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Metric Spaces

Definition 6.1. A function : × [0 ) is called a metric if

1. (Symmetry) ( ) = ( ) for all
2. (Non-degenerate) ( ) = 0 if and only if =
3. (Triangle inequality) ( ) ( ) + ( ) for all

As primary examples, any normed space ( k·k) (see Definition 5.1) is a
metric space with ( ) := k k Thus the space ( ) (as in Theorem
5.2) is a metric space for all [1 ] Also any subset of a metric space
is a metric space. For example a surface in R3 is a metric space with the
distance between two points on being the usual distance in R3

Definition 6.2. Let ( ) be a metric space. The open ball ( )
centered at with radius 0 is the set

( ) := { : ( ) }

We will often also write ( ) as ( ) We also define the closed ball
centered at with radius 0 as the set ( ) := { : ( ) }
Definition 6.3. A sequence { } =1 in a metric space ( ) is said to be
convergent if there exists a point such that lim ( ) = 0 In
this case we write lim = of as

Exercise 6.1. Show that in Definition 6.3 is necessarily unique.

Definition 6.4. A set is bounded if ( ) for some
and A set is closed i every convergent sequence { } =1

which is contained in has its limit back in A set is open i
is closed. We will write @ to indicate the is a closed subset of and

to indicate the is an open subset of We also let denote the
collection of open subsets of relative to the metric
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Definition 6.5. A subset is a neighborhood of if there exists an
open set such that We will say that is an open
neighborhood of if is open and

Exercise 6.2. Let F be a collection of closed subsets of show F :=

F is closed. Also show that finite unions of closed sets are closed, i.e. if
{ } =1 are closed sets then =1 is closed. (By taking complements, this
shows that the collection of open sets, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset let ( ) := inf{ ( )|
} then

| ( ) ( )| ( ) (6.1)

and in particular if in then ( ) ( ) as Moreover
the set := { | ( ) } is closed in
Proof. Let and , then

( ) ( ) + ( )

Take the inf over in the above equation shows that

( ) ( ) + ( )

Therefore, ( ) ( ) ( ) and by interchanging and we also have
that ( ) ( ) ( ) which implies Eq. (6.1). If then by
Eq. (6.1),

| ( ) ( )| ( ) 0 as

so that lim ( ) = ( ) Now suppose that { } =1 and
in then

( ) = lim ( )

since ( ) for all This shows that and hence is closed.

Corollary 6.7. The function satisfies,

| ( ) ( 0 0)| ( 0) + ( 0)

In particular : × [0 ) is “continuous” in the sense that ( )
is close to ( 0 0) if is close to 0 and is close to 0 (The notion of
continuity will be developed shortly.)
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Proof. By Lemma 6.6 for single point sets and the triangle inequality for the
absolute value of real numbers,

| ( ) ( 0 0)| | ( ) ( 0)|+ | ( 0) ( 0 0)|
( 0) + ( 0)

Example 6.8. Let and 0 then ( ) and ( ) are closed subsets
of For example if { } =1 ( ) and then ( ) for
all and using Corollary 6.7 it follows ( ) i.e. ( ) A similar
proof shows ( ) is open, see Exercise 6.3.

Exercise 6.3. Show that is open i for every there is a 0
such that ( ) In particular show ( ) is open for all and

0 Hint: by definition is not open i is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
sets). Let be a closed subset of and := { | ( ) } @
be as in Lemma 6.6. Then as 0.

Proof. It is clear that ( ) = 0 for so that for each 0 and
hence 0 Now suppose that By Exercise 6.3 there
exists an 0 such that ( ) i.e. ( ) for all Hence

and we have shown that 0 . Finally it is clear that 0

whenever 0 .

Definition 6.10. Given a set contained a metric space let ¯ be
the closure of defined by

¯ := { : { } 3 = lim }

That is to say ¯ contains all limit points of We say is dense in if
¯ = i.e. every element is a limit of a sequence of elements from

Exercise 6.4. Given show ¯ is a closed set and in fact

¯ = { : with closed} (6.2)

That is to say ¯ is the smallest closed set containing

6.1 Continuity

Suppose that ( ) and ( ) are two metric spaces and : is a
function.
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Definition 6.11. A function : is continuous at if for all
0 there is a 0 such that

( ( ) ( 0)) provided that ( 0) (6.3)

The function is said to be continuous if is continuous at all points

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that ( ) and ( )
are two metric spaces and : is a function defined in a neighborhood
of a point Then the following are equivalent:

1. is continuous at
2. For all neighborhoods of ( ) 1( ) is a neighborhood of
3. For all sequences { } =1 such that = lim { ( )} is
convergent in and

lim ( ) =
³
lim

´
Proof. 1 = 2 If is a neighborhood of ( ) there exists 0 such
that ( ) ( ) and because is continuous there exists a 0 such that
Eq. (6.3) holds. Therefore

( ) 1
¡

( ) ( )
¢

1 ( )

showing 1 ( ) is a neighborhood of
2 = 3 Suppose that { } =1 and = lim Then for

any 0 ( ) ( ) is a neighborhood of ( ) and so 1
¡

( ) ( )
¢
is a

neighborhood of which must containing ( ) for some 0 Because
it follows that ( ) 1

¡
( ) ( )

¢
for a.a. and this

implies ( ) ( ) ( ) for a.a. i.e. ( ( ) ( )) for a.a. Since
0 is arbitrary it follows that lim ( ) = ( )
3 = 1 We will show not 1 = not 3 If is not continuous at

there exists an 0 such that for all N there exists a point with
( ) 1 yet ( ( ) ( )) Hence as yet ( )
does not converge to ( )
Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that ( ) and ( )
are two metric spaces and : is a function defined on all of Then
the following are equivalent:

1. is continuous.
2. 1( ) for all i.e. 1( ) is open in if is open in
3. 1( ) is closed in if is closed in
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4. For all convergent sequences { } { ( )} is convergent in and

lim ( ) =
³
lim

´
Proof. Since 1 ( ) =

£
1 ( )

¤
it is easily seen that 2 and 3 are equiv-

alent. So because of Lemma 6.12 it only remains to show 1. and 2. are equiv-
alent. If is continuous and is open, then for every 1 ( )
is a neighborhood of ( ) and so 1 ( ) is a neighborhood of Hence
1 ( ) is a neighborhood of all of its points and from this and Exercise 6.3

it follows that 1 ( ) is open. Conversely if and is a neigh-
borhood of ( ) then there exists such that ( ) Hence

1 ( ) 1 ( ) and by assumption 1 ( ) is open showing 1 ( )
is a neighborhood of Therefore is continuous at and since was
arbitrary, is continuous.

Example 6.14. The function defined in Lemma 6.6 is continuous for each
In particular, if = { } it follows that ( ) is continuous

for each

Exercise 6.5. Use Example 6.14 and Lemma 6.13 to recover the results of
Example 6.8.

The next result shows that there are lots of continuous functions on a
metric space ( )

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let ( ) be a
metric space and suppose that and are two disjoint closed subsets of
Then

( ) =
( )

( ) + ( )
for (6.4)

defines a continuous function, : [0 1] such that ( ) = 1 for
and ( ) = 0 if

Proof. By Lemma 6.6, and are continuous functions on Since and
are closed, ( ) 0 if and ( ) 0 if Since =

( ) + ( ) 0 for all and ( + )
1 is continuous as well. The

remaining assertions about are all easy to verify.
Sometimes Urysohn’s lemma will be use in the following form. Suppose

with being closed and being open, then there exists
( [0 1])) such that = 1 on while = 0 on This of course follows

from Lemma 6.15 by taking = and =

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence { } =1 in a metric
space ( ) is Cauchy provided that
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lim ( ) = 0

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let = Q be the set of rational
numbers and ( ) = | | Choose a sequence { } =1 Q which con-
verges to 2 R then { } =1 is (Q ) — Cauchy but not (Q ) — convergent.
The sequence does converge in R however.

Definition 6.17. A metric space ( ) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let ( ) be a complete metric space. Let be a subset
of viewed as a metric space using | × Show that ( | × ) is complete
i is a closed subset of

Example 6.18. Examples 2. — 4. of complete metric spaces will be verified in
Chapter 7 below.

1. = R and ( ) = | | see Theorem 3.8 above.
2. = R and ( ) = k k2 =

P
=1( )2

3. = ( ) for [1 ] and any weight function : (0 )
4. = ([0 1] R) — the space of continuous functions from [0 1] to R and

( ) := max
[0 1]

| ( ) ( )|

This is a special case of Lemma 7.3 below.
5. Let = ([0 1] R) and

( ) :=

Z 1

0

| ( ) ( )|

You are asked in Exercise 7.14 to verify that ( ) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that ( ) is
a (not necessarily complete) metric space. Using the following outline show
there exists a complete metric space

¡
¯

¢̄
and an isometric map : ¯

such that ( ) is dense in ¯ see Definition 6.10.

1. Let C denote the collection of Cauchy sequences = { } =1 Given
two element C show

C ( ) := lim ( ) exists,

C ( ) 0 for all C and C satisfies the triangle inequality,

C ( ) C ( ) + C ( ) for all C
Thus (C C) would be a metric space if it were true that C( ) = 0 i
= This however is false, for example if = for all 100 then
C( ) = 0 while need not equal
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2. Define two elements C to be equivalent (write ) whenever
C( ) = 0 Show “ ” is an equivalence relation on C and that
C ( 0 0) = C ( ) if 0 and 0 (Hint: see Corollary 6.7.)

3. Given C let ¯ := { C : } denote the equivalence class contain-
ing and let ¯ := {¯ : C} denote the collection of such equivalence
classes. Show that ¯

¡
¯ ¯
¢
:= C ( ) is well defined on ¯ × ¯ and verify¡

¯
¢̄
is a metric space.

4. For let ( ) = ¯ where is the constant sequence, = for all
Verify that : ¯ is an isometric map and that ( ) is dense in ¯

5. Verify
¡
¯

¢̄
is complete. Hint: if {¯( )} =1 is a Cauchy sequence in ¯

choose such that ¯( ( ) ¯( )) 1 Then show ¯( ) ¯

where = { } =1

6.3 Supplementary Remarks

6.3.1 Word of Caution

Example 6.19. Let ( ) be a metric space. It is always true that ( )
( ) since ( ) is a closed set containing ( ) However, it is not always

true that ( ) = ( ) For example let = {1 2} and (1 2) = 1 then
1(1) = {1} 1(1) = {1} while 1(1) = For another counter example,

take
=
©
( ) R2 : = 0 or = 1

ª
with the usually Euclidean metric coming from the plane. Then

(0 0)(1) =
©
(0 ) R2 : | | 1

ª
(0 0)(1) =

©
(0 ) R2 : | | 1

ª
while

(0 0)(1) = (0 0)(1) {(0 1)}
In spite of the above examples, Lemmas 6.20 and 6.21 below shows that

for certain metric spaces of interest it is true that ( ) = ( )

Lemma 6.20. Suppose that ( |·|) is a normed vector space and is the
metric on defined by ( ) = | | Then

( ) = ( ) and

bd( ( )) = { : ( ) = }
where the boundary operation, bd(·) is defined in Definition 10.30 below.
Proof. We must show that := ( ) ( ) =: ¯ For let =
then

| | = | | = ( )

Let = 1 1 so that 1 as Let = + then
( ) = ( ) so that ( ) and ( ) = 1 0 as

This shows that as and hence that ¯
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Fig. 6.1. An almost length minimizing curve joining to

6.3.2 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that is a Riemannian (or sub-Riemannian) mani-
fold and is the metric on defined by

( ) = inf { ( ) : (0) = and (1) = }
where ( ) is the length of the curve We define ( ) = if is not
piecewise smooth.
Then

( ) = ( ) and

bd( ( )) = { : ( ) = }
where the boundary operation, bd(·) is defined in Definition 10.30 below.
Proof. Let := ( ) ( ) =: ¯ We will show that ¯ by showing
¯ Suppose that ¯ and choose 0 such that ( ) ¯ = In
particular this implies that

( ) ( ) =

We will finish the proof by showing that ( ) + and hence
that This will be accomplished by showing: if ( ) + then
( ) ( ) 6=
If ( ) max( ) then either ( ) or ( ) In either case
( ) ( ) 6= Hence we may assume that max( ) ( ) +

Let 0 be a number such that

max( ) ( ) +

and choose a curve from to such that ( ) Also choose 0 0

such that 0 0 which can be done since Let ( ) = ( ( ))
a continuous function on [0 1] and therefore ([0 1]) R is a connected
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set which contains 0 and ( ) Therefore there exists 0 [0 1] such that
( ( 0)) = ( 0) =

0 Let = ( 0) ( ) then

( ) ( |[0 0]) = ( ) ( |[ 0 1]) ( ) = 0

and therefore ( ) ( ) 6=
Remark 6.22. Suppose again that is a Riemannian (or sub-Riemannian)
manifold and

( ) = inf { ( ) : (0) = and (1) = }
Let be a curve from to and let = ( ) ( ) Then for all 0

1
( ( ) ( )) ( |[ ]) +

So if is within of a length minimizing curve from to that |[ ] is
within of a length minimizing curve from ( ) to ( ) In particular if
( ) = ( ) then ( ( ) ( )) = ( |[ ]) for all 0 1 i.e. if
is a length minimizing curve from to that |[ ] is a length minimizing
curve from ( ) to ( )
To prove these assertions notice that

( ) + = ( ) = ( |[0 ]) + ( |[ ]) + ( |[ 1])

( ( )) + ( |[ ]) + ( ( ) )

and therefore

( |[ ]) ( ) + ( ( )) ( ( ) )

( ( ) ( )) +

6.4 Exercises

Exercise 6.9. Let ( ) be a metric space. Suppose that { } =1 is a
sequence and set := ( +1) Show that for that

( )
1X

=

X
=

Conclude from this that ifX
=1

=
X
=1

( +1)

then { } =1 is Cauchy. Moreover, show that if { } =1 is a convergent
sequence and = lim then

( )
X
=
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Exercise 6.10. Show that ( ) is a complete metric space i every sequence
{ } =1 such that

P
=1 ( +1) is a convergent sequence in

You may find it useful to prove the following statements in the course of
the proof.

1. If { } is Cauchy sequence, then there is a subsequence := such
that

P
=1 ( +1 )

2. If { } =1 is Cauchy and there exists a subsequence := of { }
such that = lim exists, then lim also exists and is equal
to

Exercise 6.11. Suppose that : [0 ) [0 ) is a 2 — function such
that (0) = 0 0 0 and 00 0 and ( ) is a metric space. Show that
( ) = ( ( )) is a metric on In particular show that

( ) :=
( )

1 + ( )

is a metric on (Hint: use calculus to verify that ( + ) ( ) + ( ) for
all [0 ) )

Exercise 6.12. Let {( )} =1 be a sequence of metric spaces, :=Q
=1 and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X
=1

2
( ( ) ( ))

1 + ( ( ) ( ))

Show:

1. ( ) is a metric space,
2. a sequence { } =1 converges to i ( ) ( ) as

for each N and
3. is complete if is complete for all

Exercise 6.13. Suppose ( ) and ( ) are metric spaces and is a dense
subset of

1. Show that if : and : are two continuous functions
such that = on then = on Hint: consider the set :=
{ : ( ) = ( )}

2. Suppose : is a function which is uniformly continuous, i.e. for
every 0 there exists a 0 such that

( ( ) ( )) for all with ( )

Show there is a unique continuous function : such that = on
Hint: each point is a limit of a sequence consisting of elements

from
3. Let = R = and = Q find a function : Q R which is
continuous on Q but does not extend to a continuous function on R
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Banach Spaces

Let ( k·k) be a normed vector space and ( ) := k k be the asso-
ciated metric on We say { } =1 converges to (and write
lim = or ) if

0 = lim ( ) = lim k k

Similarly { } =1 is said to be a Cauchy sequence if

0 = lim ( ) = lim k k

Definition 7.1 (Banach space). A normed vector space ( k·k) is a Ba-
nach space if the associated metric space ( ) is complete, i.e. all Cauchy
sequences are convergent.

Remark 7.2. Since k k = ( 0) it follows from Lemma 6.6 that k·k is a
continuous function on and that

|k k k k| k k for all
It is also easily seen that the vector addition and scalar multiplication are
continuos on any normed space as the reader is asked to verify in Exercise
7.7. These facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that is a set then the bounded functions, ( ) on
is a Banach space with the norm

k k = k k = sup | ( )|

Moreover if is a metric space (more generally a topological space, see Chap-
ter 10) the set ( ) ( ) = ( ) is closed subspace of ( ) and
hence is also a Banach space.
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Proof. Let { } =1 ( ) be a Cauchy sequence. Since for any we
have

| ( ) ( )| k k (7.1)

which shows that { ( )} =1 F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, ( ) := lim ( ) exists for all Passing
to the limit in Eq. (7.1) implies

| ( ) ( )| lim inf k k

and taking the supremum over of this inequality implies

k k lim inf k k 0 as

showing in ( )
For the second assertion, suppose that { } =1 ( ) ( ) and

( ) We must show that ( ) i.e. that is continuous.
To this end let then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2 k k + | ( ) ( )|

Thus if 0 we may choose large so that 2 k k 2 and
then for this there exists an open neighborhood of such that
| ( ) ( )| 2 for Thus | ( ) ( )| for showing
the limiting function is continuous.
Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let ( )
be a metric space, be a closed subset of and
( [ ]) (Here we are viewing as a metric space with metric :=

× ) Then there exists ( [ ]) such that | =

Proof. 1. By scaling and translation (i.e. by replacing by ( ) 1 ( )),
it su ces to prove Theorem 7.4 with = 0 and = 1

2. Suppose (0 1] and : [0 ] is continuous function. Let :=
1([0 1

3 ]) and := 1([23 ]) By Lemma 6.15 there exists a function
˜ ( [0 3]) such that ˜ = 0 on and ˜ = 1 on Letting := 3 ˜
we have ( [0 3]) such that = 0 on and = 3 on
Further notice that

0 ( ) ( )
2

3
for all

3. Now suppose : [0 1] is a continuous function as in step 1. Let
1 ( [0 1 3]) be as in step 2, see Figure 7.1. with = 1 and let
1 := 1| ( [0 2 3]) Apply step 2. with = 2 3 and = 1 to
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find 2 ( [0 1
3
2
3 ]) such that 2 := ( 1 + 2) | ( [0

¡
2
3

¢2
])

Continue this way inductively to find ( [0 1
3

¡
2
3

¢ 1
]) such that

X
=1

| =: ( [0

µ
2

3

¶
]) (7.2)

4. Define :=
P

=1 Since

X
=1

k k
X
=1

1

3

µ
2

3

¶ 1

=
1

3

1

1 2
3

= 1

the series defining is uniformly convergent so ( [0 1]) Passing
to the limit in Eq. (7.2) shows = |

Fig. 7.1. Reducing by subtracting o a globally defined function 1¡
[0 1

3
]
¢

Theorem 7.5 (Completeness of ( )). Let be a set and : (0 )
be a given function. Then for any [1 ] ( ( ) k·k ) is a Banach space.
Proof. We have already proved this for = in Lemma 7.3 so we now assume
that [1 ) Let { } =1 ( ) be a Cauchy sequence. Since for any

| ( ) ( )| 1

( )
k k 0 as

it follows that { ( )} =1 is a Cauchy sequence of numbers and ( ) :=
lim ( ) exists for all By Fatou’s Lemma,
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k k =
X

· lim inf | | lim inf
X

· | |

= lim inf k k 0 as

This then shows that = ( ) + ( ) (being the sum of two —

functions) and that

Remark 7.6. Let be a set, be a Banach space and ( ) denote the
bounded functions : equipped with the norm

k k = k k = sup k ( )k

If is a metric space (or a general topological space, see Chapter 10), let
( ) denote those ( ) which are continuous. The same proof

used in Lemma 7.3 shows that ( ) is a Banach space and that ( )
is a closed subspace of ( ) Similarly, if 1 we may define

( ) = : : k k =

ÃX
k ( )k

!1

The same proof as in Theorem 7.5 would then show that
³

( ) k·k
´
is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let and be normed spaces and : be a linear
map. Then is said to be bounded provided there exists such that
k ( )k k k for all We denote the best constant by k k, i.e.

k k = sup
6=0
k ( )k
k k = sup

6=0
{k ( )k : k k = 1}

The number k k is called the operator norm of

Proposition 7.8. Suppose that and are normed spaces and :
is a linear map. The the following are equivalent:

(a) is continuous.
(b) is continuous at 0.
(c) is bounded.

Proof. (a) (b) trivial. (b) (c) If continuous at 0 then there exist 0
such that k ( )k 1 if k k . Therefore for any k ( k k) k 1
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which implies that k ( )k 1k k and hence k k 1 (c) (a) Let
and 0 be given. Then

k k = k ( )k k k k k

provided k k k k :=
For the next three exercises, let = R and = R and :

be a linear transformation so that is given by matrix multiplication by an
× matrix. Let us identify the linear transformation with this matrix.

Exercise 7.1. Assume the norms on and are the 1 — norms, i.e. for
R k k =P =1 | | Then the operator norm of is given by

k k = max
1

X
=1

| |

Exercise 7.2. Suppose that norms on and are the — norms, i.e. for
R k k = max1 | | Then the operator norm of is given by

k k = max
1

X
=1

| |

Exercise 7.3. Assume the norms on and are the 2 — norms, i.e. for
R k k2 = P =1

2 Show k k2 is the largest eigenvalue of the matrix
: R R Hint: Use the spectral theorem for orthogonal matrices.

Notation 7.9 Let ( ) denote the bounded linear operators from to
and ( ) = ( ) If = F we write for ( F) and call the
(continuous) dual space to

Lemma 7.10. Let be normed spaces, then the operator norm k·k on
( ) is a norm. Moreover if is another normed space and :
and : are linear maps, then k k k kk k where :=

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If

( ) then the triangle inequality is verified as follows:

k + k = sup
6=0
k + k

k k sup
6=0
k k+ k k

k k

sup
6=0
k k
k k + sup

6=0
k k
k k = k k+ k k

For the second assertion, we have for that

k k k kk k k kk kk k
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From this inequality and the definition of k k it follows that k k
k kk k
The reader is asked to prove the following continuity lemma in Exercise

7.12.

Lemma 7.11. Let and be normed spaces. Then the maps

( ) ( )×
and

( ) ( )× ( ) ( )

are continuous relative to the norms

k( )k ( )× := k k ( ) + k k and

k( )k ( )× ( ) := k k ( ) + k k ( )

on ( )× and ( )× ( ) respectively.

Proposition 7.12. Suppose that is a normed vector space and is a Ba-
nach space. Then ( ( ) k · k ) is a Banach space. In particular the dual
space is always a Banach space.

Proof. Let { } =1 be a Cauchy sequence in ( ) Then for each

k k k k k k 0 as

showing { } =1 is Cauchy in Using the completeness of there exists
an element such that

lim k k = 0

The map : is linear map, since for 0 and F we have

( + 0) = lim ( + 0) = lim [ + 0] = + 0

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

k k k k+ k k k k+ k k k k
and therefore

k k lim inf (k k+ k k k k)
= k k · lim inf k k

Hence
k k lim inf k k 0 as

Thus we have shown that in ( ) as desired.
The following characterization of a Banach space will sometimes be useful

in the sequel.
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Theorem 7.13. A normed space ( k · k) is a Banach space i for every

sequence { } =1 such that
P
=1
k k implies lim

P
=1

= exists

in (that is to say every absolutely convergent series is a convergent series

in ) As usual we will denote by
P
=1

Proof. This is very similar to Exercise 6.10.

( )If is complete and
P
=1
k k then sequence :=

P
=1

for

N is Cauchy because (for )

k k
X
= +1

k k 0 as

Therefore =
P
=1

:= lim
P
=1

exists in

( =) Suppose that { } =1 is a Cauchy sequence and let { = } =1

be a subsequence of { } =1 such that
P
=1
k +1 k By assumption

+1 1 =
X
=1

( +1 ) =
X
=1

( +1 ) as

This shows that lim exists and is equal to := 1+ Since { } =1

is Cauchy,

k k k k+ k k 0 as

showing that lim exists and is equal to

Example 7.14. Here is another proof of Theorem 7.12 which makes use of
Proposition 7.12. Suppose that ( ) is a sequence of operators such

that
P
=1
k k Then

X
=1

k k
X
=1

k k k k

and therefore by the completeness of :=
P
=1

= lim exists

in where :=
P
=1

The reader should check that : so defined

is linear. Since,
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k k = lim k k lim
X
=1

k k
X
=1

k k k k

is bounded and

k k
X
=1

k k (7.3)

Similarly,

k k = lim k k

lim
X
= +1

k k k k =
X
= +1

k k k k

and therefore,

k k
X
=

k k 0 as

7.3 General Sums in Banach Spaces

Definition 7.15. Suppose is a normed space.

1. Suppose that { } =1 is a sequence in then we say
P

=1 converges
in and

P
=1 = if

lim
X
=1

= in

2. Suppose that { : } is a given collection of vectors in We say
the sum

P
converges in and write =

P
if for all

0 there exists a finite set such that
°° P °° for

any such that

Warning: As usual if
P k k then

P
exists in see

Exercise 7.16. However, unlike the case of real valued sums the existence ofP
does not imply

P k k See Proposition 29.19 below, from
which one may manufacture counter-examples to this false premise.

Lemma 7.16. Suppose that { : } is a given collection of vectors
in a normed space,

1. If =
P

exists and : is a bounded linear map
between normed spaces, then

P
exists in and

=
X

=
X
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2. If =
P

exists in then for every 0 there exists
such that

°°P °° for all \
3. If =

P
exists in the set := { : 6= 0} is at most

countable. Moreover if is infinite and { } =1 is an enumeration of
then

=
X
=1

:= lim
X
=1

(7.4)

4. If we further assume that is a Banach space and suppose for all 0
there exists such that

°°P °° whenever \
then

P
exists in

Proof.

1. Let be as in Definition 7.15 and such that Then°°°°° X °°°°° k k
°°°°° X °°°°° k k

which shows that
P

exists and is equal to
2. Suppose that =

P
exists and 0 Let be as in

Definition 7.15. Then for \°°°°°X
°°°°° =

°°°°° X X °°°°°°°°°° X °°°°°+
°°°°°X

°°°°° 2

3. If =
P

exists in for each N there exists a finite subset
such that

°°P °° 1 for all \ Without loss of
generality we may assume 6= 0 for all Let := =1 — a
countable subset of Then for any we have { } = and
therefore

k k =
°°°°°°
X
{ }

°°°°°° 1
0 as

Let { } =1 be an enumeration of and define := { : 1 }
Since for any N will eventually contain for su ciently
large, we have

lim sup

°°°°° X
=1

°°°°° 1
0 as

Therefore Eq. (7.4) holds.
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4. For N let such that
°°P °° 1 for all \

Define := =1 and :=
P

Then for

k k =
°°°°°°

X
\

°°°°°° 1 0 as

Therefore { } =1 is Cauchy and hence convergent in because is a
Banach space. Let := lim Then for such that
we have°°°°° X °°°°° k k+

°°°°°°
X
\

°°°°°° k k+ 1

Since the right side of this equation goes to zero as it follows thatP
exists and is equal to

Exercise 7.4. Prove Theorem 8.4. BRUCE: Delete

7.4 Inverting Elements in L(X)

Definition 7.17. A linear map : is an isometry if k k = k k
for all is said to be invertible if is a bijection and 1 is bounded.

Notation 7.18 We will write ( ) for those ( ) which are
invertible. If = we simply write ( ) and ( ) for ( ) and
( ) respectively.

Proposition 7.19. Suppose is a Banach space and ( ) := ( )

satisfies
P
=0
k k Then is invertible and

( ) 1 = “
1

” =
X
=0

and
°°( ) 1

°° X
=0

k k

In particular if k k 1 then the above formula holds and°°( ) 1
°° 1

1 k k

Proof. Since ( ) is a Banach space and
P
=0
k k it follows from

Theorem 7.13 that
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:= lim := lim
X
=0

exists in ( ) Moreover, by Lemma 7.11,

( ) = ( ) lim = lim ( )

= lim ( )
X
=0

= lim ( +1) =

and similarly ( ) = This shows that ( ) 1 exists and is equal to
Moreover, ( ) 1 is bounded because

°°( ) 1
°° = k k

X
=0

k k

If we further assume k k 1 then k k k k and

X
=0

k k
X
=0

k k =
1

1 k k

Corollary 7.20. Let and be Banach spaces. Then ( ) is an open
(possibly empty) subset of ( ) More specifically, if ( ) and

( ) satisfies
k k k 1k 1 (7.5)

then ( )

1 =
X
=0

£
1
¤

1 ( ) (7.6)

°° 1
°° k 1k 1

1 k 1k k k (7.7)

and °° 1 1
°° k 1k2 k k

1 k 1k k k (7.8)

In particular the map

( ) 1 ( ) (7.9)

is continuous.
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Proof. Let and be as above, then

= ( ) =
£

1( ))
¤
= ( )

where : is given by

:= 1( ) = 1

Now

k k = °° 1( ))
°° k 1k k k k 1kk 1k 1 = 1

Therefore is invertible and hence so is (being the product of invertible
elements) with

1 = ( ) 1 1 =
£

1( ))
¤ 1 1

Taking norms of the previous equation gives°° 1
°° °°( ) 1

°° k 1k k 1k 1

1 k k
k 1k

1 k 1k k k
which is the bound in Eq. (7.7). The bound in Eq. (7.8) holds because°° 1 1

°° = °° 1 ( ) 1
°° °° 1

°°°° 1
°° k k

k 1k2 k k
1 k 1k k k

For an application of these results to linear ordinary di erential equations,
see Section 8.3.

7.5 Hahn Banach Theorem

Our next goal is to show that continuous dual of a Banach space is
always large. This will be the content of the Hahn — Banach Theorem 7.24
below.

Proposition 7.21. Let be a complex vector space over C and let R denote
thought of as a real vector space. If and = Re R then

( ) = ( ) ( ) (7.10)

Conversely if R and is defined by Eq. (7.10), then and
k k

R
= k k . More generally if is a semi-norm on then

| | i
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Proof. Let ( ) = Im ( ), then

( ) = Im ( ) = Im( ( )) = Re ( ) = ( )

Therefore

( ) = ( ) + ( ) = ( ) + ( ) = ( ) ( )

Conversely for R let ( ) = ( ) ( ) Then

(( + ) ) = ( + ) ( )

= ( ) + ( ) ( ( ) ( ))

while
( + ) ( ) = ( ) + ( ) + ( ( ) ( ))

So is complex linear.
Because | ( )| = |Re ( )| | ( )|, it follows that k k k k For

choose 1 C such that | ( )| = ( ) so

| ( )| = ( ) = ( ) k k k k = k kk k
Since is arbitrary, this shows that k k k k so k k = k k.1
For the last assertion, it is clear that | | implies that | | | |

Conversely if and choose 1 C such that | ( )| = ( )
Then

| ( )| = ( ) = ( ) = ( ) ( ) = ( )

holds for all

Definition 7.22 (Minkowski functional). A function : R is a
Minkowski functional if

1

Proof. To understand better why k k = k k notice that

k k2 = sup
k k=1

| ( )|2 = sup
k k=1

(| ( )|2 + | ( )|2)

Supppose that = sup
k k=1

| ( )| and this supremum is attained at 0 with

k 0k = 1 Replacing 0 by 0 if necessary, we may assume that ( 0) =
Since has a maximum at 0

0 =

¯̄̄̄
0

µ
0 + 0

k 0 + 0k
¶

=

¯̄̄̄
0

½
1

|1 + | ( ( 0) + ( 0))

¾
= ( 0)

since |0|1 + | = |0 1 + 2 = 0 This explains why k k = k k.
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1. ( + ) ( ) + ( ) for all and
2. ( ) = ( ) for all 0 and

Example 7.23. Suppose that = R and

( ) = inf { 0 : [ 1 2] = [ 2 ]}
Notice that if 0 then ( ) = 2 and if 0 then ( ) = i.e.

( ) =

½
2 if 0

| | if 0

From this formula it is clear that ( ) = ( ) for all 0 but not for 0
Moreover, satisfies the triangle inequality, indeed if ( ) = and ( ) =
then [ 1 2] and [ 1 2] so that

+ [ 1 2] + [ 1 2] ( + ) [ 1 2]

which shows that ( + ) + = ( )+ ( ) To check the last set inclusion
let [ 1 2] then

+ = ( + )

µ
+

+
+

¶
( + ) [ 1 2]

since [ 1 2] is a convex set and + + + = 1

BRUCE: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example.

Theorem 7.24 (Hahn-Banach). Let be a real vector space, be a
subspace : R be a linear functional such that on . Then there
exists a linear functional : R such that | = and .

Proof. Step (1) We show for all \ there exists and extension to
R with the desired properties. If exists and = ( ) then for all
and R we must have ( ) + = ( + ) ( + ) i.e.
( + ) ( ) Equivalently put we must find R such that

( + ) ( )
for all and 0

( ) ( )
for all and 0

So if R is going to exist, we have to prove, for all and
0 that

( ) ( ) ( + ) ( )

or equivalently
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( + ) ( + ) + ( ) (7.11)

= ( + ) + ( )

But by assumption and the triangle inequality for

( + ) ( + ) = ( + + )

( + ) + ( )

which shows that Eq. (7.11) is true and by working backwards, there exist an
R such that ( ) + ( + ) Therefore ( + ) := ( ) + is

the desired extension.
Step (2) Let us now write : R to mean is defined on a linear

subspace ( ) and : ( ) R is linear. For : R we will
say if ( ) ( ) and = | ( ) that is is an extension of
Let

F = { : R : and on ( )}
Then (F ) is a partially ordered set. If F is a chain (i.e. a linearly
ordered subset of F) then has an upper bound F defined by ( ) =S

( ) and ( ) = ( ) for ( ) Then it is easily checked that

( ) is a linear subspace, F and for all We may now
apply Zorn’s Lemma2 (see Theorem B.7) to conclude there exists a maximal
element F Necessarily, ( ) = for otherwise we could extend by
step (1), violating the maximality of Thus is the desired extension of

Corollary 7.25. Suppose that is a complex vector space, : [0 ) is
a semi-norm, is a linear subspace, and : C is linear functional
such that | ( )| ( ) for all Then there exists 0 ( 0 is the
algebraic dual of ) such that | = and | |
Proof. Let = Re then on and hence by Theorem 7.24, there exists

0
R such that | = and on . Define ( ) = ( ) ( )

then as in Proposition 7.21, = on and | |
Theorem 7.26. Let be a normed space be a closed subspace and

\ . Then there exists such that k k = 1 ( ) = = ( )
and = 0 on .

2 The use of Zorn’s lemma in this step may be avoided in the case that ( ) is a
norm and may be written as span( ) where := { } =1 is a countable
subset of In this case, by step (1) and induction, : Rmay be extended to
a linear functional : span( ) R with ( ) ( ) for span( )
This function then extends by continuity to and gives the desired extension
of
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Proof. Define : C Cby ( + ) for all and C
Then

k k := sup
and 6=0

| |
k + k = sup

and 6=0 k + k = = 1

and by the Hahn — Banach theorem there exists such that | C =
and k k 1 Since 1 = k k k k 1 it follows that k k = 1
Corollary 7.27. The linear map ˆ where ˆ( ) = ( ) for
all is an isometry.

Proof. Since |ˆ( )| = | ( )| k k k k for all it follows that
kˆk k k Now applying Theorem 7.26 with = {0} there exists

such that k k = 1 and |ˆ( )| = ( ) = k k which shows that
kˆk k k This shows that ˆ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 7.28. A Banach space is reflexive if the map ˆ
is surjective. (BRUCE: this is defined again in Definition 33.44 below.)

Exercise 7.5. Show all finite dimensional Banach spaces are reflexive.

Definition 7.29. For and let

0 := { : | = 0} and
:= { : ( ) = 0 for all }

Lemma 7.30. Let and then

1. 0 and are always closed subspace of and respectively.
2.
¡

0
¢
= ¯

Proof. The first item is an easy consequence of the assumed continuity o all
linear functionals involved.
If then ( ) = 0 for all 0 so that

¡
0
¢

Therefore
¯

¡
0
¢

If ¯ then there exists such that | = 0 while

( ) 6= 0 i.e. 0 yet ( ) 6= 0 This shows
¡

0
¢

and we have

shown
¡

0
¢

¯

Proposition 7.31. Suppose is a Banach space, then = [( )
³
ˆ
´0

where ³
ˆ
´0
= { : (ˆ) = 0 for all }

In particular is reflexive i is reflexive.
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Proof. Let and define by ( ) := (ˆ) for all and
set 0 := ˆ For (so ˆ ) we have

0(ˆ) = (ˆ) ˆ (ˆ) = ( ) ˆ( ) = ( ) ( ) = 0

This shows 0 ˆ0 and we have shown = c + ˆ0 If c ˆ0

then = ˆ for some and 0 = (̂ˆ) = ˆ( ) = ( ) for all i.e.
= 0 so = 0 Therefore = c ˆ0 as claimed.
If is reflexive, then ˆ = and so ˆ0 = {0} showing ( ) =

= [( ) i.e. is reflexive. Conversely if is reflexive we conclude

that
³
ˆ
´0
= {0} and therefore

= {0} =
³
ˆ0
´

= ˆ

which shows ˆ is reflexive. Here we have used³
ˆ0
´

= ˆ = ˆ

since ˆ is a closed subspace of
For the remainder of this section let be an infinite set, : (0 )

be a given function and [1 ] such that = ( 1) it will also be
convenient to define : R for by

( ) =

½
1 if =
0 if 6=

Notation 7.32 Let 0 ( ) denote those functions ( ) which “vanish
at ” i.e. for every 0 there exists a finite subset such that
| ( )| whenever Also let ( ) denote those functions : F
with finite support, i.e.

( ) := { ( ) : # ({ : ( ) 6= 0}) }
Exercise 7.6. Show ( ) is a dense subspace of the Banach spaces³

( ) k·k
´
for 1 while the closure of ( ) inside the Ba-

nach space, ( ( ) k·k ) is 0 ( ) Note from this it follows that 0 ( ) is
a closed subspace of ( )

Theorem 7.33. Let be an infinite set, : (0 ) be a function,
[1 ] := ( 1) be the conjugate exponent and for ( ) define
: ( ) F by

( ) :=
X

( ) ( ) ( )

Then
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1. ( ) is well defined and ( )
2. The map

( ) ( ) (7.12)

is a isometric linear map of Banach spaces.
3. If [1 ) then the map in Eq. (7.12) is also surjective and hence,

( ) is isometrically isomorphic to ( ) When = the map

1 ( ) 0

is an isometric and surjective, i.e. 1 ( ) is isometrically isomorphic to

0

4. ( ) is reflexive for (1 )
5. The map : 1 ( ) ( ) is not surjective.
6. 1 ( ) and ( ) are not reflexive.

Proof.

1. By Holder’s inequality,X
| ( )| | ( )| ( ) k k k k

which shows that is well defined. The : ( ) F is linear by the
linearity of sums and since

| ( )| =
¯̄̄̄
¯X ( ) ( ) ( )

¯̄̄̄
¯ X

| ( )| | ( )| ( ) k k k k

we learn that
k k ( ) k k (7.13)

Therefore ( )
2. The map in Eq. (7.12) is linear in by the linearity properties of infinite
sums.
For (1 ) define ( ) = sgn( ( )) | ( )| 1 where

sgn( ) :=

½
| | if 6= 0
0 if = 0

Then

k k =
X

| ( )|( 1) ( ) =
X

| ( )|( 1 1) ( )

=
X

| ( )| ( ) = k k

and
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( ) =
X

( ) sgn( ( )) | ( )| 1
( ) =

X
| ( )| | ( )| 1

( )

= k k ( 1+ 1 ) = k k k k = k k k k
Hence k k ( ) k k which combined with Eq. (7.13) shows
k k ( ) = k k
For = let ( ) = sgn( ( )) then k k = 1 and

| ( )| =
X

( ) sgn( ( )) ( )

=
X

| ( )| ( ) = k k1 k k

which shows k k ( ) k k 1( ) Combining this with Eq. (7.13) shows
k k ( ) = k k 1( )

For = 1
| ( )| = ( ) | ( )| = | ( )| k k1

and therefore k k 1( ) | ( )| for all Hence k k 1( ) k k
which combined with Eq. (7.13) shows k k 1( ) = k k

3. Suppose that [1 ) and ( ) or = and 0 We wish
to find ( ) such that = If such an exists, then ( ) =
( ) ( ) and so we must define ( ) := ( ) ( ) As a preliminary

estimate,

| ( )| = | ( )|
( )

k k ( ) k k ( )

( )

=
k k ( ) [ ( )]

1

( )
= k k ( ) [ ( )]

1

When = 1 and = this implies k k k k 1( ) If (1 ]
and then

k k ( ) :=
X

| ( )| ( ) =
X

( ) sgn( ( )) | ( )| 1
( )

=
X ( )

( )
sgn( ( )) | ( )| 1

( )

=
X

( ) sgn( ( )) | ( )| 1

=

ÃX
sgn( ( )) | ( )| 1

!

k k ( )

°°°°°X sgn( ( )) | ( )| 1

°°°°°
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Since°°°°°X sgn( ( )) | ( )| 1

°°°°° =

ÃX
| ( )|( 1)

( )

!1

=

ÃX
| ( )| ( )

!1
= k k ( )

which is also valid for = provided k k11( ) := 1 Combining the last
two displayed equations shows

k k ( ) k k ( ) k k ( )

and solving this inequality for k k ( ) (using = 1) implies
k k ( ) k k ( ) Taking the supremum of this inequality on
shows k k ( ) k k ( ) i.e. ( ) Since = agree on ( )

and ( ) is a dense subspace of ( ) for and ( ) is dense
subspace of 0 when = it follows that =

4. This basically follows from two applications of item 3. More precisely if
( ) let ˜ ( ) be defined by ˜ ( ) = ( ) for ( )

Then by item 3., there exists ( ) such that, for all ( )

( ) = ˜ ( ) = ( ) = ( ) = ˆ( )

Since ( ) = { : ( )} this implies that = ˆ and so ( ) is
reflexive.

5. Let 1 ( ) denote the constant function 1 on Notice that
k1 k 1 for all 0 and therefore there exists ( )
such that (1) = 0 while | 0 0 Now if = for some 1 ( )
then ( ) ( ) = ( ) = 0 for all and would have to be zero. This
is absurd.

6. As we have seen 1 ( ) = ( ) while ( ) = 0 6= 1 ( ) Let
( ) be the linear functional as described above. We view this as

an element of 1 ( ) by using

˜ ( ) := ( ) for all ( )

Suppose that ˜ = ˆ for some 1 ( ) then

( ) = ˜ ( ) = ˆ( ) = ( ) = ( )

But was constructed in such a way that 6= for any 1 ( )
It now follows from Proposition 7.31 that 1 ( ) = ( ) is also not
reflexive.
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7.6 Exercises

Exercise 7.7. Let ( k·k) be a normed space over F (R or C) Show the map
( ) F× × +

is continuous relative to the norm on F× × defined by

k( )kF× × := | |+ k k+ k k
(See Exercise 10.21 for more on the metric associated to this norm.) Also show
that k·k : [0 ) is continuous.

Exercise 7.8. Let = N and for [1 ) let k·k denote the (N) —
norm. Show k·k and k·k are inequivalent norms for 6= by showing

sup
6=0

k k
k k = if

Exercise 7.9. Suppose that ( k·k) is a normed space and is a linear
subspace.

1. Show the closure ¯ of is also a linear subspace.
2. Now suppose that is a Banach space. Show that with the inherited
norm from is a Banach space i is closed.

Exercise 7.10. Folland Problem 5.9. Showing ([0 1]) is a Banach space.

Exercise 7.11. (Do not use.) Folland Problem 5.11. Showing Holder spaces
are Banach spaces.

Exercise 7.12. Suppose that and are Banach spaces and : ×
is a bilinear form, i.e. we are assuming ( ) is linear for

each and ( ) is linear for each Show is
continuous relative to the product norm, k( )k × := k k + k k on
× i there is a constant such that

k ( )k k k · k k for all ( ) × (7.14)

Then apply this result to prove Lemma 7.11.

Exercise 7.13. Let : (R)× (R) [0 ) be defined by

( ) =
X
=1

2
k k

1 + k k

where k k := sup{| ( )| : | | } = max{| ( )| : | | }
1. Show that is a metric on (R)
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2. Show that a sequence { } =1 (R) converges to (R) as
i converges to uniformly on bounded subsets of R

3. Show that ( (R) ) is a complete metric space.

Exercise 7.14. Let = ([0 1] R) and for let

k k1 :=
Z 1

0

| ( )|

Show that ( k·k1) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of { } =1

which is “trying” to converge to the function = 1[ 12 1]

Exercise 7.15. Let ( k·k1) be the normed space in Exercise 7.14. Compute
the closure of when

1. = { : (1 2) = 0}
2. =

n
: sup [0 1] ( ) 5

o
3. =

n
:
R 1 2

0
( ) = 0

o
Exercise 7.16. Suppose { : } is a given collection of vectors in
a Banach space Show

P
exists in and°°°°°X
°°°°° X

k k

if
P k k That is to say “absolute convergence” implies con-

vergence in a Banach space.

Exercise 7.17 (Dominated Convergence Theorem Again). Let be a
Banach space, be a set and suppose : is a sequence of functions.
Further assume there exists a summable function : [0 ) such that
k ( )k ( ) for all Show

P
( ) exists in and

lim
X

( ) =
X

( )

where ( ) := lim ( )

7.6.1 Hahn — Banach Theorem Problems

Exercise 7.18. Folland 5.20, p. 160.

Exercise 7.19. Folland 5.21, p. 160.
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Exercise 7.20. Let be a Banach space such that is separable. Show
is separable as well. (The converse is not true as can be seen by taking
= 1 (N) ) Hint: use the greedy algorithm, i.e. suppose \ {0} is a

countable dense subset of for choose such that k k = 1
and | ( )| 1

2k k
Exercise 7.21. Folland 5.26.
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.
In Definition 11.1 below, we will give a general notion of a compact subset of a
“topological” space. However, by Corollary 11.9 below, when we are working
with subsets of R this definition is equivalent to the following definition.

Definition 8.1. A subset R is said to be compact if is closed and
bounded.

Theorem 8.2. Suppose that R is a compact set and ( )
Then

1. Every sequence { } =1 has a convergent subsequence.
2. The function is uniformly continuous on namely for every 0
there exists a 0 only depending on such that k ( ) ( )k
whenever and | | where |·| is the standard Euclidean
norm on R

Proof.

1. (This is a special case of Theorem 11.7 and Corollary 11.9 below.) Since
is bounded, [ ] for some su ciently large Let be the first
component of so that [ ] for all Let 1 = [0 ] if 1

for infinitely many otherwise let 1 = [ 0] Similarly split 1 in half
and let 2 1 be one of the halves such that 2 for infinitely many
Continue this way inductively to find a nested sequence of intervals

1 2 3 4 such that the length of is 2 ( 1) and for
each for infinitely many We may now choose a subsequence,
{ } =1 of { } =1 such that := for all The sequence
{ } =1 is Cauchy and hence convergent. Thus by replacing { } =1 by a
subsequence if necessary we may assume the first component of { } =1 is
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convergent. Repeating this argument for the second, then the third and all
the way through the th — components of { } =1 we may, by passing to
further subsequences, assume all of the components of are convergent.
But this implies lim = exists and since is closed,

2. (This is a special case of Exercise 11.5 below.) If were not uniformly
continuous on there would exists an 0 and sequences { } =1 and
{ } =1 in such that

k ( ) ( )k while lim | | = 0

By passing to subsequences if necessary we may assume that lim
and lim exists. Since lim | | = 0 we must have

lim = = lim

for some Since is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

lim k ( ) ( )k = k ( ) ( )k = 0

which is a contradiction.

For the remainder of the chapter, let [ ] be a fixed compact interval and
be a Banach space. The collection S = S([ ] ) of step functions,
: [ ] consists of those functions which may be written in the form

( ) = 01[ 1]( ) +
1X

=1

1( +1]( ) (8.1)

where := { = 0 1 · · · = } is a partition of [ ] and
For as in Eq. (8.1), let

( ) :=
1X

=0

( +1 ) (8.2)

Exercise 8.1. Show that ( ) is well defined, independent of how is repre-
sented as a step function. (Hint: show that adding a point to a partition of
[ ] does not change the right side of Eq. (8.2).) Also verify that : S
is a linear operator.

Notation 8.3 Let S̄ denote the closure of S inside the Banach space,
([ ] ) as defined in Remark 7.6.

The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.
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Theorem 8.4 (B. L. T. Theorem). Suppose that is a normed space,
is a Banach space, and S is a dense linear subspace of If : S
is a bounded linear transformation (i.e. there exists such that k k
k k for all S) then has a unique extension to an element ¯ ( )

and this extension still satisfies°° ¯ °° k k for all S̄
Exercise 8.2. Prove Theorem 8.4.

Proposition 8.5 (Riemann Integral). The linear function : S
extends uniquely to a continuous linear operator ¯ from S̄ to and this
operator satisfies,

k (̄ )k ( ) k k for all S̄ (8.3)

Furthermore, ([ ] ) S̄ ([ ] ) and for (̄ ) may be com-
puted as

(̄ ) = lim
| | 0

1X
=0

( )( +1 ) (8.4)

where := { = 0 1 · · · = } denotes a partition of [ ]
| | = max {| +1 | : = 0 1} is the mesh size of and may be
chosen arbitrarily inside [ +1] See Figure 8.1.

Fig. 8.1. The usual picture associated to the Riemann integral.

Proof. Taking the norm of Eq. (8.2) and using the triangle inequality shows,

k ( )k
1X

=0

( +1 )k k
1X

=0

( +1 )k k ( )k k (8.5)
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The existence of ¯ satisfying Eq. (8.3) is a consequence of Theorem 8.4.
Given ([ ] ) := { = 0 1 · · · = } a partition of

[ ] and [ +1] for = 0 1 2 1 let S be defined by

( ) := ( 0)01[ 0 1]( ) +
1X

=1

( )1( +1]( )

Then by the uniform continuity of on [ ] (Theorem 8.2), lim| | 0 k
k = 0 and therefore S̄ Moreover,

( ) = lim
| | 0

( ) = lim
| | 0

1X
=0

( )( +1 )

which proves Eq. (8.4).
If S and S̄ such that lim k k = 0 then for

then 1( ] S and lim °°1( ] 1( ]

°° = 0 This shows
1( ] S̄ whenever S̄
Notation 8.6 For S̄ and we will write denote (̄1( ] )

by
R

( ) or
R
( ]

( ) Also following the usual convention, if
we will let Z

( ) = (̄1( ] ) =

Z
( )

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 8.7. For S̄([ ] ) and [ ], the Riemann integral
satisfies:

1.
°°°R ( )

°°° ( ) sup {k ( )k : }
2.
R

( ) =
R

( ) +
R

( )

3. The function ( ) :=
R

( ) is continuous on [ ]
4. If is another Banach space and ( ) then S̄([ ] )
and ÃZ

( )

!
=

Z
( )

5. The function k ( )k is in S̄([ ] R) and°°°°°
Z

( )

°°°°°
Z

k ( )k
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6. If S̄([ ] R) and thenZ
( )

Z
( )

Exercise 8.3. Prove Lemma 8.7.

8.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of di erential calcu-
lus, more details and the next few results below will be done in greater detail
in Chapter 16.

Definition 8.8. Let ( ) R A function : ( ) is di erentiable at
( ) i

:= lim
0
[ ( + ) ( )] 1 = lim

0
“
( + ) ( )

”

exists in The limit if it exists, will be denoted by ˙( ) or ( ) We also
say that 1(( ) ) if is di erentiable at all points ( ) and
˙ (( ) )

As for the case of real valued functions, the derivative operator is easily
seen to be linear. The next two results have proves very similar to their real
valued function analogues.

Lemma 8.9 (Product Rules). Suppose that ( ) ( ) ( )
( ) and ( ) are di erentiable at = 0 then

1. | 0 [ ( ) ( )] exists and

| 0 [ ( ) ( )] =
h
˙ ( 0) ( 0) + ( 0) ˙ ( 0)

i
and

2. | 0 [ ( ) ( )] ( ) exists and

| 0 [ ( ) ( )] =
h
˙ ( 0) ( 0) + ( 0) ˙ ( 0)

i
3. If ( 0) is invertible, then ( ) 1 is di erentiable at = 0 and

| 0 ( )
1
= ( 0)

1 ˙ ( 0) ( 0)
1 (8.6)
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Proof. The reader is asked to supply the proof of the first two items in Exercise
8.10. Before proving item 3., let us assume that ( )

1 is di erentiable, then
using the product rule we would learn

0 = | 0 = | 0
h
( )

1
( )
i
=

·
| 0 ( )

1

¸
( 0) + ( 0)

1 ˙ ( 0)

Solving this equation for | 0 ( )
1 gives the formula in Eq. (8.6). The

problem with this argument is that we have not yet shown ( )
1 is

invertible at 0 Here is the formal proof.
Since ( ) is di erentiable at 0 ( ) ( 0) as 0 and by Corollary

7.20, ( 0 + ) is invertible for near 0 and

( 0 + ) 1 ( 0)
1 as 0

Therefore, using Lemma 7.11, we may let 0 in the identity,

( 0 + )
1

( 0)
1

= ( 0 + ) 1

µ
( 0) ( 0 + )

¶
( 0)

1

to learn

lim
0

( 0 + )
1

( 0)
1

= ( 0)
1 ˙ ( 0) ( 0)

1

Proposition 8.10 (Chain Rule). Suppose ( ) is di erentiable
at = 0 and ( ) R is di erentiable at = 0 and ( 0) = 0 then

( ( )) is di erentiable at 0 and

| 0 ( ( )) = 0 ( ( 0))
0 ( 0)

The proof of the chain rule is essentially the same as the real valued func-
tion case, see Exercise 8.11.

Proposition 8.11. Suppose that : [ ] is a continuous function such
that ˙( ) exists and is equal to zero for ( ) Then is constant.

Proof. Let 0 and ( ) be given. (We will later let 0 ) By the
definition of the derivative, for all ( ) there exists 0 such that

k ( ) ( )k =
°°° ( ) ( ) ˙( )( )

°°° | | if | |
(8.7)

Let
= { [ ] : k ( ) ( )k ( )} (8.8)
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and 0 be the least upper bound for We will now use a standard argument
which is referred to as continuous induction to show 0 =
Eq. (8.7) with = shows 0 and a simple continuity argument shows

0 i.e.
k ( 0) ( )k ( 0 ) (8.9)

For the sake of contradiction, suppose that 0 By Eqs. (8.7) and (8.9),

k ( ) ( )k k ( ) ( 0)k+ k ( 0) ( )k
( 0 ) + ( 0) = ( )

for 0 0 0 which violates the definition of 0 being an upper bound.
Thus we have shown and hence

k ( ) ( )k ( )

Since 0 was arbitrary we may let 0 in the last equation to conclude
( ) = ( ) Since ( ) was arbitrary it follows that ( ) = ( ) for all
( ] and then by continuity for all [ ] i.e. is constant.

Remark 8.12. The usual real variable proof of Proposition 8.11 makes use
Rolle’s theorem which in turn uses the extreme value theorem. This latter
theorem is not available to vector valued functions. However with the aid
of the Hahn Banach Theorem 7.24 and Lemma 8.7, it is possible to reduce
the proof of Proposition 8.11 and the proof of the Fundamental Theorem of
Calculus 8.13 to the real valued case, see Exercise 8.24.

Theorem 8.13 (Fundamental Theorem of Calculus). Suppose that
([ ] ) Then

1.
R

( ) = ( ) for all ( )
2. Now assume that ([ ] ) is continuously di erentiable on
( ) (i.e. ˙ ( ) exists and is continuous for ( )) and ˙ extends to
a continuous function on [ ] which is still denoted by ˙ ThenZ

˙ ( ) = ( ) ( )

Proof. Let 0 be a small number and consider°°°°°
Z +

( )

Z
( ) ( )

°°°°° =
°°°°°
Z +

( ( ) ( ))

°°°°°Z +

k( ( ) ( ))k ( )

where ( ) := max [ + ] k( ( ) ( ))k Combining this with a similar
computation when 0 shows, for all R su ciently small, that
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k
Z +

( )

Z
( ) ( ) k | | ( )

where now ( ) := max [ | | +| |] k( ( ) ( ))k By continuity of at

( ) 0 and hence
R

( ) exists and is equal to ( )

For the second item, set ( ) :=
R

˙ ( ) ( ) Then is continuous
by Lemma 8.7 and ˙ ( ) = 0 for all ( ) by item 1. An application of
Proposition 8.11 shows is a constant and in particular ( ) = ( ) i.e.R

˙ ( ) ( ) = ( )

Corollary 8.14 (Mean Value Inequality). Suppose that : [ ] is
a continuous function such that ˙( ) exists for ( ) and ˙ extends to a
continuous function on [ ] Then

k ( ) ( )k
Z

k ˙( )k ( ) ·
°°° ˙°°° (8.10)

Proof. By the fundamental theorem of calculus, ( ) ( ) =
R

˙( ) and
then by Lemma 8.7,

k ( ) ( )k =
°°°°°
Z

˙( )

°°°°°
Z

k ˙( )k
Z °°° ˙°°° = ( ) ·

°°° ˙°°°
Corollary 8.15 (Change of Variable Formula). Suppose that
([ ] ) and : [ ] ( ) is a continuous function such that ( )

is continuously di erentiable for ( ) and 0 ( ) extends to a continuous
function on [ ] ThenZ

( ( )) 0 ( ) =

Z ( )

( )

( )

Proof. For ( ) define ( ) :=
R
( )

( ) Then 1 (( ) )

and by the fundamental theorem of calculus and the chain rule,

( ( )) = 0 ( ( )) 0 ( ) = ( ( )) 0 ( )

Integrating this equation on [ ] and using the chain rule again givesZ
( ( )) 0 ( ) = ( ( )) ( ( )) =

Z ( )

( )

( )
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8.2 Integral Operators as Examples of Bounded
Operators

In the examples to follow all integrals are the standard Riemann integrals and
we will make use of the following notation.

Notation 8.16 Given an open set R let ( ) denote the collection
of real valued continuous functions on such that

supp( ) := { : ( ) 6= 0}
is a compact subset of

Example 8.17. Suppose that : [0 1] × [0 1] C is a continuous function.
For ([0 1]) let

( ) =

Z 1

0

( ) ( )

Since

| ( ) ( )|
Z 1

0

| ( ) ( )| | ( )|
k k max | ( ) ( )| (8.11)

and the latter expression tends to 0 as by uniform continuity of
Therefore ([0 1]) and by the linearity of the Riemann integral, :
([0 1]) ([0 1]) is a linear map. Moreover,

| ( )|
Z 1

0

| ( )| | ( )|
Z 1

0

| ( )| · k k k k

where

:= sup
[0 1]

Z 1

0

| ( )| (8.12)

This shows k k and therefore is bounded. We may in fact
show k k = To do this let 0 [0 1] be such that

sup
[0 1]

Z 1

0

| ( )| =

Z 1

0

| ( 0 )|

Such an 0 can be found since, using a similar argument to that in Eq. (8.11),R 1
0
| ( )| is continuous. Given 0 let

( ) :=
( 0 )q

+ | ( 0 )|2
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and notice that lim 0 k k = 1 and

k k | ( 0)| = ( 0) =

Z 1

0

| ( 0 )|2q
+ | ( 0 )|2

Therefore,

k k lim
0

1

k k
Z 1

0

| ( 0 )|2q
+ | ( 0 )|2

= lim
0

Z 1

0

| ( 0 )|2q
+ | ( 0 )|2

=

since

0 | ( 0 )| | ( 0 )|2q
+ | ( 0 )|2

=
| ( 0 )|q
+ | ( 0 )|2

·q
+ | ( 0 )|2 | ( 0 )|

¸
q

+ | ( 0 )|2 | ( 0 )|

and the latter expression tends to zero uniformly in as 0
We may also consider other norms on ([0 1]) Let (for now) 1 ([0 1])

denote ([0 1]) with the norm

k k1 =
Z 1

0

| ( )|

then : 1 ([0 1] ) ([0 1]) is bounded as well. Indeed, let =
sup {| ( )| : [0 1]} then

|( )( )|
Z 1

0

| ( ) ( )| k k1

which shows k k k k1 and hence,

k k 1 max {| ( )| : [0 1]}

We can in fact show that k k = as follows. Let ( 0 0) [0 1]2 satisfying
| ( 0 0)| = Then given 0 there exists a neighborhood = ×
of ( 0 0) such that | ( ) ( 0 0)| for all ( ) Let
( [0 )) such that

R 1
0
( ) = 1 Choose C such that | | = 1 and

( 0 0) = then
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|( )( 0)| =
¯̄̄̄Z 1

0

( 0 ) ( )

¯̄̄̄
=

¯̄̄̄Z
( 0 ) ( )

¯̄̄̄
Re

Z
( 0 ) ( )Z

( ) ( ) = ( ) k k 1

and hence
k k ( ) k k 1

showing that k k Since 0 is arbitrary, we learn that k k
and hence k k =
One may also view as a map from : ([0 1]) 1([0 1]) in which

case one may show

k k 1

Z 1

0

max | ( )|

8.3 Linear Ordinary Di erential Equations

Let be a Banach space, = ( ) R be an open interval with 0
( ) and ( ( )) In this section we are going to

consider the ordinary di erential equation,

˙( ) = ( ) ( ) + ( ) where (0) = (8.13)

where is an unknown function in 1( ) This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for ( ) such that

( ) = +

Z
0

( ) +

Z
0

( ) ( ) (8.14)

In what follows, we will abuse notation and use k·k to denote the opera-
tor norm on ( ) associated to then norm, k·k on and let k k :=
max k ( )k for ( ) or ( ( ))

Notation 8.18 For R and N let

( ) =

½{( 1 ) R : 0 1 · · · } if 0
{( 1 ) R : · · · 1 0} if 0

and also write = 1 andZ
( )

( 1 ) : = ( 1) ·1 0

Z
0

Z
0

1

Z
2

0
1 ( 1 )
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Lemma 8.19. Suppose that (R R) then

( 1) ·1 0

Z
( )

( 1) ( ) =
1

!

µZ
0

( )

¶
(8.15)

Proof. Let ( ) :=
R
0
( ) The proof will go by induction on The case

= 1 is easily verified since

( 1)1·1 0

Z
1( )

( 1) 1 =

Z
0

( ) = ( )

Now assume the truth of Eq. (8.15) for 1 for some 2 then

( 1)
·1 0

Z
( )

( 1) ( )

=

Z
0

Z
0

1

Z
2

0
1 ( 1) ( )

=

Z
0

1( )

( 1)!
( ) =

Z
0

1( )

( 1)!
˙ ( )

=

Z ( )

0

1

( 1)!
=

( )

!

wherein we made the change of variables, = ( ) in the second to last
equality.

Remark 8.20. Eq. (8.15) is equivalent toZ
( )

( 1) ( ) =
1

!

ÃZ
1( )

( )

!

and another way to understand this equality is to view
R

( )
( 1) ( )

as a multiple integral (see Section 20 below) rather than an iterated integral.
Indeed, taking 0 for simplicity and letting be the permutation group
on {1 2 } we have

[0 ] = {( 1 ) R : 0 1 · · · }

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ( 1) ( ) is invariant under permutations,
we find
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0

( )

¶
=

Z
[0 ]

( 1) ( )

=
X Z

{( 1 ) R :0 1 ··· }
( 1) ( )

=
X Z

{( 1 ) R :0 1 ··· }
( 11) ( 1 ) s

=
X Z

{( 1 ) R :0 1 ··· }
( 1) ( ) s

= !

Z
( )

( 1) ( )

Theorem 8.21. Let ( ) then the integral equation

( ) = ( ) +

Z
0

( ) ( ) (8.16)

has a unique solution given by

( ) = ( ) +
X
=1

( 1) ·1 0

Z
( )

( ) ( 1) ( 1) (8.17)

and this solution satisfies the bound

k k k k
R k ( )k

Proof. Define : ( ) ( ) by

( )( ) =

Z
0

( ) ( )

Then solves Eq. (8.14) i = + or equivalently i ( ) =
An induction argument shows

( )( ) =

Z
0

( )( 1 )( )

=

Z
0

Z
0

1 ( ) ( 1)(
2 )( 1)

...

=

Z
0

Z
0

1

Z
2

0
1 ( ) ( 1) ( 1)

= ( 1)
·1 0

Z
( )

( ) ( 1) ( 1)
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Taking norms of this equation and using the triangle inequality along with
Lemma 8.19 gives,

k( )( )k k k ·
Z

( )

k ( )k k ( 1)k

k k · 1
!

ÃZ
1( )

k ( )k
!

k k · 1
!

µZ
k ( )k

¶
Therefore,

k k 1

!

µZ
k ( )k

¶
(8.18)

and X
=0

k k
R k ( )k

where k·k denotes the operator norm on ( ( )) An application of

Proposition 7.19 now shows ( ) 1 =
P
=0

exists and

°°( ) 1
°° R k ( )k

It is now only a matter of working through the notation to see that these
assertions prove the theorem.

Corollary 8.22. Suppose ( ) and then there exits a
unique solution, 1 ( ) to the linear ordinary di erential Eq. (8.13).

Proof. Let

( ) = +

Z
0

( )

By applying Theorem 8.21 with and replaced by any open interval 0 such
that 0 0 and 0̄ is a compact subinterval1 of there exists a unique
solution

0
to Eq. (8.13) which is valid for 0 By uniqueness of solutions,

if 1 is a subinterval of such that 0 1 and 1̄ is a compact subinterval
of we have 1 = 0 on 0 Because of this observation, we may construct
a solution to Eq. (8.13) which is defined on the full interval by setting
( ) =

0 ( ) for any 0 as above which also contains

Corollary 8.23. Suppose that ( ) is independent of time, then the
solution to

˙( ) = ( ) with (0) =

1 We do this so that | 0 will be bounded.
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is given by ( ) = where

=
X
=0

!
(8.19)

Moreover,
( + ) = for all R (8.20)

Proof. The first assertion is a simple consequence of Eq. 8.17 and Lemma 8.19
with = 1 The assertion in Eq. (8.20) may be proved by explicit computation
but the following proof is more instructive.
Given let ( ) := ( + ) By the chain rule,

( ) = | = + = | = +

= ( + ) = ( ) with (0) =

The unique solution to this equation is given by

( ) = (0) =

This completes the proof since, by definition, ( ) = ( + )

We also have the following converse to this corollary whose proof is outlined
in Exercise 8.21 below.

Theorem 8.24. Suppose that ( ) for 0 satisfies

1. (Semi-group property.) 0 = and = + for all 0
2. (Norm Continuity) is continuous at 0 i.e. k k ( ) 0 as

0

Then there exists ( ) such that = where is defined in Eq.
(8.19).

8.4 Classical Weierstrass Approximation Theorem

Definition 8.25 (Support). Let : be a function from a topological
space ( ) to a vector space Then we define the support of by

supp( ) := { : ( ) 6= 0}
a closed subset of

Example 8.26. For example if : R R is defined by ( ) = sin( )1[0 4 ]( )
R then

{ 6= 0} = (0 4 ) \ { 2 3 }
and therefore supp( ) = [0 4 ]
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Definition 8.27 (Convolution). For (R) with either or having
compact support, we define the convolution of and by

( ) =

Z
R
( ) ( ) =

Z
R
( ) ( )

Lemma 8.28 (Approximate — sequences). Suppose that { } =1 is a
sequence non-negative continuous real valued functions on R with compact
support that satisfy Z

R
( ) = 1 and (8.21)

lim

Z
| |

( ) = 0 for all 0 (8.22)

If is a compact subset of R and (R× ) then

( ) :=

Z
R

( ) ( )

converges to uniformly on compact subsets of R× R +1

Proof. Let ( ) R× then because of Eq. (8.21),

| ( ) ( )| =
¯̄̄̄Z
R

( ) ( ( ) ( ))

¯̄̄̄
Z
R

( ) | ( ) ( )|

Let = sup {| ( )| : ( ) R× } Then for any 0 using Eq.
(8.21),

| ( ) ( )|
Z
| |

( ) | ( ) ( )|

+

Z
| |

( ) | ( ) ( )|

sup
| |

| ( + ) ( )|+ 2
Z
| |

( )

So if is a compact subset of R (for example a large interval) we have

sup
( ) ×

| ( ) ( )|

sup
| | ( ) ×

| ( + ) ( )|+ 2
Z
| |

( )
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and hence by Eq. (8.22),

lim sup sup
( ) ×

| ( ) ( )|

sup
| | ( ) ×

| ( + ) ( )|

This finishes the proof since the right member of this equation tends to 0 as
0 by uniform continuity of on compact subsets of R×
Let : R [0 ) be defined by

( ) :=
1
(1 2) 1| | 1where :=

Z 1

1

(1 2) (8.23)

Figure 8.2 displays the key features of the functions

10.50-0.5-1

5

3.75

2.5

1.25

0

x

y

x

y

Fig. 8.2. A plot of 1 50 and 100 The most peaked curve is 100 and the least is
1 The total area under each of these curves is one.

Lemma 8.29. The sequence { } =1 is an approximate — sequence, i.e.
they satisfy Eqs. (8.21) and (8.22).

Proof. By construction, (R [0 )) for each and Eq. 8.21 holds.
Since
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| |

( ) =
2
R 1
(1 2)

2
R
0
(1 2) + 2

R 1
(1 2)R 1

(1 2)R
0
(1 2)

=
(1 2) +1|1
(1 2) +1|0

=
(1 2) +1

1 (1 2) +1
0 as

the proof is complete.

Notation 8.30 Let Z+ := N {0} and for R and Z+ let =Q
=1 and | | =P =1 A polynomial on R is a function : R C of

the form
( ) =

X
:| |

with C and Z+

If 6= 0 for some such that | | = then we define deg( ) := to be
the degree of The function has a natural extension to C namely
( ) =

P
:| | where =

Q
=1

Theorem 8.31 (Weierstrass Approximation Theorem). Suppose that
R is a compact subset and ( C)2 . Then there exists polynomials

on R such that uniformly on

Proof. Choose 0 and R such that

0 := := { : }

where := (0 1) The function ( ) :=
¡

1 ( + )
¢
for 0 is in

( 0 C) and if ˆ ( ) are polynomials on R such that ˆ uniformly
on 0 then ( ) := ˆ ( ) are polynomials on R such that
uniformly on Hence we may now assume that is a compact subset of

Let ( ) be defined by

( ) =

½
( ) if
0 if

and then use the Tietze extension Theorem 7.4 to find a continuous function
(R C) such that = | If are polynomials on R such

2 Note that is automatically bounded because if not there would exist
such that lim | ( )| = Using Theorem 8.2 we may, by passing to a
subsequence if necessary, assume as . Now the continuity of
would then imply

= lim | ( )| = | ( )|
which is absurd since takes values in C



8.4 Classical Weierstrass Approximation Theorem 101

that uniformly on [0 1] then also converges to uniformly on
Hence, by replacing by we may now assume that (R C)
= ¯ = [0 1] and 0 on
With defined as in Eq. (8.23), [0 1] and R 1 let

( ) := ( )( ) =

Z
R

( ) ( )

=
1
Z
[0 1]

( )
£
(1 ( )2) 1| | 1

¤
=
1
Z
[0 1]

( )(1 ( )2) =
2X
=0

( )

where

( ) =

Z
[0 1]

( ) ( )

and is a polynomial function in for each Then ( ) = 0 if
(0 1) 1 and using the uniform continuity of on [0 1] one easily shows¡

R 1 C
¢
Moreover by Lemmas 8.28 and 8.29, ( ) ( )

uniformly for ( ) [0 1] as This completes the proof of = 1
since then are constants and ( ) := ( ) is a polynomial in
The case of general now follows by induction. Indeed, by the inductive

hypothesis there exists polynomial functions on R 1 such that

sup
[0 1] 1

| ( ) ( )| 1

2 ( + 1)

Then

( ) :=
2X
=0

( )

is a polynomial function on R such that

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|

+
2X
=0

| ( ) ( )|

+
1

where
:= sup

( ) [0 1]

| ( ) ( )| 0 as

This shows

sup
( ) [0 1]

| ( ) ( )| 0 as

which completes the proof.
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Remark 8.32. The mapping ( ) R × R = + C is an
isomorphism of vector spaces. Letting ¯ = as usual, we have = +¯

2
and = ¯

2 Therefore under this identification any polynomial ( ) on
R ×R may be written as a polynomial in ( ¯) namely

( ¯) = (
+ ¯

2

¯

2
)

Conversely a polynomial in ( ¯) may be thought of as a polynomial in
( ) namely ( ) = ( + )

Corollary 8.33 (ComplexWeierstrass Approximation Theorem). Sup-
pose that C is a compact set and ( C) Then there exists poly-
nomials ( ¯) for C such that sup | ( ¯) ( )| 0 as

Proof. This is an immediate consequence of Theorem 8.31 and Remark 8.32.

Example 8.34. Let = 1 = { C : | | = 1} and A be the set of polynomi-
als in ( ¯) restricted to 1 Then A is dense in ( 1) 3 Since ¯ = 1 on 1

we have shown polynomials in and 1 are dense in ( 1) This example
generalizes in an obvious way to =

¡
1
¢

C

Exercise 8.4. Suppose and ([ ] C) satisfiesZ
( ) = 0 for = 0 1 2

Show 0

Exercise 8.5. Suppose (R C) is a 2 — periodic function (i.e.
( + 2 ) = ( ) for all R) andZ 2

0

( ) = 0 for all Z

show again that 0 Hint: Use Example 8.34 to shows that any 2 —
periodic continuous function on R is the uniform limit of trigonometric
polynomials of the form

( ) =
X
=

with C for all

3 Note that it is easy to extend ( 1) to a function (C) by setting
( ) = ( | | ) for 6= 0 and (0) = 0 So this special case does not require the

Tietze extension theorem.
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8.5 Iterated Integrals

Theorem 8.35 (Baby Fubini Theorem). Let R and ( )
be a continuous function of ( ) for between and and between and
Then the maps

R
( ) and

R
( ) are continuous andZ "Z

( )

#
=

Z "Z
( )

#
(8.24)

Proof. See Exercise 8.7 for a sketch of another, more instructive, proof of this
result. (BRUCE: Drop the following proof and leave it as an exercise.) With
out loss of generality we may assume and By uniform continuity
of (Theorem 8.2),

sup k ( ) ( 0 )k 0 as 0

and so by Lemma 8.7Z
( )

Z
( 0 ) as 0

showing the continuity of
R

( ) The other continuity assertion is
proved similarly.
Now let

= { 0 1 · · · = } and 0 = { 0 1 · · · = }

be partitions of [ ] and [ ] respectively. For [ ] let = if
( +1] and 1 and = 0 = if [ 0 1] Define 0 for [ ]
analogously. ThenZ "Z

( )

#
=

Z "Z
( 0)

#
+

Z
0( )

=

Z "Z
( 0)

#
+ 0 +

Z
0( )

where

0( ) =

Z
( )

Z
( 0)

and

0 =

Z "Z
{ ( 0) ( 0)}

#
The uniform continuity of and the estimates
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sup
[ ]

k 0( )k sup
[ ]

Z
k ( ) ( 0)k

( ) sup {k ( ) ( 0)k : ( ) }
and

k 0k
Z "Z

k ( 0) ( 0)k
#

( )( ) sup {k ( ) ( 0)k : ( ) }
allow us to conclude thatZ "Z

( )

# Z "Z
( 0)

#
0 as | |+ | 0| 0

By symmetry (or an analogous argument),Z "Z
( )

# Z "Z
( 0)

#
0 as | |+ | 0| 0

This completes the proof sinceZ "Z
( 0)

#
=

X
0 0

( )( +1 )( +1 )

=

Z "Z
( 0)

#

Proposition 8.36 (Equality of Mixed Partial Derivatives). Let =
( ) × ( ) be an open rectangle in R2 and ( ) Assume that

( ) ( ) and ( ) exists and are continuous for ( )

then ( ) exists for ( ) and

( ) = ( ) for ( ) (8.25)

Proof. Fix ( 0 0) By two applications of Theorem 8.13,

( ) = ( 0
) +

Z
0

( )

= ( 0 ) +

Z
0

( 0) +

Z
0

Z
0

( ) (8.26)

and then by Fubini’s Theorem 8.35 we learn

( ) = ( 0 ) +

Z
0

( 0) +

Z
0

Z
0

( )

Di erentiating this equation in and then in (again using two more appli-
cations of Theorem 8.13) shows Eq. (8.25) holds.
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8.6 Exercises

Throughout these problems, ( k·k) is a Banach space.
Exercise 8.6. Show = ( 1 ) S̄([ ] R ) i S̄([ ] R) for
= 1 2 andZ

( ) =

ÃZ
1( )

Z
( )

!

Here R is to be equipped with the usual Euclidean norm. Hint: Use Lemma
8.7 to prove the forward implication.

Exercise 8.7. Prove Theorem 8.35 using the following strategy.

1. Use the results from the proof in the text of Theorem 8.35 thatZ
( ) and

Z
( )

are continuous maps.
2. For the moment take = R and prove Eq. (8.24) holds by first proving it
holds when ( ) = with N0 Then use this result along with
Theorem 8.31 to show Eq. (8.24) holds for all ([ ]× [ ] R)

3. For the general case, use the special case proved in item 2. along with
Hahn - Banach theorem.

Exercise 8.8. Give another proof of Proposition 8.36 which does not use
Fubini’s Theorem 8.35 as follows.

1. By a simple translation argument we may assume (0 0) and we are
trying to prove Eq. (8.25) holds at ( ) = (0 0)

2. Let ( ) := ( ) and

( ) :=

Z
0

Z
0

( )

so that Eq. (8.26) states

( ) = (0 ) +

Z
0

( 0) + ( )

and di erentiating this equation at = 0 shows

( 0) = (0 0) + ( 0) (8.27)

Now show using the definition of the derivative that
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( 0) =

Z
0

( 0) (8.28)

Hint: Consider

( )

Z
0

( 0) =

Z
0

Z
0

[ ( ) ( 0)]

3. Now di erentiate Eq. (8.27) in using Theorem 8.13 to finish the proof.

Exercise 8.9. Give another proof of Eq. (8.24) in Theorem 8.35 based on
Proposition 8.36. To do this let 0 ( ) and 0 ( ) and define

( ) :=

Z
0

Z
0

( )

Show satisfies the hypothesis of Proposition 8.36 which combined with two
applications of the fundamental theorem of calculus implies

( ) = ( ) = ( )

Use two more applications of the fundamental theorem of calculus along with
the observation that = 0 if = 0 or = 0 to conclude

( ) =

Z
0

Z
0

( ) =

Z
0

Z
0

( ) (8.29)

Finally let = and = in Eq. (8.29) and then let 0 and 0 to
prove Eq. (8.24).

Exercise 8.10 (Product Rule). Prove items 1 and 2 of Lemma 8.9. This
can be modeled on the standard proof for real valued functions.

Exercise 8.11 (Chain Rule). Prove the chain rule in Proposition 8.10.
Again this may be modeled on the on the standard proof for real valued
functions.

Exercise 8.12. To each ( ) we may define : ( ) ( )
by

= and = for all ( )

Show ( ( )) and that

k k ( ( )) = k k ( ) = k k ( ( ))

Exercise 8.13. Suppose that : R ( ) is a continuous function and
: R ( ) are the unique solution to the linear di erential equations

˙ ( ) = ( ) ( ) with (0) = (8.30)
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and
˙ ( ) = ( ) ( ) with (0) = (8.31)

Prove that ( ) is invertible and that 1( ) = ( )4 , where by abuse of
notation I am writing 1 ( ) for [ ( )]

1 Hints: 1) show [ ( ) ( )] = 0
(which is su cient if dim( ) ) and 2) show compute ( ) := ( ) ( )
solves a linear di erential ordinary di erential equation that has as an
obvious solution. (The results of Exercise 8.12 may be useful here.) Then use
the uniqueness of solutions to linear ODEs.

Exercise 8.14. Suppose that ( k·k) is a Banach space, = ( ) with
and : R are continuously di erentiable functions

such that there exists a summable sequence { } =1 satisfying

k ( )k+
°°° ˙ ( )°°° for all and N

Show:

1. sup
n°°° ( + ) ( )

°°° : ( ) ×R 3 + and 6= 0
o

2. The function : R defined by

( ) :=
X
=1

( ) for all

is di erentiable and for

˙ ( ) =
X
=1

˙ ( )

Exercise 8.15. Suppose that ( ) Show directly that:

1. define in Eq. (8.19) is convergent in ( ) when equipped with the
operator norm.

2. is di erentiable in and that =

Exercise 8.16. Suppose that ( ) and is an eigenvector of
with eigenvalue i.e. that = Show = Also show that if
= R and is a diagonalizable × matrix with

= 1 with = diag( 1 )

then = 1 where = diag( 1 ) Here diag( 1 )
denotes the diagonal matrix such that = for = 1 2

Exercise 8.17. Suppose that ( ) and [ ] := = 0
Show that ( + ) =

4 The fact that ( ) must be defined as in Eq. (8.31) follows from Lemma 8.9.
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Exercise 8.18. Suppose (R ( )) satisfies [ ( ) ( )] = 0 for all
R Show

( ) := (
R
0

( ) )

is the unique solution to ˙( ) = ( ) ( ) with (0) =

Exercise 8.19. Compute when

=

µ
0 1
1 0

¶
and use the result to prove the formula

cos( + ) = cos cos sin sin

Hint: Sum the series and use = ( + )

Exercise 8.20. Compute when

=
0
0 0
0 0 0

with R Use your result to compute ( + ) where R and is
the 3× 3 identity matrix. Hint: Sum the series.

Exercise 8.21. Prove Theorem 8.24 using the following outline.

1. Using the right continuity at 0 and the semi-group property for show
there are constants and such that k k ( ) for all 0

2. Show [0 ) ( ) is continuous.
3. For 0 let := 1

R
0

( ) Show as 0 and
conclude from this that is invertible when 0 is su ciently small.
For the remainder of the proof fix such a small 0

4. Show

=
1
Z +

and conclude from this that

lim
0

µ ¶
=
1
( )

5. Using the fact that is invertible, conclude = lim 0
1 ( ) exists

in ( ) and that

=
1
( ) 1

6. Now show, using the semigroup property and step 4., that = for
all 0
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7. Using step 5, show = 0 for all 0 and therefore =
0

0 =

Exercise 8.22 (Duhamel’ s Principle I). Suppose that : R ( ) is
a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (8.30). Let and (R ) be given. Show
that the unique solution to the di erential equation:

˙( ) = ( ) ( ) + ( ) with (0) = (8.32)

is given by

( ) = ( ) + ( )

Z
0

( ) 1 ( ) (8.33)

Hint: compute [ 1( ) ( )] (see Exercise 8.13) when solves Eq. (8.32).

Exercise 8.23 (Duhamel’ s Principle II). Suppose that : R ( ) is
a continuous function and : R ( ) is the unique solution to the linear
di erential equation in Eq. (8.30). Let 0 ( ) and (R ( )) be
given. Show that the unique solution to the di erential equation:

˙ ( ) = ( ) ( ) + ( ) with (0) = 0 (8.34)

is given by

( ) = ( ) 0 + ( )

Z
0

( ) 1 ( ) (8.35)

Exercise 8.24. Give another proof Corollary 8.14 based on Remark 8.12.
Hint: the Hahn Banach theorem implies

k ( ) ( )k = sup
6=0
| ( ( )) ( ( ))|

k k


