
23

L2 - Hilbert Spaces Techniques and Fourier
Series

This section is concerned with Hilbert spaces presented as in the following
example.

Example 23.1. Let ( M ) be a measure space. Then := 2( M )
with inner product

h | i =
Z

· ¯

is a Hilbert space.

It will be convenient to define

h i :=
Z

( ) ( ) ( ) (23.1)

for all measurable functions on such that 1 ( ) So with this
notation we have h | i = h ¯i for all
Exercise 23.1. Let : 2( ) 2( ) be the operator defined in Exercise
21.12. Show : 2( ) 2( ) is the operator given by

( ) =

Z
¯( ) ( ) ( )

23.1 L2-Orthonoramal Basis

Example 23.2. 1. Let = 2([ 1 1] ) and := {1 2 3 } Then
is total in by the Stone-Weierstrass theorem and a similar argument

as in the first example or directly from Exercise 22.13. The result of doing
Gram-Schmidt on this set gives an orthonormal basis of consisting of
the “Legendre Polynomials.”
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2. Let = 2(R 1
2

2

) Exercise 22.13 implies := {1 2 3 }
is total in and the result of doing Gram-Schmidt on now gives an
orthonormal basis for consisting of “Hermite Polynomials.”

Remark 23.3 (An Interesting Phenomena). Let = 2([ 1 1] ) and :=
{1 3 6 9 } Then again is total in by the same argument as in
item 2. Example 23.2. This is true even though is a proper subset of
Notice that is an algebraic basis for the polynomials on [ 1 1] while is
not! The following computations may help relieve some of the reader’s anxiety.
Let 2([ 1 1] ) then, making the change of variables = 1 3 shows
thatZ 1

1

| ( )|2 =

Z 1

1

¯̄̄
( 1 3)

¯̄̄2 1
3

2 3 =

Z 1

1

¯̄̄
( 1 3)

¯̄̄2
( ) (23.2)

where ( ) = 1
3

2 3 Since ([ 1 1]) = ([ 1 1]) = 2 is a finite
measure on [ 1 1] and hence by Exercise 22.13 := {1 2 3 } is a
total (see Definition 14.25) in 2([ 1 1] ) In particular for any 0
there exists a polynomial ( ) such thatZ 1

1

¯̄̄
( 1 3) ( )

¯̄̄2
( ) 2

However, by Eq. (23.2) we have

2

Z 1

1

¯̄̄
( 1 3) ( )

¯̄̄2
( ) =

Z 1

1

¯̄
( ) ( 3)

¯̄2
Alternatively, if ([ 1 1]) then ( ) = ( 1 3) is back in ([ 1 1])

Therefore for any 0 there exists a polynomial ( ) such that

k k = sup {| ( ) ( )| : [ 1 1]}
= sup

©¯̄
( 3) ( 3)

¯̄
: [ 1 1]

ª
= sup

©¯̄
( ) ( 3)

¯̄
: [ 1 1]

ª
This gives another proof the polynomials in 3 are dense in ([ 1 1]) and
hence in 2([ 1 1])

Exercise 23.2. Suppose ( M ) and ( N ) are -finite measure spaces
such that 2 ( ) and 2 ( ) are separable. If { } =1 and { } =1

are orthonormal bases for 2 ( ) and 2 ( ) respectively, then :=
{ : N} is an orthonormal basis for 2 ( ) (Recall that

( ) := ( ) ( ) see Notation 20.4.) Hint: model your proof of
the proof of Proposition 14.28.

Exercise 23.3. Suppose is a Hilbert space and { : N} are closed
subspaces of such that for all 6= and if with
for all N then = 0 Show:
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1. If for all N satisfy
P

=1 k k2 then
P

=1 exists in

2. Every element may be uniquely written as =
P

=1 with
as in item 1

(For this reason we will write = =1 under the hypothesis of this
exercise.)

Exercise 23.4. Suppose ( M ) is a measure space and =
`

=1

with M and ( ) 0 for all Then : 2 ( ) =1
2 ( )

defined by ( ) := 1 is unitary.

23.2 Hilbert Schmidt Operators

In this section and will be Hilbert spaces. Typically and will be
separable, but we will not assume this until it is needed later.

Proposition 23.4. Let and be a separable Hilbert spaces, :
be a bounded linear operator, { } =1 and { } =1 be orthonormal basis for
and respectively. Then:

1.
P

=1 k k2 = P
=1 k k2 allowing for the possibility that the

sums are infinite. In particular the Hilbert Schmidt norm of

k k2 :=
X
=1

k k2

is well defined independent of the choice of orthonormal basis { } =1

We say : is a Hilbert Schmidt operator if k k and
let ( ) denote the space of Hilbert Schmidt operators from to

2. For all ( ) k k = k k and

k k k k := sup {k k : 3 k k = 1}
3. The set ( ) is a subspace of K( ) (the compact operators from

) and k·k is a norm on ( ) for which ( ( ) k·k )
is a Hilbert space. The inner product on ( ) is given by

h 1| 2i =
X
=1

h 1 | 2 i (23.3)

4. If : is a bounded finite rank operator, then is Hilbert Schmidt.
5. Let :=

P
=1( ) be orthogonal projection onto span { : }

and for ( ) let := Then

k k2 k k2 0 as

which shows that finite rank operators are dense in ( ( ) k·k )
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6. If is another Hilbert space and : and : are bounded
operators, then

k k k k k k and k k k k k k

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

X
=1

k k2 =
X
=1

X
=1

|( )|2

=
X
=1

X
=1

|( )|2 =
X
=1

k k2

This proves k k is well defined independent of basis and that k k =
k k For \ {0} k k may be taken to be the first element in an
orthonormal basis for H and hence°°°° k k

°°°° k k

Multiplying this inequality by k k shows k k k k k k and hence
k k k k
Item 3. For 1 2 ( )

k 1 + 2k =

vuutX
=1

k 1 + 2 k2

vuutX
=1

[k 1 k+ k 2 k]2

= k{k 1 k+ k 2 k} =1k 2

k{k 1 k} =1k 2
+ k{k 2 k} =1k 2

= k 1k + k 2k

From this triangle inequality and the homogeneity properties of k·k we
now easily see that ( ) is a subspace of K( ) and k·k is a norm
on ( ) Since

X
=1

|h 1 | 2 i|
X
=1

k 1 k k 2 kvuutX
=1

k 1 k2
vuutX

=1

k 2 k2 = k 1k k 2k
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the sum in Eq. (23.3) is well defined and is easily checked to define an inner
product on ( ) such that k k2 = h 1 2i To see that ( )
is complete in this inner product suppose { } =1 is a k·k — Cauchy se-
quence in ( ) Because ( ) is complete, there exists ( )
such that k k 0 as Since

X
=1

k( ) k2 = lim
X
=1

k( ) k2 lim sup k k

k k2 =
X
=1

k( ) k2 = lim
X
=1

k( ) k2

lim sup k k 0 as

Item 4. Let { } :=dim ( )
=1 be an orthonormal basis for Ran( ) =

( ) Then, for all

k k2 =
X
=1

|h | i|2 =
X
=1

|h | i|2

Summing this equation on where an is an orthonormal basis for
shows

k k2 =
X

k k2 =
X
=1

k k2

Item 5. Simply observe,

k k2 k k2 =
X

k k2 0 as

Item 6. For ( ) and ( ) then

k k2 =
X
=1

k k2 k k2
X
=1

k k2 = k k2 k k2

and for ( )

k k = k k k k k k = k k k k

Remark 23.5. The separability assumptions made in Proposition 23.4 are un-
necessary. In general, we define

k k2 =
X

k k2
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where is an orthonormal basis. The same proof of Item 1. of Proposi-
tion 23.4 shows k k is well defined and k k = k k If k k2

then there exists a countable subset 0 such that = 0 if \ 0

Let 0 := span( 0) and 0 := ( 0) Then ( ) 0 |
0
= 0 and

hence by applying the results of Proposition 23.4 to |
0
: 0 0 one

easily sees that the separability of and are unnecessary in Proposition
23.4.

Example 23.6. Let ( ) be a measure space, = 2( ) and

( ) :=
X
=1

( ) ( )

where
2( ) for = 1

Define ( )( ) =
R

( ) ( ) ( ) then : 2( ) 2( ) is a
finite rank operator and hence Hilbert Schmidt.

Exercise 23.5. Suppose that ( ) is a —finite measure space such that
= 2( ) is separable and : × R is a measurable function, such

that

k k2 2( × ) :=

Z
×

| ( )|2 ( ) ( )

Define, for

( ) =

Z
( ) ( ) ( )

when the integral makes sense. Show:

1. ( ) is defined for —a.e. in
2. The resulting function is in and : is linear.
3. k k = k k 2( × ) (This implies ( ) )

Example 23.7. Suppose that R is a bounded set, then the oper-
ator : 2( ) 2( ) defined by

( ) :=

Z
1

| | ( )

is compact.

Proof. For 0 let

( ) :=

Z
1

| | + ( ) = [ (1 )] ( )

where ( ) = 1
| | + 1 ( ) with R a su ciently large ball such that

Since it follows that
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0 = |·| 1 1(R )

Hence it follows by Proposition 22.23 that

k( ) k 2( ) k( 0 ) (1 )k 2(R )

k( 0 )k 1(R ) k1 k 2(R )

= k( 0 )k 1(R ) k k 2( )

which implies

k k ( 2( )) k 0 k 1(R )

=

Z ¯̄̄̄
1

| | +
1

| |
¯̄̄̄

0 as 0 (23.4)

by the dominated convergence theorem. For any 0Z
×

·
1

| | +
¸2

and hence is Hilbert Schmidt and hence compact. By Eq. (23.4),
as 0 and hence it follows that is compact as well.

Exercise 23.6. Let := 2 ([0 1] ) ( ) := min ( ) for [0 1]
and define : by

( ) =

Z 1

0

( ) ( )

By Exercise 23.5, is a Hilbert Schmidt operator and it is easily seen that
is self-adjoint. Show:

1. Show h | 00i = h | i for all ((0 1)) and use this to conclude
that Nul( ) = {0}

2. Now suppose that is an eigenvector of with eigenvalue 6= 0
Show that there is a version of in ([0 1]) 2 ((0 1)) and this version,
still denoted by solves

00 = with (0) = 0 (1) = 0 (23.5)

where 0 (1) := lim 1
0 ( )

3. Use Eq. (23.5) to find all the eigenvalues and eigenfunctions of
4. Use the results above along with the spectral Theorem 14.45, to shown

2 sin
³
2

´
: N

o
is an orthonormal basis for 2 ([0 1] )

448 23 L2 - Hilbert Spaces Techniques and Fourier Series

Exercise 23.7. Suppose ( M ) and let be the bounded operator
on := 2( M ) defined by ( ) = ( ) ( ) for all (We will
denote by in the future.) Show:

1. is a bounded operator and = ¯

2. ( ) = essran( ) where ( ) is the spectrum of and essran( ) is the
essential range of see Definitions 14.30 and 21.40 respectively.

3. Show is an eigenvalue for i ({ = }) 0

23.3 Fourier Series Considerations

Throughout this section we will let etc. denote Lebesgue measure
on R normalized so that the cube, := ( ] has measure one, i.e.
= (2 ) ( ) where is standard Lebesgue measure on R As usual,

for N0 let

=

µ
1
¶| | | |

1
1

Notation 23.8 Let (R ) denote the 2 — periodic functions in (R )

that is (R ) i (R ) and ( +2 ) = ( ) for all R and
= 1 2 Further let h·|·i denote the inner product on the Hilbert space,
:= 2([ ] ) given by

h | i :=
Z

( )¯( ) =

µ
1

2

¶ Z
( )¯( ) ( )

and define ( ) := · for all Z For 1( ) we will write (̃ ) for
the Fourier coe cient,

(̃ ) := h | i =
Z

( ) · (23.6)

Since any 2 — periodic functions on R may be identified with function
on the - dimensional torus, T = R (2 Z) =

¡
1
¢

I may also write
(T ) for (R ) and

¡
T
¢
for ( ) where elements in ( ) are

to be thought of as there extensions to 2 — periodic functions on R

Theorem 23.9 (Fourier Series). The functions :=
©

: Z
ª
form

an orthonormal basis for i.e. if then

=
X
Z

h | i =
X
Z

(̃ ) (23.7)

where the convergence takes place in 2([ ] )
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Proof. Simple computations show :=
©

: Z
ª
is an orthonormal

set. We now claim that is an orthonormal basis. To see this recall that
(( ) ) is dense in 2(( ) ) Any (( )) may be ex-

tended to be a continuous 2 — periodic function on R and hence by Exercise
12.13 and Remark 12.44, may uniformly (and hence in 2) be approximated
by a trigonometric polynomial. Therefore is a total orthonormal set, i.e.
is an orthonormal basis.
This may also be proved by first proving the case = 1 as above and then

using Exercise 23.2 inductively to get the result for any

Exercise 23.8. Let be the operator defined in Lemma 14.36 and for
2 (T) let ( ) := ˜ ( ) so that : 2 (T) 2 (Z) is unitary. Show

1 = where (R) is a function to be found. Use this repre-
sentation and the results in Exercise 23.7 to give a simple proof of the results
in Lemma 14.36.

23.3.1 Dirichlet, Fejér and Kernels

Although the sum in Eq. (23.7) is guaranteed to converge relative to the
Hilbertian norm on it certainly need not converge pointwise even if¡

R
¢
as will be proved in Section 35.1.1 below. Nevertheless, if

is su ciently regular, then the sum in Eq. (23.7) will converge pointwise as
we will now show. In the process we will give a direct and constructive proof
of the result in Exercise 12.13, see Theorem 23.11 below.
Let us restrict our attention to = 1 here. Consider

( ) =
X
| |

(̃ ) ( ) =
X
| |

1

2

"Z
[ ]

( ) ·
#

( )

=
1

2

Z
[ ]

( )
X
| |

·( ) =
1

2

Z
[ ]

( ) ( )

(23.8)

where

( ) :=
X
=

is called the Dirichlet kernel. Letting = 2 we have

( ) =
X
=

2 =
2( +1) 2

2 1
=

2 +1 (2 +1)

1

=
2 sin( + 1

2)

2 sin 12
=
sin( + 1

2)

sin 12

and therefore
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( ) :=
X
=

=
sin( + 1

2 )

sin 12
(23.9)

see Figure 23.3.1.

52.50-2.5-5

20

15

10

5

0

�heta�heta

This is a plot 1 and 10

with the understanding that the right side of this equation is 2 +1 whenever
2 Z

Theorem 23.10. Suppose 1 ([ ] ) and is di erentiable at
some [ ] then lim ( ) = ( ) where is as in Eq. (23.8).

Proof. Observe that

1

2

Z
[ ]

( ) =
1

2

Z
[ ]

X
| |

·( ) = 1

and therefore,

( ) ( ) =
1

2

Z
[ ]

[ ( ) ( )] ( )

=
1

2

Z
[ ]

[ ( ) ( )] ( )

=
1

2

Z
[ ]

·
( ) ( )

sin 12

¸
sin( +

1

2
) (23.10)

If is di erentiable at the last expression in Eq. (23.10) tends to 0 as
by the Riemann Lebesgue Lemma (Corollary 22.17 or Lemma 22.37)

and the fact that 1[ ] ( )
( ) ( )

sin 1
2

1 ( )

Despite the Dirichlet kernel not being positive, it still satisfies the approx-
imate — sequence property, 1

2 0 as when acting on 1 —
periodic functions in In order to improve the convergence properties it is
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reasonable to try to replace { : N0} by the sequence of averages (see
Exercise 7.15),

( ) =
1

+ 1

X
=0

( ) =
1

+ 1

X
=0

1

2

Z
[ ]

( )
X
| |

·( )

=
1

2

Z
[ ]

( ) ( )

where

( ) :=
1

+ 1

X
=0

X
| |

· (23.11)

is the Fejér kernel.

Theorem 23.11. The Fejér kernel in Eq. (23.11) satisfies:

1.

( ) =
X
=

·
1

| |
+ 1

¸
(23.12)

=
1

+ 1

sin2
¡

+1
2

¢
sin2

¡
2

¢ (23.13)

2. ( ) 0
3. 1

2

R
( ) = 1

4. sup | | ( ) 0 as for all 0 see Figure 23.1.
5. For any continuous 2 — periodic function on R ( ) ( )
uniformly in as where

( ) =
1

2

Z
( ) ( )

=
X
=

·
1

| |
+ 1

¸
˜( ) (23.14)

Proof. 1. Equation (23.12) is a consequence of the identity,

X
=0

X
| |

· =
X

| |

· =
X
| |

( + 1 | |) ·

Moreover, letting = 2 and using Eq. (3.3) shows
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2.51.250-1.25-2.5

12.5

10

7.5

5

2.5

0

x

y

x

y

Fig. 23.1. Plots of ( ) for = 2 7 and 13

( ) =
1

+ 1

X
=0

X
| |

2 =
1

+ 1

X
=0

2 +2 2

2 1

=
1

( + 1) ( 1)

X
=0

£
2 +1 2 1

¤
=

1

( + 1) ( 1)

X
=0

£
2 1 2

¤
=

1

( + 1) ( 1)

·
2 +2 1
2 1

1
2 2 1
2 1

¸
=

1

( + 1) ( 1)
2

h
2( +1) 1 + 2( +1) 1

i
=

1

( + 1) ( 1)
2

h
( +1) ( +1)

i2
=

1

+ 1

sin2 (( + 1) 2)

sin2 ( 2)

Items 2. and 3. follow easily from Eqs. (23.13) and (23.12) respectively.
Item 4. is a consequence of the elementary estimate;

sup
| |

( )
1

+ 1

1

sin2
¡
2

¢
and is clearly indicated in Figure 23.1. Item 5. now follows by the standard
approximate — function arguments, namely,
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| ( ) ( )| = 1

2

¯̄̄̄Z
( ) [ ( ) ( )]

¯̄̄̄
1

2

Z
( ) | ( ) ( )|

1 1

+ 1

1

sin2
¡
2

¢ k k +
1

2

Z
| |

( ) | ( ) ( )|
1 1

+ 1

1

sin2
¡
2

¢ k k + sup
| |

| ( ) ( )|

Therefore,

lim sup k k sup sup
| |

| ( ) ( )| 0 as 0

23.3.2 The Dirichlet Problems on D and the Poisson Kernel

Let := { C : | | 1} be the open unit disk in C = R2 write C as
= + or = and let =

2

2 +
2

2 be the Laplacian acting on
2 ( )

Theorem 23.12 (Dirichlet problem for ). To every continuous function
(bd( )) there exists a unique function ( ¯) 2( ) solving

( ) = 0 for and | = (23.15)

Moreover for 1 is given by,

( ) =
1

2

Z
( ) ( ) =: ( ) (23.16)

=
1

2
Re

Z
1 + ( )

1 ( )
( ) (23.17)

where is the Poisson kernel defined by

( ) :=
1 2

1 2 cos + 2

(The problem posed in Eq. (23.15) is called the Dirichlet problem for )

Proof. In this proof, we are going to be identifying 1 = bd( ) :=©
¯ : | | = 1ª with [ ] ( ) by the map [ ] 1

Also recall that the Laplacian may be expressed in polar coordinates as,

= 1
¡

1
¢
+
1
2

2
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where

( )
¡ ¢

=
¡ ¢

and ( )
¡ ¢

=
¡ ¢

Uniqueness. Suppose is a solution to Eq. (23.15) and let

˜( ) :=
1

2

Z
( )

and

˜( ) :=
1

2

Z
( ) (23.18)

be the Fourier coe cients of ( ) and
¡ ¢

respectively. Then for
(0 1)

1 ( ˜( )) =
1

2

Z
1

¡
1

¢
( )

=
1

2

Z
1
2

2 ( )

=
1
2

1

2

Z
( ) 2

=
1
2

2˜( )

or equivalently
( ˜( )) = 2˜( ) (23.19)

Recall the general solution to

( ( )) = 2 ( ) (23.20)

may be found by trying solutions of the form ( ) = which then implies
2 = 2 or = ± From this one sees that ˜( ) solving Eq. (23.19) may
be written as ˜( ) = | | + | | for some constants and when
6= 0 If = 0 the solution to Eq. (23.20) is gotten by simple integration and

the result is ˜( 0) = 0 + 0 ln Since ˜( ) is bounded near the origin
for each it must be that = 0 for all Z Hence we have shown there
exists C such that, for all (0 1)

| | = ˜( ) =
1

2

Z
( ) (23.21)

Since all terms of this equation are continuous for [0 1] Eq. (23.21)
remains valid for all [0 1] and in particular we have, at = 1 that

=
1

2

Z
( ) = ˜( )
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Hence if is a solution to Eq. (23.15) then must be given by

( ) =
X
Z

˜( ) | | for 1 (23.22)

or equivalently,
( ) =

X
N0

˜( ) +
X
N

˜( )¯

Notice that the theory of the Fourier series implies Eq. (23.22) is valid in the
2 ( ) - sense. However more is true, since for 1 the series in Eq. (23.22) is
absolutely convergent and in fact defines a — function (see Exercise 4.11 or
Corollary 19.43) which must agree with the continuous function,

¡ ¢
for almost every and hence for all This completes the proof of uniqueness.
Existence. Given (bd( )) let be defined as in Eq. (23.22). Then,

again by Exercise 4.11 or Corollary 19.43, ( ) So to finish the proof
it su ces to show lim ( ) = ( ) for all bd( ) Inserting the formula
for ˜( ) into Eq. (23.22) gives

( ) =
1

2

Z
( ) ( ) for all 1

where

( ) =
X
Z

| | =
X
=0

+
X
=0

1 =

= Re

·
2

1

1
1

¸
= Re

·
1 +

1

¸
= Re

"¡
1 +

¢ ¡
1

¢
|1 |2

#
= Re

·
1 2 + 2 sin

1 2 cos + 2

¸
(23.23)

=
1 2

1 2 cos + 2

The Poisson kernel again solves the usual approximate — function prop-
erties (see Figure 2), namely:

1. ( ) 0 and

1

2

Z
( ) =

1

2

Z X
Z

| | ( )

=
1

2

X
Z

| |
Z

( ) = 1

and
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2.

sup
| |

( )
1 2

1 2 cos + 2
0 as 1

52.50-2.5-5

5

3.75
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1.25

x

y

x

y

A plot of ( ) for = 0 2 0 5 and 0 7

Therefore by the same argument used in the proof of Theorem 23.11,

lim
1
sup

¯̄ ¡ ¢ ¡ ¢¯̄
= lim

1
sup

¯̄
( )

¡ ¢ ¡ ¢¯̄
= 0

which certainly implies lim ( ) = ( ) for all bd( )

Remark 23.13 (Harmonic Conjugate). Writing = Eq. (23.17) may be
rewritten as

( ) =
1

2
Re

Z
1 +

1
( )

which shows = Re where

( ) :=
1

2

Z
1 +

1
( )

Moreover it follows from Eq. (23.23) that

Im ( ) =
1
Im

Z
sin( )

1 2 cos( ) + 2
( )

=: ( ) ( )

where

( ) :=
sin( )

1 2 cos( ) + 2

From these remarks it follows that =: ( ) ( ) is the harmonic conju-
gate of and ˜ = For more on this point see Section 49.7 below.

23.4 Weak L2-Derivatives

Theorem 23.14 (Weak and Strong Di erentiability). Suppose that
2(R ) and R \ {0} Then the following are equivalent:
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1. There exists { } =1 R\ {0} such that lim = 0 and

sup

°°°° (·+ ) (·)°°°°
2

2. There exists 2(R ) such that h i = h i for all (R )

3. There exists 2(R ) and (R ) such that
2

and
2

as
4. There exists 2 such that

(·+ ) (·) 2

as 0

(See Theorem 36.18 for the generalization of this theorem.)

Proof. 1. = 2. We may assume, using Theorem 14.52 and passing to a
subsequence if necessary, that (·+ ) (·) for some 2(R ) Now
for (R )

h | i = lim

¿
(·+ ) (·) À

= lim

¿
(· ) (·)À

=

¿
lim

(· ) (·)À
= h i

wherein we have used the translation invariance of Lebesgue measure and
the dominated convergence theorem. 2. = 3. Let (R R) such thatR
R ( ) = 1 and let ( ) = ( ) then by Proposition 22.34, :=

(R ) for all and

( ) = ( ) =

Z
R

( ) ( ) = h [ ( ·)]i
= h ( ·)i = ( )

By Theorem 22.32, 2(R ) and = in 2(R )
as This shows 3. holds except for the fact that need not have
compact support. To fix this let (R [0 1]) such that = 1 in a
neighborhood of 0 and let ( ) = ( ) and ( ) ( ) := ( ) ( ) Then

( ) = + = ( ) +

so that in 2 and ( ) in 2 as 0 Let
= where is chosen to be greater than zero but small enough so

that
k k2 + k ( ) k2 1

Then (R ) and in 2 as 3. = 4. By
the fundamental theorem of calculus
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( ) ( )
=

( + ) ( )

=
1
Z 1

0

( + ) =

Z 1

0

( ) ( + )

(23.24)

Let

( ) :=

Z 1

0

( ) =

Z 1

0

( + )

which is defined for almost every and is in 2(R ) by Minkowski’s inequality
for integrals, Theorem 21.27. Therefore

( ) ( )
( ) =

Z 1

0

[( ) ( + ) ( + )]

and hence again by Minkowski’s inequality for integrals,°°°° °°°°
2

Z 1

0

k ( ) k2

=

Z 1

0

k k2
Letting in this equation implies ( ) = a.e. Finally one
more application of Minkowski’s inequality for integrals implies,°°°° °°°°

2

= k k2 =
°°°°Z 1

0

( )

°°°°
2Z 1

0

k k2
By the dominated convergence theorem and Proposition 22.24, the latter term
tends to 0 as 0 and this proves 4. The proof is now complete since 4. =
1. is trivial.

23.5 *Conditional Expectation

In this section let ( F ) be a probability space, i.e. ( F ) is a measure
space and ( ) = 1 Let G F be a sub — sigma algebra of F and write

G if : C is bounded and is (G BC) — measurable. In this section
we will write

:=

Z
Definition 23.15 (Conditional Expectation). Let G : 2( F )
2( G ) denote orthogonal projection of 2( F ) onto the closed sub-
space 2( G ) For 2( G ) we say that G 2( F ) is the
conditional expectation of
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Theorem 23.16. Let ( F ) and G F be as above and
2( F )

1. If 0 — a.e. then G 0 — a.e.
2. If — a.e. there G G — a.e.
3. | G | G | | — a.e.
4. k G k 1 k k 1 for all 2 So by the B.L.T. Theorem 8.4, G
extends uniquely to a bounded linear map from 1( F ) to 1( G )
which we will still denote by G

5. If 1( F ) then = G 1( G ) i

( ) = ( ) for all G
6. If G and 1( F ) then G( ) = · G — a.e.

Proof. By the definition of orthogonal projection for G
( ) = ( · G ) = ( G · )

So if 0 then 0 ( ) ( G · ) and since this holds for all 0
in G G 0 — a.e. This proves (1). Item (2) follows by applying item
(1). to If is real, ± | | and so by Item (2), ± G G | | i.e.
| G | G | | — a.e. For complex let 0 be a bounded and G —
measurable function. Then

[| G | ] =
h

G · sgn ( G )
i
=

h
· sgn ( G )

i
[| | ] = [ G | | · ]

Since is arbitrary, it follows that | G | G | | — a.e. Integrating this
inequality implies

k G k 1 | G | [ G | | · 1] = [| |] = k k 1

Item (5). Suppose 1( F ) and G Let 2( F ) be a
sequence of functions such that in 1( F ) Then

( G · ) = ( lim G · ) = lim ( G · )
= lim ( · ) = ( · ) (23.25)

This equation uniquely determines G for if 1( G ) also satisfies
( · ) = ( · ) for all G then taking = sgn ( G ) in Eq.

(23.25) gives
0 = (( G ) ) = (| G |)

This shows = G — a.e. Item (6) is now an easy consequence of this
characterization, since if G

[( G ) ] = [ G · ] = [ · ] = [ · ] = [ G ( ) · ]
Thus G ( ) = · G — a.e.
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Proposition 23.17. If G0 G1 F . Then
G0 G1 = G1 G0 = G0 (23.26)

Proof. Equation (23.26) holds on 2( F ) by the basic properties of
orthogonal projections. It then hold on 1( F ) by continuity and the
density of 2( F ) in 1( F )

Example 23.18. Suppose that ( M ) and ( N ) are two — finite mea-
sure spaces. Let = × F =M N and ( ) = ( ) ( ) ( )
where 1( F ) is a positive function such that

R
× ( ) = 1

Let : be the projection map, ( ) = and

G := ( ) = 1(M) = { × : M}
Then : R is G — measurable i = for some function : R
which is N — measurable, see Lemma 18.66. For 1( F ) we will now
show G = where

( ) =
1

(̄ )
1(0 )( (̄ )) ·

Z
( ) ( ) ( )

(̄ ) :=
R

( ) ( ) (By convention,
R

( ) ( ) ( ) := 0 ifR | ( )| ( ) ( ) = )
By Tonelli’s theorem, the set

:= { : (̄ ) = }
½

:

Z
| ( )| ( ) ( ) =

¾
is a — null set. Since

[| |] =
Z

( )

Z
( ) | ( )| ( ) =

Z
( ) | ( )| (̄ )

=

Z
( )

¯̄̄̄Z
( ) ( ) ( )

¯̄̄̄
Z

( )

Z
( ) | ( )| ( )

1( G ) Let = be a bounded G — measurable function,
then

[ · ] =
Z

( )

Z
( ) ( ) ( ) ( )

=

Z
( ) ( ) ( ) (̄ )

=

Z
( ) ( )

Z
( ) ( ) ( )

= [ ]

and hence G = as claimed.
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This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 23.25 to gain more intuition about
conditional expectations.

Theorem 23.19 (Jensen’s inequality). Let ( F ) be a probability space
and : R R be a convex function. Assume 1( F ;R) is a function
such that (for simplicity) ( ) 1( F ;R) then ( G ) G [ ( )]
— a.e.

Proof. Let us first assume that is 1 and is bounded. In this case

( ) ( 0)
0( 0)( 0) for all 0 R (23.27)

Taking 0 = G and = in this inequality implies

( ) ( G ) 0( G )( G )

and then applying G to this inequality gives

G [ ( )] ( G ) = G [ ( ) ( G )]
0( G )( G G G ) = 0

The same proof works for general one need only use Proposition 21.8 to
replace Eq. (23.27) by

( ) ( 0)
0 ( 0)( 0) for all 0 R

where 0 ( 0) is the left hand derivative of at 0 If is not bounded, apply
what we have just proved to = 1| | to find

G
£
( )

¤
( G ) (23.28)

Since G : 1( F ;R) 1( F ;R) is a bounded operator and
and ( ) ( ) in 1( F ;R) as there exists { } =1

such that and and ( ) ( ) — a.e. So passing to
the limit in Eq. (23.28) shows G [ ( )] ( G ) — a.e.

23.6 Exercises

Exercise 23.9. Let ( M ) be a measure space and := 2( M )
Given ( ) let : be the multiplication operator defined by

= Show 2 = i there exists M such that = 1 a.e.
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Exercise 23.10 (Haar Basis). In this problem, let 2 denote 2([0 1] )
with the standard inner product,

( ) = 1[0 1 2)( ) 1[1 2 1)( )

and for N0 := N {0} with 0 2 let

( ) := 2 2 (2 )

The following pictures shows the graphs of 00 1 0 1 1 2 1 2 2 and 2 3

respectively.
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1. Show := {1} ©
: 0 and 0 2

ª
is an orthonormal set, 1

denotes the constant function 1
2. For N let := span

¡{1} ©
: 0 and 0 2

ª¢
Show

= span
¡{1[ 2 ( +1)2 ) : and 0 2

¢
3. Show =1 is a dense subspace of 2 and therefore is an orthonormal
basis for 2 Hint: see Theorem 22.15.

4. For 2 let

:= h |1i1+
1X

=0

2 1X
=0

h | i

Show (compare with Exercise 23.25)

=
2 1X
=0

Ã
2

Z ( +1)2

2

( )

!
1[ 2 ( +1)2 )

and use this to show k k 0 as for all ([0 1])

Exercise 23.11. Let ( ) be the orthogonal groups consisting of × real
orthogonal matrices i.e. = For ( ) and 2(R ) let

( ) = ( 1 ) Show

1. is well defined, namely if = a.e. then = a.e.
2. : 2(R ) 2(R ) is unitary and satisfies 1 2 = 1 2 for all

1 2 ( ) That is to say the map ( ) U( 2(R )) — the
unitary operators on 2(R ) is a group homomorphism, i.e. a “unitary
representation” of ( )

3. For each 2(R ) the map ( ) 2(R ) is continu-
ous. Take the topology on ( ) to be that inherited from the Euclidean
topology on the vector space of all × matrices. Hint: see the proof of
Proposition 22.24.

Exercise 23.12. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 23.13. Spherical Harmonics.

Exercise 23.14. The gradient and the Laplacian in spherical coordinates.

Exercise 23.15. Legendre polynomials.

464 23 L2 - Hilbert Spaces Techniques and Fourier Series

23.7 Fourier Series Exercises

Exercise 23.16. Show
P

=1
2 = 2 6 by taking ( ) = on [ ] and

computing k k22 directly and then in terms of the Fourier Coe cients ˜ of

Exercise 23.17 (Riemann Lebesgue Lemma for Fourier Series). Show
for 1([ ] ) that ˜ 0(Z ) i.e. ˜ : Z C and lim (̃ ) =
0 Hint: If this follows form Bessel’s inequality. Now use a density
argument.

Exercise 23.18. Suppose 1([ ] ) is a function such that ˜ 1(Z )
and set

( ) :=
X
Z

(̃ ) · (pointwise).

1. Show (R )

2. Show ( ) = ( ) for — a.e. in [ ] Hint: Show ˜( ) = (̃ ) and
then use approximation arguments to showZ

[ ]

( ) ( ) =

Z
[ ]

( ) ( ) ([ ] )

3. Conclude that 1([ ] ) ([ ] ) and in particular
([ ] ) for all [1 ]

Exercise 23.19. Suppose N0 is a multi-index such that | | 2 and
2 (R )1 .

1. Using integration by parts, show (using Notation 22.21) that

( ) (̃ ) = h | i for all Z

Note: This equality implies¯̄̄
(̃ )
¯̄̄ 1 k k 1 k k

2. Now let =
P

=1
2 2 Working as in part 1) show

h(1 ) | i = (1 + | |2) (̃ ) (23.29)

Remark 23.20. Suppose that is an even integer, is a multi-index and
+| |

(R ) then

1 We view (R) as a subspace of = 2 ([ ]) by identifying (R)
with |[ ]
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X
Z

| |
¯̄̄
(̃ )
¯̄̄ 2

=
X
Z

|h | i| (1 + | |2) 2(1 + | |2) 2

2

=
X
Z

¯̄̄
h(1 ) 2 | i

¯̄̄
(1 + | |2) 2

2

X
Z

¯̄̄
h(1 ) 2 | i

¯̄̄2
·
X
Z

(1 + | |2)

=
°°°(1 ) 2

°°°2
where :=

P
Z (1 + | |2) i 2 So the smoother is the

faster ˜ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of corresponds to decay of ˜at infinity and visa-versa.

Exercise 23.20 (A Sobolev Imbedding Theorem). Suppose R and©
C : Z

ª
are coe cients such thatX

Z

| |2 (1 + | |2)

Show if 2 + the function defined by

( ) =
X
Z

·

is in (R ) Hint: Work as in the above remark to showX
Z

| | | | for all | |

Exercise 23.21 (Poisson Summation Formula). Let 1(R )

:= R :
X
Z

| ( + 2 )| =

and set
ˆ( ) := (2 )

2
Z
R

( ) ·

Further assume ˆ 1(Z )

1. Show ( ) = 0 and + 2 = for all Z Hint: ComputeR
[ ]

P
Z | ( + 2 )|
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2. Let

( ) :=

½P
Z ( + 2 ) for

0 if

Show 1([ ] ) and (̃ ) = (2 ) 2 ˆ( )
3. Using item 2) and the assumptions on show 1([ ] )

([ ] ) and

( ) =
X
Z

(̃ ) · =
X
Z

(2 )
2 ˆ( ) · for — a.e.

i.e. X
Z

( + 2 ) = (2 ) 2
X
Z

ˆ( ) · for — a.e. (23.30)

4. Suppose we now assume that (R ) and satisfies 1) | ( )|
(1 + | |) for some and and 2) ˆ 1(Z ) then show

Eq. (23.30) holds for all R and in particularX
Z

(2 ) = (2 ) 2
X
Z

ˆ( )

For notational simplicity, in the remaining problems we will assume that
= 1

Exercise 23.22 (Heat Equation 1.). Let ( ) [0 )×R ( ) be a
continuous function such that ( ·) (R) for all 0 ˙ := and

exists and are continuous when 0 Further assume that satisfies the
heat equation ˙ = 1

2 Let ˜( ) := h ( ·)| i for Z Show for 0

and Z that ˜( ) is di erentiable in and ˜( ) = 2˜( ) 2 Use
this result to show

( ) =
X
Z

2
2

(̃ ) (23.31)

where ( ) := (0 ) and as above

(̃ ) = h | i =
Z

( ) =
1

2

Z
( ) ( )

Notice from Eq. (23.31) that ( ) ( ) is for 0

Exercise 23.23 (Heat Equation 2.). Let ( ) := 1
2

P
Z 2

2

Show that Eq. (23.31) may be rewritten as

( ) =

Z
( ) ( )

and
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( ) =
X
Z

( + 2 )

where ( ) := 1
2

1
2

2

Also show ( ) may be written as

( ) = ( ) :=

Z
R

( ) ( )

Hint: To show ( ) =
P

Z ( + 2 ) use the Poisson summation formula
and the Gaussian integration identity,

ˆ ( ) =
1

2

Z
R

( ) =
1

2
2

2

(23.32)

Equation (23.32) will be discussed in Example 31.4 below.

Exercise 23.24 (Wave Equation). Let 2(R×R) be such that ( ·)
(R) for all R Further assume that solves the wave equation, =
Let ( ) := (0 ) and ( ) = ˙ (0 ) Show ˜( ) := h ( ·) i for
Z is twice continuously di erentiable in and

2

2 ˜( ) = 2˜( ) Use
this result to show

( ) =
X
Z

µ
(̃ ) cos( ) + ˜( )

sin
¶

(23.33)

with the sum converging absolutely. Also show that ( ) may be written as

( ) =
1

2
[ ( + ) + ( )] +

1

2

Z
( + ) (23.34)

Hint: To show Eq. (23.33) implies (23.34) use

cos =
+

2

sin =
2

and

( + ) ( )

=

Z
( + )

23.8 Conditional Expectation Exercises

Exercise 23.25. Suppose ( F ) is a probability space andA := { } =1
F is a partition of (Recall this means =

`
=1 ) Let G be the —

algebra generated by A Show:

1. G i = for some N

468 23 L2 - Hilbert Spaces Techniques and Fourier Series

2. : R is G — measurable i =
P

=1 1 for some R
3. For 1( F ) let ( | ) := [1 ] ( ) if ( ) 6= 0 and

( | ) = 0 otherwise. Show

G =
X
=1

( | )1


