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Approximation Theorems and Convolutions

22.1 Density Theorems

In this section, ( M ) will be a measure space A will be a subalgebra of
M
Notation 22.1 Suppose ( M ) is a measure space and A M is a sub-
algebra of M Let S(A) denote those simple functions : C such that

1({ }) A for all C and let S (A ) denote those S(A) such that
( 6= 0)
Remark 22.2. For S (A ) and [1 ) | | = P

6=0 | | 1{ = } and
hence Z

| | =
X
6=0
| | ( = ) (22.1)

so that S (A ) ( ) Conversely if S(A) ( ) then from Eq. (22.1)
it follows that ( = ) for all 6= 0 and therefore ( 6= 0) Hence
we have shown, for any 1

S (A ) = S(A) ( )

Lemma 22.3 (Simple Functions are Dense). The simple functions,
S (M ) form a dense subspace of ( ) for all 1

Proof. Let { } =1 be the simple functions in the approximation Theo-
rem 18.42. Since | | | | for all S (M ) and

| | (| |+ | |) 2 | | 1 ( )

Therefore, by the dominated convergence theorem,

lim

Z
| | =

Z
lim | | = 0
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The goal of this section is to find a number of other dense subspaces of
( ) for [1 ) The next theorem is the key result of this section.

Theorem 22.4 (Density Theorem). Let [1 ) ( M ) be a mea-
sure space and be an algebra of bounded F — valued (F = R or F = C)
measurable functions such that

1. ( F) and ( ) =M
2. There exists such that 1 boundedly.
3. If F = C we further assume that is closed under complex conjugation.

Then to every function ( F) there exists such that
lim k k ( ) = 0 i.e. is dense in ( F)

Proof. Fix N for the moment and let H denote those boundedM —
measurable functions, : F for which there exists { } =1 such
that lim k k ( ) = 0 A routine check shows H is a subspace
of (M F) such that 1 H H and H is closed under complex
conjugation if F = C Moreover, H is closed under bounded convergence.
To see this suppose H and boundedly. Then, by the dominated
convergence theorem, lim k ( )k ( ) = 0

1 (Take the dominating
function to be = [2 | |] where is a constant bounding all of the
{| |} =1 ) We may now choose such that k k ( )

1

then

lim sup k k ( ) lim sup k ( )k ( )

+ lim sup k k ( ) = 0 (22.2)

which implies H An application of Dynkin’s Multiplicative System The-
orem 18.51 if F = R or Theorem 18.52 if F = C now shows H contains all
bounded measurable functions on
Let ( ) be given. The dominated convergence theorem implies

lim
°° 1{| | }

°°
( )

= 0 (Take the dominating function to be

= [2 | |] where is a bound on all of the | | ) Using this and what we
have just proved, there exists such that°° 1{| | }

°°
( )

1

The same line of reasoning used in Eq. (22.2) now implies lim k k ( ) =
0

1 It is at this point that the proof would break down if =
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Definition 22.5. Let ( ) be a topological space and be a measure on
B = ( ) A locally integrable function is a Borel measurable function
: C such that

R | | for all compact subsets We will
write 1 ( ) for the space of locally integrable functions. More generally we
say ( ) i k1 k ( ) for all compact subsets

Definition 22.6. Let ( ) be a topological space. A -finite measure on
is Borel measure such that ( ) for all compact subsets

Lebesgue measure on R is an example of a -finite measure while counting
measure on R is not a -finite measure.

Example 22.7. Suppose that is a -finite measure on BR An application of
Theorem 22.4 shows (R C) is dense in (R BR ;C) To apply Theorem
22.4, let :=

¡
R C

¢
and ( ) := ( ) where

¡
R C

¢
with

( ) = 1 in a neighborhood of 0 The proof is completed by showing ( ) =¡ ¡
R C

¢¢
= BR which follows directly from Lemma 18.57.

We may also give a more down to earth proof as follows. Let 0 R
0 := ( 0 ) and ( ) :=

1
( ) Then and 1 ( 0 )

as which shows 1 ( 0 ) is ( )-measurable, i.e. ( 0 ) ( )

Since 0 R and 0 were arbitrary, ( ) = BR
More generally we have the following result.

Theorem 22.8. Let ( ) be a second countable locally compact Hausdor
space and : B [0 ] be a -finite measure. Then ( ) (the space
of continuous functions with compact support) is dense in ( ) for all
[1 ) (See also Proposition 25.23 below.)

Proof. Let := ( ) and use Item 3. of Lemma 18.57 to find functions
such that 1 to boundedly as The result now follows

from an application of Theorem 22.4 along with the aid of item 4. of Lemma
18.57.

Exercise 22.1. Show that (R C) is not dense in (R BR ;C) Hence
the hypothesis that in Theorem 22.4 can not be removed.

Corollary 22.9. Suppose R is an open set, B is the Borel — algebra
on and be a -finite measure on ( B ) Then ( ) is dense in ( )
for all [1 )

Corollary 22.10. Suppose that is a compact subset of R and is a finite
measure on ( B ) then polynomials are dense in ( ) for all 1

Proof. Consider to be a metric space with usual metric induced
from R Then is a locally compact separable metric space and therefore
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( C) = ( C) is dense in ( ) for all [1 ) Since, by the domi-
nated convergence theorem, uniform convergence implies ( ) — convergence,
it follows from the Weierstrass approximation theorem (see Theorem 8.34 and
Corollary 8.36 or Theorem 12.31 and Corollary 12.32) that polynomials are
also dense in ( )

Lemma 22.11. Let ( ) be a second countable locally compact Hausdor
space and : B [0 ] be a -finite measure on If 1 ( ) is a
function such that Z

= 0 for all ( ) (22.3)

then ( ) = 0 for — a.e. (See also Corollary 25.26 below.)

Proof. Let ( ) = | ( )| then is a -finite measure on and hence
( ) is dense in 1( ) by Theorem 22.8. Notice thatZ

· sgn( ) =

Z
= 0 for all ( ) (22.4)

Let { } =1 be a sequence of compact sets such that as in Lemma
11.23. Then 1 sgn( ) 1( ) and therefore there exists ( ) such
that 1 sgn( ) in 1( ) So by Eq. (22.4),

( ) =

Z
1 = lim

Z
sgn( ) = 0

Since as 0 = ( ) =
R | | i.e. ( ) = 0 for — a.e.

As an application of Lemma 22.11 and Example 12.34, we will show that
the Laplace transform is injective.

Theorem 22.12 (Injectivity of the Laplace Transform). For
1([0 ) ) the Laplace transform of is defined by

L ( ) :=

Z
0

( ) for all 0

If L ( ) := 0 then ( ) = 0 for -a.e.

Proof. Suppose that 1([0 ) ) such that L ( ) 0 Let
0([0 ) R) and 0 be given. By Example 12.34 we may choose { } 0

such that #({ 0 : 6= 0}) and

| ( )
X

0

| for all 0

Then
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0

( ) ( )

¯̄̄̄
=

¯̄̄̄
¯
Z
0

Ã
( )

X
0

!
( )

¯̄̄̄
¯Z

0

¯̄̄̄
¯ ( ) X

0

¯̄̄̄
¯ | ( )| k k1

Since 0 is arbitrary, it follows that
R
0

( ) ( ) = 0 for all
0([0 ) R) The proof is finished by an application of Lemma 22.11.
Here is another variant of Theorem 22.8.

Theorem 22.13. Let ( ) be a metric space, be the topology on gen-
erated by and B = ( ) be the Borel — algebra. Suppose : B [0 ]
is a measure which is — finite on and let ( ) denote the bounded
continuous functions on such that ( 6= 0) Then ( ) is a dense
subspace of ( ) for any [1 )

Proof. Let be open sets such that and ( ) and
let

( ) = min(1 · ( )) = ( ( ))

see Figure 22.1 below. It is easily verified that := ( ) is an algebra,

21.510.50
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Fig. 22.1. The plot of for = 1 2 and 4 Notice that 1(0 )

for all and 1 boundedly as Given and
N let

( ) := min(1 · ( ) ( ))

Then { 6= 0} = so ( ) Moreover

lim lim = lim 1 = 1

which shows ( ) and hence ( ) = B The proof is now completed
by an application of Theorem 22.4.
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Exercise 22.2. (BRUCE: Should drop this exercise.) Suppose that ( ) is
a metric space, is a measure on B := ( ) which is finite on bounded
measurable subsets of Show ( R) defined in Eq. (19.26), is dense in
( ) Hints: let be as defined in Eq. (19.27) which incidentally may be

used to show ( ( R)) = ( ( R)) Then use the argument in the
proof of Corollary 18.55 to show ( ( R)) = B
Theorem 22.14. Suppose [1 ) A M is an algebra such that (A) =
M and is — finite on A Then S (A ) is dense in ( ) (See also Remark
25.7 below.)

Proof. Let := S (A ) By assumption there exits A such that
( ) and as If A then A and
( ) so that 1 Therefore 1 = lim 1 is ( )

— measurable for every A So we have shown that A ( ) M
and therefore M = (A) ( ) M i.e. ( ) = M The theorem
now follows from Theorem 22.4 after observing := 1 and 1
boundedly.

Theorem 22.15 (Separability of — Spaces). Suppose, [1 ) A
M is a countable algebra such that (A) =M and is — finite on A Then
( ) is separable and

D = {
X

1 : Q+ Q A with ( ) }

is a countable dense subset.

Proof. It is left to reader to check D is dense in S (A ) relative to the
( ) — norm. The proof is then complete since S (A ) is a dense subspace

of ( ) by Theorem 22.14.

Example 22.16. The collection of functions of the form =
P

=1 1( ]

with Q and are dense in (R BR ;C) and (R BR ;C)
is separable for any [1 ) To prove this simply apply Theorem 22.14 with
A being the algebra on R generated by the half open intervals ( ] R with

and Q {± } i.e. A consists of sets of the form` =1( ] R
where Q {± }
Exercise 22.3. Show ([0 1] BR ;C) is not separable. Hint: Suppose
is a dense subset of ([0 1] BR ;C) and for (0 1) let ( ) :=

1[0 ] ( ) For each (0 1) choose such that k k 1 2 and
then show the map (0 1) is injective. Use this to conclude that
must be uncountable.

Corollary 22.17 (Riemann Lebesgue Lemma). Suppose that 1(R )
then

lim
±

Z
R
( ) ( ) = 0
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Proof. By Example 22.16, given 0 there exists =
P

=1 1( ]

with R such that Z
R
| |

Notice thatZ
R
( ) ( ) =

Z
R

X
=1

1( ]( ) ( )

=
X
=1

Z
( ) =

X
=1

1 |

= 1
X
=1

¡ ¢
0 as | |

Combining these two equations with¯̄̄̄Z
R
( ) ( )

¯̄̄̄ ¯̄̄̄Z
R
( ( ) ( )) ( )

¯̄̄̄
+

¯̄̄̄Z
R
( ) ( )

¯̄̄̄
Z
R
| | +

¯̄̄̄Z
R
( ) ( )

¯̄̄̄
+

¯̄̄̄Z
R
( ) ( )

¯̄̄̄
we learn that

lim sup
| |

¯̄̄̄Z
R
( ) ( )

¯̄̄̄
+ lim sup

| |

¯̄̄̄Z
R
( ) ( )

¯̄̄̄
=

Since 0 is arbitrary, this completes the proof of the Riemann Lebesgue
lemma.

Corollary 22.18. Suppose A M is an algebra such that (A) =M and
is — finite on A Then for every M such that ( ) and 0
there exists A such that ( 4 ) (See also Remark 25.7 below.)

Proof. By Theorem 22.14, there exists a collection, { } =1 of pairwise
disjoint subsets of A and R such that

R |1 | where =P
=1 1 Let 0 := \ =1 A then
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|1 | =

X
=0

Z
|1 |

= ( 0 ) +
X
=1

"Z
|1 | +

Z
\
|1 |

#

= ( 0 ) +
X
=1

[|1 | ( ) + | | ( \ )] (22.5)

( 0 ) +
X
=1

min { ( ) ( \ )} (22.6)

where the last equality is a consequence of the fact that 1 | | + |1 |
Let

=

½
0 if ( ) ( \ )
1 if ( ) ( \ )

and =
P

=1 1 = 1 where

:= { : 0 & = 1} A

Equation (22.5) with replaced by and by impliesZ
|1 1 | = ( 0 ) +

X
=1

min { ( ) ( \ )}

The latter expression, by Eq. (22.6), is bounded by
R |1 | and

therefore,

( 4 ) =

Z
|1 1 |

Remark 22.19.We have to assume that ( ) as the following example
shows. Let = R M = B = A be the algebra generated by half open
intervals of the form ( ] and = =1(2 2 +1] It is easily checked that
for every A that ( ) =

22.2 Convolution and Young’s Inequalities

Throughout this section we will be solely concerned with — dimensional
Lebesgue measure, and we will simply write for

¡
R

¢
Definition 22.20 (Convolution). Let : R C be measurable func-
tions. We define

( ) =

Z
R

( ) ( ) (22.7)
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whenever the integral is defined, i.e. either ( ·) (·) 1(R ) or
( ·) (·) 0 Notice that the condition that ( ·) (·) 1(R )

is equivalent to writing | | | | ( ) By convention, if the integral in Eq.
(22.7) is not defined, let ( ) := 0

Notation 22.21 Given a multi-index Z+ let | | = 1 + · · ·+

:=
Y
=1

and =

µ ¶
:=
Y
=1

µ ¶
For R and : R C let : R C be defined by ( ) = ( )

Remark 22.22 (The Significance of Convolution).

1. Suppose that 1 ( ) are positive functions and let be the measure
on
¡
R
¢2
defined by

( ) := ( ) ( ) ( ) ( )

Then if : R [0 ] is a measurable function we haveZ
(R )2

( + ) ( ) =

Z
(R )2

( + ) ( ) ( ) ( ) ( )

=

Z
(R )2

( ) ( ) ( ) ( ) ( )

=

Z
R

( ) ( ) ( )

In other words, this shows the measure ( ) is the same as where
( ) := + In probability lingo, the distribution of a sum of two “in-

dependent” (i.e. product measure) random variables is the the convolution
of the individual distributions.

2. Suppose that =
P

| | is a constant coe cient di erential oper-
ator and suppose that we can solve (uniquely) the equation = in the
form

( ) = ( ) :=

Z
R

( ) ( )

where ( ) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the
inverse operation to di erentiation.) Since = for all R (this
is another way to characterize constant coe cient di erential operators)
and 1 = we should have = Writing out this equation then
saysZ

R
( ) ( ) = ( ) ( ) = ( ) = ( ) ( )

=

Z
R

( ) ( ) =

Z
R

( + ) ( )
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Since is arbitrary we conclude that ( ) = ( + ) Taking
= 0 then gives

( ) = ( 0) =: ( )

We thus find that = Hence we expect the convolution operation
to appear naturally when solving constant coe cient partial di erential
equations. More about this point later.

Proposition 22.23. Suppose [1 ] 1 and then ( )
exists for almost every and

k k k k1 k k
Proof. This follows directly from Minkowski’s inequality for integrals,

Theorem 21.27.

Proposition 22.24. Suppose that [1 ) then : is an iso-
metric isomorphism and for R is continuous.

Proof. The assertion that : is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that

= For the continuity assertion, observe that

k k = k ( )k = k k
from which it follows that it is enough to show in as 0 R
When (R ) uniformly and since the := | | 1supp( ) is
compact, it follows by the dominated convergence theorem that in
as 0 R For general and (R )

k k k k + k k + k k
= k k + 2 k k

and thus

lim sup
0
k k lim sup

0
k k + 2 k k = 2 k k

Because (R ) is dense in the term k k may be made as small as
we please.

Exercise 22.4. Compute the operator norm, k k ( ( )) of and
use this to show R ( ( )) is not continuous.

Definition 22.25. Suppose that ( ) is a topological space and is a mea-
sure on B = ( ) For a measurable function : C we define the
essential support of by

supp ( ) = { : ({ : ( ) 6= 0}}) 0 neighborhoods of }
(22.8)

Equivalently, supp ( ) i there exists an open neighborhood of such
that 1 = 0 a.e.
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It is not hard to show that if supp( ) = (see Definition 21.41) and
( ) then supp ( ) = supp( ) := { 6= 0} see Exercise 22.7.

Lemma 22.26. Suppose ( ) is second countable and : C is a mea-
surable function and is a measure on B Then := \ supp ( ) may
be described as the largest open set such that 1 ( ) = 0 for — a.e.
Equivalently put, := supp ( ) is the smallest closed subset of such that
= 1 a.e.

Proof. To verify that the two descriptions of supp ( ) are equivalent,
suppose supp ( ) is defined as in Eq. (22.8) and := \ supp ( ) Then

= { : 3 3 such that ({ : ( ) 6= 0}}) = 0}
= { : ( 1 6= 0) = 0}
= { : 1 = 0 for — a.e.}

So to finish the argument it su ces to show ( 1 6= 0) = 0 To to this let
U be a countable base for and set

U := { U : 1 = 0 a.e.}
Then it is easily seen that = U and since U is countable

( 1 6= 0)
X
U

( 1 6= 0) = 0

Lemma 22.27. Suppose : R C are measurable functions and as-
sume that is a point in R such that | | | | ( ) and | | (| | | |) ( )

then

1. ( ) = ( )
2. ( )( ) = ( ) ( )
3. If R and (| | | |)( ) = | | | | ( ) then

( )( ) = ( ) = ( )

4. If supp ( ) + supp ( ) then ( ) = 0 and in particular,

supp ( ) supp ( ) + supp ( )

where in defining supp ( ) we will use the convention that “ ( ) 6=
0” when | | | | ( ) =
Proof. For item 1.,

| | | | ( ) =
Z
R
| | ( ) | | ( ) =

Z
R
| | ( ) | | ( ) = | | | | ( )
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where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation Similar computations prove
all of the remaining assertions of the first three items of the lemma. Item
4. Since ( ) = ˜ ˜( ) if = ˜ and = ˜ a.e. we may, by replacing
by 1supp ( ) and by 1supp ( ) if necessary, assume that { 6= 0}

supp ( ) and { 6= 0} supp ( ) So if (supp ( ) + supp ( )) then
({ 6= 0}+ { 6= 0}) and for all R either { 6= 0} or

{ 6= 0} That is to say either { = 0} or { = 0} and hence
( ) ( ) = 0 for all and therefore ( ) = 0 This shows that = 0

on R \
³
supp ( ) + supp ( )

´
and therefore

R \
³
supp ( ) + supp ( )

´
R \ supp ( )

i.e. supp ( ) supp ( ) + supp ( )

Remark 22.28. Let be closed sets of R it is not necessarily true that
+ is still closed. For example, take

= {( ) : 0 and 1 } and = {( ) : 0 and 1 | |}
then every point of + has a positive - component and hence is not zero.
On the other hand, for 0 we have ( 1 )+( 1 ) = (0 2 ) +
for all and hence 0 + showing + is not closed. Nevertheless if
one of the sets or is compact, then + is closed again. Indeed, if is
compact and = + + and R then by passing to a
subsequence if necessary we may assume lim = exists. In this
case

lim = lim ( ) =

exists as well, showing = + +

Proposition 22.29. Suppose that [1 ] and and are conjugate
exponents, and then (R ) k k k k k k
and if (1 ) then 0(R )

Proof. The existence of ( ) and the estimate | | ( ) k k k k for
all R is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows k k k k k k
By relabeling and if necessary we may assume that [1 ) Since

k ( ) k = k k
k k k k 0 as 0

it follows that is uniformly continuous. Finally if (1 ) we learn
from Lemma 22.27 and what we have just proved that (R )
where = 1| | and = 1| | Moreover,
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k k k k + k k
k k k k + k k k k
k k k k + k k k k 0 as

showing, with the aid of Proposition 12.23, 0(R )

Theorem 22.30 (Young’s Inequality). Let [1 ] satisfy

1
+
1
= 1 +

1
(22.9)

If and then | | | | ( ) for — a.e. and

k k k k k k (22.10)

In particular 1 is closed under convolution. (The space ( 1 ) is an example
of a “Banach algebra” without unit.)

Remark 22.31. Before going to the formal proof, let us first understand Eq.
(22.9) by the following scaling argument. For 0 let ( ) := ( ) then
after a few simple change of variables we find

k k = k k and ( ) =

Therefore if Eq. (22.10) holds for some [1 ] we would also have

k k = k( ) k k k k k = ( + ) k k k k

for all 0 This is only possible if Eq. (22.9) holds.

Proof. By the usual sorts of arguments, we may assume and are
positive functions. Let [0 1] and 1 2 (0 ] satisfy 1

1 + 1
2 + 1 =

1 Then by Hölder’s inequality, Corollary 21.3,

( ) =

Z
R

h
( )(1 ) ( )(1 )

i
( ) ( )µZ

R
( )(1 ) ( )(1 )

¶1 µZ
R

( ) 1

¶1 1

×

×
µZ

R
( ) 2

¶1 2

=

µZ
R

( )(1 ) ( )(1 )

¶1
k k

1
k k

2

Taking the th power of this equation and integrating on gives
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k k
Z
R

µZ
R

( )(1 ) ( )(1 )

¶
· k k

1
k k

2

= k k(1 )
(1 ) k k(1 )

(1 ) k k 1
k k

2
(22.11)

Let us now suppose, (1 ) = 1 and (1 ) = 2 in which case Eq.
(22.11) becomes,

k k k k
1
k k

2

which is Eq. (22.10) with

:= (1 ) = 1 and := (1 ) = 2 (22.12)

So to finish the proof, it su ces to show and are arbitrary indices in
[1 ] satisfying 1+ 1 = 1+ 1 If 1 2 satisfy the relations above,
then

=
+ 1

and =
+ 2

and

1
+
1
=

1

1
+

1

2
=
1

1

+ 1
+
1

2

+ 2

=
1

1
+
1

2
+
2
= 1 +

1

Conversely, if satisfy Eq. (22.9), then let and satisfy = (1 )
and = (1 ) i.e.

:= = 1 1 and = = 1 1

Using Eq. (22.9) we may also express and as

= (1
1
) 0 and = (1

1
) 0

and in particular we have shown [0 1] If we now define 1 :=
(0 ] and 2 := (0 ] then

1

1
+
1

2
+
1
=

1
+

1
+
1

= (1
1
) + (1

1
) +

1

= 2

µ
1 +

1
¶
+
1
= 1

as desired.

Theorem 22.32 (Approximate — functions). Let [1 ]
1(R ) :=

R
R ( ) and for 0 let ( ) = ( ) Then
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1. If with then in as 0
2. If (R ) and is uniformly continuous then k k 0
as 0

3. If and is continuous on R then uniformly
on compact subsets of as 0

Proof. Making the change of variables = implies

( ) =

Z
R

( ) ( ) =

Z
R

( ) ( )

so that

( ) ( ) =

Z
R
[ ( ) ( )] ( )

=

Z
R
[ ( ) ( )] ( ) (22.13)

Hence by Minkowski’s inequality for integrals (Theorem 21.27), Proposition
22.24 and the dominated convergence theorem,

k k
Z
R
k k | ( )| 0 as 0

Item 2. is proved similarly. Indeed, form Eq. (22.13)

k k
Z
R
k k | ( )|

which again tends to zero by the dominated convergence theorem because
lim 0 k k = 0 uniformly in by the uniform continuity of
Item 3. Let = (0 ) be a large ball in R and @@ then

sup | ( ) ( )|¯̄̄̄Z
[ ( ) ( )] ( )

¯̄̄̄
+

¯̄̄̄
¯
Z

[ ( ) ( )] ( )

¯̄̄̄
¯Z

| ( )| · sup | ( ) ( )|+ 2 k k
Z

| ( )|

k k1 · sup | ( ) ( )|+ 2 k k
Z
| |

| ( )|

so that using the uniform continuity of on compact subsets of

lim sup
0
sup | ( ) ( )| 2 k k

Z
| |

| ( )| 0 as

See Theorem 8.15 if Folland for a statement about almost everywhere
convergence.

434 22 Approximation Theorems and Convolutions

Exercise 22.5. Let

( ) =

½
1 if 0
0 if 0

Show (R [0 1])

Lemma 22.33. There exists (R [0 )) such that (0) 0
supp( ) ¯(0 1) and

R
R ( ) = 1

Proof. Define ( ) = (1 ) ( + 1) where is as in Exercise 22.5.
Then (R [0 1]) supp( ) [ 1 1] and (0) = 2 0 Define =R
R (| |2) Then ( ) = 1 (| |2) is the desired function.
The reader asked to prove the following proposition in Exercise 22.9 below.

Proposition 22.34. Suppose that 1 (R ) and 1(R ) then
1(R ) and ( ) = Moreover if (R ) then
(R )

Corollary 22.35 ( — Uryhson’s Lemma). Given @@ R there
exists (R [0 1]) such that supp( ) and = 1 on

Proof. Let be as in Lemma 22.33, ( ) = ( ) be as in Theorem
22.32, be the standard metric on R and = ( ) Since is compact
and is closed, 0 Let =

©
R : ( )

ª
and = 3 1

3

then
supp( ) supp( 3) + 3 2̄ 3

Since 2̄ 3 is closed and bounded, ( ) and for

( ) =

Z
R
1 ( ) 3 · 3( ) =

Z
R

3( ) = 1

The proof will be finished after the reader (easily) verifies 0 1
Here is an application of this corollary whose proof is left to the reader,

Exercise 22.10.

Lemma 22.36 (Integration by Parts). Suppose and are measur-
able functions on R such that ( 1 1 +1 ) and
( 1 1 +1 ) are continuously di erentiable functions on R
for each fixed = ( 1 ) R Moreover assume · · and

· are in 1(R ) ThenZ
R

· =

Z
R

·

With this result we may give another proof of the Riemann Lebesgue
Lemma.
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Lemma 22.37 (Riemann Lebesgue Lemma). For 1(R ) let

(̂ ) := (2 ) 2

Z
R

( ) · ( )

be the Fourier transform of Then ˆ
0(R ) and

°°° °̂°° (2 ) 2 k k1
(The choice of the normalization factor, (2 ) 2 in ˆ is for later conve-
nience.)

Proof. The fact that ˆ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,¯̄̄

(̂ )
¯̄̄ Z

R
| ( )| ( ) (2 ) 2 k k1

so it only remains to see that (̂ ) 0 as | | First suppose that
(R ) and let =

P
=1

2

2 be the Laplacian on R Notice that
· = · and · = | |2 · Using Lemma 22.36 re-

peatedly,Z
R

( ) · ( ) =

Z
R

( ) · ( ) = | |2
Z
R

( ) · ( )

= (2 ) 2 | |2 (̂ )

for any N Hence

(2 ) 2
¯̄̄
(̂ )
¯̄̄

| | 2 °° °°
1

0

as | | and ˆ
0(R ) Suppose that 1( ) and (R ) is

a sequence such that lim k k1 = 0 then lim
°°° ˆ ˆ

°°° = 0

Hence ˆ 0(R ) by an application of Proposition 12.23.

Corollary 22.38. Let R be an open set and be a Radon measure on
B
1. Then ( ) is dense in ( ) for all 1
2. If 1 ( ) satisfiesZ

= 0 for all ( ) (22.14)

then ( ) = 0 for — a.e.

Proof. Let ( ) be as in Lemma 22.33, be as in Theorem
22.32 and set := ( 1 ) Then by Proposition 22.34 ( ) and
by Lemma 22.27 there exists a compact set such that supp( )
for all su ciently small. By Theorem 22.32, uniformly on as 0
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1. The dominated convergence theorem (with dominating function being
k k 1 ) shows in ( ) as 0 This proves Item 1., since
Theorem 22.8 guarantees that ( ) is dense in ( )

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being k k | | 1 ) implies

0 = lim
0

Z
=

Z
lim
0

=

Z
The proof is now finished by an application of Lemma 22.11.

22.2.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 12.16, Theorem 12.18
and Corollary 12.20. The proofs of these results are the same as their contin-
uous counterparts. One simply uses the smooth version of Urysohn’s Lemma
of Corollary 22.35 in place of Lemma 12.8.

Proposition 22.39 (Smooth Partitions of Unity for Compacts). Sup-
pose that is an open subset of R is a compact set and U = { } =1

is an open cover of Then there exists a smooth (i.e. ( [0 1]))
partition of unity { } =1 of such that for all = 1 2

Theorem 22.40 (Locally Compact Partitions of Unity). Suppose that
is an open subset of R and U is an open cover of Then there exists a

smooth partition of unity of { } =1 ( = is allowed here) subordinate to
the cover U such that supp( ) is compact for all

Corollary 22.41. Suppose that is an open subset of R and U =
{ } is an open cover of Then there exists a smooth partition
of unity of { } subordinate to the cover U such that supp( ) for
all Moreover if ¯ is compact for each we may choose so
that

22.3 Exercises

Exercise 22.6. Let ( ) be a topological space, a measure on B =
( ) and : C be a measurable function. Letting be the measure,
= | | show supp( ) = supp ( ) where supp( ) is defined in Definition

21.41).

Exercise 22.7. Let ( ) be a topological space, a measure on B = ( )
such that supp( ) = (see Definition 21.41). Show supp ( ) = supp( ) =

{ 6= 0} for all ( )
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Exercise 22.8. Prove the following strong version of item 3. of Proposition
10.52, namely to every pair of points, 0 1 in a connected open subset
of R there exists (R ) such that (0) = 0 and (1) = 1 Hint:
First choose a continuous path : [0 1] such that ( ) = 0 for near 0
and ( ) = 1 for near 1 and then use a convolution argument to smooth

Exercise 22.9. Prove Proposition 22.34 by appealing to Corollary 19.43.

Exercise 22.10 (Integration by Parts). Suppose that ( ) R×R 1

( ) C and ( ) R×R 1 ( ) C are measurable functions
such that for each fixed R ( ) and ( ) are continuously
di erentiable. Also assume · · and · are integrable relative to
Lebesgue measure on R×R 1 where ( ) := ( + )| =0 ShowZ

R×R 1

( ) · ( ) =

Z
R×R 1

( ) · ( ) (22.15)

(Note: this result and Fubini’s theorem proves Lemma 22.36.)
Hints: Let (R) be a function which is 1 in a neighborhood of

0 R and set ( ) = ( ) First verify Eq. (22.15) with ( ) replaced
by ( ) ( ) by doing the — integral first. Then use the dominated con-
vergence theorem to prove Eq. (22.15) by passing to the limit, 0

Exercise 22.11. Let be a finite measure on BR then D := span{ · :
R } is a dense subspace of ( ) for all 1 Hints: By Theorem

22.8, (R ) is a dense subspace of ( ) For (R ) and N let

( ) :=
X
Z

( + 2 )

Show (R ) and ( ) is 2 — periodic, so by Exercise 12.13,
( ) can be approximated uniformly by trigonometric polynomials.

Use this fact to conclude that D̄ ( ) After this show in ( )

Exercise 22.12. Suppose that and are two finite measures on R such
that Z

R

· ( ) =

Z
R

· ( ) (22.16)

for all R Show =
Hint: Perhaps the easiest way to do this is to use Exercise 22.11 with the

measure being replaced by + Alternatively, use the method of proof
of Exercise 22.11 to show Eq. (22.16) implies

R
R ( ) =

R
R ( ) for all

(R ) and then apply Corollary 18.58.

Exercise 22.13. Again let be a finite measure on BR Further assume that
:=
R
R

| | ( ) for all (0 ) Let P(R ) be the space of
polynomials, ( ) =

P
| | with C on R (Notice that | ( )|
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| | for some constant = ( ) so that P(R ) ( ) for all
1 ) Show P(R ) is dense in ( ) for all 1 Here is a
possible outline.
Outline: Fix a R and let ( ) = ( · ) ! for all N

1. Use calculus to verify sup 0 = ( ) for all 0 where
(0 )

0
:= 1 Use this estimate along with the identity

| · | | | | | =
³
| | | |

´
| | | |

to find an estimate on k k
2. Use your estimate on k k to show

P
=0 k k and conclude

lim

°°°°° ·(·) X
=0

°°°°° = 0

3. Now finish by appealing to Exercise 22.11.

Exercise 22.14. Again let be a finite measure on BR but now assume
there exists an 0 such that :=

R
R

| | ( ) Also let 1 and
( ) be a function such that

R
R ( ) ( ) = 0 for all N0 (As

mentioned in Exercise 22.14, P(R ) ( ) for all 1 so ( )
is in 1( ) ) Show ( ) = 0 for — a.e. using the following outline.
Outline: Fix a R let ( ) = ( · ) ! for all N and let
= ( 1) be the conjugate exponent to

1. Use calculus to verify sup 0 = ( ) for all 0 where
(0 )0 := 1 Use this estimate along with the identity

| · | | | | | =
³
| | | |

´
| | | |

to find an estimate on k k
2. Use your estimate on k k to show there exists 0 such thatP

=0 k k when | | and conclude for | | that · =

( )-
P

=0 ( ) Conclude from this thatZ
R

( ) · ( ) = 0 when | |

3. Let R (| | not necessarily small) and set ( ) :=
R
R

· ( ) ( )
for R Show (R) and

( )( ) =

Z
R
( · ) · ( ) ( ) for all N
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4. Let = sup{ 0 : |[0 ] 0} By Step 2., If then

0 = ( )( ) =

Z
R
( · ) · ( ) ( ) for all N

Use Step 3. with replaced by · ( ) to conclude

( + ) =

Z
R

( + ) · ( ) ( ) = 0 for all | |

This violates the definition of and therefore = and in particular
we may take = 1 to learnZ

R
( ) · ( ) = 0 for all R

5. Use Exercise 22.11 to conclude thatZ
R

( ) ( ) ( ) = 0

for all ( ) Now choose judiciously to finish the proof.


