Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.

- a) Convergence Theorems
- b) Integration over diverse collection of sets. (See probability theory.)
- c) Integration relative to different weights or densities including singular weights.
- d) Characterization of dual spaces.
- e) Completeness.
- 2. Infinite dimensional Linear algebra.
- 3. ODE and PDE.
- 4. Harmonic and Fourier Analysis.
- 5. Probability Theory

1.1 Topology beginnings

Recall the notion of a topology by extrapolating from the open sets on \mathbb{R}^2 . Also recall what it means to be continuous, namely $f: X \to \mathbb{R}$ is continuous at x if for all $\varepsilon > 0$ there exists $V \in \tau_x$ such that

$$f(V) \subset f(x) + (-\varepsilon, \varepsilon).$$

1.2 A Better Integral and an Introduction to Measure Theory

Let $a, b \in \mathbb{R}$ with a < b and let

$$I^{0}(f) := \int_{a}^{b} f(t)dt \text{ for all } f \in C\left([a, b]\right)$$

denote the Riemann integral. Also let \mathcal{H} denote the smallest **linear subspace** of bounded functions on [a, b] which is closed under bounded convergence and contains C([a, b]). Such a space exists since we can take the intersection over all such spaces of functions.

Theorem 1.1. There is an extension I of I^0 to \mathcal{H} such that I is still linear and $\lim_{n\to\infty} I(f_n) = I(f)$ for all $f_n \in \mathcal{H}$ with $f_n \to f$ boundedly. Moreover this extension is unique and is **positive** in the sense that $I(f) \ge 0$ if $f \in \mathcal{H}$ and $f \ge 0$.

Proof. We will only prove the uniqueness here. Suppose that J and I are two such extensions and let

$$\mathcal{K} := \{ f \in \mathcal{H} : J(f) = I(f) \}.$$

Then \mathcal{K} is a linear subspace closed under bounded convergence which contains C([a, b]) and hence $\mathcal{K} = \mathcal{H}$.

The existence of I is the hard part. The positivity of I can be seen from the existence construction.

Example 1.2. Here are some examples of functions in \mathcal{H} and their integrals:

- 1. Suppose $[\alpha, \beta] \subset [a, b]$, then $1_{[\alpha, \beta]} \in \mathcal{H}$ and $I(1_{[\alpha, \beta]}) = \beta \alpha$.(Draw a picture.)
- 2. $I(1_{\{\alpha\}}) = 0.$
- 3. The space \mathcal{H} is an algebra, i.e. if $f, g \in \mathcal{H}$ then $fg \in \mathcal{H}$. To prove this, first assume that $f \in C([a, b])$ and let

$$\mathcal{H}_f := \{g \in \mathcal{H} : fg \in \mathcal{H}\}.$$

Then \mathcal{H}_f is closed under bounded convergence and contains C([a, b]) and hence $\mathcal{H}_f = \mathcal{H}$, i.e. the product of a continuous function and an element in \mathcal{H} is back in \mathcal{H} .

Now suppose that $f \in \mathcal{H}$ and again let \mathcal{H}_f be as above. By the same reasoning we may show again that $\mathcal{H}_f = \mathcal{H}$ and this proves the assertion.

- 4. If $f \in \mathcal{H}$ and $\phi \in C(\mathbb{R})$, then $\phi \circ f \in \mathcal{H}$. This a consequence of the Weierstrass approximation Theorem 22.34. In particular $|f| \in \mathcal{H}$ and $f_{\pm} := \frac{|f| \pm f}{2} \in \mathcal{H}$ if $f \in \mathcal{H}$.
- $f_{\pm} := \frac{|f| \pm f}{2} \in \mathcal{H} \text{ if } f \in \mathcal{H}.$ 5. If $f_n \in \mathcal{H}, f_n \ge 0$ and $f = \sum_{n=1}^{\infty} f_n$ is a bounded function, then $f \in \mathcal{H}$ and

$$I(f) = \sum_{n=1}^{\infty} I(f_n).$$
(1.1)

To prove Eq. (1.1) we have

$$\sum_{n=1}^{\infty} I(f_n) = \lim_{N \to \infty} I\left(\sum_{n=1}^{N} f_n\right) = I(f).$$

- 6. As an example of item 4., $1_{\mathbb{Q}\cap[a,b]} = \sum_{n=1}^{\infty} 1_{\{\alpha_n\}} \in \mathcal{H}$ and $I\left(1_{\mathbb{Q}\cap[a,b]}\right) = 0$. Here $\{\alpha_n\}_{n=1}^{\infty}$ is an enumeration of the rationale numbers in the interval [a,b].
- 7. Let $\mathcal{M} := \{A \subset [a, b] : 1_A \in \mathcal{H}\}$ and for $A \in \mathcal{M}$ let $m(A) := I(1_A)$. Then \mathcal{M} and m have the following properties:
 - a) \emptyset , $[a, b] \in \mathcal{M}$ and $m(\emptyset) = 0$ and m([a, b]) = b a. Moreover $m(A) \ge 0$ for all $A \in \mathcal{M}$.
 - b) If $A \in \mathcal{M}$ then $A^c \in \mathcal{M}$ and $m(A^c) = b a m(A)$. This follows from the fact that $1_{A^c} = 1 1_A$.
 - c) If $A, B \in \mathcal{M}$, then $A \cap B \in \mathcal{M}$ since if $1_{A \cap B} = 1_A \cdot 1_B$ and \mathcal{H} is an algebra.

Definition: a collection of sets \mathcal{M} satisfying a) – c) is called an **al-gebra** of subsets of [a, b].

d) More generally if $A_n \in \mathcal{M}$ then $\cap A_n \in \mathcal{M}$ since $1_{\cap A_n} = \lim_{N \to \infty} 1_{A_1} \cdots 1_{A_N}$ and the convergence is bounded.

Definition: a collection of sets \mathcal{M} satisfying a) – d) is called an σ – algebra.

e) If $A_n \in \mathcal{M}$, then $\cup A_n \in \mathcal{M}$. Indeed we know $\cup A_n \in \mathcal{M}$ iff $(\cup A_n)^c \in \mathcal{M}$. But

$$(\cup A_n)^c = \cap A_n^c \in \mathcal{M}$$

by item d. above.

f) If $A_n \in \mathcal{M}$ are pairwise disjoint, then

$$m\left(\cup A_n\right) = \sum_{n=1}^{\infty} m\left(A_n\right).$$

To prove this it suffices to observe that $1_{\cup A_n} = \sum_{n=1}^{\infty} 1_{A_n}$.

- g) \mathcal{M} is not $2^{[a,b]}$, i.e. \mathcal{M} is not all subset of [a,b]. This is not obvious and it is not possible to really write down an "explicit" subset [a,b]which is not in \mathcal{M} . We will prove the existence of such sets later.
- 8. Fact: \mathcal{M} is the smallest σ algebra on [a, b] which contains all subintervals of [a, b].
- 9. Fact: A bounded function $f : [a, b] \to \mathbb{R}$ is in \mathcal{H} iff $\{f > \alpha\} \in \mathcal{M}$ for all $\alpha \in \mathbb{R}$.
- 10. Fact: The integral I may be recovered from the measure m by the formula

$$I(f) = \lim_{\text{mesh}\to 0} \sum_{0 < \alpha_1 < \alpha_2 < \alpha_3 < \dots}^{\infty} \alpha_i m\left(\left\{ x \in [a, b] : \alpha_i < f(x) \le \alpha_i \right\} \right).$$

We will prove items 8. - 10. later in the course. The proof if Items 9. and 10. is not so hard and the energetic reader may wish to give them a try.

Notation 1.3 The collection of sets \mathcal{M} is called the Borel σ – algebra on [a, b] and the function $m : \mathcal{M} \to \mathbb{R}$ is called Lebesgue measure. We will usually

6 1 Introduction / User Guide

write I(f) as $\int_{[a,b]} f dm$ and I(f) will be called the Lebesgue integral of f. This integral may be extended to all positive functions f such that $f1_{|f| \leq M} \in \mathcal{H}$ for all M by

$$I(f) = \lim_{M \to \infty} I(f1_{|f| \le M})$$

Again, we will come back to all of this again later.