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Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c) Integration relative to different weights or densities including singular
weights.

d) Characterization of dual spaces.
e) Completeness.

2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory

1.1 Topology beginnings

Recall the notion of a topology by extrapolating from the open sets on R2.
Also recall what it means to be continuous, namely f : X → R is continuous
at x if for all ε > 0 there exists V ∈ τx such that

f (V ) ⊂ f (x) + (−ε, ε) .

1.2 A Better Integral and an Introduction to Measure
Theory

Let a, b ∈ R with a < b and let

I0(f) :=

Z b

a

f(t)dt for all f ∈ C ([a, b])
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denote the Riemann integral. Also let H denote the smallest linear subspace
of bounded functions on [a, b] which is closed under bounded convergence and
contains C ([a, b]) . Such a space exists since we can take the intersection over
all such spaces of functions.

Theorem 1.1. There is an extension I of I0 to H such that I is still linear
and limn→∞ I (fn) = I (f) for all fn ∈ H with fn → f boundedly. Moreover
this extension is unique and is positive in the sense that I (f) ≥ 0 if f ∈ H
and f ≥ 0.
Proof. We will only prove the uniqueness here. Suppose that J and I are two
such extensions and let

K := {f ∈ H : J (f) = I (f)} .
Then K is a linear subspace closed under bounded convergence which contains
C ([a, b]) and hence K = H.
The existence of I is the hard part. The positivity of I can be seen from

the existence construction.

Example 1.2. Here are some examples of functions in H and their integrals:

1. Suppose [α, β] ⊂ [a, b] , then 1[α,β] ∈ H and I
¡
1[α,β]

¢
= β − α.(Draw a

picture.)
2. I

¡
1{α}

¢
= 0.

3. The space H is an algebra, i.e. if f, g ∈ H then fg ∈ H. To prove this,
first assume that f ∈ C ([a, b]) and let

Hf := {g ∈ H : fg ∈ H} .
Then Hf is closed under bounded convergence and contains C ([a, b]) and
hence Hf = H, i.e. the product of a continuous function and an element
in H is back in H.
Now suppose that f ∈ H and again let Hf be as above. By the same
reasoning we may show again that Hf = H and this proves the assertion.

4. If f ∈ H and φ ∈ C (R) , then φ ◦ f ∈ H. This a consequence of the
Weierstrass approximation Theorem 22.34. In particular |f | ∈ H and
f± :=

|f|±f
2 ∈ H if f ∈ H.

5. If fn ∈ H, fn ≥ 0 and f =
P∞

n=1 fn is a bounded function, then f ∈ H
and

I (f) =
∞X
n=1

I (fn) . (1.1)

To prove Eq. (1.1) we have

∞X
n=1

I (fn) = lim
N→∞

I

Ã
NX
n=1

fn

!
= I (f) .
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6. As an example of item 4., 1Q∩[a,b] =
P∞

n=1 1{αn} ∈ H and I
¡
1Q∩[a,b]

¢
= 0.

Here {αn}∞n=1 is an enumeration of the rational numbers in the interval
[a, b].

7. LetM := {A ⊂ [a, b] : 1A ∈ H} and for A ∈M let m (A) := I (1A) . Then
M and m have the following properties:
a) ∅, [a, b] ∈M and m (∅) = 0 and m ([a, b]) = b−a.Moreover m (A) ≥ 0
for all A ∈M.

b) If A ∈ M then Ac ∈ M and m (Ac) = b − a −m (A) . This follows
from the fact that 1Ac = 1− 1A.

c) If A,B ∈M, then A ∩ B ∈M since if 1A∩B = 1A · 1B and H is an
algebra.
Definition: a collection of sets M satisfying a) — c) is called an al-
gebra of subsets of [a, b] .

d) More generally if An ∈ M then ∩An ∈ M since 1∩An =
limN→∞ 1A1

· · · 1AN and the convergence is bounded.
Definition: a collection of setsM satisfying a) — d) is called an σ —
algebra.

e) If An ∈M, then ∪An ∈M. Indeed we know ∪An ∈M iff (∪An)
c ∈

M. But
(∪An)

c
= ∩Ac

n ∈M
by item d. above.

f) If An ∈M are pairwise disjoint, then

m (∪An) =
∞X
n=1

m (An) .

To prove this it suffices to observe that 1∪An =
P∞

n=1 1An .
g)M is not 2[a,b], i.e. M is not all subset of [a, b]. This is not obvious
and it is not possible to really write down an “explicit” subset [a, b]
which is not inM. We will prove the existence of such sets later.

8. Fact: M is the smallest σ — algebra on [a, b] which contains all sub-
intervals of [a, b].

9. Fact: A bounded function f : [a, b] → R is in H iff {f > α} ∈M for all
α ∈ R.

10. Fact: The integral I may be recovered from the measurem by the formula

I (f) = lim
mesh→0

∞X
0<α1<α2<α3<...

αim ({x ∈ [a, b] : αi < f (x) ≤ αi}) .

We will prove items 8. — 10. later in the course. The proof if Items 9. and
10. is not so hard and the energetic reader may wish to give them a try.

Notation 1.3 The collection of sets M is called the Borel σ — algebra on
[a, b] and the function m :M→ R is called Lebesgue measure. We will usually
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write I (f) as
R
[a,b]

fdm and I (f) will be called the Lebesgue integral of f. This
integral may be extended to all positive functions f such that f1|f |≤M ∈ H for
all M by

I (f) = lim
M→∞

I
¡
f1|f|≤M

¢
.

Again, we will come back to all of this again later.
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Set Operations

Let N denote the positive integers, N0 := N∪ {0} be the non-negative inte-
gers and Z = N0 ∪ (−N) — the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter 3 below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 .
If X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote
f ∈ Y N by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 2.2 More generally if {Xα : α ∈ A} is a collection of non-empty
sets, let XA =

Q
α∈A

Xα and πα : XA → Xα be the canonical projection map

defined by πα(x) = xα.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice (See Appendix B.)
states that XA 6= ∅ provided that Xα 6= ∅ for each α ∈ A. If Xα = X for some
fixed space X, then

Q
α∈A

Xα = XA.

Notation 2.3 Given a set X, let 2X denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.
For A ∈ 2X let
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Ac := X \A = {x ∈ X : x /∈ A}
and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = A ∩Bc.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .
As usual if {Aα}α∈I is an indexed collection of subsets of X we define the
union and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 2.4 We will also write
`

α∈I Aα for ∪α∈IAα in the case that
{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For
example let {An}∞n=1 be a sequence of subsets from X and define

{An i.o.} := {x ∈ X : # {n : x ∈ An} =∞} and
{An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff
∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
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3. A non-empty set X is countable iff there exists a surjective map, g : N→
X.

4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then

A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A, of f
to the subset A.
2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = minΛ \ {f(1), . . . , f(n)} .
Since Λ is infinite the process continues indefinitely. The function f : N→ Λ
defined this way is a bijection.
3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .
Then f : X → N is injective which combined with item 2. (taking Λ = f(X))
shows X is countable. Conversely if f : X → N is injective let x0 ∈ X be
a fixed point and define g : N → X by g(n) = f−1(n) for n ∈ f (X) and
g(n) = x0 otherwise.
4. Let us first construct a bijection, h, from N to N × N. To do this put

the elements of N×N into an array of the form
(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .
...

...
...

. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3), etc. etc.
If f : N→X and g : N→Y are surjective functions, then the function

(f × g) ◦ h : N→X × Y is surjective where (f × g) (m,n) := (f (m), g(n)) for
all (m,n) ∈ N×N.
5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.

With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ X × Y, where h : N→ N×N is the bijection defined above.
6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of

contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
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(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the
assumption that f is surjective and shows 2N is uncountable.
For the general case, since Y X

0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X
0 is

uncountable then so is Y X . In this way we may assume Y0 is a two point set
which may as well be Y0 = {0, 1} . Moreover, since X is an infinite set we
may find an injective map x : N → X and use this to set up an injection,
i : 2N → 2X by setting i (a) (xn) = an for all n ∈ N and i (a) (x) = 0
if x /∈ {xn : n ∈ N} . If 2X were countable we could find a surjective map
f : 2X → N in which case f ◦ i : 2N → N would be surjective as well. However
this is impossible since we have already seed that 2N is uncountable.
We end this section with some notation which will be used frequently in

the sequel.

Notation 2.7 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 2.8. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A → X be
the inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1A (E) = {A ∩E : E ∈ E} .

2.1 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (∩i∈IAi)
c = ∪i∈IAc

i .

Exercise 2.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 2.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 2.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 2.5. Find a counter example which shows that f(C ∩D) = f(C)∩
f(D) need not hold.
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The Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q =
nm
n
: m,n ∈ Z : n 6= 0

o
.

As usual, for q ∈ Q, we define

|q| =
½

q if q ≥ 0
−q if q ≤ 0.

Notice that if q ∈ Q and |q| ≤ 1
n for all n, then q = 0. Indeed q 6= 0 then

|q| = m
n for some m,n ∈ N and hence |q| ≥ 1

n . A similar argument shows
q ≥ 0 iff q ≥ − 1

n for all n ∈ N. These trivial remarks will be used in the future
without further reference.

Definition 3.1. A sequence {qn}∞n=1 ⊂ Q converges to q ∈ Q if |q − qn|→ 0
as n→∞, i.e. if for all N ∈ N, |q − qn| ≤ 1

N for a.a. n. As usual if {qn}∞n=1
converges to q we will write qn → q as n→∞ or q = limn→∞ qn.

Definition 3.2. A sequence {qn}∞n=1 ⊂ Q is Cauchy if |qn − qm| → 0 as
m,n→∞. More precisely we require for each N ∈ N that |qm − qn| ≤ 1

N for
a.a. pairs (m,n) .

Exercise 3.1. Show that all convergent sequences {qn}∞n=1 ⊂ Q are Cauchy
and that all Cauchy sequences {qn}∞n=1 are bounded — i.e. there exists M ∈ N
such that

|qn| ≤M for all n ∈ N.
Exercise 3.2. Suppose {qn}∞n=1 and {rn}∞n=1 are Cauchy sequences in Q.
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1. Show {qn + rn}∞n=1 and {qn · rn}∞n=1 are Cauchy.
Now assume that {qn}∞n=1 and {rn}∞n=1 are convergent sequences in Q.

2. Show {qn + rn}∞n=1 {qn · rn}∞n=1 are convergent in Q and

lim
n→∞ (qn + rn) = lim

n→∞ qn + lim
n→∞ rn and

lim
n→∞ (qnrn) = lim

n→∞ qn · lim
n→∞ rn.

3. If we further assume qn ≤ rn for all n, show limn→∞ qn ≤ limn→∞ rn. (It
suffices to consider the case where qn = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
i.e. not all Cauchy sequences are convergent. In fact, according to Corollary
3.14 below, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{qn}∞n=1 ⊂ Q which is not convergent in Q.
1. Recall that there is no element q ∈ Q such that q2 = 21. To each n ∈ N
let mn ∈ N be chosen so that

m2
n

n2
< 2 <

(mn + 1)
2

n2
(3.1)

and let qn := mn

n .
2. Verify that q2n → 2 as n→∞ and that {qn}∞n=1 is a Cauchy sequence in
Q.

3. Show {qn}∞n=1 does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {an}∞n=1 ⊂ Q and say
a, b ∈ C are equivalent (write a ∼ b) iff limn→∞ |an − bn| = 0. (The reader
should check that “ ∼ ” is an equivalence relation.)
Definition 3.3. A real number is an equivalence class, ā := {b ∈ C : b ∼ a}
associated to some element a ∈ C. The collection of real numbers will be
denoted by R. For q ∈ Q, let i (q) = ā where a is the constant sequence an = q
for all n ∈ N. We will simply write 0 for i (0) and 1 for i (1) .
Exercise 3.4. Given ā, b̄ ∈ R show that the definitions

−ā = (−a), ā+ b̄ := (a+ b) and ā · b̄ := a · b
1 This fact also shows that the intermediate value theorem, (See Theorem 10.57
below.) fails when working with continuous functions defined over Q.
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are well defined. Here −a, a + b and a · b denote the sequences {−an}∞n=1 ,
{an + bn}∞n=1 and {an · bn}∞n=1 respectively. Further verify that with these op-
erations, R becomes a field and the map i : Q→ R is injective homomorphism
of fields. Hint: if ā 6= 0 show that ā may be represented by a sequence a ∈ C
with |an| ≥ 1

N for all n and some N ∈ N. For this representative show the
sequence a−1 :=

©
a−1n

ª∞
n=1
∈ C. The multiplicative inverse to ā may now be

constructed as: 1ā = ā−1 :=
©
a−1n

ª∞
n=1

.

Definition 3.4. Let ā, b̄ ∈ R. Then
1. ā > 0 if there exists an N ∈ N such that an > 1

N for a.a. n.
2. ā ≥ 0 iff either ā > 0 or ā = 0. Equivalently (as the reader should verify),

ā ≥ 0 iff for all N ∈ N, an ≥ − 1
N for a.a. n.

3. Write ā > b̄ or b̄ < ā if ā− b̄ > 0
4. Write ā ≥ b̄ or b̄ ≤ ā if ā− b̄ ≥ 0.
Exercise 3.5. Show “ ≥ ” make R into a linearly ordered field and the map
i : Q→ R preserves order. Namely if ā, b̄ ∈ R then
1. exactly one of the following relations hold: ā < b̄ or ā > b̄ or ā = b̄.
2. If ā ≥ 0 and b̄ ≥ 0 then ā+ b̄ ≥ 0 and ā · b̄ ≥ 0.
3. If q, r ∈ Q then q ≤ r iff i (q) ≤ i (r) .

The absolute value of a real number ā is defined analogously to that of
a rational number by

|ā| =
½

ā if ā ≥ 0
−ā if ā < 0 .

Observe this definition is consistent with our previous definition of the ab-
solute value on Q, namely i (|q|) = |i (q)| . Also notice that ā = 0 (i.e. a ∼ 0
where 0 denotes the constant sequence of all zeros) iff for all N ∈ N, |an| ≤ 1

N
for a.a. n. This is equivalent to saying |ā| ≤ i

¡
1
N

¢
for all N ∈ N iff ā = 0.

Exercise 3.6. Given ā, b̄ ∈ R show¯̄
āb̄
¯̄
= |ā| ¯̄b̄¯̄ and ¯̄ā+ b̄

¯̄ ≤ |ā|+ ¯̄b̄¯̄ .
The latter inequality being referred to as the triangle inequality.

By exercise 3.6,

|ā| = ¯̄ā− b̄+ b̄
¯̄ ≤ ¯̄ā− b̄

¯̄
+
¯̄
b̄
¯̄

and hence
|ā|− ¯̄b̄¯̄ ≤ ¯̄ā− b̄

¯̄
and by reversing the roles of ā and b̄ we also have

− ¡|ā|− ¯̄b̄¯̄¢ = ¯̄b̄¯̄− |ā| ≤ ¯̄b̄− ā
¯̄
=
¯̄
ā− b̄

¯̄
.
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Therefore
¯̄|ā|− ¯̄b̄¯̄¯̄ ≤ ¯̄ā− b̄

¯̄
and in particular if {ān}∞n=1 ⊂ R converges to

ā ∈ R then
||ān|− |ā|| ≤ |ān − ā|→ 0 as n→∞.

Definition 3.5. A sequence {ān}∞n=1 ⊂ R converges to ā ∈ R if |ā− ān|→ 0
as n → ∞, i.e. if for all N ∈ N, |ā− ān| ≤ i

¡
1
N

¢
for a.a. n. As before if

{ān}∞n=1 converges to ā we will write ān → ā as n→∞ or ā = limn→∞ ān.

Remark 3.6. The field i (Q) is dense in R in the sense that if ā ∈ R there
exists {qn}∞n=1 ⊂ Q such that i (qn) → ā as n → ∞. Indeed, simply let
qn = an where a represents ā. Since a is a Cauchy sequence, to any N ∈ N
there exits M ∈ N such that

− 1
N
≤ am − an ≤ 1

N
for all m,n ≥M

and therefore

−i
µ
1

N

¶
≤ i (am)− ā ≤ i

µ
1

N

¶
for all m ≥M.

This shows

|i (qm)− ā| = |i (am)− ā| ≤ i

µ
1

N

¶
for all m ≥M

and since N is arbitrary that i (qm)→ ā as m→∞.

Definition 3.7. A sequence {ān}∞n=1 ⊂ R is Cauchy if |ān − ām| → 0 as
m,n→∞. More precisely we require for each N ∈ N that |ām − ān| ≤ i

¡
1
N

¢
for a.a. pairs (m,n) .

Exercise 3.7. The analogues of the results in Exercises 3.1 and 3.2 hold with
Q replaced by R. (We now say a subset Λ ⊂ R is bounded if there exists
M ∈ N such that |λ| ≤ i (M) for all λ ∈ Λ.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Proof. Suppose that {ā (m)}∞m=1 is a Cauchy sequence in R. By Remark 3.6,
we may choose qm ∈ Q such that

|ā (m)− i (qm)| ≤ i
¡
m−1

¢
for all m ∈ N.

Given N ∈ N, choose M ∈ N such that |ā (m)− ā (n)| ≤ i
¡
N−1

¢
for all

m,n ≥M. Then
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|i (qm)− i (qn)| ≤ |i (qm)− ā (m)|+ |ā (m)− ā (n)|+ |ā (n)− i (qn)|
≤ i

¡
m−1

¢
+ i

¡
n−1

¢
+ i
¡
N−1

¢
and therefore

|qm − qn| ≤ m−1 + n−1 +N−1 for all m,n ≥M.

It now follows that q = {qm}∞m=1 ∈ C and therefore q represents a point q̄ ∈ R.
Using Remark 3.6 and the triangle inequality,

|ā (m)− q̄| ≤ |ā (m)− i (qm)|+ |i (qm)− q̄|
≤ i

¡
m−1

¢
+ |i (qm)− q̄|→ 0 as m→∞

and therefore limm→∞ ā (m) = q̄.

Definition 3.9. A number M ∈ R is an upper bound for a set Λ ⊂ R if
λ ≤ M for all λ ∈ Λ and a number m ∈ R is an lower bound for a set
Λ ⊂ R if λ ≥ m for all λ ∈ Λ. Upper and lower bounds need not exist. If Λ
has upper (lower) bound, Λ is said to be bounded from above (below).

Theorem 3.10. To each non-empty set Λ ⊂ R which is bounded from above
(below) there is a unique least upper bound denoted by supΛ ∈ R (respec-
tively greatest lower bound denoted by inf Λ ∈ R).
Proof. Suppose Λ is bounded from above and for each n ∈ N, let mn ∈ Z be
the smallest integer such that i

¡
mn

2n

¢
is an upper bound for Λ. The sequence

qn :=
mn

2n is Cauchy because qm ∈ [qn − 2−n, qn] ∩Q for all m ≥ n, i.e.

|qm − qn| ≤ 2−min(m,n) → 0 as m,n→∞.

Passing to the limit, n → ∞, in the inequality i (qn) ≥ λ, which is valid for
all λ ∈ Λ implies

q̄ = lim
n→∞ i (qn) ≥ λ for all λ ∈ Λ.

Thus q̄ is an upper bound for Λ.
If there were another upper boundM ∈ R for Λ such thatM < q̄, it would

follow that M ≤ i (qn) < q̄ for some n. But this is a contradiction because
{qn}∞n=1 is a decreasing sequence, i (qn) ≥ i (qm) for all m ≥ n and therefore
i (qn) ≥ q̄ for all n. Therefore q̄ is the unique least upper bound for Λ. The
existence of lower bounds is proved analogously.

Proposition 3.11. If {an}∞n=1 ⊂ R is an increasing (decreasing) sequence
which is bounded from above (below), then {an}∞n=1 is convergent and

lim
n→∞ an = sup {an : n ∈ N} ( lim

n→∞ an = inf {an : n ∈ N}).

If Λ ⊂ R is a set bounded from above then there exists {λn} ⊂ Λ such that
λn ↑M := supΛ, as n→∞, i.e. {λn} is increasing and limn→∞ λn =M.
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Proof. Let M := sup {an : n ∈ N} , then for each N ∈ N there must exist
m ∈ N such that M − i

¡
N−1

¢
< am ≤ M. Since an is increasing, it follows

that
M − i

¡
N−1

¢
< an ≤M for all n ≥ m.

From this we conclude that lim an exists and lim an =M.
If M = supΛ, for each n ∈ N we may choose λn ∈ Λ such that

M − i
¡
n−1

¢
< λn ≤M. (3.2)

By replacing λn by max {λ1, . . . , λn}2 if necessary we may assume that λn is
increasing in n. It now follows easily from Eq. (3.2) that limn→∞ λn =M.

3.1.1 The Decimal Representation of a Real Number

Let α ∈ R or α ∈ Q, m, n ∈ Z and S :=
Pm

k=n α
k. If α = 1 then

Pm
k=n α

k =
m− n+ 1 while for α 6= 1,

αS − S = αm+1 − αn

and solving for S gives the important geometric summation formula,

mX
k=n

αk =
αm+1 − αn

α− 1 if α 6= 1. (3.3)

Taking α = 10−1 in Eq. (3.3) implies

mX
k=n

10−k =
10−(m+1) − 10−n

10−1 − 1 =
1

10n−1
1− 10−(m−n)

9

and in particular, for all M ≥ n,

lim
m→∞

mX
k=n

10−k =
1

9 · 10n−1 ≥
MX
k=n

10−k.

Let D denote those sequences α ∈ {0, 1, 2, . . . , 9}Z with the following prop-
erties:

1. there exists N ∈ N such that α−n = 0 for all n ≥ N and
2. αn 6= 0 for some n ∈ Z.
2 The notation, maxΛ, denotes supΛ along with the assertion that supΛ ∈ Λ.
Similarly, minΛ = inf Λ along with the assertion that inf Λ ∈ Λ.
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Associated to each α ∈ D is the sequence a = a (α) defined by

an :=
nX

k=−∞
αk10

−k.

Since for m > n,

|am − an| =
¯̄̄̄
¯

mX
k=n+1

αk10
−k
¯̄̄̄
¯ ≤ 9

mX
k=n+1

10−k ≤ 9 1

9 · 10n =
1

10n
,

it follows that

|am − an| ≤ 1

10min(m,n)
→ 0 as m,n→∞.

Therefore a = a (α) ∈ C and we may define a map D : {±1}×D→ R defined
by D (ε, α) = εa (α). As is customary we will denote D (ε, α) = εa (α) as

ε · αm . . . α0.α1α2 . . . αn . . . (3.4)

where m is the largest integer in Z such that αk = 0 for all k < m. If m > 0
the expression in Eq. (3.4) should be interpreted as

ε · 0.0 . . . 0αmαm+1 . . . .

An element α ∈ D has a tail of all 9’s starting at N ∈ N if αn = 9 and for
all n ≥ N and αN−1 6= 9. If α has a tail of 9’s starting at N ∈ N, then for
n > N,

an (α) =
N−1X
k=−∞

αk10
−k + 9

nX
k=N

10−k

=
N−1X
k=−∞

αk10
−k +

9

10N−1
· 1− 10

−(n−N)

9

→
N−1X
k=−∞

αk10
−k + 10−(N−1) as n→∞.

If α0 is the digits in the decimal expansion of
PN−1

k=−∞ αk10
−k + 10−(N−1),

then
α0 ∈ D0 := {α ∈ D : α does not have a tail of all 9’s} .

and we have just shown that D (ε, α) = D (ε, α0) . In particular this implies

D ({±1} ×D0) = D ({±1} ×D) . (3.5)
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Theorem 3.12 (Decimal Representation). The map

D : {±1} ×D0→ R\ {0}
is a bijection.

Proof. Suppose D (ε, α) = D (δ, β) for some (ε, α) and (δ, β) in {±1} × D.
Since D (ε, α) > 0 if ε = 1 and D (ε, α) < 0 if ε = −1 it follows that ε = δ. Let
a = a (α) and b = a (β) be the sequences associated to α and β respectively.
Suppose that α 6= β and let j ∈ Z be the position where α and β first
disagree, i.e. αn = βn for all n < j while αj 6= βj . For sake of definiteness
suppose βj > αj . Then for n > j we have

bn − an = (βj − αj) 10
−j +

nX
k=j+1

(βk − αk) 10
−k

≥ 10−j − 9
nX

k=j+1

10−k ≥ 10−j − 9 1

9 · 10j = 0.

Therefore bn−an ≥ 0 for all n and lim (bn − an) = 0 iff βj = αj+1 and βk = 9
and αk = 0 for all k > j. In summary, D (ε, α) = D (δ, β) with α 6= β implies
either α or β has an infinite tail of nines which shows that D is injective when
restricted to {±1} ×D0.
To see that D is surjective it suffices to show any b̄ ∈ R with 0 < b̄ < 1 is

in the range of D. For each n ∈ N, let an = .α1 . . . αn with αi ∈ {0, 1, 2, . . . , 9}
such that

i (an) < b̄ ≤ i (an) + i
¡
10−n

¢
. (3.6)

Since an+1 = an+αn+110
−(n+1) for some αn+1 ∈ {0, 1, 2, . . . , 9} , we see that

an+1 = .α1 . . . αnαn+1, i.e. the first n digits in the decimal expansion of an+1
are the same as in the decimal expansion of an. Hence this defines αn uniquely
for all n ≥ 1. By setting αn = 0 when n ≤ 0, we have constructed from b̄ an
element α ∈ D. Because of Eq. (3.6), D (1, α) = b̄.

Notation 3.13 From now on we will identify Q with i (Q) ⊂ R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10−n for some m ∈ Z and n ∈ N) has a unique decimal expansion.
Corollary 3.14. The set (0, 1) := {a ∈ R : 0 < a < 1} is uncountable while
Q ∩ (0, 1) is countable.
Proof. By Theorem 3.12, the set {0, 1, 2 . . . , 8}N can be mapped injectively
into (0, 1) and therefore it follows from Lemma 2.6 that (0, 1) is uncountable.
For each m ∈ N, let Am :=

©
n
m : n ∈ N with n < m

ª
. Since Q ∩ (0, 1) =

∪∞m=1Am and #(Am) <∞ for all m, another application of Lemma 2.6 shows
Q ∩ (0, 1) is countable.
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3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R2 equipped with multipli-
cation rule

(a, b)(c, d) := (ac− bd, bc+ ad) (3.7)

and the usual rule for vector addition. As is standard we will write 0 = (0, 0) ,
1 = (1, 0) and i = (0, 1) so that every element z of C may be written as
z = x1 + yi which in the future will be written simply as z = x + iy. If
z = x+ iy, let Re z = x and Im z = y.

Writing z = a + ib and w = c + id, the multiplication rule in Eq. (3.7)
becomes

(a+ ib)(c+ id) := (ac− bd) + i(bc+ ad) (3.8)

and in particular 12 = 1 and i2 = −1.
Proposition 3.16. The complex numbers C with the above multiplication
rule satisfies the usual definitions of a field. For example wz = zw and
z (w1 + w2) = zw1 + zw2, etc. Moreover if z 6= 0, z has a multiplicative
inverse given by

z−1 =
a

a2 + b2
− i

b

a2 + b2
. (3.9)

Proof. The proof is a straightforward verification. Only the last assertion will
be verified here. Suppose z = a+ ib 6= 0, we wish to find w = c+ id such that
zw = 1 and this happens by Eq. (3.8) iff

ac− bd = 1 and (3.10)

bc+ ad = 0. (3.11)

Solving these equations for c and d gives c = a
a2+b2 and d = − b

a2+b2 as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a, b ∈ R
let z̄ = a− ib and

|z| := √zz̄ =
p
a2 + b2 =

q
|Re z|2 + |Im z|2.

See Exercise 3.8 for the existence of the square root as a positive real number.

Notice that

Re z =
1

2
(z + z̄) and Im z =

1

2i
(z − z̄) . (3.12)

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1. z̄ = z,
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2. zw = z̄w̄ and z̄ + w̄ = z + w.
3. |z̄| = |z|
4. |zw| = |z| |w| and in particular |zn| = |z|n for all n ∈ N.
5. |Re z| ≤ |z| and |Im z| ≤ |z|
6. |z + w| ≤ |z|+ |w| .
7. z = 0 iff |z| = 0.
8. If z 6= 0 then z−1 := z̄

|z|2 (also written as
1
z ) is the inverse of z.

9.
¯̄
z−1

¯̄
= |z|−1 and more generally |zn| = |z|n for all n ∈ Z.

Proof. All of these properties are direct computations except for possibly the
triangle inequality in item 6 which is verified by the following computation:

|z + w|2 = (z + w) (z + w) = |z|2 + |w|2 + wz̄ + w̄z

= |z|2 + |w|2 + wz̄ + wz̄

= |z|2 + |w|2 + 2Re (wz̄) ≤ |z|2 + |w|2 + 2 |z| |w|
= (|z|+ |w|)2 .

Definition 3.19. A sequence {zn}∞n=1 ⊂ C is Cauchy if |zn − zm| → 0 as
m,n → ∞ and is convergent to z ∈ C if |z − zn| → 0 as n → ∞. As usual
if {zn}∞n=1 converges to z we will write zn → z as n→∞ or z = limn→∞ zn.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if zn = an + ibn ∈ C, then
1. {zn}∞n=1 ⊂ C is Cauchy iff {an}∞n=1 ⊂ R and {bn}∞n=1 ⊂ R are Cauchy
and

2. zn → z = a+ ib as n→∞ iff an → a and bn → b as n→∞.

3.3 Exercises

Exercise 3.8. Show to every a ∈ R with a ≥ 0 there exists a unique number
b ∈ R such that b ≥ 0 and b2 = a. Of course we will call b =

√
a. Also show

that a→ √a is an increasing function on [0,∞). Hint: To construct b = √a
for a > 0, to each n ∈ N let mn ∈ N0 be chosen so that

m2
n

n2
< a ≤ (mn + 1)

2

n2
i.e. i

µ
m2
n

n2

¶
< a ≤ i

Ã
(mn + 1)

2

n2

!

and let qn := mn

n . Then show b = {qn}∞n=1 ∈ R satisfies b > 0 and b2 = a.
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Limits and Sums

4.1 Limsups, Liminfs and Extended Limits

Notation 4.1 The extended real numbers is the set R̄ := R∪ {±∞} , i.e. it
is R with two new points called∞ and −∞.We use the following conventions,
±∞ · 0 = 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞
while ∞ − ∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞
(−∞) if for all M ∈ R there exists m ∈ N such that an ≥ M (an ≤ M) for
all n ≥ m.

Lemma 4.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for a.a. n then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R̄, limn→∞ (can) = c limn→∞ an.
3. If {an + bn}∞n=1 is convergent and

lim
n→∞ (an + bn) = lim

n→∞ an + lim
n→∞ bn (4.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞ (anbn) = lim

n→∞ an · lim
n→∞ bn (4.2)

provided the right hand side is not of the for ∞ · 0.
Before going to the proof consider the simple example where an = n and

bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
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lim
n→∞ an + lim

n→∞ bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (4.1) is not of form
∞ − ∞ is necessary in Lemma 4.2. Similarly by considering the examples
an = n and bn = n−α with α > 0 shows the necessity for assuming right hand
side of Eq. (4.2) is not of the form ∞ · 0.
Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (4.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1.,

suppose b =∞ in which case we must assume a > −∞. In this case, for every
M > 0, there exists N such that bn ≥ M and an ≥ a− 1 for all n ≥ N and
this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → b = ∞. The cases
where b = −∞ or a = ±∞ are handled similarly.
Case 2. If a, b ∈ R, then for every ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since n is arbitrary, it follows that limn→∞ (an + bn) = a+ b.
Proof of Eq. (4.2). It will be left to the reader to prove the case

where lim an and lim bn exist in R. I will only consider the case where
a = limn→∞ an 6= 0 and limn→∞ bn = ∞ here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let α := min

¡
a
2 , 1
¢
. Given any

M <∞, there exists N ∈ N such that an ≥ α and bn ≥M for all n ≥ N and
for this choice of N, anbn ≥Mα for all n ≥ N. Since α > 0 is fixed and M is
arbitrary it follows that limn→∞ (anbn) =∞ as desired.
For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and

greatest lower bound of Λ respectively. The convention being that supΛ =∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 4.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞xn = lim

n→∞ inf{xk : k ≥ n} and (4.3)

lim sup
n→∞

xn = lim
n→∞ sup{xk : k ≥ n}. (4.4)

We will also write lim for lim inf and lim for lim sup .
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Remark 4.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (4.3) and Eq. (4.4) always exist in R̄ and

lim inf
n→∞xn = sup

n
inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n
sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 4.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff lim infn→∞ an =
lim supn→∞ an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim supn→∞ an.

3.
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn (4.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.6)

provided the right hand side of (4.6) is not of the form 0 ·∞ or ∞ · 0.
Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞ an ≤ lim sup

n→∞
an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all
ε > 0, there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a.
If lim infn→∞ an =∞, then we know for allM ∈ (0,∞) there is an integer

N such that
M ≤ inf{ak : k ≥ N}
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and hence limn→∞ an =∞. The case where lim supn→∞ an = −∞ is handled
similarly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε),
i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an.
If A =∞, then for all M > 0 there exists N(M) such that an ≥M for all

n ≥ N(M). This show that lim infn→∞ an ≥ M and since M is arbitrary it
follows that

∞ ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an.

The proof for the case A = −∞ is analogous to the A =∞ case.

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
α ⊂⊂ X to denote that α is a finite subset of X and write 2Xf for those
α ⊂⊂ X.

Definition 4.6. Suppose that a : X → [0,∞] is a function and F ⊂ X is a
subset, then

X
F

a =
X
x∈F

a(x) := sup

(X
x∈α

a(x) : α ⊂⊂ F

)
.

Remark 4.7. Suppose that X = N = {1, 2, 3, . . . } and a : X → [0,∞], then

X
N

a =
∞X
n=1

a(n) := lim
N→∞

NX
n=1

a(n).

Indeed for all N,
PN

n=1 a(n) ≤
P

N a, and thus passing to the limit we learn
that ∞X

n=1

a(n) ≤
X
N

a.
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Conversely, if α ⊂⊂ N, then for all N large enough so that α ⊂ {1, 2, . . . ,N},
we have

P
α a ≤

PN
n=1 a(n) which upon passing to the limit implies thatX

α

a ≤
∞X
n=1

a(n).

Taking the supremum over α in the previous equation showsX
N

a ≤
∞X
n=1

a(n).

Remark 4.8. Suppose a : X → [0,∞] andPX a <∞, then {x ∈ X : a(x) > 0}
is at most countable. To see this first notice that for any ε > 0, the set
{x : a(x) ≥ ε} must be finite for otherwise PX a =∞. Thus

{x ∈ X : a(x) > 0} =
[∞

k=1{x : a(x) ≥ 1/k}

which shows that {x ∈ X : a(x) > 0} is a countable union of finite sets and
thus countable by Lemma 2.6.

Lemma 4.9. Suppose that a, b : X → [0,∞] are two functions, thenX
X

(a+ b) =
X
X

a+
X
X

b andX
X

λa = λ
X
X

a

for all λ ≥ 0.
I will only prove the first assertion, the second being easy. Let α ⊂⊂ X be

a finite set, then X
α

(a+ b) =
X
α

a+
X
α

b ≤
X
X

a+
X
X

b

which after taking sups over α shows thatX
X

(a+ b) ≤
X
X

a+
X
X

b.

Similarly, if α, β ⊂⊂ X, thenX
α

a+
X
β

b ≤
X
α∪β

a+
X
α∪β

b =
X
α∪β

(a+ b) ≤
X
X

(a+ b).

Taking sups over α and β then shows thatX
X

a+
X
X

b ≤
X
X

(a+ b).
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Lemma 4.10. Let X and Y be sets, R ⊂ X × Y and suppose that a : R→ R̄
is a function. Let xR := {y ∈ Y : (x, y) ∈ R} and Ry := {x ∈ X : (x, y) ∈ R} .
Then

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y) = sup
y∈Y

sup
x∈Ry

a(x, y) and

inf
(x,y)∈R

a(x, y) = inf
x∈X

inf
y∈xR

a(x, y) = inf
y∈Y

inf
x∈Ry

a(x, y).

(Recall the conventions: sup ∅ = −∞ and inf ∅ = +∞.)

Proof. Let M = sup(x,y)∈R a(x, y), Nx := supy∈xR a(x, y). Then a(x, y) ≤ M
for all (x, y) ∈ R implies Nx = supy∈xR a(x, y) ≤M and therefore that

sup
x∈X

sup
y∈xR

a(x, y) = sup
x∈X

Nx ≤M. (4.7)

Similarly for any (x, y) ∈ R,

a(x, y) ≤ Nx ≤ sup
x∈X

Nx = sup
x∈X

sup
y∈xR

a(x, y)

and therefore
sup

(x,y)∈R
a(x, y) ≤ sup

x∈X
sup
y∈xR

a(x, y) =M (4.8)

Equations (4.7) and (4.8) show that

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y).

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function −a.

Fig. 4.1. The x and y — slices of a set R ⊂ X × Y.
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Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that fn : X → [0,∞] is an increasing sequence of functions and

f(x) := lim
n→∞ fn(x) = sup

n
fn(x).

Then
lim
n→∞

X
X

fn =
X
X

f

Proof. We will give two proves. For the first proof, let

2Xf := {A ⊂ X : A ⊂⊂ X}.

Then

lim
n→∞

X
X

fn = sup
n

X
X

fn = sup
n
sup
α∈2Xf

X
α

fn = sup
α∈2Xf

sup
n

X
α

fn

= sup
α∈2Xf

lim
n→∞

X
α

fn = sup
α∈2Xf

X
α

lim
n→∞ fn

= sup
α∈2Xf

X
α

f =
X
X

f.

(Second Proof.) Let Sn =
P

X fn and S =
P

X f. Since fn ≤ fm ≤ f for
all n ≤ m, it follows that

Sn ≤ Sm ≤ S

which shows that limn→∞ Sn exists and is less that S, i.e.

A := lim
n→∞

X
X

fn ≤
X
X

f. (4.9)

Noting that
P

α fn ≤
P

X fn = Sn ≤ A for all α ⊂⊂ X and in particular,X
α

fn ≤ A for all n and α ⊂⊂ X.

Letting n tend to infinity in this equation shows thatX
α

f ≤ A for all α ⊂⊂ X

and then taking the sup over all α ⊂⊂ X givesX
X

f ≤ A = lim
n→∞

X
X

fn (4.10)

which combined with Eq. (4.9) proves the theorem.
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Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that fn : X → [0,∞]
is a sequence of functions, thenX

X

lim inf
n→∞ fn ≤ lim inf

n→∞

X
X

fn.

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, X
X

gk ≤
X
X

fn for all n ≥ k

and therefore X
X

gk ≤ lim inf
n→∞

X
X

fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findX
X

lim inf
n→∞ fn =

X
X

lim
k→∞

gk
MCT
= lim

k→∞

X
X

gk ≤ lim inf
n→∞

X
X

fn.

Remark 4.13. If A =
P

X a < ∞, then for all ε > 0 there exists αε ⊂⊂ X
such that

A ≥
X
α

a ≥ A− ε

for all α ⊂⊂ X containing αε or equivalently,¯̄̄̄
¯A−X

α

a

¯̄̄̄
¯ ≤ ε (4.11)

for all α ⊂⊂ X containing αε. Indeed, choose αε so that
P

αε
a ≥ A− ε.

4.3 Sums of complex functions

Definition 4.14. Suppose that a : X → C is a function, we say thatX
X

a =
X
x∈X

a(x)

exists and is equal to A ∈ C, if for all ε > 0 there is a finite subset αε ⊂ X
such that for all α ⊂⊂ X containing αε we have¯̄̄̄

¯A−X
α

a

¯̄̄̄
¯ ≤ ε.
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The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a, b : X → C are two functions such that
P

X a
and

P
X b exist, then

P
X(a+ λb) exists for all λ ∈ C andX
X

(a+ λb) =
X
X

a+ λ
X
X

b.

Definition 4.16 (Summable). We call a function a : X → C summable
if X

X

|a| <∞.

Proposition 4.17. Let a : X → C be a function, then
P

X a exists iffP
X |a| <∞, i.e. iff a is summable. Moreover if a is summable, then¯̄̄̄

¯X
X

a

¯̄̄̄
¯ ≤X

X

|a| .

Proof. If
P

X |a| < ∞, then
P

X (Re a)
± < ∞ and

P
X (Im a)± < ∞ and

hence by Remark 4.13 these sums exists in the sense of Definition 4.14. There-
fore by Lemma 4.15,

P
X a exists and

X
X

a =
X
X

(Re a)
+ −

X
X

(Re a)
−
+ i

ÃX
X

(Im a)
+ −

X
X

(Im a)
−
!
.

Conversely, if
P

X |a| = ∞ then, because |a| ≤ |Re a| + |Im a| , we must
have X

X

|Re a| =∞ or
X
X

|Im a| =∞.

Thus it suffices to consider the case where a : X → R is a real function. Write
a = a+ − a− where

a+(x) = max(a(x), 0) and a−(x) = max(−a(x), 0). (4.12)

Then |a| = a+ + a− and

∞ =
X
X

|a| =
X
X

a+ +
X
X

a−

which shows that either
P

X a+ =∞ or
P

X a− =∞. Suppose, with out loss
of generality, that

P
X a+ =∞. Let X 0 := {x ∈ X : a(x) ≥ 0}, then we know

that
P

X0 a = ∞ which means there are finite subsets αn ⊂ X 0 ⊂ X such
that

P
αn

a ≥ n for all n. Thus if α ⊂⊂ X is any finite set, it follows that
limn→∞

P
αn∪α a =∞, and therefore

P
X a can not exist as a number in R.

Finally if a is summable, write
P

X a = ρeiθ with ρ ≥ 0 and θ ∈ R, then
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¯X
X

a

¯̄̄̄
¯ = ρ = e−iθ

X
X

a =
X
X

e−iθa

=
X
X

Re
£
e−iθa

¤ ≤X
X

¡
Re
£
e−iθa

¤¢+
≤
X
X

¯̄
Re
£
e−iθa

¤¯̄ ≤X
X

¯̄
e−iθa

¯̄ ≤X
X

|a| .

Alternatively, this may be proved by approximating
P

X a by a finite sum and
then using the triangle inequality of |·| .
Remark 4.18. Suppose that X = N and a : N→ C is a sequence, then it is
not necessarily true that

∞X
n=1

a(n) =
X
n∈N

a(n). (4.13)

This is because
∞X
n=1

a(n) = lim
N→∞

NX
n=1

a(n)

depends on the ordering of the sequence a where as
P

n∈N a(n) does not. For
example, take a(n) = (−1)n/n then Pn∈N |a(n)| = ∞ i.e.

P
n∈N a(n) does

not exist while
P∞

n=1 a(n) does exist. On the other hand, ifX
n∈N

|a(n)| =
∞X
n=1

|a(n)| <∞

then Eq. (4.13) is valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Sup-
pose that fn : X → C is a sequence of functions on X such that f(x) =
limn→∞ fn(x) ∈ C exists for all x ∈ X. Further assume there is a dominat-
ing function g : X → [0,∞) such that

|fn(x)| ≤ g(x) for all x ∈ X and n ∈ N (4.14)

and that g is summable. Then

lim
n→∞

X
x∈X

fn(x) =
X
x∈X

f(x). (4.15)

Proof. Notice that |f | = lim |fn| ≤ g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem
in the case where f is real. By Fatou’s Lemma,
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X

(g ± f) =
X
X

lim inf
n→∞ (g ± fn) ≤ lim inf

n→∞

X
X

(g ± fn)

=
X
X

g + lim inf
n→∞

Ã
±
X
X

fn

!
.

Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,X
X

g ±
X
X

f ≤
X
X

g +

½
lim infn→∞

P
X fn

− lim supn→∞
P

X fn

and therefore

lim sup
n→∞

X
X

fn ≤
X
X

f ≤ lim inf
n→∞

X
X

fn.

This shows that lim
n→∞

P
X fnexists and is equal to

P
X f.

Proof. (Second Proof.) Passing to the limit in Eq. (4.14) shows that |f | ≤ g
and in particular that f is summable. Given ε > 0, let α ⊂⊂ X such thatX

X\α
g ≤ ε.

Then for β ⊂⊂ X such that α ⊂ β,¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄X
β

(f − fn)

¯̄̄̄
¯̄

≤
X
β

|f − fn| =
X
α

|f − fn|+
X
β\α

|f − fn|

≤
X
α

|f − fn|+ 2
X
β\α

g

≤
X
α

|f − fn|+ 2ε.

and hence that ¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ ≤X

α

|f − fn|+ 2ε.

Since this last equation is true for all such β ⊂⊂ X, we learn that¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤X

α

|f − fn|+ 2ε

which then implies that
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lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤ lim sup

n→∞

X
α

|f − fn|+ 2ε

= 2ε.

Because ε > 0 is arbitrary we conclude that

lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ = 0.

which is the same as Eq. (4.15).

Remark 4.20. Theorem 4.19 may easily be generalized as follows. Suppose
fn, gn, g are summable functions onX such that fn → f and gn → g pointwise,
|fn| ≤ gn and

P
X gn →

P
X g as n→∞. Then f is summable and Eq. (4.15)

still holds. For the proof we use Fatou’s Lemma to again concludeX
X

(g ± f) =
X
X

lim inf
n→∞ (gn ± fn) ≤ lim inf

n→∞

X
X

(gn ± fn)

=
X
X

g + lim inf
n→∞

Ã
±
X
X

fn

!
and then proceed exactly as in the first proof of Theorem 4.19.

4.4 Iterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X → C is function and F ⊂ X is a subset
such that a(x) = 0 for all x /∈ F. Then

P
F a exists iff

P
X a exists and when

the sums exists, X
X

a =
X
F

a.

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose that a : X×Y →
[0,∞], then X

X×Y
a =

X
X

X
Y

a =
X
Y

X
X

a.

Proof. It suffices to show, by symmetry, thatX
X×Y

a =
X
X

X
Y

a

Let Λ ⊂⊂ X × Y. The for any α ⊂⊂ X and β ⊂⊂ Y such that Λ ⊂ α× β, we
have
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Λ

a ≤
X
α×β

a =
X
α

X
β

a ≤
X
α

X
Y

a ≤
X
X

X
Y

a,

i.e.
P

Λ a ≤
P

X

P
Y a. Taking the sup over Λ in this last equation showsX

X×Y
a ≤

X
X

X
Y

a.

For the reverse inequality, for each x ∈ X choose βxn ⊂⊂ X such that βxn ↑
as n ↑ and X

y∈Y
a(x, y) = lim

n→∞

X
y∈βxn

a(x, y).

If α ⊂⊂ X is a given finite subset of X, thenX
y∈Y

a(x, y) = lim
n→∞

X
y∈βn

a(x, y) for all x ∈ α

where βn := ∪x∈αβxn ⊂⊂ X. HenceX
x∈α

X
y∈Y

a(x, y) =
X
x∈α

lim
n→∞

X
y∈βn

a(x, y) = lim
n→∞

X
x∈α

X
y∈βn

a(x, y)

= lim
n→∞

X
(x,y)∈α×βn

a(x, y) ≤
X
X×Y

a.

Since α is arbitrary, it follows thatX
x∈X

X
y∈Y

a(x, y) = sup
α⊂⊂X

X
x∈α

X
y∈Y

a(x, y) ≤
X
X×Y

a

which completes the proof.

Theorem 4.23 (Fubini’s Theorem for Sums). Now suppose that a : X ×
Y → C is a summable function, i.e. by Theorem 4.22 any one of the following
equivalent conditions hold:

1.
P

X×Y |a| <∞,
2.
P

X

P
Y |a| <∞ or

3.
P

Y

P
X |a| <∞.

Then X
X×Y

a =
X
X

X
Y

a =
X
Y

X
X

a.

Proof. If a : X → R is real valued the theorem follows by applying Theorem
4.22 to a± — the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the
real and imaginary parts of a.
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4.5 Exercises

Exercise 4.1. Now suppose for each n ∈ N := {1, 2, . . .} that fn : X → R is
a function. Let

D := {x ∈ X : lim
n→∞ fn(x) = +∞}

show that
D = ∩∞M=1 ∪∞N=1 ∩n≥N{x ∈ X : fn(x) ≥M}. (4.16)

Exercise 4.2. Let fn : X → R be as in the last problem. Let

C := {x ∈ X : lim
n→∞ fn(x) exists in R}.

Find an expression for C similar to the expression for D in (4.16). (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems

Exercise 4.3. Prove Lemma 4.15. BRUCE: Move 4.3 and 4.4 after 4.8.

Exercise 4.4. Prove Lemma 4.21.

Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Exercise 4.5. Show lim infn→∞(−an) = − lim supn→∞ an.

Exercise 4.6. Suppose that lim supn→∞ an = M ∈ R̄, show that there is a
subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =M.

Exercise 4.7. Show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (4.17)

provided that the right side of Eq. (4.17) is well defined, i.e. no ∞−∞ or
−∞+∞ type expressions. (It is OK to have∞+∞ =∞ or −∞−∞ = −∞,
etc.)

Exercise 4.8. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ N. Show

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (4.18)

provided the right hand side of (4.18) is not of the form 0 ·∞ or ∞ · 0.
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4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 For u0 ∈ Rn and δ > 0, let Bu0(δ) := {x ∈ Rn : |x− u0| < δ}
be the ball in Rn centered at u0 with radius δ.

Exercise 4.9. Suppose U ⊂ Rn is a set and u0 ∈ U is a point such that
U ∩ (Bu0(δ) \ {u0}) 6= ∅ for all δ > 0. Let G : U \ {u0} → C be a function
on U \ {u0}. Show that limu→u0 G(u) exists and is equal to λ ∈ C,1 iff for all
sequences {un}∞n=1 ⊂ U \ {u0} which converge to u0 (i.e. limn→∞ un = u0)
we have limn→∞G(un) = λ.

Exercise 4.10. Suppose that Y is a set, U ⊂ Rn is a set, and f : U ×Y → C
is a function satisfying:

1. For each y ∈ Y, the function u ∈ U → f(u, y) is continuous on U.2

2. There is a summable function g : Y → [0,∞) such that

|f(u, y)| ≤ g(y) for all y ∈ Y and u ∈ U.

Show that
F (u) :=

X
y∈Y

f(u, y) (4.19)

is a continuous function for u ∈ U.

Exercise 4.11. Suppose that Y is a set, J = (a, b) ⊂ R is an interval, and
f : J × Y → C is a function satisfying:

1. For each y ∈ Y, the function u→ f(u, y) is differentiable on J,
2. There is a summable function g : Y → [0,∞) such that¯̄̄̄

∂

∂u
f(u, y)

¯̄̄̄
≤ g(y) for all y ∈ Y and u ∈ J.

3. There is a u0 ∈ J such that
P

y∈Y |f(u0, y)| <∞.

Show:

a) for all u ∈ J that
P

y∈Y |f(u, y)| <∞.

1 More explicitly, limu→u0 G(u) = λ means for every every > 0 there exists a
δ > 0 such that

|G(u)− λ| < whenerver u ∈ U ∩ (Bu0(δ) \ {u0}) .

2 To say g := f(·, y) is continuous on U means that g : U → C is continuous relative
to the metric on Rn restricted to U.
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b) Let F (u) :=
P

y∈Y f(u, y), show F is differentiable on J and that

Ḟ (u) =
X
y∈Y

∂

∂u
f(u, y).

(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and
{an}∞n=0 is a sequence of complex numbers such that

P∞
n=0 |an| rn < ∞ for

all r ∈ (0, R). Show, using Exercise 4.11, f(x) :=P∞n=0 anxn is continuously
differentiable for x ∈ (−R,R) and

f 0(x) =
∞X
n=0

nanx
n−1 =

∞X
n=1

nanx
n−1.

Exercise 4.13. Show the functions

ex :=
∞X
n=0

xn

n!
, (4.20)

sinx :=
∞X
n=0

(−1)n x2n+1

(2n+ 1)!
and (4.21)

cosx =
∞X
n=0

(−1)n x2n

(2n)!
(4.22)

are infinitely differentiable and they satisfy

d

dx
ex = ex with e0 = 1

d

dx
sinx = cosx with sin (0) = 0

d

dx
cosx = − sinx with cos (0) = 1.

Exercise 4.14. Continue the notation of Exercise 4.13.

1. Use the product and the chain rule to show,

d

dx

h
e−xe(x+y)

i
= 0

and conclude from this, that e−xe(x+y) = ey for all x, y ∈ R. In particular
taking y = 0 this implies that e−x = 1/ex and hence that e(x+y) = exey.
Use this result to show ex ↑ ∞ as x ↑ ∞ and e−x ↓ 0 as x ↓ −∞.

2. Use the product rule to show

d

dx

¡
cos2 x+ sin2 x

¢
= 0

and use this to conclude that cos2 x+ sin2 x = 1 for all x ∈ R.
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Exercise 4.15. Let {an}∞n=−∞ be a summable sequence of complex numbers,
i.e.

P∞
n=−∞ |an| <∞. For t ≥ 0 and x ∈ R, define

F (t, x) =
∞X

n=−∞
ane
−tn2einx,

where as usual eix = cos(x) + i sin(x), this is motivated by replacing x in Eq.
(4.20) by ix and comparing the result to Eqs. (4.21) and (4.22).

1. F (t, x) is continuous for (t, x) ∈ [0,∞)×R.Hint: Let Y = Z and u = (t, x)
and use Exercise 4.10.

2. ∂F (t, x)/∂t, ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 exist for t > 0 and x ∈ R.
Hint: Let Y = Z and u = t for computing ∂F (t, x)/∂t and u = x for
computing ∂F (t, x)/∂x and ∂2F (t, x)/∂x2. See Exercise 4.11.

3. F satisfies the heat equation, namely

∂F (t, x)/∂t = ∂2F (t, x)/∂x2 for t > 0 and x ∈ R.
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`p — spaces, Minkowski and Holder Inequalities

In this chapter, let µ : X → (0,∞) be a given function. Let F denote either
R or C. For p ∈ (0,∞) and f : X → F, let

kfkp := (
X
x∈X

|f(x)|pµ(x))1/p

and for p =∞ let
kfk∞ = sup {|f(x)| : x ∈ X} .

Also, for p > 0, let

p(µ) = {f : X → F : kfkp <∞}.

In the case where µ(x) = 1 for all x ∈ X we will simply write p(X) for p(µ).

Definition 5.1. A norm on a vector space Z is a function k·k : Z → [0,∞)
such that

1. (Homogeneity) kλfk = |λ| kfk for all λ ∈ F and f ∈ Z.
2. (Triangle inequality) kf + gk ≤ kfk+ kgk for all f, g ∈ Z.
3. (Positive definite) kfk = 0 implies f = 0.
A pair (Z, k·k) where Z is a vector space and k·k is a norm on Z is called

a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5.2. For p ∈ [1,∞], ( p(µ), k · kp) is a normed vector space.
Proof. The only difficulty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 5.8 below.
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Proposition 5.3. Let f : [0,∞)→ [0,∞) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim

s→∞ f(s) =∞. Let g = f−1

and for s, t ≥ 0 let

F (s) =

Z s

0

f(s0)ds0 and G(t) =
Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t)

and equality holds iff t = f(s).

Proof. Let

As := {(σ, τ) : 0 ≤ τ ≤ f(σ) for 0 ≤ σ ≤ s} and
Bt := {(σ, τ) : 0 ≤ σ ≤ g(τ) for 0 ≤ τ ≤ t}

then as one sees from Figure 5.1, [0, s]× [0, t] ⊂ As ∪Bt. (In the figure: s = 3,
t = 1, A3 is the region under t = f(s) for 0 ≤ s ≤ 3 and B1 is the region to
the left of the curve s = g(t) for 0 ≤ t ≤ 1.) Hence if m denotes the area of a
region in the plane, then

st = m ([0, s]× [0, t]) ≤ m(As) +m(Bt) = F (s) +G(t).

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes m to be Lebesgue measure on the plane which
will be introduced later.
We can also give a calculus proof of this theorem under the additional

assumption that f is C1. (This restricted version of the theorem is all we need
in this section.) To do this fix t ≥ 0 and let

h(s) = st− F (s) =

Z s

0

(t− f(σ))dσ.

If σ > g(t) = f−1(t), then t− f(σ) < 0 and hence if s > g(t), we have

h(s) =

Z s

0

(t− f(σ))dσ =

Z g(t)

0

(t− f(σ))dσ +

Z s

g(t)

(t− f(σ))dσ

≤
Z g(t)

0

(t− f(σ))dσ = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s ∈ (0, t] and hence at a point where 0 = h0(s) = t − f(s). The only
solution to this equation is s = g(t) and we have thus shown

st− F (s) = h(s) ≤
Z g(t)

0

(t− f(σ))dσ = h(g(t))
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with equality when s = g(t). To finish the proof we must show
R g(t)
0

(t −
f(σ))dσ = G(t). This is verified by making the change of variables σ = g(τ)
and then integrating by parts as follows:Z g(t)

0

(t− f(σ))dσ =

Z t

0

(t− f(g(τ)))g0(τ)dτ =
Z t

0

(t− τ)g0(τ)dτ

=

Z t

0

g(τ)dτ = G(t).
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Fig. 5.1. A picture proof of Proposition 5.3.

Definition 5.4. The conjugate exponent q ∈ [1,∞] to p ∈ [1,∞] is q := p
p−1

with the conventions that q =∞ if p = 1 and q = 1 if p =∞. Notice that q is
characterized by any of the following identities:

1

p
+
1

q
= 1, 1 +

q

p
= q, p− p

q
= 1 and q(p− 1) = p. (5.1)

Lemma 5.5. Let p ∈ (1,∞) and q := p
p−1 ∈ (1,∞) be the conjugate exponent.

Then
st ≤ sp

p
+

tq

q
for all s, t ≥ 0

with equality if and only if tq = sp.

Proof. Let F (s) = sp

p for p > 1. Then f(s) = sp−1 = t and g(t) = t
1

p−1 = tq−1,
wherein we have used q−1 = p/ (p− 1)−1 = 1/ (p− 1) . ThereforeG(t) = tq/q
and hence by Proposition 5.3,



42 5 p — spaces, Minkowski and Holder Inequalities

st ≤ sp

p
+

tq

q

with equality iff t = sp−1, i.e. tq = sq(p−1) = sp.
For those who do not want to use Proposition 5.3, here is a direct calculus

proof. Fix t > 0 and let

h (s) := st− sp

p
.

Then h (0) = 0, lims→∞ h (s) = −∞ and h0 (s) = t− sp−1 which equals zero
iff s = t

1
p−1 . Since

h
³
t

1
p−1
´
= t

1
p−1 t− t

p
p−1

p
= t

p
p−1 − t

p
p−1

p
= tq

µ
1− 1

p

¶
=

tq

q
,

it follows from the first derivative test that

maxh = max
n
h (0) , h

³
t

1
p−1
´o

= max

½
0,
tq

q

¾
=

tq

q
.

So we have shown

st− sp

p
≤ tq

q
with equality iff t = sp−1.

Theorem 5.6 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate expo-
nents. For all f, g : X → F,

kfgk1 ≤ kfkp · kgkq. (5.2)

If p ∈ (1,∞) and f and g are not identically zero, then equality holds in Eq.
(5.2) iff µ |f |

kfkp

¶p
=

µ |g|
kgkq

¶q
. (5.3)

Proof. The proof of Eq. (5.2) for p ∈ {1,∞} is easy and will be left to the
reader. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easily dealt
with and are also left to the reader. So we will assume that p ∈ (1,∞) and
0 < kfkq, kgkp <∞. Letting s = |f (x)| /kfkp and t = |g|/kgkq in Lemma 5.5
implies

|f (x) g (x)|
kfkpkgkq ≤

1

p

|f (x)|p
kfkp +

1

q

|g (x)|q
kgkq

with equality iff
|f (x)|p
kfkp = sp = tq =

|g (x)|q
kgkq . (5.4)

Multiplying this equation by µ (x) and then summing on x gives
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kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1

with equality iff Eq. (5.4) holds for all x ∈ X, i.e. iff Eq. (5.3) holds.

Definition 5.7. For a complex number λ ∈ C, let

sgn(λ) =

½ λ
|λ| if λ 6= 0
0 if λ = 0.

For λ, µ ∈ C we will write sgn(λ) $ sgn(µ) if either λµ = 0 or λµ 6= 0 and
sgn(λ) = sgn(µ).

Theorem 5.8 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ p(µ)
then

kf + gkp ≤ kfkp + kgkp. (5.5)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(5.5) iff

sgn(f) $ sgn(g) when p = 1 and

f = cg for some c > 0 when p ∈ (1,∞).
Proof. For p = 1,

kf + gk1 =
X
X

|f + g|µ ≤
X
X

(|f |µ+ |g|µ) =
X
X

|f |µ+
X
X

|g|µ

with equality iff

|f |+ |g| = |f + g| ⇐⇒ sgn(f) $ sgn(g).

For p =∞,

kf + gk∞ = sup
X
|f + g| ≤ sup

X
(|f |+ |g|)

≤ sup
X
|f |+ sup

X
|g| = kfk∞ + kgk∞.

Now assume that p ∈ (1,∞). Since
|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p)

it follows that
kf + gkpp ≤ 2p

¡kfkpp + kgkpp¢ <∞.

Eq. (5.5) is easily verified if kf +gkp = 0, so we may assume kf +gkp > 0.
Multiplying the inequality,

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1 (5.6)
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by µ, then summing on x and applying Holder’s inequality two times givesX
X

|f + g|pµ ≤
X
X

|f | |f + g|p−1µ+
X
X

|g| |f + g|p−1µ

≤ (kfkp + kgkp) k |f + g|p−1 kq. (5.7)

Since q(p− 1) = p, as in Eq. (5.1),

k|f + g|p−1kqq =
X
X

(|f + g|p−1)qµ =
X
X

|f + g|pµ = kf + gkpp. (5.8)

Combining Eqs. (5.7) and (5.8) shows

kf + gkpp ≤ (kfkp + kgkp) kf + gkp/qp (5.9)

and solving this equation for kf + gkp (making use of Eq. (5.1)) implies Eq.
(5.5).
Now suppose that f and g are not identically zero and p ∈ (1,∞) . Equality

holds in Eq. (5.5) iff equality holds in Eq. (5.9) iff equality holds in Eq. (5.7)
and Eq. (5.6). The latter happens iff

sgn(f) $ sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
. (5.10)

wherein we have used µ |f + g|p−1
k|f + g|p−1kq

¶q
=
|f + g|p
kf + gkpp .

Finally Eq. (5.10) is equivalent |f | = c |g| with c = (kfkp/kgkp) > 0 and this
equality along with sgn(f) $ sgn(g) implies f = cg.

5.1 Exercises

Exercise 5.1. Generalize Proposition 5.3 as follows. Let a ∈ [−∞, 0] and
f : R ∩ [a,∞)→ [0,∞) be a continuous strictly increasing function such that
lim
s→∞ f(s) =∞, f(a) = 0 if a > −∞ or lims→−∞ f(s) = 0 if a = −∞. Also let

g = f−1, b = f(0) ≥ 0,

F (s) =

Z s

0

f(s0)ds0 and G(t) =

Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t ∨ b) ≤ F (s) +G(t)
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Fig. 5.2. Comparing areas when t ≥ b goes the same way as in the text.
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Fig. 5.3. When t ≤ b, notice that g(t) ≤ 0 but G(t) ≥ 0. Also notice that G(t) is
no longer needed to estimate st.

and equality holds iff t = f(s). In particular, taking f(s) = es, prove Young’s
inequality stating

st ≤ es + (t ∨ 1) ln (t ∨ 1)− (t ∨ 1) ≤ es + t ln t− t.

Hint: Refer to the following pictures.




