Approximation Theorems and Convolutions

22.1 Density Theorems

In this section, (X, \mathcal{M}, μ) will be a measure space \mathcal{A} will be a subalgebra of \mathcal{M}.

Notation 22.1 Suppose (X, \mathcal{M}, μ) is a measure space and $\mathcal{A} \subset \mathcal{M}$ is a subalgebra of \mathcal{M}. Let $\mathbb{S}(\mathcal{A})$ denote those simple functions $\phi: X \rightarrow \mathbb{C}$ such that $\phi^{-1}(\{\lambda\}) \in \mathcal{A}$ for all $\lambda \in \mathbb{C}$ and let $\mathbb{S}_{f}(\mathcal{A}, \mu)$ denote those $\phi \in \mathbb{S}(\mathcal{A})$ such that $\mu(\phi \neq 0)<\infty$.

Remark 22.2. For $\phi \in \mathbb{S}_{f}(\mathcal{A}, \mu)$ and $p \in[1, \infty),|\phi|^{p}=\sum_{z \neq 0}|z|^{p} 1_{\{\phi=z\}}$ and hence

$$
\begin{equation*}
\int|\phi|^{p} d \mu=\sum_{z \neq 0}|z|^{p} \mu(\phi=z)<\infty \tag{22.1}
\end{equation*}
$$

so that $\mathbb{S}_{f}(\mathcal{A}, \mu) \subset L^{p}(\mu)$. Conversely if $\phi \in \mathbb{S}(\mathcal{A}) \cap L^{p}(\mu)$, then from Eq. (22.1) it follows that $\mu(\phi=z)<\infty$ for all $z \neq 0$ and therefore $\mu(\phi \neq 0)<\infty$. Hence we have shown, for any $1 \leq p<\infty$,

$$
\mathbb{S}_{f}(\mathcal{A}, \mu)=\mathbb{S}(\mathcal{A}) \cap L^{p}(\mu)
$$

Lemma 22.3 (Simple Functions are Dense). The simple functions, $\mathbb{S}_{f}(\mathcal{M}, \mu)$, form a dense subspace of $L^{p}(\mu)$ for all $1 \leq p<\infty$.

Proof. Let $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ be the simple functions in the approximation Theorem 18.42. Since $\left|\phi_{n}\right| \leq|f|$ for all $n, \phi_{n} \in \mathbb{S}_{f}(\mathcal{M}, \mu)$ and

$$
\left|f-\phi_{n}\right|^{p} \leq\left(|f|+\left|\phi_{n}\right|\right)^{p} \leq 2^{p}|f|^{p} \in L^{1}(\mu)
$$

Therefore, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int\left|f-\phi_{n}\right|^{p} d \mu=\int \lim _{n \rightarrow \infty}\left|f-\phi_{n}\right|^{p} d \mu=0
$$

The goal of this section is to find a number of other dense subspaces of $L^{p}(\mu)$ for $p \in[1, \infty)$. The next theorem is the key result of this section.

Theorem 22.4 (Density Theorem). Let $p \in[1, \infty),(X, \mathcal{M}, \mu)$ be a measure space and M be an algebra of bounded $\mathbb{F}-\operatorname{valued}(\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C})$ measurable functions such that

1. $M \subset L^{p}(\mu, \mathbb{F})$ and $\sigma(M)=\mathcal{M}$.
2. There exists $\psi_{k} \in M$ such that $\psi_{k} \rightarrow 1$ boundedly.
3. If $\mathbb{F}=\mathbb{C}$ we further assume that M is closed under complex conjugation.

Then to every function $f \in L^{p}(\mu, \mathbb{F})$, there exists $\phi_{n} \in M$ such that $\lim _{n \rightarrow \infty}\left\|f-\phi_{n}\right\|_{L^{p}(\mu)}=0$, i.e. M is dense in $L^{p}(\mu, \mathbb{F})$.

Proof. Fix $k \in \mathbb{N}$ for the moment and let \mathcal{H} denote those bounded \mathcal{M} measurable functions, $f: X \rightarrow \mathbb{F}$, for which there exists $\left\{\phi_{n}\right\}_{n=1}^{\infty} \subset M$ such that $\lim _{n \rightarrow \infty}\left\|\psi_{k} f-\phi_{n}\right\|_{L^{p}(\mu)}=0$. A routine check shows \mathcal{H} is a subspace of $\ell^{\infty}(\mathcal{M}, \mathbb{F})$ such that $1 \in \mathcal{H}, M \subset \mathcal{H}$ and \mathcal{H} is closed under complex conjugation if $\mathbb{F}=\mathbb{C}$. Moreover, \mathcal{H} is closed under bounded convergence. To see this suppose $f_{n} \in \mathcal{H}$ and $f_{n} \rightarrow f$ boundedly. Then, by the dominated convergence theorem, $\lim _{n \rightarrow \infty}\left\|\psi_{k}\left(f-f_{n}\right)\right\|_{L^{p}(\mu)}=0 .{ }^{1}$ (Take the dominating function to be $g=\left[2 C\left|\psi_{k}\right|\right]^{p}$ where C is a constant bounding all of the $\left\{\left|f_{n}\right|\right\}_{n=1}^{\infty}$.) We may now choose $\phi_{n} \in M$ such that $\left\|\phi_{n}-\psi_{k} f_{n}\right\|_{L^{p}(\mu)} \leq \frac{1}{n}$ then

$$
\begin{align*}
& \lim \sup _{n \rightarrow \infty}\left\|\psi_{k} f-\phi_{n}\right\|_{L^{p}(\mu)} \leq \lim \sup _{n \rightarrow \infty}\left\|\psi_{k}\left(f-f_{n}\right)\right\|_{L^{p}(\mu)} \\
&+\lim \sup _{n \rightarrow \infty}\left\|\psi_{k} f_{n}-\phi_{n}\right\|_{L^{p}(\mu)}=0 \tag{22.2}
\end{align*}
$$

which implies $f \in \mathcal{H}$. An application of Dynkin's Multiplicative System Theorem 18.51 if $\mathbb{F}=\mathbb{R}$ or Theorem 18.52 if $\mathbb{F}=\mathbb{C}$ now shows \mathcal{H} contains all bounded measurable functions on X.

Let $f \in L^{p}(\mu)$ be given. The dominated convergence theorem implies $\lim _{k \rightarrow \infty}\left\|\psi_{k} 1_{\{|f| \leq k\}} f-f\right\|_{L^{p}(\mu)}=0$. (Take the dominating function to be $g=[2 C|f|]^{p}$ where C is a bound on all of the $\left|\psi_{k}\right|$.) Using this and what we have just proved, there exists $\phi_{k} \in M$ such that

$$
\left\|\psi_{k} 1_{\{|f| \leq k\}} f-\phi_{k}\right\|_{L^{p}(\mu)} \leq \frac{1}{k}
$$

The same line of reasoning used in Eq. (22.2) now implies $\lim _{k \rightarrow \infty}\left\|f-\phi_{k}\right\|_{L^{p}(\mu)}=$ 0.

[^0]Definition 22.5. Let (X, τ) be a topological space and μ be a measure on $\mathcal{B}_{X}=\sigma(\tau)$. A locally integrable function is a Borel measurable function $f: X \rightarrow \mathbb{C}$ such that $\int_{K}|f| d \mu<\infty$ for all compact subsets $K \subset X$. We will write $L_{l o c}^{1}(\mu)$ for the space of locally integrable functions. More generally we say $f \in L_{l o c}^{p}(\mu)$ iff $\left\|1_{K} f\right\|_{L^{p}(\mu)}<\infty$ for all compact subsets $K \subset X$.
Definition 22.6. Let (X, τ) be a topological space. A K-finite measure on X is Borel measure μ such that $\mu(K)<\infty$ for all compact subsets $K \subset X$.

Lebesgue measure on \mathbb{R} is an example of a K-finite measure while counting measure on \mathbb{R} is not a K-finite measure.

Example 22.7. Suppose that μ is a K-finite measure on $\mathcal{B}_{\mathbb{R}^{d}}$. An application of Theorem 22.4 shows $C_{c}(\mathbb{R}, \mathbb{C})$ is dense in $L^{p}\left(\mathbb{R}^{d}, \mathcal{B}_{\mathbb{R}^{d}}, \mu ; \mathbb{C}\right)$. To apply Theorem 22.4, let $M:=C_{c}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ and $\psi_{k}(x):=\psi(x / k)$ where $\psi \in C_{c}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ with $\psi(x)=1$ in a neighborhood of 0 . The proof is completed by showing $\sigma(M)=$ $\sigma\left(C_{c}\left(\mathbb{R}^{d}, \mathbb{C}\right)\right)=\mathcal{B}_{\mathbb{R}^{d}}$, which follows directly from Lemma 18.57.

We may also give a more down to earth proof as follows. Let $x_{0} \in \mathbb{R}^{d}, R>$ $0, A:=B\left(x_{0}, R\right)^{c}$ and $f_{n}(x):=d_{A}^{1 / n}(x)$. Then $f_{n} \in M$ and $f_{n} \rightarrow 1_{B\left(x_{0}, R\right)}$ as $n \rightarrow \infty$ which shows $1_{B\left(x_{0}, R\right)}$ is $\sigma(M)$-measurable, i.e. $B\left(x_{0}, R\right) \in \sigma(M)$. Since $x_{0} \in \mathbb{R}^{d}$ and $R>0$ were arbitrary, $\sigma(M)=\mathcal{B}_{\mathbb{R}^{d}}$.

More generally we have the following result.
Theorem 22.8. Let (X, τ) be a second countable locally compact Hausdorff space and $\mu: \mathcal{B}_{X} \rightarrow[0, \infty]$ be a K-finite measure. Then $C_{c}(X)$ (the space of continuous functions with compact support) is dense in $L^{p}(\mu)$ for all $p \in$ $[1, \infty)$. (See also Proposition 25.23 below.)

Proof. Let $M:=C_{c}(X)$ and use Item 3. of Lemma 18.57 to find functions $\psi_{k} \in M$ such that $\psi_{k} \rightarrow 1$ to boundedly as $k \rightarrow \infty$. The result now follows from an application of Theorem 22.4 along with the aid of item 4 . of Lemma 18.57

Exercise 22.1. Show that $B C(\mathbb{R}, \mathbb{C})$ is not dense in $L^{\infty}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m ; \mathbb{C}\right)$. Hence the hypothesis that $p<\infty$ in Theorem 22.4 can not be removed.

Corollary 22.9. Suppose $X \subset \mathbb{R}^{n}$ is an open set, \mathcal{B}_{X} is the Borel σ-algebra on X and μ be a K-finite measure on $\left(X, \mathcal{B}_{X}\right)$. Then $C_{c}(X)$ is dense in $L^{p}(\mu)$ for all $p \in[1, \infty)$.

Corollary 22.10. Suppose that X is a compact subset of \mathbb{R}^{n} and μ is a finite measure on $\left(X, \mathcal{B}_{X}\right)$, then polynomials are dense in $L^{p}(X, \mu)$ for all $1 \leq p<$ ∞.

Proof. Consider X to be a metric space with usual metric induced from \mathbb{R}^{n}. Then X is a locally compact separable metric space and therefore
$C_{c}(X, \mathbb{C})=C(X, \mathbb{C})$ is dense in $L^{p}(\mu)$ for all $p \in[1, \infty)$. Since, by the dominated convergence theorem, uniform convergence implies $L^{p}(\mu)$ - convergence, it follows from the Weierstrass approximation theorem (see Theorem 8.34 and Corollary 8.36 or Theorem 12.31 and Corollary 12.32) that polynomials are also dense in $L^{p}(\mu)$.

Lemma 22.11. Let (X, τ) be a second countable locally compact Hausdorff space and $\mu: \mathcal{B}_{X} \rightarrow[0, \infty]$ be a K-finite measure on X. If $h \in L_{\text {loc }}^{1}(\mu)$ is a function such that

$$
\begin{equation*}
\int_{X} f h d \mu=0 \text { for all } f \in C_{c}(X) \tag{22.3}
\end{equation*}
$$

then $h(x)=0$ for μ - a.e. x. (See also Corollary 25.26 below.)
Proof. Let $d \nu(x)=|h(x)| d x$, then ν is a K-finite measure on X and hence $C_{c}(X)$ is dense in $L^{1}(\nu)$ by Theorem 22.8. Notice that

$$
\begin{equation*}
\int_{X} f \cdot \operatorname{sgn}(h) d \nu=\int_{X} f h d \mu=0 \text { for all } f \in C_{c}(X) \tag{22.4}
\end{equation*}
$$

Let $\left\{K_{k}\right\}_{k=1}^{\infty}$ be a sequence of compact sets such that $K_{k} \uparrow X$ as in Lemma 11.23. Then $1_{K_{k}} \overline{\operatorname{sgn}(h)} \in L^{1}(\nu)$ and therefore there exists $f_{m} \in C_{c}(X)$ such that $f_{m} \rightarrow 1_{K_{k}} \overline{\operatorname{sgn}(h)}$ in $L^{1}(\nu)$. So by Eq. (22.4),

$$
\nu\left(K_{k}\right)=\int_{X} 1_{K_{k}} d \nu=\lim _{m \rightarrow \infty} \int_{X} f_{m} \operatorname{sgn}(h) d \nu=0
$$

Since $K_{k} \uparrow X$ as $k \rightarrow \infty, 0=\nu(X)=\int_{X}|h| d \mu$, i.e. $h(x)=0$ for μ - a.e. x.
As an application of Lemma 22.11 and Example 12.34, we will show that the Laplace transform is injective.

Theorem 22.12 (Injectivity of the Laplace Transform). For $f \in$ $L^{1}([0, \infty), d x)$, the Laplace transform of f is defined by

$$
\mathcal{L} f(\lambda):=\int_{0}^{\infty} e^{-\lambda x} f(x) d x \text { for all } \lambda>0
$$

If $\mathcal{L} f(\lambda):=0$ then $f(x)=0$ for m-a.e. x.
Proof. Suppose that $f \in L^{1}([0, \infty), d x)$ such that $\mathcal{L} f(\lambda) \equiv 0$. Let $g \in$ $C_{0}([0, \infty), \mathbb{R})$ and $\varepsilon>0$ be given. By Example 12.34 we may choose $\left\{a_{\lambda}\right\}_{\lambda>0}$ such that $\#\left(\left\{\lambda>0: a_{\lambda} \neq 0\right\}\right)<\infty$ and

$$
\left|g(x)-\sum_{\lambda>0} a_{\lambda} e^{-\lambda x}\right|<\varepsilon \text { for all } x \geq 0
$$

Then

$$
\begin{aligned}
\left|\int_{0}^{\infty} g(x) f(x) d x\right| & =\left|\int_{0}^{\infty}\left(g(x)-\sum_{\lambda>0} a_{\lambda} e^{-\lambda x}\right) f(x) d x\right| \\
& \leq \int_{0}^{\infty}\left|g(x)-\sum_{\lambda>0} a_{\lambda} e^{-\lambda x}\right||f(x)| d x \leq \varepsilon\|f\|_{1} .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, it follows that $\int_{0}^{\infty} g(x) f(x) d x=0$ for all $g \in$ $C_{0}([0, \infty), \mathbb{R})$. The proof is finished by an application of Lemma 22.11 .

Here is another variant of Theorem 22.8.
Theorem 22.13. Let (X, d) be a metric space, τ_{d} be the topology on X generated by d and $\mathcal{B}_{X}=\sigma\left(\tau_{d}\right)$ be the Borel σ-algebra. Suppose $\mu: \mathcal{B}_{X} \rightarrow[0, \infty]$ is a measure which is σ - finite on τ_{d} and let $B C_{f}(X)$ denote the bounded continuous functions on X such that $\mu(f \neq 0)<\infty$. Then $B C_{f}(X)$ is a dense subspace of $L^{p}(\mu)$ for any $p \in[1, \infty)$.

Proof. Let $X_{k} \in \tau_{d}$ be open sets such that $X_{k} \uparrow X$ and $\mu\left(X_{k}\right)<\infty$ and let

$$
\psi_{k}(x)=\min \left(1, k \cdot d_{X_{k}^{c}}(x)\right)=\phi_{k}\left(d_{X_{k}^{c}}(x)\right)
$$

see Figure 22.1 below. It is easily verified that $M:=B C_{f}(X)$ is an algebra,

Fig. 22.1. The plot of ϕ_{n} for $n=1,2$, and 4 . Notice that $\phi_{n} \rightarrow 1_{(0, \infty)}$.
$\psi_{k} \in M$ for all k and $\psi_{k} \rightarrow 1$ boundedly as $k \rightarrow \infty$. Given $V \in \tau$ and $k, n \in \mathbb{N}$,let

$$
f_{k, n}(x):=\min \left(1, n \cdot d_{\left(V \cap X_{k}\right)^{c}}(x)\right)
$$

Then $\left\{f_{k, n} \neq 0\right\}=V \cap X_{k}$ so $f_{k, n} \in B C_{f}(X)$. Moreover

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} f_{k, n}=\lim _{k \rightarrow \infty} 1_{V \cap X_{k}}=1_{V}
$$

which shows $V \in \sigma(M)$ and hence $\sigma(M)=\mathcal{B}_{X}$. The proof is now completed by an application of Theorem 22.4.

Exercise 22.2. (BRUCE: Should drop this exercise.) Suppose that (X, d) is a metric space, μ is a measure on $\mathcal{B}_{X}:=\sigma\left(\tau_{d}\right)$ which is finite on bounded measurable subsets of X. Show $B C_{b}(X, \mathbb{R})$, defined in Eq. (19.26), is dense in $L^{p}(\mu)$. Hints: let ψ_{k} be as defined in Eq. (19.27) which incidentally may be used to show $\sigma\left(B C_{b}(X, \mathbb{R})\right)=\sigma(B C(X, \mathbb{R}))$. Then use the argument in the proof of Corollary 18.55 to show $\sigma(B C(X, \mathbb{R}))=\mathcal{B}_{X}$.
Theorem 22.14. Suppose $p \in[1, \infty), \mathcal{A} \subset \mathcal{M}$ is an algebra such that $\sigma(\mathcal{A})=$ \mathcal{M} and μ is σ - finite on \mathcal{A}. Then $\mathbb{S}_{f}(\mathcal{A}, \mu)$ is dense in $L^{p}(\mu)$. (See also Remark 25.7 below.)

Proof. Let $M:=\mathbb{S}_{f}(\mathcal{A}, \mu)$. By assumption there exits $X_{k} \in \mathcal{A}$ such that $\mu\left(X_{k}\right)<\infty$ and $X_{k} \uparrow X$ as $k \rightarrow \infty$. If $A \in \mathcal{A}$, then $X_{k} \cap A \in \mathcal{A}$ and $\mu\left(X_{k} \cap A\right)<\infty$ so that $1_{X_{k} \cap A} \in M$. Therefore $1_{A}=\lim _{k \rightarrow \infty} 1_{X_{k} \cap A}$ is $\sigma(M)$ - measurable for every $A \in \mathcal{A}$. So we have shown that $\mathcal{A} \subset \sigma(M) \subset \mathcal{M}$ and therefore $\mathcal{M}=\sigma(\mathcal{A}) \subset \sigma(M) \subset \mathcal{M}$, i.e. $\sigma(M)=\mathcal{M}$. The theorem now follows from Theorem 22.4 after observing $\psi_{k}:=1_{X_{k}} \in M$ and $\psi_{k} \rightarrow 1$ boundedly.

Theorem 22.15 (Separability of L^{p} - Spaces). Suppose, $p \in[1, \infty), \mathcal{A} \subset$ \mathcal{M} is a countable algebra such that $\sigma(\mathcal{A})=\mathcal{M}$ and μ is $\sigma-$ finite on \mathcal{A}. Then $L^{p}(\mu)$ is separable and

$$
\mathbb{D}=\left\{\sum a_{j} 1_{A_{j}}: a_{j} \in \mathbb{Q}+i \mathbb{Q}, A_{j} \in \mathcal{A} \text { with } \mu\left(A_{j}\right)<\infty\right\}
$$

is a countable dense subset.
Proof. It is left to reader to check \mathbb{D} is dense in $\mathbb{S}_{f}(\mathcal{A}, \mu)$ relative to the $L^{p}(\mu)$ - norm. The proof is then complete since $\mathbb{S}_{f}(\mathcal{A}, \mu)$ is a dense subspace of $L^{p}(\mu)$ by Theorem 22.14.
Example 22.16. The collection of functions of the form $\phi=\sum_{k=1}^{n} c_{k} 1_{\left(a_{k}, b_{k}\right]}$ with $a_{k}, b_{k} \in \mathbb{Q}$ and $a_{k}<b_{k}$ are dense in $L^{p}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m ; \mathbb{C}\right)$ and $L^{p}\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m ; \mathbb{C}\right)$ is separable for any $p \in[1, \infty)$. To prove this simply apply Theorem 22.14 with \mathcal{A} being the algebra on \mathbb{R} generated by the half open intervals $(a, b] \cap \mathbb{R}$ with $a<b$ and $a, b \in \mathbb{Q} \cup\{ \pm \infty\}$, i.e. \mathcal{A} consists of sets of the form $\coprod_{k=1}^{n}\left(a_{k}, b_{k}\right] \cap \mathbb{R}$, where $a_{k}, b_{k} \in \mathbb{Q} \cup\{ \pm \infty\}$.
Exercise 22.3. Show $L^{\infty}\left([0,1], \mathcal{B}_{\mathbb{R}}, m ; \mathbb{C}\right)$ is not separable. Hint: Suppose Γ is a dense subset of $L^{\infty}\left([0,1], \mathcal{B}_{\mathbb{R}}, m ; \mathbb{C}\right)$ and for $\lambda \in(0,1)$, let $f_{\lambda}(x):=$ $1_{[0, \lambda]}(x)$. For each $\lambda \in(0,1)$, choose $g_{\lambda} \in \Gamma$ such that $\left\|f_{\lambda}-g_{\lambda}\right\|_{\infty}<1 / 2$ and then show the map $\lambda \in(0,1) \rightarrow g_{\lambda} \in \Gamma$ is injective. Use this to conclude that Γ must be uncountable.

Corollary 22.17 (Riemann Lebesgue Lemma). Suppose that $f \in L^{1}(\mathbb{R}, m)$, then

$$
\lim _{\lambda \rightarrow \pm \infty} \int_{\mathbb{R}} f(x) e^{i \lambda x} d m(x)=0
$$

22 Approximation Theorems and Convolutions
Proof. By Example 22.16, given $\varepsilon>0$ there exists $\phi=\sum_{k=1}^{n} c_{k} 1_{\left(a_{k}, b_{k}\right]}$ with $a_{k}, b_{k} \in \mathbb{R}$ such that

$$
\int_{\mathbb{R}}|f-\phi| d m<\varepsilon
$$

Notice that

$$
\begin{align*}
\int_{\mathbb{R}} \phi(x) e^{i \lambda x} d m(x) & =\int_{\mathbb{R}} \sum_{k=1}^{n} c_{k} 1_{\left(a_{k}, b_{k}\right]}(x) e^{i \lambda x} d m(x) \tag{22.6}\\
& =\sum_{k=1}^{n} c_{k} \int_{a_{k}}^{b_{k}} e^{i \lambda x} d m(x)=\left.\sum_{k=1}^{n} c_{k} \lambda^{-1} e^{i \lambda x}\right|_{a_{k}} ^{b_{k}} \\
& =\lambda^{-1} \sum_{k=1}^{n} c_{k}\left(e^{i \lambda b_{k}}-e^{i \lambda a_{k}}\right) \rightarrow 0 \text { as }|\lambda| \rightarrow \infty .
\end{align*}
$$

Combining these two equations with

$$
\begin{aligned}
\left|\int_{\mathbb{R}} f(x) e^{i \lambda x} d m(x)\right| & \leq\left|\int_{\mathbb{R}}(f(x)-\phi(x)) e^{i \lambda x} d m(x)\right|+\left|\int_{\mathbb{R}} \phi(x) e^{i \lambda x} d m(x)\right| \\
& \leq \int_{\mathbb{R}}|f-\phi| d m+\left|\int_{\mathbb{R}} \phi(x) e^{i \lambda x} d m(x)\right| \\
& \leq \varepsilon+\left|\int_{\mathbb{R}} \phi(x) e^{i \lambda x} d m(x)\right|
\end{aligned}
$$

we learn that
$\lim \sup _{|\lambda| \rightarrow \infty}\left|\int_{\mathbb{R}} f(x) e^{i \lambda x} d m(x)\right| \leq \varepsilon+\lim \sup _{|\lambda| \rightarrow \infty}\left|\int_{\mathbb{R}} \phi(x) e^{i \lambda x} d m(x)\right|=\varepsilon$.
Since $\varepsilon>0$ is arbitrary, this completes the proof of the Riemann Lebesgue lemma.

Corollary 22.18. Suppose $\mathcal{A} \subset \mathcal{M}$ is an algebra such that $\sigma(\mathcal{A})=\mathcal{M}$ and μ is $\sigma-$ finite on \mathcal{A}. Then for every $B \in \mathcal{M}$ such that $\mu(B)<\infty$ and $\varepsilon>0$ there exists $D \in \mathcal{A}$ such that $\mu(B \triangle D)<\varepsilon$. (See also Remark 25.7 below.)

Proof. By Theorem 22.14, there exists a collection, $\left\{A_{i}\right\}_{i=1}^{n}$, of pairwise disjoint subsets of \mathcal{A} and $\lambda_{i} \in \mathbb{R}$ such that $\int_{X}\left|1_{B}-f\right| d \mu<\varepsilon$ where $f=$ $\sum_{i=1}^{n} \lambda_{i} 1_{A_{i}}$. Let $A_{0}:=X \backslash \cup_{i=1}^{n} A_{i} \in \mathcal{A}$ then

$$
\begin{align*}
& \int_{X}\left|1_{B}-f\right| d \mu=\sum_{i=0}^{n} \int_{A_{i}}\left|1_{B}-f\right| d \mu \\
& \quad=\mu\left(A_{0} \cap B\right)+\sum_{i=1}^{n}\left[\int_{A_{i} \cap B}\left|1_{B}-\lambda_{i}\right| d \mu+\int_{A_{i} \backslash B}\left|1_{B}-\lambda_{i}\right| d \mu\right] \\
& \quad=\mu\left(A_{0} \cap B\right)+\sum_{i=1}^{n}\left[\left|1-\lambda_{i}\right| \mu\left(B \cap A_{i}\right)+\left|\lambda_{i}\right| \mu\left(A_{i} \backslash B\right)\right] \tag{22.5}\\
& \quad \geq \mu\left(A_{0} \cap B\right)+\sum_{i=1}^{n} \min \left\{\mu\left(B \cap A_{i}\right), \mu\left(A_{i} \backslash B\right)\right\}
\end{align*}
$$

where the last equality is a consequence of the fact that $1 \leq\left|\lambda_{i}\right|+\left|1-\lambda_{i}\right|$. Let

$$
\alpha_{i}=\left\{\begin{array}{l}
0 \text { if } \mu\left(B \cap A_{i}\right)<\mu\left(A_{i} \backslash B\right) \\
1 \text { if } \mu\left(B \cap A_{i}\right) \geq \mu\left(A_{i} \backslash B\right)
\end{array}\right.
$$

and $g=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}=1_{D}$ where

$$
D:=\cup\left\{A_{i}: i>0 \& \alpha_{i}=1\right\} \in \mathcal{A}
$$

Equation (22.5) with λ_{i} replaced by α_{i} and f by g implies

$$
\int_{X}\left|1_{B}-1_{D}\right| d \mu=\mu\left(A_{0} \cap B\right)+\sum_{i=1}^{n} \min \left\{\mu\left(B \cap A_{i}\right), \mu\left(A_{i} \backslash B\right)\right\}
$$

The latter expression, by Eq. (22.6), is bounded by $\int_{X}\left|1_{B}-f\right| d \mu<\varepsilon$ and therefore,

$$
\mu(B \triangle D)=\int_{X}\left|1_{B}-1_{D}\right| d \mu<\varepsilon
$$

Remark 22.19. We have to assume that $\mu(B)<\infty$ as the following example shows. Let $X=\mathbb{R}, \mathcal{M}=\mathcal{B}, \mu=m, \mathcal{A}$ be the algebra generated by half open intervals of the form $(a, b]$, and $B=\cup_{n=1}^{\infty}(2 n, 2 n+1]$. It is easily checked that for every $D \in \mathcal{A}$, that $m(B \Delta D)=\infty$.

22.2 Convolution and Young's Inequalities

Throughout this section we will be solely concerned with d-dimensional Lebesgue measure, m, and we will simply write L^{p} for $L^{p}\left(\mathbb{R}^{d}, m\right)$.
Definition 22.20 (Convolution). Let $f, g: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be measurable functions. We define

$$
\begin{equation*}
f * g(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y \tag{22.7}
\end{equation*}
$$

22 Approximation Theorems and Convolutions
whenever the integral is defined, i.e. either $f(x-\cdot) g(\cdot) \in L^{1}\left(\mathbb{R}^{d}, m\right)$ or $f(x-\cdot) g(\cdot) \geq 0$. Notice that the condition that $f(x-\cdot) g(\cdot) \in L^{1}\left(\mathbb{R}^{d}, m\right)$ is equivalent to writing $|f| *|g|(x)<\infty$. By convention, if the integral in Eq. (22.7) is not defined, let $f * g(x):=0$.

Notation 22.21 Given a multi-index $\alpha \in \mathbb{Z}_{+}^{d}$, let $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$,

$$
x^{\alpha}:=\prod_{j=1}^{d} x_{j}^{\alpha_{j}}, \text { and } \partial_{x}^{\alpha}=\left(\frac{\partial}{\partial x}\right)^{\alpha}:=\prod_{j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\right)^{\alpha_{j}}
$$

For $z \in \mathbb{R}^{d}$ and $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, let $\tau_{z} f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be defined by $\tau_{z} f(x)=f(x-z)$.
Remark 22.22 (The Significance of Convolution).

1. Suppose that $f, g \in L^{1}(m)$ are positive functions and let μ be the measure on $\left(\mathbb{R}^{d}\right)^{2}$ defined by

$$
d \mu(x, y):=f(x) g(y) d m(x) d m(y)
$$

Then if $h: \mathbb{R} \rightarrow[0, \infty]$ is a measurable function we have

$$
\begin{aligned}
\int_{\left(\mathbb{R}^{d}\right)^{2}} h(x+y) d \mu(x, y) & =\int_{\left(\mathbb{R}^{d}\right)^{2}} h(x+y) f(x) g(y) d m(x) d m(y) \\
& =\int_{\left(\mathbb{R}^{d}\right)^{2}} h(x) f(x-y) g(y) d m(x) d m(y) \\
& =\int_{\mathbb{R}^{d}} h(x) f * g(x) d m(x)
\end{aligned}
$$

In other words, this shows the measure $(f * g) m$ is the same as $S_{*} \mu$ where $S(x, y):=x+y$. In probability lingo, the distribution of a sum of two "independent" (i.e. product measure) random variables is the the convolution of the individual distributions.
2. Suppose that $L=\sum_{|\alpha| \leq k} a_{\alpha} \partial^{\alpha}$ is a constant coefficient differential operator and suppose that we can solve (uniquely) the equation $L u=g$ in the form

$$
u(x)=K g(x):=\int_{\mathbb{R}^{d}} k(x, y) g(y) d y
$$

where $k(x, y)$ is an "integral kernel." (This is a natural sort of assumption since, in view of the fundamental theorem of calculus, integration is the inverse operation to differentiation.) Since $\tau_{z} L=L \tau_{z}$ for all $z \in \mathbb{R}^{d}$, (this is another way to characterize constant coefficient differential operators) and $L^{-1}=K$ we should have $\tau_{z} K=K \tau_{z}$. Writing out this equation then says

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} k(x-z, y) g(y) d y & =(K g)(x-z)=\tau_{z} K g(x)=\left(K \tau_{z} g\right)(x) \\
& =\int_{\mathbb{R}^{d}} k(x, y) g(y-z) d y=\int_{\mathbb{R}^{d}} k(x, y+z) g(y) d y
\end{aligned}
$$

Since g is arbitrary we conclude that $k(x-z, y)=k(x, y+z)$. Taking $y=0$ then gives

$$
k(x, z)=k(x-z, 0)=: \rho(x-z) .
$$

We thus find that $K g=\rho * g$. Hence we expect the convolution operation to appear naturally when solving constant coefficient partial differential equations. More about this point later.
Proposition 22.23. Suppose $p \in[1, \infty], f \in L^{1}$ and $g \in L^{p}$, then $f * g(x)$ exists for almost every $x, f * g \in L^{p}$ and

$$
\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}
$$

Proof. This follows directly from Minkowski's inequality for integrals, Theorem 21.27.
Proposition 22.24. Suppose that $p \in[1, \infty)$, then $\tau_{z}: L^{p} \rightarrow L^{p}$ is an isometric isomorphism and for $f \in L^{p}, z \in \mathbb{R}^{d} \rightarrow \tau_{z} f \in L^{p}$ is continuous.

Proof. The assertion that $\tau_{z}: L^{p} \rightarrow L^{p}$ is an isometric isomorphism follows from translation invariance of Lebesgue measure and the fact that $\tau_{-z} \circ \tau_{z}=i d$. For the continuity assertion, observe that

$$
\left\|\tau_{z} f-\tau_{y} f\right\|_{p}=\left\|\tau_{-y}\left(\tau_{z} f-\tau_{y} f\right)\right\|_{p}=\left\|\tau_{z-y} f-f\right\|_{p}
$$

from which it follows that it is enough to show $\tau_{z} f \rightarrow f$ in L^{p} as $z \rightarrow 0 \in \mathbb{R}^{d}$. When $f \in C_{c}\left(\mathbb{R}^{d}\right), \tau_{z} f \rightarrow f$ uniformly and since the $K:=\cup_{|z| \leq 1} \operatorname{supp}\left(\tau_{z} f\right)$ is compact, it follows by the dominated convergence theorem that $\tau_{z} f \rightarrow f$ in L^{p} as $z \rightarrow 0 \in \mathbb{R}^{d}$. For general $g \in L^{p}$ and $f \in C_{c}\left(\mathbb{R}^{d}\right)$,

$$
\begin{gathered}
\left\|\tau_{z} g-g\right\|_{p} \leq\left\|\tau_{z} g-\tau_{z} f\right\|_{p}+\left\|\tau_{z} f-f\right\|_{p}+\|f-g\|_{p} \\
=\left\|\tau_{z} f-f\right\|_{p}+2\|f-g\|_{p}
\end{gathered}
$$

and thus

$$
\lim \sup _{z \rightarrow 0}\left\|\tau_{z} g-g\right\|_{p} \leq \lim \sup _{z \rightarrow 0}\left\|\tau_{z} f-f\right\|_{p}+2\|f-g\|_{p}=2\|f-g\|_{p}
$$

Because $C_{c}\left(\mathbb{R}^{d}\right)$ is dense in L^{p}, the term $\|f-g\|_{p}$ may be made as small as we please.
Exercise 22.4. Compute the operator norm, $\left\|\tau_{z}-I\right\|_{L\left(L^{p}(m)\right)}$, of $\tau_{z}-I$ and use this to show $z \in \mathbb{R}^{d} \rightarrow \tau_{z} \in L\left(L^{p}(m)\right)$ is not continuous.
Definition 22.25. Suppose that (X, τ) is a topological space and μ is a measure on $\mathcal{B}_{X}=\sigma(\tau)$. For a measurable function $f: X \rightarrow \mathbb{C}$ we define the essential support of f by
$\operatorname{supp}_{\mu}(f)=\{x \in X: \mu(\{y \in V: f(y) \neq 0\}\})>0 \forall$ neighborhoods V of $\left.x\right\}$.
Equivalently, $x \notin \operatorname{supp}_{\mu}(f)$ iff there exists an open neighborhood V of x such that $1_{V} f=0$ a.e.

It is not hard to show that if $\operatorname{supp}(\mu)=X$ (see Definition 21.41) and $f \in C(X)$ then $\operatorname{supp}_{\mu}(f)=\operatorname{supp}(f):=\overline{\{f \neq 0\}}$, see Exercise 22.7.

Lemma 22.26. Suppose (X, τ) is second countable and $f: X \rightarrow \mathbb{C}$ is a measurable function and μ is a measure on \mathcal{B}_{X}. Then $X:=U \backslash \operatorname{supp}_{\mu}(f)$ may be described as the largest open set W such that $f 1_{W}(x)=0$ for μ - a.e. x. Equivalently put, $C:=\operatorname{supp}_{\mu}(f)$ is the smallest closed subset of X such that $f=f 1_{C}$ a.e.

Proof. To verify that the two descriptions of $\operatorname{supp}_{\mu}(f)$ are equivalent, $\operatorname{suppose}^{\operatorname{supp}}{ }_{\mu}(f)$ is defined as in Eq. (22.8) and $W:=X \backslash \operatorname{supp}_{\mu}(f)$. Then

$$
\begin{aligned}
W & =\{x \in X: \exists \tau \ni V \ni x \text { such that } \mu(\{y \in V: f(y) \neq 0\}\})=0\} \\
& =\cup\left\{V \subset_{o} X: \mu\left(f 1_{V} \neq 0\right)=0\right\} \\
& =\cup\left\{V \subset_{o} X: f 1_{V}=0 \text { for } \mu \text {-a.e. }\right\} .
\end{aligned}
$$

So to finish the argument it suffices to show $\mu\left(f 1_{W} \neq 0\right)=0$. To to this let \mathcal{U} be a countable base for τ and set

$$
\mathcal{U}_{f}:=\left\{V \in \mathcal{U}: f 1_{V}=0 \text { a.e. }\right\} .
$$

Then it is easily seen that $W=\cup \mathcal{U}_{f}$ and since \mathcal{U}_{f} is countable

$$
\mu\left(f 1_{W} \neq 0\right) \leq \sum_{V \in \mathcal{U}_{f}} \mu\left(f 1_{V} \neq 0\right)=0
$$

Lemma 22.27. Suppose $f, g, h: \mathbb{R}^{d} \rightarrow \mathbb{C}$ are measurable functions and assume that x is a point in \mathbb{R}^{d} such that $|f| *|g|(x)<\infty$ and $|f| *(|g| *|h|)(x)<$ ∞, then

1. $f * g(x)=g * f(x)$
2. $f *(g * h)(x)=(f * g) * h(x)$
3. If $z \in \mathbb{R}^{d}$ and $\tau_{z}(|f| *|g|)(x)=|f| *|g|(x-z)<\infty$, then

$$
\tau_{z}(f * g)(x)=\tau_{z} f * g(x)=f * \tau_{z} g(x)
$$

4. If $x \notin \operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)$ then $f * g(x)=0$ and in particular,

$$
\operatorname{supp}_{m}(f * g) \subset \overline{\operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)}
$$

where in defining $\operatorname{supp}_{m}(f * g)$ we will use the convention that " $f * g(x) \neq$ 0 " when $|f| *|g|(x)=\infty$.

Proof. For item 1.,
$|f| *|g|(x)=\int_{\mathbb{R}^{d}}|f|(x-y)|g|(y) d y=\int_{\mathbb{R}^{d}}|f|(y)|g|(y-x) d y=|g| *|f|(x)$
where in the second equality we made use of the fact that Lebesgue measure invariant under the transformation $y \rightarrow x-y$. Similar computations prove all of the remaining assertions of the first three items of the lemma. Item 4. Since $f * g(x)=\tilde{f} * \tilde{g}(x)$ if $f=\tilde{f}$ and $g=\tilde{g}$ a.e. we may, by replacing f by $f 1_{\text {supp }_{m}(f)}$ and g by $g 1_{\text {supp }_{m}(g)}$ if necessary, assume that $\{f \neq 0\} \subset$ $\operatorname{supp}_{m}(f)$ and $\{g \neq 0\} \subset \operatorname{supp}_{m}(g)$. So if $x \notin\left(\operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)\right)$ then $x \notin(\{f \neq 0\}+\{g \neq 0\})$ and for all $y \in \mathbb{R}^{d}$, either $x-y \notin\{f \neq 0\}$ or $y \notin$ $\{g \neq 0\}$. That is to say either $x-y \in\{f=0\}$ or $y \in\{g=0\}$ and hence $f(x-y) g(y)=0$ for all y and therefore $f * g(x)=0$. This shows that $f * g=0$ on $\mathbb{R}^{d} \backslash\left(\overline{\operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)}\right)$ and therefore

$$
\mathbb{R}^{d} \backslash\left(\overline{\operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)}\right) \subset \mathbb{R}^{d} \backslash \operatorname{supp}_{m}(f * g)
$$

i.e. $\operatorname{supp}_{m}(f * g) \subset \operatorname{supp}_{m}(f)+\operatorname{supp}_{m}(g)$.

Remark 22.28. Let A, B be closed sets of \mathbb{R}^{d}, it is not necessarily true that $A+B$ is still closed. For example, take

$$
A=\{(x, y): x>0 \text { and } y \geq 1 / x\} \text { and } B=\{(x, y): x<0 \text { and } y \geq 1 /|x|\}
$$

then every point of $A+B$ has a positive y-component and hence is not zero. On the other hand, for $x>0$ we have $(x, 1 / x)+(-x, 1 / x)=(0,2 / x) \in A+B$ for all x and hence $0 \in \overline{A+B}$ showing $A+B$ is not closed. Nevertheless if one of the sets A or B is compact, then $A+B$ is closed again. Indeed, if A is compact and $x_{n}=a_{n}+b_{n} \in A+B$ and $x_{n} \rightarrow x \in \mathbb{R}^{d}$, then by passing to a subsequence if necessary we may assume $\lim _{n \rightarrow \infty} a_{n}=a \in A$ exists. In this case

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(x_{n}-a_{n}\right)=x-a \in B
$$

exists as well, showing $x=a+b \in A+B$.
Proposition 22.29. Suppose that $p, q \in[1, \infty]$ and p and q are conjugate exponents, $f \in L^{p}$ and $g \in L^{q}$, then $f * g \in B C\left(\mathbb{R}^{d}\right),\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$ and if $p, q \in(1, \infty)$ then $f * g \in C_{0}\left(\mathbb{R}^{d}\right)$.

Proof. The existence of $f * g(x)$ and the estimate $|f * g|(x) \leq\|f\|_{p}\|g\|_{q}$ for all $x \in \mathbb{R}^{d}$ is a simple consequence of Holders inequality and the translation invariance of Lebesgue measure. In particular this shows $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$. By relabeling p and q if necessary we may assume that $p \in[1, \infty)$. Since

$$
\begin{aligned}
\left\|\tau_{z}(f * g)-f * g\right\|_{u} & =\left\|\tau_{z} f * g-f * g\right\|_{u} \\
& \leq\left\|\tau_{z} f-f\right\|_{p}\|g\|_{q} \rightarrow 0 \text { as } z \rightarrow 0
\end{aligned}
$$

it follows that $f * g$ is uniformly continuous. Finally if $p, q \in(1, \infty)$, we learn from Lemma 22.27 and what we have just proved that $f_{m} * g_{m} \in C_{c}\left(\mathbb{R}^{d}\right)$ where $f_{m}=f 1_{|f| \leq m}$ and $g_{m}=g 1_{|g| \leq m}$. Moreover,

432
22 Approximation Theorems and Convolutions

$$
\begin{align*}
\|f * g\|_{r}^{r} & \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} f(x-y)^{(1-\alpha) r} g(y)^{(1-\beta) r} d y\right) d x \cdot\|f\|_{\alpha p_{1}}^{\alpha}\|g\|_{\beta p_{2}}^{\beta} \\
& =\|f\|_{(1-\alpha) r}^{(1-\alpha) r}\|g\|_{(1-\beta) r}^{(1-\beta) r}\|f\|_{\alpha p_{1}}^{\alpha r}\|g\|_{\beta p_{2}}^{\beta r} . \tag{22.11}
\end{align*}
$$

Let us now suppose, $(1-\alpha) r=\alpha p_{1}$ and $(1-\beta) r=\beta p_{2}$, in which case Eq. (22.11) becomes,

$$
\|f * g\|_{r}^{r} \leq\|f\|_{\alpha p_{1}}^{r}\|g\|_{\beta p_{2}}^{r}
$$

which is Eq. (22.10) with

$$
\begin{equation*}
p:=(1-\alpha) r=\alpha p_{1} \text { and } q:=(1-\beta) r=\beta p_{2} . \tag{22.12}
\end{equation*}
$$

So to finish the proof, it suffices to show p and q are arbitrary indices in $[1, \infty]$ satisfying $p^{-1}+q^{-1}=1+r^{-1}$. If $\alpha, \beta, p_{1}, p_{2}$ satisfy the relations above, then

$$
\alpha=\frac{r}{r+p_{1}} \text { and } \beta=\frac{r}{r+p_{2}}
$$

and

$$
\begin{aligned}
\frac{1}{p}+\frac{1}{q} & =\frac{1}{\alpha p_{1}}+\frac{1}{\alpha p_{2}}=\frac{1}{p_{1}} \frac{r+p_{1}}{r}+\frac{1}{p_{2}} \frac{r+p_{2}}{r} \\
& =\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{2}{r}=1+\frac{1}{r}
\end{aligned}
$$

Conversely, if p, q, r satisfy Eq. (22.9), then let α and β satisfy $p=(1-\alpha) r$ and $q=(1-\beta) r$, i.e.

$$
\alpha:=\frac{r-p}{r}=1-\frac{p}{r} \leq 1 \text { and } \beta=\frac{r-q}{r}=1-\frac{q}{r} \leq 1 .
$$

Using Eq. (22.9) we may also express α and β as

$$
\alpha=p\left(1-\frac{1}{q}\right) \geq 0 \text { and } \beta=q\left(1-\frac{1}{p}\right) \geq 0
$$

and in particular we have shown $\alpha, \beta \in[0,1]$. If we now define $p_{1}:=p / \alpha \in$ $(0, \infty]$ and $p_{2}:=q / \beta \in(0, \infty]$, then

$$
\begin{aligned}
\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{r} & =\beta \frac{1}{q}+\alpha \frac{1}{p}+\frac{1}{r} \\
& =\left(1-\frac{1}{q}\right)+\left(1-\frac{1}{p}\right)+\frac{1}{r} \\
& =2-\left(1+\frac{1}{r}\right)+\frac{1}{r}=1
\end{aligned}
$$

as desired.
Theorem 22.32 (Approximate δ - functions). Let $p \in[1, \infty], \phi \in$ $L^{1}\left(\mathbb{R}^{d}\right), a:=\int_{\mathbb{R}^{d}} f(x) d x$, and for $t>0$ let $\phi_{t}(x)=t^{-d} \phi(x / t)$. Then

1. If $f \in L^{p}$ with $p<\infty$ then $\phi_{t} * f \rightarrow a f$ in L^{p} as $t \downarrow 0$.
2. If $f \in B C\left(\mathbb{R}^{d}\right)$ and f is uniformly continuous then $\left\|\phi_{t} * f-a f\right\|_{\infty} \rightarrow 0$ as $t \downarrow 0$.
3. If $f \in L^{\infty}$ and f is continuous on $U \subset_{o} \mathbb{R}^{d}$ then $\phi_{t} * f \rightarrow$ af uniformly on compact subsets of U as $t \downarrow 0$.

Proof. Making the change of variables $y=t z$ implies

$$
\phi_{t} * f(x)=\int_{\mathbb{R}^{d}} f(x-y) \phi_{t}(y) d y=\int_{\mathbb{R}^{d}} f(x-t z) \phi(z) d z
$$

so that

$$
\begin{align*}
\phi_{t} * f(x)-a f(x) & =\int_{\mathbb{R}^{d}}[f(x-t z)-f(x)] \phi(z) d z \\
& =\int_{\mathbb{R}^{d}}\left[\tau_{t z} f(x)-f(x)\right] \phi(z) d z \tag{22.13}
\end{align*}
$$

Hence by Minkowski's inequality for integrals (Theorem 21.27), Proposition 22.24 and the dominated convergence theorem,

$$
\left\|\phi_{t} * f-a f\right\|_{p} \leq \int_{\mathbb{R}^{d}}\left\|\tau_{t z} f-f\right\|_{p}|\phi(z)| d z \rightarrow 0 \text { as } t \downarrow 0
$$

Item 2. is proved similarly. Indeed, form Eq. (22.13)

$$
\left\|\phi_{t} * f-a f\right\|_{\infty} \leq \int_{\mathbb{R}^{d}}\left\|\tau_{t z} f-f\right\|_{\infty}|\phi(z)| d z
$$

which again tends to zero by the dominated convergence theorem because $\lim _{t \downarrow 0}\left\|\tau_{t z} f-f\right\|_{\infty}=0$ uniformly in z by the uniform continuity of f.

Item 3. Let $B_{R}=B(0, R)$ be a large ball in \mathbb{R}^{d} and $K \sqsubset \sqsubset U$, then

$$
\begin{aligned}
& \sup _{x \in K}\left|\phi_{t} * f(x)-a f(x)\right| \\
& \quad \leq\left|\int_{B_{R}}[f(x-t z)-f(x)] \phi(z) d z\right|+\left|\int_{B_{R}^{c}}[f(x-t z)-f(x)] \phi(z) d z\right| \\
& \quad \leq \int_{B_{R}}|\phi(z)| d z \cdot \sup _{x \in K, z \in B_{R}}|f(x-t z)-f(x)|+2\|f\|_{\infty} \int_{B_{R}^{c}}|\phi(z)| d z \\
& \quad \leq\|\phi\|_{1} \cdot \sup _{x \in K, z \in B_{R}}|f(x-t z)-f(x)|+2\|f\|_{\infty} \int_{|z|>R}|\phi(z)| d z
\end{aligned}
$$

so that using the uniform continuity of f on compact subsets of U,
$\lim \sup _{t \downarrow 0} \sup _{x \in K}\left|\phi_{t} * f(x)-a f(x)\right| \leq 2\|f\|_{\infty} \int_{|z|>R}|\phi(z)| d z \rightarrow 0$ as $R \rightarrow \infty$.

See Theorem 8.15 if Folland for a statement about almost everywhere convergence.

Exercise 22.5. Let

$$
f(t)=\left\{\begin{array}{cc}
e^{-1 / t} & \text { if } t>0 \\
0 & \text { if } t \leq 0
\end{array}\right.
$$

Show $f \in C^{\infty}(\mathbb{R},[0,1])$.
Lemma 22.33. There exists $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d},[0, \infty)\right)$ such that $\phi(0)>0$, $\operatorname{supp}(\phi) \subset \bar{B}(0,1)$ and $\int_{\mathbb{R}^{d}} \phi(x) d x=1$.

Proof. Define $h(t)=f(1-t) f(t+1)$ where f is as in Exercise 22.5. Then $h \in C_{c}^{\infty}(\mathbb{R},[0,1]), \operatorname{supp}(h) \subset[-1,1]$ and $h(0)=e^{-2}>0$. Define $c=$ $\int_{\mathbb{R}^{d}} h\left(|x|^{2}\right) d x$. Then $\phi(x)=c^{-1} h\left(|x|^{2}\right)$ is the desired function.

The reader asked to prove the following proposition in Exercise 22.9 below.
Proposition 22.34. Suppose that $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}, m\right)$ and $\phi \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$, then $f * \phi \in C^{1}\left(\mathbb{R}^{d}\right)$ and $\partial_{i}(f * \phi)=f * \partial_{i} \phi$. Moreover if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ then $f * \phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$.

Corollary 22.35 (C^{∞} - Uryhson's Lemma). Given $K \sqsubset \sqsubset U \subset o \mathbb{R}^{d}$, there exists $f \in C_{c}^{\infty}\left(\mathbb{R}^{d},[0,1]\right)$ such that $\operatorname{supp}(f) \subset U$ and $f=1$ on K.

Proof. Let ϕ be as in Lemma 22.33, $\phi_{t}(x)=t^{-d} \phi(x / t)$ be as in Theorem $22.32, d$ be the standard metric on \mathbb{R}^{d} and $\varepsilon=d\left(K, U^{c}\right)$. Since K is compact and U^{c} is closed, $\varepsilon>0$. Let $V_{\delta}=\left\{x \in \mathbb{R}^{d}: d(x, K)<\delta\right\}$ and $f=\phi_{\varepsilon / 3} * 1_{V_{\varepsilon / 3}}$, then

$$
\operatorname{supp}(f) \subset \overline{\operatorname{supp}\left(\phi_{\varepsilon / 3}\right)+V_{\varepsilon / 3}} \subset \bar{V}_{2 \varepsilon / 3} \subset U
$$

Since $\bar{V}_{2 \varepsilon / 3}$ is closed and bounded, $f \in C_{c}^{\infty}(U)$ and for $x \in K$,

$$
f(x)=\int_{\mathbb{R}^{d}} 1_{d(y, K)<\varepsilon / 3} \cdot \phi_{\varepsilon / 3}(x-y) d y=\int_{\mathbb{R}^{d}} \phi_{\varepsilon / 3}(x-y) d y=1
$$

The proof will be finished after the reader (easily) verifies $0 \leq f \leq 1$.
Here is an application of this corollary whose proof is left to the reader, Exercise 22.10.
Lemma 22.36 (Integration by Parts). Suppose f and g are measurable functions on \mathbb{R}^{d} such that $t \rightarrow f\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{d}\right)$ and $t \rightarrow$ $g\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{d}\right)$ are continuously differentiable functions on \mathbb{R} for each fixed $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. Moreover assume $f \cdot g, \frac{\partial f}{\partial x_{i}} \cdot g$ and $f \cdot \frac{\partial g}{\partial x_{i}}$ are in $L^{1}\left(\mathbb{R}^{d}, m\right)$. Then

$$
\int_{\mathbb{R}^{d}} \frac{\partial f}{\partial x_{i}} \cdot g d m=-\int_{\mathbb{R}^{d}} f \cdot \frac{\partial g}{\partial x_{i}} d m
$$

With this result we may give another proof of the Riemann Lebesgue Lemma.

22 Approximation Theorems and Convolutions

Lemma 22.37 (Riemann Lebesgue Lemma). For $f \in L^{1}\left(\mathbb{R}^{d}, m\right)$ let

$$
\hat{f}(\xi):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) e^{-i \xi \cdot x} d m(x)
$$

be the Fourier transform of f. Then $\hat{f} \in C_{0}\left(\mathbb{R}^{d}\right)$ and $\|\hat{f}\|_{\infty} \leq(2 \pi)^{-d / 2}\|f\|_{1}$. (The choice of the normalization factor, $(2 \pi)^{-d / 2}$, in \hat{f} is for later convenience.)

Proof. The fact that \hat{f} is continuous is a simple application of the dominated convergence theorem. Moreover,

$$
|\hat{f}(\xi)| \leq \int_{\mathbb{R}^{d}}|f(x)| d m(x) \leq(2 \pi)^{-d / 2}\|f\|_{1}
$$

so it only remains to see that $\hat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$. First suppose that $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and let $\Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}$ be the Laplacian on \mathbb{R}^{d}. Notice that $\frac{\partial}{\partial x_{j}} e^{-i \xi \cdot x}=-i \xi_{j} e^{-i \xi \cdot x}$ and $\Delta e^{-i \xi \cdot x}=-|\xi|^{2} e^{-i \xi \cdot x}$. Using Lemma 22.36 repeatedly,
$\int_{\mathbb{R}^{d}} \Delta^{k} f(x) e^{-i \xi \cdot x} d m(x)=\int_{\mathbb{R}^{d}} f(x) \Delta_{x}^{k} e^{-i \xi \cdot x} d m(x)=-|\xi|^{2 k} \int_{\mathbb{R}^{d}} f(x) e^{-i \xi \cdot x} d m(x)$

$$
=-(2 \pi)^{d / 2}|\xi|^{2 k} \hat{f}(\xi)
$$

for any $k \in \mathbb{N}$. Hence

$$
(2 \pi)^{d / 2}|\hat{f}(\xi)| \leq|\xi|^{-2 k}\left\|\Delta^{k} f\right\|_{1} \rightarrow 0
$$

as $|\xi| \rightarrow \infty$ and $\hat{f} \in C_{0}\left(\mathbb{R}^{d}\right)$. Suppose that $f \in L^{1}(m)$ and $f_{k} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is a sequence such that $\lim _{k \rightarrow \infty}\left\|f-f_{k}\right\|_{1}=0$, then $\lim _{k \rightarrow \infty}\left\|\hat{f}-\hat{f}_{k}\right\|_{\infty}=0$. Hence $\hat{f} \in C_{0}\left(\mathbb{R}^{d}\right)$ by an application of Proposition 12.23.
Corollary 22.38. Let $X \subset \mathbb{R}^{d}$ be an open set and μ be a Radon measure on \mathcal{B}_{X}.

1. Then $C_{c}^{\infty}(X)$ is dense in $L^{p}(\mu)$ for all $1 \leq p<\infty$.
2. If $h \in L_{\text {loc }}^{1}(\mu)$ satisfies

$$
\begin{equation*}
\int_{X} f h d \mu=0 \text { for all } f \in C_{c}^{\infty}(X) \tag{22.14}
\end{equation*}
$$

then $h(x)=0$ for $\mu-$ a.e. x.
Proof. Let $f \in C_{c}(X), \phi$ be as in Lemma 22.33, ϕ_{t} be as in Theorem 22.32 and set $\psi_{t}:=\phi_{t} *\left(f 1_{X}\right)$. Then by Proposition $22.34 \psi_{t} \in C^{\infty}(X)$ and by Lemma 22.27 there exists a compact set $K \subset X \operatorname{such}$ that $\operatorname{supp}\left(\psi_{t}\right) \subset K$ for all t sufficiently small. By Theorem 22.32, $\psi_{t} \rightarrow f$ uniformly on X as $t \downarrow 0$

1. The dominated convergence theorem (with dominating function being $\|f\|_{\infty} 1_{K}$), shows $\psi_{t} \rightarrow f$ in $L^{p}(\mu)$ as $t \downarrow 0$. This proves Item 1., since Theorem 22.8 guarantees that $C_{c}(X)$ is dense in $L^{p}(\mu)$.
2. Keeping the same notation as above, the dominated convergence theorem (with dominating function being $\|f\|_{\infty}|h| 1_{K}$) implies

$$
0=\lim _{t \downarrow 0} \int_{X} \psi_{t} h d \mu=\int_{X} \lim _{t \downarrow 0} \psi_{t} h d \mu=\int_{X} f h d \mu
$$

The proof is now finished by an application of Lemma 22.11.

22.2.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 12.16, Theorem 12.18 and Corollary 12.20 . The proofs of these results are the same as their continuous counterparts. One simply uses the smooth version of Urysohn's Lemma of Corollary 22.35 in place of Lemma 12.8 .

Proposition 22.39 (Smooth Partitions of Unity for Compacts). Suppose that X is an open subset of $\mathbb{R}^{d}, K \subset X$ is a compact set and $\mathcal{U}=\left\{U_{j}\right\}_{j=1}^{n}$ is an open cover of K. Then there exists a smooth (i.e. $\left.h_{j} \in C^{\infty}(X,[0,1])\right)$ partition of unity $\left\{h_{j}\right\}_{j=1}^{n}$ of K such that $h_{j} \prec U_{j}$ for all $j=1,2, \ldots, n$.

Theorem 22.40 (Locally Compact Partitions of Unity). Suppose that X is an open subset of \mathbb{R}^{d} and \mathcal{U} is an open cover of X. Then there exists a smooth partition of unity of $\left\{h_{i}\right\}_{i=1}^{N}$ ($N=\infty$ is allowed here) subordinate to the cover \mathcal{U} such that $\operatorname{supp}\left(h_{i}\right)$ is compact for all i.

Corollary 22.41. Suppose that X is an open subset of \mathbb{R}^{d} and $\mathcal{U}=$ $\left\{U_{\alpha}\right\}_{\alpha \in A} \subset \tau$ is an open cover of X. Then there exists a smooth partition of unity of $\left\{h_{\alpha}\right\}_{\alpha \in A}$ subordinate to the cover \mathcal{U} such that $\operatorname{supp}\left(h_{\alpha}\right) \subset U_{\alpha}$ for all $\alpha \in A$. Moreover if U_{α} is compact for each $\alpha \in A$ we may choose h_{α} so that $h_{\alpha} \prec U_{\alpha}$.

22.3 Exercises

Exercise 22.6. Let (X, τ) be a topological space, μ a measure on $\mathcal{B}_{X}=$ $\sigma(\tau)$ and $f: X \rightarrow \mathbb{C}$ be a measurable function. Letting ν be the measure, $d \nu=|f| d \mu, \operatorname{show} \operatorname{supp}(\nu)=\operatorname{supp}_{\mu}(f)$, where $\operatorname{supp}(\nu)$ is defined in Definition 21.41).

Exercise 22.7. Let (X, τ) be a topological space, μ a measure on $\mathcal{B}_{X}=\sigma(\tau)$ such that $\operatorname{supp}(\mu)=X\left(\right.$ see Definition 21.41). Show $\operatorname{supp}_{\mu}(f)=\operatorname{supp}(f)=$ $\overline{\{f \neq 0\}}$ for all $f \in C(X)$.

Exercise 22.8. Prove the following strong version of item 3. of Proposition 10.52 , namely to every pair of points, x_{0}, x_{1}, in a connected open subset V of \mathbb{R}^{d} there exists $\sigma \in C^{\infty}(\mathbb{R}, V)$ such that $\sigma(0)=x_{0}$ and $\sigma(1)=x_{1}$. Hint: First choose a continuous path $\gamma:[0,1] \rightarrow V$ such that $\gamma(t)=x_{0}$ for t near 0 and $\gamma(t)=x_{1}$ for t near 1 and then use a convolution argument to smooth γ.

Exercise 22.9. Prove Proposition 22.34 by appealing to Corollary 19.43.
Exercise 22.10 (Integration by Parts). Suppose that $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \rightarrow$ $f(x, y) \in \mathbb{C}$ and $(x, y) \in \mathbb{R} \times \mathbb{R}^{d-1} \rightarrow g(x, y) \in \mathbb{C}$ are measurable functions such that for each fixed $y \in \mathbb{R}^{d}, x \rightarrow f(x, y)$ and $x \rightarrow g(x, y)$ are continuously differentiable. Also assume $f \cdot g, \partial_{x} f \cdot g$ and $f \cdot \partial_{x} g$ are integrable relative to Lebesgue measure on $\mathbb{R} \times \mathbb{R}^{d-1}$, where $\partial_{x} f(x, y):=\left.\frac{d}{d t} f(x+t, y)\right|_{t=0}$. Show

$$
\begin{equation*}
\int_{\mathbb{R} \times \mathbb{R}^{d-1}} \partial_{x} f(x, y) \cdot g(x, y) d x d y=-\int_{\mathbb{R} \times \mathbb{R}^{d-1}} f(x, y) \cdot \partial_{x} g(x, y) d x d y \tag{22.15}
\end{equation*}
$$

(Note: this result and Fubini's theorem proves Lemma 22.36.)
Hints: Let $\psi \in C_{c}^{\infty}(\mathbb{R})$ be a function which is 1 in a neighborhood of $0 \in \mathbb{R}$ and set $\psi_{\varepsilon}(x)=\psi(\varepsilon x)$. First verify Eq. (22.15) with $f(x, y)$ replaced by $\psi_{\varepsilon}(x) f(x, y)$ by doing the x - integral first. Then use the dominated convergence theorem to prove Eq. (22.15) by passing to the limit, $\varepsilon \downarrow 0$.

Exercise 22.11. Let μ be a finite measure on $\mathcal{B}_{\mathbb{R}^{d}}$, then $\mathbb{D}:=\operatorname{span}\left\{e^{i \lambda \cdot x}\right.$: $\left.\lambda \in \mathbb{R}^{d}\right\}$ is a dense subspace of $L^{p}(\mu)$ for all $1 \leq p<\infty$. Hints: By Theorem 22.8, $C_{c}\left(\mathbb{R}^{d}\right)$ is a dense subspace of $L^{p}(\mu)$. For $f \in C_{c}\left(\mathbb{R}^{d}\right)$ and $N \in \mathbb{N}$, let

$$
f_{N}(x):=\sum_{n \in \mathbb{Z}^{d}} f(x+2 \pi N n) .
$$

Show $f_{N} \in B C\left(\mathbb{R}^{d}\right)$ and $x \rightarrow f_{N}(N x)$ is 2π - periodic, so by Exercise 12.13 , $x \rightarrow f_{N}(N x)$ can be approximated uniformly by trigonometric polynomials. Use this fact to conclude that $f_{N} \in \overline{\mathbb{D}}^{L^{p}(\mu)}$. After this show $f_{N} \rightarrow f$ in $L^{p}(\mu)$.

Exercise 22.12. Suppose that μ and ν are two finite measures on \mathbb{R}^{d} such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{i \lambda \cdot x} d \mu(x)=\int_{\mathbb{R}^{d}} e^{i \lambda \cdot x} d \nu(x) \tag{22.16}
\end{equation*}
$$

for all $\lambda \in \mathbb{R}^{d}$. Show $\mu=\nu$.
Hint: Perhaps the easiest way to do this is to use Exercise 22.11 with the measure μ being replaced by $\mu+\nu$. Alternatively, use the method of proof of Exercise 22.11 to show Eq. (22.16) implies $\int_{\mathbb{R}^{d}} f d \mu(x)=\int_{\mathbb{R}^{d}} f d \nu(x)$ for all $f \in C_{c}\left(\mathbb{R}^{d}\right)$ and then apply Corollary 18.58.

Exercise 22.13. Again let μ be a finite measure on $\mathcal{B}_{\mathbb{R}^{d}}$. Further assume that $C_{M}:=\int_{\mathbb{R}^{d}} e^{M|x|} d \mu(x)<\infty$ for all $M \in(0, \infty)$. Let $\mathcal{P}\left(\mathbb{R}^{d}\right)$ be the space of polynomials, $\rho(x)=\sum_{|\alpha| \leq N} \rho_{\alpha} x^{\alpha}$ with $\rho_{\alpha} \in \mathbb{C}$, on \mathbb{R}^{d}. (Notice that $|\rho(x)|^{p} \leq$
$C e^{M|x|}$ for some constant $C=C(\rho, p, M)$, so that $\mathcal{P}\left(\mathbb{R}^{d}\right) \subset L^{p}(\mu)$ for all $1 \leq p<\infty$.) Show $\mathcal{P}\left(\mathbb{R}^{d}\right)$ is dense in $L^{p}(\mu)$ for all $1 \leq p<\infty$. Here is a possible outline.

Outline: Fix a $\lambda \in \mathbb{R}^{d}$ and let $f_{n}(x)=(\lambda \cdot x)^{n} / n$! for all $n \in \mathbb{N}$.

1. Use calculus to verify $\sup _{t \geq 0} t^{\alpha} e^{-M t}=(\alpha / M)^{\alpha} e^{-\alpha}$ for all $\alpha \geq 0$ where $(0 / M)^{0}:=1$. Use this estimate along with the identity

$$
|\lambda \cdot x|^{p n} \leq|\lambda|^{p n}|x|^{p n}=\left(|x|^{p n} e^{-M|x|}\right)|\lambda|^{p n} e^{M|x|}
$$

to find an estimate on $\left\|f_{n}\right\|_{p}$.
2. Use your estimate on $\left\|f_{n}\right\|_{p}$ to show $\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{p}<\infty$ and conclude

$$
\lim _{N \rightarrow \infty}\left\|e^{i \lambda \cdot(\cdot)}-\sum_{n=0}^{N} i^{n} f_{n}\right\|_{p}=0
$$

3. Now finish by appealing to Exercise 22.11.

Exercise 22.14. Again let μ be a finite measure on $\mathcal{B}_{\mathbb{R}^{d}}$ but now assume there exists an $\varepsilon>0$ such that $C:=\int_{\mathbb{R}^{d}} e^{\varepsilon|x|} d \mu(x)<\infty$. Also let $q>1$ and $h \in L^{q}(\mu)$ be a function such that $\int_{\mathbb{R}^{d}} h(x) x^{\alpha} d \mu(x)=0$ for all $\alpha \in \mathbb{N}_{0}^{d}$. (As mentioned in Exercise 22.14, $\mathcal{P}\left(\mathbb{R}^{d}\right) \subset L^{p}(\mu)$ for all $1 \leq p<\infty$, so $x \rightarrow h(x) x^{\alpha}$ is in $L^{1}(\mu)$.) Show $h(x)=0$ for $\mu-$ a.e. x using the following outline.

Outline: Fix a $\lambda \in \mathbb{R}^{d}$, let $f_{n}(x)=(\lambda \cdot x)^{n} / n$! for all $n \in \mathbb{N}$, and let $p=q /(q-1)$ be the conjugate exponent to q.

1. Use calculus to verify $\sup _{t \geq 0} t^{\alpha} e^{-\varepsilon t}=(\alpha / \varepsilon)^{\alpha} e^{-\alpha}$ for all $\alpha \geq 0$ where $(0 / \varepsilon)^{0}:=1$. Use this estimate along with the identity

$$
|\lambda \cdot x|^{p n} \leq|\lambda|^{p n}|x|^{p n}=\left(|x|^{p n} e^{-\varepsilon|x|}\right)|\lambda|^{p n} e^{\varepsilon|x|}
$$

to find an estimate on $\left\|f_{n}\right\|_{p}$.
2. Use your estimate on $\left\|f_{n}\right\|_{p}$ to show there exists $\delta>0$ such that $\sum_{n=0}^{\infty}\left\|f_{n}\right\|_{p}<\infty$ when $|\lambda| \leq \delta$ and conclude for $|\lambda| \leq \delta$ that $e^{i \lambda \cdot x}=$ $L^{p}(\mu)-\sum_{n=0}^{\infty} i^{n} f_{n}(x)$. Conclude from this that

$$
\int_{\mathbb{R}^{d}} h(x) e^{i \lambda \cdot x} d \mu(x)=0 \text { when }|\lambda| \leq \delta
$$

3. Let $\lambda \in \mathbb{R}^{d}(|\lambda|$ not necessarily small $)$ and set $g(t):=\int_{\mathbb{R}^{d}} e^{i t \lambda \cdot x} h(x) d \mu(x)$ for $t \in \mathbb{R}$. Show $g \in C^{\infty}(\mathbb{R})$ and

$$
g^{(n)}(t)=\int_{\mathbb{R}^{d}}(i \lambda \cdot x)^{n} e^{i t \lambda \cdot x} h(x) d \mu(x) \text { for all } n \in \mathbb{N}
$$

4. Let $T=\sup \left\{\tau \geq 0:\left.g\right|_{[0, \tau]} \equiv 0\right\}$. By Step 2., $T \geq \delta$. If $T<\infty$, then

$$
0=g^{(n)}(T)=\int_{\mathbb{R}^{d}}(i \lambda \cdot x)^{n} e^{i T \lambda \cdot x} h(x) d \mu(x) \text { for all } n \in \mathbb{N}
$$

Use Step 3. with h replaced by $e^{i T \lambda \cdot x} h(x)$ to conclude

$$
g(T+t)=\int_{\mathbb{R}^{d}} e^{i(T+t) \lambda \cdot x} h(x) d \mu(x)=0 \text { for all } t \leq \delta /|\lambda|
$$

This violates the definition of T and therefore $T=\infty$ and in particular we may take $T=1$ to learn

$$
\int_{\mathbb{R}^{d}} h(x) e^{i \lambda \cdot x} d \mu(x)=0 \text { for all } \lambda \in \mathbb{R}^{d}
$$

5. Use Exercise 22.11 to conclude that

$$
\int_{\mathbb{R}^{d}} h(x) g(x) d \mu(x)=0
$$

for all $g \in L^{p}(\mu)$. Now choose g judiciously to finish the proof.

[^0]: ${ }^{1}$ It is at this point that the proof would break down if $p=\infty$.

