
Part VI

Lebesgue Integration Theory

17

Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure “on” a set is a function
: 2 [0 ] such that

1. ( ) = 0

2. If { } =1 is a finite ( ) or countable ( = ) collection of subsets
of which are pair-wise disjoint (i.e. = if 6= ) then

( =1 ) =
X

=1

( )

Example 17.2. Suppose that is any set and is a point. For
let

( ) =

½

1 if
0 if

Then = is a measure on called the Dirac delta measure at

Example 17.3. Suppose that is a measure on and 0 then ·
is also a measure on Moreover, if { } are all measures on then
=
P

i.e.

( ) =
X

( ) for all

is a measure on (See Section 2 for the meaning of this sum.) To prove
this we must show that is countably additive. Suppose that { } =1 is a
collection of pair-wise disjoint subsets of then

( =1 ) =
X

=1

( ) =
X

=1

X

( )

=
XX

=1

( ) =
X

( =1 )

= ( =1 )
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wherein the third equality we used Theorem 4.22 and in the fourth we used
that fact that is a measure.

Example 17.4. Suppose that is a set : [0 ] is a function. Then

:=
X

( )

is a measure, explicitly
( ) =

X

( )

for all

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R

Theorem 17.5. There is no measure : 2R [0 ] such that

1. ([ )) = ( ) for all and
2. is translation invariant, i.e. ( + ) = ( ) for all R and 2R

where
+ := { + : } R

In fact the theorem is still true even if (1) is replaced by the weaker con-
dition that 0 ((0 1])

The counting measure ( ) = #( ) is translation invariant. However
((0 1]) = in this case and so does not satisfy condition 1.

Proof. First proof. Let us identify [0 1) with the unit circle 1 := { C :
| | = 1} by the map

( ) = 2 = (cos 2 + sin 2 ) 1

for [0 1) Using this identification we may use to define a function on
2

1

by ( ( )) = ( ) for all [0 1) This new function is a measure on
1 with the property that 0 ((0 1]) For 1 and 1 let

:= { 1 : } (17.1)
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that is to say is rotated counter clockwise by angle We now claim
that is invariant under these rotations, i.e.

( ) = ( ) (17.2)

for all 1 and 1 To verify this, write = ( ) and = ( ) for
some [0 1) and [0 1) Then

( ) ( ) = ( + mod1)

where for [0 1) and [0 1)

+ mod1 := { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })

Thus

( ( ) ( )) = ( + mod1)

= (( + { 1 }) (( 1) + { 1 }))
= (( + { 1 })) + ((( 1) + { 1 }))
= ( { 1 }) + ( { 1 })
= (( { 1 }) ( { 1 }))
= ( ) = ( ( ))

Therefore it su ces to prove that no finite non-trivial measure on 1 such
that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
= ( ) for some [0 1)
Let

:= { = 2 : Q} = { = 2 : [0 1) Q}
— a countable subgroup of 1 As above acts on 1 by rotations and divides
1 up into equivalence classes, where 1 are equivalent if = for
some Choose (using the axiom of choice) one representative point
from each of these equivalence classes and let 1 be the set of these
representative points. Then every point 1 may be uniquely written as
= with and That is to say

1 =
a

( ) (17.3)

where
`

is used to denote the union of pair-wise disjoint sets { } By
Eqs. (17.2) and (17.3),

( 1) =
X

( ) =
X

( )

The right member from this equation is either 0 or , 0 if ( ) = 0 and if
( ) 0 In either case it is not equal ( 1) (0 1) Thus we have reached
the desired contradiction.
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Proof. Second proof of Theorem 17.5. For [0 1) and [0 1) let

= + mod1

= { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })

Then

( ) = ( + { 1 }) + (( 1) + { 1 })
= ( { 1 }) + ( { 1 })
= ( { 1 } ( { 1 }))
= ( ) (17.4)

We will now construct a bad set which coupled with Eq. (17.4) will lead to
a contradiction.
Set

:= { + R : Q} = +Q

Notice that 6= implies that = Let O = { : R} — the
orbit space of the Q action. For all O choose ( ) [0 1 3) 1 and
define = (O) Then observe:
1. ( ) = ( ) implies that 6= which implies that = so that
is injective.

2. O = { : }
Let be the countable set,

:= Q [0 1)

We now claim that

= if 6= and (17.5)

[0 1) = (17.6)

Indeed, if 6= then = + mod1 and = + 0mod1
then 0 Q i.e. = 0 . That is to say, = ( ) = ( 0) = 0 and
hence that = mod1 but [0 1) implies that = Furthermore, if

[0 1) and := ( ) then = Q and mod 1

Now that we have constructed we are ready for the contradiction. By
Equations (17.4—17.6) we find

1 = ([0 1)) =
X

( ) =
X

( )

=

½

if ( ) 0
0 if ( ) = 0

1 We have used the Axiom of choice here, i.e.
Q

F ( [0 1 3]) 6=
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which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set.
Because of Theorem 17.5, it is necessary to modify Definition 17.1. Theo-

rem 17.5 points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of — algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition 19.1 of Chapter 19 below.
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Measurability

18.1 Algebras and — Algebras

Definition 18.1. A collection of subsets A of a set is an algebra if

1. A
2. A implies that A
3. A is closed under finite unions, i.e. if 1 A then 1 · · ·
A
In view of conditions 1. and 2., 3. is equivalent to

30. A is closed under finite intersections.

Definition 18.2. A collection of subsetsM of is a — algebra (or some-
times called a — field) ifM is an algebra which also closed under countable
unions, i.e. if { } =1 M then =1 M (Notice that sinceM is also
closed under taking complements,M is also closed under taking countable in-
tersections.) A pair ( M) where is a set and M is a — algebra on
is called a measurable space.

The reader should compare these definitions with that of a topology in
Definition 10.1. Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a — algebra M will be called
measurable sets.

Example 18.3. Here are some examples of algebras.

1.M = 2 thenM is a topology, an algebra and a — algebra.
2. Let = {1 2 3} then = { {2 3}} is a topology on which is not
an algebra.

3. = A = {{1} {2 3} } is a topology, an algebra, and a — algebra
on The sets {1} {2 3} are open and closed. The sets {1 2} and
{1 3} are neither open nor closed and are not measurable.
The reader should compare this example with Example 10.3.
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Proposition 18.4. Let E be any collection of subsets of Then there exists
a unique smallest algebra A(E) and — algebra (E) which contains E
Proof. The proof is the same as the analogous Proposition 10.6 for topologies,
i.e.

A(E) :=
\

{A : A is an algebra such that E A}

and
(E) :=

\

{M :M is a — algebra such that E M}

Example 18.5. Suppose = {1 2 3} and E = { {1 2} {1 3}} see Figure
18.1.

Fig. 18.1. A collection of subsets.

Then

(E) = { {1} {1 2} {1 3}}
A(E) = (E) = 2

The next proposition is the analogue to Proposition 10.7 for topologies
and enables us to give and explicit descriptions of A(E) On the other hand
it should be noted that (E) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let be a set and E 2 Let E := { : E} and
E := E { } E Then

A(E) := {finite unions of finite intersections of elements from E } (18.1)
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Proof. Let A denote the right member of Eq. (18.1). From the definition of
an algebra, it is clear that E A A(E) Hence to finish that proof it su ces
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation.
To check A is closed under complementation, let A be expressed as

=
[

=1

\

=1

where E Therefore, writing = E we find that

=
\

=1

[

=1

=
[

1 =1

( 1 1 2 2 · · · ) A

wherein we have used the fact that 1 1 2 2 · · · is a finite inter-
section of sets from E
Remark 18.7. One might think that in general (E) may be described as the
countable unions of countable intersections of sets in E However this is in
general false, since if

=
[

=1

\

=1

with E then

=
[

1=1 2=1 =1

Ã

\

=1

!

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe (E) see Proposition
1.23 on page 39 of Folland for details. Also see Proposition 18.13 below.

Exercise 18.1. Let be a topology on a set and A = A( ) be the algebra
generated by Show A is the collection of subsets of which may be written
as finite union of sets of the form where is closed and is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition 10.8) does for a topology.

Definition 18.8. A set E 2 is said to be an elementary family or
elementary class provided that

• E
• E is closed under finite intersections
• if E then is a finite disjoint union of sets from E (In particular

= is a finite disjoint union of elements from E )
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Example 18.9. Let = R then

E := ©( ] R : R̄
ª

= {( ] : [ ) and } { R}

is an elementary family.

Exercise 18.2. Let A 2 and B 2 be elementary families. Show the
collection

E = A× B = { × : A and B}
is also an elementary family.

Proposition 18.10. Suppose E 2 is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E
Proof. This could be proved making use of Proposition 18.6. However it is
easier to give a direct proof.
Let A denote the collection of sets which may be written as finite disjoint

unions of sets from E Clearly E A A(E) so it su ces to show A is an
algebra since A(E) is the smallest algebra containing E
By the properties of E we know that A Now suppose that =

` A where, for = 1 2 is a finite collection of disjoint sets
from E Then

\

=1

=
\

=1

Ã

a

!

=
[

( 1 ) 1×···×
( 1 2 · · · )

and this is a disjoint (you check) union of elements from E Therefore A is
closed under finite intersections. Similarly, if =

`

with being a
finite collection of disjoint sets from E then =

T

Since by assump-
tion A for E and A is closed under finite intersections, it
follows that A
Definition 18.11. Let be a set. We say that a family of sets F 2 is a
partition of if distinct members of F are disjoint and if is the union
of the sets in F
Example 18.12. Let be a set and E = { 1 } where 1 is a
partition of In this case

A(E) = (E) = (E) = { : {1 2 }}

where := when = Notice that

#(A(E)) = #(2{1 2 }) = 2
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Proposition 18.13. Suppose thatM 2 is a — algebra andM is at most
a countable set. Then there exists a unique finite partition F of such that
F M and every element M is of the form

= { F : } (18.2)

In particularM is actually a finite set and #(M) = 2 for some N

Proof. For each let

= { M : } M
wherein we have usedM is a countable — algebra to insure M Hence

is the smallest set inM which contains
Let = If then \ is an element ofM which

contains and since is the smallest member ofM containing we must
have that = Similarly if then = Therefore if 6= then

M and and from which it
follows that = = This shows that F = { : } M
is a (necessarily countable) partition of for which Eq. (18.2) holds for all

M
Enumerate the elements of F as F = { } =1 where N or =

If = then the correspondence

{0 1}N = { : = 1} M
is bijective and therefore, by Lemma 2.6,M is uncountable. Thus any count-
able — algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader.

Example 18.14. Let = R and

E = {( ) : R} {R } = {( ) R : R̄} 2R

Notice that E = E and that E is closed under unions, which shows that
(E) = E , i.e. E is already a topology. Since ( ) = ( ] we find that
E = {( ) ( ] } {R } Noting that

( ) ( ] = ( ]

it follows that A(E) = A(Ẽ) where
Ẽ := ©( ] R : R̄

ª

Since Ẽ is an elementary family of subsets of R Proposition 18.10 implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from Ẽ The — algebra, (E) generated by E is very complicated.
Here are some sets in (E) — most of which are not in A(E)
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(a) ( ) =
S

=1
( 1 ] (E)

(b) All of the standard open subsets of R are in (E)
(c) { } = T¡ 1

¤

(E)
(d) [ ] = { } ( ] (E)
(e) Any countable subset of R is in (E).
Remark 18.15. In the above example, one may replace E by E = {( ) :
Q} {R } in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{( ) ( ] ( ] : Q} { R}

This shows that A(E) is a countable set — a useful fact which will be needed
later.

Notation 18.16 For a general topological space ( ) the Borel — alge-
bra is the — algebra B := ( ) on In particular if = R BR will
be used to denote the Borel — algebra on R when R is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the — algebra, BR, is generated by any of the following
collection of sets:

1. {( ) : R} 2. {( ) : Q} or 3. {[ ) : Q}

Proposition 18.17. If is a second countable topology on and E is a
countable collection of subsets of such that = (E) then B := ( ) =
(E) i.e. ( (E)) = (E)
Proof. Let E denote the collection of subsets of which are finite intersection
of elements from E along with and Notice that E is still countable
(you prove). A set is in (E) i is an arbitrary union of sets from E
Therefore =

S

F
for some subset F E which is necessarily countable.

Since E (E) and (E) is closed under countable unions it follows that
(E) and hence that (E) (E) Lastly, since E (E) (E)

(E) ( (E)) (E)

18.2 Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose ( M ) is a measure
space and : R+. Roughly speaking, in the next Chapter we are going
to define

R

as a certain limit of sums of the form,
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X

0 1 2 3

( 1( +1])

For this to make sense we will need to require 1(( ]) M for all
Because of Lemma 18.22 below, this last condition is equivalent to the

condition 1(BR) M
Definition 18.18. Let ( M) and ( F) be measurable spaces. A function
: is measurable if 1(F) M We will also say that isM F

— measurable or (M F) — measurable.
Example 18.19 (Characteristic Functions). Let ( M) be a measurable space
and We define the characteristic function 1 : R by

1 ( ) =

½

1 if
0 if

If M then 1 is (M 2R) — measurable because 1 1( ) is either
or for any R Conversely, if F is any — algebra on R containing

a set R such that 1 and 0 then M if 1 is (M F) —
measurable. This is because = 1 1( ) M
Exercise 18.4. Suppose : is a function, F 2 and M 2
Show 1F and M (see Notation 2.7) are algebras ( — algebras) provided
F andM are algebras ( — algebras).

Remark 18.20. Let : be a function. Given a — algebra F 2
the — algebraM := 1(F) is the smallest — algebra on such that is
(M F) - measurable . Similarly, ifM is a - algebra on then F = M
is the largest — algebra on such that is (M F) - measurable .
Recall from Definition 2.8 that for E 2 and that

E = 1(E) = { : E}

where : is the inclusion map. Because of Exercise 10.3, when
E =M is an algebra ( — algebra),M is an algebra ( — algebra) on and
we callM the relative or induced algebra ( — algebra) on
The next two Lemmas are direct analogues of their topological counter

parts in Lemmas 10.13 and 10.14. For completeness, the proofs will be given
even though they are same as those for Lemmas 10.13 and 10.14.

Lemma 18.21. Suppose that ( M) ( F) and ( G) are measurable
spaces. If : ( M) ( F) and : ( F) ( G) are measurable
functions then : ( M) ( G) is measurable as well.
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Proof. By assumption 1(G) F and 1 (F) M so that

( ) 1 (G) = 1
¡

1 (G)¢ 1 (F) M

Lemma 18.22. Suppose that : is a function and E 2 and
then

¡

1(E)¢ = 1( (E)) and (18.3)

( (E)) = (E ) (18.4)

(Similar assertion hold with (·) being replaced by A (·) ) Moreover, if F =
(E) andM is a — algebra on then is (M F) — measurable i 1(E)
M
Proof. By Exercise 18.4, 1( (E)) is a — algebra and since E F 1(E)

1( (E)) It now follows that ( 1(E)) 1( (E)) For the reverse
inclusion, notice that

¡

1(E)¢ = © : 1( )
¡

1(E)¢ª

is a — algebra which contains E and thus (E) ¡

1(E)¢ Hence if
(E) we know that 1( )

¡

1(E)¢ i.e. 1( (E)) ¡

1(E)¢
and Eq. (18.3) has been proved.
Applying Eq. (18.3) with = and = being the inclusion map

implies
( (E)) = 1( (E)) = ( 1(E)) = (E )

Lastly if 1E M then 1 (E) = ¡

1E¢ M which shows is
(M F) — measurable.
Corollary 18.23. Suppose that ( M) is a measurable space. Then the fol-
lowing conditions on a function : R are equivalent:

1. is (M BR) — measurable,
2. 1(( )) M for all R
3. 1(( )) M for all Q
4. 1(( ]) M for all R

Proof. An exercise in using Lemma 18.22 and is the content of Exercise 18.8.

Here is yet another way to generate — algebras. (Compare with the
analogous topological Definition 10.20.)

Definition 18.24 ( — Algebras Generated by Functions). Let be a
set and suppose there is a collection of measurable spaces {( F ) : }
and functions : for all Let ( : ) denote the
smallest — algebra on such that each is measurable, i.e.

( : ) = ( 1(F ))
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Proposition 18.25. Assuming the notation in Definition 18.24 and addition-
ally let ( M) be a measurable space and : be a function. Then
is (M ( : )) — measurable i is (M F )—measurable for all

Proof. This proof is essentially the same as the proof of the topological ana-
logue in Proposition 10.21.
( ) If is (M ( : )) — measurable, then the composition

is (M F ) — measurable by Lemma 18.21.
( ) Let

G = ( : ) =
¡

1(F )
¢

If is (M F ) — measurable for all then

1 1(F ) M

and therefore

1
¡

1(F )
¢

= 1 1(F ) M

Hence

1 (G) = 1
¡ ¡

1(F )
¢¢

= ( 1
¡

1(F )
¢ M

which shows that is (M G) — measurable.
Definition 18.26. A function : between two topological spaces is
Borel measurable if 1(B ) B
Proposition 18.27. Let and be two topological spaces and :
be a continuous function. Then is Borel measurable.

Proof. Using Lemma 18.22 and B = ( )

1(B ) = 1( ( )) = ( 1( )) ( ) = B

Definition 18.28. Given measurable spaces ( M) and ( F) and a subset
We say a function : is measurable i if M F —

measurable.

Proposition 18.29 (Localizing Measurability). Let ( M) and ( F)
be measurable spaces and : be a function.

1. If is measurable and then | : is measurable.
2. Suppose there exist M such that = =1 and | is M
measurable for all then isM — measurable.
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Proof. As the reader will notice, the proof given below is essentially identical
to the proof of Proposition 10.19 which is the topological analogue of this
proposition.
1. If : is measurable, 1( ) M for all F and therefore

| 1 ( ) = 1( ) M for all F

2. If F then

1( ) = =1

¡

1( )
¢

= =1 | 1( )

Since each M M M and so the previous displayed equation shows
1( ) M

Proposition 18.30. If ( M) is a measurable space, then

= ( 1 2 ) : R

is (M BR ) — measurable i : R is (M BR) — measurable for each
In particular, a function : C is (M BC) — measurable i Re and

Im are (M BR) — measurable.
Proof. This is formally a consequence of Corollary 18.65 and Proposition 18.60
below. Nevertheless it is instructive to give a direct proof now.
Let = R denote the usual topology on R and : R R be projec-

tion onto the th — factor. Since is continuous, is BR BR — measurable
and therefore if : R is measurable then so is =
Now suppose : R is measurable for all = 1 2 Let

E := {( ) : Q 3 }

where, for R we write i for = 1 2 and let

( ) = ( 1 1)× · · · × ( )

Since E and every element may be written as a (necessarily)
countable union of elements from E we have (E) BR = ( ) (E) i.e.
(E) = BR (This part of the proof is essentially a direct proof of Corollary

18.65 below.)
Because

1 (( )) = 1
1 (( 1 1))

1
2 (( 2 2)) · · · 1 (( )) M

for all Q with it follows that 1E M and therefore

1BR = 1 (E) = ¡

1E¢ M
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Corollary 18.31. Let ( M) be a measurable space and : C be
(M BC) — measurable functions. Then ± and · are also (M BC) —
measurable.

Proof. Define : C × C ± : C × C C and : C × C C by
( ) = ( ( ) ( )) ±( ) = ± and ( ) = Then ± and

are continuous and hence (BC2 BC) — measurable. Also is (M BC BC) =
(M BC2) — measurable since 1 = and 2 = are (M BC) —
measurable. Therefore ± = ± and = · being the composition
of measurable functions, are also measurable.

Lemma 18.32. Let C ( M) be a measurable space and : C be
a (M BC) — measurable function. Then

( ) :=

½ 1
( ) if ( ) 6= 0
if ( ) = 0

is measurable.

Proof. Define : C C by

( ) =

½

1 if 6= 0
if = 0

For any open set C we have

1( ) = 1( \ {0}) 1( {0})
Because is continuous except at = 0 1( \{0}) is an open set and hence
in BC Moreover, 1( {0}) BC since 1( {0}) is either the empty
set or the one point set { } Therefore 1( C) BC and hence 1(BC) =
1( ( C)) = ( 1( C)) BC which shows that is Borel measurable. Since
= is the composition of measurable functions, is also measurable.
We will often deal with functions : R̄ = R {± } When talking

about measurability in this context we will refer to the — algebra on R̄
defined by

BR̄ := ({[ ] : R}) (18.5)

Proposition 18.33 (The Structure of BR̄). Let BR and BR̄ be as above,
then

BR̄ = { R̄ : R BR} (18.6)

In particular { } { } BR̄ and BR BR̄
Proof. Let us first observe that

{ } = =1[ ) = =1[ ] BR̄
{ } = =1[ ] BR̄ and R = R̄\ {± } BR̄
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Letting : R R̄ be the inclusion map,
1 (BR̄) =

¡

1
¡©

[ ] : R̄
ª¢¢

=
¡©

1 ([ ]) : R̄
ª¢

=
¡©

[ ] R : R̄
ª¢

= ({[ ) : R}) = BR
Thus we have shown

BR = 1 (BR̄) = { R : BR̄}
This implies:

1. BR̄ = R BR and
2. if R̄ is such that R BR there exists BR̄ such that R =

R Because {± } and { } { } BR̄ we may conclude
that BR̄ as well.
This proves Eq. (18.6).
The proofs of the next two corollaries are left to the reader, see Exercises

18.5 and 18.6.

Corollary 18.34. Let ( M) be a measurable space and : R̄ be a
function. Then the following are equivalent

1. is (M BR̄) - measurable,
2. 1(( ]) M for all R
3. 1(( ]) M for all R
4. 1({ }) M 1({ }) M and 0 : R is measurable where

0 ( ) :=

½

( ) if R
0 if {± }

Corollary 18.35. Let ( M) be a measurable space, : R̄ be func-
tions and define · : R̄ and ( + ) : R̄ using the conventions,
0 · = 0 and ( + ) ( ) = 0 if ( ) = and ( ) = or ( ) =
and ( ) = Then · and + are measurable functions on if both
and are measurable.

Exercise 18.5. Prove Corollary 18.34 noting that the equivalence of items 1.
— 3. is a direct analogue of Corollary 18.23. Use Proposition 18.33 to handle
item 4.

Exercise 18.6. Prove Corollary 18.35.

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
( M) is a measurable space and : ( M) R for N is a sequence
ofM BR — measurable functions. Then

sup inf lim sup and lim inf

are all M BR — measurable functions. (Note that this result is in generally
false when ( M) is a topological space and measurable is replaced by con-
tinuous in the statement.)
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Proof. Define +( ) := sup ( ) then

{ : +( ) } = { : ( ) }
= { : ( ) } M

so that + is measurable. Similarly if ( ) = inf ( ) then

{ : ( ) } = { : ( ) } M
Since

lim sup = inf sup { : } and

lim inf = sup inf { : }

we are done by what we have already proved.

Definition 18.37. Given a function : R̄ let +( ) := max { ( ) 0}
and ( ) := max ( ( ) 0) = min ( ( ) 0) Notice that = +

Corollary 18.38. Suppose ( M) is a measurable space and : R̄ is
a function. Then is measurable i ± are measurable.

Proof. If is measurable, then Proposition 18.36 implies ± are measurable.
Conversely if ± are measurable then so is = +

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that ( M) is a measurable space, ( ) is a metric
space and : is (M B ) — measurable for all Also assume that for
each ( ) = lim ( ) exists. Then : is also (M B ) —
measurable.

Proof. Let and := { : ( ) 1 } for = 1 2
Then

¯ { : ( ) 1 }
for all and as The proof will be completed by verifying
the identity,

1( ) = =1 =1
1( ) M

If 1( ) then ( ) and hence ( ) for some Since ( )
( ) ( ) for almost all That is =1 =1

1( )
Conversely when =1 =1

1( ) there exists an such that
( ) ¯ for almost all Since ( ) ( ) ¯ it follows

that 1( )
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Remark 18.40. In the previous Lemma 18.39 it is possible to let ( ) be any
topological space which has the “regularity” property that if there
exists such that ¯ and = =1 Moreover, some
extra condition is necessary on the topology in order for Lemma 18.39 to
be correct. For example if = {1 2 3} and = { {1 2} {2 3} {2}} as
in Example 10.36 and = { } with the trivial — algebra. Let ( ) =
( ) = 2 for all then is constant and hence measurable. Let ( ) = 1

and ( ) = 2 then as with being non-measurable. Notice
that the Borel — algebra on is 2

18.3 — Function Algebras

In this subsection, we are going to relate — algebras of subsets of a set to
certain algebras of functions on We will begin this endeavor after proving
the simple but very useful approximation Theorem 18.42 below.

Definition 18.41. Let ( M) be a measurable space. A function : F
(F denotes either R C or [0 ] R̄) is a simple function if isM — BF
measurable and ( ) contains only finitely many elements.

Any such simple functions can be written as

=
X

=1

1 with M and F (18.7)

Indeed, take 1 2 to be an enumeration of the range of and =
1({ }) Note that this argument shows that any simple function may be

written intrinsically as
=
X

F

1 1({ }) (18.8)

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let : [0 ] be mea-
surable and define

( ) :=
22 1
X

=0
2
1 1(( 2

+1
2 ])( ) + 2 1 1((2 ])( )

=
22 1
X

=0
2
1{ 2 +1

2 }( ) + 2 1{ 2 }( )

then for all ( ) ( ) for all and uniformly on
the sets := { : ( ) } with Moreover, if :
C is a measurable function, then there exists simple functions such that
lim ( ) = ( ) for all and | | | | as
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Proof. Since

(
2

+ 1

2
] = (

2

2 +1

2 + 1

2 +1
] (

2 + 1

2 +1

2 + 2

2 +1
]

if 1
¡

( 2
2 +1

2 +1
2 +1 ]

¢

then ( ) = +1( ) = 2
2 +1 and if

1
¡

( 2 +1
2 +1

2 +2
2 +1 ]

¢

then ( ) = 2
2 +1

2 +1
2 +1 = +1( ) Similarly

(2 ] = (2 2 +1] (2 +1 ]

and so for 1((2 +1 ]) ( ) = 2 2 +1 = +1( ) and for
1((2 2 +1]) +1( ) 2 = ( ) Therefore +1 for all It is

clear by construction that ( ) ( ) for all and that 0 ( ) ( )
2 if 2 Hence we have shown that ( ) ( ) for all and

uniformly on bounded sets.
For the second assertion, first assume that : R is a measurable

function and choose ± to be simple functions such that ± ± as
and define = + Then

| | = + + +
+1 + +1 = | +1|

and clearly | | = ++ ++ = | | and = +
+ =

as
Now suppose that : C is measurable. We may now choose simple

function and such that | | |Re | | | |Im | Re and
Im as Let = + then

| |2 = 2 + 2 |Re |2 + |Im |2 = | |2

and = + Re + Im = as
For the rest of this section let be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions from to R or C converges boundedly to a function if
lim ( ) = ( ) for all and

sup{| ( )| : and = 1 2 }
Definition 18.44. A function algebra H on is a linear subspace of
( R) which contains 1 and is closed under pointwise multiplication, i.e.

H is a subalgebra of ( R) which contains 1 If H is further closed under
bounded convergence then H is said to be a — function algebra.

Example 18.45. SupposeM is a — algebra on then

(M R) := { ( R) : isM BR — measurable} (18.9)

is a — function algebra. The next theorem will show that these are the only
example of — function algebras. (See Exercise 18.7 below for examples of
function algebras on )
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Notation 18.46 If H ( R) be a function algebra, let

M (H) := { : 1 H} (18.10)

Theorem 18.47. Let H be a — function algebra on a set Then

1.M (H) is a — algebra on
2. H = (M (H) R)
3. The map

M { — algebras on } (M R) { — function algebras on }
(18.11)

is bijective with inverse given by H M (H)
Proof. LetM :=M (H)
1. Since 0 1 H M If M then, since H is a linear subspace
of ( R) 1 = 1 1 H which shows M If { } =1 M
then since H is an algebra,

1
=1

=
Y

=1

1 =: H

for all N Because H is closed under bounded convergence it follows
that

1
=1

= lim H
and this implies =1 M Hence we have shownM is a — algebra.

2. SinceH is an algebra, ( ) H for any H and any polynomial on R
The Weierstrass approximation Theorem 8.31, asserts that polynomials on
R are uniformly dense in the space of continuos functions on any compact
subinterval of R Hence if H and (R) there exists polynomials
on R such that ( ) converges to ( ) uniformly (and hence

boundedly) in as Therefore H for all H and
(R) and in particular | | H and ± :=

| |±
2 H if H

Fix an R and for N let ( ) := ( )1+ where ( )+ :=
max { 0} Then (R) and ( ) 1 as and the
convergence is bounded when is restricted to any compact subset of R
Hence if H it follows that 1 = lim ( ) H for all R
i.e. { } M for all R Therefore if H then (M R)
and we have shown H (M R) Conversely if (M R) then
for any { } M = M (H) and so by assumption
1{ } H Combining this remark with the approximation Theo-
rem 18.42 and the fact that H is closed under bounded convergence shows
that H Hence we have shown (M R) H which combined with
H (M R) already proved shows H = (M (H) R)



18.3 — Function Algebras 279

3. Items 1. and 2. shows the map in Eq. (18.11) is surjective. To see the
map is injective supposeM and F are two — algebras on such that
(M R) = (F R) then

M = { : 1 (M R)}
= { : 1 (F R)} = F

Notation 18.48 Suppose is a subset of ( R)

1. Let H ( ) denote the smallest subspace of ( R) which contains
and the constant functions and is closed under bounded convergence.

2. Let H ( ) denote the smallest — function algebra containing

Theorem 18.49. Suppose is a subset of ( R) then H ( ) =
( ( ) R) or in other words the following diagram commutes:

( )
{Multiplicative Subsets} { — algebras} M

H ( ) { — function algebras} = { — function algebras} (M R)

Proof. Since ( ( ) R) is — function algebra which contains it follows
that

H ( ) ( ( ) R)

For the opposite inclusion, let

M =M (H ( )) := { : 1 H ( )}
By Theorem 18.47, H ( ) = (M R) which implies that every

isM — measurable. This then implies ( ) M and therefore

( ( ) R) (M R) = H ( )

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, on a set is called a multiplicative system
if · whenever and are in

Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
( R) is a multiplicative system, then

H ( ) = H ( ) = ( ( ) R) (18.12)

In words, the smallest subspace of bounded real valued functions on which
contains that is closed under bounded convergence is the same as the space
of bounded real valued ( ) — measurable functions on
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Proof. We begin by proving H := H ( ) is a — function algebra. To do this,
for any H let

H := { H : H} H
and notice that H is a linear subspace of ( R) which is closed under
bounded convergence. Moreover if H since is multiplicative.
Therefore H = H and we have shown that H whenever and

H Given this it now follows that H for any H and by the
same reasoning just used, H = H Since H is arbitrary, we have shown

H for all H i.e. H is an algebra.
Since it is harder to be an algebra of functions containing (see Exercise

18.13) than it is to be a subspace of functions containing it follows that
H ( ) H ( ) But as we have just seen H ( ) is a — function algebra
which contains so we must have H ( ) H ( ) because H ( ) is by
definition the smallest such — function algebra. Hence H ( ) = H ( )
The assertion that H ( ) = ( ( ) R) has already been proved in The-
orem 18.49.

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of ( C) such that: 1 H H is closed under
complex conjugation, and H is closed under bounded convergence. If H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued ( )-measurable functions, i.e. ( ( ) C) H
Proof. Let 0 = spanC( {1}) be the complex span of As the
reader should verify, 0 is an algebra, 0 H 0 is closed under com-
plex conjugation and that ( 0) = ( ) Let HR := H ( R) and

R
0 = ( R) Then (you verify) R

0 is a multiplicative system,
R
0 HR andHR is a linear space containing 1 which is closed under bounded

convergence. Therefore by Theorem 18.51,
¡ ¡ R

0

¢

R
¢ HR

Since H and 0 are complex linear spaces closed under complex con-
jugation, for any H or 0 the functions Re = 1

2

¡

+ ¯
¢

and
Im = 1

2

¡

¯
¢

are inH ( 0) or 0 respectively. ThereforeH = HR+ HR

0 =
R
0 +

R
0

¡ R
0

¢

= ( 0) = ( ) and

( ( ) C) =
¡ ¡ R

0

¢

R
¢

+
¡ ¡ R

0

¢

R
¢

HR + HR = H

Exercise 18.7 (Algebra analogue of Theorem 18.47). Call a function
algebra H ( R) a simple function algebra if the range of each func-
tion H is a finite subset of R Prove there is a one to one correspondence
between algebras A on a set and simple function algebras H on

Definition 18.53. A collection of subsets, C of is a multiplicative
class(or a — class) if C is closed under finite intersections.
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Corollary 18.54. Suppose H is a subspace of ( R) which is closed under
bounded convergence and 1 H If C 2 is a multiplicative class such
that 1 H for all C then H contains all bounded (C) — measurable
functions.

Proof. Let = {1} {1 : C} Then H is a multiplicative system
and the proof is completed with an application of Theorem 18.51.

Corollary 18.55. Suppose that ( ) is a metric space and B = ( )
is the Borel — algebra on and H is a subspace of ( R) such that

( R) H and H is closed under bounded convergence1 . Then H contains
all bounded B — measurable real valued functions on (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains ( R) is the space of bounded B —
measurable real valued functions on )

Proof. Let be an open subset of and for N let

( ) := min( · ( ) 1) for all

Notice that = where ( ) = min( 1) (see Figure 18.3) which
is continuous and hence ( R) for all Furthermore, converges
boundedly to 1 0 = 1 as and therefore 1 H for all
Since is a — class, the result now follows by an application of Corollary
18.54.

21.510.50

1

0.75

0.5

0.25

0

x

y

x

y

Plots of 1 2 and 3

Here are some more variants of Corollary 18.55.

Proposition 18.56. Let ( ) be a metric space, B = ( ) be the Borel
— algebra and assume there exists compact sets such that

1 Recall that ( R) are the bounded continuous functions on
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Suppose that H is a subspace of ( R) such that ( R) H ( ( R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded B — measurable
real valued functions on

Proof. Let and be positive integers and set ( ) = min(1 · ( ) ( ))

Then ( R) and { 6= 0} Let H denote those bounded
B — measurable functions, : R such that H It is easily
seen that H is closed under bounded convergence and that H contains

( R) and therefore by Corollary 18.55, H for all bounded mea-
surable functions : R Since 1 boundedly as
1 H for all and similarly 1 boundedly as and there-
fore H
Lemma 18.57. Suppose that ( ) is a locally compact second countable
Hausdor space.2 Then:

1. every open subset is — compact.
2. If is a closed set, there exist open sets such that
as

3. To each open set there exists (i.e. ( [0 1])) such
that lim = 1

4. B = ( ( R)) i.e. the — algebra generated by ( ) is the Borel
— algebra on

Proof. 1. Let be an open subset of V be a countable base for and

V := { V : ¯ and ¯ is compact}

For each by Proposition 12.7, there exists an open neighborhood
of such that ¯ and ¯ is compact. Since V is a base for the

topology there exists V such that Because ¯ ¯ it
follows that ¯ is compact and hence V As was arbitrary,
= V

Let { } =1 be an enumeration of V and set := =1
¯ Then

as and is compact for each
2. Let { } =1 be compact subsets of such that as and
set := = \ Then and by Proposition 12.5, is open
for each

3. Let be an open set and { } =1 be compact subsets of such
that By Lemma 12.8, there exist such that = 1 on

These functions satisfy, 1 = lim

2 For example any separable locally compact metric space and in particular any
open subset of R
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4. By item 3., 1 is ( ( R)) — measurable for all and hence
( ( R)) Therefore B = ( ) ( ( R)) The converse

inclusion holds because continuous functions are always Borel measurable.

Here is a variant of Corollary 18.55.

Corollary 18.58. Suppose that ( ) is a second countable locally compact
Hausdor space and B = ( ) is the Borel — algebra on If H is a
subspace of ( R) which is closed under bounded convergence and contains
( R) then H contains all bounded B — measurable real valued functions

on

Proof. By Item 3. of Lemma 18.57, for every the characteristic function,
1 may be written as a bounded pointwise limit of functions from ( R)
Therefore 1 H for all Since is a — class, the proof is finished
with an application of Corollary 18.54

18.4 Product — Algebras

Let {( M )} be a collection of measurable spaces = =
Q

and : be the canonical projection map as in Notation 2.2.

Definition 18.59 (Product — Algebra). The product — algebra,
M is the smallest — algebra on such that each for is

measurable, i.e.

M := ( : ) =
¡

1(M )
¢

Applying Proposition 18.25 in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose is a measurable space and : =
is a map. Then is measurable i : is measurable for all

In particular if = {1 2 } so that = 1× 2× · · · × and
( ) = ( 1( ) 2( ) ( )) 1 × 2 × · · · × then : is
measurable i : is measurable for all

Proposition 18.61. Suppose that ( M ) is a collection of measurable
spaces and E M generatesM for each then

M =
¡

1(E )¢ (18.13)

Moreover, suppose that is either finite or countably infinite, E for
each and M = (E ) for each Then the product — algebra
satisfies
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M =

Ã(

Y

: E for all

)!

(18.14)

In particular if = {1 2 } then = 1 × 2 × · · · × and

M1 M2 · · · M = (M1 ×M2 × · · · ×M )

whereM1 ×M2 × · · · ×M is as defined in Notation 10.26.

Proof. Since 1(E ) 1(M ) it follows that

F := ¡

1(E )¢ ¡

1(M )
¢

= M
Conversely,

F ( 1(E )) = 1( (E )) = 1(M )

holds for all implies that

1(M ) F
and hence that M F
We now prove Eq. (18.14). Since we are assuming that E for each

we see that

1(E )
(

Y

: E for all

)

and therefore by Eq. (18.13)

M =
¡

1(E )¢
Ã(

Y

: E for all

)!

This last statement is true independent as to whether is countable or not.
For the reverse inclusion it su ces to notice that since is countable,

Y

= 1( ) M

and hence
Ã(

Y

: E for all

)!

M

Remark 18.62. One can not relax the assumption that E in the second
part of Proposition 18.61. For example, if 1 = 2 = {1 2} and E1 = E2 =
{{1}} then (E1 × E2) = { 1 × 2 {(1 1)}} while ( (E1) × (E2)) =
2 1× 2
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Theorem 18.63. Let { } be a sequence of sets where is at most
countable. Suppose for each we are given a countable set E 2 Let
= (E ) be the topology on generated by E and be the product space

Q

with equipped with the product topology := (E ) Then the
Borel — algebra B = ( ) is the same as the product — algebra:

B = B
where B = ( (E )) = (E ) for all
In particular if = {1 2 } and each ( ) is a second countable

topological space, then

B := ( 1 2 · · · ) = (B
1
× · · · × B ) =: B

1
· · · B

Proof. By Proposition 10.25, the topology may be described as the small-
est topology containing E = 1(E ) Now E is the countable union
of countable sets so is still countable. Therefore by Proposition 18.17 and
Proposition 18.61,

B = ( ) = ( (E)) = (E) = (E )
= ( ) = B

Corollary 18.64. If ( ) are separable metric spaces for = 1 then

B
1

· · · B = B( 1×···× )

where B is the Borel — algebra on and B( 1×···× ) is the Borel
— algebra on 1 × · · · × equipped with the metric topology associ-

ated to the metric ( ) =
P

=1 ( ) where = ( 1 2 ) and
= ( 1 2 )

Proof. This is a combination of the results in Lemma 10.28, Exercise 10.9 and
Theorem 18.63.
Because all norms on finite dimensional spaces are equivalent, the usual

Euclidean norm on R ×R is equivalent to the “product” norm defined by

k( )kR ×R = k kR + k kR
Hence by Lemma 10.28, the Euclidean topology on R + is the same as the
product topology on R + = R ×R Here we are identifying R ×R with
R + by the map

( ) R ×R ( 1 1 ) R +

These comments along with Corollary 18.64 proves the following result.

Corollary 18.65. After identifying R ×R with R + as above and letting
BR denote the Borel —algebra on R we have

BR + = BR BR and BR =

—times
z }| {

BR · · · BR
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18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that ( F) is a measurable space and : is
a map. Then to every ( ( ) BR̄) — measurable function, : R̄ there is
a (F BR̄) — measurable function : R̄ such that =

Proof. First suppose that = 1 where ( ) = 1(F) Let F
such that = 1( ) then 1 = 1 1( ) = 1 and hence the Lemma
is valid in this case with = 1 More generally if =

P

1 is a simple
function, then there exists F such that 1 = 1 and hence =
with :=

P

1 — a simple function on R̄
For general ( ( ) F) — measurable function, from R̄ choose

simple functions converging to Let be simple functions on R̄ such
that = Then it follows that

= lim = lim sup = lim sup =

where := lim sup — a measurable function from to R̄
The following is an immediate corollary of Proposition 18.25 and Lemma

18.66.

Corollary 18.67. Let and be sets, and suppose for we are give a
measurable space ( F ) and a function : Let :=

Q

F := F be the product — algebra on and M := ( : )
be the smallest — algebra on such that each is measurable. Then the
function : defined by [ ( )] := ( ) for each is (M F)
— measurable and a function : R̄ is (M BR̄) — measurable i there
exists a (F BR̄) — measurable function from to R̄ such that =

18.5 Exercises

Exercise 18.8. Prove Corollary 18.23. Hint: See Exercise 18.3.

Exercise 18.9. IfM is the — algebra generated by E 2 thenM is the
union of the — algebras generated by countable subsets F E (Folland,
Problem 1.5 on p.24.)

Exercise 18.10. Let ( M) be a measure space and : F be a se-
quence of measurable functions on Show that { : lim ( ) exists in F}
M
Exercise 18.11. Show that every monotone function : R R is (BR BR)
— measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)
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Exercise 18.13. Let = {1 2 3 4} = {1 2} = {2 3} and :=
{1 1 } Show H ( ) 6= H ( ) in this case.

19

Measures and Integration

Definition 19.1. A measure on a measurable space ( M) is a function
:M [0 ] such that

1. ( ) = 0 and
2. (Finite Additivity) If { } =1 M are pairwise disjoint, i.e. =
when 6= then

(
[

=1

) =
X

=1

( )

3. (Continuity) If M and then ( ) ( )

We call a triple ( M ) where ( M) is a measurable space and :
M [0 ] is a measure, a measure space.

Remark 19.2. Properties 2) and 3) in Definition 19.1 are equivalent to the
following condition. If { } =1 M are pairwise disjoint then

(
[

=1

) =
X

=1

( ) (19.1)

To prove this assume that Properties 2) and 3) in Definition 19.1 hold and

{ } =1 M are pairwise disjoint. Letting :=
S

=1
:=

S

=1
we

have

(
[

=1

) = ( )
(3)
= lim ( )

(2)
= lim

X

=1

( ) =
X

=1

( )

Conversely, if Eq. (19.1) holds we may take = for all to see that
Property 2) of Definition 19.1 holds. Also if let := \ 1 with
0 := Then { } =1 are pairwise disjoint, = =1 and = =1

So if Eq. (19.1) holds we have
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( ) =
¡

=1

¢

=
X

=1

( )

= lim
X

=1

( ) = lim ( =1 ) = lim ( )

Proposition 19.3 (Basic properties of measures). Suppose that ( M )
is a measure space and M and { } =1 M then :

1. ( ) ( ) if
2. ( )

P

( )
3. If ( 1) and , i.e. 1 2 3 and = then

( ) ( ) as

Proof. 1. Since = ( \ )

( ) = ( ) + ( \ ) ( )

2. Let e = \ ( 1 · · · 1) so that the ˜ ’s are pair-wise disjoint
and = e Since ˜ it follows from Remark 19.2 and part (1)
that

( ) =
X

( e )
X

( )

3. Define := 1 \ then 1 \ which implies that

( 1) ( ) = lim ( ) = ( 1) lim ( )

which shows that lim ( ) = ( ).

Definition 19.4. A set is a null set if M and ( ) = 0. If is
some “property” which is either true or false for each we will use the
terminology a.e. (to be read almost everywhere) to mean

:= { : is false for }
is a null set. For example if and are two measurable functions on
( M ) = a.e. means that ( 6= ) = 0

Definition 19.5. A measure space ( M ) is complete if every subset of
a null set is in M, i.e. for all such that M with ( ) = 0
implies that M.

Proposition 19.6. Let ( M ) be a measure space. Set

N := { : M 3 and ( ) = 0}
and

M̄ = { : M M}
see Fig. 19.1. Then M̄ is a — algebra. Define ¯( ) = ( ), then ¯ is
the unique measure on M̄ which extends .
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Fig. 19.1. Completing a — algebra.

Proof. Clearly M̄
Let M and N and choose M such that and

( ) = 0. Since = ( \ )

( ) = = ( \ )

= [ ( \ )] [ ]

where [ ( \ )] N and [ ] M Thus M̄ is closed under
complements.
If M and M such that ( ) = 0 then ( ) =

( ) ( ) M̄ since M and and ( )
P

( ) =
0 Therefore, M̄ is a — algebra.
Suppose 1 = 2 with M and 1 2 N . Then

1 1 2 = 2 which shows that

( ) ( ) + ( 2) = ( )

Similarly, we show that ( ) ( ) so that ( ) = ( ) and hence ¯(
) := ( ) is well defined. It is left as an exercise to show ¯ is a measure,

i.e. that it is countable additive.
Many theorems in the sequel will require some control on the size of a

measure The relevant notion for our purposes (and most purposes) is that
of a — finite measure defined next.

Definition 19.7. Suppose is a set, E M 2 and :M [0 ] is a
function. The function is — finite on E if there exists E such that
( ) and = =1 If M is a — algebra and is a measure on
M which is — finite on M we will say ( M ) is a — finite measure
space.

The reader should check that if is a finitely additive measure on an
algebra, M then is — finite on M i there exists M such that

and ( )
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19.1 Example of Measures

Most — algebras and -additive measures are somewhat di cult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F 2 is a countable or finite partition of andM 2 is
the — algebra which consists of the collection of sets such that

= { F : } (19.2)

It is easily seen thatM is a — algebra.
Any measure :M [0 ] is determined uniquely by its values on F

Conversely, if we are given any function : F [0 ] we may define, for
M

( ) =
X

F3
( ) =

X

F
( )1

where 1 is one if and zero otherwise. We may check that is a
measure onM Indeed, if =

`

=1 and F then i for
one and hence exactly one Therefore 1 =

P

=1 1 and hence

( ) =
X

F
( )1 =

X

F
( )

X

=1

1

=
X

=1

X

F
( )1 =

X

=1

( )

as desired. Thus we have shown that there is a one to one correspondence
between measures onM and functions : F [0 ]
We will leave the issue of constructing measures until Sections 25 and 26.

However, let us point out that interesting measures do exist. The following
theorem may be found in Theorem 25.35 or see Section 25.8.1.

Theorem 19.8. To every right continuous non-decreasing function :
R R there exists a unique measure on BR such that

(( ]) = ( ) ( ) (19.3)

Moreover, if BR then

( ) = inf

(

X

=1

( ( ) ( )) : =1( ]

)

(19.4)

= inf

(

X

=1

( ( ) ( )) :
a

=1

( ]

)

(19.5)

In fact the map is a one to one correspondence between right con-
tinuous functions with (0) = 0 on one hand and measures on BR such
that ( ) on any bounded set BR on the other.
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Example 19.9. The most important special case of Theorem 19.8 is when
( ) = in which case we write for The measure is called Lebesgue

measure.

Theorem 19.10. Lebesgue measure is invariant under translations, i.e.
for BR and R

( + ) = ( ) (19.6)

Moreover, is the unique measure on BR such that ((0 1]) = 1 and Eq.
(19.6) holds for BR and R Moreover, has the scaling property

( ) = | | ( ) (19.7)

where R BR and := { : }
Proof. Let ( ) := ( + ) then one easily shows that is a measure
on BR such that (( ]) = for all Therefore, = by the
uniqueness assertion in Theorem 19.8.
For the converse, suppose that is translation invariant and ((0 1]) = 1

Given N we have

(0 1] = =1(
1

] = =1

µ

1
+ (0

1
]

¶

Therefore,

1 = ((0 1]) =
X

=1

µ

1
+ (0

1
]

¶

=
X

=1

((0
1
]) = · ((0

1
])

That is to say

((0
1
]) = 1

Similarly, ((0 ]) = for all N and therefore by the translation
invariance of

(( ]) = for all Q with

Finally for R such that choose Q such that and
then ( ] ( ] and thus

(( ]) = lim (( ]) = lim ( ) =

i.e. is Lebesgue measure.
To prove Eq. (19.7) we may assume that 6= 0 since this case is trivial to

prove. Now let ( ) := | | 1
( ) It is easily checked that is again a

measure on BR which satisfies
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(( ]) = 1 (( ]) = 1( ) =

if 0 and

(( ]) = | | 1 ([ )) = | | 1 ( ) =

if 0 Hence =
We are now going to develop integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, will be an extension of
the standard Riemann integral on R

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

1. Product measure for the flipping of a coin.
2. Haar Measure
3. Measure on embedded submanifolds, i.e. Hausdor measure.
4. Wiener measure.
5. Gibbs states.
6. Measure associated to self-adjoint operators and classifying them.

19.2 Integrals of Simple functions

Let ( M ) be a fixed measure space in this section.

Definition 19.11. Let F = C or [0 ) and suppose that : F is
a simple function as in Definition 18.41. If F = C assume further that
( 1({ })) for all 6= 0 in C For such functions define ( ) by

( ) =
X

F

( 1({ }))

Proposition 19.12. Let F and and be two simple functions, then
satisfies:

1.
( ) = ( ) (19.8)

2.
( + ) = ( ) + ( )

3. If and are non-negative simple functions such that then

( ) ( )

19.3 Integrals of positive functions 295

Proof. Let us write { = } for the set 1({ }) and ( = ) for
({ = }) = ( 1 ({ })) so that

( ) =
X

C

( = )

We will also write { = = } for 1({ }) 1({ }) This notation is
more intuitive for the purposes of this proof. Suppose that F then

( ) =
X

F

( = ) =
X

F

( = )

=
X

F

( = ) = ( )

provided that 6= 0 The case = 0 is clear, so we have proved 1.
Suppose that and are two simple functions, then

( + ) =
X

F

( + = )

=
X

F

( F { = = })

=
X

F

X

F

( = = )

=
X

F

( + ) ( = = )

=
X

F

( = ) +
X

F

( = )

= ( ) + ( )

which proves 2.
For 3. if and are non-negative simple functions such that

( ) =
X

0

( = ) =
X

0

( = = )

X

0

( = = ) =
X

0

( = ) = ( )

wherein the third inequality we have used { = = } = if

19.3 Integrals of positive functions

Definition 19.13. Let + = { : [0 ] : is measurable} Define
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Z

= sup { ( ) : is simple and }

We say the + is integrable if
R

If M let
Z

:=

Z

1

Remark 19.14. Because of item 3. of Proposition 19.12, if is a non-negative
simple function,

R

= ( ) so that
R

is an extension of This exten-
sion still has the monotonicity property if : namely if 0 then

Z

= sup { ( ) : is simple and }

sup { ( ) : is simple and }
Z

Similarly if 0
Z

=

Z

Also notice that if is integrable, then ({ = }) = 0
Lemma 19.15. Let be a set and : [0 ] be a function, let =
P

( ) onM = 2 i.e.

( ) =
X

( )

If : [0 ] is a function (which is necessarily measurable), then
Z

=
X

Proof. Suppose that : [0 ] is a simple function, then =
P

[0 ] 1{ = } and

X

=
X

( )
X

[0 ]

1{ = }( ) =
X

[0 ]

X

( )1{ = }( )

=
X

[0 ]

({ = }) =
Z

So if : [0 ) is a simple function such that then
Z

=
X X

Taking the sup over in this last equation then shows that
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Z

X

For the reverse inequality, let be a finite set and (0 )
Set ( ) = min { ( )} and let be the simple function given by

( ) := 1 ( ) ( ) Because ( ) ( )

X

=
X

=

Z Z

Since as we may let in this last equation to concluded
X

Z

Since is arbitrary, this implies
X

Z

Theorem 19.16 (Monotone Convergence Theorem). Suppose +

is a sequence of functions such that ( is necessarily in +) then
Z Z

as

Proof. Since for all
Z Z Z

from which if follows
R

is increasing in and

lim

Z Z

(19.9)

For the opposite inequality, let be a simple function such that 0
(0 1) and := { } Notice that and by Proposition

19.12,
Z Z Z

1 =

Z

1 (19.10)

Then using the continuity property of

lim

Z

1 = lim

Z

1
X

0

1{ = }

= lim
X

0

( { = }) =
X

0

lim ( { = })

=
X

0

lim ({ = }) =
Z
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This identity allows us to let in Eq. (19.10) to conclude
Z

1
lim

Z

Since this is true for all non-negative simple functions with ;

Z

= sup

½

Z

: is simple and
¾

1
lim

Z

Because (0 1) was arbitrary, it follows that
R

lim
R

which com-

bined with Eq. (19.9) proves the theorem.
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that 0 is a mea-
surable function, then for any 0

( )
1
Z

(19.11)

In particular if
R

then ( = ) = 0 (i.e. a.e.) and the
set { 0} is — finite.

Proof. Since 1{ } 1{ } 1 1

( ) =

Z

1{ }

Z

1{ }
1 1

Z

If :=
R

then

( = ) ( ) 0 as

and { 1 } { 0} with ( 1 ) for all

Corollary 19.18. If + is a sequence of functions then
Z

X

=
X

Z

In particular, if
P

R

then
P

a.e.

Proof. First o we show that
Z

( 1 + 2) =

Z

1 +

Z

2

by choosing non-negative simple function and such that 1 and
2 Then ( + ) is simple as well and ( + ) ( 1+ 2) so by the

monotone convergence theorem,
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Z

( 1 + 2) = lim

Z

( + ) = lim

µ

Z

+

Z

¶

= lim

Z

+ lim

Z

=

Z

1 +

Z

2

Now to the general case. Let :=
P

=1
and =

P

1
then and so

again by monotone convergence theorem and the additivity just proved,

X

=1

Z

:= lim
X

=1

Z

= lim

Z

X

=1

= lim

Z

=

Z

=
X

=1

Z

Remark 19.19. It is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition

R

makes sense for all functions :
[0 ] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary 19.18, we use the approximation Theorem 18.42 which
relies heavily on the measurability of the functions to be approximated.

The following Lemma and the next Corollary are simple applications of
Corollary 19.18.

Lemma 19.20 (The First Borell — Carntelli Lemma). Let ( M ) be
a measure space, M and set

{ i.o.} = { : for infinitely many ’s} =
\

=1

[

If
P

=1 ( ) then ({ i.o.}) = 0.
Proof. (First Proof.) Let us first observe that

{ i.o.} =
(

:
X

=1

1 ( ) =

)

Hence if
P

=1 ( ) then

X

=1

( ) =
X

=1

Z

1 =

Z

X

=1

1
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implies that
P

=1
1 ( ) for - a.e. That is to say ({ i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof
of this fact:

( i.o.) = lim
[

lim
X

( )

and the last limit is zero since
P

=1 ( )

Corollary 19.21. Suppose that ( M ) is a measure space and { } =1

M is a collection of sets such that ( ) = 0 for all 6= then

( =1 ) =
X

=1

( )

Proof. Since

( =1 ) =

Z

1
=1

and

X

=1

( ) =

Z

X

=1

1

it su ces to show
X

=1

1 = 1
=1

— a.e. (19.12)

Now
P

=1 1 1
=1

and
P

=1 1 ( ) 6= 1
=1

( ) i for
some 6= that is

(

:
X

=1

1 ( ) 6= 1
=1

( )

)

=

and the later set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12) and hence the corollary.

Example 19.22. Suppose ([ ] [0 )) and be
Lebesgue measure on R Also let = { = 0 1 · · · = } be a
sequence of refining partitions (i.e. +1 for all ) such that

mesh( ) := max{¯¯ +1
1

¯

¯ : = 1 } 0 as

For each let

19.3 Integrals of positive functions 301

( ) = ( )1{ } +
1

X

=0

min
©

( ) : +1

ª

1( +1]
( )

then as and so by the monotone convergence theorem,
Z

:=

Z

[ ]

= lim

Z

= lim
X

=0

min
©

( ) : +1

ª ¡

( +1]
¢

=

Z

( )

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Example 19.23. For all 0
Z

0

( ) = 1 and
Z

R

1

1 + 2
( ) =

The proof of these identities are similar. By the monotone convergence the-
orem, Example 19.22 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.13 above or Theorem 19.39 below),

Z

0

( ) = lim

Z

0

( ) = lim

Z

0

= lim
1 |0 = 1

and
Z

R

1

1 + 2
( ) = lim

Z

1

1 + 2
( ) = lim

Z

1

1 + 2

= tan 1( ) tan 1( ) =

Let us also consider the functions
Z

(0 1]

1
( ) = lim

Z 1

0

1( 1 1]( )
1

( )

= lim

Z 1

1

1
= lim

+1

1

¯

¯

¯

¯

1

1

=

½ 1
1 if 1

if 1
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If = 1 we find

Z

(0 1]

1
( ) = lim

Z 1

1

1
= lim ln( )|11 =

Example 19.24. Let { } =1 be an enumeration of the points in Q [0 1] and
define

( ) =
X

=1

2
1

p| |
with the convention that

1
p| | = 5 if =

Since, By Theorem 19.39,

Z 1

0

1
p| | =

Z 1 1
+

Z

0

1

= 2 |1 2 |0 = 2
¡

1
¢

4

we find
Z

[0 1]

( ) ( ) =
X

=1

2

Z

[0 1]

1
p| |

X

=1

2 4 = 4

In particular, ( = ) = 0 i.e. that for almost every [0 1] and
this implies that

X

=1

2
1

p| | for a.e. [0 1]

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0 1]

Proposition 19.25. Suppose that 0 is a measurable function. Then
R

= 0 i = 0 a.e. Also if 0 are measurable functions such that
a.e. then

R R

In particular if = a.e. then
R

=
R

Proof. If = 0 a.e. and is a simple function then = 0 a.e. This implies
that ( 1({ })) = 0 for all 0 and hence

R

= 0 and therefore
R

= 0
Conversely, if

R

= 0 then by Chebyshev’s Inequality (Lemma 19.17),

( 1 )

Z

= 0 for all
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Therefore, ( 0)
P

=1 ( 1 ) = 0 i.e. = 0 a.e.
For the second assertion let be the exceptional set where i.e.
:= { : ( ) ( )} By assumption is a null set and 1 1

everywhere. Because = 1 + 1 and 1 = 0 a.e.
Z

=

Z

1 +

Z

1 =

Z

1

and similarly
R

=
R

1 Since 1 1 everywhere,
Z

=

Z

1

Z

1 =

Z

Corollary 19.26. Suppose that { } is a sequence of non-negative functions
and is a measurable function such that o a null set, then

Z Z

as

Proof. Let be a null set such that 1 1 as Then by
the monotone convergence theorem and Proposition 19.25,

Z

=

Z

1

Z

1 =

Z

as

Lemma 19.27 (Fatou’s Lemma). If : [0 ] is a sequence of
measurable functions then

Z

lim inf lim inf

Z

Proof. Define := inf so that lim inf as Since

for all
Z Z

for all

and therefore
Z

lim inf

Z

for all

We may now use the monotone convergence theorem to let to find
Z

lim inf =

Z

lim
MCT
= lim

Z

lim inf

Z
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19.4 Integrals of Complex Valued Functions

Definition 19.28. A measurable function : R̄ is integrable if + :=
1{ 0} and = 1{ 0} are integrable. We write L1 ( ;R) for the space
of real valued integrable functions. For L1 ( ;R) let

Z

=

Z

+

Z

Convention: If : R̄ are two measurable functions, let +
denote the collection of measurable functions : R̄ such that ( ) =
( )+ ( ) whenever ( )+ ( ) is well defined, i.e. is not of the form or
+ We use a similar convention for Notice that if L1 ( ;R)

and 1 2 + then 1 = 2 a.e. because | | and | | a.e.

Notation 19.29 (Abuse of notation) We will sometimes denote the in-
tegral

R

by ( ) With this notation we have ( ) = (1 ) for all
M

Remark 19.30. Since
± | | + +

a measurable function is integrable i
R | | Hence

L1 ( ;R) :=
½

: R̄ : is measurable and
Z

| |
¾

If L1 ( ;R) and = a.e. then ± = ± a.e. and so it follows from
Proposition 19.25 that

R

=
R

In particular if L1 ( ;R) we may
define

Z

( + ) =

Z

where is any element of +

Proposition 19.31. The map

L1 ( ;R)
Z

R

is linear and has the monotonicity property:
R R

for all
L1 ( ;R) such that a.e.

Proof. Let L1 ( ;R) and R By modifying and on a null set,
we may assume that are real valued functions. We have + L1 ( ;R)
because

| + | | | | |+ | | | | L1 ( ;R)

If 0 then
( )+ = and ( ) = +
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so that
Z

=

Z

+

Z

+ = (

Z

+

Z

) =

Z

A similar calculation works for 0 and the case = 0 is trivial so we have
shown that

Z

=

Z

Now set = + Since = +

+ = + + +

or
+ + + = + + + +

Therefore,
Z

+ +

Z

+

Z

=

Z

+

Z

+ +

Z

+

and hence
Z

=

Z

+

Z

=

Z

+ +

Z

+

Z Z

=

Z

+

Z

Finally if + = = + then + + + + which
implies that

Z

+ +

Z Z

+ +

Z

or equivalently that
Z

=

Z

+

Z Z

+

Z

=

Z

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that a.e. implies 0 a.e. and Proposition 19.25.

Definition 19.32. A measurable function : C is integrable if
R | | Analogously to the real case, let

L1 ( ;C) :=
½

: C : is measurable and
Z

| |
¾

denote the complex valued integrable functions. Because, max (|Re | |Im |)
| | 2max (|Re | |Im |) R | | i

Z

|Re | +

Z

|Im |

For L1 ( ;C) define
Z

=

Z

Re +

Z

Im
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It is routine to show the integral is still linear on L1 ( ;C) (prove!). In the
remainder of this section, let L1 ( ) be either L1 ( ;C) or L1 ( ;R) If M
and L1 ( ;C) or : [0 ] is a measurable function, let

Z

:=

Z

1

Proposition 19.33. Suppose that L1 ( ;C) then
¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| |

Proof. Start by writing
R

= . Then using the monotonicity in
Proposition 19.25,

¯

¯

¯

¯

Z

¯

¯

¯

¯

= =

Z

=

Z

=

Z

Re
¡ ¢

Z

¯

¯Re
¡ ¢

¯

¯

Z

| |

Proposition 19.34. Let L1 ( ) then

1. The set { 6= 0} is — finite, in fact {| | 1 } { 6= 0} and (| |
1 ) for all .

2. The following are equivalent
a)
R

=
R

for all M
b)
R | | = 0

c) = a.e

Proof. 1. By Chebyshev’s inequality, Lemma 19.17,

(| | 1
)

Z

| |

for all
2. (a) = (c) Notice that

Z

=

Z Z

( ) = 0

for all M. Taking = {Re( ) 0} and using 1 Re( ) 0 we
learn that

0 = Re

Z

( ) =

Z

1 Re( ) = 1 Re( ) = 0 a.e.

This implies that 1 = 0 a.e. which happens i
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({Re( ) 0}) = ( ) = 0

Similar (Re( ) 0) = 0 so that Re( ) = 0 a.e. Similarly, Im( ) = 0
a.e and hence = 0 a.e., i.e. = a.e.
(c) = (b) is clear and so is (b) = (a) since

¯

¯

¯

¯

Z Z

¯

¯

¯

¯

Z

| | = 0

Definition 19.35. Let ( M ) be a measure space and 1( ) = 1( M )
denote the set of L1 ( ) functions modulo the equivalence relation; i
= a.e. We make this into a normed space using the norm

k k 1 =

Z

| |

and into a metric space using 1( ) = k k 1

Warning: in the future we will often not make much of a distinction
between 1( ) and L1 ( ) On occasion this can be dangerous and this danger
will be pointed out when necessary.

Remark 19.36. More generally we may define ( ) = ( M ) for
[1 ) as the set of measurable functions such that

Z

| |

modulo the equivalence relation; i = a.e.

We will see in Chapter 21 that

k k =

µ

Z

| |
¶1

for ( )

is a norm and ( ( ) k·k ) is a Banach space in this norm.

Theorem 19.37 (Dominated Convergence Theorem). Suppose
L1 ( ) a.e., | | L1 ( ) a.e. and

R R

Then L1 ( ) and
Z

= lim

Z

(In most typical applications of this theorem = L1 ( ) for all )
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Proof. Notice that | | = lim | | lim | | a.e. so that
L1 ( ) By considering the real and imaginary parts of separately, it su ces
to prove the theorem in the case where is real. By Fatou’s Lemma,

Z

( ± ) =

Z

lim inf ( ± ) lim inf

Z

( ± )

= lim

Z

+ lim inf

µ

±
Z

¶

=

Z

+ lim inf

µ

±
Z

¶

Since lim inf ( ) = lim sup we have shown,
Z

±
Z Z

+

½

lim inf
R

lim sup
R

and therefore

lim sup

Z Z

lim inf

Z

This shows that lim
R

exists and is equal to
R

Corollary 19.38. Let { } =1 L1 ( ) be a sequence such that
P

=1 k kL1( )

then
P

=1 is convergent a.e. and

Z

Ã

X

=1

!

=
X

=1

Z

Proof. The condition
P

=1 k kL1( ) is equivalent to
P

=1 | |
L1 ( ) Hence

P

=1 is almost everywhere convergent and if :=
P

=1 then

| |
X

=1

| |
X

=1

| | L1 ( )

So by the dominated convergence theorem,

Z

Ã

X

=1

!

=

Z

lim = lim

Z

= lim
X

=1

Z

=
X

=1

Z
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Theorem 19.39 (The Fundamental Theorem of Calculus). Suppose
(( ) R) 1(( ) ) and ( ) :=

R

( ) ( )
Then

1. ([ ] R) 1(( ) R)
2. 0( ) = ( ) for all ( )
3. If ([ ] R) 1(( ) R) is an anti-derivative of on ( ) (i.e.

= 0|( )) then

Z

( ) ( ) = ( ) ( )

Proof. Since ( ) :=
R

R 1( )( ) ( ) ( ) lim 1( )( ) = 1( )( ) for
— a.e. and

¯

¯1( )( ) ( )
¯

¯ 1( )( ) | ( )| is an 1 — function, it follows
from the dominated convergence Theorem 19.37 that is continuous on [ ]
Simple manipulations show,

¯

¯

¯

¯

( + ) ( )
( )

¯

¯

¯

¯

=
1

| |

¯

¯

¯

R +
[ ( ) ( )] ( )

¯

¯

¯

if 0
¯

¯

¯

R

+
[ ( ) ( )] ( )

¯

¯

¯

if 0

1

| |

(

R + | ( ) ( )| ( ) if 0
R

+
| ( ) ( )| ( ) if 0

sup {| ( ) ( )| : [ | | + | |]}

and the latter expression, by the continuity of goes to zero as 0 This
shows 0 = on ( )
For the converse direction, we have by assumption that 0( ) = 0( ) for
( ) Therefore by the mean value theorem, = for some constant
Hence

Z

( ) ( ) = ( ) = ( ) ( )

= ( ( ) + ) ( ( ) + ) = ( ) ( )

Example 19.40. The following limit holds,

lim

Z

0

(1 ) ( ) = 1

Let ( ) = (1 ) 1[0 ]( ) and notice that lim ( ) = We will
now show

0 ( ) for all 0

It su ces to consider [0 ] Let ( ) = ( ) then for (0 )
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ln ( ) = 1 +
1

(1 )
(
1
) = 1

1

(1 )
0

which shows that ln ( ) and hence ( ) is decreasing on [0 ] Therefore
( ) (0) = 1 i.e.

0 ( )

From Example 19.23, we know
Z

0

( ) = 1

so that is an integrable function on [0 ) Hence by the dominated con-
vergence theorem,

lim

Z

0

(1 ) ( ) = lim

Z

0

( ) ( )

=

Z

0

lim ( ) ( ) =

Z

0

( ) = 1

Example 19.41 (Integration of Power Series). Suppose 0 and { } =0 is
a sequence of complex numbers such that

P

=0 | | for all (0 )
Then

Z

Ã

X

=0

!

( ) =
X

=0

Z

( ) =
X

=0

+1 +1

+ 1

for all Indeed this follows from Corollary 19.38 since

X

=0

Z

| | | | ( )
X

=0

Ã

Z | |

0

| | | | ( ) +

Z | |

0

| | | | ( )

!

X

=0

| | | |
+1 + | | +1
+ 1

2
X

=0

| |

where = max(| | | |)
Corollary 19.42 (Di erentiation Under the Integral). Suppose that

R is an open interval and : × C is a function such that

1. ( ) is measurable for each
2. ( 0 ·) 1( ) for some 0

3. ( ) exists for all ( )

4. There is a function L1 ( ) such that
¯

¯

¯

( ·)
¯

¯

¯

L1 ( ) for each

Then ( ·) L1 ( ) ( ) for all (i.e.
R | ( )| ( ) )

R

( ) ( ) is a di erentiable function on and
Z

( ) ( ) =

Z

( ) ( )
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Proof. (The proof is essentially the same as for sums.) By considering the real
and imaginary parts of separately, we may assume that is real. Also notice
that

( ) = lim ( ( + 1 ) ( ))

and therefore, for ( ) is a sequential limit of measurable functions
and hence is measurable for all By the mean value theorem,

| ( ) ( 0 )| ( ) | 0| for all (19.13)

and hence

| ( )| | ( ) ( 0 )|+ | ( 0 )| ( ) | 0|+ | ( 0 )|

This shows ( ·) L1 ( ) for all Let ( ) :=
R

( ) ( ) then

( ) ( 0)

0
=

Z

( ) ( 0 )

0
( )

By assumption,

lim
0

( ) ( 0 )

0
= ( ) for all

and by Eq. (19.13),
¯

¯

¯

¯

( ) ( 0 )

0

¯

¯

¯

¯

( ) for all and

Therefore, we may apply the dominated convergence theorem to conclude

lim
( ) ( 0)

0
= lim

Z

( ) ( 0 )

0
( )

=

Z

lim
( ) ( 0 )

0
( )

=

Z

( 0 ) ( )

for all sequences \ { 0} such that 0 Therefore, ˙ ( 0) =

lim 0

( ) ( 0)

0
exists and

˙ ( 0) =

Z

( 0 ) ( )
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Example 19.43. Recall from Example 19.23 that

1 =

Z

[0 )

( ) for all 0

Let 0 For 2 0 and N there exists ( ) such that

0

µ ¶

= ( )

Using this fact, Corollary 19.42 and induction gives

! 1 =

µ ¶

1 =

Z

[0 )

µ ¶

( )

=

Z

[0 )

( )

That is ! =
R

[0 )
( ) Recall that

( ) :=

Z

[0 )

1 for 0

(The reader should check that ( ) for all 0 ) We have just shown
that ( + 1) = ! for all N

Remark 19.44. Corollary 19.42 may be generalized by allowing the hypothesis
to hold for \ where M is a fixed null set, i.e. must be
independent of Consider what happens if we formally apply Corollary 19.42
to ( ) :=

R

0
1 ( )

˙( ) =

Z

0

1 ( )
?
=

Z

0

1 ( )

The last integral is zero since 1 = 0 unless = in which case it is
not defined. On the other hand ( ) = so that ˙( ) = 1 (The reader should
decide which hypothesis of Corollary 19.42 has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.45. Suppose that ( M ) is a complete measure space1

and : R is measurable.
1 Recall this means that if is a set such that M and ( ) = 0
then M as well.
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1. If : R is a function such that ( ) = ( ) for — a.e. then is
measurable.

2. If : R are measurable and : R is a function such that
lim = - a.e., then is measurable as well.

Proof. 1. Let = { : ( ) 6= ( )} which is assumed to be in M and
( ) = 0. Then = 1 + 1 since = on . Now 1 is measurable
so will be measurable if we show 1 is measurable. For this consider,

(1 ) 1( ) =

½

(1 ) 1( \ {0}) if 0
(1 ) 1( ) if 0

(19.14)

Since (1 ) 1( ) if 0 and ( ) = 0, it follow by completeness of
M that (1 ) 1( ) M if 0 Therefore Eq. (19.14) shows that 1 is
measurable.
2. Let = { : lim ( ) 6= ( )} by assumption M and ( ) = 0.

Since := 1 = lim 1 , is measurable. Because = on and
( ) = 0 = a.e. so by part 1. is also measurable.
The above results are in general false if ( M ) is not complete. For

example, let = {0 1 2} M = {{0} {1 2} } and = 0 Take (0) =
0 (1) = 1 (2) = 2 then = 0 a.e. yet is not measurable.

Lemma 19.46. Suppose that ( M ) is a measure space and M̄ is the
completion of M relative to and ¯ is the extension of to M̄ Then a
function : R is (M̄ B = BR) — measurable i there exists a function
: R that is (M B) — measurable such = { : ( ) 6= ( )} M̄ and
¯ ( ) = 0 i.e. ( ) = ( ) for ¯ — a.e. Moreover for such a pair and

1(¯) i 1( ) and in which case
Z

¯ =

Z

Proof. Suppose first that such a function exists so that ¯( ) = 0 Since
is also (M̄ B) — measurable, we see from Proposition 19.45 that is (M̄ B)
— measurable.
Conversely if is (M̄ B) — measurable, by considering ± we may assume

that 0 Choose (M̄ B) — measurable simple function 0 such that
as Writing

=
X

1

with M̄ we may choose M such that and ¯( \ ) = 0
Letting

˜ :=
X

1

we have produced a (M B) — measurable simple function ˜ 0 such that
:= { 6= ˜ } has zero ¯ — measure. Since ¯ ( )

P

¯ ( ) there
exists M such that and ( ) = 0 It now follows that
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1 ˜ = 1 := 1 as

This shows that = 1 is (M B) — measurable and that { 6= } has
¯ — measure zero.
Since = , ¯ — a.e.,

R

¯ =
R

¯ so to prove Eq. (19.15) it su ces
to prove

Z

¯ =

Z

(19.15)

Because ¯ = on M Eq. (19.15) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 18.42 it holds for allM — measurable functions
: [0 ] The rest of the assertions follow in the standard way by

considering (Re )± and (Im )±

19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let and : [ ] R be a
bounded function. A partition of [ ] is a finite subset [ ] containing
{ } To each partition

= { = 0 1 · · · = } (19.16)

of [ ] let
mesh( ) := max{| 1| : = 1 }

= sup{ ( ) : 1} = inf{ ( ) : 1}

= ( )1{ } +
X

1

1( 1 ] = ( )1{ } +
X

1

1( 1 ] and

=
X

( 1) and =
X

( 1)

Notice that

=

Z

and =

Z

The upper and lower Riemann integrals are defined respectively by
Z

( ) = inf and
Z

( ) = sup

Definition 19.47. The function is Riemann integrable i
R

=
R

and which case the Riemann integral
R

is defined to be the common value:

Z

( ) =

Z

( ) =

Z

( )
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The proof of the following Lemma is left as an exercise to the reader.

Lemma 19.48. If 0 and are two partitions of [ ] and 0 then

0 0 and

0 0

There exists an increasing sequence of partitions { } =1 such that mesh( )
0 and

Z

and
Z

as

If we let
:= lim and := lim (19.17)

then by the dominated convergence theorem,

Z

[ ]

= lim

Z

[ ]

= lim =

Z

( ) (19.18)

and
Z

[ ]

= lim

Z

[ ]

= lim =

Z

( ) (19.19)

Notation 19.49 For [ ] let

( ) = lim sup ( ) := lim
0
sup{ ( ) : | | [ ]} and

( ) = lim inf ( ) := lim
0
inf { ( ) : | | [ ]}

Lemma 19.50. The functions : [ ] R satisfy:

1. ( ) ( ) ( ) for all [ ] and ( ) = ( ) i is continuous
at

2. If { } =1 is any increasing sequence of partitions such that mesh( ) 0
and and are defined as in Eq. (19.17), then

( ) = ( ) ( ) ( ) = ( ) := =1 (19.20)

(Note is a countable set.)
3. and are Borel measurable.

Proof. Let := and :=

1. It is clear that ( ) ( ) ( ) for all and ( ) = ( ) i lim ( )

exists and is equal to ( ) That is ( ) = ( ) i is continuous at
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2. For
( ) ( ) ( ) ( ) ( )

and letting in this equation implies

( ) ( ) ( ) ( ) ( ) (19.21)

Moreover, given 0 and

sup{ ( ) : | | [ ]} ( )

for all large enough, since eventually ( ) is the supremum of ( )
over some interval contained in [ + ] Again letting implies
sup

| |
( ) ( ) and therefore, that

( ) = lim sup ( ) ( )

for all Combining this equation with Eq. (19.21) then implies
( ) = ( ) if A similar argument shows that ( ) = ( ) if

and hence Eq. (19.20) is proved.
3. The functions and are limits of measurable functions and hence mea-
surable. Since = and = except possibly on the countable set
both and are also Borel measurable. (You justify this statement.)

Theorem 19.51. Let : [ ] R be a bounded function. Then

Z

=

Z

[ ]

and
Z

=

Z

[ ]

(19.22)

and the following statements are equivalent:

1. ( ) = ( ) for -a.e.
2. the set

:= { [ ] : is discontinuous at }
is an ¯ — null set.

3. is Riemann integrable.

If is Riemann integrable then is Lebesgue measurable2 , i.e. is L B —
measurable where L is the Lebesgue — algebra and B is the Borel — algebra
on [ ]. Moreover if we let ¯ denote the completion of then

Z

[ ]

=

Z

( ) =

Z

[ ]

¯ =

Z

[ ]

(19.23)

2 need not be Borel measurable.
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Proof. Let { } =1 be an increasing sequence of partitions of [ ] as de-
scribed in Lemma 19.48 and let and be defined as in Lemma 19.50. Since
( ) = 0 = a.e., Eq. (19.22) is a consequence of Eqs. (19.18) and

(19.19). From Eq. (19.22), is Riemann integrable i
Z

[ ]

=

Z

[ ]

and because this happens i ( ) = ( ) for - a.e. Since
= { : ( ) 6= ( )} this last condition is equivalent to being a

— null set. In light of these results and Eq. (19.20), the remaining assertions
including Eq. (19.23) are now consequences of Lemma 19.46.

Notation 19.52 In view of this theorem we will often write
R

( ) for
R

19.7 Determining Classes for Measures

Theorem 19.53 (Uniqueness). Suppose that C 2 is a — class such
that M = (C) If and are two measures on M and there exists C
such that and ( ) = ( ) for each then = onM
Proof. We begin first with the special case where ( ) and therefore
also

( ) = lim ( ) = lim ( ) = ( )

Let
H := { (M R) : ( ) = ( )}

Then H is a linear subspace which is closed under bounded convergence, con-
tains 1 and contains the multiplicative system, := {1 : C} Therefore,
by Theorem 18.51 or Corollary 18.54, H = (M R) and hence =
For the general — finite case, let C be as in the statement and

define two measures and onM for each by

( ) := ( ) and ( ) = ( )

Then, as the reader should verify, and are finite measure on M such
that = on C Therefore, by the special case just proved, = onM
Finally, using the continuity of the measures, and

( ) = lim ( ) = lim ( ) = ( )

for all M
As an immediate consequence we have the following corollaries.
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Corollary 19.54. Suppose that ( ) is a topological space, B = ( ) is
the Borel — algebra on and and are two measures on B which are
— finite on If = on then = on B i.e. :=

Corollary 19.55. Suppose that and are two measures on BR which are
finite on bounded sets and such that ( ) = ( ) for all sets of the form

= ( ] = ( 1 1]× · · · × ( ]

with R and i.e. for all Then = on BR
Proposition 19.56. Suppose that ( ) is a metric space, and are two
measures on B = ( ) which are finite on bounded measurable subsets of
and

Z

=

Z

(19.24)

for all ( R) where

( R) = { ( R) : supp( ) is bounded}

Then

Proof. To prove this fix a and let

( ) = ([ + 1 ( )] 1) 0

so that ( [0 1]) supp( ) ( + 2) and 1 as
Let H denote the space of bounded real valued B — measurable functions
such that

Z

=

Z

(19.25)

Then H is closed under bounded convergence and because of Eq. (19.24)
contains ( R) Therefore by Corollary 18.55, H contains all bounded
measurable functions on Take = 1 in Eq. (19.25) with B and
then use the monotone convergence theorem to let The result is
( ) = ( ) for all B
Here is another version of Proposition 19.56.

Proposition 19.57. Suppose that ( ) is a metric space, and are two
measures on B = ( ) which are both finite on compact sets. Further assume
there exists compact sets such that If

Z

=

Z

(19.26)

for all ( R) then
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Proof. Let be defined as in the proof of Proposition 18.56 and let H
denote those bounded B — measurable functions, : R such that

Z

=

Z

By assumption ( R) H and one easily checks that H is closed
under bounded convergence. Therefore, by Corollary 18.55, H contains all
bounded measurable function. In particular for B

Z

1 =

Z

1

Letting in this equation, using the dominated convergence theorem,
one shows

Z

1 1 =

Z

1 1

holds for Finally using the monotone convergence theorem we may let
to conclude

( ) =

Z

1 =

Z

1 = ( )

for all B

19.8 Exercises

Exercise 19.1. Let be a measure on an algebra A 2 then ( ) +
( ) = ( ) + ( ) for all A
Exercise 19.2 (From problem 12 on p. 27 of Folland.). Let ( M )
be a finite measure space and for M let ( ) = ( ) where

= ( \ ) ( \ ) It is clear that ( ) = ( ) Show:

1. satisfies the triangle inequality:

( ) ( ) + ( ) for all M

2. Define i ( ) = 0 and notice that ( ) = 0 i
Show “ ” is an equivalence relation.

3. Let M denote M modulo the equivalence relation, and let
[ ] := { M : } Show that ¯([ ] [ ]) := ( ) is gives a
well defined metric onM

4. Similarly show ˜ ([ ]) = ( ) is a well defined function on M and
show ˜ : (M ) R+ is ¯ — continuous.
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Exercise 19.3. Suppose that :M [0 ] are measures on M for
N Also suppose that ( ) is increasing in for all M Prove that
:M [0 ] defined by ( ) := lim ( ) is also a measure.

Exercise 19.4. Now suppose that is some index set and for each
: M [0 ] is a measure on M Define : M [0 ] by ( ) =

P

( ) for each M Show that is also a measure.

Exercise 19.5. Let ( M ) be a measure space and : [0 ] be a
measurable function. For M set ( ) :=

R

1. Show :M [0 ] is a measure.
2. Let : [0 ] be a measurable function, show

Z

=

Z

(19.27)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that 1( ) i 1( ) and if 1( ) then Eq. (19.27) still
holds.

Notation 19.58 It is customary to informally describe defined in Exercise
19.5 by writing =

Exercise 19.6. Let ( M ) be a measure space, ( F) be a measurable
space and : be a measurable map. Define a function : F [0 ]
by ( ) := ( 1( )) for all F
1. Show is a measure. (We will write = or = 1 )
2. Show

Z

=

Z

( ) (19.28)

for all measurable functions : [0 ] Hint: see the hint from
Exercise 19.5.

3. Show 1( ) i 1( ) and that Eq. (19.28) holds for all
1( )

Exercise 19.7. Let : R R be a 1-function such that 0( ) 0 for all
R and lim ± ( ) = ± (Notice that is strictly increasing so that
1 : R R exists and moreover, by the implicit function theorem that 1

is a 1 — function.) Let be Lebesgue measure on BR and

( ) = ( ( )) = (
¡

1
¢ 1

( )) =
¡

1
¢

( )

for all BR Show = 0 Use this result to prove the change of
variable formula,
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Z

R
· 0 =

Z

R
(19.29)

which is valid for all Borel measurable functions : R [0 ]
Hint: Start by showing = 0 on sets of the form = ( ] with
R and Then use the uniqueness assertions in Theorem 19.8 (or

see Corollary 19.55) to conclude = 0 on all of BR To prove Eq. (19.29)
apply Exercise 19.6 with = and = 1

Exercise 19.8. Let ( M ) be a measure space and { } =1 M show

({ a.a.}) lim inf ( )

and if ( ) for some then

({ i.o.}) lim sup ( )

Exercise 19.9. Suppose ( M ) be a measure space and : [0 ]
be a measurable function such that

R

Show ({ = }) = 0 and
the set { 0} is — finite.

Exercise 19.10. Folland 2.13 on p. 52. Hint: “Fatou times two.”

Exercise 19.11. Folland 2.14 on p. 52. BRUCE: delete this exercise

Exercise 19.12. Give examples of measurable functions { } on R such that
decreases to 0 uniformly yet

R

= for all Also give an example
of a sequence of measurable functions { } on [0 1] such that 0 while
R

= 1 for all

Exercise 19.13. Folland 2.19 on p. 59. (This problem is essentially covered
in the previous exercise.)

Exercise 19.14. Suppose { } = C is a summable sequence (i.e.
P

= | | ) then ( ) :=
P

= is a continuous function
for R and

=
1

2

Z

( )

Exercise 19.15. For any function 1 ( ) show R
R

( ]
( ) ( )

is continuous in Also find a finite measure, on BR such that
R

( ]
( ) ( ) is not continuous.

Exercise 19.16. Folland 2.28 on p. 60.

Exercise 19.17. Folland 2.31b on p. 60.

Exercise 19.18. There exists a meager (see Definition 13.4 and Proposition
13.3) subsets of R which have full Lebesgue measure, i.e. whose complement
is a Lebesgue null set. (This is Folland 5.27. Hint: Consider the generalized
Cantor sets discussed on p. 39 of Folland.)


