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A

Multinomial Theorems and Calculus Results

Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn, α! := α1! · · ·αn!,

xα :=
nY
j=1

x
αj
j and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

We also write

∂vf(x) :=
d

dt
f(x+ tv)|t=0.

A.1 Multinomial Theorems and Product Rules

For a = (a1, a2, . . . , an) ∈ Cn, m ∈ N and (i1, . . . , im) ∈ {1, 2, . . . , n}m let
α̂j (i1, . . . , im) = # {k : ik = j} . ThenÃ

nX
i=1

ai

!m

=
nX

i1,...,im=1

ai1 . . . aim =
X
|α|=m

C(α)aα

where

C(α) = # {(i1, . . . , im) : α̂j (i1, . . . , im) = αj for j = 1, 2, . . . , n}

I claim that C(α) = m!
α! . Indeed, one possibility for such a sequence

(a1, . . . , aim) for a given α is gotten by choosing

(

α1z }| {
a1, . . . , a1,

α2z }| {
a2, . . . , a2, . . . ,

αnz }| {
an, . . . , an).

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permuta-
tions we must divide by the number of permutation which just rearrange the



6 A Multinomial Theorems and Calculus Results

groups of ai’s among themselves for each i. There are α! := α1! · · ·αn! such
permutations. Therefore, C(α) = m!/α! as advertised. So we have provedÃ

nX
i=1

ai

!m

=
X
|α|=m

m!

α!
aα. (A.1)

Now suppose that a, b ∈ Rn and α is a multi-index, we have

(a+ b)α =
X
β≤α

α!

β!(α− β)!
aβbα−β =

X
β+δ=α

α!

β!δ!
aβbδ (A.2)

Indeed, by the standard Binomial formula,

(ai + bi)
αi =

X
βi≤αi

αi!

βi!(αi − βi)!
aβibαi−βi

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

(a1 + · · ·+ ak)
α =

X
β1+···+βk=α

α!

β1! · · ·βk!a
β1
1 . . . aβkk (A.3)

where a1, a2, . . . , ak ∈ Rn and α ∈ Zn+.
Now let us consider the product rule for derivatives. Let us begin with the

one variable case (write dnf for f (n) = dn

dxn f) where we will show by induction
that

dn(fg) =
nX

k=0

µ
n

k

¶
dkf · dn−kg. (A.4)

Indeed assuming Eq. (A.4) we find

dn+1(fg) =
nX

k=0

µ
n

k

¶
dk+1f · dn−kg +

nX
k=0

µ
n

k

¶
dkf · dn−k+1g

=
n+1X
k=1

µ
n

k − 1
¶
dkf · dn−k+1g +

nX
k=0

µ
n

k

¶
dkf · dn−k+1g

=
n+1X
k=1

·µ
n

k − 1
¶
+

µ
n

k

¶¸
dkf · dn−k+1g + dn+1f · g + f · dn+1g.

Since µ
n

k − 1
¶
+

µ
n

k

¶
=

n!

(n− k + 1)!(k − 1)! +
n!

(n− k)!k!

=
n!

(k − 1)! (n− k)!

·
1

(n− k + 1)
+
1

k

¸
=

n!

(k − 1)! (n− k)!

n+ 1

(n− k + 1) k
=

µ
n+ 1

k

¶
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the result follows.
Now consider the multi-variable case

∂α(fg) =

Ã
nY
i=1

∂αii

!
(fg) =

nY
i=1

"
αiX

ki=0

µ
αi
ki

¶
∂kii f · ∂αi−kii g

#

=

α1X
k1=0

· · ·
αnX

kn=0

nY
i=1

µ
αi
ki

¶
∂kf · ∂α−kg =

X
k≤α

µ
α

k

¶
∂kf · ∂α−kg

where k = (k1, k2, . . . , kn) andµ
α

k

¶
:=

nY
i=1

µ
αi
ki

¶
=

α!

k!(α− k)!
.

So we have proved

∂α(fg) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βg. (A.5)

A.2 Taylor’s Theorem

Theorem A.1. Suppose X ⊂ Rn is an open set, x : [0, 1] → X is a C1 —
path, and f ∈ CN (X,C). Let vs := x(1)−x(s) and v = v1 = x(1)−x(0), then

f(x(1)) =
N−1X
m=0

1

m!
(∂mv f) (x(0)) +RN (A.6)

where

RN =
1

(N − 1)!
Z 1

0

¡
∂ẋ(s)∂

N−1
vs f

¢
(x(s))ds =

1

N !

Z 1

0

µ
− d

ds
∂Nvsf

¶
(x(s))ds.

(A.7)
and 0! := 1.

Proof. By the fundamental theorem of calculus and the chain rule,

f(x(t)) = f(x(0)) +

Z t

0

d

ds
f(x(s))ds = f(x(0)) +

Z t

0

¡
∂ẋ(s)f

¢
(x(s))ds (A.8)

and in particular,

f(x(1)) = f(x(0)) +

Z 1

0

¡
∂ẋ(s)f

¢
(x(s))ds.

This proves Eq. (A.6) when N = 1. We will now complete the proof using
induction on N.
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Applying Eq. (A.8) with f replaced by 1
(N−1)!

¡
∂ẋ(s)∂

N−1
vs f

¢
gives

1

(N − 1)!
¡
∂ẋ(s)∂

N−1
vs f

¢
(x(s)) =

1

(N − 1)!
¡
∂ẋ(s)∂

N−1
vs f

¢
(x(0))

+
1

(N − 1)!
Z s

0

¡
∂ẋ(s)∂

N−1
vs ∂ẋ(t)f

¢
(x(t))dt

= − 1

N !

µ
d

ds
∂Nvsf

¶
(x(0))− 1

N !

Z s

0

µ
d

ds
∂Nvs∂ẋ(t)f

¶
(x(t))dt

wherein we have used the fact that mixed partial derivatives commute to show
d
ds∂

N
vsf = N∂ẋ(s)∂

N−1
vs f. Integrating this equation on s ∈ [0, 1] shows, using

the fundamental theorem of calculus,

RN =
1

N !

¡
∂Nv f

¢
(x(0))− 1

N !

Z
0≤t≤s≤1

µ
d

ds
∂Nvs∂ẋ(t)f

¶
(x(t))dsdt

=
1

N !

¡
∂Nv f

¢
(x(0)) +

1

(N + 1)!

Z
0≤t≤1

¡
∂Nwt∂ẋ(t)f

¢
(x(t))dt

=
1

N !

¡
∂Nv f

¢
(x(0)) +RN+1

which completes the inductive proof.

Remark A.2. Using Eq. (A.1) with ai replaced by vi∂i (although {vi∂i}ni=1 are
not complex numbers they are commuting symbols), we find

∂mv f =

Ã
nX
i=1

vi∂i

!m

f =
X
|α|=m

m!

α!
vα∂α.

Using this fact we may write Eqs. (A.6) and (A.7) as

f(x(1)) =
X

|α|≤N−1

1

α!
vα∂αf(x(0)) +RN

and

RN =
X
|α|=N

1

α!

Z 1

0

µ
− d

ds
vαs ∂

αf

¶
(x(s))ds.

Corollary A.3. Suppose X ⊂ Rn is an open set which contains x(s) = (1−
s)x0 + sx1 for 0 ≤ s ≤ 1 and f ∈ CN (X,C). Then

f(x1) =
N−1X
m=0

1

m!
(∂mv f) (x0) +

1

N !

Z 1

0

¡
∂Nv f

¢
(x(s))dνN (s) (A.9)

=
X
|α|<N

1

α!
∂αf(x(0))(x1 − x0)

α +
X

α:|α|=N

1

α!

·Z 1

0

∂αf(x(s))dνN (s)

¸
(x1 − x0)

α

(A.10)
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where v := x1 − x0 and dνN is the probability measure on [0, 1] given by

dνN (s) := N(1− s)N−1ds. (A.11)

If we let x = x0 and y = x1 − x0 (so x+ y = x1) Eq. (A.10) may be written
as

f(x+ y) =
X
|α|<N

∂αx f(x)

α!
yα +

X
α:|α|=N

1

α!

µZ 1

0

∂αx f(x+ sy)dνN (s)

¶
yα.

(A.12)

Proof. This is a special case of Theorem A.1. Notice that

vs = x(1)− x(s) = (1− s)(x1 − x0) = (1− s)v

and hence

RN =
1

N !

Z 1

0

µ
− d

ds
(1− s)N∂Nv f

¶
(x(s))ds =

1

N !

Z 1

0

¡
∂Nv f

¢
(x(s))N(1−s)N−1ds.

Example A.4. Let X = (−1, 1) ⊂ R, β ∈ R and f(x) = (1 − x)β . The reader
should verify

f (m)(x) = (−1)mβ(β − 1) . . . (β −m+ 1)(1− x)β−m

and therefore by Taylor’s theorem (Eq. (100.75) with x = 0 and y = x)

(1− x)β = 1 +
N−1X
m=1

1

m!
(−1)mβ(β − 1) . . . (β −m+ 1)xm +RN(x) (A.13)

where

RN (x) =
xN

N !

Z 1

0

(−1)Nβ(β − 1) . . . (β −N + 1)(1− sx)β−NdνN (s)

=
xN

N !
(−1)Nβ(β − 1) . . . (β −N + 1)

Z 1

0

N(1− s)N−1

(1− sx)N−β
ds.

Now for x ∈ (−1, 1) and N > β,

0 ≤
Z 1

0

N(1− s)N−1

(1− sx)N−β
ds ≤

Z 1

0

N(1− s)N−1

(1− s)N−β
ds =

Z 1

0

N(1− s)β−1ds =
N

β

and therefore,

|RN (x)| ≤ |x|N
(N − 1)! |(β − 1) . . . (β −N + 1)| =: ρN .
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Since

lim sup
N→∞

ρN+1
ρN

= |x| · lim sup
N→∞

N − β

N
= |x| < 1

and so by the Ratio test, |RN (x)| ≤ ρN → 0 (exponentially fast) as N →∞.
Therefore by passing to the limit in Eq. (A.13) we have proved

(1− x)β = 1 +
∞X

m=1

(−1)m
m!

β(β − 1) . . . (β −m+ 1)xm (A.14)

which is valid for |x| < 1 and β ∈ R. An important special cases is β = −1
in which case, Eq. (A.14) becomes 1

1−x =
P∞

m=0 x
m, the standard geometric

series formula. Another another useful special case is β = 1/2 in which case
Eq. (A.14) becomes

√
1− x = 1 +

∞X
m=1

(−1)m
m!

1

2
(
1

2
− 1) . . . (1

2
−m+ 1)xm

= 1−
∞X

m=1

(2m− 3)!!
2mm!

xm for all |x| < 1. (A.15)



B

Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition B.1. A partial order ≤ on X is a relation with following properties

(i) If x ≤ y and y ≤ z then x ≤ z.
(ii)If x ≤ y and y ≤ x then x = y.
(iii)x ≤ x for all x ∈ X.

Example B.2. Let Y be a set and X = 2Y . There are two natural partial
orders on X.

1. Ordered by inclusion, A ≤ B is A ⊂ B and
2. Ordered by reverse inclusion, A ≤ B if B ⊂ A.

Definition B.3. Let (X,≤) be a partially ordered set we say X is linearly a
totally ordered if for all x, y ∈ X either x ≤ y or y ≤ x. The real numbers R
with the usual order ≤ is a typical example.
Definition B.4. Let (X,≤) be a partial ordered set. We say x ∈ X is a
maximal element if for all y ∈ X such that y ≥ x implies y = x, i.e. there is
no element larger than x. An upper bound for a subset E of X is an element
x ∈ X such that x ≥ y for all y ∈ E.

Example B.5. Let

X =
©
a = {1} b = {1, 2} c = {3} d = {2, 4} e = {2}ª

ordered by set inclusion. Then b and d are maximal elements despite that fact
that b £ a and a £ b. We also have

• If E = {a, e, c}, then E has no upper bound.

Definition B.6. • If E = {a, e}, then b is an upper bound.
• E = {e}, then b and d are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, {Xα}α∈A , of non-empty sets
there exists a “choice function,” x : A→

ὰ∈A
Xα such that x(α) ∈ Xα for

all α ∈ A, i.e.
Q

α∈AXα 6= ∅.
2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If X is partially ordered set such that every linearly
ordered subset of X has an upper bound, then X has a maximal element.1

Proof. (2⇒ 3) Let X be a partially ordered subset as in 3 and let F = {E ⊂
X : E is linearly ordered} which we equip with the inclusion partial ordering.
By 2. there exist a maximal element E ∈ F . By assumption, the linearly
ordered set E has an upper bound x ∈ X. The element x is maximal, for if
y ∈ Y and y ≥ x, then E ∪ {y} is still an linearly ordered set containing E.
So by maximality of E, E = E ∪ {y} , i.e. y ∈ E and therefore y ≤ x showing
which combined with y ≥ x implies that y = x.2

(3⇒ 1) Let {Xα}α∈A be a collection of non-empty sets, we must showQ
α∈AXα is not empty. Let G denote the collection of functions g : D(g) →`
α∈AXα such that D(g) is a subset of A, and for all α ∈ D(g), g(α) ∈ Xα.

Notice that G is not empty, for we may let α0 ∈ A and x0 ∈ Xα and then
set D(g) = {α0} and g(α0) = x0 to construct an element of G. We now put
a partial order on G as follows. We say that f ≤ g for f, g ∈ G provided
that D(f) ⊂ D(g) and f = g|D(f). If Φ ⊂ G is a linearly ordered set, let
D(h) = ∪g∈ΦD(g) and for α ∈ D(g) let h(α) = g(α). Then h ∈ G is an upper
bound for Φ. So by Zorn’s Lemma there exists a maximal element h ∈ G. To
finish the proof we need only show that D(h) = A. If this were not the case,
then let α0 ∈ A\D(h) and x0 ∈ Xα0 .We may now define D(h̃) = D(h)∪{α0}
and

h̃(α) =

½
h(α) if α ∈ D(h)
x0 if α = α0.

1 If X is a countable set we may prove Zorn’s Lemma by induction. Let {xn}∞n=1
be an enumeration of X, and define En ⊂ X inductively as follows. For n = 1
let E1 = {x1}, and if En have been chosen, let En+1 = En ∪ {xn+1} if xn+1
is an upper bound for En otherwise let En+1 = En. The set E = ∪∞n=1En is a
linearly ordered (you check) subset of X and hence by assumption E has an upper
bound, x ∈ X. I claim that his element is maximal, for if there exists y = xm ∈ X
such that y ≥ x, then xm would be an upper bound for Em−1 and therefore
y = xm ∈ Em ⊂ E. That is to say if y ≥ x, then y ∈ E and hence y ≤ x, so
y = x. (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similarly one may show that 3 ⇒ 2. Let F = {E ⊂ X : E is linearly ordered}
and order F by inclusion. IfM ⊂ F is linearly ordered, let E = ∪M =

S
A∈M

A.

If x, y ∈ E then x ∈ A and y ∈ B for some A,B ⊂M. NowM is linearly ordered
by set inclusion so A ⊂ B or B ⊂ A i.e. x, y ∈ A or x, y ∈ B. Since A and B are
linearly order we must have either x ≤ y or y ≤ x, that is to say E is linearly
ordered. Hence by 3. there exists a maximal element E ∈ F which is the assertion
in 2.
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Then h ≤ h̃ while h 6= h̃ violating the fact that h was a maximal element.
(1⇒ 2) Let (X,≤) be a partially ordered set. Let F be the collection of

linearly ordered subsets of X which we order by set inclusion. Given x0 ∈ X,
{x0} ∈ F is linearly ordered set so that F 6= ∅.
Fix an element P0 ∈ F . If P0 is not maximal there exists P1 ∈ F such

that P0 Ã P1. In particular we may choose x /∈ P0 such that P0 ∪ {x} ∈ F .
The idea now is to keep repeating this process of adding points x ∈ X until
we construct a maximal element P of F . We now have to take care of some
details.
We may assume with out loss of generality that F̃ = {P ∈ F : P is not maximal}

is a non-empty set. For P ∈ F̃ , let P ∗ = {x ∈ X : P ∪ {x} ∈ F} . As the above
argument shows, P ∗ 6= ∅ for all P ∈ F̃ . Using the axiom of choice, there exists
f ∈QP∈F̃ P ∗. We now define g : F → F by

g(P ) =

½
P if P is maximal

P ∪ {f(x)} if P is not maximal.
(B.1)

The proof is completed by Lemma B.8 below which shows that g must have
a fixed point P ∈ F . This fixed point is maximal by construction of g.
Lemma B.8. The function g : F → F defined in Eq. (B.1) has a fixed point.3

Proof. The idea of the proof is as follows. Let P0 ∈ F be chosen arbitrarily.
Notice that Φ =

©
g(n)(P0)

ª∞
n=0
⊂ F is a linearly ordered set and it is therefore

easily verified that P1 =
∞S
n=0

g(n)(P0) ∈ F . Similarly we may repeat the process

to construct P2 =
∞S
n=0

g(n)(P1) ∈ F and P3 =
∞S
n=0

g(n)(P2) ∈ F , etc. etc. Then
take P∞ = ∪∞n=0Pn and start again with P0 replaced by P∞. Then keep going
this way until eventually the sets stop increasing in size, in which case we
have found our fixed point. The problem with this strategy is that we may
never win. (This is very reminiscent of constructing measurable sets and the
way out is to use measure theoretic like arguments.)
Let us now start the formal proof. Again let P0 ∈ F and let F1 = {P ∈

F : P0 ⊂ P}. Notice that F1 has the following properties:
1. P0 ∈ F1.
2. If Φ ⊂ F1 is a totally ordered (by set inclusion) subset then ∪Φ ∈ F1.
3. If P ∈ F1 then g(P ) ∈ F1.
Let us call a general subset F 0 ⊂ F satisfying these three conditions a

tower and let
3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set P ∈ F with a maximal number of elements. In this case the
condition that P ⊂ g(P ) would imply that P = g(P ), otherwise g(P ) would have
more elements than P.



14 B Zorn’s Lemma and the Hausdorff Maximal Principle

F0 = ∩ {F 0 : F 0 is a tower} .
Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing P0. (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.)
We now claim that F0 is a linearly ordered subset of F . To prove this let

Γ ⊂ F0 be the linearly ordered set

Γ = {C ∈ F0 : for all A ∈ F0 either A ⊂ C or C ⊂ A} .

Shortly we will show that Γ ⊂ F0 is a tower and hence that F0 = Γ. That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof. Let P ≡ ∪F0 which is in F0 by property 2 and is clearly the largest
element in F0. By 3. it now follows that P ⊂ g(P ) ∈ F0 and by maximality of
P, we have g(P ) = P, the desired fixed point. So to finish the proof, we must
show that Γ is a tower.
First off it is clear that P0 ∈ Γ so in particular Γ is not empty. For each

C ∈ Γ let
ΦC := {A ∈ F0 : either A ⊂ C or g(C) ⊂ A} .

We will begin by showing that ΦC ⊂ F0 is a tower and therefore that ΦC = F0.
1. P0 ∈ ΦC since P0 ⊂ C for all C ∈ Γ ⊂ F0. 2. If Φ ⊂ ΦC ⊂ F0 is totally

ordered by set inclusion, then AΦ := ∪Φ ∈ F0. We must show AΦ ∈ ΦC , that
is that AΦ ⊂ C or C ⊂ AΦ. Now if A ⊂ C for all A ∈ Φ, then AΦ ⊂ C and
hence AΦ ∈ ΦC . On the other hand if there is some A ∈ Φ such that g(C) ⊂ A
then clearly g(C) ⊂ AΦ and again AΦ ∈ ΦC .
3. Given A ∈ ΦC we must show g(A) ∈ ΦC , i.e. that

g(A) ⊂ C or g(C) ⊂ g(A). (B.2)

There are three cases to consider: either A Ã C, A = C, or g(C) ⊂ A. In the
case A = C, g(C) = g(A) ⊂ g(A) and if g(C) ⊂ A then g(C) ⊂ A ⊂ g(A) and
Eq. (B.2) holds in either of these cases. So assume that A Ã C. Since C ∈ Γ,
either g(A) ⊂ C (in which case we are done) or C ⊂ g(A). Hence we may
assume that

A Ã C ⊂ g(A).

Now if C were a proper subset of g(A) it would then follow that g(A)\A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C ⊂ C and again Eq. (B.2) holds, so ΦC is a tower.
It is now easy to show Γ is a tower. It is again clear that P0 ∈ Γ and

Property 2. may be checked for Γ in the same way as it was done for ΦC
above. For Property 3., if C ∈ Γ we may use ΦC = F0 to conclude for all
A ∈ F0, either A ⊂ C ⊂ g(C) or g(C) ⊂ A, i.e. g(C) ∈ Γ. Thus Γ is a tower
and we are done.



C

Nets

In this section (which may be skipped) we develop the notion of nets. Nets are
generalization of sequences. Here is an example which shows that for general
topological spaces, sequences are not always adequate.

Example C.1. Equip CR with the topology of pointwise convergence, i.e. the
product topology and consider C(R,C) ⊂ CR. If {fn} ⊂ C(R,C) is a sequence
which converges such that fn → f ∈ CR pointwise then f is a Borel measurable
function. Hence the sequential limits of elements in C(R,C) is necessarily
contained in the Borel measurable functions which is properly contained in
CR. In short the sequential closure of C(R,C) is a proper subset of CR. On
the other hand we have C(R,C) = CR. Indeed a typical open neighborhood
of f ∈ CR is of the form

N = {g ∈ CR : |g(x)− f(x)| < for x ∈ Λ},

where > 0 and Λ is a finite subset of R. Since N ∩ C(R,C) 6= ∅ it follows
that f ∈ C(R,C).

Definition C.2. A directed set (A,≤) is a set with a relation “≤” such that
1. α ≤ α for all α ∈ A.
2. If α ≤ β and β ≤ γ then α ≤ γ.
3. A is cofinite, i.e. α, β ∈ A there exists γ ∈ A such that α ≤ γ and β ≤ γ.

A net is function x : A → X where A is a directed set. We will often
denote a net x by {xα}α∈A.
Example C.3 (Directed sets).

1. A = 2X ordered by inclusion, i.e. α ≤ β if α ⊂ β. If α ≤ β and β ≤ γ then
α ⊂ β ⊂ γ and hence α ≤ γ. Similalry if α, β ∈ 2X then α, β ≤ α∪β =: γ.

2. A = 2X ordered by reverse inclusion, i.e. α ≤ β if β ⊂ α. If α ≤ β and
β ≤ γ then α ⊇ β ⊇ γ and so α ≤ γ and if α, β ∈ A then α, β ≤ α ∩ β.
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3. Let A = N equipped with the usual ordering on N. In this case nets are
simply sequences.

Definition C.4. Let {xα}α∈A ⊂ X be a net then:

1. xα converges to x ∈ X (written xα → x) iff for all V ∈ τx, xα ∈ V
eventually, i.e. there exists β = βV ∈ A such that xα ∈ V for all α ≥ β.

2. x is a cluster point of {xα}α∈A if for all V ∈ τx, xα ∈ V frequently,
i.e. for all β ∈ A there exists α ≥ β such that xα ∈ V.

Proposition C.5. Let X be a topological space and E ⊂ X. Then

1. x is an accumulation point of E (see Definition 8.28) iff there exists net
{xα} ⊂ E \ {x} such that xα → x.

2. x ∈ Ē iff there exists {xα} ⊂ E such that xα → x.

Proof. 1. Suppose x is an accumulation point of E and let A = τx be ordered
by reverse set inclusion. To each α ∈ A = τx choose xα ∈ (α \ {x}) ∩ E
which is possible sine x is an accumulation point of E. Then given V ∈ τx
for all α ≥ V (i.e. and α ⊂ V ), xα ∈ V and hence xα → x.
Conversely if {xα}α∈A ⊂ E \ {x} and xα → x then for all V ∈ τx there
exists β ∈ A such that xα ∈ V for all α ≥ β. In particular xα ∈ (E \
{x}) ∩ V 6= ∅ and so x ∈ acc(E) — the accumulation points of E.

2. If {xα} ⊂ E such that xα → x then for all V ∈ τx there exists β ∈ A such
that xα ∈ V ∩E for all α ≥ β. In particular V ∩E 6= ∅ for all V ∈ τx and
this implies x ∈ Ē.
For the converse recall Proposition 8.30 implies E = E ∪ acc(E). If x ∈
acc(E) there exists a net {xα} ⊂ E such that xα → x by item 1. If x ∈ E
we may simply take xn = x for all n ∈ A := N.

Proposition C.6. Let X and Y be two topological spaces and f : X → Y
be a function. Then f is continuous at x ∈ X iff f(xα) → f(x) for all nets
xα → x.

Proof. If f is continuous at x and xα → x then for any V ∈ τf(x) there exists
W ∈ τx such that f(W ) ⊂ V. Since xα ∈W eventually, f(xα) ∈ V eventually
and we have shown f(xα)→ f(x).
Conversely, if f is not continuous at x then there exists W ∈ τf(x) such

that f(V ) *W for all V ∈ τx. Let A = τx be ordered by reverse set inclusion
and for V ∈ τx choose (axiom of choice) xV ∈ V such that f(xV ) /∈W. Then
xV → x since for any U ∈ τx, xV ∈ U if V ≥ U (i.e. V ⊂ U). On the over
hand f(xV ) /∈W for all V ∈ τx showing f(xV )9 f(x).

Definition C.7 ( Subnet). A net hyβiβ∈B is a subnet of a net hxαiα∈A if
there exists a map β ∈ B → αβ ∈ A such that

1. yβ = xαβ for all β ∈ B and
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2. for all α0 ∈ A there exists β0 ∈ B such that αβ ≥ α0 whenever β ≥ β0,
i.e. αβ ≥ α0 eventually.

Proposition C.8. A point x ∈ X is a cluster point of a net hxαiα∈A iff
there exists a subnet hyβiβ∈B such that yβ → x.

Proof. Suppose hyβiβ∈B is a subnet of hxαiα∈A such that yβ = xαβ → x.
Then for W ∈ τx and α0 ∈ A there exists β0 ∈ B such that yβ = xαβ ∈ W
for all β ≥ β0. Choose β1 ∈ B such that αβ ≥ α0 for all β ≥ β1 then choose
β3 ∈ B such that β3 ≥ β1 and β3 ≥ β2 then αβ ≥ α0 and xαβ ∈ W for all
β ≥ β3 which implies xα ∈W frequently.
Conversely assume x is a cluster point of a net hxαiα∈A.We mak B := τx×

A into a directed set by defining (U,α) ≤ (U 0, α0) iff α ≤ α0 and U ⊇ U 0. For
all (U, γ) ∈ B = τx×A, choose α(U,γ) ≥ γ in A such that y(U,γ) = xα(U,γ) ∈ U.
Then if α0 ∈ A for all (U 0, γ0) ≥ (U,α0), i.e. γ0 ≥ α0 and U 0 ⊂ U, α(U 0,γ0) ≥
γ0 ≥ α0. Now if W ∈ τx is given, then y(U,γ) ∈ U ⊂ W for all U ⊂W . Hence
fixing α ∈ A we see if (U, γ) ≥ (W,α) then y(U,γ) = xα(U,γ) ∈ U ⊂W showing
that y(U,γ) → x.

Exercise C.1. [#34, p. 121] Let hxαiα∈A be a net in a topological space and
for each α ∈ A let Eα ≡ {xβ : β ≥ α}. Then x is a cluster point of hxαi iff
x ∈ T

α∈A
Eα.

Proof. If x is a cluster point, then given W ∈ τx we know Eα ∩W 6= ∅ for
all α ∈ E since xβ ∈ W frequently thus x ∈ Eα for all α, i.e. x ∈

T
α∈A

Eα.

Conversely if x is not a cluster point of hxαi then there exists W ∈ τx and
α ∈ A such that xβ /∈ W for all β ≥ α, i.e. W ∩ Eα = ∅. But this shows
x /∈ Eα and hence x /∈ T

α∈A
Eα.

Theorem C.9. A topological space X is compact iff every net has a cluster
point iff every net has a convergent subnet.

Proof. Suppose X is compact, hxαiα∈A ⊂ X is a net and let Fα :=
{xβ : β ≥ α}. Then Fα is closed for all α ∈ A, Fα ⊂ Fα0 if α ≥ α0 and
Fα1 ∩ · · ·∩Fαn ⊇ Fγ whenever γ ≥ αi for i = 1, . . . , n. (Such a γ always exists
since A is a directed set.) Therefore Fα1 ∩ · · ·∩Fαn 6= ∅ i.e. {Fα}α∈A has the
finite intersection property and since X is compact this implies there exists
x ∈ T

α∈a
Fα By Eexrcise C.1, it follows that x is a cluster point of hxαiα∈A.

Conversely, if X is not compact let {Uj}j∈J be an infinite cover with no
finite subcover. Let A be the directed set A = {α ⊂ J : # (α) < ∞} with
α ≤ β iff α ⊂ β. Define a net hxαiα∈A in X by choosing

xα ∈ X \
[
j∈α

Uj

 6= ∅ for all α ∈ A.
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This net has no cluster point. To see this suppose x ∈ X and j ∈ J is chosen
so that x ∈ Uj . Then for all α ≥ {j} (i.e. j ∈ α), xα /∈ S

γ∈α
Uα ⊇ Uj and

in particular xα /∈ Uj . This shows xα /∈ Uj frequently and hence x is not a
cluster point.
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