eq. (27.8) is valid when A = U is an open
subset of Ω. For n ∈ N, let

Qn =
©
(0, (δ, δ, . . . , δ)] + 2−nξ : ξ ∈ Zdª
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so that Qn is a partition of Rd. Let F1 :=
©
A ∈ Q1 : Ā ⊂ U

ª
and define Fn ⊂

∪nk=1Qk inductively as follows. Assuming Fn−1 has been defined, let
Fn = Fn−1 ∪

©
A ∈ Qn : Ā ⊂ U and A ∩B = ∅ for all B ∈ Fn−1

ª
= Fn−1 ∪

©
A ∈ Qn : Ā ⊂ U and A * B for any B ∈ Fn−1

ª
Now set F = ∪Fn (see Figure 47) and notice that U =

`
A∈F A. Indeed by con-

Figure 47. Filling out an open set with half open disjoint cubes.
We have drawn F2.

struction, the sets in F are pairwise disjoint subset of U so that
`

A∈F A ⊂ U.

If x ∈ U, there exists an n and A ∈ Qn such that x ∈ A and Ā ⊂ U. Then by
construction of F , either A ∈ F or there is a set B ∈ F such that A ⊂ B. In either
case x ∈`A∈F A which shows that U =

`
A∈F A. Therefore by step 1.,

m(T (U)) = m(T (∪A∈FA)) = m((∪A∈FT (A)))
=
X
A∈F

m(T (A)) ≤
X
A∈F

Z
A

|detT 0(x)| dm(x)

=

Z
U

|detT 0(x)| dm(x)

which proves step 2.
Step 3. For general A ∈ BΩ let µ be the measure,

µ(A) :=

Z
A

|detT 0(x)| dm(x).

Then m ◦ T and µ are (σ — finite measures as you should check) on BΩ such that
m ◦ T ≤ µ on open sets. By regularity of these measures, we may conclude that
m ◦ T ≤ µ. Indeed, if A ∈ BΩ,

m (T (A)) = inf
U⊂oΩ

m (T (U)) ≤ inf
U⊂oΩ

µ(U) = µ(A) =

Z
A

|detT 0(x)| dm(x).
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27.1. Appendix: Other Approaches to proving Theorem 27.1 . Replace f
by f ◦ T−1 in Eq. (27.1) givesZ

Ω

f |detT 0|dm =

Z
T (Ω)

f ◦ T−1 dm =

Z
Ω

fd(m ◦ T )

so we are trying to prove d(m ◦ T ) = |detT 0|dm. Since both sides are measures it
suffices to show that they agree on a multiplicative system which generates the σ —
algebra. So for example it is enough to show m(T (Q)) =

R
Q
|detT 0|dm when Q is

a small rectangle.
As above reduce the problem to the case where T (0) = 0 and T 0(0) = id. Let

�(x) = T (x) − x and set Tt(x) = x + t�(x). (Notice that detT 0 > 0 in this case so
we will not need absolute values.) Then Tt : Q→ Tt(Q) is a C1 — morphism for Q
small and Tt(Q) contains some fixed smaller cube C for all t. Let f ∈ C1c (C

o), then
it suffices to show

d

dt

Z
Q

f ◦ Tt |detT 0t | dm = 0

for then Z
Q

f ◦ T detT 0dm =

Z
Q

f ◦ T0 detT 00dm =

Z
Q

fdm =

Z
T (Q)

fdm.

So we are left to compute

d

dt

Z
Q

f ◦ Tt detT 0tdm =

Z
Q

½
(∂�f) (Tt) detT

0
t + f ◦ Tt d

dt
detT 0t

¾
dm

=

Z
Q

{(∂�f) (Tt) + f ◦ Tt · tr (T 0t�)}detT 0tdm.

Now let Wt := (T
0
t)
−1

�, then

Wt(f ◦ Tt) =Wt(f ◦ Tt) =
¡
∂T 0tWt

f
¢
(Tt) = (∂�f) (Tt).

Therefore,

d

dt

Z
Q

f ◦ Tt detT 0tdm =

Z
Q

{Wt(f ◦ Tt) + f ◦ Tt · tr (T 0t�)}detT 0tdm.

Let us now do an integration by parts,Z
Q

Wt(f ◦ Tt) detT 0tdm = −
Z
Q

(f ◦ Tt) {Wt detT
0
t +∇ ·Wt detT

0
t} dm

so that
d

dt

Z
Q

f ◦ Tt detT 0tdm =

Z
Q

{tr (T 0t�) detT 0t −Wt detT
0
t −∇ ·Wt detT

0
t} f ◦ Ttdm.

Finally,

Wt detT
0
t = detT

0
t · tr((T 0t)−1WtT

0
t) = detT

0
t · tr((T 0t)−1 T 00t (T 0t)−1 �)

while
∇ ·Wt = trW 0

t = −tr
h
(T 0t)

−1
T 00t (T

0
t)
−1

�
i
+ tr

h
(T 0t)

−1
�0
i
.

so that
Wt detT

0
t +∇ ·Wt detT

0
t = −detT 0t · tr

h
(T 0t)

−1
�0
i
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and therefore
d

dt

Z
Q

f ◦ Tt detT 0tdm = 0

as desired.
The problem with this proof is that it requires T or equivalently � to be twice

continuously differentiable. I guess this can be overcome by smoothing a C1 — �
and then removing the smoothing after the result is proved.
Proof. Take care of lower bounds also.
(1) Show m(T (Q)) =

R
Q
(T 0(x))dx =: λ(Q) for all Q ⊂ Ω

(2) Fix Q. Claim mT = λ on BQ = {A ∩Q : A ∈ B}
Proof Equality holds on a k. Rectangles contained in Q. Therefore the algebra

of finite disjoint unison of such of rectangles here as σ({rectangle contained in Q}.
But σ({rectangle ⊂ Q} = BQ.
(3) Since Ω =

∞S
i=1

of such rectangles (even cubes) it follows that mJ(E) =P
mT (E ∩Qi) =

P
λ(E ∩Qi) = λ(E) for all E ∈ BΩ.

Now for general open sets ∪ ⊂ Ω write ∪ =
∞S
j=1

Qj almost disjoint union. Then

m(T (∪)) ≤ m(
[
j=1

T (Qj)) ≤
X
j

mTQj −
X
j

Z
Qj

|T 0|dm =

Z
∪
|T 0|dm

so m(T (∪)) ≤ R∪ |T 0|d, for all ∪ ∈ Ω. Let E ⊂ Ω such that E bounded. Choose
∪nCΩ such that ∪n ↓ and m(E \ ∪n) ↓ 0. Then m(TE) ≤ m(T∪n) ≤

R
∪n |T 0|dm ↓R

E
|T 0|dm so m(T (E)) ≤ R

E
|T 0|dm for all E bounded for general E ⊂ Ω

m(T (E)) = lim
n→∞m(T (E ∩Bn)) ≤ lim

n→∞

Z
E∩Bn

|T 0|dm =

Z
E

|T 0|dm.

Therefore m(T (E)) ≤ R
E
|T 0|dm for all E ⊂ Ω measurable.

27.2. Sard’s Theorem. See p. 538 of Taylor and references. Also see Milnor’s
topology book. Add in the Brower Fixed point theorem here as well. Also Spivak’s
calculus on manifolds.

Theorem 27.5. Let U ⊂o Rm, f ∈ C∞(U,Rd) and C := {x ∈ U : rank(f 0(x)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel measuralbe
subset of Rd of Lebesgue measure 0.

Remark 27.6. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the norm,
|x| := maxi |xi| . Recall that if f ∈ C1(U,Rd) and p ∈ U, then

f(p+ x) = f(p) +

Z 1

0

f 0(p+ tx)xdt = f(p) + f 0(p)x+
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt

so that if

R(p, x) := f(p+ x)− f(p)− f 0(p)x =
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt
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we have

|R(p, x)| ≤ |x|
Z 1

0

|f 0(p+ tx)− f 0(p)| dt = |x| �(p, x).
By uniform continuity, it follows for any compact subset K ⊂ U that

sup {|�(p, x)| : p ∈ K and |x| ≤ δ}→ 0 as δ ↓ 0.
Proof. Notice that if x ∈ U \ C, then f 0(x) : Rm → Rn is surjective, which is

an open condition, so that U \C is an open subset of U. This shows C is relatively
closed in U, i.e. there exists C̃ @ Rm such that C = C̃ ∩ U. Let Kn ⊂ U be
compact subsets of U such that Kn ↑ U, then Kn ∩ C ↑ C and Kn ∩ C = Kn ∩ C̃
is compact for each n. Therefore, f(Kn ∩ C) ↑ f(C) i.e. f(C) = ∪nf(Kn ∩ C) is
a countable union of compact sets and therefore is Borel measurable. Moreover,
since m(f(C)) = limn→∞m(f(Kn ∩ C)), it suffices to show m(f(K)) = 0 for all
compact subsets K ⊂ C.
Case 1. (n ≤ m) Let K = [a, a + γ] be a cube contained in U and by

scaling the domain we may assume γ = (1, 1, 1, . . . , 1). For N ∈ N and j ∈
SN := {0, 1, . . . , N − 1}n let Kj = j/N + [a, a + γ/N ] so that K = ∪j∈SNKj

with Ko
j ∩ Ko

j0 = ∅ if j 6= j0. Let {Qj : j = 1 . . . ,M} be the collection of those
{Kj : j ∈ SN} which intersect C. For each j, let pj ∈ Qj ∩ C and for x ∈ Qj − pj
we have

f(pj + x) = f(pj) + f 0(pj)x+Rj(x)

where |Rj(x)| ≤ �j(N)/N and �(N) := maxj �j(N)→ 0 as N →∞. Now

m (f(Qj)) = m (f(pj) + (f
0(pj) +Rj) (Qj − pj))

= m ((f 0(pj) +Rj) (Qj − pj))

= m (Oj (f
0(pj) +Rj) (Qj − pj))(27.14)

where Oj ∈ SO(n) is chosen so that Ojf
0(pj)Rn ⊂ Rm−1×{0} . Now Ojf

0(pj)(Qj−
pj) is contained in Γ×{0} where Γ ⊂ Rm−1 is a cube cetered at 0 ∈ Rm−1 with side
length at most 2 |f 0(pj)| /N ≤ 2M/N where M = maxp∈K |f 0(p)| . It now follows
that Oj (f

0(pj) +Rj) (Qj − pj) is contained the set of all points within �(N)/N of
Γ× {0} and in particular

Oj (f
0(pj) +Rj) (Qj − pj) ⊂ (1 + �(N)/N)Γ× [�(N)/N, �(N)/N ].

From this inclusion and Eq. (27.14) it follows that

m (f(Qj)) ≤
·
2
M

N
(1 + �(N)/N)

¸m−1
2�(N)/N

= 2mMm−1 [(1 + �(N)/N)]m−1 �(N)
1

Nm

and therefore,

m (f(C ∩K)) ≤
X
j

m (f(Qj)) ≤ Nn2mMm−1 [(1 + �(N)/N)]
m−1

�(N)
1

Nm

= 2nMn−1 [(1 + �(N)/N)]
n−1

�(N)
1

Nm−n → 0 as N →∞
since m ≥ n. This proves the easy case since we may write U as a countable union
of cubes K as above.
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Remark. The case (m < n) also follows brom the case m = n as follows. When
m < n, C = U and we must show m(f(U)) = 0. Letting F : U × Rn−m → Rn be
the map F (x, y) = f(x). Then F 0(x, y)(v, w) = f 0(x)v, and hence CF := U×Rn−m.
So if the assetion holds for m = n we have

m(f(U)) = m(F (U ×Rn−m)) = 0.
Case 2. (m > n) This is the hard case and the case we will need in the co-area

formula to be proved later. Here I will follow the proof in Milnor. Let

Ci := {x ∈ U : ∂αf(x) = 0 when |α| ≤ i}
so that C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . . The proof is by induction on n and goes by the
following steps:

(1) m(f(C \ C1)) = 0.
(2) m(f(Ci \Ci+1)) = 0 for all i ≥ 1.
(3) m(f(Ci)) = 0 for all i sufficiently large.

Step 1. If m = 1, there is nothing to prove since C = C1 so we may assume
m ≥ 2. Suppose that x ∈ C\C1, then f 0(p) 6= 0 and so by reordering the components
of x and f(p) if necessary we may assume that ∂f1(p)/∂x1 6= 0. The map h(x) :=
(f1(x), x2, . . . , xn) has differential

h0(p) =


∂f1(p)/∂x1 ∂f1(p)/∂x2 . . . ∂f1(p)/∂xn

0 1 0 0
...

...
. . .

...
0 0 0 1


which is not singular. So by the implicit function theorem, there exists there exists
V ∈ τp such that h : V → h(V ) ∈ τh(p) is a diffeomorphism and in particular
∂f1(x)/∂x1 6= 0 for x ∈ V and hence V ⊂ U \ C1. Consider the map g := f ◦ h−1 :
V 0 := h(V )→ Rm, which satisfies

(f1(x), f2(x), . . . , fm(x)) = f(x) = g(h(x)) = g((f1(x), x2, . . . , xn))

which implies g(t, y) = (t, u(t, y)) for (t, y) ∈ V 0 := h(V ) ∈ τh(p), see Figure 48
below where p = x̄ and m = p. Since

Figure 48. Making a change of variable so as to apply induction.
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g0(t, y) =
·

1 0
∂tu(t, y) ∂yu(t, y)

¸
it follows that (t, y) is a critical point of g iff y ∈ C0t — the set of critical points of
y → u(t, y). Since h is a diffeomorphism we have C 0 := h(C ∩ V ) are the critical
points of g in V 0 and

f(C ∩ V ) = g(C0) = ∪t [{t} × ut(C
0
t)] .

By the induction hypothesis, mm−1(ut(C0t)) = 0 for all t, and therefore by Fubini’s
theorem,

m(f(C ∩ V )) =
Z
R
mm−1(ut(C0t))1V 0

t 6=∅dt = 0.

Since C \ C1 may be covered by a countable collection of open sets V as above, it
follows that m(f(C \ C1)) = 0.
Step 2. Suppose that p ∈ Ck\Ck+1, then there is an α such that |α| = k+1 such

that ∂αf(p) = 0 while ∂βf(p) = 0 for all |β| ≤ k. Again by permuting coordinates
we may assume that α1 6= 0 and ∂αf1(p) 6= 0. Let w(x) := ∂α−e1f1(x), then
w(p) = 0 while ∂1w(p) 6= 0. So again the implicit function theorem there exists
V ∈ τp such that h(x) := (w (x) , x2, . . . , xn) maps V → V 0 := h(V ) ∈ τh(p) in
diffeomorphic way and in particular ∂1w(x) 6= 0 on V so that V ⊂ U \ Ck+1. As
before, let g := f ◦ h−1 and notice that C0k := h(Ck ∩ V ) ⊂ {0} ×Rn−1 and

f(Ck ∩ V ) = g(C0k) = ḡ (C 0k)

where ḡ := g|({0}×Rn−1)∩V 0 . Clearly C0k is contained in the critical points of ḡ, and
therefore, by induction

0 = m(ḡ(C0k)) = m(f(Ck ∩ V )).
Since Ck \ Ck+1 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Ck+1)) = 0 for all k ≥ 1.
Step 3. Supppose that Q is a closed cube with edge length δ contained in U

and k > n/m− 1. We will show m(f(Q ∩ Ck)) = 0 and since Q is arbitrary it will
forllow that m(f(Ck)) = 0 as desired.
By Taylor’s theorem with (integral) remainder, it follows for x ∈ Q ∩ Ck and h

such that x+ h ∈ Q that

f(x+ h) = f(x) +R(x, h)

where
|R(x, h)| ≤ c khkk+1

where c = c(Q, k). Now subdivide Q into rn cubes of edge size δ/r and let Q0 be
one of the cubes in this subdivision such that Q0 ∩ Ck 6= ∅ and let x ∈ Q0 ∩ Ck.
It then follows that f(Q0) is contained in a cube centered at f(x) ∈ Rm with side
length at most 2c (δ/r)k+1 and hence volume at most (2c)m (δ/r)m(k+1) . Therefore,
f(Q∩Ck) is contained in the union of at most rn cubes of volume (2c)

m
(δ/r)

m(k+1)

and hence meach

m (f(Q ∩ Ck)) ≤ (2c)m (δ/r)m(k+1) rn = (2c)m δm(k+1)rn−m(k+1) → 0 as r ↑ ∞
provided that n−m(k + 1) < 0, i.e. provided k > n/m− 1.



ANALYSIS TOOLS WITH APPLICATIONS 503

27.3. Co-Area Formula. See “C:\driverdat\Bruce\DATA\MATHFILE\qft-notes\co-
area.tex” for this material.

27.4. Stokes Theorem. See Whitney’s "Geometric Integration Theory," p. 100.
for a fairly genral form of Stokes Theorem allowing for rough boundaries.
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28. Complex Differentiable Functions

28.1. Basic Facts About Complex Numbers.

Definition 28.1. C = R2 and we write 1 = (1, 0) and i = (0, 1). As usual C
becomes a field with the multiplication rule determined by 12 = 1 and i2 = −1, i.e.

(a+ ib)(c+ id) ≡ (ac− bd) + i(bc+ ad).

Notation 28.2. If z = a+ ib with a, b ∈ R let z̄ = a− ib and

|z|2 ≡ zz̄ = a2 + b2.

Also notice that if z 6= 0, then z is invertible with inverse given by

z−1 =
1

z
=

z̄

|z|2 .

Given w = a + ib ∈ C, the map z ∈ C → wz ∈ C is complex and hence
real linear so we may view this a linear transformation Mw : R2 → R2. To work
out the matrix of this transformation, let z = c + id, then the map is c + id →
wz = (ac− bd) + i (bc+ ad) which written in terms of real and imaginary parts is
equivalent to µ

a −b
b a

¶µ
c
d

¶
=

µ
ac− bd
bc+ ad

¶
.

Thus

Mw =

µ
a −b
b a

¶
= aI + bJ where J =

µ
0 −1
1 0

¶
.

Remark 28.3. Continuing the notation above, M tr
w = Mw, det(Mw) = a2 + b2 =

|w|2, andMwMz =Mwz for all w, z ∈ C. Moreover the ready may easily check that
a real 2 × 2 matrix A is equal to Mw for some w ∈ C iff 0 = [A, J ] =: AJ − JA.
Hence C and the set of real 2× 2 matrices A such that 0 = [A,J ] are algebraically
isomorphic objects.

28.2. The complex derivative.

Definition 28.4. A function F : Ω ⊂o C → C is complex differentiable at
z0 ∈ Ω if
(28.1) lim

z→z0

F (z)− F (z0)

z − z0
= w

exists.

Proposition 28.5. A function F : Ω ⊂o C → C is complex differentiable iff
F : Ω → C is differentiable (in the real sense as a function from Ω ⊂o R2 → R2)
and [F 0(z0), J ] = 0, i.e. by Remark 28.3,

F 0(z0) =Mw =

µ
a −b
b a

¶
for some w = a+ ib ∈ C.
Proof. Eq. (28.1) is equivalent to the equation:

F (z) = F (z0) + w(z − z0) + o(z − z0)

= F (z0) +Mw(z − z0) + o(z − z0)(28.2)

and hence F is complex differentiable iff F is differentiable and the differential is
of the form F 0(z0) =Mw for some w ∈ C.
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Corollary 28.6 (Cauchy Riemann Equations). F : Ω→ C is complex differen-
tiable at z0 ∈ Ω iff F 0(z0) exists46 and, writing z0 = x0 + iy0,

(28.3) i
∂F (x0 + iy0)

∂x
=

∂F

∂y
(x0 + iy0)

or in short we write ∂F
∂x + i∂F∂y = 0.

Proof. The differential F 0(z0) is, in general, an arbitrary matrix of the form

F 0(z0) =
·
a c
b d

¸
where

(28.4)
∂F

∂x
(z0) = a+ ib and

∂F

∂y
(z0) = c+ id.

Since F is complex differentiable at z0 iff d = a and c = −b which is easily seen to
be equivalent to Eq. (28.3) by Eq. (28.4) and comparing the real and imaginary
parts of iFx(z0) and Fy(z0).
Second Proof. If F is complex differentiable at z0 = x0 + iy0, then by the

chain rule,
∂F

∂y
(x0 + iy0) = iF 0(x0 + iy0) = i

∂F (x0 + iy0)

∂x
.

Conversely if F is real differentiable at z0 there exists a real linear transformation
Λ : C ∼= R2 → C such that

(28.5) F (z) = F (z0) + Λ(z − z0) + o(z − z0)

and as usual this implies

∂F (z0)

∂x
= Λ(1) and

∂F (z0)

∂y
= Λ(i)

where 1 = (1, 0) and i = (0, 1) under the identification of C with R2. So if Eq.
(28.3) holds, we have

Λ(i) = iΛ(1)

from which it follows that Λ is complex linear. Hence if we set λ := Λ(1), we have

Λ(a+ ib) = aΛ(1) + bΛ(i) = aΛ(1) + ibΛ(1) = λ(a+ ib),

which shows Eq. (28.5) may be written as

F (z) = F (z0) + λ(z − z0) + o(z − z0).

This is equivalent to saying F is complex differentiable at z0 and F 0(z0) = λ.

Notation 28.7. Let

∂ =
1

2

µ
∂

∂x
+ i

∂

∂y

¶
and ∂ =

1

2

µ
∂

∂x
− i

∂

∂y

¶
.

46For example this is satisfied if If F : Ω → C is continuous at z0, Fx and Fy exists in a
neighborhood of z0 and are continuous near z0.
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With this notation we have

∂fdz + ∂̄fdz̄ =
1

2

µ
∂

∂x
− i

∂

∂y

¶
f (dx+ idy) +

1

2

µ
∂

∂x
+ i

∂

∂y

¶
f (dx− idy)

=
∂f

∂x
dx+

∂f

∂y
dy = df.

In particular if σ(s) ∈ C is a smooth curve, then
d

ds
f(σ(s)) = ∂f(σ(s))σ0(s) + ∂̄f(σ(s))σ̄0(s).

Corollary 28.8. Let Ω ⊂o C be a given open set and f : Ω→ C be a C1 — function
in the real variable sense. Then the following are equivalent:

(1) The complex derivative df(z)/dz exists for all z ∈ Ω.47
(2) The real differential f 0(z) satisfies [f 0(z), J ] = 0 for all z ∈ Ω.
(3) The function f satisfies the Cauchy Riemann equations ∂̄f = 0 on Ω.

Notation 28.9. A function f ∈ C1(Ω,C) satisfying any and hence all of the
conditions in Corollary 28.8 is said to be a holomorphic or an analytic function
on Ω. We will let H(Ω) denote the space of holomorphic functions on Ω.

Corollary 28.10. The chain rule holds for complex differentiable functions. In
particular, Ω ⊂o C f−→ D ⊂o C g−→ C are functions, z0 ∈ Ω and w0 = f(z0) ∈ D.
Assume that f 0(z0) exists, g0(w0) exists then (g ◦ f)0(z0) exists and is given by
(28.6) (g ◦ f)0(z0) = g0(f(z0))f 0(z0)

Proof. This is a consequence of the chain rule for F : R2 → R2 when restricted
to those functions whose differentials commute with J. Alternatively, one can simply
follow the usual proof in the complex category as follows:

g ◦ f(z) = g(f(z)) = g(w0) + g0(w0)(f(z)− f(z0)) + o(f(z)− f(z0))

and hence

(28.7)
g ◦ f(z)− g(f(z0))

z − z0
= g0(w0)

f(z)− f(z0)

z − z0
+

o(f(z)− f(z0))

z − z0
.

Since o(f(z)−f(z0))
z−z0 → 0 as z → z0 we may pass to the limit z → z0 in Eq. (28.7) to

prove Eq. (28.6).

Lemma 28.11 (Converse to the Chain rule). Suppose f : Ω ⊂o C→U ⊂o C and
g : U ⊂o C→ C are functions such that f is continuous, g ∈ H(U) and h := g◦f ∈
H(Ω), then f ∈ H(Ω \ {z : g0(f(z)) = 0}). Moreover f 0(z) = h0(z)/g0(f(z)) when
z ∈ Ω and g0(f(z)) 6= 0.
Proof. This follow from the previous converse to the chain rule or directly as

follows48. Suppose that z0 ∈ Ω and g0(f(z0)) 6= 0. On one hand
h(z) = h(z0) + h0(z0)(z − z0) + o(z − z0)

while on the other

h(z) = g(f(z)) = g(f(z0)) + g0(f(z0)(f(z)− f(z0)) + o(f(z)− f(z0)).

47As we will see later in Theorem 28.38, the assumption that f is C1 in this condition is
redundant. Complex differentiablity of f at all points z ∈ Ω already implies that f is C∞(Ω,C)!!

48One could also apeal to the inverse function theorem here as well.
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Combining these equations shows

(28.8) h0(z0)(z − z0) = g0(f(z0))(f(z)− f(z0)) + o(f(z)− f(z0)) + o(z − z0).

Since g0(f(z0)) 6= 0 we may conclude that
f(z)− f(z0) = o(f(z)− f(z0)) +O(z − z0),

in particular it follow that

|f(z)− f(z0)| ≤ 1
2
|f(z)− f(z0)|+O(z − z0) for z near z0

and hence that f(z)− f(z0) = O(z− z0). Using this back in Eq. (28.8) then shows
that

h0(z0)(z − z0) = g0(f(z0))(f(z)− f(z0)) + o(z − z0)

or equivalently that

f(z)− f(z0) =
h0(z0)

g0(f(z0))
(z − z0) + o(z − z0).

Example 28.12. Here are some examples.

(1) f(z) = z is analytic and more generally f(z) =
kP

n=0
anz

n with an ∈ C are
analytic on C.

(2) If f, g ∈ H(Ω) then f · g, f + g, cf ∈ H(Ω) and f/g ∈ H(Ω \ {g = 0}).
(3) f(z) = z̄ is not analytic and f ∈ C1(C,R) is analytic iff f is constant.

The next theorem shows that analytic functions may be averaged to produce
new analytic functions.

Theorem 28.13. Let g : Ω×X → C be a function such that
(1) g(·, x) ∈ H(Ω) for all x ∈ X and write g0(z, x) for d

dz g(z, x).

(2) There exists G ∈ L1(X,µ) such that |g0(z, x)| ≤ G(x) on Ω×X.
(3) g(z, ·) ∈ L1(X,µ) for z ∈ Ω.
Then

f(z) :=

Z
X

g(z, ξ)dµ(ξ)

is holomorphic on Ω and the complex derivative is given by

f 0(z) =
Z
X

g0(z, ξ)dµ(ξ).

Exercise 28.1. Prove Theorem 28.13 using the dominated convergence theorem
along with the mean value inequality of Corollary 4.10. Alternatively one may use
the corresponding real variable differentiation theorem to show ∂xf and ∂yf exists
and are continuous and then to show ∂̄f = 0.

As an application we will shows that power series give example of complex dif-
ferentiable functions.

Corollary 28.14. Suppose that {an}∞n=0 ⊂ C is a sequence of complex numbers
such that series

f(z) :=
∞X
n=0

an(z − z0)
n
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is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

(28.9) f 0(z) =
∞X
n=0

nan(z − z0)
n−1 =

∞X
n=1

nan(z − z0)
n−1.

By induction it follows that f (k) exists for all k and that

f (k)(z) =
∞X
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)
n−1.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0+r ∈ D(z0, R), by

assumption the series
∞P
n=0

anr
n is convergent and in particular M := supn |anrn| <

∞. We now apply Theorem 28.13 with X = N∪ {0} , µ being counting measure,
Ω = D(z0, ρ) and g(z, n) := an(z − z0)

n. Since

|g0(z, n)| = |nan(z − z0)
n−1| ≤ n |an| ρn−1

≤ 1
r
n
³ρ
r

´n−1
|an| rn ≤ 1

r
n
³ρ
r

´n−1
M

and the function G(n) := M
r n
¡
ρ
r

¢n−1
is summable (by the Ratio test for example),

we may use G as our dominating function. It then follows from Theorem 28.13

f(z) =

Z
X

g(z, n)dµ(n) =
∞X
n=0

an(z − z0)
n

is complex differentiable with the differential given as in Eq. (28.9).

Example 28.15. Let w ∈ C, Ω := C\ {w} and f(z) = 1
w−z . Then f ∈ H(Ω). Let

z0 ∈ Ω and write z = z0 + h, then

f(z) =
1

w − z
=

1

w − z0 − h
=

1

w − z0

1

1− h/(w − z0)

=
1

w − z0

∞X
n=0

µ
h

w − z0

¶n
=
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

n

which is valid for |z − z0| < |w − z0| . Summarizing this computation we have shown

(28.10)
1

w − z
=
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

n for |z − z0| < |w − z0| .

Proposition 28.16. The exponential function ez =
∞P
n=0

zn

n! is holomorphic on C

and d
dz e

z = ez. Moreover,

(1) e(z+w) = ezew for all z, w ∈ C.
(2) (Euler’s Formula) eiθ = cos θ + i sin θ for all θ ∈ R and |eiθ| = 1 for all

θ∈R.
(3) ex+iy = ex (cos y + i sin y) for all x, y ∈ R.
(4) ez = ez.

Proof. By the chain rule for functions of a real variable,
d

dt
[e−twe(z+tw)] = −we−twe(z+tw) + e−twwe(z+tw) = 0
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and hence e−twe(z+tw) is constant in t. So by evaluating this expression at t = 0
and t = 1 we find

(28.11) e−we(z+w) = ez for all w, z ∈ C.
Choose z = 0 in Eq. (28.11) implies e−wew = 1, i.e. e−w = 1/ew which used back
in Eq. (28.11 proves item 1. Similarly,

d

dθ
[e−iθ(cos θ + i sin θ)] = −ie−iθ(cos θ + i sin θ) + e−iθ(− sin θ + i cos θ) = 0.

Hence e−iθ(cos θ+ i sin θ) = e−iθ(cos θ+ i sin θ)|θ=0 = 1 which proves item 2. Item
3. is a consequence of items 1) and 2) and item 4) follows from item 3) or directly
from the power series expansion.

Remark 28.17. One could define ez by ez = ex(cos(y) + i sin(y)) when z = x + iy
and then use the Cauchy Riemann equations to prove ez is complex differentiable.

Exercise 28.2. By comparing the real and imaginary parts of the equality eiθeiα =
ei(θ+α) prove the formulas:

cos(θ + α) = cos θ cosα− sin θ sinα and
sin(θ + α) = cos θ sinα+ cosα sin θ

for all θ, α ∈ R.
Exercise 28.3. Find all possible solutions to the equation ez = w where z
and w are complex numbers. Let log(w) ≡ {z : ez = w}. Note that log : C →
(subsets of C). One often writes log : C→ C and calls log a multi-valued function.
A continuous function l defined on some open subset Ω of C is called a branch of
log if l(w) ∈ log(w) for all w ∈ Ω. Use the reverse chain rule to show any branch of
log is holomorphic on its domain of definition and that l0(z) = 1/z for all z ∈ Ω.
Exercise 28.4. Let Ω = {w = reiθ ∈ C : r > 0, and − π < θ < π} = C \ (−∞, 0],
and define Ln : Ω → C by Ln(reiθ) ≡ ln(r) + iθ for r > 0 and |θ| < π. Show that
Ln is a branch of log . This branch of the log function is often called the principle
value branch of log . The line (−∞, 0] where Ln is not defined is called a branch
cut.

Exercise 28.5. Let n
√
w ≡ {z ∈ C : zn = w}. The “function” w → n

√
w is another

example of a multi-valued function. Let h(w) be any branch of n
√
w, that is h is a

continuous function on an open subset Ω of C such that h(w) ∈ n
√
w. Show that h

is holomorphic away from w = 0 and that h0(w) = 1
nh(w)/w.

Exercise 28.6. Let l be any branch of the log function. Define wz ≡ ezl(w) for
all z ∈ C and w ∈ D(l) where D(l) denotes the domain of l. Show that w1/n is a
branch of n

√
w and also show that d

dww
z = zwz−1.

28.3. Contour integrals.

Definition 28.18. Suppose that σ : [a, b] → Ω is a Piecewise C1 function and
f : Ω → C is continuous, we define the contour integral of f along σ (writtenR
σ

f(z)dz) by Z
σ

f(z)dz :=

Z b

a

f(σ(t))σ̇(t)dt.
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Notation 28.19. Given Ω ⊂o C and a C2 map σ : [a, b] × [0, 1] → Ω, let σs :=
σ(·, s) ∈ C1([a, b]→ Ω). In this way, the map σ may be viewed as a map

s ∈ [0, 1]→ σs := σ(·, s) ∈ C2([a, b]→ Ω),

i.e. s→ σs is a path of contours in Ω.

Definition 28.20. Given a region Ω and α, β ∈ C2 ([a, b]→ Ω) , we will write
α ' β in Ω provided there exists a C2 — map σ : [a, b] × [0, 1] → Ω such that
σ0 = α, σ1 = β, and σ satisfies either of the following two conditions:

(1) d
dsσ(a, s) =

d
dsσ(b, s) = 0 for all s ∈ [0, 1], i.e. the end points of the paths

σs for s ∈ [0, 1] are fixed.
(2) σ(a, s) = σ(b, s) for all s ∈ [0, 1], i.e. σs is a loop in Ω for all s ∈ [0, 1].

Proposition 28.21. Let Ω be a region and α, β ∈ C2([a, b],Ω) be two contours
such that α ' β in Ω. Then

Z
α

f(z)dz =

Z
β

f(z)dz for all f ∈ H(Ω).

Proof. Let σ : [a, b] × [0, 1] → Ω be as in Definition 28.20, then it suffices to
show the function

F (s) :=

Z
σs

f(z)dz

is constant for s ∈ [0, 1]. For this we compute:

F 0(s) =
d

ds

Z b

a

f(σ(t, s))σ̇(t, s)dt =

Z b

a

d

ds
[f(σ(t, s))σ̇(t, s)] dt

=

Z b

a

{f 0(σ(t, s))σ0(t, s)σ̇(t, s) + f(σ(t, s))σ̇0(t, s)} dt

=

Z b

a

d

dt
[f(σ(t, s))σ0(t, s)] dt

= [f(σ(t, s))σ0(t, s)]
¯̄̄t=b
t=a

= 0

where the last equality is a consequence of either of the two endpoint assumptions
of Definition 28.20.

Remark 28.22. For those who know about differential forms and such we may
generalize the above computation to f ∈ C1(Ω) using df = ∂fdz + ∂̄fdz̄. We then
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find

F 0(s) =
d

ds

Z b

a

f(σ(t, s))σ̇(t, s)dt =

Z b

a

d

ds
[f(σ(t, s))σ̇(t, s)] dt

=

Z b

a

©£
∂f(σ(t, s))σ0(t, s) + ∂̄f(σ(t, s))σ̄0(t, s)

¤
σ̇(t, s) + f(σ(t, s))σ̇0(t, s)

ª
dt

=

Z b

a

©£
∂f(σ(t, s))σ̇(t, s)σ0(t, s) + ∂̄f(σ(t, s))σ̄t(t, s)σ

0(t, s)
¤
+ f(σ(t, s))σ̇0(t, s)

ª
dt

+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

=

Z b

a

d

dt
[f(σ(t, s))σ0(t, s)] dt+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

= [f(σ(t, s))σ0(t, s)]
¯̄̄t=b
t=a

+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

=

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt.

Integrating this expression on s then shows thatZ
σ1

fdz −
Z
σ0

fdz =

Z 1

0

ds

Z b

a

dt∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s))

=

Z
σ

∂̄(fdz) =

Z
σ

∂̄fdz̄ ∧ dz

We have just given a proof of Green’s theorem in this context.

The main point of this section is to prove the following theorem.

Theorem 28.23. Let Ω ⊂o C be an open set and f ∈ C1(Ω,C), then the following
statements are equivalent:

(1) f ∈ H(Ω),
(2) For all disks D = D(z0, ρ) such that D̄ ⊂ Ω,

(28.12) f(z) =
1

2πi

I
∂D

f(w)

w − z
dw for all z ∈ D.

(3) For all disks D = D(z0, ρ) such that D̄ ⊂ Ω, f(z) may be represented as a
convergent power series

(28.13) f(z) =
∞X
n=0

an(z − z0)
n for all z ∈ D.

In particular f ∈ C∞(Ω,C).
Moreover if D is as above, we have

(28.14) f (n)(z) =
n!

2πi

I
∂D

f(w)

(w − z)
n dw for all z ∈ D

and the coefficients an in Eq. (28.13) are given by

an = f (n)(z0)/n! =
1

2πi

I
∂D

f(w)

(w − z0)n+1
dw.
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Proof. 1) =⇒ 2) For s ∈ [0, 1], let zs = (1− s)z0 + sz, ρs := dist(zs, ∂D) = ρ−
s |z − z0| and σs(t) = zs+ ρse

it for 0 ≤ t ≤ 2π. Notice that σ0 is a parametrization
of ∂D, σ0 ' σ1 in Ω \ {z} , w → f(w)

w−z is in H (Ω \ {z}) and hence by Proposition
28.21, I

∂D

f(w)

w − z
dw =

Z
σ0

f(w)

w − z
dw =

Z
σ1

f(w)

w − z
dw.

Now let τs(t) = z+sρ1e
it for 0 ≤ t ≤ 2π and s ∈ (0, 1]. Then τ1 = σ1 and τ1 ' τs in

Ω \ {z} and so again by Proposition 28.21,I
∂D

f(w)

w − z
dw =

Z
σ1

f(w)

w − z
dw =

Z
τs

f(w)

w − z
dw

=

Z 2π

0

f(z + sρ1e
it)

sρ1eit
isρ1e

itdt

= i

Z 2π

0

f(z + sρ1e
it)dt→ 2πif(z) as s ↓ 0.

2) =⇒ 3) By 2) and Eq. (28.10)

f(z) =
1

2πi

I
∂D

f(w)

w − z
dw

=
1

2πi

I
∂D

f(w)
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

ndw

=
1

2πi

∞X
n=0

ÃI
∂D

f(w)

µ
1

w − z0

¶n+1
dw

!
(z − z0)

n.

(The reader should justify the interchange of the sum and the integral.) The last
equation proves Eq. (28.13) and shows that

an =
1

2πi

I
∂D

f(w)

(w − z0)n+1
dw.

Also using Theorem 28.13 we may differentiate Eq. (28.12) repeatedly to find

(28.15) f (n)(z) =
n!

2πi

I
∂D

f(w)

(w − z)
n+1 dw for all z ∈ D

which evaluated at z = z0 shows that an = f (n)(z0)/n!.
3) =⇒ 1) This follows from Corollary 28.14 and the fact that being complex

differentiable is a local property.
The proof of the theorem also reveals the following corollary.

Corollary 28.24. If f ∈ H(Ω) then f 0 ∈ H(Ω) and by induction f (n) ∈ H(Ω)
with f (n) defined as in Eq. (28.15).

Corollary 28.25 (Cauchy Estimates). Suppose that f ∈ H(Ω) where Ω ⊂o C and
suppose that D(z0, ρ) ⊂ Ω, then

(28.16)
¯̄̄
f (n)(z0)

¯̄̄
≤ n!

ρn
sup

|ξ−z0|=ρ
|f(ξ)|.
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Proof. From Eq. (28.15) evaluated at z = z0 and letting σ(t) = z0 + ρeit for
0 ≤ t ≤ 2π, we find

f (n)(z0) =
n!

2πi

I
∂D

f(w)

(w − z0)
n+1 dw =

n!

2πi

Z
σ

f(w)

(w − z0)
n+1 dw

=
n!

2πi

Z 2π

0

f(z0 + ρeit)

(ρeit)
n+1 iρeitdt

=
n!

2πρn

Z 2π

0

f(z0 + ρeit)

eint
dt.(28.17)

Therefore,¯̄̄
f (n)(z0)

¯̄̄
≤ n!

2πρn

Z 2π

0

¯̄̄̄
f(z0 + ρeit)

eint

¯̄̄̄
dt =

n!

2πρn

Z 2π

0

¯̄
f(z0 + ρeit)

¯̄
dt

≤ n!

ρn
sup

|ξ−z0|=ρ
|f(ξ)|.

Exercise 28.7. Show that Theorem 28.13 is still valid with conditions 2) and 3) in
the hypothesis being replaced by: there exists G ∈ L1(X,µ) such that | |g(z, x)| ≤
G(x).
Hint: Use the Cauchy estimates.

Corollary 28.26 ( Liouville’s Theorem). If f ∈ H(C) and f is bounded then f is
constant.

Proof. This follows from Eq. (28.16) with n = 1 and the letting n→∞ to find
f 0(z0) = 0 for all z0 ∈ C.
Corollary 28.27 (Fundamental theorem of algebra). Every polynomial p(z) of
degree larger than 0 has a root in C.

Proof. Suppose that p(z) is polynomial with no roots in z. Then f(z) = 1/p(z)
is a bounded holomorphic function and hence constant. This shows that p(z) is a
constant, i.e. p has degree zero.

Definition 28.28. We say that Ω is a region if Ω is a connected open subset of
C.

Corollary 28.29. Let Ω be a region and f ∈ H(Ω) and Z(f) = f−1({0}) denote
the zero set of f. Then either f ≡ 0 or Z(f) has no accumulation points in Ω. More
generally if f, g ∈ H(Ω) and the set {z ∈ Ω : f(z) = g(z)} has an accumulation
point in Ω, then f ≡ g.

Proof. The second statement follows from the first by considering the function
f −g. For the proof of the first assertion we will work strictly in Ω with the relative
topology.
Let A denote the set of accumulation points of Z(f) (in Ω). By continuity of f,

A ⊂ Z(f) and A is a closed49 subset of Ω with the relative topology. The proof

49Recall that x ∈ A iff V 0
x ∩ Z 6= ∅ for all x ∈ Vx ⊂o C where V 0

x := Vx \ {x} . Hence x /∈ A
iff there exists x ∈ Vx ⊂o C such that V 0

x ∩ Z = ∅. Since V 0x is open, it follows that V 0
x ⊂ Ac and

thus Vx ⊂ Ac. So Ac is open, i.e. A is closed.
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is finished by showing that A is open and thus A = ∅ or A = Ω because Ω is
connected.
Suppose that z0 ∈ A, and express f(z) as its power series expansion

f(z) =
∞X
n=0

an(z − z0)
n

for z near z0. Since 0 = f(z0) it follows that a0 = 0. Let zk ∈ Z(f) \ {z0} such that
lim zk = z0. Then

0 =
f(zk)

zk − z0
=
∞X
n=1

an(zk − z0)
n−1 → a1 as k →∞

so that f(z) =
P∞

n=2 an(z − z0)
n. Similarly

0 =
f(zk)

(zk − z0)
2 =

∞X
n=2

an(zk − z0)
n−2 → a2 as k →∞

and continuing by induction, it follows that an ≡ 0, i.e. f is zero in a neighborhood
of z0.

Definition 28.30. For z ∈ C, let

cos(z) =
eiz + eiz

2
and sin(z) =

eiz − eiz

2i
.

Exercise 28.8. Show the these formula are consistent with the usual definition of
cos and sin when z is real. Also shows that the addition formula in Exercise 28.2
are valid for θ, α ∈ C. This can be done with no additional computations by making
use of Corollary 28.29.

Exercise 28.9. Let

f(z) :=
1√
2π

Z
R
exp(−1

2
x2 + zx)dm(x) for z ∈ C.

Show f(z) = exp( 12z
2) using the following outline:

(1) Show f ∈ H(Ω).
(2) Show f(z) = exp( 12z

2) for z ∈ R by completing the squares and using the
translation invariance of m. Also recall that you have proved in the first
quarter that f(0) = 1.

(3) Conclude f(z) = exp( 12z
2) for all z ∈ C using Corollary 28.29.

Corollary 28.31 (Mean vaule property). Let Ω ⊂o C and f ∈ H(Ω), then f
satisfies the mean value property

(28.18) f(z0) =
1

2π

Z 2π

0

f(z0 + ρeiθ)dθ

which holds for all z0 and ρ ≥ 0 such that D(z0, ρ) ⊂ Ω.
Proof. Take n = 0 in Eq. (28.17).

Proposition 28.32. Suppose that Ω is a connected open subset of C. If f ∈ H(Ω)
is a function such that |f | has a local maximum at z0 ∈ Ω, then f is constant.
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Proof. Let ρ > 0 such that D̄ = D(z0, ρ) ⊂ Ω and |f(z)| ≤ |f(z0)| =: M
for z ∈ D̄. By replacing f by eiθf with an appropriate θ ∈ R we may assume
M = f(z0). Letting u(z) = Re f(z) and v(z) = Im f(z), we learn from Eq. (28.18)
that

M = f(z0) = Re f(z0) =
1

2π

Z 2π

0

u(z0 + ρeiθ)dθ

≤ 1

2π

Z 2π

0

min(u(z0 + ρeiθ), 0)dθ ≤M

since
¯̄
u(z0 + ρeiθ)

¯̄ ≤ ¯̄f(z0 + ρeiθ)
¯̄ ≤ M for all θ. From the previous equation it

follows that

0 =

Z 2π

0

©
M −min(u(z0 + ρeiθ), 0)

ª
dθ

which in turn implies that M = min(u(z0 + ρeiθ), 0), since θ → M − min(u(z0 +
ρeiθ), 0) is positive and continuous. So we have proved M = u(z0 + ρeiθ) for all θ.
Since

M2 ≥ ¯̄f(z0 + ρeiθ)
¯̄2
= u2(z0 + ρeiθ) + v2(z0 + ρeiθ) =M2 + v2(z0 + ρeiθ),

we find v(z0 + ρeiθ) = 0 for all θ. Thus we have shown f(z0 + ρeiθ) = M for all θ
and hence by Corollary 28.29, f(z) =M for all z ∈ Ω.
The following lemma makes the same conclusion as Proposition 28.32 using the

Cauchy Riemann equations. This Lemma may be skipped.

Lemma 28.33. Suppose that f ∈ H(D) where D = D(z0, ρ) for some ρ > 0. If
|f(z)| = k is constant on D then f is constant on D.

Proof. If k = 0 we are done, so assume that k > 0. By assumption

0 = ∂k2 = ∂ |f |2 = ∂(f̄f) = ∂f̄ · f + f̄∂f

= f̄∂f = f̄f 0

wherein we have used

∂f̄ =
1

2
(∂x − i∂y) f̄ =

1

2
(∂x + i∂y) f(z) = ∂̄f = 0

by the Cauchy Riemann equations. Hence f 0 = 0 and f is constant.

Corollary 28.34 (Maximum modulous principle). Let Ω be a bounded region and
f ∈ C(Ω) ∩ H(Ω). Then for all z ∈ Ω, |f(z)| ≤ sup

z∈∂Ω
|f(z)|. Furthermore if there

exists z0 ∈ Ω such that |f(z0)| = sup
z∈∂Ω

|f(z)| then f is constant.

Proof. If there exists z0 ∈ Ω such that |f(z0)| = maxz∈∂Ω |f(z)|, then Proposi-
tion 28.32 implies that f is constant and hence |f(z)| = sup

z∈∂Ω
|f(z)|. If no such z0

exists then |f(z)| ≤ sup
z∈∂Ω

|f(z)| for all z ∈ Ω̄.

28.4. Weak characterizations of H(Ω). The next theorem is the deepest theo-
rem of this section.

Theorem 28.35. Let Ω ⊂o C and f : Ω → C is a function which is complex
differentiable at each point z ∈ Ω. Then H

∂T

f(z)dz = 0 for all solid triangles T ⊂ Ω.
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Figure 49. Spliting T into four similar triangles of equal size.

Proof. Write T = S1 ∪ S2 ∪ S3 ∪ S4 as in Figure 49 below.
Let T1 ∈ {S1, S2, S3, S4} such that |

R
∂T

f(z)dz| = max{| R
∂Si

f(z)dz| : i =

1, 2, 3, 4}, then

|
Z
∂T

f(z)dz| = |
4X

i=1

Z
∂Si

f(z)dz| ≤
4X
i=1

|
Z
∂Si

f(z)dz| ≤ 4|
Z
∂T1

f(z)dz|.

Repeating the above argument with T replaced by T1 again and again, we find by
induction there are triangles {Ti}∞i=1 such that

(1) T ⊇ T1 ⊇ T2 ⊇ T3 ⊇ . . .
(2) c(∂Tn) = 2

−nc(∂T ) where c(∂T ) denotes the length of the boundary of T,
(3) diam(Tn) = 2−n diam(T ) and

(28.19) |
Z
∂T

f(z)dz| ≤ 4n|
Z
∂Tn

f(z)dz|.

By finite intersection property of compact sets there exists z0 ∈
∞T
n=1

Tn. Because

f(z) = f(z0) + f 0(z0)(z − z0) + o(z − z0)

we find¯̄̄̄
¯̄4n Z

∂Tn

f(z)dz

¯̄̄̄
¯̄ = 4n

¯̄̄̄
¯̄ Z
∂Tn

f(z0)dz +

Z
∂Tn

f 0(z0)(z − z0)dz +

Z
∂Tn

o(z − z0)dz

¯̄̄̄
¯̄

= 4n

¯̄̄̄
¯̄ Z
∂Tn

o(z − z0)dz

¯̄̄̄
¯̄ ≤ C�n4

n

Z
∂Tn

|z − z0| d|z|
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where �n → 0 as n→∞. SinceZ
∂Tn

|z − z0| d|z| ≤ diam(Tn)c(∂Tn) = 2−ndiam(T )2−nc(∂T ) = 4−ndiam(T )c(∂T )

we see

4n

¯̄̄̄
¯̄ Z
∂Tn

f(z)dz

¯̄̄̄
¯̄ ≤ C�n4

n4−ndiam(T )c(∂T ) = C�n → 0 as n→∞.

Hence by Eq. (28.19),
R
∂T

f(z)dz = 0.

Theorem 28.36 (Morera’s Theorem). Suppose that Ω ⊂o C and f ∈ C(Ω) is a
complex function such that

(28.20)
Z
∂T

f(z)dz = 0 for all solid triangles T ⊂ Ω,

then f ∈ H(Ω).

Proof. Let D = D(z0, ρ) be a disk such that D̄ ⊂ Ω and for z ∈ D let

F (z) =

Z
[z0,z]

f(ξ)dξ

where [z0, z] is by definition the contour, σ(t) = (1 − t)z0 + tz for 0 ≤ t ≤ 1. For
z, w ∈ D we have, using Eq. (28.20),

F (w)− F (z) =

Z
[z,w]

f(ξ)dξ =

Z 1

0

f(z + t(w − z))(w − z)dt

= (w − z)

Z 1

0

f(z + t(w − z))dt.

From this equation and the dominated convergence theorem we learn that

F (w)− F (z)

w − z
=

Z 1

0

f(z + t(w − z))dt→ f(z) as w → z.

Hence F 0 = f so that F ∈ H(D). Corollary 28.24 now implies f = F 0 ∈ H(D).
Since D was an arbitrary disk contained in Ω and the condition for being in H(Ω)
is local we conclude that f ∈ H(Ω).
The method of the proof above also gives the following corollary.

Corollary 28.37. Suppose that Ω ⊂o C is convex open set. Then for every f ∈
H(Ω) there exists F ∈ H(Ω) such that F 0 = f. In fact fixing a point z0 ∈ Ω, we
may define F by

F (z) =

Z
[z0,z]

f(ξ)dξ for all z ∈ Ω.

Exercise 28.10. Let Ω ⊂o C and {fn} ⊂ H(Ω) be a sequence of functions such
that f(z) = limn→∞ fn(z) exists for all z ∈ Ω and the convergence is uniform on
compact subsets of Ω. Show f ∈ H(Ω) and f 0(z) = limn→∞ f 0n(z).
Hint: Use Morera’s theorem to show f ∈ H(Ω) and then use Eq. (28.14) with

n = 1 to prove f 0(z) = limn→∞ f 0n(z).



518 BRUCE K. DRIVER†

Theorem 28.38. Let Ω ⊂o C be an open set. Then

(28.21) H(Ω) =

½
f : Ω→ C such that

df(z)

dz
exists for all z ∈ Ω

¾
.

In other words, if f : Ω → C is complex differentiable at all points of Ω then f 0 is
automatically continuous and hence C∞ by Theorem 28.23!!!

Proof. Combine Theorems 28.35 and 28.36.

Corollary 28.39 (Removable singularities). Let Ω ⊂o C, z0 ∈ Ω and f ∈ H(Ω \
{z0}). If lim supz→z0 |f(z)| < ∞, i.e. sup

0<|z−z0|<�
|f(z)| < ∞ for some � > 0, then

lim
z→z0

f(z) exists. Moreover if we extend f to Ω by setting f(z0) = lim
z→z0

f(z), then

f ∈ H(Ω).

Proof. Set

g(z) =

½
(z − z0)

2f(z) for z ∈ Ω \ {z0}
0 for z = z0

.

Then g0(z0) exists and is equal to zero. Therefore g0(z) exists for all z ∈ Ω and
hence g ∈ H(Ω).We may now expand g into a power series using g(z0) = g0(z0) = 0

to learn g(z) =
∞P
n=2

an(z − z0)
n which implies

f(z) =
g(z)

(z − z0)2
=
∞X
n=0

an(z − z0)
n−2 for 0 < |z − z0| < �

Therefore, limz→z0 f(z) = a2 exists. Defining f(z0) = a2 we have f(z) =
∞P
n=0

an(z−
z0)

n−2 for z near z0. This shows that f is holomorphic in a neighborhood of z0 and
since f was already holomorphic away from z0, f ∈ H(Ω).

Exercise 28.11. Show

(28.22)
Z 1

−1

sinMx

x
dx =

Z M

−M

sinx

x
dx→ π as M →∞

using the following method.50

(1) Show that

g(z) =

½
z−1 sin z for z 6= 0

1 if z = 0

defines a holomorphic function on C.
(2) Let ΓM denote the straight line path from −M to −1 along the real axis

followed by the contour eiθ for θ going from π to 2π and then followed by
the straight line path from 1 to M. Explain whyZ M

−M

sinx

x
dx =

Z
ΓM

sin z

z
dz

µ
=
1

2i

Z
ΓM

eiz

z
dz − 1

2i

Z
ΓM

e−iz

z
dz.

¶

50In previous notes we evaluated this limit by real variable techniques based on the identity
that 1

x
=
R∞
0 e−λxdλ for x > 0.
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(3) Let C+M denote the pathMeiθ with θ going from 0 to π and C−M denote the
path Meiθ with θ going from π to 2π. By deforming paths and using the
Cauchy integral formula, showZ

ΓM+C
+
M

eiz

z
dz = 2πi and

Z
ΓM−C−M

e−iz

z
dz = 0.

(4) Show (by writing out the integrals explicitly) that

lim
M→∞

Z
C+
M

eiz

z
dz = 0 = lim

M→∞

Z
C−M

e−iz

z
dz.

(5) Conclude from steps 3. and 4. that Eq. (28.22) holds.

28.5. Summary of Results.

Theorem 28.40. Let Ω ⊂ C be an open subset and f : Ω→ C be a given function.
If f 0(z) exists for all z ∈ Ω, then in fact f has complex derivatives to all orders and
hence f ∈ C∞(Ω). Set H(Ω) to be the set of holomorphic functions on Ω.
Now assume that f ∈ C0(Ω). Then the following are equivalent:
(1) f ∈ H(Ω)
(2)

H
∂T

f(z)dz = 0 for all triangles T ⊂ Ω.
(3)

H
∂R

f(z)dz = 0 for all “nice” regions R ⊂ Ω.
(4)

H
σ
f(z)dz = 0 for all closed paths σ in Ω which are null-homotopic.

(5) f ∈ C1(Ω) and ∂̄f ≡ 0 or equivalently if f(x + iy) = u(x, y) + iv(x, y),
then the pair of real valued functions u, v should satisfy"

∂
∂x − ∂

∂y
∂
∂y

∂
∂x

#·
u
v

¸
=

·
0
0

¸
.

(6) For all closed discs D ⊂ Ω and z ∈ Do,

f(z) =

I
∂D

f(ξ)

ξ − z
dξ.

(7) For all z0 ∈ Ω and R > 0 such that D(z0, R) ⊂ Ω the function f restricted
to D(z0, R) may be written as a power series:

f(z) =
∞X
n=0

an(z − z0)
n for z ∈ D(z0, R).

Furthermore

an = f (n)(z0)/n! =
1

2πi

I
|z−z0|=r

f(z)

(z − z0)n+1
dz,

where 0 < r < R.

Remark 28.41. The operator L =

"
∂
∂x − ∂

∂y
∂
∂y

∂
∂x

#
is an example of an elliptic dif-

ferential operator. This means that if ∂
∂x is replaced by ξ1 and ∂

∂y is replaced by

ξ2 then the “principal symbol” of L, L̂(ξ) ≡
·
ξ1 −ξ2
ξ2 ξ1

¸
, is an invertible matrix

for all ξ = (ξ1, ξ2) 6= 0. Solutions to equations of the form Lf = g where L is an
elliptic operator have the property that the solution f is “smoother” than the forc-
ing function g. Another example of an elliptic differential operator is the Laplacian
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∆ = ∂2

∂x2 +
∂2

∂y2 for which ∆̂(ξ) = ξ21 + ξ22 is invertible provided ξ 6= 0. The wave

operator ¤ = ∂2

∂x2 − ∂2

∂y2 for which ¤̂(ξ) = ξ21 − ξ22 is not elliptic and also does not
have the smoothing properties of an elliptic operator.

28.6. Exercises.

(1) Set ez =
P∞

n=0
zn

n! . Show that e
z = ex(cos(y) + i sin(y)), and that ∂ez =

d
dz e

z = ez and ∂̄ez = 0.
(2) Find all possible solutions to the equation ez = w where z and w are

complex numbers. Let log(w) ≡ {z : ez = w}. Note that log : C →
(subsets of C). One often writes log : C → C and calls log a multi-valued
function. A continuous function l defined on some open subset Ω of C is
called a branch of log if l(w) ∈ log(w) for all w ∈ Ω. Use a result from class
to show any branch of log is holomorphic on its domain of definition and
that l0(z) = 1/z for all z ∈ Ω.

(3) Let Ω = {w = reiθ ∈ C : r > 0, and − π < θ < π} = C \ (−∞, 0], and
define Ln : Ω → C by Ln(reiθ) ≡ ln(r) + iθ for r > 0 and |θ| < π. Show
that Ln is a branch of log . This branch of the log function is often called
the principle value branch of log . The line (−∞, 0] where Ln is not defined
is called a branch cut. We will see that such a branch cut is necessary. In
fact for any continuous “simple” curve σ joining 0 and ∞ there will be a
branch of the log - function defined on the complement of σ.

(4) Let n
√
w ≡ {z ∈ C : zn = w}. The “function” w→ n

√
w is another example

of a multivalued function. Let h(w) be any branch of n
√
w, that is h is a

continuous function on an open subset Ω of C such that h(w) ∈ n
√
w. Show

that h is holomorphic away from w = 0 and that h0(w) = 1
nh(w)/w.

(5) Let l be any branch of the log function. Define wz ≡ ezl(w) for all z ∈ C
and w ∈ D(l) where D(l) denotes the domain of l. Show that w1/n is a
branch of n

√
w and also show that d

dww
z = zwz−1.

(6) Suppose that (X,µ) is a measure space and that f : Ω × X → C is a
function (Ω is an open subset of C) such that for all w ∈ X the function
z → f(z, w) is in H(Ω) and

R
X
|f(z, w)|dµ(w) < ∞ for all z ∈ Ω (in fact

one z ∈ Ω is enough). Also assume there is a function g ∈ L1(dµ) such
that |∂f(z,w)∂z | ≤ g(w) for all (z, w) ∈ Ω×X. Show that the function h(z) ≡R
X
f(z, w)dµ(w) is holomorphic on X and that h0(z) =

R
X

∂f(z,w)
∂z dµ(w)

for all z ∈ X. Hint: use the Hahn Banach theorem and the mean valued
theorem to prove the following estimate:

|f(z + δ, w)− f(z, w)

δ
| ≤ g(w)

all δ ∈ C sufficiently close to but not equal to zero.
(7) Assume that f is a C1 function on C. Show that ∂[f(z̄)] = (∂̄f)(z̄). (By the

way, a C1−function f on C is said to be anti-holomorphic if ∂f = 0. This
problem shows that f is anti-holomorphic iff z → f(z̄) is holomorphic.)

(8) Let U ⊂ C be connected and open. Show that f ∈ H(U) is constant on U
iff f 0 ≡ 0 on U.
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(9) Let f ∈ H(U) and R ⊂ U be a “nice” closed region (See Figure To be
supplied later.). Use Green’s theorem to show

R
∂R

f(z)dz = 0, whereZ
∂R

f(z)dz ≡
nX
i=1

Z
σi

f(z)dz,

and {σi}ni=1 denote the components of the boundary appropriately oriented,
see the Figure 1.

(10) The purpose of this problem is to understand the Laurent Series of a
function holomorphic in an annulus. Let 0 ≤ R0 < r0 < r1 < R1 ≤ ∞,
z0 ∈ C, U ≡ {z ∈ C|R0 < |z − z0| < R1}, and A ≡ {z ∈ C|r0 < |z − z0| <
r1}.
a): Use the above problem (or otherwise) and the simple form of the
Cauchy integral formula proved in class to show if g ∈ H(U)∩C1(U),
then for all z ∈ A, g(z) = 1

2πi

R
∂A

g(w)
w−zdw. Hint: Apply the above

problem to the function f(w) = g(w)
w−z with a judiciously chosen region

R ⊂ U.
b): Mimic the proof (twice, one time for each component of ∂A) of the
Taylor series done in class to show if g ∈ H(U) ∩ C1(U), then

g(z) =
∞X

n=−∞
an(z − z0)

n, ∀z ∈ A,

where

an =
1

2πi

Z
σ

g(w)

(w − z)n+1
dw,

and σ(t) = ρeit (0 ≤ t ≤ 2π) and ρ is any point in (R0, R1).
c): Suppose that R0 = 0, g ∈ H(U) ∩ C1(U), and g is bounded near z0.
Show in this case that a−n ≡ 0 for all n > 0 and in particular conclude
that g may be extended uniquely to z0 in such a way that g is complex
differentiable at z0.

(11) A Problem from Berenstein and Gay, “Complex Variables: An introduc-
tion,” Springer, 1991, p. 163.
Notation and Conventions: Let Ω denote an open subset of RN . Let

L = ∆ =
PN

i=1
∂2

∂x2i
be the Laplacian on C2(Ω,R).

(12) (Weak Maximum Principle)
a): Suppose that u ∈ C2(Ω,R) such that Lu(x) > 0 ∀x ∈ Ω. Show that u
can have no local maximum in Ω. In particular if Ω is a bounded open
subset of RN and u ∈ C(Ω̄,R) ∩ C2(Ω,R) then u(x) < maxy∈∂Ω u(y)
for all x ∈ Ω.

b): (Weak maximum principle) Suppose that Ω is now a bounded open
subset of RN and that u ∈ C(Ω̄,R) ∩ C2(Ω,R) such that Lu ≥ 0 on
Ω. Show that u(y) ≤ M :≡ maxx∈∂Ω u(x) for all y ∈ Ω. (Hint: apply
part a) to the function u�(x) = u(x) + �|x|2 where � > 0 and then let
�→ 0.)

Remark 28.42 (Fact:). Assume now that Ω is connected. It is possible to
prove, using just calculus techniques, the “strong maximum principle”
which states that if u as in part b) of the problem above has an interior
maximum then u must be a constant. (One may prove this result when the
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dimension n = 2 by using the mean value property of harmonic functions
discussed in Chapter 11 of Rudin.) The direct calculus proof of this fact
is elementary but tricky. If you are interested see Protter and Weinberger,
“Maximum Principles in Differential Equations”, p.61—.

(13) (Maximum modulus principle) Prove the maximum modulus principle us-
ing the strong maximum principle. That is assume that Ω is a con-
nected bounded subset of C, and that f ∈ H(Ω) ∩ C(Ω̄,C). Show that
|f(z)| ≤ maxξ∈∂Ω |f(ξ)| for all z ∈ Ω and if equality holds for some z ∈ Ω
then f is a constant.
Hint: Assume for contradiction that |f(z)| has a maximum greater than

zero at z0 ∈ Ω. Write f(z) = eg(z) for some analytic function g in a
neighborhood of z0. (We have shown such a function must exist.) Now use
the strong maximum principle on the function u = Re(g).

28.7. Problems from Rudin.
p. 229:: #17 ∗ .
Chapter 10:: 2, 3, 4, 5
Chapter 10:: 8-13, 17, 18-21, 26, 30 (replace the word “show” by “convince
yourself that” in problem 30.)

Remark 28.43. Remark. Problem 30. is related to the fact that the fundamental
group of Ω is not commutative, whereas the first homology group of Ω and is in
fact the abelianization of the fundamental group.

Chapter 11:: 1, 2, 5, 6,
Chapter 12:: 2 (Hint: use the fractional linear transformation

Ψ(z) ≡ i
z − i

z + i

which maps Π+ → U. conformally.), 3, 4 (Hint: on 4a, apply Maxi-
mum modulus principle to 1/f.), 5, 11 (Hint: Choose α > 1, z0 ∈ Ω
such that |f(z0)| < √α and δ ∈ (0, 1) such that D̄ ≡ D(z0, δ) ⊂ Ω
and |f(z)| ≤ αM on D̄. For R > δ let ΩR ≡ (Ω ∩ D(z0, R)) \ D̄.
Show that gn(z) ≡ (f(z))n/(z − z0) satisfies gn ∈ H(ΩR) ∩ C0(Ω̄R) and
|gn| ≤ max{αnMn/δ,Bn/R} on ∂ΩR. Now apply the maximum modulus
principle to gn, then let R→∞, then n→∞, and finally let α ↓ 1.)
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29. Littlewood Payley Theory

Lemma 29.1 (Hadamard’s three line lemma). Let S be the vertical strip

S = {z : 0 < Re(z) < 1} = (0, 1)× iR

and φ(z) be a continuous bounded function on S̄ = [0, 1]× iR which is holomorphic
on S. If Ms := supRe(z)=s |φ(z)|, then Ms ≤M1−s

0 Ms
1 . (In words this says that the

maximum of φ(z) on the line Re(z) = s is controlled by the maximum of φ(z) on
the lines Re(z) = 0 and Re(z) = 1. Hence the reason for the naming this the three
line lemma.

Proof. Let N0 > M0 and N1 > M1
51 and � > 0 be given. For z = x+ iy ∈ S̄,

max(N0, N1) ≥
¯̄
N1−z
0 Nz

1

¯̄
= N1−x

0 Nx
1 ≥ min(N0, N1)

and Re(z2 − 1) = (x2 − 1− y2) ≤ 0 and Re(z2 − 1)→ −∞ as z →∞ in the strip
S. Therefore,

φ�(z) :=
φ(z)

N1−z
0 Nz

1

exp(�(z2 − 1)) for z ∈ S̄

is a bounded continuous function S̄, φ� ∈ H(S) and φ�(z) → 0 as z → ∞ in the
strip S. By the maximum modulus principle applied to S̄B := [0, 1]× i[−B,B] for
B sufficiently large, shows that

max
©|φ�(z)| : z ∈ S̄

ª
= max

©|φ�(z)| : z ∈ ∂S̄
ª
.

For z = iy we have

|φ�(z)| =
¯̄̄̄

φ(z)

N1−z
0 Nz

1

exp(�(z2 − 1))
¯̄̄̄
≤ |φ(iy)|

N0
≤ M0

N0
< 1

and for z = 1 + iy,

|φ�(z)| ≤ |φ(1 + iy)|
N1

≤ M1

N1
< 1.

Combining the last three equations implies max
©|φ�(z)| : z ∈ S̄

ª
< 1. Letting � ↓ 0

then shows that ¯̄̄̄
φ(z)

N1−z
0 Nz

1

¯̄̄̄
≤ 1 for all z ∈ S̄

or equivalently that

|φ(z)| ≤ ¯̄N1−z
0 Nz

1

¯̄
= N1−x

0 Nx
1 for all z = x+ iy ∈ S̄.

Since N0 > M0 and N1 > M1 were arbitrary, we conclude that

|φ(z)| ≤ ¯̄M1−z
0 Mz

1

¯̄
=M1−x

0 Mx
1 for all z = x+ iy ∈ S̄

from which it follows that Mx ≤M1−x
0 Mx

1 for all x ∈ (0, 1).
As a first application we have.

Proposition 29.2. Suppose that A and B are complex n×n matrices with A > 0.
(A ≥ 0 can be handled by a limiting argument.) Suppose that kABk ≤ 1 and

kBAk ≤ 1, then
°°°√AB√A°°° ≤ 1 as well.

51If M0 and M1 are both positive, we may take N0 =M0 and N1 =M1.



524 BRUCE K. DRIVER†

Proof. Let F (z) = AzBA1−z for z ∈ S, where Azf := λz = ez lnλf when
Af = λf. Then one checks that F is holomorphic and

F (x+ iy) = Ax+iyBA1−x−iy = AiyF (x)A−iy

so that
kF (x+ iy)k = kF (x)k .

Hence F is bounded on S and

kF (0 + iy)k = kF (0)k = kBAk ≤ 1, and
kF (1 + iy)k = kF (1)k = kABk ≤ 1.

So by the three lines lemma (and the Hahn Banach theorem) kF (z)k ≤ 1 for all
z ∈ S. Taking z = 1/2 then proves the proposition.

Theorem 29.3 (Riesz-Thorin Interpolation Theorem). Suppose that (X,M, µ)
and (Y,N , ν) are σ— finite measure spaces and that 1 ≤ pi, qi ≤ ∞ for i = 0, 1. For
0 < s < 1, let ps and qs be defined by

1

ps
=
1− s

p0
+

s

p1
and

1

qs
=
1− s

q0
+

s

q1
.

If T is a linear map from Lp0(µ) + Lp1(µ) to Lq0(ν) + Lq1(ν) such that

kTkp0→q0
≤M0 <∞ and kTkp1→q1

≤M1 <∞
then

kTkps→qs
≤Ms =M

(1−s)
0 Ms

1 <∞.

Alternatively put we are trying to show

(29.1) kTfkqs ≤Ms kfkps for all s ∈ (0, 1) and f ∈ Lps(µ).

given

kTfkq0 ≤M0 kfkp0 for all f ∈ Lp0(µ) and

kTfkq1 ≤M1 kfkp1 for all f ∈ Lp1(µ).

Proof. Let us first give the main ideas of the proof. At the end we will fill in
some of the missing technicalities. (See Theorem 6.27 in Folland for the details.)
Eq. (29.1) is equivalent to showing¯̄̄̄Z

Tfgdν

¯̄̄̄
≤Ms

for all f ∈ Lps(µ) such that kfkps = 1 and for all g ∈ Lq
∗
s such that kgkq∗s = 1,

where q∗s is the conjugate exponent to ps. Define pz and q∗z by

1

pz
=
1− z

p0
+

z

p1
and

1

q∗z
=
1− z

q∗0
+

z

q∗1
and let

fz = |f |ps/pz f

|f | and gz = |g|q
∗
s/q
∗
z
g

|g| .

Writing z = x+ iy we have |fz| = |f |ps/px and |gz| = |g|q
∗
s/q
∗
x so that

(29.2) kfzkLpx = 1 and kgzkLq∗x = 1
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for all z = x+ iy with 0 < x < 1. Let

F (z) := hTfz, gzi =
Z
Y

Tfz · gzdν

and assume that f and g are simple functions. It is then routine to show F ∈
Cb(S̄) ∩H(S) where S is the strip S = (0, 1) + iR. Moreover using Eq. (29.2),

|F (it)| = |hTfit, giti| ≤M0 kfitkp0 kgitkq∗0 =M0

and
|F (1 + it)| = |hTf1+it, g1+iti| ≤M1 kf1+itkp1 kg1+itkq∗1 =M1

for all t ∈ R. By the three lines lemma, it now follows that
|hTfz, gzi| = |F (z)| ≤M1−Re z

0 MRe z
1

and in particular taking z = s using fs = f and gs = g gives

|hTf, gi| = F (s) ≤M1−s
0 Ms

1 .

Taking the supremum over all simple g ∈ Lq
∗
s such that kgkq∗s = 1 shows kTfkLqs ≤

M1−s
0 Ms

1 for all simple f ∈ Lps(µ) such that kfkps = 1 or equivalently that
(29.3) kTfkLqs ≤M1−s

0 Ms
1 kfkps for all simple f ∈ Lps(µ).

Now suppose that f ∈ Lps and fn are simple functions in Lps such that |fn| ≤ |f |
and fn → f point wise as n→∞. Set E = {|f | > 1} , g = f1E h = f1cE , gn = fn1E
and hn = fn1Ec . By renaming p0 and p1 if necessary we may assume p0 < p1. Under
this hypothesis we have g, gn ∈ Lp0 and h, hn ∈ Lp1 and f = g+h and fn = gn+hn.
By the dominated convergence theorem

kfn − fkpt → 0, kgn − gkp0 → 0 and kh− hnkp1 → 0

as n → ∞. Therefore kTgn − Tgkq0 → 0 and kThn − Thkq1 → 0 as n → ∞.
Passing to a subsequence if necessary, we may also assume that Tgn− Tg → 0 and
Thn−Th→ 0 a.e. as n→∞. It then follows that Tfn = Tgn+Thn → Tg+Th =
Tf a.e. as n→∞. This result, Fatou’s lemma, the dominated convergence theorem
and Eq. (29.3) then gives

kTfkqs ≤ lim inf
n→∞ kTfnkqs ≤ lim inf

n→∞M1−s
0 Ms

1 kfnkps =M1−s
0 Ms

1 kfkps.

29.0.1. Applications. For the first application, we will give another proof of Theo-
rem 11.19.
Proof. Proof of Theorem 11.19. The case q = 1 is simple, namely

kf ∗ gkr =
°°°°Z

Rn
f(·− y)g(y)dy

°°°°
r

≤
Z
Rn
kf(·− y)kr |g(y)| dy

= kfkr kgk1
and by interchanging the roles of f and g we also have

kf ∗ gkr = kfk1 kgkr .
Letting Cgf = f ∗ g, the above comments may be reformulated as saying

kCgk1→p ≤ kgkp .
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Another easy case is when r =∞, since

|f ∗ g(x)| =
¯̄̄̄Z
Rn

f(x− y)g(y)dy

¯̄̄̄
≤ kf(x− ·)kp kgkq = kfkp kgkq .

which may be formulated as saying that

kCgkq→∞ ≤ kgkp .
By the Riesz Thorin interpolation with p0 = 1, q0 = p, p1 = q and q1 =∞,

kCgkps→qs
≤ kCgk1−sp→∞ kCgks1→q ≤ kgk1−sp kgksp ≤ kgkp

for all s ∈ (0, 1) which is equivalent to
kf ∗ gkqs ≤ kfkps kgkp

Since

p−1s = (1− s) + sq−1 and q−1s = (1− s)p−1 + s∞−1 = (1− s)p−1,

and therefore if a = qs and b = ps then

b−1 + p−1 = (1− s) + sq−1 + p−1

= (1− s) + s(q−1 + p−1) + (1− s)p−1

= 1 + (1− s)p−1 = 1 + a−1.

Example 29.4. By the Riesz Thorin interpolation theorem we conclude that F :
Lp → Lq is bounded for all p ∈ [1, 2] where q = p∗ is the conjugate exponent to p.
Indeed, in the notation of the Riesz Thorin interpolation theorem F : Lps → Lqs is
bounded where

1

ps
=
1− s

1
+

s

2
and

1

qs
=
1− s

∞ +
s

2
=

s

2
,

i.e.
1

ps
+
1

qs
= 1− s+

s

2
+

s

2
= 1.

See Theorem 20.11.

For the next application we will need the following general duality argument.

Lemma 29.5. Suppose that (X,M, µ) and (Y,N , ν) are σ— finite measure spaces
and T : L2(µ) → L2(ν) is a bounded operator. If there exists p, q ∈ [1,∞] and a
constant C <∞ such that

kTgkq ≤ C kgkp for all g ∈ Lp(µ) ∩ L2(µ)
then

kT ∗fkp∗ ≤ C kfkq∗ for all f ∈ Lq
∗
(ν) ∩ L2(ν),

where T ∗ is the L2 — adjoint of T and p∗ and q∗ are the conjugate exponents to p
and q.
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Proof. Suppose that f ∈ Lq
∗
(ν) ∩ L2(ν), then by the reverse Holder inequality

kT ∗fkp∗ = sup
n
|(T ∗f, g)| : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
= sup

n
|(f, Tg)| : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
≤ kfkq∗ sup

n
kTgkq : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
≤ C kfkq∗ .

Lemma 29.6. Suppose that K = {kmn ≥ 0}∞m,n=1 is a symmetric matrix such that

(29.4) M := sup
m

∞X
n=1

kmn = sup
n

∞X
m=1

kmn <∞

and define Ka by (Ka)m =
P

n kmnan when the sum converges. Given p ∈ [1,∞]
and p∗ be the conjugate exponent, then K : cp → cp∗ is bounded kKkp→p∗ ≤M.

Proof. Let Am =
P∞

n=1 kmn =
P∞

n=1 knm. For a ∈ cpÃX
n

kmn |an|
!p

=

Ã
Am

X
n

kmn

Am
|an|

!p

≤ Ap
m

X
n

kmn

Am
|an|p ≤Mp−1X

n

kmn |an|p(29.5)

and henceX
m

ÃX
n

kmn |an|
!p

≤Mp−1X
m

X
n

kmn |an|p =Mp−1X
n

X
m

kmn |an|p

≤Mp kakpcp
which shows K : cp → cp with kKkp→p ≤M. Moreover from Eq. (29.5) we see that

sup
m

X
n

kmn |an| ≤M kakp

which shows that K : cp → c∞ is bounded with kKkp→∞ ≤ M for all p and in
particular for p = 1. By duality it follows that kKk∞→p ≤M as well. This is easy
to check directly as well.
Let p0 = 1 = q1 and p1 =∞ = q0 so that

p−1s = (1− s)1−1 + s∞−1 = (1− s) and q−1s = (1− s)∞−1 + s1−1 = s

so that qs = p∗s. Applying the Riesz-Thorin interpolation theorem shows

kKkps→p∗s
= kKkps→qs

≤M.

The following lemma only uses the case p = 2 which we proved without interpo-
lation.

Lemma 29.7. Suppose that {un} is a sequence in a Hilbert space H, such that: 1)P
n |un|2 < ∞ and 2) there exists constants kmn = knm ≥ 0 satisfying Eq. (29.4)

and
|(um, un)| ≤ kmn|un||um| for all m and n.
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Then v =
P

n un exists and

(29.6) |v|2 ≤M
X
n

|un|2.

Proof. Let us begin by assuming that only a finite number of the {un} are
non-zero. The key point is to prove Eq. (29.6). In this case

|v|2 =
X
m,n

(un, um) ≤
X
m,n

kmn|un||um| = Ka · a

where an = |un|. Now by the above remarks
Ka · a ≤M |a|2 =M

X
a2n =M

X
n

|un|2,

which establishes Eq. (29.6) in this case.
For M < N, let vM,N =

PN
n=M un, then by what we have just proved

|vM,N |2 ≤M
NX

n=M

|un|2 → 0 as M,N →∞.

This shows that v =
P

n un exists. Moreover we have

|v1,N |2 ≤M
NX
n=1

|un|2 ≤M
∞X
n=1

|un|2 .

Letting N →∞ in this last equation shows that Eq. (29.6) holds in general.
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30. Elementary Distribution Theory

Author Friedlander, F. G. (Friedrich Gerard), 1917-
Title Introduction to the theory of distributions
Published Cambridge ; New York : Cambridge University Press, 1998
Edition 2nd ed. / F.G. Friedlander, with additional material by M. Joshi
LOCATION CALL NUMBER STATUS
S&E Stacks QA324 .F74 1998

30.1. Distributions on U ⊂o Rn. Let U be an open subset of Rn and

(30.1) C∞c (U) = ∪K@@UC∞(K)
denote the set of smooth functions on U with compact support in U.

Definition 30.1. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff there is
a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ in C∞(K).

Definition 30.2 (Distributions on U ⊂o Rn). A generalized function T on U ⊂o
Rn is a continuous linear functional on D(U), i.e. T : D(U) → C is linear and
limn→∞hT, φki = 0 for all {φk} ⊂ D(U) such that φk → 0 in D(U). We denote the
space of generalized functions by D0(U).
Proposition 30.3. Let T : D(U)→ C be a linear functional. Then T ∈ D0(U) iff
for all K @@ U, there exist n ∈ N and C <∞ such that

(30.2) |T (φ)| ≤ Cpn(φ) for all φ ∈ C∞(K).

Proof. Suppose that {φk} ⊂ D(U) such that φk → 0 in D(U). Let K be a
compact set such that supp(φk) ⊂ K for all k. Since limk→∞ pn(φk) = 0, it follows
that if Eq. (30.2) holds that limn→∞hT, φki = 0. Conversely, suppose that there is
a compact set K @@ U such that for no choice of n ∈ N and C < ∞, Eq. (30.2)
holds. Then we may choose non-zero φn ∈ C∞(K) such that

|T (φn)| ≥ npn(φn) for all n.

Let ψn = 1
npn(φn)

φn ∈ C∞(K), then pn(ψn) = 1/n → 0 as n → ∞ which shows
that ψn → 0 in D(U). On the other hence |T (ψn)| ≥ 1 so that limn→∞hT, ψni 6= 0.
Alternate Proof:The definition of T being continuous is equivalent to T |C∞(K)

being sequentially continuous for all K @@ U. Since C∞(K) is a metric space,
sequential continuity and continuity are the same thing. Hence T is continuous iff
T |C∞(K) is continuous for all K @@ U. Now T |C∞(K) is continuous iff a bound like
Eq. (30.2) holds.

Definition 30.4. Let Y be a topological space and Ty ∈ D0(U) for all y ∈ Y. We
say that Ty → T ∈ D0(U) as y → y0 iff

lim
y→y0

hTy, φi = hT, φi for all φ ∈ D(U).

30.1.1. Examples of distributions and related computations.

Example 30.5. Let µ be a positive Radon measure on U and f ∈ L1loc(U). Define
T ∈ D0(U) by hTf , φi =

R
U
φfdµ for all φ ∈ D(U). Notice that if φ ∈ C∞(K) then

|hTf , φi| ≤
Z
U

|φf | dµ =
Z
K

|φf | dµ ≤ CK kφk∞
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where CK :=
R
K
|f | dµ <∞. Hence Tf ∈ D0(U). Furthermore, the map

f ∈ L1loc(U)→ Tf ∈ D0(U)
is injective. Indeed, Tf = 0 is equivalent to

(30.3)
Z
U

φfdµ = 0 for all φ ∈ D(U).

for all φ ∈ C∞(K). By the dominated convergence theorem and the usual convolu-
tion argument, this is equivalent to

(30.4)
Z
U

φfdµ = 0 for all φ ∈ Cc(U).

Now fix a compact set K @@ U and φn ∈ Cc(U) such that φn → sgn(f)1K in
L1(µ). By replacing φn by χ(φn) if necessary, where

χ(z) =

½
z if |z| ≤ 1
z
|z| if |z| ≥ 1,

we may assume that |φn| ≤ 1. By passing to a further subsequence, we may assume
that φn → sgn(f)1K a.e.. Thus we have

0 = lim
n→∞

Z
U

φnfdµ =

Z
U

sgn(f)1Kfdµ =

Z
K

|f | dµ.

This shows that |f(x)| = 0 for µ -a.e. x ∈ K. Since K is arbitrary and U is the
countable union of such compact sets K, it follows that f(x) = 0 for µ -a.e. x ∈ U.

The injectivity may also be proved slightly more directly as follows. As before,
it suffices to prove Eq. (30.4) implies that f(x) = 0 for µ — a.e. x. We may
further assume that f is real by considering real and imaginary parts separately.
Let K @@ U and � > 0 be given. Set A = {f > 0} ∩K, then µ(A) <∞ and hence
since all σ finite measure on U are Radon, there exists F ⊂ A ⊂ V with F compact
and V ⊂o U such that µ(V \ F ) < δ. By Uryshon’s lemma, there exists φ ∈ Cc(V )
such that 0 ≤ φ ≤ 1 and φ = 1 on F. Then by Eq. (30.4)

0 =

Z
U

φfdµ =

Z
F

φfdµ+

Z
V \F

φfdµ =

Z
F

φfdµ+

Z
V \F

φfdµ

so that Z
F

fdµ =

¯̄̄̄
¯
Z
V \F

φfdµ

¯̄̄̄
¯ ≤

Z
V \F

|f | dµ < �

provided that δ is chosen sufficiently small by the � — δ definition of absolute con-
tinuity. Similarly, it follows that

0 ≤
Z
A

fdµ ≤
Z
F

fdµ+ � ≤ 2�.

Since � > 0 is arbitrary, it follows that
R
A
fdµ = 0. Since K was arbitrary, we learn

that Z
{f>0}

fdµ = 0

which shows that f ≤ 0 µ — a.e. Similarly, one shows that f ≥ 0 µ — a.e. and hence
f = 0 µ — a.e.
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Example 30.6. Let us now assume that µ = m and write hTf , φi =
R
U
φfdm. For

the moment let us also assume that U = R. Then we have
(1) limM→∞ TsinMx = 0
(2) limM→∞ TM−1 sinMx = πδ0 where δ0 is the point measure at 0.
(3) If f ∈ L1(Rn, dm) with

R
Rn fdm = 1 and f�(x) = �−nf(x/�), then

lim�↓0 Tf� = δ0. As a special case,
consider lim�↓0 �

π(x2+�2) = δ0.

Definition 30.7 (Multiplication by smooth functions). Suppose that g ∈ C∞(U)
and T ∈ D0(U) then we define gT ∈ D0(U) by

hgT, φi = hT, gφi for all φ ∈ D(U).
It is easily checked that gT is continuous.

Definition 30.8 (Differentiation). For T ∈ D0(U) and i ∈ {1, 2, . . . , n} let ∂iT ∈
D0(U) be the distribution defined by

h∂iT, φi = −hT, ∂iφi for all φ ∈ D(U).
Again it is easy to check that ∂iT is a distribution.

More generally if L =
P

|α|≤m aα∂
α with aα ∈ C∞(U) for all α, then LT is the

distribution defined by

hLT, φi = hT,
X
|α|≤m

(−1)|α|∂α (aαφ)i for all φ ∈ D(U).

Hence we can talk about distributional solutions to differential equations of the
form LT = S.

Example 30.9. Suppose that f ∈ L1loc and g ∈ C∞(U), then gTf = Tgf . If further
f ∈ C1(U), then ∂iTf = T∂if . If f ∈ Cm(U), then LTf = TLf .

Example 30.10. Suppose that a ∈ U, then

h∂iδa, φi = −∂iφ(a)
and more generally we have

hLδa, φi =
X
|α|≤m

(−1)|α|∂α (aαφ) (a).

Example 30.11. Consider the distribution T := T|x| for x ∈ R, i.e. take U = R.
Then

d

dx
T = Tsgn(x) and

d2

d2x
T = 2δ0.

More generally, suppose that f is piecewise C1, the

d

dx
Tf = Tf 0 +

X
(f(x+)− f(x−)) δx.
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Example 30.12. Consider T = Tln|x| on D(R). Then

hT 0, φi = −
Z
R
ln |x|φ0(x)dx = − lim

�↓0

Z
|x|>�

ln |x|φ0(x)dx

= − lim
�↓0

Z
|x|>�

ln |x|φ0(x)dx = lim
�↓0

Z
|x|>�

1

x
φ(x)dx− lim

�↓0
[ln �(φ(�)− φ(−�))]

= lim
�↓0

Z
|x|>�

1

x
φ(x)dx.

We will write T 0 = PV 1
x in the future. Here is another formula for T

0,

hT 0, φi = lim
�↓0

Z
1≥|x|>�

1

x
φ(x)dx+

Z
|x|>1

1

x
φ(x)dx

= lim
�↓0

Z
1≥|x|>�

1

x
[φ(x)− φ(0)]dx+

Z
|x|>1

1

x
φ(x)dx

=

Z
1≥|x|

1

x
[φ(x)− φ(0)]dx+

Z
|x|>1

1

x
φ(x)dx.

Please notice in the last example that 1
x /∈ L1loc (R) so that T1/x is not well

defined. This is an example of the so called division problem of distributions. Here
is another possible interpretation of 1x as a distribution.

Example 30.13. Here we try to define 1/x as limy↓0 1
x±iy , that is we want to

define a distribution T± by

hT±, φi := lim
y↓0

Z
1

x± iy
φ(x)dx.

Let us compute T+ explicitly,

lim
y↓0

Z
R

1

x+ iy
φ(x)dx = lim

y↓0

Z
|x|≤1

1

x+ iy
φ(x)dx+ lim

y↓0

Z
|x|>1

1

x+ iy
φ(x)dx

= lim
y↓0

Z
|x|≤1

1

x+ iy
[φ(x)− φ(0)] dx+ φ(0) lim

y↓0

Z
|x|≤1

1

x+ iy
dx

+

Z
|x|>1

1

x
φ(x)dx

= PV

Z
R

1

x
φ(x)dx+ φ(0) lim

y↓0

Z
|x|≤1

1

x+ iy
dx.

Now by deforming the contour we haveZ
|x|≤1

1

x+ iy
dx =

Z
�<|x|≤1

1

x+ iy
dx+

Z
C�

1

z + iy
dz

where C� : z = �eiθ with θ : π → 0. Therefore,

lim
y↓0

Z
|x|≤1

1

x+ iy
dx = lim

y↓0

Z
�<|x|≤1

1

x+ iy
dx+ lim

y↓0

Z
C�

1

z + iy
dz

=

Z
�<|x|≤1

1

x
dx+

Z
C�

1

z
dz = 0− π.
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Hence we have shown that T+ = PV 1
x − iπδ0. Similarly, one shows that T− =

PV 1
x + iπδ0. Notice that it follows from these computations that T−−T+ = i2πδ0.

Notice that
1

x− iy
− 1

x+ iy
=

2iy

x2 + y2

and hence we conclude that limy↓0 y
x2+y2 = πδ0 — a result that we saw in Example

30.6, item 3.

Example 30.14. Suppose that µ is a complex measure on R and F (x) =
µ((−∞, x]), then T 0F = µ. Moreover, if f ∈ L1loc(R) and T 0f = µ, then f = F + C
a.e. for some constant C.

Proof. Let φ ∈ D := D(R), then

hT 0F , φi = −hTF , φ0i = −
Z
R
F (x)φ0(x)dx = −

Z
R
dx

Z
R
dµ(y)φ0(x)1y≤x

= −
Z
R
dµ(y)

Z
R
dxφ0(x)1y≤x =

Z
R
dµ(y)φ(y) = hµ, φi

by Fubini’s theorem and the fundamental theorem of calculus. If T 0f = µ, then
T 0f−F = 0 and the result follows from Corollary 30.16 below.

Lemma 30.15. Suppose that T ∈ D0(Rn) is a distribution such that ∂iT = 0 for
some i, then there exists a distribution S ∈ D0(Rn−1) such that hT, φi = hS, φ̄ii for
all φ ∈ D(Rn) where

φ̄i =

Z
R
τteiφdt ∈ D(Rn−1).

Proof. To simplify notation, assume that i = n and write x ∈ Rn as x = (y, z)
with y ∈ Rn−1 and z ∈ R. Let θ ∈ C∞c (R) such that

R
R θ(z)dz = 1 and for

ψ ∈ D(Rn−1), let ψ ⊗ θ(x) = ψ(y)θ(z). The mapping

ψ ∈ D(Rn−1) ∈ ψ ⊗ θ ∈ D(Rn)
is easily seen to be sequentially continuous and therefore hS, ψi := hT, ψ⊗θi defined
a distribution in D0(Rn). Now suppose that φ ∈ D(Rn). If φ = ∂nf for some
f ∈ D(Rn) we would have to have R φ(y, z)dz = 0. This is not generally true,
however the function φ− φ̄⊗ θ does have this property. Define

f(y, z) :=

Z z

−∞

£
φ(y, z0)− φ̄(y)θ(z0)

¤
dz0,

then f ∈ D(Rn) and ∂nf = φ− φ̄⊗ θ. Therefore,

0 = −h∂nT, fi = hT, ∂nfi = hT, φi− hT, φ̄⊗ θi = hT, φi− hS, φ̄i.

Corollary 30.16. Suppose that T ∈ D0(Rn) is a distribution such that there exists
m ≥ 0 such that

∂αT = 0 for all |α| = m,

then T = Tp where p(x) is a polynomial on Rn of degree less than or equal to m−1,
where by convention if deg(p) = −1 then p ≡ 0.
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Proof. The proof will be by induction on n and m. The corollary is trivially
true when m = 0 and n is arbitrary. Let n = 1 and assume the corollary holds
for m = k − 1 with k ≥ 1. Let T ∈ D0(R) such that 0 = ∂kT = ∂k−1∂T. By
the induction hypothesis, there exists a polynomial, q, of degree k − 2 such that
T 0 = Tq. Let p(x) =

R x
0
q(z)dz, then p is a polynomial of degree at most k− 1 such

that p0 = q and hence T 0p = Tq = T 0. So (T − Tp)
0 = 0 and hence by Lemma 30.15,

T − Tp = TC where C = hT − Tp, θi and θ is as in the proof of Lemma 30.15. This
proves the he result for n = 1.
For the general induction, suppose there exists (m,n) ∈ N2 with m ≥ 0 and

n ≥ 1 such that assertion in the corollary holds for pairs (m0, n0) such that either
n0 < n of n0 = n and m0 ≤ m. Suppose that T ∈ D0(Rn) is a distribution such that

∂αT = 0 for all |α| = m+ 1.

In particular this implies that ∂α∂nT = 0 for all |α| = m−1 and hence by induction
∂nT = Tqn where qn is a polynomial of degree at most m− 1 on Rn. Let pn(x) =R z
0
qn(y, z

0)dz0 a polynomial of degree at mostm on Rn. The polynomial pn satisfies,
1) ∂αpn = 0 if |α| = m and αn = 0 and 2) ∂npn = qn. Hence ∂n(T − Tpn) = 0 and
so by Lemma 30.15,

hT − Tpn , φi = hS, φ̄ni
for some distribution S ∈ D0(Rn−1). If α is a multi-index such that αn = 0 and
|α| = m, then

0 = h∂αT−∂αTpn , φi = hT−Tpn , ∂αφi = hS, (∂αφ)ni = hS, ∂αφ̄ni = (−1)|α|h∂αS, φ̄ni.
and in particular by taking φ = ψ ⊗ θ, we learn that h∂αS, ψi = 0 for all ψ ∈
D(Rn−1). Thus by the induction hypothesis, S = Tr for some polynomial (r) of
degree at most m on Rn−1. Letting p(y, z) = pn(y, z) + r(y) — a polynomial of
degree at most m on Rn, it is easily checked that T = Tp.

Example 30.17. Consider the wave equation

(∂t − ∂x) (∂t + ∂x)u(t, x) =
¡
∂2t − ∂2x

¢
u(t, x) = 0.

From this equation one learns that u(t, x) = f(x + t) + g(x − t) solves the wave
equation for f, g ∈ C2. Suppose that f is a bounded Borel measurable function on
R and consider the function f(x+ t) as a distribution on R. We compute

h(∂t − ∂x) f(x+ t), φ(x, t)i =
Z
R2

f(x+ t) (∂x − ∂t)φ(x, t)dxdt

=

Z
R2

f(x) [(∂x − ∂t)φ] (x− t, t)dxdt

= −
Z
R2

f(x)
d

dt
[φ(x− t, t)] dxdt

= −
Z
R
f(x) [φ(x− t, t)] |t=∞t=−∞dx = 0.

This shows that (∂t − ∂x) f(x + t) = 0 in the distributional sense. Similarly,
(∂t + ∂x) g(x− t) = 0 in the distributional sense. Hence u(t, x) = f(x+ t)+g(x− t)
solves the wave equation in the distributional sense whenever f and g are bounded
Borel measurable functions on R.
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Example 30.18. Consider f(x) = ln |x| for x ∈ R2 and let T = Tf . Then, pointwise
we have

∇ ln |x| = x

|x|2 and ∆ ln |x| =
2

|x|2 − 2x ·
x

|x|4 = 0.

Hence ∆f(x) = 0 for all x ∈ R2 except at x = 0 where it is not defined. Does this
imply that ∆T = 0? No, in fact ∆T = 2πδ as we shall now prove. By definition of
∆T and the dominated convergence theorem,

h∆T, φi = hT,∆φi =
Z
R2
ln |x|∆φ(x)dx = lim

�↓0

Z
|x|>�

ln |x|∆φ(x)dx.

Using the divergence theorem,Z
|x|>�

ln |x|∆φ(x)dx = −
Z
|x|>�

∇ ln |x| ·∇φ(x)dx+
Z
∂{|x|>�}

ln |x|∇φ(x) · n(x)dS(x)

=

Z
|x|>�

∆ ln |x|φ(x)dx−
Z
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x)

+

Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)

=

Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)−
Z
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x),

where n(x) is the outward pointing normal, i.e. n(x) = −x̂ := x/ |x| . Now¯̄̄̄
¯
Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)
¯̄̄̄
¯ ≤ C

¡
ln �−1

¢
2π�→ 0 as � ↓ 0

where C is a bound on (∇φ(x) · n(x)) . WhileZ
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x) =
Z
∂{|x|>�}

x̂

|x| · (−x̂)φ(x)dS(x)

= −1
�

Z
∂{|x|>�}

φ(x)dS(x)→ −2πφ(0) as � ↓ 0.

Combining these results shows

h∆T, φi = 2πφ(0).
Exercise 30.1. Carry out a similar computation to that in Example 30.18 to show

∆T1/|x| = −4πδ

where now x ∈ R3.
Example 30.19. Let z = x+ iy, and ∂̄ = 1

2(∂x + i∂y). Let T = T1/z, then

∂̄T = πδ0 or imprecisely ∂̄
1

z
= πδ(z).
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Proof. Pointwise we have ∂̄ 1z = 0 so we shall work as above. We then have

h∂̄T, φi = −hT, ∂̄φi = −
Z
R2

1

z
∂̄φ(z)dm(z) = − lim

�↓0

Z
|z|>�

1

z
∂̄φ(z)dm(z)

= lim
�↓0

Z
|z|>�

∂̄
1

z
φ(z)dm(z)− lim

�↓0

Z
∂{|z|>�}

1

z
φ(z)

1

2
(n1(z) + in2(z)) dσ(z)

= 0− lim
�↓0

Z
∂{|z|>�}

1

z
φ(z)

1

2

µ−z
|z|
¶
dσ(z) =

1

2
lim
�↓0

Z
∂{|z|>�}

1

|z|φ(z)dσ(z)

= π lim
�↓0

1

2π�

Z
∂{|z|>�}

φ(z)dσ(z) = πφ(0).

30.2. Other classes of test functions. (For what follows, see Exercises 6.13 and
6.14 of Chapter 6.

Notation 30.20. Suppose thatX is a vector space and {pn}∞n=0 is a family of semi-
norms on X such that pn ≤ pn+1 for all n and with the property that pn(x) = 0
for all n implies that x = 0. (We allow for pn = p0 for all n in which case X is a
normed vector space.) Let τ be the smallest topology on X such that pn(x − ·) :
X → [0,∞) is continuous for all n ∈ N and x ∈ X. For n ∈ N, x ∈ X and � > 0 let
Bn(x, �) := {y ∈ X : pn(x− y) < �} .
Proposition 30.21. The balls B := {Bn(x, �) : n ∈ N, x ∈ X and � > 0} for a
basis for the topology τ. This topology is the same as the topology induced by the
metric d on X defined by

d(x, y) =
∞X
n=0

2−n
pn(x− y)

1 + pn(x− y)
.

Moreover, a sequence {xk} ⊂ X is convergent to x ∈ X iff limk→∞ d(x, xk) =
0 iff limn→∞ pn(x, xk) = 0 for all n ∈ N and {xk} ⊂ X is Cauchy in X iff
limk,l→∞ d(xl, xk) = 0 iff limk,l→∞ pn(xl, xk) = 0 for all n ∈ N.
Proof. Suppose that z ∈ Bn(x, �) ∩ Bm(y, δ) and assume with out loss of

generality that m ≥ n. Then if pm(w − z) < α, we have

pm(w − y) ≤ pm(w − z) + pm(z − y) < α+ pm(z − y) < δ

provided that α ∈ (0, δ − pm(z − y)) and similarly

pn(w − x) ≤ pm(w − x) ≤ pm(w − z) + pm(z − x) < α+ pm(z − x) < �

provided that α ∈ (0, �− pm(z − x)). So choosing

δ =
1

2
min (δ − pm(z − y), �− pm(z − x)) ,

we have shown that Bm(z, α) ⊂ Bn(x, �) ∩ Bm(y, δ). This shows that B forms a
basis for a topology. In detail, V ⊂o X iff for all x ∈ V there exists n ∈ N and
� > 0 such that Bn(x, �) := {y ∈ X : pn(x− y) < �} ⊂ V.
Let τ(B) be the topology generated by B. Since|pn(x− y)− pn(x− z)| ≤ pn(y−

z), we see that pn(x− ·) is continuous on relative to τ(B) for each x ∈ X and n ∈ N.
This shows that τ ⊂ τ(B). On the other hand, since pn(x− ·) is τ — continuous, it
follows that Bn(x, �) = {y ∈ X : pn(x− y) < �} ∈ τ for all x ∈ X, � > 0 and n ∈ N.
This shows that B ⊂ τ and therefore that τ(B) ⊂ τ. Thus τ = τ(B).
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Given x ∈ X and � > 0, let Bd(x, �) = {y ∈ X : d(x, y) < �} be a d — ball. Choose
N large so that

P∞
n=N+1 2

−n < �/2. Then y ∈ BN (x, �/4) we have

d(x, y) = pN (x− y)
NX
n=0

2−n + �/2 < 2
�

4
+ �/2 < �

which shows that BN (x, �/4) ⊂ Bd(x, �). Conversely, if d(x, y) < �, then

2−n
pn(x− y)

1 + pn(x− y)
< �

which implies that

pn(x− y) <
2−n�

1− 2−n� =: δ
when 2−n� < 1 which shows that Bn(x, δ) contains Bd(x, �) with � and δ as above.
This shows that τ and the topology generated by d are the same.
The moreover statements are now easily proved and are left to the reader.

Exercise 30.2. Keeping the same notation as Proposition 30.21 and further assume
that {p0n}n∈N is another family of semi-norms as in Notation 30.20. Then the
topology τ 0 determined by {p0n}n∈N is weaker then the topology τ determined by
{pn}n∈N (i.e. τ 0 ⊂ τ) iff for every n ∈ N there is an m ∈ N and C < ∞ such that
p0n ≤ Cpm.

Solution. Suppose that τ 0 ⊂ τ. Since 0 ∈ {p0n < 1} ∈ τ 0 ⊂ τ, there exists an
m ∈ N and δ > 0 such that {pm < δ} ⊂ {p0n < 1} . So for x ∈ X,

δx

2pm(x)
∈ {pm < δ} ⊂ {p0n < 1}

which implies δp0n(x) < 2pm(x) and hence p0n ≤ Cpm with C = 2/δ. (Actually 1/δ
would do here.)
For the converse assertion, let U ∈ τ 0 and x0 ∈ U. Then there exists an n ∈ N

and δ > 0 such that {p0n(x0 − ·) < δ} ⊂ U. If m ∈ N and C <∞ so that p0n ≤ Cpm,
then

x0 ∈ {pm(x0 − ·) < δ/C} ⊂ {p0n(x0 − ·) < δ} ⊂ U

which shows that U ∈ τ.

Lemma 30.22. Suppose that X and Y are vector spaces equipped with sequences
of norms {pn} and {qn} as in Notation 30.20. Then a linear map T : X → Y is
continuous if for all n ∈ N there exists Cn < ∞ and mn ∈ N such that qn(Tx) ≤
Cnpmn(x) for all x ∈ X. In particular, f ∈ X∗ iff |f(x)| ≤ Cpm(x) for some C <∞
and m ∈ N. (We may also characterize continuity by sequential convergence since
both X and Y are metric spaces.)

Proof. Suppose that T is continuous, then {x : qn(Tx) < 1} is an open neigh-
borhood of 0 in X. Therefore, there exists m ∈ N and � > 0 such that Bm(0, �) ⊂
{x : qn(Tx) < 1} . So for x ∈ X and α < 1, α�x/pm(x) ∈ Bm(0, �) and thus

qn(
α�

pm(x)
Tx) < 1 =⇒ qn(Tx) <

1

α�
pm(x)

for all x. Letting α ↑ 1 shows that qn(Tx) ≤ 1
� pm(x) for all x ∈ X.

Conversely, if T satisfies

qn(Tx) ≤ Cnpmn(x) for all x ∈ X,
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then
qn(Tx− Tx0) = qn(T (x− x0)) ≤ Cnpmn(x− x0) for all x, y ∈ X.

This shows Tx0 → Tx as x0 → x, i.e. that T is continuous.

Definition 30.23. A Fréchet space is a vector space X equipped with a family
{pn} of semi-norms such that X is complete in the associated metric d.

Example 30.24. Let K @@ Rn and C∞(K) := {f ∈ C∞c (Rn) : supp(f) ⊂ K} .
For m ∈ N, let

pm(f) :=
X
|α|≤m

k∂αfk∞ .

Then (C∞(K), {pm}∞m=1) is a Fréchet space. Moreover the derivative operators
{∂k} and multiplication by smooth functions are continuous linear maps from
C∞(K) to C∞(K). If µ is a finite measure on K, then T (f) :=

R
K
∂αfdµ is an

element of C∞(K)∗ for any multi index α.

Example 30.25. Let U ⊂o Rn and for m ∈ N, and a compact set K @@ U let

pKm(f) :=
X
|α|≤m

k∂αfk∞,K :=
X
|α|≤m

max
x∈K

|∂αf(x)| .

Choose a sequence Km @@ U such that Km ⊂ Ko
m+1 ⊂ Km+1 @@ U for all m

and set qm(f) = pKm
m (f). Then (C∞(K), {pm}∞m=1) is a Fréchet space and the

topology in independent of the choice of sequence of compact sets K exhausting
U. Moreover the derivative operators {∂k} and multiplication by smooth functions
are continuous linear maps from C∞(U) to C∞(U). If µ is a finite measure with
compact support in U, then T (f) :=

R
K
∂αfdµ is an element of C∞(U)∗ for any

multi index α.

Proposition 30.26. A linear functional T on C∞(U) is continuous, i.e. T ∈
C∞(U)∗ iff there exists a compact set K @@ U, m ∈ N and C <∞ such that

|hT, φi| ≤ CpKm(φ) for all φ ∈ C∞(U).

Notation 30.27. Let νs(x) := (1+|x|)s (or change to νs(x) = (1+|x|2)s/2 = hxis?)
for x ∈ Rn and s ∈ R.
Example 30.28. Let S denote the space of functions f ∈ C∞(Rn) such that f
and all of its partial derivatives decay faster that (1 + |x|)−m for all m > 0 as in
Definition 20.6. Define

pm(f) =
X
|α|≤m

k(1 + | · |)m∂αf(·)k∞ =
X
|α|≤m

k(µm∂αf(·)k∞ ,

then (S, {pm}) is a Fréchet space. Again the derivative operators {∂k} and multi-
plication by function f ∈ P are examples of continuous linear operators on S. For
an example of an element T ∈ S∗, let µ be a measure on Rn such thatZ

(1 + |x|)−Nd|µ|(x) <∞

for some N ∈ N. Then T (f) :=
R
K
∂αfdµ defines and element of S∗.

Proposition 30.29. The Fourier transform F : S → S is a continuous linear
transformation.
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Proof. For the purposes of this proof, it will be convenient to use the semi-norms

p0m(f) =
X
|α|≤m

°°(1 + | · |2)m∂αf(·)°°∞ .

This is permissible, since by Exercise 30.2 they give rise to the same topology on
S.
Let f ∈ S and m ∈ N, then

(1 + |ξ|2)m∂αf̂(ξ) = (1 + |ξ|2)mF ((−ix)αf) (ξ)
= F [(1−∆)m ((−ix)αf)] (ξ)

and therefore if we let g = (1−∆)m ((−ix)αf) ∈ S,¯̄̄
(1 + |ξ|2)m∂αf̂(ξ)

¯̄̄
≤ kgk1 =

Z
Rn
|g(x)| dx

=

Z
Rn
|g(x)| (1 + |x|2)n 1

(1 + |x|2)n dξ

≤ C
°°°|g(·)| (1 + |·|2)n°°°

∞
where C =

R
Rn

1
(1+|x|2)n dξ < ∞. Using the product rule repeatedly, it is not hard

to show °°°|g(·)| (1 + |·|2)n°°°
∞
=
°°°(1 + |·|2)n(1−∆)m ((−ix)αf)°°°

∞

≤ k
X

|β|≤2m

°°°(1 + |·|2)n+|α|/2∂βf°°°
∞

≤ kp02m+n(f)

for some constant k <∞. Combining the last two displayed equations implies that
p0m(f̂) ≤ Ckp02m+n(f) for all f ∈ S, and thus F is continuous.

Proposition 30.30. The subspace C∞c (Rn) is dense in S(Rn).
Proof. Let θ ∈ C∞c (Rn) such that θ = 1 in a neighborhood of 0 and set

θm(x) = θ(x/m) for all m ∈ N. We will now show for all f ∈ S that θmf converges
to f in S. The main point is by the product rule,

∂α (θmf − f) (x) =
X
β≤α

µ
α

β

¶
∂α−βθm(x)∂βf(x)− f

=
X

β≤α:β 6=α

µ
α

β

¶
1

m|α−β| ∂
α−βθ(x/m)∂βf(x).

Since max
©°°∂βθ°°∞ : β ≤ α

ª
is bounded it then follows from the last equation that

kµt∂α (θmf − f)k∞ = O(1/m) for all t > 0 and α. That is to say θmf → f in S.
Lemma 30.31 (Peetre’s Inequality). For all x, y ∈ Rn and s ∈ R,
(30.5) (1 + |x+ y|)s ≤ min

n
(1 + |y|)|s|(1 + |x|)s, (1 + |y|)s(1 + |x|)|s|

o
that is to say νs(x + y) ≤ ν|s|(x)νs(y) and νs(x + y) ≤ νs(x)ν|s|(y) for all s ∈ R,
where νs(x) = (1 + |x|)s as in Notation 30.27. We also have the same results for
hxi, namely
(30.6) hx+ yis ≤ 2|s|/2min

n
hxi|s|hyis, hxishyi|s|

o
.
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Proof. By elementary estimates,

(1 + |x+ y|) ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|)
and so for Eq. (30.5) holds if s ≥ 0. Now suppose that s < 0, then

(1 + |x+ y|)s ≥ (1 + |x|)s(1 + |y|)s

and letting x→ x− y and y → −y in this inequality implies
(1 + |x|)s ≥ (1 + |x+ y|)s(1 + |y|)s.

This inequality is equivalent to

(1 + |x+ y|)s ≤ (1 + |x|)s(1 + |y|)−s = (1 + |x|)s(1 + |y|)|s|.
By symmetry we also have

(1 + |x+ y|)s ≤ (1 + |x|)|s|(1 + |y|)s.
For the proof of Eq. (30.6

hx+ yi2 = 1 + |x+ y|2 ≤ 1 + (|x|+ |y|)2 = 1 + |x|2 + |y|2 + 2 |x| |y|
≤ 1 + 2 |x|2 + 2 |y|2 ≤ 2(1 + |x|2)(1 + |y|2) = 2hxi2hyi2.

From this it follows that hxi−2 ≤ 2hx+ yi−2hyi2 and hence
hx+ yi−2 ≤ 2hxi−2hyi2.

So if s ≥ 0, then
hx+ yis ≤ 2s/2hxishyis

and

hx+ yi−s ≤ 2s/2hxi−shyis.

Proposition 30.32. Suppose that f, g ∈ S then f ∗ g ∈ S.
Proof. First proof. Since F(f ∗g) = f̂ ĝ ∈ S it follows that f ∗g = F−1(f̂ ĝ) ∈ S

as well.
For the second proof we will make use of Peetre’s inequality. We have for any

k, l ∈ N that

νt(x) |∂α(f ∗ g)(x)| = νt(x) |∂αf ∗ g(x)| ≤ νt(x)

Z
|∂αf(x− y)| |g(y)| dy

≤ Cνt(x)

Z
ν−k(x− y)ν−l(y)dy ≤ Cνt(x)

Z
ν−k(x)νk(y)ν−l(y)dy

= Cνt−k(x)
Z

νk−l(y)dy.

Choosing k = t and l > t+ n we learn that

νt(x) |∂α(f ∗ g)(x)| ≤ C

Z
νk−l(y)dy <∞

showing kνt∂α(f ∗ g)k∞ <∞ for all t ≥ 0 and α ∈ Nn.
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30.3. Compactly supported distributions.

Definition 30.33. For a distribution T ∈ D0(U) and V ⊂o U, we say T |V = 0 if
hT, φi = 0 for all φ ∈ D(V ).
Proposition 30.34. Suppose that V := {Vα}α∈A is a collection of open subset of
U such that T |Vα = 0 for all α, then T |W = 0 where W = ∪α∈AVα.
Proof. Let {ψα}α∈A be a smooth partition of unity subordinate to V, i.e.

supp(ψα) ⊂ Vα for all α ∈ A, for each point x ∈ W there exists a neighborhood
Nx ⊂o W such that #{α ∈ A : supp(ψα) ∩ Nx 6= ∅} < ∞ and 1W =

P
α∈A ψα.

Then for φ ∈ D(W ), we have φ =
P

α∈A φψα and there are only a finite number of
nonzero terms in the sum since supp(φ) is compact. Since φψα ∈ D(Vα) for all α,

hT, φi = hT,
X
α∈A

φψαi =
X
α∈A

hT, φψαi = 0.

Definition 30.35. The support, supp(T ), of a distribution T ∈ D0(U) is the rela-
tively closed subset of U determined by

U \ supp(T ) = ∪ {V ⊂o U : T |V = 0} .
By Proposition 30.26, supp(T ) may described as the smallest (relatively) closed set
F such that T |U\F = 0.
Proposition 30.36. If f ∈ L1loc(U), then supp(Tf ) = ess sup(f), where

ess sup(f) := {x ∈ U : m({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}
as in Definition 11.14.

Proof. The key point is that Tf |V = 0 iff f = 0 a.e. on V and therefore

U \ supp(Tf ) = ∪ {V ⊂o U : f1V = 0 a.e.} .
On the other hand,

U \ ess sup(f) = {x ∈ U : m({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪{x ∈ U : f1V = 0 a.e. for some neighborhood V of x}
= ∪ {V ⊂o U : f1V = 0 a.e.}

Definition 30.37. Let E 0(U) := {T ∈ D0(U) : supp(T ) ⊂ U is compact} — the
compactly supported distributions in D0(U).
Lemma 30.38. Suppose that T ∈ D0(U) and f ∈ C∞(U) is a function such that
K := supp(T ) ∩ supp(f) is a compact subset of U. Then we may define hT, fi :=
hT, θfi, where θ ∈ D(U) is any function such that θ = 1 on a neighborhood of K.
Moreover, if K @@ U is a given compact set and F @@ U is a compact set such
that K ⊂ F o, then there exists m ∈ N and C <∞ such that

(30.7) |hT, fi| ≤ C
X
|β|≤m

°°∂βf°°∞,F

for all f ∈ C∞(U) such that supp(T ) ∩ supp(f) ⊂ K. In particular if T ∈ E 0(U)
then T extends uniquely to a linear functional on C∞(U) and there is a compact
subset F @@ U such that the estimate in Eq. (30.7) holds for all f ∈ C∞(U).



542 BRUCE K. DRIVER†

Proof. Suppose that θ̃ is another such cutoff function and let V be an open

neighborhood of K such that θ = θ̃ = 1 on V. Setting g :=
³
θ − θ̃

´
f ∈ D(U) we

see that

supp(g) ⊂ supp(f) \ V ⊂ supp(f) \K = supp(f) \ supp(T ) ⊂ U \ supp(T ),
see Figure 50 below. Therefore,

0 = hT, gi = hT,
³
θ − θ̃

´
fi = hT, θfi− hT, θ̃fi

which shows that hT, fi is well defined.

Figure 50. Intersecting the supports.

Moreover, if F @@ U is a compact set such that K ⊂ F o and θ ∈ C∞c (F 0) is a
function which is 1 on a neighborhood of K, we have

|hT, fi| = |hT, θfi| = C
X
|α|≤m

k∂α (θf)k∞ ≤ C
X
|β|≤m

°°∂βf°°∞,F

and this estimate holds for all f ∈ C∞(U) such that supp(T ) ∩ supp(f) ⊂ K.

Theorem 30.39. The restriction of T ∈ C∞(U)∗ to C∞c (U) defines an element in
E 0(U). Moreover the map

T ∈ C∞(U)∗ i→ T |D(U) ∈ E 0(U)
is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given S ∈ E 0(U) and θ ∈ C∞c (U) such that θ = 1 on K = supp(S) then i−1(S) =
θS, where θS ∈ C∞(U)∗ defined by

hθS, φi = hS, θφi for all φ ∈ C∞(U).

Proof. Suppose that T ∈ C∞(U)∗ then there exists a compact set K @@ U,
m ∈ N and C <∞ such that

|hT, φi| ≤ CpKm(φ) for all φ ∈ C∞(U)
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where pKm is defined in Example 30.25. It is clear using the sequential notion of
continuity that T |D(U) is continuous on D(U), i.e. T |D(U) ∈ D0(U). Moreover, if
θ ∈ C∞c (U) such that θ = 1 on a neighborhood of K then

|hT, θφi− hT, φi| = |hT, (θ − 1)φi| ≤ CpKm((θ − 1)φ) = 0,
which shows θT = T. Hence supp(T ) = supp(θT ) ⊂ supp(θ) @@ U showing that
T |D(U) ∈ E 0(U). Therefore the map i is well defined and is clearly linear. I also
claim that i is injective because if T ∈ C∞(U)∗ and i(T ) = T |D(U) ≡ 0, then
hT, φi = hθT, φi = hT |D(U), θφi = 0 for all φ ∈ C∞(U).
To show i is surjective suppose that S ∈ E 0(U). By Lemma 30.38 we know that

S extends uniquely to an element S̃ of C∞(U)∗ such that S̃|D(U) = S, i.e. i(S̃) = S.
and K = supp(S).

Lemma 30.40. The space E 0(U) is a sequentially dense subset of D0(U).
Proof. Choose Kn @@ U such that Kn ⊂ Ko

n+1 ⊂ Kn+1 ↑ U as n → ∞. Let
θn ∈ C∞c (K0

n+1) such that θn = 1 on K. Then for T ∈ D0(U), θnT ∈ E 0(U) and
θnT → T as n→∞.

30.4. Tempered Distributions and the Fourier Transform. The space of
tempered distributions S 0 (Rn) is the continuous dual to S = S(Rn). A linear
functional T on S is continuous iff there exists k ∈ N and C <∞ such that

(30.8) |hT, φi| ≤ Cpk(φ) := C
X
|α|≤k

kνk∂αφk∞

for all φ ∈ S. Since D = D (Rn) is a dense subspace of S any element T ∈ S 0
is determined by its restriction to D. Moreover, if T ∈ S 0 it is easy to see that
T |D ∈ D0. Conversely and element T ∈ D0 satisfying an estimate of the form in Eq.
(30.8) for all φ ∈ D extend uniquely to an element of S 0. In this way we may view
S 0 as a subspace of D0.
Example 30.41. Any compactly supported distribution is tempered, i.e. E 0(U) ⊂
S 0(Rn) for any U ⊂o Rn.
One of the virtues of S 0 is that we may extend the Fourier transform to S 0. Recall

that for L1 functions f and g we have the identity,

hf̂ , gi = hf, ĝi.
This suggests the following definition.

Definition 30.42. The Fourier and inverse Fourier transform of a tempered dis-
tribution T ∈ S 0 are the distributions T̂ = FT ∈ S 0 and T∨ = F−1T ∈ S 0defined
by

hT̂ , φi = hT, φ̂i and hT∨, φi = hT, φ∨i for all φ ∈ S.
Since F : S → S is a continuous isomorphism with inverse F−1, one easily checks
that T̂ and T∨ are well defined elements of S and that F−1 is the inverse of F on
S 0.
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Example 30.43. Suppose that µ is a complex measure on Rn. Then we may view
µ as an element of S 0 via hµ, φi = R φdµ for all φ ∈ S 0. Then by Fubini-Tonelli,

hµ̂, φi = hµ, φ̂i =
Z

φ̂(x)dµ(x) =

Z ·Z
φ(ξ)e−ix·ξdξ

¸
dµ(x)

=

Z ·Z
φ(ξ)e−ix·ξdµ(x)

¸
dξ

which shows that µ̂ is the distribution associated to the continuous function
ξ → R

e−ix·ξdµ(x).
R
e−ix·ξdµ(x)We will somewhat abuse notation and identify the

distribution µ̂ with the function ξ → R
e−ix·ξdµ(x). When dµ(x) = f(x)dx with

f ∈ L1, we have µ̂ = f̂ , so the definitions are all consistent.

Corollary 30.44. Suppose that µ is a complex measure such that µ̂ = 0, then µ = 0.
So complex measures on Rn are uniquely determined by their Fourier transform.

Proof. If µ̂ = 0, then µ = 0 as a distribution, i.e.
R
φdµ = 0 for all φ ∈ S and in

particular for all φ ∈ D. By Example 30.5 this implies that µ is the zero measure.

More generally we have the following analogous theorem for compactly supported
distributions.

Theorem 30.45. Let S ∈ E 0(Rn), then Ŝ is an analytic function and Ŝ(z) =

hS(x), e−ix·zi. Also if supp(S) @@ B(0,M), then Ŝ(z) satisfies a bound of the form¯̄̄
Ŝ(z)

¯̄̄
≤ C(1 + |z|)meM|Im z|

for some m ∈ N and C <∞. If S ∈ D(Rn), i.e. if S is assumed to be smooth, then
for all m ∈ N there exists Cm <∞ such that¯̄̄

Ŝ(z)
¯̄̄
≤ Cm(1 + |z|)−meM|Im z|.

Proof. The function h(z) = hS(ξ), e−iz·ξi for z ∈ Cn is analytic since the map
z ∈ Cn → e−iz·ξ ∈ C∞(ξ ∈ Rn) is analytic and S is complex linear. Moreover, we
have the bound

|h(z)| = ¯̄hS(ξ), e−iz·ξi¯̄ ≤ C
X
|α|≤m

°°∂αξ e−iz·ξ°°∞,B(0,M)
= C

X
|α|≤m

°°zαe−iz·ξ°°∞,B(0,M)

≤ C
X
|α|≤m

|z||α| °°e−iz·ξ°°∞,B(0,M)
≤ C(1 + |z|)meM|Im z|.

If we now assume that S ∈ D(Rn), then¯̄̄
zαŜ(z)

¯̄̄
=

¯̄̄̄Z
Rn

S(ξ)zαe−iz·ξdξ
¯̄̄̄
=

¯̄̄̄Z
Rn

S(ξ)(i∂ξ)
αe−iz·ξdξ

¯̄̄̄
=

¯̄̄̄Z
Rn
(−i∂ξ)αS(ξ)e−iz·ξdξ

¯̄̄̄
≤ eM|Im z|

Z
Rn
|∂ξαS(ξ)| dξ

showing

|zα|
¯̄̄
Ŝ(z)

¯̄̄
≤ eM|Im z| k∂αSk1

and therefore

(1 + |z|)m
¯̄̄
Ŝ(z)

¯̄̄
≤ CeM |Im z| X

|α|≤m
k∂αSk1 ≤ CeM|Im z|.
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So to finish the proof it suffices to show h = Ŝ in the sense of distributions52.
For this let φ ∈ D, K @@ Rn be a compact set for � > 0 let

φ̂�(ξ) = (2π)
−n/2�n

X
x∈�Zn

φ(x)e−ix·ξ.

This is a finite sum and

sup
ξ∈K

¯̄̄
∂α
³
φ̂�(ξ)− φ̂(ξ)

´¯̄̄
= sup

ξ∈K

¯̄̄̄
¯̄ X
y∈�Zn

Z
y+�(0,1]n

¡
(−iy)α φ(y)e−iy·ξ − (−ix)α φ(x)e−ix·ξ¢ dx

¯̄̄̄
¯̄

≤
X
y∈�Zn

Z
y+�(0,1]n

sup
ξ∈K

¯̄
yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ

¯̄
dx

By uniform continuity of xαφ(x)e−ix·ξ for (ξ, x) ∈ K×Rn (φ has compact support),
δ(�) = sup

ξ∈K
sup
y∈�Zn

sup
x∈y+�(0,1]n

¯̄
yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ

¯̄→ 0 as � ↓ 0

which shows
sup
ξ∈K

¯̄̄
∂α
³
φ̂�(ξ)− φ̂(ξ)

´¯̄̄
≤ Cδ(�)

where C is the volume of a cube in Rn which contains the support of φ. This shows
that φ̂� → φ̂ in C∞(Rn). Therefore,

hŜ, φi = hS, φ̂i = lim
�↓0
hS, φ̂�i = lim

�↓0
(2π)−n/2�n

X
x∈�Zn

φ(x)hS(ξ), e−ix·ξi

= lim
�↓0
(2π)−n/2�n

X
x∈�Zn

φ(x)h(x) =

Z
Rn

φ(x)h(x)dx = hh, φi.

Remark 30.46. Notice that

∂αŜ(z) = hS(x), ∂αz e−ix·zi = hS(x), (−ix)αe−ix·zi = h(−ix)αS(x), e−ix·zi
and (−ix)αS(x) ∈ E 0(Rn). Therefore, we find a bound of the form¯̄̄

∂αŜ(z)
¯̄̄
≤ C(1 + |z|)m0

eM|Im z|

where C and m0 depend on α. In particular, this shows that Ŝ ∈ P, i.e. S 0 is
preserved under multiplication by Ŝ.

The converse of this theorem holds as well. For the moment we only have the
tools to prove the smooth converse. The general case will follow by using the notion
of convolution to regularize a distribution to reduce the question to the smooth case.

52This is most easily done using Fubini’s Theorem 31.2 for distributions proved below. This
proof goes as follows. Let θ, η ∈ D(Rn) such that θ = 1 on a neighborhood of supp(S) and η = 1
on a neighborhood of supp(φ) then

hh, φi = hφ(x), hS(ξ), e−ix·ξii = hη(x)φ(x), hS(ξ), θ(ξ)e−ix·ξii
= hφ(x), hS(ξ), η(x)θ(ξ)e−ix·ξii.

We may now apply Theorem 31.2 to conclude,

hh, φi = hS(ξ), hφ(x), η(x)θ(ξ)e−ix·ξii = hS(ξ), θ(ξ)hφ(x), e−ix·ξii = hS(ξ), hφ(x), e−ix·ξii
= hS(ξ), φ̂(ξ)i.
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Theorem 30.47. Let S ∈ S(Rn) and assume that Ŝ is an analytic function and
there exists an M <∞ such that for all m ∈ N there exists Cm <∞ such that¯̄̄

Ŝ(z)
¯̄̄
≤ Cm(1 + |z|)−meM|Im z|.

Then supp(S) ⊂ B(0,M).

Proof. By the Fourier inversion formula,

S(x) =

Z
Rn

Ŝ(ξ)eiξ·xdξ

and by deforming the contour, we may express this integral as

S(x) =

Z
Rn+iη

Ŝ(ξ)eiξ·xdξ =
Z
Rn

Ŝ(ξ + iη)ei(ξ+iη)·xdξ

for any η ∈ Rn. From this last equation it follows that

|S(x)| ≤ e−η·x
Z
Rn

¯̄̄
Ŝ(ξ + iη)

¯̄̄
dξ ≤ Cme

−η·xeM|η|
Z
Rn
(1 + |ξ + iη|)−mdξ

≤ Cme
−η·xeM |η|

Z
Rn
(1 + |ξ|)−mdξ ≤ C̃me

−η·xeM|η|

where C̃m <∞ if m > n. Letting η = λx with λ > 0 we learn

(30.9) |S(x)| ≤ C̃m exp
¡−λ|x|2 +M |x|¢ = C̃me

λ|x|(M−|x|).

Hence if |x| > M, we may let λ → ∞ in Eq. (30.9) to show S(x) = 0. That is to
say supp(S) ⊂ B(0,M).
Let us now pause to work out some specific examples of Fourier transform of

measures.

Example 30.48 (Delta Functions). Let a ∈ Rn and δa be the point mass measure
at a, then

δ̂a(ξ) = e−ia·ξ.

In particular it follows that
F−1e−ia·ξ = δa.

To see the content of this formula, let φ ∈ S. ThenZ
e−ia·ξφ∨(ξ)dξ = he−ia·ξ,F−1φi = hF−1e−ia·ξ, φi = hδa, φi = φ(a)

which is precisely the Fourier inversion formula.

Example 30.49. Suppose that p(x) is a polynomial. Then

hp̂, φi = hp, φ̂i =
Z

p(ξ)φ̂(ξ)dξ.

Now

p(ξ)φ̂(ξ) =

Z
φ(x)p(ξ)e−iξ·xdx =

Z
φ(x)p(i∂x)e

−iξ·xdx

=

Z
p(−i∂x)φ(x)e−iξ·xdx = F (p(−i∂)φ) (ξ)
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which combined with the previous equation implies

hp̂, φi =
Z
F (p(−i∂)φ) (ξ)dξ = ¡F−1F (p(−i∂)φ)¢ (0) = p(−i∂)φ(0)

= hδ0, p(−i∂)φi = hp(i∂)δ0, φi.
Thus we have shown that p̂ = p(i∂)δ0.

Lemma 30.50. Let p(ξ) be a polynomial in ξ ∈ Rn, L = p(−i∂) (a constant
coefficient partial differential operator) and T ∈ S 0, then

Fp(−i∂)T = pT̂ .

In particular if T = δ0, we have

Fp(−i∂)δ0 = p · δ̂0 = p.

Proof. By definition,

hFLT, φi = hLT, φ̂i = hp(−i∂)T, φ̂i = hT, p(i∂)φ̂i
and

p(i∂ξ)φ̂(ξ) = p(i∂ξ)

Z
φ(x)e−ix·ξdx =

Z
p(x)φ(x)e−ix·ξdx = (pφ) ˆ.

Thus
hFLT, φi = hT, p(i∂)φ̂i = hT, (pφ) ˆi = hT̂ , pφi = hpT̂ , φi

which proves the lemma.

Example 30.51. Let n = 1, −∞ < a < b <∞, and dµ(x) = 1[a,b](x)dx. Then

µ̂(ξ) =

Z b

a

e−ix·ξdx =
1√
2π

e−ix·ξ

−iξ |
b
a =

1√
2π

e−ib·ξ − e−ia·ξ

−iξ
=

1√
2π

e−ia·ξ − e−ib·ξ

iξ
.

So by the inversion formula we may conclude that

(30.10) F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = 1[a,b](x)

in the sense of distributions. This also true at the Level of L2 — functions. When
a = −b and b > 0 these formula reduce to

F1[−b,b] = 1√
2π

eib·ξ − e−ib·ξ

iξ
=

2√
2π

sin bξ

ξ

and

F−1 2√
2π

sin bξ

ξ
= 1[−b,b].

Let us pause to work out Eq. (30.10) by first principles. For M ∈ (0,∞) let νN
be the complex measure on Rn defined by

dνM (ξ) =
1√
2π
1|ξ|≤M

e−ia·ξ − e−ib·ξ

iξ
dξ,

then
1√
2π

e−ia·ξ − e−ib·ξ

iξ
= lim

M→∞
νM in the S 0 topology.
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Hence

F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = lim

M→∞
F−1νM

and

F−1νM (ξ) =
Z M

−M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ.

Since is ξ → 1√
2π

e−ia·ξ−e−ib·ξ
iξ eiξx is a holomorphic function on C we may deform

the contour to any contour in C starting at −M and ending at M. Let ΓM denote
the straight line path from −M to −1 along the real axis followed by the contour
eiθ for θ going from π to 2π and then followed by the straight line path from 1 to
M. ThenZ

|ξ|≤M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ =

Z
ΓM

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ

=

Z
ΓM

1√
2π

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dξ

=
1

2πi

Z
ΓM

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dm(ξ).

By the usual contour methods we find

lim
M→∞

1

2πi

Z
ΓM

eiyξ

ξ
dm(ξ) =

½
1 if y > 0
0 if y < 0

and therefore we have

F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = lim

M→∞
F−1νM (x) = 1x>a − 1x>b = 1[a,b](x).

Example 30.52. Let σt be the surface measure on the sphere St of radius t centered
at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .

By the inversion formula, it follows that

F−1 sin t |ξ||ξ| =
t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure one.
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Let us again pause to try to compute this inverse Fourier transform directly.
To this end, let fM (ξ) :=

sin t|ξ|
t|ξ| 1|ξ|≤M . By the dominated convergence theorem, it

follows that fM → sin t|ξ|
t|ξ| in S 0, i.e. pointwise on S. Therefore,

hF−1 sin t |ξ|
t |ξ| , φi = hsin t |ξ|

t |ξ| ,F−1φi = lim
M→∞

hfM ,F−1φi = lim
M→∞

hF−1fM , φi

and

(2π)3/2F−1fM (x) = (2π)3/2
Z
R3

sin t |ξ|
t |ξ| 1|ξ|≤Meiξ·xdξ

=

Z M

r=0

Z 2π

θ=0

Z π

φ=0

sin tr

tr
eir|x| cosφr2 sinφdrdφdθ

=

Z M

r=0

Z 2π

θ=0

Z 1

u=−1

sin tr

tr
eir|x|ur2drdudθ = 2π

Z M

r=0

sin tr

t

eir|x| − e−ir|x|

ir |x| rdr

=
4π

t |x|
Z M

r=0

sin tr sin r|x|dr

=
4π

t |x|
Z M

r=0

1

2
(cos(r(t+ |x|)− cos(r(t− |x|)) dr

=
4π

t |x|
1

2(t+ |x|) (sin(r(t+ |x|)− sin(r(t− |x|)) |
M
r=0

=
4π

t |x|
1

2

µ
sin(M(t+ |x|)

t+ |x| − sin(M(t− |x|)
t− |x|

¶
Now make use of the fact that sinMx

x → πδ(x) in one dimension to finish the proof.

30.4.1. Wave Equation. Given a distribution T and a test function φ, we wish to
define T ∗ φ ∈ C∞ by the formula

T ∗ φ(x) = “
Z

T (y)φ(x− y)dy” = hT, φ(x− ·)i.

As motivation for wanting to understand convolutions of distributions let us recon-
sider the wave equation in Rn,

0 =
¡
∂2t −∆

¢
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ)with
û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t|ξ|
|ξ|
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and hence we should have

u(t, x) = F−1
µ
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t|ξ|
|ξ|

¶
(x)

= F−1 cos (t |ξ|) ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x)

=
d

dt
F−1 sin t|ξ||ξ| ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x) .

The question now is how interpret this equation. In particular what are the inverse
Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ||ξ| . Since d

dtF−1 sin t|ξ||ξ| ∗ f(x) =
F−1 cos (t |ξ|) ∗ f(x), it really suffices to understand F−1 sin t|ξ||ξ| . This was worked
out in Example 30.51 when n = 1 where we found¡F−1ξ−1 sin tξ¢ (x) = π√

2π

¡
1x+t>0 − 1(x−t)>0

¢
=

π√
2π
(1x>−t − 1x>t) = π√

2π
1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Therefore,
¡F−1ξ−1 sin tξ¢ ∗ f(x) = 1

2

Z t

−t
f(x− y)dy

Therefore the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

Z t

−t
f(x− y)dy +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0 =
¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0 and
hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f 0(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f 0(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f 0(x+ 2t)
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which upon integration implies

u(t, x+ t) = u(0, x) +

Z t

0

{g(x+ 2τ) + f 0(x+ 2τ)} dτ.

= f(x) +

Z t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

Z t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation then implies

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

Z t

0

g(x− t+ 2τ)dτ.

Finally, letting y = x− t+ 2τ in the last integral gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy

as derived using the Fourier transform.
For the three dimensional case we have

u(t, x) =
d

dt
F−1 sin t|ξ||ξ| ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x)

=
d

dt
(tσ̄t ∗ f(x)) + tσ̄t ∗ g (x) .

The question is what is µ∗g(x) where µ is a measure. To understand the definition,
suppose first that dµ(x) = ρ(x)dx, then we should have

µ ∗ g(x) = ρ ∗ g(x) =
Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y).

Thus we expect our solution to the wave equation should be given by

u(t, x) =
d

dt

½
t

Z
St

f(x− y)dσ̄t(y)

¾
+ t

Z
St

g(x− y)dσ̄t(y)

=
d

dt

½
t

Z
S1

f(x− tω)dω

¾
+ t

Z
S1

g(x− tω)dω

=
d

dt

½
t

Z
S1

f(x+ tω)dω

¾
+ t

Z
S1

g(x+ tω)dω(30.11)

where dω := dσ̄1(ω). Notice the sharp propagation of speed. To understand this
suppose that f = 0 for simplicity and g has compact support near the origin, for
example think of g = δ0(x), the x+ tw = 0 for some w iff |x| = t. Hence the wave
front propagates at unit speed in a sharp way. See figure below.
We may also use this solution to solve the two dimensional wave equation using

Hadamard’s method of decent. Indeed, suppose now that f and g are function
on R2 which we may view as functions on R3 which do not depend on the third
coordinate say. We now go ahead and solve the three dimensional wave equation
using Eq. (30.11) and f and g as initial conditions. It is easily seen that the solution
u(t, x, y, z) is again independent of z and hence is a solution to the two dimensional
wave equation. See figure below.
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Figure 51. The geometry of the solution to the wave equation in
three dimensions.

Figure 52. The geometry of the solution to the wave equation in
two dimensions.

Notice that we still have finite speed of propagation but no longer sharp prop-
agation. In fact we can work out the solution analytically as follows. Again for
simplicity assume that f ≡ 0. Then

u(t, x, y) =
t

4π

Z 2π

0

dθ

Z π

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

=
t

2π

Z 2π

0

dθ

Z π/2

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

and letting u = sinφ, so that du = cosφdφ =
√
1− u2dφ we find

u(t, x, y) =
t

2π

Z 2π

0

dθ

Z 1

0

du√
1− u2

ug((x, y) + ut(cos θ, sin θ))
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and then letting r = ut we learn,

u(t, x, y) =
1

2π

Z 2π

0

dθ

Z t

0

drp
1− r2/t2

r

t
g((x, y) + r(cos θ, sin θ))

=
1

2π

Z 2π

0

dθ

Z t

0

dr√
t2 − r2

rg((x, y) + r(cos θ, sin θ))

=
1

2π

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w).

Here is a better alternative derivation of this result. We begin by using symmetry
to find

u(t, x) = 2t

Z
S+t

g(x− y)dσ̄t(y) = 2t

Z
S+t

g(x+ y)dσ̄t(y)

where S+t is the portion of St with z ≥ 0. This sphere is parametrized by
R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

©
(u, v) : u2 + v2 ≤ t2

ª
. In these

coordinates we have

4πt2dσ̄t =
¯̄̄³
−∂u

p
t2 − u2 − v2,−∂v

p
t2 − u2 − v2, 1

´¯̄̄
dudv

=

¯̄̄̄µ
u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1

¶¯̄̄̄
dudv

=

r
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

Z
S+t

g(x+ (u, v,
p
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

Z
S+t

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w)

as before. (I should check on the sgn(t) term.)

30.5. Appendix: Topology on C∞c (U). Let U be an open subset of Rn and

(30.12) C∞c (U) = ∪K@@UC∞(K)
denote the set of smooth functions on U with compact support in U. Our goal is
to topologize C∞c (U) in a way which is compatible with he topologies defined in
Example 30.24 above. This leads us to the inductive limit topology which we now
pause to introduce.

Definition 30.53 (Indcutive Limit Topology). Let X be a set, Xα ⊂ X for α ∈ A
(A is an index set) and assume that τα ⊂ P(Xα) is a topology on Xα for each α.
Let iα : Xα → X denote the inclusion maps. The inductive limit topology on X
is the largest topology τ on X such that iα is continuous for all α ∈ A. That is to
say, τ = ∩α∈Aiα∗(τα), i.e. a set U ⊂ X is open (U ∈ τ) iff i−1α (A) = A ∩Xα ∈ τα
for all α ∈ A.
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Notice that C ⊂ X is closed iff C ∩Xα is closed in Xα for all α. Indeed, C ⊂ X
is closed iff Cc = X \ C ⊂ X is open, iff Cc ∩ Xα = Xα \ C is open in Xα iff
Xα ∩ C = Xα \ (Xα \ C) is closed in Xα for all α ∈ A.

Definition 30.54. Let D(U) denote C∞c (U) equipped with the inductive limit
topology arising from writing C∞c (U) as in Eq. (30.12) and using the Fréchet
topologies on C∞(K) as defined in Example 30.24.

For each K @@ U, C∞(K) is a closed subset of D(U). Indeed if F is another
compact subset of U, then C∞(K)∩C∞(F ) = C∞(K∩F ), which is a closed subset
of C∞(F ). The set U ⊂ D(U) defined by

(30.13) U =
ψ ∈ D(U) :

X
|α|≤m

k∂α(ψ − φ)k∞ < �


for some φ ∈ D(U) and � > 0 is an open subset of D(U). Indeed, if K @@ U, then

U ∩ C∞(K) =
ψ ∈ C∞(K) :

X
|α|≤m

k∂α(ψ − φ)k∞ < �


is easily seen to be open in C∞(K).

Proposition 30.55. Let (X, τ) be as described in Definition 30.53 and f : X → Y
be a function where Y is another topological space. Then f is continuous iff f ◦ iα :
Xα → Y is continuous for all α ∈ A.

Proof. Since the composition of continuous maps is continuous, it follows that
f ◦ iα : Xα → Y is continuous for all α ∈ A if f : X → Y is continuous. Conversely,
if f ◦ iα is continuous for all α ∈ A, then for all V ⊂o Y we have

τα 3 (f ◦ iα)−1 (V ) = i−1α (f−1(V )) = f−1(V ) ∩Xα for all α ∈ A

showing that f−1(V ) ∈ τ.

Lemma 30.56. Let us continue the notation introduced in Definition 30.53. Sup-
pose further that there exists αk ∈ A such that X 0

k := Xαk ↑ X as k →∞ and for
each α ∈ A there exists an k ∈ N such that Xα ⊂ X 0

k and the inclusion map is con-
tinuous. Then τ = {A ⊂ X : A ∩X 0

k ⊂o X 0
k for all k} and a function f : X → Y

is continuous iff f |X0
k
: X 0

k → Y is continuous for all k. In short the inductive limit
topology on X arising from the two collections of subsets {Xα}α∈A and {X 0

k}k∈N
are the same.

Proof. Suppose that A ⊂ X, if A ∈ τ then A ∩ X 0
k = A ∩ Xαk ⊂o X 0

k by
definition. Now suppose that A ∩ X 0

k ⊂o X 0
k for all k. For α ∈ A choose k such

that Xα ⊂ X 0
k, then A ∩Xα = (A ∩X 0

k) ∩Xα ⊂o Xα since A ∩X 0
k is open in X 0

k

and by assumption that Xα is continuously embedded in X 0
k, V ∩Xα ⊂o Xα for all

V ⊂o X 0
k. The characterization of continuous functions is prove similarly.

Let Kk @@ U for k ∈ N such that Ko
k ⊂ Kk ⊂ Ko

k+1 ⊂ Kk+1 for all k and
Kk ↑ U as k → ∞. Then it follows for any K @@ U, there exists an k such
that K ⊂ Ko

k ⊂ Kk. One now checks that the map C∞(K) embeds continuously
into C∞(Kk) and moreover, C∞(K) is a closed subset of C∞(Kk+1). Therefore
we may describe D(U) as C∞c (U) with the inductively limit topology coming from
∪k∈NC∞(Kk).
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Lemma 30.57. Suppose that {φk}∞k=1 ⊂ D(U), then φk → φ ∈ D(U) iff φk − φ→
0 ∈ D(U).
Proof. Let φ ∈ D(U) and U ⊂ D(U) be a set. We will begin by showing that

U is open in D(U) iff U − φ is open in D(U). To this end let Kk be the compact
sets described above and choose k0 sufficiently large so that φ ∈ C∞(Kk) for all
k ≥ k0. Now U − φ ⊂ D(U) is open iff (U − φ) ∩ C∞(Kk) is open in C∞(Kk) for
all k ≥ k0. Because φ ∈ C∞(Kk), we have (U − φ) ∩ C∞(Kk) = U ∩ C∞(Kk) − φ
which is open in C∞(Kk) iff U ∩ C∞(Kk) is open C∞(Kk). Since this is true for
all k ≥ k0 we conclude that U −φ is an open subset of D(U) iff U is open in D(U).
Now φk → φ in D(U) iff for all φ ∈ U ⊂o D(U), φk ∈ U for almost all k which

happens iff φk − φ ∈ U − φ for almost all k. Since U − φ ranges over all open
neighborhoods of 0 when U ranges over the open neighborhoods of φ, the result
follows.

Lemma 30.58. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff there is a
compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ in C∞(K).

Proof. If φk → φ in C∞(K), then for any open set V ⊂ D(U) with φ ∈ V we
have V ∩C∞(K) is open in C∞(K) and hence φk ∈ V ∩C∞(K) ⊂ V for almost all
k. This shows that φk → φ ∈ D(U).
For the converse, suppose that there exists {φk}∞k=1 ⊂ D(U) which converges to

φ ∈ D(U) yet there is no compact set K such that supp(φk) ⊂ K for all k. Using
Lemma30.57, we may replace φk by φk − φ if necessary so that we may assume
φk → 0 in D(U). By passing to a subsequences of {φk} and {Kk} if necessary, we
may also assume there xk ∈ Kk+1 \Kk such that φk(xk) 6= 0 for all k. Let p denote
the semi-norm on C∞c (U) defined by

p(φ) =
∞X
k=0

sup

½ |φ(x)|
|φk(xk)| : x ∈ Kk+1 \Ko

k

¾
.

One then checks that

p(φ) ≤
Ã

NX
k=0

1

|φk(xk)|

!
kφk∞

for φ ∈ C∞(KN+1). This shows that p|C∞(KN+1) is continuous for all N and hence
p is continuous on D(U). Since p is continuous on D(U) and φk → 0 in D(U), it
follows that limk→∞ p(φk) = p(limk→∞ φk) = p(0) = 0. While on the other hand,
p(φk) ≥ 1 by construction and hence we have arrived at a contradiction. Thus for
any convergent sequence {φk}∞k=1 ⊂ D(U) there is a compact set K @@ U such
that supp(φk) ⊂ K for all k.
We will now show that {φk}∞k=1 is convergent to φ in C∞(K). To this end let

U ⊂ D(U) be the open set described in Eq. (30.13), then φk ∈ U for almost all k
and in particular, φk ∈ U ∩ C∞(K) for almost all k. (Letting � > 0 tend to zero
shows that supp(φ) ⊂ K, i.e. φ ∈ C∞(K).) Since sets of the form U ∩C∞(K) with
U as in Eq. (30.13) form a neighborhood base for the C∞(K) at φ, we concluded
that φk → φ in C∞(K).

Definition 30.59 (Distributions on U ⊂o Rn). A generalized function on U ⊂o Rn
is a continuous linear functional on D(U). We denote the space of generalized
functions by D0(U).
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Proposition 30.60. Let f : D(U)→ C be a linear functional. Then the following
are equivalent.

(1) f is continuous, i.e. f ∈ D0(U).
(2) For all K @@ U, there exist n ∈ N and C <∞ such that

(30.14) |f(φ)| ≤ Cpn(φ) for all φ ∈ C∞(K).

(3) For all sequences {φk} ⊂ D(U) such that φk → 0 in D(U), limk→∞ f(φk) =
0.

Proof. 1) ⇐⇒ 2). If f is continuous, then by definition of the inductive limit
topology f |C∞(K) is continuous. Hence an estimate of the type in Eq. (30.14) must
hold. Conversely if estimates of the type in Eq. (30.14) hold for all compact sets
K, then f |C∞(K) is continuous for all K @@ U and again by the definition of the
inductive limit topologies, f is continuous on D0(U).
1)⇐⇒ 3) By Lemma 30.58, the assertion in item 3. is equivalent to saying that

f |C∞(K) is sequentially continuous for all K @@ U. Since the topology on C∞(K)
is first countable (being a metric topology), sequential continuity and continuity
are the same think. Hence item 3. is equivalent to the assertion that f |C∞(K) is
continuous for all K @@ U which is equivalent to the assertion that f is continuous
on D0(U).
Proposition 30.61. The maps (λ, φ) ∈ C × D(U) → λφ ∈ D(U) and (φ, ψ) ∈
D(U) × D(U) → φ + ψ ∈ D(U) are continuous. (Actually, I will have to look up
how to decide to this.) What is obvious is that all of these operations are sequentially
continuous, which is enough for our purposes.
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31. Convolutions involving distributions

31.1. Tensor Product of Distributions. Let X ⊂o Rn and Y ⊂o Rm and S ∈
D0(X) and T ∈ D0(Y ).We wish to define S⊗T ∈ D0(X×Y ). Informally, we should
have

hS ⊗ T, φi =
Z
X×Y

S(x)T (y)φ(x, y)dxdy

=

Z
X

dxS(x)

Z
Y

dyT (y)φ(x, y) =

Z
Y

dyT (y)

Z
X

dxS(x)φ(x, y).

Of course we should interpret this last equation as follows,

(31.1) hS ⊗ T, φi = hS(x), hT (y), φ(x, y)ii = hT (y), hS(x), φ(x, y)ii.
This formula takes on particularly simple form when φ = u⊗ v with u ∈ D(X) and
v ∈ D(Y ) in which case
(31.2) hS ⊗ T, u⊗ vi = hS, uihT, vi.
We begin with the following smooth version of the Weierstrass approximation the-
orem which will be used to show Eq. (31.2) uniquely determines S ⊗ T.

Theorem 31.1 (Density Theorem). Suppose that X ⊂o Rn and Y ⊂o Rm, then
D(X)⊗D(Y ) is dense in D(X × Y ).

Proof. First let us consider the special case where X = (0, 1)n and Y = (0, 1)m

so that X×Y = (0, 1)m+n. To simplify notation, let m+n = k and Ω = (0, 1)k and
πi : Ω→ (0, 1) be projection onto the ith factor of Ω. Suppose that φ ∈ C∞c (Ω) and
K = supp(φ). We will view φ ∈ C∞c (Rk) by setting φ = 0 outside of Ω. Since K is
compact πi(K) ⊂ [ai, bi] for some 0 < ai < bi < 1. Let a = min {ai : i = 1, . . . , k}
and b = max {bi : i = 1, . . . , k} . Then supp(φ) = K ⊂ [a, b]k ⊂ Ω.
As in the proof of the Weierstrass approximation theorem, let qn(t) = cn(1 −

t2)n1|t|≤1 where cn is chosen so that
R
R qn(t)dt = 1. Also set Qn = qn ⊗ · · · ⊗ qn,

i.e. Qn(x) =
Qk

i=1 qn(xi) for x ∈ Rk. Let

(31.3) fn(x) := Qn ∗ φ(x) = ckn

Z
Rk

φ(y)
kY
i=1

(1− (xi − yi)
2)n1|xi−yi|≤1dyi.

By standard arguments, we know that ∂αfn → ∂αφ uniformly on Rk as n → ∞.
Moreover for x ∈ Ω, it follows from Eq. (31.3) that

fn(x) := ckn

Z
Ω

φ(y)
kY
i=1

(1− (xi − yi)
2)ndyi = pn(x)

where pn(x) is a polynomial in x. Notice that pn ∈ C∞((0, 1))⊗ · · ·⊗C∞((0, 1)) so
that we are almost there.53 We need only cutoff these functions so that they have

53One could also construct fn ∈ C∞(R)⊗k such that ∂αfn → ∂αf uniformlly as n→∞ using
Fourier series. To this end, let φ̃ be the 1 — periodic extension of φ to Rk. Then φ̃ ∈ C∞periodic (R

k)

and hence it may be written as
φ̃(x) =

X
m∈Zk

cmei2πm·x

where the
©
cm : m ∈ Zkª are the Fourier coefficients of φ̃ which decay faster that (1 + |m|)−l for

any l > 0. Thus fn(x) :=
P

m∈Zk:|m|≤n cmei2πm·x ∈ C∞(R)⊗k and ∂αfn → ∂αφ unifromly on

Ω as n→∞.
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compact support. To this end, let θ ∈ C∞c ((0, 1)) be a function such that θ = 1 on
a neighborhood of [a, b] and define

φn = (θ ⊗ · · ·⊗ θ) fn = (θ ⊗ · · ·⊗ θ) pn ∈ C∞c ((0, 1))⊗ · · ·⊗ C∞c ((0, 1)).

I claim now that φn → φ in D(Ω). Certainly by construction supp(φn) ⊂
[a, b]k @@ Ω for all n. Also

(31.4) ∂α(φ− φn) = ∂α(φ− (θ ⊗ · · ·⊗ θ) fn) = (θ ⊗ · · ·⊗ θ) (∂αφ− ∂αfn) +Rn

where Rn is a sum of terms of the form ∂β (θ ⊗ · · ·⊗ θ) · ∂γfn with β 6= 0. Since
∂β (θ ⊗ · · ·⊗ θ) = 0 on [a, b]k and ∂γfn converges uniformly to zero on Rk \ [a, b]k,
it follows that Rn → 0 uniformly as n → ∞. Combining this with Eq. (31.4) and
the fact that ∂αfn → ∂αφ uniformly on Rk as n→∞, we see that φn → φ in D(Ω).
This finishes the proof in the case X = (0, 1)n and Y = (0, 1)m.
For the general case, let K = supp(φ) @@ X × Y and K1 = π1(K) @@ X and

K2 = π2(K) @@ Y where π1 and π2 are projections from X × Y to X and Y

respectively. Then K @ K1 × K2 @@ X × Y. Let {Vi}ai=1 and {Uj}bj=1 be finite
covers of K1 and K2 respectively by open sets Vi = (ai, bi) and Uj = (cj , dj) with
ai, bi ∈ X and cj , dj ∈ Y. Also let αi ∈ C∞c (Vi) for i = 1, . . . , a and βj ∈ C∞c (Uj)
for j = 1, . . . , b be functions such that

Pa
i=1 αi = 1 on a neighborhood of K1 andPb

j=1 βj = 1 on a neighborhood of K2. Then φ =
Pa

i=1

Pb
j=1 (αi ⊗ βj)φ and by

what we have just proved (after scaling and translating) each term in this sum,
(αi ⊗ βj)φ, may be written as a limit of elements in D(X)⊗D(Y ) in the D(X×Y )
topology.

Theorem 31.2 (Distribution-Fubini-Theorem). Let S ∈ D0(X), T ∈ D0(Y ),
h(x) := hT (y), φ(x, y)i and g(y) := hS(x), φ(x, y)i. Then h = hφ ∈ D(X),
g = gφ ∈ D(Y ), ∂αh(x) = hT (y), ∂αxφ(x, y)i and ∂βg(y) = hS(x), ∂βy φ(x, y)i for
all multi-indices α and β. Moreover

(31.5) hS(x), hT (y), φ(x, y)ii = hS, hi = hT, gi = hT (y), hS(x), φ(x, y)ii.
We denote this common value by hS ⊗ T, φi and call S ⊗ T the tensor product of S
and T. This distribution is uniquely determined by its values on D(X)⊗D(Y ) and
for u ∈ D(X) and v ∈ D(Y ) we have

hS ⊗ T, u⊗ vi = hS, uihT, vi.
Proof. Let K = supp(φ) @@ X × Y and K1 = π1(K) and K2 = π2(K). Then

K1 @@ X and K2 @@ Y and K ⊂ K1 ×K2 ⊂ X × Y. If x ∈ X and y /∈ K2, then
φ(x, y) = 0 and more generally ∂αxφ(x, y) = 0 so that {y : ∂αxφ(x, y) 6= 0} ⊂ K2.
Thus for all x ∈ X, supp(∂αφ(x, ·)) ⊂ K2 ⊂ Y. By the fundamental theorem of
calculus,

(31.6) ∂βy φ(x+ v, y)− ∂βy φ(x, y) =

Z 1

0

∂xv∂
β
y φ(x+ τv, y)dτ

and therefore°°∂βy φ(x+ v, ·)− ∂βy φ(x, ·)
°°
∞ ≤ |v|

Z 1

0

°°∇x∂
β
y φ(x+ τv, ·)°°∞ dτ

≤ |v|°°∇x∂
β
y φ
°°
∞ → 0 as ν → 0.
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This shows that x ∈ X → φ(x, ·) ∈ D(Y ) is continuous. Thus h is continuous being
the composition of continuous functions. Letting v = tei in Eq. (31.6) we find

∂βy φ(x+ tei, y)− ∂βy φ(x, y)

t
− ∂

∂xi
∂βy φ(x, y) =

Z 1

0

·
∂

∂xi
∂βy φ(x+ τtei, y)− ∂

∂xi
∂βy φ(x, y)

¸
dτ

and hence°°°°°∂βy φ(x+ tei, ·)− ∂βy φ(x, ·)
t

− ∂

∂xi
∂βy φ(x, ·)

°°°°°
∞
≤
Z 1

0

°°°° ∂

∂xi
∂βy φ(x+ τtei, ·)− ∂

∂xi
∂βy φ(x, ·)

°°°°
∞
dτ

which tends to zero as t→ 0. Thus we have checked that
∂

∂xi
φ(x, ·) = D0(Y )— lim

t→0
φ(x+ tei, ·)− φ(x, ·)

t

and therefore,

h(x+ tei)− h(x)

t
= hT, φ(x+ tei, ·)− φ(x, ·)

t
i→ hT, ∂

∂xi
φ(x, ·)i

as t → 0 showing ∂ih(x) exists and is given by hT, ∂
∂xi

φ(x, ·)i. By what we
have proved above, it follows that ∂ih(x) = hT, ∂

∂xi
φ(x, ·)i is continuous in

x. By induction on |α| , it follows that ∂αh(x) exists and is continuous and
∂αh(x) = hT (y), ∂αxφ(x, y)i for all α. Now if x /∈ K1, then φ(x, ·) ≡ 0 showing that
{x ∈ X : h(x) 6= 0} ⊂ K1 and hence supp(h) ⊂ K1 @@ X. Thus h has compact
support. This proves all of the assertions made about h. The assertions pertaining
to the function g are prove analogously.
Let hΓ, φi = hS(x), hT (y), φ(x, y)ii = hS, hφi for φ ∈ D(X×Y ). Then Γ is clearly

linear and we have

|hΓ, φi| = |hS, hφi| ≤ C
X
|α|≤m

k∂αxhφk∞,K1
= C

X
|α|≤m

khT (y), ∂αxφ(·, y)ik∞,K1

which combined with the estimate

|hT (y), ∂αxφ(x, y)i| ≤ C
X
|β|≤p

°°∂βy ∂αxφ(x, y)i°°∞,K2

shows
|hΓ, φi| ≤ C

X
|α|≤m

X
|β|≤p

°°∂βy ∂αxφ(x, y)i°°∞,K1×K2
.

So Γ is continuous, i.e. Γ ∈ D0(X × Y ), i.e.

φ ∈ D(X × Y )→ hS(x), hT (y), φ(x, y)ii
defines a distribution. Similarly,

φ ∈ D(X × Y )→ hT (y), hS(x), φ(x, y)ii
also defines a distribution and since both of these distributions agree on the dense
subspace D(X)⊗D(Y ), it follows they are equal.
Theorem 31.3. If (T, φ) is a distribution test function pair satisfying one of the
following three conditions

(1) T ∈ E 0(Rn) and φ ∈ C∞(Rn)
(2) T ∈ D0(Rn) and φ ∈ D(Rn) or
(3) T ∈ S 0(Rn) and φ ∈ S(Rn),
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let

(31.7) T ∗ φ(x) = “
Z

T (y)φ(x− y)dy” = hT, φ(x− ·)i.
Then T ∗ φ ∈ C∞(Rn), ∂α(T ∗ φ) = (∂αT ∗ φ) = (T ∗ ∂αφ) for all α and

supp(T ∗φ) ⊂ supp(T ) + supp(φ). Moreover if (3) holds then T ∗φ ∈ P — the space
of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar and
easier. Let h(x) := T ∗ φ(x). Since T ∈ S 0(Rn), there exists m ∈ N and C < ∞
such that |hT, φi| ≤ Cpm(φ) for all φ ∈ S, where pm is defined in Example 30.28.
Therefore,

|h(x)− h(y)| = |hT, φ(x− ·)− φ(y − ·)i| ≤ Cpm(φ(x− ·)− φ(y − ·))
= C

X
|α|≤m

kµm(∂αφ(x− ·)− ∂αφ(y − ·))k∞ .

Let ψ := ∂αφ, then

(31.8) ψ(x− z)− ψ(y − z) =

Z 1

0

∇ψ(y + τ(x− y)− z) · (x− y)dτ

and hence

|ψ(x− z)− ψ(y − z)| ≤ |x− y| ·
Z 1

0

|∇ψ(y + τ(x− y)− z)| dτ

≤ C |x− y|
Z 1

0

µ−M (y + τ(x− y)− z)dτ

for any M <∞. By Peetre’s inequality,

µ−M (y + τ(x− y)− z) ≤ µ−M (z)µM (y + τ(x− y))

so that

|∂αφ(x− z)− ∂αφ(y − z)| ≤ C |x− y|µ−M (z)
Z 1

0

µM (y + τ(x− y))dτ

≤ C(x, y) |x− y|µ−M (z)(31.9)

where C(x, y) is a continuous function of (x, y). Putting all of this together we see
that

|h(x)− h(y)| ≤ C̃(x, y) |x− y|→ 0 as x→ y,

showing h is continuous. Let us now compute a partial derivative of h. Suppose
that v ∈ Rn is a fixed vector, then by Eq. (31.8),
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z) =

Z 1

0

∇φ(x+ τtv − z) · vdτ − ∂vφ(x− z)

=

Z 1

0

[∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ.

This then implies¯̄̄̄
∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾¯̄̄̄
=

¯̄̄̄Z 1

0

∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ

¯̄̄̄
≤
Z 1

0

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| dτ.
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But by the same argument as above, it follows that

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| ≤ C(x+ τtv, x) |τtv|µ−M (z)
and thus¯̄̄̄
∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾¯̄̄̄
≤ tµ−M (z)

Z 1

0

C(x+τtv, x)τdτ |v|µ−M (z).

Putting this all together shows°°°°µM∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾°°°°
∞
= O(t)→ 0 as t→ 0.

That is to say φ(x+tv−·)−φ(x−·)
t → ∂vφ(x − ·) in S as t → 0. Hence since T is

continuous on S, we learn

∂v (T ∗ φ) (x) = ∂vhT, φ(x− ·)i = lim
t→0
hT, φ(x+ tv − ·)− φ(x− ·)

t
i

= hT, ∂vφ(x− ·)i = T ∗ ∂vφ(x).
By the first part of the proof, we know that ∂v(T ∗ φ) is continuous and hence by
induction it now follows that T ∗ φ is C∞ and ∂αT ∗ φ = T ∗ ∂αφ. Since

T ∗ ∂αφ(x) = hT (z), (∂αφ) (x− z)i = (−1)αhT (z), ∂αz φ(x− z)i
= h∂αz T (z), φ(x− z)i = ∂αT ∗ φ(x)

the proof is complete except for showing T ∗ φ ∈ P.
For the last statement, it suffices to prove |T ∗ φ(x)| ≤ CµM (x) for some C <∞

and M <∞. This goes as follows

|h(x)| = |hT, φ(x− ·)i| ≤ Cpm(φ(x− ·)) = C
X
|α|≤m

kµm(∂αφ(x− ·)k∞

and using Peetre’s inequality, |∂αφ(x− z)| ≤ Cµ−m(x − z) ≤ Cµ−m(z)µm(x) so
that

kµm(∂αφ(x− ·)k∞ ≤ Cµm(x).

Thus it follows that |T ∗ φ(x)| ≤ Cµm(x) for some C <∞.
If x ∈ Rn \ (supp(T ) + supp(φ)) and y ∈ supp(φ) then x − y /∈ supp(T ) for

otherwise x = x− y + y ∈ supp(T ) + supp(φ). Thus
supp(φ(x− ·)) = x− supp(φ) ⊂ Rn \ supp(T )

and hence h(x) = hT, φ(x − ·)i = 0 for all x ∈ Rn \ (supp(T ) + supp(φ)) . This
implies that {h 6= 0} ⊂ supp(T ) + supp(φ) and hence

supp(h) = {h 6= 0} ⊂ supp(T ) + supp(φ).

As we have seen in the previous theorem, T ∗ φ is a smooth function and hence
may be used to define a distribution in D0(Rn) by

hT ∗ φ, ψi =
Z

T ∗ φ(x)ψ(x)dx =
Z
hT, φ(x− ·)iψ(x)dx.

Using the linearity of T we might expect thatZ
hT, φ(x− ·)iψ(x)dx = hT,

Z
φ(x− ·)ψ(x)dxi
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or equivalently that

(31.10) hT ∗ φ, ψi = hT, φ̃ ∗ ψi
where φ̃(x) := φ(−x).
Theorem 31.4. Suppose that if (T, φ) is a distribution test function pair satisfy-
ing one the three condition in Theorem 31.3, then T ∗ φ as a distribution may be
characterized by

(31.11) hT ∗ φ, ψi = hT, φ̃ ∗ ψi
for all ψ ∈ D(Rn). Moreover, if T ∈ S 0 and φ ∈ S then Eq. (31.11) holds for all
ψ ∈ S.
Proof. Let us first assume that T ∈ D0 and φ, ψ ∈ D and θ ∈ D be a function

such that θ = 1 on a neighborhood of the support of ψ. Then

hT ∗ φ, ψi =
Z
Rn
hT, φ(x− ·)iψ(x)dx = hψ(x), hT (y), φ(x− y)ii

= hθ(x)ψ(x), hT (y), φ(x− y)ii = hψ(x), θ(x)hT (y), φ(x− y)ii
= hψ(x), hT (y), θ(x)φ(x− y)ii.

Now the function, θ(x)φ(x− y) ∈ D(Rn × Rn), so we may apply Fubini’s theorem
for distributions to conclude that

hT ∗ φ, ψi = hψ(x), hT (y), θ(x)φ(x− y)ii = hT (y), hψ(x), θ(x)φ(x− y)ii
= hT (y), hθ(x)ψ(x), φ(x− y)ii = hT (y), hψ(x), φ(x− y)ii
= hT (y), ψ ∗ φ̃(y)i = hT,ψ ∗ φ̃i

as claimed.
If T ∈ E 0, let α ∈ D(Rn) be a function such that α = 1 on a neighborhood of

supp(T ), then working as above,

hT ∗ φ, ψi = hψ(x), hT (y), θ(x)φ(x− y)ii = hψ(x), hT (y), α(y)θ(x)φ(x− y)ii
and since α(y)θ(x)φ(x − y) ∈ D(Rn × Rn) we may apply Fubini’s theorem for
distributions to conclude again that

hT ∗ φ, ψi = hT (y), hψ(x), α(y)θ(x)φ(x− y)ii
= hα(y)T (y), hθ(x)ψ(x), φ(x− y)ii
= hT (y), hψ(x), φ(x− y)ii = hT, ψ ∗ φ̃i.

Now suppose that T ∈ S 0 and φ, ψ ∈ S. Let φn, ψn ∈ D be a sequences such that
φn → φ and ψn → ψ in S, then using arguments similar to those in the proof of
Theorem 31.3, one shows

hT ∗ φ, ψi = lim
n→∞hT ∗ φn, ψni = lim

n→∞hT, ψn ∗ φ̃ni = hT, ψ ∗ φ̃i.

Theorem 31.5. Let U ⊂o Rn, then D(U) is sequentially dense in E 0(U). When
U = Rn we have E 0(Rn) is a dense subspace of S 0(Rn) ⊂ D0(Rn). Hence we have
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the following inclusions,

D(U) ⊂ E 0(U) ⊂ D0(U),
D(Rn) ⊂ E 0(Rn) ⊂ S 0(Rn) ⊂ D0(Rn) and
D(Rn) ⊂ S(Rn) ⊂ S 0(Rn) ⊂ D0(Rn)

with all inclusions being dense in the next space up.

Proof. The key point is to show D(U) is dense in E 0(U). Choose θ ∈ C∞c (Rn)
such that supp(θ) ⊂ B(0, 1), θ = θ and

R
θ(x)dx = 1. Let θm(x) = m−nθ(mx)

so that supp(θm) ⊂ B(0, 1/m). An element in T ∈ E 0(U) may be viewed as an
element in E 0(Rn) in a natural way. Namely if χ ∈ C∞c (U) such that χ = 1
on a neighborhood of supp(T ), and φ ∈ C∞(Rn), let hT, φi = hT, χφi. Define
Tm = T ∗ θm. It is easily seen that supp(Tn) ⊂ supp(T ) +B(0, 1/m) ⊂ U for all m
sufficiently large. Hence Tm ∈ D(U) for large enough m. Moreover, if ψ ∈ D(U),
then

hTm, ψi = hT ∗ θm, ψi = hT, θm ∗ ψi = hT, θm ∗ ψi→ hT,ψi
since θm∗ψ → ψ in D(U) by standard arguments. If U = Rn, T ∈ E 0(Rn) ⊂ S 0(Rn)
and ψ ∈ S, the same argument goes through to show hTm, ψi → hT,ψi provided
we show θm ∗ ψ → ψ in S(Rn) as m→∞. This latter is proved by showing for all
α and t > 0, I

kµt (∂αθm ∗ ψ − ∂αψ)k∞ → 0 as m→∞,

which is a consequence of the estimates:

|∂αθm ∗ ψ(x)− ∂αψ(x)| = |θm ∗ ∂αψ(x)− ∂αψ(x)|

=

¯̄̄̄Z
θm(y) [∂

αψ(x− y)− ∂αψ(x)] dy

¯̄̄̄
≤ sup
|y|≤1/m

|∂αψ(x− y)− ∂αψ(x)| ≤ 1

m
sup

|y|≤1/m
|∇∂αψ(x− y)|

≤ 1

m
C sup
|y|≤1/m

µ−t(x− y) ≤ 1

m
Cµ−t(x− y) sup

|y|≤1/m
µt(y)

≤ 1

m
C
¡
1 +m−1

¢t
µ−t(x).

Definition 31.6 (Convolution of Distributions). Suppose that T ∈ D0 and S ∈ E 0,
then define T ∗ S ∈ D0 by

hT ∗ S, φi = hT ⊗ S, φ+i
where φ+(x, y) = φ(x + y) for all x, y ∈ Rn. More generally we may define T ∗ S
for any two distributions having the property that supp(T ⊗ S) ∩ supp(φ+) =
[supp(T )× supp(S)] ∩ supp(φ+) is compact for all φ ∈ D.
Proposition 31.7. Suppose that T ∈ D0 and S ∈ E 0 then T ∗S is well defined and
(31.12) hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii.
Moreover, if T ∈ S 0 then T ∗S ∈ S 0 and F(T ∗S) = ŜT̂ . Recall from Remark 30.46
that Ŝ ∈ P so that ŜT̂ ∈ S 0.
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Proof. Let θ ∈ D be a function such that θ = 1 on a neighborhood of supp(S),
then by Fubini’s theorem for distributions,

hT ⊗ S, φ+i = hT ⊗ S(x, y), θ(y)φ(x+ y)i = hT (x)S(y), θ(y)φ(x+ y)i
= hT (x), hS(y), θ(y)φ(x+ y)ii = hT (x), hS(y), φ(x+ y)ii

and

hT ⊗ S, φ+i = hT (x)S(y), θ(y)φ(x+ y)i = hS(y), hT (x), θ(y)φ(x+ y)ii
= hS(y), θ(y)hT (x), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii

proving Eq. (31.12).
Suppose that T ∈ S 0, then
|hT ∗ S, φi| = |hT (x), hS(y), φ(x+ y)ii| ≤ C

X
|α|≤m

kµm∂αx hS(y), φ(·+ y)ik∞

= C
X
|α|≤m

kµmhS(y), ∂αφ(·+ y)ik∞

and

|hS(y), ∂αφ(x+ y)i| ≤ C
X
|β|≤p

sup
y∈K

¯̄
∂β∂αφ(x+ y)

¯̄ ≤ Cpm+p(φ) sup
y∈K

µ−m−p(x+ y)

≤ Cpm+p(φ)µ−m−p(x) sup
y∈K

µm+p(y) = C̃µ−m−p(x)pm+p(φ).

Combining the last two displayed equations shows

|hT ∗ S, φi| ≤ Cpm+p(φ)

which shows that T ∗ S ∈ S 0. We still should check that
hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii

still holds for all φ ∈ S. This is a matter of showing that all of the expressions
are continuous in S when restricted to D. Explicitly, let φm ∈ D be a sequence of
functions such that φm → φ in S, then
(31.13) hT ∗ S, φi = lim

n→∞hT ∗ S, φni = lim
n→∞hT (x), hS(y), φn(x+ y)ii

and

(31.14) hT ∗ S, φi = lim
n→∞hT ∗ S, φni = lim

n→∞hS(y), hT (x), φn(x+ y)ii.
So it suffices to show the map φ ∈ S → hS(y), φ(· + y)i ∈ S is continuous and
φ ∈ S → hT (x), φ(x + ·)i ∈ C∞(Rn) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to the
reader. Given these continuity assertions, we may pass to the limits in Eq. (31.13d
(31.14) to learn

hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii
still holds for all φ ∈ S.
The last and most important point is to show F(T ∗ S) = ŜT̂ . Using

φ̂(x+ y) =

Z
Rn

φ(ξ)e−iξ·(x+y)dξ =
Z
Rn

φ(ξ)e−iξ·ye−iξ·xdξ = F ¡φ(ξ)e−iξ·y¢ (x)
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and the definition of F on S 0 we learn
hF(T ∗ S), φi = hT ∗ S, φ̂i = hS(y), hT (x), φ̂(x+ y)ii = hS(y), hT (x),F ¡φ(ξ)e−iξ·y¢ (x)ii

= hS(y), hT̂ (ξ), φ(ξ)e−iξ·yii.
(31.15)

Let θ ∈ D be a function such that θ = 1 on a neighborhood of supp(S) and
assume φ ∈ D for the moment. Then from Eq. (31.15) and Fubini’s theorem for
distributions we find

hF(T ∗ S), φi = hS(y), θ(y)hT̂ (ξ), φ(ξ)e−iξ·yii = hS(y), hT̂ (ξ), φ(ξ)θ(y)e−iξ·yii
= hT̂ (ξ), hS(y), φ(ξ)θ(y)e−iξ·yii = hT̂ (ξ), φ(ξ)hS(y), e−iξ·yii
= hT̂ (ξ), φ(ξ)Ŝ(ξ)i = hŜ(ξ)T̂ (ξ), φ(ξ)i.(31.16)

Since F(T ∗ S) ∈ S 0 and ŜT̂ ∈ S 0, we conclude that Eq. (31.16) holds for all φ ∈ S
and hence F(T ∗ S) = ŜT̂ as was to be proved.

31.2. Elliptic Regularity.

Theorem 31.8 (Hypoellipticity). Suppose that p(x) =
P

|α|≤m aαξ
α is a polyno-

mial on Rn and L is the constant coefficient differential operator

L = p(
1

i
∂) =

X
|α|≤m

aα(
1

i
∂)α =

X
|α|≤m

aα(−i∂)α.

Also assume there exists a distribution T ∈ D0(Rn) such that R := δ−LT ∈ C∞(Rn)
and T |Rn\{0} ∈ C∞(Rn \ {0}). Then if v ∈ C∞(U) and u ∈ D0(U) solves Lu = v
then u ∈ C∞(U). In particular, all solutions u to the equation Lu = 0 are smooth.

Proof. We must show for each x0 ∈ U that u is smooth on a neighborhood of
x0. So let x0 ∈ U and θ ∈ D(U) such that 0 ≤ θ ≤ 1 and θ = 1 on neighborhood
V of x0. Also pick α ∈ D(V ) such that 0 ≤ α ≤ 1 and α = 1 on a neighborhood of
x0. Then

θu = δ ∗ (θu) = (LT +R) ∗ (θu) = (LT ) ∗ (θu) +R ∗ (θu)
= T ∗ L (θu) +R ∗ (θu)
= T ∗ {αL (θu) + (1− α)L (θu)}+R ∗ (θu)
= T ∗ {αLu+ (1− α)L (θu)}+R ∗ (θu)
= T ∗ (αv) +R ∗ (θu) + T ∗ [(1− α)L (θu)] .

Since αv ∈ D(U) and T ∈ D0(Rn) it follows that R ∗ (θu) ∈ C∞(Rn). Also since
R ∈ C∞(Rn) and θu ∈ E 0(U), R ∗ (θu) ∈ C∞(Rn). So to show θu, and hence u, is
smooth near x0 it suffices to show T ∗g is smooth near x0 where g := (1−α)L (θu) .
Working formally for the moment,

T ∗ g(x) =
Z
Rn

T (x− y)g(y)dy =

Z
Rn\{α=1}

T (x− y)g(y)dy

which should be smooth for x near x0 since in this case x−y 6= 0 when g(y) 6= 0. To
make this precise, let δ > 0 be chosen so that α = 1 on a neighborhood of B(x0, δ)
so that supp(g) ⊂ B(x0, δ)

c
. For φ ∈ D(B(x0, δ/2),

hT ∗ g, φi = hT (x), hg(y), φ(x+ y)ii = hT, hi
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where h(x) := hg(y), φ(x+ y)i. If |x| ≤ δ/2

supp(φ(x+ ·)) = supp(φ)− x ⊂ B(x0, δ/2)− x ⊂ B(x0, δ)

so that h(x) = 0 and hence supp(h) ⊂ B(x0, δ/2)
c
. Hence if we let γ ∈ D(B(0, δ/2))

be a function such that γ = 1 near 0, we have γh ≡ 0, and thus
hT ∗ g, φi = hT, hi = hT, h− γhi = h(1− γ)T, hi = h[(1− γ)T ] ∗ g, φi.

Since this last equation is true for all φ ∈ D(B(x0, δ/2)), T ∗ g = [(1− γ)T ] ∗ g
on B(x0, δ/2) and this finishes the proof since [(1− γ)T ] ∗ g ∈ C∞(Rn) because
(1− γ)T ∈ C∞(Rn).

Definition 31.9. Suppose that p(x) =
P
|α|≤m aαξ

α is a polynomial on Rn and L

is the constant coefficient differential operator

L = p(
1

i
∂) =

X
|α|≤m

aα(
1

i
∂)α =

X
|α|≤m

aα(−i∂)α.

Let σp(L)(ξ) :=
P
|α|=m aαξ

α and call σp(L) the principle symbol of L. The oper-
ator L is said to be elliptic provided that σp(L)(ξ) 6= 0 if ξ 6= 0.
Theorem 31.10 (Existence of Parametrix). Suppose that L = p( 1i ∂) is an elliptic
constant coefficient differential operator, then there exists a distribution T ∈ D0(Rn)
such that R := δ − LT ∈ C∞(Rn) and T |Rn\{0} ∈ C∞(Rn \ {0}).
Proof. The idea is to try to find T such that LT = δ. Taking the Fourier

transform of this equation implies that p(ξ)T̂ (ξ) = 1 and hence we should try to
define T̂ (ξ) = 1/p(ξ). The main problem with this definition is that p(ξ) may have
zeros. However, these zeros can not occur for large ξ by the ellipticity assumption.
Indeed, let q(ξ) := σp(L)(ξ) =

P
|α|=m aαξ

α, r(ξ) = p(ξ)−q(ξ) =P|α|<m aαξ
α and

let c = min {|q(ξ)| : |ξ| = 1} ≤ max {|q(ξ)| : |ξ| = 1} =: C. Then because |q(·)| is a
nowhere vanishing continuous function on the compact set S := {ξ ∈ Rn : |ξ| = 1|} ,
0 < c ≤ C <∞. For ξ ∈ Rn, let ξ̂ = ξ/|ξ| and notice

|p(ξ)| = |q(ξ)|− |r(ξ)| ≥ c |ξ|m − |r(ξ)| = |ξ|m (c− |r(ξ)||ξ|m ) > 0

for all |ξ| ≥M withM sufficiently large since limξ→∞
|r(ξ)|
|ξ|m = 0. Choose θ ∈ D(Rn)

such that θ = 1 on a neighborhood of B(0,M) and let

h(ξ) =
1− θ(ξ)

p(ξ)
=

β(ξ)

p(ξ)
∈ C∞(Rn)

where β = 1 − θ. Since h(ξ) is bounded (in fact limξ→∞ h(ξ) = 0), h ∈ S 0(Rn) so
there exists T := F−1h ∈ S 0(Rn) is well defined. Moreover,

F (δ − LT ) = 1− p(ξ)h(ξ) = 1− β(ξ) = θ(ξ) ∈ D(Rn)
which shows that

R := δ − LT ∈ S(Rn) ⊂ C∞(Rn).
So to finish the proof it suffices to show

T |Rn\{0} ∈ C∞(Rn \ {0}).
To prove this recall that

F (xαT ) = (i∂)αT̂ = (i∂)αh.
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By the chain rule and the fact that any derivative of β is has compact support in
B(0,M)

c
and any derivative of 1p is non-zero on this set,

∂αh = β∂α
1

p
+ rα

where rα ∈ D(Rn). Moreover,

∂i
1

p
= −∂ip

p2
and ∂j∂i

1

p
= −∂j ∂ip

p2
= −∂j∂ip

p2
+ 2

∂ip

p3

from which it follows that¯̄̄̄
β(ξ)∂i

1

p
(ξ)

¯̄̄̄
≤ C |ξ|−(m+1) and

¯̄̄̄
β(ξ)∂j∂i

1

p

¯̄̄̄
≤ C |ξ|−(m+2) .

More generally, one shows by inductively that

(31.17)

¯̄̄̄
β(ξ)∂α

1

p

¯̄̄̄
≤ C |ξ|−(m+|α|) .

In particular, if k ∈ N is given and α is chosen so that |α| + m > n + k, then
|ξ|k ∂αh(ξ) ∈ L1(ξ) and therefore

xαT = F−1 [(i∂)αh] ∈ Ck(Rn).

Hence we learn for any k ∈ N, we may choose p sufficiently large so that
|x|2pT ∈ Ck(Rn).

This shows that T |Rn\{0} ∈ C∞(Rn \ {0}).
Here is the induction argument that proves Eq. (31.17). Let qα := p|α|+1∂αp−1

with q0 = 1, then

∂i∂
αp−1 = ∂i

³
p−|α|−1qα

´
= (− |α|− 1) p−|α|−2qα∂ip+ p−|α|−1∂iqα

so that
qα+ei = p|α|+2∂i∂αp−1 = (− |α|− 1) qα∂ip+ p∂iqα.

It follows by induction that qα is a polynomial in ξ and letting dα := deg(qα), we
have dα+ei ≤ dα + m − 1 with d0 = 1. Again by indunction this implies dα ≤
|α| (m− 1). Therefore

∂αp−1 =
qα

p|α|+1
∼ |ξ|dα−m(|α|+1) = |ξ||α|(m−1)−m(|α|+1) = |ξ|−(m+|α|)

as claimed in Eq. (31.17).

31.3. Appendix: Old Proof of Theorem 31.4. This indeed turns out to be the
case but is a bit painful to prove. The next theorem is the key ingredient to proving
Eq. (31.10).

Theorem 31.11. Let ψ ∈ D (ψ ∈ S) dλ(y) = ψ(y)dy, and φ ∈ C∞(Rn) (φ ∈ S).
For � > 0 we may write Rn =

`
m∈Zn(m� + �Q) where Q = (0, 1]n. For y ∈

(m� + �Q), let y� ∈ m� + �Q̄ be the point closest to the origin in m� + �Q̄. (This
will be one of the corners of the translated cube.) In this way we define a function
y ∈ Rn → y� ∈ �Zn which is constant on each cube �(m+Q). Let

(31.18) F�(x) :=

Z
φ(x− y�)dλ(y) =

X
m∈Zn

φ(x− (m�)�)λ(�(m+Q)),
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then the above sum converges in C∞(Rn) (S) and F� → φ ∗ ψ in C∞(Rn) (S) as
� ↓ 0. (In particular if φ,ψ ∈ S then φ ∗ ψ ∈ S.)
Proof. First suppose that ψ ∈ D the measure λ has compact support and hence

the sum in Eq. (31.18) is finite and so is certainly convergent in C∞(Rn). To shows
F� → φ ∗ ψ in C∞(Rn), let K be a compact set and m ∈ N. Then for |α| ≤ m,

|∂αF�(x)− ∂αφ ∗ ψ(x)| =
¯̄̄̄Z
[∂αφ(x− y�)− ∂αφ(x− y)] dλ(y)

¯̄̄̄
≤
Z
|∂αφ(x− y�)− ∂αφ(x− y)| |ψ(y)| dy(31.19)

and therefore,

k∂αF� − ∂αφ ∗ ψk∞,K ≤
Z
k∂αφ(·− y�)− ∂αφ(·− y)k∞,K |ψ(y)| dy

≤ sup
y∈supp(ψ)

k∂αφ(·− y�)− ∂αφ(·− y)k∞,K

Z
|ψ(y)| dy.

Since ψ(y) has compact support, we may us the uniform continuity of ∂αφ on
compact sets to conclude

sup
y∈supp(ψ)

k∂αφ(·− y�)− ∂αφ(·− y)k∞,K → 0 as � ↓ 0.

This finishes the proof for ψ ∈ D and φ ∈ C∞(Rn).
Now suppose that both ψ and φ are in S in which case the sum in Eq. (31.18) is

now an infinite sum in general so we need to check that it converges to an element
in S. For this we estimate each term in the sum. Given s, t > 0 and a multi-index
α, using Peetre’s inequality and simple estimates,

|∂αφ(x− (m�)�)λ(�(m+Q))| ≤ Cν−t(x− (m�)�)

Z
�(m+Q)

|ψ(y)| dy

≤ Cν−t(x)νt((m�)�)K

Z
�(m+Q)

ν−s(y)dy

for some finite constants K and C. Making the change of variables y = m�+ �z, we
find Z

�(m+Q)

ν−s(y)dy = �n
Z
Q

ν−s(m�+ �z)dz

≤ �nν−s(m�)

Z
Q

νs(�z)dy = �nν−s(m�)

Z
Q

1

(1 + �|z|)s dy

≤ �nν−s(m�).

Combining these two estimates shows

kνt∂αφ(·− (m�)�)λ(�(m+Q))k∞ ≤ Cνt((m�)�)�
nν−s(m�)

≤ Cνt(m�)ν−s(m�)�n

= Cνt−s((m�)�n
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and therefore for some (different constant C)X
m∈Zn

pk (φ(·− (m�)�)λ(�(m+Q))) ≤
X
m∈Zn

Cνk−s(m�)�n

=
X
m∈Zn

C
1

(1 + � |m|)k−s
�n

which can be made finite by taking s > k+n as can be seen by an comparison with
the integral

R
1

(1+�|x|)k−s dx. Therefore the sum is convergent in S as claimed.
To finish the proof, we must show that F� → φ ∗ ψ in S. From Eq. (31.19) we

still have

|∂αF�(x)− ∂αφ ∗ ψ(x)| ≤
Z
|∂αφ(x− y�)− ∂αφ(x− y)| |ψ(y)| dy.

The estimate in Eq. (31.9) gives

|∂αφ(x− y�)− ∂αφ(x− y)| ≤ C

Z 1

0

νM (y� + τ(y − y�))dτ |y − y�| ν−M (x)

≤ C�ν−M (x)
Z 1

0

νM (y� + τ(y − y�))dτ

≤ C�ν−M (x)
Z 1

0

νM (y)dτ = C�ν−M (x)νM (y)

where in the last inequality we have used the fact that |y� + τ(y − y�)| ≤ |y| .
Therefore,

kνM (∂αF�(x)− ∂αφ ∗ ψ)k∞ ≤ C�

Z
Rn

νM (y) |ψ(y)| dy = O(�)→ 0 as �→∞

because
R
Rn νM (y) |ψ(y)| dy <∞ for all M <∞ since ψ ∈ S.

We are now in a position to prove Eq. (31.10). Let us state this in the form of
a theorem.

Theorem 31.12. Suppose that if (T, φ) is a distribution test function pair satis-
fying one the three condition in Theorem 31.3, then T ∗ φ as a distribution may be
characterized by

(31.20) hT ∗ φ, ψi = hT, φ̃ ∗ ψi

for all ψ ∈ D(Rn) and all ψ ∈ S when T ∈ S 0 and φ ∈ S.

Proof. Let

F̃� =

Z
φ̃(x− y�)dλ(y) =

X
m∈Zn

φ̃(x− (m�)�)λ(�(m+Q))
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then making use of Theorem 31.12 in all cases we find

hT, φ̃ ∗ ψi = lim
�↓0
hT, F̃�i

= lim
�↓0
hT (x),

X
m∈Zn

φ̃(x− (m�)�)λ(�(m+Q))i

= lim
�↓0

X
m∈Zn

hT (x), φ((m�)� − x)λ(�(m+Q))i

= lim
�↓0

X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q)).(31.21)

To compute this last limit, let h(x) = T ∗ φ(x) and let us do the hard case where
T ∈ S 0. In this case we know that h ∈ P, and in particular there exists k <∞ and
C <∞ such that kνkhk∞ <∞. So we have¯̄̄̄
¯
Z
Rn

h(x)dλ(x)−
X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q))

¯̄̄̄
¯ =

¯̄̄̄Z
Rn
[h(x)− h(x�)] dλ(x)

¯̄̄̄
≤
Z
Rn
|h(x)− h(x�)| |ψ(x)| dx.

Now
|h(x)− h(x�)| ≤ C (νk(x) + νk(x�)) ≤ 2Cνk(x)

and since νk |ψ| ∈ L1 we may use the dominated convergence theorem to conclude

lim
�↓0

¯̄̄̄
¯
Z
Rn

h(x)dλ(x)−
X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q))

¯̄̄̄
¯ = 0

which combined with Eq. (31.21) proves the theorem.


