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Hilbert Spaces Basics

(BRUCE: Perhaps this should be move to between Chapters 7 & 8?)

Definition 14.1. Let be a complex vector space. An inner product on is
a function, h·|·i : × C such that

1. h + | i = h | i+ h | i i.e. h | i is linear.
2. h | i = h | i.
3. k k2 := h | i 0 with equality k k2 = 0 i = 0

Notice that combining properties (1) and (2) that h | i is anti-linear
for fixed i.e.

h | + i = ¯h | i+¯h | i
The following identity will be used frequently in the sequel without further
mention,

k + k2 = h + | + i = k k2 + k k2 + h | i+ h | i
= k k2 + k k2 + 2Reh | i (14.1)

Theorem 14.2 (Schwarz Inequality). Let ( h·|·i) be an inner product
space, then for all

|h | i| k kk k
and equality holds i and are linearly dependent.

Proof. If = 0 the result holds trivially. So assume that 6= 0 and
observe; if = for some C then h | i = k k2 and hence

|h | i| = | | k k2 = k kk k
Now suppose that is arbitrary, let := k k 2h | i (So is the
“orthogonal projection” of onto see Figure 14.1.) Then
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Fig. 14.1. The picture behind the proof of the Schwarz inequality.

0 k k2 =
°°°° h | i

k k2
°°°°2 = k k2 + |h | i|2k k4 k k2 2Reh | h | ik k2 i

= k k2 |h | i|2
k k2

from which it follows that 0 k k2k k2 |h | i|2 with equality i = 0 or
equivalently i = k k 2h | i
Corollary 14.3. Let ( h·|·i) be an inner product space and k k :=ph | i
Then the Hilbertian norm, k·k is a norm on Moreover h·|·i is continuous
on × where is viewed as the normed space ( k·k)
Proof. If then, using the Schwarz’s inequality,

k + k2 = k k2 + k k2 + 2Reh | i
k k2 + k k2 + 2k kk k = (k k+ k k)2

Taking the square root of this inequality shows k·k satisfies the triangle in-
equality. Checking that k·k satisfies the remaining axioms of a norm is not
routine and will be left to the reader. If 0 0 then

|h | i h 0| 0i| = |h 0| i+ h 0| 0i|
k kk 0k+ k 0kk 0k
k kk 0k+ (k k+ k 0k) k 0k

= k kk 0k+ k kk 0k+ k 0kk 0k
from which it follows that h·|·i is continuous.
Definition 14.4. Let ( h·|·i) be an inner product space, we say
are orthogonal and write i h | i = 0 More generally if is a
set, is orthogonal to (write ) i h | i = 0 for all Let

= { : } be the set of vectors orthogonal to A subset
is an orthogonal set if for all distinct elements If further
satisfies, k k = 1 for all then is said to be orthonormal set.



14 Hilbert Spaces Basics 199

Proposition 14.5. Let ( h·|·i) be an inner product space then
1. (Parallelogram Law)

k + k2 + k k2 = 2k k2 + 2k k2 (14.2)

for all
2. (Pythagorean Theorem) If is a finite orthogonal set, then°°°°°X

°°°°°
2

=
X

k k2 (14.3)

3. If is a set, then is a closed linear subspace of

Remark 14.6. See Proposition 14.54 for the “converse” of the parallelogram
law.

Proof. I will assume that is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

k + k2 + k k2
= k k2 + k k2 + 2Reh | i+ k k2 + k k2 2Reh | i
= 2k k2 + 2k k2

and °°°°°X
°°°°°
2

= h
X

|
X

i =
X

h | i

=
X
h | i =

X
k k2

Item 3. is a consequence of the continuity of h·|·i and the fact that
= Nul(h·| i)

where Nul(h·| i) = { : h | i = 0} — a closed subspace of
Definition 14.7. A Hilbert space is an inner product space ( h·|·i) such
that the induced Hilbertian norm is complete.

Example 14.8. Suppose is a set and : (0 ) then := 2 ( ) is a
Hilbert space when equipped with the inner product,

h | i :=
X

( ) ¯ ( ) ( )

In Exercise 14.6 you will show every Hilbert space is “equivalent” to a
Hilbert space of this form with 1
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More example of Hilbert spaces will be given later after we develop the
Lebesgue integral, see Example 23.1 below.

Definition 14.9. A subset of a vector space is said to be convex if for
all the line segment [ ] := { + (1 ) : 0 1} joining to
is contained in as well. (Notice that any vector subspace of is convex.)

Theorem 14.10. Suppose that is a Hilbert space and is a closed
convex subset of Then for any there exists a unique such
that

k k = ( ) = inf k k
Moreover, if is a vector subspace of then the point may also be char-
acterized as the unique point in such that ( )

Proof. Uniqueness. By replacing by := { : } we
may assume = 0 Let := (0 ) = inf k k and see Figure
14.2.

Fig. 14.2. The geometry of convex sets.

By the parallelogram law and the convexity of

2k k2 + 2k k2 = k + k2 + k k2

= 4k +

2
||2 + k k2 4 2 + k k2 (14.4)

Hence if k k = k k = then 2 2+2 2 4 2+k k2 so that k k2 = 0
Therefore, if a minimizer for (0 ·)| exists, it is unique.
Existence. Let be chosen such that k k = (0 )

Taking = and = in Eq. (14.4) shows

2 2 + 2 2 4 2 + k k2

Passing to the limit in this equation implies,
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2 2 + 2 2 4 2 + lim sup k k2

i.e. lim sup k k2 = 0 Therefore, by completeness of { } =1

is convergent. Because is closed, := lim and because the norm

is continuous,
k k = lim k k = = (0 )

So is the desired point in which is closest to 0
Now suppose is a closed subspace of and Let be the

closest point in to Then for the function

( ) := k ( + )k2 = k k2 2 Reh | i+ 2k k2

has a minimum at = 0 and therefore 0 = 0(0) = 2Reh | i Since
is arbitrary, this implies that ( )

Finally suppose is any point such that ( ) Then for
by Pythagorean’s theorem,

k k2 = k + k2 = k k2 + k k2 k k2

which shows ( )2 k k2 That is to say is the point in closest
to

Definition 14.11. Suppose that : is a bounded operator. The
adjoint of denote is the unique operator : such that
h | i = h | i (The proof that exists and is unique will be given in
Proposition 14.16 below.) A bounded operator : is self - adjoint
or Hermitian if =

Definition 14.12. Let be a Hilbert space and be a closed subspace.
The orthogonal projection of onto is the function : such that
for ( ) is the unique element in such that ( ( ))

Theorem 14.13 (Projection Theorem). Let be a Hilbert space and
be a closed subspace. The orthogonal projection satisfies:

1. is linear and hence we will write rather than ( )
2. 2 = ( is a projection).
3. = ( is self-adjoint).
4. Ran( ) = and Nul( ) =

Proof.

1. Let 1 2 and F then 1 + 2 and

1 + 2 ( 1 + 2) = [ 1 1 + ( 2 2)]

showing 1 + 2 = ( 1 + 2) i.e. is linear.
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2. Obviously Ran( ) = and = for all . Therefore 2 =
.

3. Let then since ( ) and ( ) are in

h | i = h | + i = h | i
= h + ( )| i = h | i

4. We have already seen, Ran( ) and = 0 i = 0
i.e. Nul( ) =

Corollary 14.14. If is a proper closed subspace of a Hilbert space
then =

Proof. Given let = so that Then =
+( ) + If then , i.e. k k2 = h | i = 0 So

= {0}
Exercise 14.1. Suppose is a subset of then = span( )

Theorem 14.15 (Riesz Theorem). Let be the dual space of (Nota-
tion 7.9). The map

h·| i (14.5)

is a conjugate linear1 isometric isomorphism.

Proof. The map is conjugate linear by the axioms of the inner products.
Moreover, for

|h | i| k k k k for all
with equality when = This implies that k k = kh·| ik = k k
Therefore is isometric and this implies is injective. To finish the proof we
must show that is surjective. So let which we assume, with out
loss of generality, is non-zero. Then =Nul( ) — a closed proper subspace
of Since, by Corollary 14.14, = : = F is a
linear isomorphism. This shows that dim( ) = 1 and hence = F 0

where 0 \ {0} 2 Choose = 0 such that ( 0) = h 0| i i.e.
= (̄ 0) k 0k2 Then for = + 0 with and F

( ) = ( 0) = h 0| i = h 0| i = h + 0| i = h | i
which shows that =

1 Recall that is conjugate linear if

( 1 + 2) = 1 + ¯ 2

for all 1 2 and C
2 Alternatively, choose 0 \ {0} such that ( 0) = 1 For we have
( 0) = 0 provided that := ( ) Therefore 0 = {0}
i.e. = 0 This again shows that is spanned by 0
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Proposition 14.16 (Adjoints). Let and be Hilbert spaces and :
be a bounded operator. Then there exists a unique bounded operator

: such that

h | i = h | i for all and (14.6)

Moreover, for all ( ) and C

1. ( + ) = + ¯

2. := ( ) =
3. k k = k k and
4. k k = k k2
5. If = then ( ) = In particular ( ) has a bounded
inverse i has a bounded inverse and ( ) 1 =

¡
1
¢

Proof. For each the map h | i is in and therefore
there exists, by Theorem 14.15, a unique vector such that

h | i = h | i for all

This shows there is a unique map : such that h | i =
h | ( )i for all and
To see is linear, let 1 2 and C then for any

h | 1 + 2i = h | 1i + ¯h | 2i
= h | ( 1)i + ¯h | ( 2)i
= h | ( 1) + ( 2)i

and by the uniqueness of ( 1 + 2) we find

( 1 + 2) = ( 1) + ( 2)

This shows is linear and so we will now write instead of ( )
Since

h | i = h | i = h | i = h | i
it follows that = The assertion that ( + ) = +¯ is Exercise
14.2.
Making use of the Schwarz inequality (Theorem 14.2), we have

k k = sup
:k k=1

k k

= sup
:k k=1

sup
:k k=1

|h | i|

= sup
:k k=1

sup
:k k=1

|h | i| = sup
:k k=1

k k = k k

The last item is a consequence of the following two inequalities;

204 14 Hilbert Spaces Basics

k k k k k k = k k2

and

k k2 = sup
:k k=1

k k2 = sup
:k k=1

|h | i|

= sup
:k k=1

|h | i| sup
:k k=1

k k = k k

Now suppose that = Then

h | i = h | i = h | i

which shows ( ) = If 1 exists then¡
1
¢

=
¡

1
¢
= = and¡

1
¢
=
¡

1
¢
= =

This shows that is invertible and ( )
1
=
¡

1
¢

Similarly if is
invertible then so is =

Exercise 14.2. Let be Hilbert spaces, ( )
( ) and C Show ( + ) = + ¯ and ( ) =
( )

Exercise 14.3. Let = C and = C equipped with the usual inner
products, i.e. h | i = · ¯ for Let be an × matrix thought of
as a linear operator from to Show the matrix associated to :
is the conjugate transpose of

Lemma 14.17. Suppose : is a bounded operator, then:

1. Nul( ) = Ran( )
2. Ran( ) = Nul( )
3. if = and is an — invariant subspace (i.e. ( ) ) then

is — invariant.

Proof. An element is in Nul( ) i 0 = h | i = h | i
for all which happens i Ran( ) Because, by Exercise 14.1,
Ran( ) = Ran( ) and so by the first item, Ran( ) = Nul( ) Now
suppose ( ) and then

h | i = h | i = 0 for all

which shows
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14.1 Hilbert Space Basis

Proposition 14.18 (Bessel’s Inequality). Let be an orthonormal set,
then for any X

|h | i|2 k k2 for all (14.7)

In particular the set := { : h | i 6= 0} is at most countable for all

Proof. Let be any finite set. Then

0 k
X
h | i k2 = k k2 2Re

X
h | i h | i+

X
|h | i|2

= k k2
X

|h | i|2

showing that
P |h | i|2 k k2 Taking the supremum of this inequality over

then proves Eq. (14.7).

Proposition 14.19. Suppose is an orthogonal set. Then =
P

exists in (see Definition 7.15) i
P k k2 (In particular must

be at most a countable set.) Moreover, if
P k k2 then

1. k k2 =P k k2 and
2. h | i =P h | i for all

Similarly if { } =1 is an orthogonal set, then =
P
=1

exists in

i
P
=1
k k2 In particular if

P
=1

exists, then it is independent of

rearrangements of { } =1

Proof. Suppose =
P

exists. Then there exists such that

X
k k2 =

°°°°°X
°°°°°
2

1

for all \ wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such shows that

P
\ k k2 1 and

therefore X
k k2 1 +

X
k k2

Conversely, suppose that
P k k2 Then for all 0 there exists

such that if \
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°°°°°
2

=
X

k k2 2 (14.8)

Hence by Lemma 7.16,
P

exists.
For item 1, let be as above and set :=

P
Then

|k k k k| k k
and by Eq. (14.8),

0
X

k k2 k k2 =
X

k k2 2

Letting 0 we deduce from the previous two equations that k k k k and
k k2 P k k2 as 0 and therefore k k2 =P k k2
Item 2. is a special case of Lemma 7.16. For the final assertion, let

:=
P
=1

and suppose that lim = exists in and in partic-

ular { } =1 is Cauchy. So forX
= +1

k k2 = k k2 0 as

which shows that
P
=1
k k2 is convergent, i.e. P

=1
k k2

Alternative proof of item 1. We could use the last result to prove
Item 1. Indeed, if

P k k2 then is countable and so we may writer
= { } =1 Then = lim with as above. Since the norm, k·k

is continuous on

k k2 = lim k k2 = lim

°°°°°X
=1

°°°°°
2

= lim
X
=1

k k2

=
X
=1

k k2 =
X

k k2

Corollary 14.20. Suppose is a Hilbert space, is an orthonormal
set and = span Then

=
X
h | i (14.9)

X
|h | i|2 = k k2 and (14.10)

X
h | ih | i = h | i (14.11)

for all
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Proof. By Bessel’s inequality,
P |h | i|2 k k2 for all and

hence by Proposition 14.18, :=
P h | i exists in and for all

h | i =
X
hh | i | i =

X
h | ih | i (14.12)

Taking in Eq. (14.12) gives h | i = h | i i.e. that h | i = 0 for
all So ( ) span and by continuity we also have ( )

= span Since is also in it follows from the definition of
that = proving Eq. (14.9). Equations (14.10) and (14.11) now follow
from (14.12), Proposition 14.19 and the fact that h | i = h 2 | i =
h | i for all
Definition 14.21 (Basis). Let be a Hilbert space. A basis of is a
maximal orthonormal subset

Proposition 14.22. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of ordered by
inclusion. If F is linearly ordered then is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element F
An orthonormal set is said to be complete if = {0} That is

to say if h | i = 0 for all then = 0

Lemma 14.23. Let be an orthonormal subset of then the following are
equivalent:

1. is a basis,
2. is complete and
3. span =

Proof. If is not complete, then there exists a unit vector \ {0}
The set { } is an orthonormal set properly containing so is not
maximal. Conversely, if is not maximal, there exists an orthonormal set
1 such that & 1 Then if 1 \ we have h | i = 0 for all

showing is not complete. This proves the equivalence of (1) and (2).
If is not complete and \ {0} then span which is a proper

subspace of Conversely if span is a proper subspace of = span
is a non-trivial subspace by Corollary 14.14 and is not complete. This shows
that (2) and (3) are equivalent.

Theorem 14.24. Let be an orthonormal set. Then the following are
equivalent:

1. is complete, i.e. is an orthonormal basis for
2. =

P h | i for all .

3. h | i = P h | i h | i for all
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4. k k2 = P |h | i|2 for all

Proof. Let = span and =
(1) (2) By Corollary 14.20,

P h | i = Therefore

X
h | i = = = {0}

(2) (3) is a consequence of Proposition 14.19.
(3) (4) is obvious, just take =
(4) (1) If then by 4), k k = 0 i.e. = 0 This shows that is

complete.
Suppose := { } =1 is a collection of vectors in an inner product space

( h·|·i) The standard Gram-Schmidt process produces from an ortho-
normal subset, = { } =1 such that every element is a finite
linear combination of elements from Recall the procedure is to define
inductively by setting

˜ +1 := +1

X
=1

h +1| i = +1 +1

where is orthogonal projection onto := span({ } =1) If +1 := 0 let
˜ +1 = 0 otherwise set +1 := k˜ +1k 1 ˜ +1 Finally re-index the resulting
sequence so as to throw out those with = 0 The result is an orthonormal
subset, with the desired properties.

Definition 14.25. As subset, of a normed space is said to be total if
span( ) is a dense in

Remark 14.26. Suppose that { } =1 is a total subset of Let { } =1 be
the vectors found by performing Gram-Schmidt on the set { } =1 Then
:= { } =1 is an orthonormal basis for Indeed, if is orthogonal

to then is orthogonal to { } =1 and hence also span { } =1 = In
particular is orthogonal to itself and so = 0

Proposition 14.27. A Hilbert space is separable i has a countable
orthonormal basis Moreover, if is separable, all orthonormal bases of
are countable. (See Proposition 4.14 in Conway’s, “A Course in Functional

Analysis,” for a more general version of this proposition.)

Proof. Let D be a countable dense set D = { } =1 By Gram-
Schmidt process there exists = { } =1 an orthonormal set such that
span{ : = 1 2 } span{ : = 1 2 } So if h | i = 0 for
all then h | i = 0 for all Since D is dense we may choose { } D
such that = lim and therefore h | i = lim h | i = 0 That is to
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say = 0 and is complete. Conversely if is a countable orthonormal
basis, then the countable set

D =
X

: Q+ Q : #{ : 6= 0}

is dense in Finally let = { } =1 be an orthonormal basis and 1

be another orthonormal basis. Then the sets

= { 1 : h | i 6= 0}

are countable for each N and hence :=
S
=1

is a countable subset

of 1 Suppose there exists 1 \ then h | i = 0 for all and since
= { } =1 is an orthonormal basis, this implies = 0 which is impossible

since k k = 1 Therefore 1 \ = and hence 1 = is countable.

Proposition 14.28. Suppose and are sets and : (0 ) and
: (0 ) are give weight functions. For functions : C and
: C let : × C be defined by ( ) := ( ) ( ) If

2 ( ) and 2 ( ) are orthonormal bases, then

:= { : and }
is an orthonormal basis for 2 ( )

Proof. Let 0 2 ( ) and 0 2 ( ) then by the Tonelli’s Theorem
4.22 for sums and Hölder’s inequality,X

×
| · 0 0| =

X
| 0| ·

X
| 0|

k k 2( ) k 0k 2( ) k k 2( ) k 0k 2( ) = 1

So by Fubini’s Theorem 4.23 for sums,

h | 0 0i 2( ) =
X 0 ·

X
¯0

= h | 0i 2( )h | 0i 2( ) = 0 0

Therefore, is an orthonormal subset of 2( ) So it only remains to
show is complete. We will give two proofs of this fact. Let 2( )
In the first proof we will verify item 4. of Theorem 14.24 while in the second
we will verify item 1 of Theorem 14.24.
First Proof. By Tonelli’s Theorem,X

( )
X

( ) | ( )|2 = k k22( )
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and since 0 it follows thatX
| ( )|2 ( ) for all

i.e. ( ·) 2( ) for all By the completeness ofX
| ( )|2 ( ) = h ( ·) | ( ·)i 2( ) =

X¯̄h ( ·) | i 2( )

¯̄2
and therefore,

k k22( ) =
X

( )
X

( ) | ( )|2

=
XX¯̄h ( ·) | i 2( )

¯̄2
( ) (14.13)

and in particular, h ( ·) | i 2( ) is in 2 ( ) So by the completeness of
and the Fubini and Tonelli theorems, we find

X¯̄h ( ·) | i 2( )

¯̄2
( ) =

X¯̄̄̄
¯Xh ( ·) | i 2( ) ( ) ( )

¯̄̄̄
¯
2

=
X¯̄̄̄

¯X
ÃX

( ) ( ) ( )

!
( ) ( )

¯̄̄̄
¯
2

=
X¯̄̄̄

¯X× ( ) ( ) ( )

¯̄̄̄
¯
2

=
X¯̄h | i 2( )

¯̄2
Combining this result with Eq. (14.13) shows

k k22( ) =
X ¯̄h | i 2( )

¯̄2
as desired.
Second Proof. Suppose, for all and that h | i = 0 i.e.

0 = h | i 2( ) =
X

( )
X

( ) ( ) (̄ ) ( )

=
X

( ) h ( ·)| i 2( ) (̄ ) (14.14)

Since
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¯̄2
( )

X
( )

X
| ( )|2 ( ) (14.15)

it follows from Eq. (14.14) and the completeness of that h ( ·)| i 2( ) = 0
for all By the completeness of we conclude that ( ) = 0 for all
( ) ×
Definition 14.29. A linear map : is an isometry if k k =
k k for all and is unitary if is also surjective.

Exercise 14.4. Let : be a linear map, show the following are
equivalent:

1. : is an isometry,
2. h | 0i = h | 0i for all 0 (see Eq. (14.31) below)
3. =

Exercise 14.5. Let : be a linear map, show the following are
equivalent:

1. : is unitary
2. = and =
3. is invertible and 1 =

Exercise 14.6. Let be a Hilbert space. Use Theorem 14.24 to show there
exists a set and a unitary map : 2( ) Moreover, if is separable
and dim( ) = then can be taken to be N so that is unitarily
equivalent to 2 = 2(N)

14.2 Some Spectral Theory

For this section let and be two Hilbert space over C

Exercise 14.7. Suppose : is a bounded self-adjoint operator.
Show:

1. If is an eigenvalue of i.e. = for some \ {0} then R
2. If and are two distinct eigenvalues of with eigenvectors and
respectively, then

Unlike in finite dimensions, it is possible that an operator on a complex
Hilbert space may have no eigenvalues, see Example 14.35 and Lemma 14.36
below for a couple of examples. For this reason it is useful to generalize the
notion of an eigenvalue as follows.
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Definition 14.30. Suppose is a Banach space over F (F = R or C) and
( ) We say F is in the spectrum of if does not have a

bounded3 inverse. The spectrum will be denoted by ( ) F The resolvent
set for is ( ) := F\ ( )

Remark 14.31. If is an eigenvalue of then is not injective and
hence not invertible. Therefore any eigenvalue of is in the spectrum of
If is a Hilbert space ant ( ) it follows from item 5. of Proposition
14.16 that ( ) i ¯ ( ) i.e.

( ) =
©
¯ : ( )

ª
Exercise 14.8. Suppose is a Banach space and ( ) Use Corollary

7.20 to show ( ) is a closed subset of
n

F : | | k k := k k ( )

o
Lemma 14.32. Suppose that ( ) is a normal operator, i.e. [ ] = 0
Then ( ) i

inf
k k=1

k( 1) k = 0 (14.16)

In other words, ( ) i there is an “approximate sequence of eigen-
vectors” for ( ) i.e. there exists such that k k = 1 and

0 as

Proof. By replacing by we may assume that = 0 If 0 ( )
then

inf
k k=1

k k = inf k k
k k = inf

k k
k 1 k = 1

°° 1
°° 0

Now suppose that infk k=1 k k = 0 or equivalently we have

k k k k
for all Because is normal,

k k2 = h | i = h | i = h | i = k k2

Therefore we also have

k k = k k k k (14.17)

This shows in particular that and are injective, Ran( ) is closed and
hence by Lemma 14.17

Ran( ) = Ran( ) = Nul( ) = {0} =

Therefore is algebraically invertible and the inverse is bounded by Eq.
(14.17).

3 It will follow by the open mapping Theorem 35.1 or the closed graph Theorem
35.3 that the word bounded may be omitted from this definition.
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Lemma 14.33. Suppose that ( ) is self-adjoint (i.e. = ) then

( )
h
k k k k

i
R

Proof. Writting = + with R then

k( + + ) k2 = k( + ) k2 + | |2 k k2 + 2Re(( + ) )

= k( + ) k2 + | |2 k k2 (14.18)

wherein we have used

Re [ (( + ) )] = Im(( + ) ) = 0

since
(( + ) ) = ( ( + ) ) = (( + ) )

Eq. (14.18) along with Lemma 14.32 shows that ( ) if 6= 0 i.e.

( ) R The fact that ( ) is now contained in
h
k k k k

i
is a

consequence of Exercise 14.8.

Remark 14.34. It is not true that ( ) R implies = For example let

=

µ
0 1
0 0

¶
on = C2 then ( ) = {0} yet 6=

Example 14.35. Let ( ) be a (not necessarily) normal operator. The
proof of Lemma 14.32 gives ( ) if Eq. (14.16) holds. However the con-
verse is not always valid unless is normal. For example, let : 2 2

be the shift, ( 1 2 ) = (0 1 2 ) Then for any :=
{ C : | | 1}

k( ) k = k k |k k | | k k| = (1 | |) k k
and so there does not exists an approximate sequence of eigenvectors for
( ) However, as we will now show, ( ) = ¯

To prove this it su ces to show by Remark 14.31 and Exercise 14.8 that
( ) For if this is the cae then ¯ ( ) ¯ and hence ( ) = ¯

since ¯ is invariant under complex conjugation.
A simple computation shows,

( 1 2 ) = ( 2 3 )

and = ( 1 2 ) is an eigenvector for with eigenvalue C i

0 = ( ) ( 1 2 ) = ( 2 1 3 2 )

Solving these equation shows

2 = 1 3 = 2 =
2

1 = 1
1
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Hence if we may let 1 = 1 above to find

(1 2 ) = (1 2 )

where (1 2 ) 2 Thus we have shown is an eigenvalue for for
all and hence ( )

Lemma 14.36. Let = 2 (Z) and let : be defined by

( ) = ( ( + 1) ( 1)) for all Z

Then:

1. is a bounded self-adjoint operator.
2. has no eigenvalues.
3. ( ) = [ 2 2]

Proof. For another (simpler) proof of this lemma, see Exercise 23.8 below.
1. Since

k k2 k (·+ 1)k2 + k (· 1)k2 = 2 k k2
k k 2 Moreover, for 2 (Z)

h | i =
X

( ( + 1) ( 1)) ¯ ( )

=
X

( ) ¯ ( 1)
X

( ) ¯ ( + 1)

=
X

( ) ( ) = h | i

which shows =
2. From Lemma 14.33, we know that ( ) [ 2 2] If [ 2 2] and

satisfies = then

( + 1) = ( ) + ( 1) for all Z (14.19)

This is a second order di erence equations which can be solved analogously
to second order ordinary di erential equations. The idea is to start by looking
for a solution of the form ( ) = Then Eq. (14.19) beocmes, +1 =

+ 1 or equivalently that

2 + 1 = 0

So we will have a solution if { ±} where

± =
± 4 2

2
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For | | 6= 2 there are two distinct roots and the general solution to Eq. (14.19)
is of the form

( ) = + + + (14.20)

for some constants ± C and | | = 2 the general solution has the form

( ) = + + + (14.21)

Since in all cases, | ±| = 1
4

¡
2 + 4 2

¢
= 1 it follows that neither of these

functions, will be in 2 (Z) unless they are identically zero. This shows that
has no eigenvalues.
3. The above argument suggest a method for constructing approximate

eigenfucntions. Namely, let [ 2 2] and define ( ) := 1| | where
= + Then a simple computation shows

lim
k( ) k2

k k2
= 0 (14.22)

and therefore ( )

Exercise 14.9. Verify Eq. (14.22). Also show by explicit computations that

lim
k( ) k2

k k2
6= 0

if [ 2 2]

The next couple of results will be needed for the next section.

Theorem 14.37 (Rayleigh quotient). Suppose ( ) := ( ) is a
bounded self-adjoint operator, then

k k = sup
6=0
|h | i|
k k2

Moreover if there exists a non-zero element such that

|h | i|
k k2 = k k

then is an eigenvector of with = and {±k k}
Proof. Let

:= sup
6=0
|h | i|
k k2

We wish to show = k k Since

|h | i| k kk k k kk k2

216 14 Hilbert Spaces Basics

we see k k Conversely let and compute

h + | ( + )i ( | ( )i
= h | i+ h | i+ h | i+ h | i
= 2[h | i+ h | i] = 2[h | i+ h | i]
= 4Reh | i

Therefore, if k k = k k = 1 it follows that

|Reh | i|
4

©k + k2 + k k2ª =
4

©
2k k2 + 2k k2ª =

By replacing be where is chosen so that h | i is real, we find

|h | i| for all k k = k k = 1

Hence
k k = sup

k k=k k=1
|h | i|

If \ {0} and k k = |h | i| k k2 then, using the Cauchy Schwarz
inequality,

k k = |h | i|
k k2

k k
k k k k (14.23)

This implies |h | i| = k kk k and forces equality in the Cauchy Schwarz
inequality. So by Theorem 14.2, and are linearly dependent, i.e. =
for some C Substituting this into (14.23) shows that | | = k k Since
is self-adjoint,

k k2 = h | i = h | i = h | i = h | i = ¯h | i

which implies that R and therefore, {±k k}
Lemma 14.38 (Invariant subspaces). Let : be a self-adjoint
operator and be a — invariant subspace of i.e. ( ) Then
is also a — invariant subspace, i.e. ( )

Proof. Let and then and hence

0 = h | i = h | i for all

Thus
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14.3 Compact Operators on a Hilbert Space

In this section let and be Hilbert spaces and := { : k k 1}
be the unit ball in Recall from Definition 11.16 that a bounded operator,
: is compact i ( ) is compact in Equivalently, for all

bounded sequences { } =1 the sequence { } =1 has a convergent
subsequence in Because of Theorem 11.15, if dim( ) = and :
is invertible, then is not compact.

Definition 14.39. : is said to have finite rank if Ran( )
is finite dimensional.

The following result is a simple consequence of Corollaries 11.13 and 11.14.

Corollary 14.40. If : is a finite rank operator, then is compact.
In particular if either dim( ) or dim( ) then any bounded operator
: is finite rank and hence compact.

Lemma 14.41. Let K := K( ) denote the compact operators from to
Then K( ) is a norm closed subspace of ( )

Proof. The fact that K is a vector subspace of ( ) will be left to the
reader. To finish the proof, we must show that ( ) is compact if
there exists K( ) such that lim k k = 0
First Proof. Given 0 choose = ( ) such that k k

Using the fact that is precompact, choose a finite subset such
that min k k for all ( ) Then for = 0 ( )
and

k k = k( ) 0 + ( 0 ) + ( ) k
2 + k 0 k

Therefore min k k 3 which shows ( ) is 3 bounded for all
0 ( ) is totally bounded and hence precompact.
Second Proof. Suppose { } =1 is a bounded sequence in By com-

pactness, there is a subsequence
©

1
ª

=1
of { } =1 such that

©
1
1
ª

=1
is convergent in Working inductively, we may construct subsequences

{ } =1

©
1
ª

=1

©
2
ª

=1
· · · { } =1

such that { } =1 is convergent in for each By the usual Cantor’s
diagonalization procedure, let := then { } =1 is a subsequence of
{ } =1 such that { } =1 is convergent for all Since

k k k( ) k+ k ( )k+ k( ) )k
2 k k+ k ( )k

lim sup k k 2 k k 0 as

which shows { } =1 is Cauchy and hence convergent.
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Proposition 14.42. A bounded operator : is compact i there
exists finite rank operators, : such that k k 0 as

Proof. Since ( ) is compact it contains a countable dense subset and
from this it follows that ( ) is a separable subspace of Let { } be an
orthonormal basis for ( ) and

=
X
=1

h | i

be the orthogonal projection of onto span{ } =1 Then lim k
k = 0 for all ( ) Define := — a finite rank operator on
For sake of contradiction suppose that

lim sup k k = 0

in which case there exists such that k( ) k for all
Since is compact, by passing to a subsequence if necessary, we may assume
{ } =1 is convergent in Letting := lim

k( ) k = k(1 ) k
k(1 )( )k+ k(1 ) k
k k+ k(1 ) k 0 as

But this contradicts the assumption that is positive and hence we must
have lim k k = 0 i.e. is an operator norm limit of finite rank
operators. The converse direction follows from Corollary 14.40 and Lemma
14.41.

Corollary 14.43. If is compact then so is

Proof. First Proof. Let = be as in the proof of Proposition
14.42, then = is still finite rank. Furthermore, using Proposition
14.16,

k k = k k 0 as

showing is a limit of finite rank operators and hence compact.
Second Proof. Let { } =1 be a bounded sequence in then

k k2 = ( ( )) 2 k ( )k
(14.24)

where is a bound on the norms of the Since { } =1 is also a bounded
sequence, by the compactness of there is a subsequence { 0 } of the { }
such that 0 is convergent and hence by Eq. (14.24), so is the sequence
{ 0 }



14.3 Compact Operators on a Hilbert Space 219

14.3.1 The Spectral Theorem for Self Adjoint Compact Operators

For the rest of this section, K( ) := K( ) will be a self-adjoint
compact operator or S.A.C.O. for short. Because of Proposition 14.42, we
might expect compact operators to behave very much like finite dimensional
matrices. This is typically the case as we will see below.

Example 14.44 (Model S.A.C.O.). Let = 2 and be the diagonal matrix

=

1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...
...
. . .
. . .

where lim | | = 0 and R Then is a self-adjoint compact opera-
tor. This assertion was proved in Example 11.17 above.

The main theorem (Theorem 14.46) of this subsection states that up to
unitary equivalence, Example 14.44 is essentially the most general example of
an S.A.C.O.

Theorem 14.45. Let be a S.A.C.O., then either = k k or = k k
is an eigenvalue of

Proof.Without loss of generality we may assume that is non-zero since
otherwise the result is trivial. By Theorem 14.37, there exists such
that k k = 1 and

|h | i|
k k2 = |h | i| k k as (14.25)

By passing to a subsequence if necessary, we may assume that :=
lim h | i exists and {±k k} By passing to a further subse-
quence if necessary, we may assume, using the compactness of that
is convergent as well. We now compute:

0 k k2 = k k2 2 h | i+ 2

2 2 h | i+ 2

2 2 2 + 2 = 0 as

Hence
0 as (14.26)

and therefore
:= lim =

1
lim

exists. By the continuity of the inner product, k k = 1 6= 0 By passing to the
limit in Eq. (14.26) we find that =
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Theorem 14.46 (Compact Operator Spectral Theorem). Suppose that
: is a non-zero S.A.C.O., then

1. there exists at least one eigenvalue {±k k}
2. There are at most countable many non-zero eigenvalues, { } =1 where

= is allowed. (Unless is finite rank (i.e. dimRan ( ) )
will be infinite.)

3. The ’s (including multiplicities) may be arranged so that | | | +1|
for all If = then lim | | = 0 (In particular any eigenspace
for with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors { } =1 can be chosen to be an O.N. set such that =
span{ } Nul( )

5. Using the { } =1 above,

=
X
=1

h | i for all

6. The spectrum of is, ( ) = {0} { : + 1}
Proof. We will find ’s and ’s recursively. Let 1 {±k k} and

1 such that 1 = 1 1 as in Theorem 14.45. Take 1 = span( 1)
so ( 1) 1 By Lemma 14.38, 1 1 Define 1 : 1 1

via 1 = |
1
Then 1 is again a compact operator. If 1 = 0 we are

done. If 1 6= 0 by Theorem 14.45 there exists 2 {±k k1} and 2 1

such that k 2k = 1 and 1 2 = 2 = 2 2 Let 2 := span( 1 2)
Again ( 2) 2 and hence 2 := |

2
: 2 2 is compact. Again

if 2 = 0 we are done. If 2 6= 0. Then by Theorem 14.45 there exists
3 {±k k2} and 3 2 such that k 3k = 1 and 2 3 = 3 = 3 3

Continuing this way indefinitely or until we reach a point where = 0, we
construct a sequence { } =1 of eigenvalues and orthonormal eigenvectors
{ } =1 such that | | | +1| with the further property that

| | = sup
{ 1 2 1}

k k
k k (14.27)

If = then lim | | = 0 for if not there would exist 0 such that
| | 0 for all In this case { } =1 is sequence in bounded by 1

By compactness of there exists a subsequence such that =
is convergent. But this is impossible since { } is an orthonormal set. Hence
we must have that = 0 Let := span{ } =1 with = possible. Then
( ) and hence ( ) Using Eq. (14.27),

k | k k | k = | | 0 as

showing | 0. Define 0 to be orthogonal projection onto Then
for
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= 0 + (1 0) = 0 +
X
=1

h | i

and

= 0 +
X
=1

h | i =
X
=1

h | i

Since { } ( ) and ( ) is closed, it follows that 0 ( ) and hence
{ } =1 {0} ( ) Suppose that { } =1 {0} and let be the
distance between and { } =1 {0} Notice that 0 because lim =
0 A few simple computations show that:

( ) =
X
=1

h | i( ) 0

( ) 1 exists,

( ) 1 =
X
=1

h | i( ) 1 1
0

and

k( ) 1 k2 =
X
=1

|h | i|2 1

| |2 +
1

| |2 k 0 k2

µ
1
¶2ÃX

=1

|h | i|2 + k 0 k2
!
=
1
2
k k2

We have thus shown that ( ) 1 exists, k( ) 1k 1 and
hence ( )

Theorem 14.47 (Structure of Compact Operators). Let :
be a compact operator. Then there exists N { } orthonormal subsets
{ } =1 and { } =1 and a sequences { } =1 R+ such that
1 2 lim = 0 if = k k 1 for all and

=
X
=1

h | i for all (14.28)

Proof. Since is a selfadjoint compact operator, Theorem 14.46 im-
plies there exists an orthonormal set { } =1 and positive numbers
{ } =1 such that

=
X
=1

h | i for all
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Let be the positive square root of defined by

:=
X
=1

p
h | i for all

A simple computation shows, 2 = and therefore,

k k2 = h | i = | 2
®

= h | i = h | i = k k2

for all Hence we may define a unitary operator, : Ran( ) Ran( )
by the formula

= for all

We then have

= =
X
=1

p
h | i (14.29)

which proves the result with := and =
It is instructive to find explicitly and to verify Eq. (14.29) by bruit

force. Since =
1 2

= 1 2 = 1 2 = 1 2

and
h | i = h | i =

This verifies that { } =1 is an orthonormal set. Moreover,

X
=1

p
h | i =

X
=1

p
h | i 1 2

=
X
=1

h | i =

since
P

=1h | i = where is orthogonal projection onto Nul( )
Second Proof. Let = | | be the polar decomposition of Then

| | is self-adjoint and compact, by Corollary 37.12, and hence by Theorem
14.46 there exists an orthonormal basis { } =1 for Nul(| |) = Nul( )
such that | | = 1 2 and lim = 0 if = For

= | |
X
=1

h | i =
X
=1

h | i | | =
X
=1

h | i

which is Eq. (14.28) with :=
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14.4 Weak Convergence

Suppose is an infinite dimensional Hilbert space and { } =1 is an ortho-
normal subset of Then, by Eq. (14.1), k k2 = 2 for all 6= and in
particular, { } =1 has no convergent subsequences. From this we conclude
that := { : k k 1} the closed unit ball in is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on having the property that is compact.

Definition 14.48. Let ( k·k) be a Banach space and be its continu-
ous dual. The weak topology, on is the topology generated by If
{ } =1 is a sequence we will write as to mean that

in the weak topology.

Because = ( ) k·k := ({k ·k : } it is harder for a
function : F to be continuous in the — topology than in the norm
topology, k·k In particular if : F is a linear functional which is —
continuous, then is k·k — continuous and hence

Exercise 14.10. Show the vector space operations of are continuous in the
weak topology, i.e. show:

1. ( ) × + is ( ) — continuous and
2. ( ) F× is ( F ) — continuous.

Proposition 14.49. Let { } =1 be a sequence, then as
i ( ) = lim ( ) for all

Proof. By definition of we have i for all
and 0 there exists an N such that | ( ) ( )| for all
and This later condition is easily seen to be equivalent to ( ) =
lim ( ) for all
The topological space ( ) is still Hausdor as follows from the Hahn

Banach Theorem, see Theorem 7.26. For the moment we will concentrate
on the special case where = is a Hilbert space in which case =
{ := h·| i : } see Theorem 14.15. If and := 6= 0
then

0 := k k2 = ( ) = ( ) ( )

Thus

:= { : | ( ) ( )| 2} and
:= { : | ( ) ( )| 2}

are disjoint sets from which contain and respectively. This shows that
( ) is a Hausdor space. In particular, this shows that weak limits are
unique if they exist.
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Remark 14.50. Suppose that is an infinite dimensional Hilbert space
{ } =1 is an orthonormal subset of Then Bessel’s inequality (Propo-
sition 14.18) implies 0 as This points out the fact
that if as it is no longer necessarily true that
k k = lim k k However we do always have k k lim inf k k
because,

k k2 = lim h | i lim inf [k k k k] = k k lim inf k k

Proposition 14.51. Let be a Hilbert space, be an orthonormal
basis for and { } =1 be a bounded sequence, then the following are
equivalent:

1. as
2. h | i = lim h | i for all
3. h | i = lim h | i for all
Moreover, if := lim h | i exists for all then

P | |2
and :=

P
as

Proof. 1. = 2. This is a consequence of Theorem 14.15 and Proposition
14.49. 2. = 3. is trivial. 3. = 1. Let := sup k k and 0 denote the
algebraic span of Then for and 0

|h | i| |h | i|+ |h | i| |h | i|+ 2 k k
Passing to the limit in this equation implies lim sup |h | i|
2 k k which shows lim sup |h | i| = 0 since 0 is dense in

To prove the last assertion, let Then by Bessel’s inequality
(Proposition 14.18),X

| |2 = lim
X

|h | i|2 lim inf k k2 2

Since was arbitrary, we conclude that
P | |2 and

hence we may define :=
P

By construction we have

h | i = = lim h | i for all

and hence as by what we have just proved.

Theorem 14.52. Suppose { } =1 is a bounded sequence in a Hilbert space,
Then there exists a subsequence := of { } =1 and such

that as

Proof. This is a consequence of Proposition 14.51 and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise 14.11.
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Theorem 14.53 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
is a separable Hilbert space, := { : k k 1} is the closed unit ball

in and { } =1 is an orthonormal basis for Then

( ) :=
X
=1

1

2
|h | i| (14.30)

defines a metric on which is compatible with the weak topology on :=
( ) = { : } Moreover ( ) is a compact metric space. (This
theorem will be extended to Banach spaces, see Theorems 35.14 and 35.15
below.)

Proof. The routine check that is a metric is left to the reader. Let
be the topology on induced by For any and N the map

h | i = h | i h | i is continuous and since the sum in
Eq. (14.30) is uniformly convergent for it follows that ( )
is — continuous. This implies the open balls relative to are contained in
and therefore For the converse inclusion, let ( ) =

h | i be an element of and for N let :=
P

=1h | i Then
=
P

=1 h | i is continuous, being a finite linear combination of
the which are easily seen to be — continuous. Because as
it follows that

sup | ( ) ( )| = k k 0 as

Therefore | is — continuous as well and hence = ( | : )
The last assertion follows directly from Theorem 14.52 and the fact that

sequential compactness is equivalent to compactness for metric spaces.

14.5 Supplement 1: Converse of the Parallelogram Law

Proposition 14.54 (Parallelogram Law Converse). If ( k·k) is a
normed space such that Eq. (14.2) holds for all then there exists
a unique inner product on h·|·i such that k k :=ph | i for all In this
case we say that k·k is a Hilbertian norm.
Proof. If k·k is going to come from an inner product h·|·i it follows from

Eq. (14.1) that
2Reh | i = k + k2 k k2 k k2

and
2Reh | i = k k2 k k2 k k2

Subtracting these two equations gives the “polarization identity,”

4Reh | i = k + k2 k k2
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Replacing by in this equation then implies that

4Imh | i = k + k2 k k2
from which we find

h | i = 1

4

X
k + k2 (14.31)

where = {±1 ± } — a cyclic subgroup of 1 C Hence if h·|·i is going to
exists we must define it by Eq. (14.31). Notice that

h | i = 1

4

X
k + k2 = k k2 + k + k2 k k2

= k k2 + ¯̄
1 + |2¯̄ k k2 ¯̄

1 |2 ¯̄ k k2 = k k2
So to finish the proof of (4) we must show that h | i in Eq. (14.31) is an inner
product. Since

4h | i =
X

k + k2 =
X

k ( + ) k2

=
X

k + 2 k2

= k + k2 + k + k2 + k k2 k k2
= k + k2 + k k2 + k k2 k + k2
= 4h | i

it su ces to show h | i is linear for all (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (14.2). To do this we make use of Eq. (14.2) three times to find

k + + k2 = k + k2 + 2k + k2 + 2k k2
= k k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + + k2 + 2k + k2 + 2k k2

2k k2 2k k2 + 2k + k2 + 2k k2
Solving this equation for k + + k2 gives
k + + k2 = k + k2+ k + k2 k k2+ k k2+ k k2 k k2 (14.32)

Using Eq. (14.32), for

4Reh + | i = k + + k2 k + k2
= k + k2 + k + k2 k k2 + k k2 + k k2 k k2¡k k2 + k k2 k k2 + k k2 + k k2 k k2¢
= k + k2 k k2 + k + k2 k k2
= 4Reh | i+ 4Reh | i (14.33)
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Now suppose that then since | | = 1

4h | i = 1

4

X
k + k2 = 1

4

X
k + 1 k2

=
1

4

X
k + k2 = 4 h | i (14.34)

where in the third inequality, the substitution was made in the sum.
So Eq. (14.34) says h± | i = ± h | i and h | i = h | i Therefore

Imh | i = Re ( h | i) = Reh | i

which combined with Eq. (14.33) shows

Imh + | i = Reh | i = Reh | i+Reh | i
= Imh | i+ Imh | i

and therefore (again in combination with Eq. (14.33)),

h + | i = h | i+ h | i for all

Because of this equation and Eq. (14.34) to finish the proof that h | i is
linear, it su ces to show h | i = h | i for all 0 Now if = N
then

h | i = h + ( 1) | i = h | i+ h( 1) | i
so that by induction h | i = h | i Replacing by then shows that
h | i = h 1 | i so that h 1 | i = 1h | i and so if N we find

h | i = h 1 | i = h | i

so that h | i = h | i for all 0 and Q By continuity, it now follows
that h | i = h | i for all 0

14.6 Supplement 2. Non-complete inner product spaces

Part of Theorem 14.24 goes through when is a not necessarily complete
inner product space. We have the following proposition.

Proposition 14.55. Let ( h·|·i) be a not necessarily complete inner product
space and be an orthonormal set. Then the following two conditions
are equivalent:

1. =
P h | i for all

228 14 Hilbert Spaces Basics

2. k k2 = P |h | i|2 for all .

Moreover, either of these two conditions implies that is a maximal
orthonormal set. However being a maximal orthonormal set is not
su cient to conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 14.24, 1) implies 2). For 2) implies 1)
let and consider°°°°° X

h | i
°°°°°
2

= k k2 2
X

|h | i|2 +
X

|h | i|2

= k k2
X

|h | i|2

Since k k2 = P |h | i|2 it follows that for every 0 there exists

such that for all such that°°°°° X
h | i

°°°°°
2

= k k2
X

|h | i|2

showing that =
P h | i Suppose = ( 1 2 ) If 2)

is valid then k k2 = 0 i.e. = 0 So is maximal. Let us now construct
a counter example to prove the last assertion. Take = Span{ } =1 2

and let ˜ = 1 ( + 1) +1 for = 1 2 Applying Gramn-Schmidt to
{˜ } =1 we construct an orthonormal set = { } =1 I now claim
that is maximal. Indeed if = ( 1 2 ) then
for all i.e.

0 = h |˜ i = 1 ( + 1) +1

Therefore +1 = ( + 1)
1

1 for all Since Span{ } =1 = 0 for
some su ciently large and therefore 1 = 0 which in turn implies that
= 0 for all So = 0 and hence is maximal in On the other hand,

is not maximal in 2 In fact the above argument shows that in 2 is given
by the span of = (1 1

2
1
3

1
4

1
5 ) Let be the orthogonal projection of

2 onto the Span( ) = Then

X
=1

h | i = =
h | i
k k2

so that
P
=1

h | i = i Span( ) = 2 For example if =

(1 0 0 ) (or more generally for = for any ) and henceP
=1
h | i 6=
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14.7 Exercises

Exercise 14.11. Prove Theorem 14.52. Hint: Let 0 := span { : N}
— a separable Hilbert subspace of Let { } =1 0 be an orthonormal
basis and use Cantor’s diagonalization argument to find a subsequence :=

such that := lim h | i exists for all N Finish the proof by
appealing to Proposition 14.51.

Exercise 14.12. Suppose that { } =1 and as
Show as (i.e. lim k k = 0) i lim k k = k k

Exercise 14.13 (Banach-Saks). Suppose that { } =1

as and := sup k k 4 Show there exists a subsequence,
= such that

lim

°°°°° 1 X
=1

°°°°° = 0
i.e. 1

P
=1 as Hints: 1. show it su ces to assume = 0

and then choose { } =1 so that |h | i| 1 (or even smaller if you like)
for all

Exercise 14.14 (The Mean Ergodic Theorem). Let : be a
unitary operator on a Hilbert space = Nul( ) = be orthogo-
nal projection onto and = 1

P 1
=0 Show strongly,

i.e. lim = for all Hints: 1. verify the result for
Nul( ) and Ran( ) 2. show Nul( ) = Nul( ) 3.

finish the result with a limiting argument making use of items 1. and 2. and
Lemma 14.17.

4 The assumption that is superfluous because of the “uniform boundedness
principle,” see Theorem 35.8 below.


