
Part III

Topological Spaces

10

Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 10.1. A collection of subsets of is a topology if

1.
2. is closed under arbitrary unions, i.e. if for then

S

.

3. is closed under finite intersections, i.e. if 1 then 1 · · ·

A pair ( ) where is a topology on will be called a topological
space.

Notation 10.2 Let ( ) be a topological space.

1. The elements, are called open sets. We will often write
to indicate is an open subset of

2. A subset is closed if is open and we will write @ if is
a closed subset of

3. An open neighborhood of a point is an open set such
that Let = { : } denote the collection of open
neighborhoods of

4. A subset is a neighborhood of if there exists such that

5. A collection is called a neighborhood base at if for all
there exists such that .

The notation should not be confused with

{ } := 1
{ }( ) = {{ } : } = { { }}

Example 10.3. 1. Let ( ) be a metric space, we write for the collection
of — open sets in We have already seen that is a topology, see
Exercise 6.2. The collection of sets = { ( ) : D} where D is any
dense subset of (0 1] is a neighborhood base at
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2. Let be any set, then = 2 is a topology. In this topology all subsets of
are both open and closed. At the opposite extreme we have the trivial

topology, = { } In this topology only the empty set and are open
(closed).

3. Let = {1 2 3} then = { {2 3}} is a topology on which does
not come from a metric.

4. Again let = {1 2 3} Then = {{1} {2 3} } is a topology, and
the sets {1} {2 3} are open and closed. The sets {1 2} and {1 3}
are neither open nor closed.

Fig. 10.1. A topology.

Definition 10.4. Let ( ) and ( ) be topological spaces. A function
: is continuous if

1( ) :=
©

1 ( ) :
ª

We will also say that is —continuous or ( ) — continuous. Let
( ) denote the set of continuous functions from to

Exercise 10.1. Show : is continuous i 1( ) is closed in for
all closed subsets of

Definition 10.5. A map : between topological spaces is called a
homeomorphism provided that is bijective, is continuous and 1 :

is continuous. If there exists : which is a homeomorphism,
we say that and are homeomorphic. (As topological spaces and are
essentially the same.)

10.1 Constructing Topologies and Checking Continuity

Proposition 10.6. Let E be any collection of subsets of Then there exists
a unique smallest topology (E) which contains E
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Proof. Since 2 is a topology and E 2 E is always a subset of a
topology. It is now easily seen that

(E) :=
\

{ : is a topology and E }

is a topology which is clearly the smallest possible topology containing E
The following proposition gives an explicit descriptions of (E)

Proposition 10.7. Let be a set and E 2 For simplicity of notation,
assume that E (If this is not the case simply replace E by E { } )
Then

(E) := {arbitrary unions of finite intersections of elements from E}
(10.1)

Proof. Let be given as in the right side of Eq. (10.1). From the definition
of a topology any topology containing E must contain and hence E
(E) The proof will be completed by showing is a topology. The validation
of being a topology is routine except for showing that is closed under
taking finite intersections. Let which by definition may be expressed
as

= and =

where and are sets which are finite intersection of elements from E
Then

= ( ) ( ) =
[

( ) ×

Since for each ( ) × is still a finite intersection of elements
from E showing is closed under taking finite intersections.

Definition 10.8. Let ( ) be a topological space. We say that S is a
sub-base for the topology i = (S) and = S := S We say
V is a base for the topology i V is a sub-base with the property that
every element may be written as

= { V : }

Exercise 10.2. Suppose that S is a sub-base for a topology on a set

1. Show V := S (S is the collection of finite intersections of elements from
S) is a base for

2. Show S is itself a base for i

1 2 = { S : 1 2}

for every pair of sets 1 2 S
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Fig. 10.2. Fitting balls in the intersection.

Remark 10.9. Let ( ) be a metric space, then E = { ( ) : and
0} is a base for — the topology associated to the metric This is the

content of Exercise 6.3.
Let us check directly that E is a base for a topology. Suppose that

and 0 If ( ) ( ) then

( ) ( ) ( ) (10.2)

where = min{ ( ) ( )} see Figure 10.2. This is a formal
consequence of the triangle inequality. For example let us show that ( )
( ) By the definition of we have that ( ) or that ( )

Hence if ( ) then

( ) ( ) + ( ) + ( ) + =

which shows that ( ) Similarly we show that ( ) as well.
Owing to Exercise 10.2, this shows E is a base for a topology. We do not

need to use Exercise 10.2 here since in fact Equation (10.2) may be generalized
to finite intersection of balls. Namely if 0 and =1 ( )
then

( ) =1 ( ) (10.3)

where now := min { ( ) : = 1 2 } By Eq. (10.3) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 10.3. Suppose : is a function and and are topolo-
gies on and respectively. Show

1 :=
©

1 ( ) :
ª

and :=
©

: 1 ( )
ª

(as in Notation 2.7) are also topologies on and respectively.
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Remark 10.10. Let : be a function. Given a topology 2 the
topology := 1( ) is the smallest topology on such that is ( )
- continuous. Similarly, if is a topology on then = is the largest
topology on such that is ( ) - continuous.

Definition 10.11. Let ( ) be a topological space and subset of The
relative topology or induced topology on is the collection of sets

= 1( ) = { : }

where : be the inclusion map as in Definition 2.8.

Lemma 10.12. The relative topology, is a topology on Moreover a
subset is — closed i there is a — closed subset, of such that
=

Proof. The first assertion is a consequence of Exercise 10.3. For the second,
is — closed i \ = for some which is equivalent to

= \ ( ) = for some

Exercise 10.4. Show if ( ) is a metric space and = is the topology
coming from then ( ) is the topology induced by making into a metric
space using the metric | ×

Lemma 10.13. Suppose that ( ) ( ) and ( ) are topological
spaces. If : ( ) ( ) and : ( ) ( ) are continuous
functions then : ( ) ( ) is continuous as well.

Proof. This is easy since by assumption 1( ) and 1 ( )
so that

( )
1
( ) = 1

¡

1 ( )
¢

1 ( )

The following elementary lemma turns out to be extremely useful because
it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 10.14. Suppose that : is a function, E 2 and
then

¡

1(E)¢ = 1( (E)) and (10.4)

(E ) = ( (E)) (10.5)

Moreover, if = (E) and is a topology on then is ( ) —
continuous i 1(E)
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Proof. We will give two proof of Eq. (10.4). The first proof is more con-
structive than the second, but the second proof will work in the context of
— algebras to be developed later. First Proof. There is no harm (as the

reader should verify) in replacing E by E { } if necessary so that we
may assume that E By Proposition 10.7, the general element of
(E) is an arbitrary unions of finite intersections of elements from E Since
1 preserves all of the set operations, it follows that 1 (E) consists of

sets which are arbitrary unions of finite intersections of elements from 1E
which is precisely

¡

1(E)¢ by another application of Proposition 10.7. Sec-
ond Proof. By Exercise 10.3, 1( (E)) is a topology and since E (E)

1(E) 1( (E)) It now follows that ( 1(E)) 1( (E)) For the
reverse inclusion notice that

¡

1(E)¢ = © : 1( )
¡

1(E)¢ª

is a topology which contains E and thus (E) ¡

1(E)¢ Hence if
(E) we know that 1( )

¡

1(E)¢ i.e. 1( (E)) ¡

1(E)¢ and
Eq. (10.4) has been proved. Applying Eq. (10.4) with = and =
being the inclusion map implies

( (E)) = 1( (E)) = ( 1(E)) = (E )

Lastly if 1E then 1 (E) = ¡

1E¢ which shows is
( ) — continuous.

Corollary 10.15. If ( ) is a topological space and : R is a function
then the following are equivalent:

1. is ( R) - continuous,
2. 1(( )) for all
3. 1(( )) and 1(( )) for all Q

(We are using R to denote the standard topology on R induced by the
metric ( ) = | | )
Proof. Apply Lemma 10.14 with appropriate choices of E

Definition 10.16. Let ( ) and ( ) be topological spaces. A function
: is continuous at a point if for every open neighborhood
of ( ) there is an open neighborhood of such that 1( ) See

Figure 10.3.

Exercise 10.5. Show : is continuous (Definition 10.16) i is
continuous at all points

Definition 10.17. Given topological spaces ( ) and ( 0) and a subset
We say a function : is continuous i is 0 —

continuous.
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Fig. 10.3. Checking that a function is continuous at

Definition 10.18. Let ( ) be a topological space and A collection
of subsets U is an open cover of if

SU := S U
Proposition 10.19 (Localizing Continuity). Let ( ) and ( 0) be
topological spaces and : be a function.

1. If is continuous and then | : is continuous.
2. Suppose there exist an open cover, U of such that | is continuous
for all U then is continuous.

Proof. 1. If : is a continuous, 1( ) for all 0 and
therefore

| 1 ( ) = 1( ) for all 0

2. Let 0 then
1( ) = U

¡

1( )
¢

= U | 1( ) (10.6)

Since each U is open, and by assumption, | 1( )
Hence Eq. (10.6) shows 1 ( ) is a union of — open sets and hence is also
— open.

Exercise 10.6 (A Baby Extension Theorem). Suppose and :
C is a continuous function. Further assume there is a closed subset

such that { : ( ) 6= 0} then : C defined by

( ) =

½

( ) if
0 if

is continuous.

Exercise 10.7 (Building Continuous Functions). Prove the following
variant of item 2. of Proposition 10.19. Namely, suppose there exists a fi-
nite collection F of closed subsets of such that = F and | is
continuous for all F then is continuous. Given an example showing
that the assumption that F is finite can not be eliminated. Hint: consider

1 ( ) where is a closed subset of
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10.2 Product Spaces I

Definition 10.20. Let be a set and suppose there is a collection of topo-
logical spaces {( ) : } and functions : for all
Let ( : ) denote the smallest topology on such that each is
continuous, i.e.

( : ) = ( 1( )).

Proposition 10.21 (Topologies Generated by Functions). Assuming
the notation in Definition 10.20 and additionally let ( ) be a topologi-
cal space and : be a function. Then is ( ( : )) —
continuous i is ( )—continuous for all

Proof. ( ) If is ( ( : )) — continuous, then the composition
is ( ) — continuous by Lemma 10.13. ( ) Let

= ( : ) =
¡

1( )
¢

If is ( ) — continuous for all then

1 1( )

and therefore

1
¡

1( )
¢

= 1 1( )

Hence

1 ( ) = 1
¡ ¡

1( )
¢¢

= ( 1
¡

1( )
¢

which shows that is ( ) — continuous.
Let {( )} be a collection of topological spaces, = =

Q

and : be the canonical projection map as in Notation 2.2.

Definition 10.22. The product topology = is the smallest topol-
ogy on such that each projection is continuous. Explicitly, is the
topology generated by the collection of sets,

E = { 1( ) : } = 1 (10.7)

Applying Proposition 10.21 in this setting implies the following proposi-
tion.

Proposition 10.23. Suppose is a topological space and : is a
map. Then is continuous i : is continuous for all
In particular if = {1 2 } so that = 1 × 2 × · · · × and
( ) = ( 1( ) 2( ) ( )) 1 × 2 × · · · × then : is
continuous i : is continuous for all
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Proposition 10.24. Suppose that ( ) is a topological space and { }
(see Notation 2.2) is a sequence. Then in the product topology of
i ( ) ( ) for all

Proof. Since is continuous, if then ( ) = ( ) ( ) =
( ) for all Conversely, ( ) ( ) for all i ( ) ( )
for all Therefore if = 1( ) E (with E as in Eq. (10.7)) and

then ( ) and ( ) for a.a. and hence for a.a.
This shows that as

Proposition 10.25. Suppose that ( ) is a collection of topological
spaces and is the product topology on :=

Q

1. If E generates for each then

=
¡

1(E )¢ (10.8)

2. If B is a base for for each then the collection of sets, V of
the form

= 1 =
Y

×
Y

=: × \ (10.9)

where and B for all is base for

Proof. 1. Since

1E 1 = 1( (E ))
= ( 1E ) ¡

1E ¢

it follows that
¡

1E ¢ ¡

1E ¢

2. Now let U = £ 1
¤

denote the collection of sets consisting of finite

intersections of elements from 1 Notice that U may be described as
those sets in Eq. (10.9) where for all By Exercise 10.2, U is a
base for the product topology, Hence for and
there exists a U of the form in Eq. (10.9) such that Since B
is a base for there exists B such that for each
With this notation, the set × \ V and × \
This shows that every open set in may be written as a union of elements
from V i.e. V is a base for the product topology.
Notation 10.26 Let E 2 be a collection of subsets of a set for each
= 1 2 We will write, by abuse of notation, E1 × E2 × · · · × E for the
collection of subsets of 1×· · ·× of the form 1× 2×· · ·× with E
for all That is we are identifying ( 1 2 ) with 1× 2× · · · ×
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Corollary 10.27. Suppose = {1 2 } so = 1 × 2 × · · · ×
1. If E 2 = (E ) and E for each then

1 2 · · · = (E1 × E2 × · · · × E ) (10.10)

and in particular

1 2 · · · = ( 1 × · · · × ) (10.11)

2. Furthermore if B is a base for the topology for each then B1 ×
· · · × B is a base for the product topology, 1 2 · · ·
Proof. (The proof is a minor variation on the proof of Proposition 10.25.)

1. Let
£

1(E )¤ denotes the collection of sets which are finite intersec-

tions from 1(E ) then, using E for all

1(E ) E1 × E2 × · · · × E
£

1(E )¤

Therefore

=
¡

1(E )¢ (E1 × E2 × · · · × E )
³

£

1(E )¤
´

=

2. Observe that 1× · · · × is closed under finite intersections and generates
1 2 · · · therefore 1 × · · · × is a base for the product topology.
The proof that B1 × · · · × B is also a base for 1 2 · · · follows the
same method used to prove item 2. in Proposition 10.25.

Lemma 10.28. Let ( ) for = 1 be metric spaces, := 1×· · ·×
and for = ( 1 2 ) and = ( 1 2 ) in let

( ) =
X

=1

( ) (10.12)

Then the topology, associated to the metric is the product topology on
i.e.

= 1 2 · · ·
Proof. Let ( ) = max{ ( ) : = 1 2 } Then is equivalent

to and hence = Moreover if 0 and = ( 1 2 ) then

( ) = 1

1
( )× · · · × ( )

By Remark 10.9,
E := { ( ) : and 0}

is a base for and by Proposition 10.25 E is also a base for 1 2 · · ·
Therefore,

1 2 · · · = (E) = =
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10.3 Closure operations

Definition 10.29. Let ( ) be a topological space and be a subset of

1. The closure of is the smallest closed set ¯ containing i.e.

¯ := { : @ }
(Because of Exercise 6.4 this is consistent with Definition 6.10 for the
closure of a set in a metric space.)

2. The interior of is the largest open set contained in i.e.

= { : }
(With this notation the definition of a neighborhood of may be
stated as: is a neighborhood of a point if )

3. The accumulation points of is the set

acc( ) = { : \ { } 6= for all }
4. The boundary of is the set bd( ) := ¯ \
Remark 10.30. The relationships between the interior and the closure of a set
are:

( ) =
\

{ : and } =
\

{ : is closed } =

and similarly, ( ¯) = ( ) Hence the boundary of may be written as

bd( ) := ¯ \ = ¯ ( ) = ¯ (10.13)

which is to say bd( ) consists of the points in both the closure of and

Proposition 10.31. Let and

1. If and = then ¯ =
2. ¯ i 6= for all
3. bd( ) i 6= and 6= for all
4. ¯ = acc( )

Proof. 1. Since = and since is closed, ¯ That
is to say ¯ = 2. By Remark 10.301, ¯ = (( ) ) so ¯ i ( )
which happens i * for all i.e. i 6= for all 3.
This assertion easily follows from the Item 2. and Eq. (10.13). 4. Item 4. is an
easy consequence of the definition of acc( ) and item 2.

1 Here is another direct proof of item 2. which goes by showing ¯ i there exists
such that = If ¯ then =

¡

¯
¢

and ¯ =
Conversely if there exists such that = then by Item 1. ¯ =
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Lemma 10.32. Let ¯ denote the closure of in with its
relative topology and ¯ = ¯ be the closure of in then ¯ = ¯

Proof. Using Lemma 10.12,

¯ = { @ : } = { : @ }
= ( { : @ }) = ¯

Alternative proof. Let then ¯ i 6= for all
such that This happens i for all = 6= which
happens i ¯ That is to say ¯ = ¯

The support of a function may now be defined as in Definition 8.25 above.

Definition 10.33 (Support). Let : be a function from a topo-
logical space ( ) to a vector space Then we define the support of
by

supp( ) := { : ( ) 6= 0}
a closed subset of

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 10.34. Suppose that : is a map between topological spaces.
Then the following are equivalent:

1. is continuous.
2. ( ¯) ( ) for all
3. 1( ) 1( ¯) for all

Proof. If is continuous, then 1
³

( )
´

is closed and since

1 ( ( )) 1
³

( )
´

it follows that ¯ 1
³

( )
´

From this equa-

tion we learn that ( ¯) ( ) so that (1) implies (2) Now assume (2), then
for (taking = 1( ¯)) we have

( 1( )) ( 1( ¯)) ( 1( ¯)) ¯

and therefore
1( ) 1( ¯) (10.14)

This shows that (2) implies (3) Finally if Eq. (10.14) holds for all then
when is closed this shows that

1( ) 1( ¯) = 1( ) 1( )

which shows that
1( ) = 1( )

Therefore 1( ) is closed whenever is closed which implies that is con-
tinuous.
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10.4 Countability Axioms

Definition 10.35. Let ( ) be a topological space. A sequence { } =1

converges to a point if for all almost always
(abbreviated a.a.), i.e. #({ : }) We will write as
or lim = when converges to

Example 10.36. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2
for all Then for every So limits need not be unique!

Definition 10.37 (First Countable). A topological space, ( ) is first
countable i every point has a countable neighborhood base as defined
in Notation 10.2

All metric spaces are first countable and, like for metric spaces,when
is first countable, we may formulate many topological notions in terms of
sequences.

Proposition 10.38. If : is continuous at and lim =
then lim ( ) = ( ) Moreover, if there exists a countable

neighborhood base of then is continuous at i lim ( ) = ( )

for all sequences { } =1 such that as

Proof. If : is continuous and is a neighborhood of
( ) then there exists a neighborhood of such that ( )
Since a.a. and therefore ( ) ( ) a.a., i.e.
( ) ( ) as Conversely suppose that := { } =1 is a
countable neighborhood base at and lim ( ) = ( ) for all sequences

{ } =1 such that By replacing by 1 · · · if neces-
sary, we may assume that { } =1 is a decreasing sequence of sets. If were
not continuous at then there exists ( ) such that

£

1( )
¤

Therefore, is not a subset of 1( ) for all Hence for each we may
choose \ 1( ) This sequence then has the property that
as while ( ) for all and hence lim ( ) 6= ( )

Lemma 10.39. Suppose there exists { } =1 such that then
¯ Conversely if ( ) is a first countable space (like a metric space)

then if ¯ there exists { } =1 such that

Proof. Suppose { } =1 and Since ¯ is an open
set, if ¯ then ¯ a.a. contradicting the assumption that
{ } =1 Hence ¯ For the converse we now assume that ( ) is
first countable and that { } =1 is a countable neighborhood base at such
that 1 2 3 By Proposition 10.31, ¯ i 6= for all

Hence ¯ implies there exists for all It is now
easily seen that as
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Definition 10.40. A topological space, ( ) is second countable if there
exists a countable base V for i.e. V is a countable set such that for
every

= { : V 3 }
Definition 10.41. A subset of a topological space is dense if ¯ =
A topological space is said to be separable if it contains a countable dense
subset,

Example 10.42. The following are examples of countable dense sets.

1. The rational number Q are dense in R equipped with the usual topology.
2. More generally, Q is a countable dense subset of R for any N
3. Even more generally, for any function : N (0 ) ( ) is separable
for all 1 For example, let F be a countable dense set, then

:= { ( ) : ¡ for all and #{ : 6= 0} }

The set can be taken to be Q if F = R or Q+ Q if F = C
4. If ( ) is a metric space which is separable then every subset is
also separable in the induced topology.

To prove 4. above, let = { } =1 be a countable dense subset of
Let ( ) = inf{ ( ) : } be the distance from to and recall

that : [0 ) is continuous. Let = max
©

( ) 1
ª

0 and for
each let (2 ) Then if and 0 we may choose N such
that ( ) 3 Then ( ) 2 2 3 and therefore

( ) ( ) + ( )

This shows that := { } =1 is a countable dense subset of

Exercise 10.8. Show (N) is not separable.

Exercise 10.9. Show every second countable topological space ( ) is sep-
arable. Show the converse is not true by by showing := R with =
{ } { R : 0 } is a separable, first countable but not second countable
topological space.

Exercise 10.10. Every separable metric space, ( ) is second countable.

Exercise 10.11. Suppose E 2 is a countable collection of subsets of
then = (E) is a second countable topology on
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10.5 Connectedness

Definition 10.43. ( ) is disconnected if there exists non-empty open sets
and of such that = and = . We say { } is a

disconnection of . The topological space ( ) is called connected if it
is not disconnected, i.e. if there is no disconnection of If we say
is connected i ( ) is connected where is the relative topology on
Explicitly, is disconnected in ( ) i there exists such that
6= 6= = and

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space ( ) is connected i the only
sets which are both open and closed are the sets and

Remark 10.44. Let Then is connected in i is connected
in .

Proof. Since

:= { : } = { : } = { : }
the relative topology on inherited from is the same as the relative topol-
ogy on inherited from . Since connectivity is a statement about the relative
topologies on is connected in i is connected in
The following elementary but important lemma is left as an exercise to

the reader.

Lemma 10.45. Suppose that : is a continuous map between topo-
logical spaces. Then ( ) is connected if is connected.

Here is a typical way these connectedness ideas are used.

Example 10.46. Suppose that : is a continuous map between two
topological spaces, the space is connected and the space is “ 1 ” i.e. { }
is a closed set for all as in Definition 12.36 below. Further assume
is locally constant, i.e. for all there exists an open neighborhood of
in such that | is constant. Then is constant, i.e. ( ) = { 0} for

some 0 To prove this, let 0 ( ) and let := 1({ 0}) Since
{ 0} is a closed set and since is continuous is also closed. Since
is locally constant, is open as well and since is connected it follows

that = i.e. ( ) = { 0}
Theorem 10.47 (Properties of Connected Sets). Let ( ) be a topo-
logical space.

1. If is a connected set and is the disjoint union of two open sets
and then either or

2. If is connected,
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a) then ¯ is connected.
b) More generally, if is connected and acc( ) then is
connected as well. (Recall that acc( ) — the set of accumulation points
of was defined in Definition 10.29 above.)

3. If { } is a collection of connected sets such that
T 6= then

:=
S

is connected as well.
4. Suppose are non-empty connected subsets of such that ¯

6= then is connected in
5. Every point is contained in a unique maximal connected subset

of and this subset is closed. The set is called the connected
component of

Proof.

1. Since is the disjoint union of the relatively open sets and
we must have = or = for otherwise { }
would be a disconnection of

2. a. Let = ¯ be equipped with the relative topology from Suppose
that form a disconnection of = ¯ Then by 1. either
or Say that Since is both open an closed in it follows
that = ¯ Therefore = and we have a contradiction to the
assumption that { } is a disconnection of = ¯ Hence we must
conclude that = ¯ is connected as well.
b. Now let = with acc( ) then

¯ = ¯ = ( acc( )) =

Because is connected in by (2a) = = ¯ is also connected.
3. Let :=

S

By Remark 10.44, we know that is connected
in for each If { } were a disconnection of by item (1),
either or for all Let = { : } then
= and = \ (Notice that neither or \ can be

empty since and are not empty.) Since

= =
[

( )
\

6=

we have reached a contradiction and hence no such disconnection exists.
4. (A good example to keep in mind here is = R = (0 1) and =
[1 2) ) For sake of contradiction suppose that { } were a disconnection
of = By item (1) either or say in which
case Since = we must have = and = and so
we may conclude: and are disjoint subsets of which are both open
and closed. This implies

= ¯ = ¯ = ¯ ( ) =
¡

¯
¢
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and therefore

= =
£ ¡

¯
¢¤

= ¯ 6=

which gives us the desired contradiction.
5. Let C denote the collection of connected subsets such that
Then by item 3., the set := C is also a connected subset of which
contains and clearly this is the unique maximal connected set containing
Since ¯ is also connected by item (2) and is maximal, = ¯

i.e. is closed.

Theorem 10.48 (The Connected Subsets of R). The connected subsets
of R are intervals.

Proof. Suppose that R is a connected subset and that with
If there exists ( ) such that then := ( )

and := ( ) would form a disconnection of Hence ( ) Let
:= inf( ) and := sup( ) and choose such that and

and as By what we have just shown, ( )
for all and hence ( ) = =1( ) From this it follows that
= ( ) [ ) ( ] or [ ] i.e. is an interval.
Conversely suppose that is an interval, and for sake of contradiction,

suppose that { } is a disconnection of with After relabelling
and if necessary we may assume that Since is an interval

[ ] Let = sup ([ ] ) then because and are open,
Now can not be in for otherwise sup ([ ] ) and can not be in
for otherwise sup ([ ] ) From this it follows that and

hence 6= contradicting the assumption that { } is a disconnection.

Theorem 10.49 (Intermediate Value Theorem). Suppose that ( ) is
a connected topological space and : R is a continuous map. Then
satisfies the intermediate value property. Namely, for every pair such
that ( ) ( ) and ( ( ) ( )) there exits such that ( ) =

Proof. By Lemma 10.45, ( ) is connected subset of R So by Theorem
10.48, ( ) is a subinterval of R and this completes the proof.

Definition 10.50. A topological space is path connected if to every pair
of points { 0 1} there exists a continuous path, ([0 1] ) such
that (0) = 0 and (1) = 1 The space is said to be locally path con-
nected if for each there is an open neighborhood of which is
path connected.

Proposition 10.51. Let be a topological space.
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1. If is path connected then is connected.
2. If is connected and locally path connected, then is path connected.
3. If is any connected open subset of R then is path connected.

Proof. The reader is asked to prove this proposition in Exercises 10.18 —
10.20 below.

Proposition 10.52 (Stability of Connectedness Under Products). Let
( ) be connected topological spaces. Then the product space =
Q

equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that
and are connected topological spaces, then we will show that × is
connected as well. To do this let = ( 0 0) × and denote the
connected component of Since { 0} × is homeomorphic to { 0} ×
is connected in × and therefore { 0} × i.e. ( 0 ) for all

A similar argument now shows that × { } for any that
is to × = see Figure 10.4. By induction the theorem holds whenever
is a finite set, i.e. for products of a finite number of connected spaces.

Fig. 10.4. This picture illustrates why the connected component of in ×
must contain all points of ×

For the general case, again choose a point = and let =
be the connected component of in Recall that is closed and therefore
if is a proper subset of then \ is a non-empty open set. By the
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definition of the product topology, this would imply that \ contains an
open set of the form

:= 1( ) = × \

where and for all We will now show that no such
can exist and hence = i.e. is connected. Define : by
( ) = where

=

½

if
if

If ( ) = = ( ) and if \ then ( ) = so that
in every case : is continuous and therefore is continuous.
Since is a product of a finite number of connected spaces it is connected by
step 1. above. Hence so is the continuous image, ( ) = × { } \
of Now ( ) and ( ) is connected implies that ( ) On
the other hand one easily sees that

6= ( )

contradicting the assumption that

10.6 Exercises

10.6.1 General Topological Space Problems

Exercise 10.12. Let be an open subset of R Show may be written as
a disjoint union of open intervals = ( ) where R {± } for
= 1 2 · · · with = possible.

Exercise 10.13. Let ( ) and ( 0) be a topological spaces, :
be a function, U be an open cover of and { } =1 be a finite cover of by
closed sets.

1. If is any set and : is ( 0) — continuous then | :
is ( 0) — continuous.

2. Show : is ( 0) — continuous i | : is ( 0) —
continuous for all U

3. Show : is ( 0) — continuous i | : is ( 0) —
continuous for all = 1 2

Exercise 10.14. Suppose that is a set, {( ) : } is a family of
topological spaces and : is a given function for all Assuming
that S is a sub-base for the topology for each show S :=

1(S ) is a sub-base for the topology := ( : )
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10.6.2 Connectedness Problems

Exercise 10.15. Show any non-trivial interval in Q is disconnected.

Exercise 10.16. Suppose and : ( ) R is a non-decreasing func-
tion. Show if satisfies the intermediate value property (see Theorem 10.49),
then is continuous.

Exercise 10.17. Suppose and : [ ) R is a strictly
increasing continuous function. By Lemma 10.45, ([ )) is an interval and
since is strictly increasing it must of the form [ ) for some R and R̄
with Show the inverse function 1 : [ ) [ ) is continuous and
is strictly increasing. In particular if N apply this result to ( ) =
for [0 ) to construct the positive th — root of a real number. Compare
with Exercise 3.8

Exercise 10.18. Prove item 1. of Proposition 10.51. Hint: show is not
connected implies is not path connected.

Exercise 10.19. Prove item 2. of Proposition 10.51.Hint: fix 0 and let
denote the set of such that there exists ([0 1] ) satisfying

(0) = 0 and (1) = Then show is both open and closed.

Exercise 10.20. Prove item 3. of Proposition 10.51.

Exercise 10.21. Let

:=
©

( ) R2 : = sin( 1)
ª {(0 0)}

equipped with the relative topology induced from the standard topology on
R2 Show is connected but not path connected.

10.6.3 Metric Spaces as Topological Spaces

Definition 10.53. Two metrics and on a set are said to be equivalent
if there exists a constant (0 ) such that 1

Exercise 10.22. Suppose that and are two metrics on

1. Show = if and are equivalent.
2. Show by example that it is possible for = even thought and are
inequivalent.

Exercise 10.23. Let ( ) for = 1 be a finite collection of metric
spaces and for 1 and = ( 1 2 ) and = ( 1 ) in
:=
Q

=1 let

( ) =

½

(
P

=1 [ ( )] )
1 if 6=

max ( ) if =
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1. Show ( ) is a metric space for [1 ] Hint: Minkowski’s inequal-
ity.

2. Show for any [1 ] the metrics and are equivalent. Hint:
This can be done with explicit estimates or you could use Theorem 11.12
below.

Notation 10.54 Let be a set and p := { } =0 be a family of semi-metrics
on i.e. : × [0 ) are functions satisfying the assumptions
of metric except for the assertion that ( ) = 0 implies = Further
assume that ( ) +1( ) for all and if ( ) = 0 for all N
then = Given N and let

( ) := { : ( ) }
We will write (p) form the smallest topology on such that ( ·) :
[0 ) is continuous for all N and i.e. (p) := ( ( ·) : N
and )

Exercise 10.24. Using Notation 10.54, show that collection of balls,

B := { ( ) : N and 0}
forms a base for the topology (p) Hint: Use Exercise 10.14 to show B is a
sub-base for the topology (p) and then use Exercise 10.2 to show B is in fact
a base for the topology (p)

Exercise 10.25 (A minor variant of Exercise 6.12). Let be as in
Notation 10.54 and

( ) :=
X

=0

2
( )

1 + ( )

Show is a metric on and = (p) Conclude that a sequence { } =1

converges to i

lim ( ) = 0 for all N

Exercise 10.26. Let {( )} =1 be a sequence of metric spaces, :=
Q

=1 and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X

=1

2
( ( ) ( ))

1 + ( ( ) ( ))

(See Exercise 6.12.) Moreover, let : be the projection maps, show

= =1 := ({ : N})
That is show the — metric topology is the same as the product topology on
Suggestions: 1) show is continuous for each and 2) show for each

that ( ·) is =1 — continuous. For the second assertion notice

that ( ·) =P =1 where = 2
³

( ( ) ·)
1+ ( ( ) ·)

´
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Compactness

Definition 11.1. The subset of a topological space ( ) is said to be com-
pact if every open cover (Definition 10.18) of has finite a sub-cover, i.e. if
U is an open cover of there exists U0 U such that U0 is a cover of
(We will write @@ to denote that and is compact.) A subset

is precompact if ¯ is compact.

Proposition 11.2. Suppose that is a compact set and is a
closed subset. Then is compact. If { } =1 is a finite collections of compact
subsets of then = =1 is also a compact subset of

Proof. Let U be an open cover of then U { } is an open cover
of The cover U { } of has a finite subcover which we denote by
U0 { } where U0 U Since = it follows that U0 is the desired
subcover of For the second assertion suppose U is an open cover of
Then U covers each compact set and therefore there exists a finite subset
U U for each such that U Then U0 := =1U is a finite cover
of

Exercise 11.1. Suppose : is continuous and is compact,
then ( ) is a compact subset of Give an example of continuous map,
: and a compact subset of such that 1( ) is not compact.

Exercise 11.2 (Dini’s Theorem). Let be a compact topological space
and : [0 ) be a sequence of continuous functions such that ( ) 0
as for each Show that in fact 0 uniformly in i.e.
sup ( ) 0 as Hint: Given 0 consider the open sets
:= { : ( ) }

Definition 11.3. A collection F of closed subsets of a topological space ( )
has the finite intersection property if F0 6= for all F0 F
The notion of compactness may be expressed in terms of closed sets as

follows.
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Proposition 11.4. A topological space is compact i every family of closed
sets F 2 having the finite intersection property satisfies

TF 6=
Proof. ( ) Suppose that is compact and F 2 is a collection of

closed sets such that
TF = Let

U = F := { : F}

then U is a cover of and hence has a finite subcover, U0 Let F0 = U0 F
then F0 = so that F does not have the finite intersection property. ( ) If
is not compact, there exists an open cover U of with no finite subcover.

Let
F = U := { : U}

then F is a collection of closed sets with the finite intersection property while
TF =
Exercise 11.3. Let ( ) be a topological space. Show that is com-
pact i ( ) is a compact topological space.

11.1 Metric Space Compactness Criteria

Let ( ) be a metric space and for and 0 let 0 ( ) = ( )\{ } —
the deleted ball centered at of radius 0 Recall from Definition 10.29 that
a point is an accumulation point of a subset if 6= \ { }
for all open neighborhoods, of The proof of the following elementary
lemma is left to the reader.

Lemma 11.5. Let be a subset of a metric space ( ) Then the
following are equivalent:

1. is an accumulation point of
2. 0 ( ) 6= for all 0
3. ( ) is an infinite set for all 0
4. There exists { } =1 \ { } with lim =

Definition 11.6. A metric space ( ) is — bounded ( 0) if there exists
a finite cover of by balls of radius and it is totally bounded if it is —
bounded for all 0

Theorem 11.7. Let ( ) be a metric space. The following are equivalent.

(a) is compact.
(b) Every infinite subset of has an accumulation point.
(c) Every sequence { } =1 has a convergent subsequence.
(d) is totally bounded and complete.

11.1 Metric Space Compactness Criteria 141

Proof. The proof will consist of showing that
( ) We will show that not not . Suppose there exists an infinite
subset which has no accumulation points. Then for all there
exists 0 such that := ( ) satisfies ( \ { }) = Clearly
V = { } is a cover of yet V has no finite sub cover. Indeed, for each

{ } and hence if can only contain a finite
number of points from (namely ) Thus for any "
and in particular 6= (See Figure 11.1.) ( ) Let { } =1

Fig. 11.1. The construction of an open cover with no finite sub-cover.

be a sequence and := { : N} If #( ) then { } =1 has a
subsequence { } =1 which is constant and hence convergent. On the other
hand if#( ) = then by assumption has an accumulation point and hence
by Lemma 11.5, { } =1 has a convergent subsequence. ( ) Suppose
{ } =1 is a Cauchy sequence. By assumption there exists a subsequence
{ } =1 which is convergent to some point Since { } =1 is Cauchy
it follows that as showing is complete. We now show that
is totally bounded. Let 0 be given and choose an arbitrary point 1

If possible choose 2 such that ( 2 1) then if possible choose
3 such that { 1 2}( 3) and continue inductively choosing points
{ } =1 such that { 1 1}( ) (See Figure 11.2.) This process
must terminate, for otherwise we would produce a sequence { } =1

which can have no convergent subsequences. Indeed, the have been chosen
so that ( ) 0 for every 6= and hence no subsequence of
{ } =1 can be Cauchy. ( ) For sake of contradiction, assume there
exists an open cover V = { } of with no finite subcover. Since is
totally bounded for each N there exists such that

=
[

(1 )
[

(1 )

Choose 1 1 such that no finite subset of V covers 1 := 1(1) Since
1 = 2 1 (1 2) there exists 2 2 such that 2 := 1 2(1 2)

can not be covered by a finite subset of V see Figure 11.3. Continuing this
way inductively, we construct sets = 1 (1 ) with
such no can be covered by a finite subset of V Now choose
for each Since { } =1 is a decreasing sequence of closed sets such that
diam( ) 2 it follows that { } is a Cauchy and hence convergent with
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Fig. 11.2. Constructing a set with out an accumulation point.

= lim =1

Since V is a cover of there exists V such that Since { }
and diam( ) 0 it now follows that for some large. But this
violates the assertion that can not be covered by a finite subset of V

Fig. 11.3. Nested Sequence of cubes.

Corollary 11.8. Any compact metric space ( ) is second countable and
hence also separable by Exercise 10.9. (See Example 12.25 below for an exam-
ple of a compact topological space which is not separable.)

Proof. To each integer there exists such that =
( 1 ) The collection of open balls,

V := N { ( 1 )}
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forms a countable basis for the metric topology on To check this, suppose
that 0 and 0 are given and choose N such that 1 2
and such that ( 0 ) 1 Then ( 1 ) ( 0 ) because for

( 1 )

( 0) ( ) + ( 0) 2

Corollary 11.9. The compact subsets of R are the closed and bounded sets.

Proof. This is a consequence of Theorem 8.2 and Theorem 11.7. Here is
another proof. If is closed and bounded then is complete (being the
closed subset of a complete space) and is contained in [ ] for some
positive integer For 0 let

= Z [ ] := { : Z and | | for = 1 2 }
We will show, by choosing 0 su ciently small, that

[ ] ( ) (11.1)

which shows that is totally bounded. Hence by Theorem 11.7, is compact.
Suppose that [ ] then there exists such that | |
for = 1 2 Hence

2( ) =
X

=1

( )2 2

which shows that ( ) Hence if choose we have shows
that ( ) i.e. Eq. (11.1) holds.

Example 11.10. Let = (N) with [1 ) and (N) such that
( ) 0 for all N The set

:= { : | ( )| ( ) for all N}
is compact. To prove this, let { } =1 be a sequence. By com-
pactness of closed bounded sets in C for each N there is a subse-
quence of { ( )} =1 C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence { } =1 of { } =1 such that
( ) := lim ( ) exists for all N 1 Since | ( )| ( ) for all
it follows that | ( )| ( ) i.e. Finally
1 The argument is as follows. Let { 1} =1 be a subsequence of N = { } =1 such that
lim 1(1) exists. Now choose a subsequence { 2} =1 of { 1} =1 such that

lim 2(2) exists and similarly { 3} =1 of { 2} =1 such that lim 3(3)

exists. Continue on this way inductively to get

{ } =1 { 1} =1 { 2} =1 { 3} =1

such that lim ( ) exists for all N Let := so that eventually

{ } =1 is a subsequence of { } =1 for all Therefore, we may take :=
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lim k k = lim
X

=1

| ( ) ( )| =
X

=1

lim | ( ) ( )| = 0

wherein we have used the Dominated convergence theorem. (Note | ( ) ( )|
2 ( ) and is summable.) Therefore and we are done.
Alternatively, we can prove is compact by showing that is closed and

totally bounded. It is simple to show is closed, for if { } =1 is a
convergent sequence in := lim then

| ( )| lim | ( )| ( ) N

This shows that and hence is closed. To see that is totally
bounded, let 0 and choose such that

¡

P

= +1 | ( )|
¢1

Since
Q

=1 ( )(0) C is closed and bounded, it is compact. Therefore there
exists a finite subset

Q

=1 ( )(0) such that

Y

=1

( )(0) ( )

where ( ) is the open ball centered at C relative to the
({1 2 3 }) — norm. For each let ˜ be defined by

˜( ) = ( ) if and ˜( ) = 0 for + 1 I now claim that

˜(2 ) (11.2)

which, when verified, shows is totally bounded. To verify Eq. (11.2), let
and write = + where ( ) = ( ) for and ( ) = 0 for
Then by construction ˜( ) for some ˜ and

k k
Ã

X

= +1

| ( )|
!1

So we have

k ˜k = k + ˜k k ˜k + k k 2

Exercise 11.4 (Extreme value theorem). Let ( ) be a compact topo-
logical space and : R be a continuous function. Show inf
sup and there exists such that ( ) = inf and ( ) = sup 2.
Hint: use Exercise 11.1 and Corollary 11.9.
2 Here is a proof if is a metric space. Let { } =1 be a sequence such that
( ) sup By compactness of we may assume, by passing to a subsequence
if necessary that as By continuity of ( ) = sup
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Exercise 11.5 (Uniform Continuity). Let ( ) be a compact metric
space, ( ) be a metric space and : be a continuous function.
Show that is uniformly continuous, i.e. if 0 there exists 0 such that
( ( ) ( )) if with ( ) Hint: you could follow the
argument in the proof of Theorem 8.2.

Definition 11.11. Let be a vector space. We say that two norms, |·| and
k·k on are equivalent if there exists constants (0 ) such that

k k | | and | | k k for all
Theorem 11.12. Let be a finite dimensional vector space. Then any two
norms |·| and k·k on are equivalent. (This is typically not true for norms
on infinite dimensional spaces, see for example Exercise 7.7.)

Proof. Let { } =1 be a basis for and define a new norm on by

°

°

°

°

°

X

=1

°

°

°

°

°

2

:=

v

u

u

t

X

=1

| |2 for F

By the triangle inequality for the norm |·| we find
¯

¯

¯

¯

¯

X

=1

¯

¯

¯

¯

¯

X

=1

| | | |
v

u

u

t

X

=1

| |2
v

u

u

t

X

=1

| |2
°

°

°

°

°

X

=1

°

°

°

°

°

2

where =
q

P

=1 | |2 Thus we have
| | k k2

for all and this inequality shows that |·| is continuous relative to
k·k2 Since the normed space ( k·k2) is homeomorphic and isomorphic
to F with the standard euclidean norm, the closed bounded set, :=
{ : k k2 = 1} is a compact subset of relative to k·k2 There-
fore by Exercise 11.4 there exists 0 such that

= inf {| | : } = | 0| 0

Hence given 0 6= then k k2 so that

¯

¯

¯

¯k k2

¯

¯

¯

¯

= | | 1

k k2
or equivalently

k k2
1 | |

This shows that |·| and k·k2 are equivalent norms. Similarly one shows that
k·k and k·k2 are equivalent and hence so are |·| and k·k
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Corollary 11.13. If ( k·k) is a finite dimensional normed space, then
is compact i is closed and bounded relative to the given norm, k·k

Corollary 11.14. Every finite dimensional normed vector space ( k·k) is
complete. In particular any finite dimensional subspace of a normed vector
space is automatically closed.

Proof. If { } =1 is a Cauchy sequence, then { } =1 is bounded
and hence has a convergent subsequence, = by Corollary 11.13. It is
now routine to show lim = := lim

Theorem 11.15. Suppose that ( k·k) is a normed vector in which the unit
ball, := 0 (1) is precompact. Then dim

Proof. Since ¯ is compact, we may choose such that

¯
µ

+
1

2

¶

where, for any 0

:= { : } = 0 ( )

Let := span( ) then the previous equation implies that

¯ +
1

2

Multiplying this equation by 1
2 then shows

1

2

1

2
+
1

4
= +

1

4

and hence
+
1

2
+ +

1

4
= +

1

4

Continuing this way inductively then shows that

+
1

2
for all N

Hence if there exists and 0 (2 ) such that +
Since lim = 0 it follows that = lim ¯ Since dim
#( ) Corollary 11.14 implies = ¯ and so we have shown that

Since for any 1
2k k we have for all i.e.

=

Exercise 11.6. Suppose ( k·k ) is a normed space and ( k·k ) is a finite
dimensional normed space. Show every linear transformation : is
necessarily bounded.
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11.2 Compact Operators

Definition 11.16. Let : be a bounded operator between two (sepa-
rable) Banach spaces. Then is compact if [ (0 1)] is precompact in
or equivalently for any { } =1 such that k k 1 for all the sequence
:= has a convergent subsequence.

Example 11.17. Let = 2 = and C such that lim = 0 then
: defined by ( )( ) = ( ) is compact.

Proof. Suppose { } =1
2 such that k k2 =P | ( )|2 1 for all

By Cantor’s Diagonalization argument, there exists { } { } such that, for
each ˜ ( ) = ( ) converges to some ˜( ) C as Since for any

X

=1

|˜( )|2 = lim
X

=1

|˜ ( )|2 1

we may conclude that
P

=1
|˜( )|2 1 i.e. ˜ 2 Let := ˜ and := ˜

We will finish the verification of this example by showing in 2 as
Indeed if = max | | then

k ˜ ˜k2 =
X

=1

| |2 |˜ ( ) ˜( )|2

=
X

=1

| |2|˜ ( ) ˜( )|2 + | |2
X

+1

|˜ ( ) ˜( )|2

X

=1

| |2|˜ ( ) ˜( )|2 + | |2 k˜ ˜k2

X

=1

| |2|˜ ( ) ˜( )|2 + 4| |2

Passing to the limit in this inequality then implies

lim sup k ˜ ˜k2 4| |2 0 as

Lemma 11.18. If are bounded operators such the either
or is compact then the composition : is also compact.

Proof. Let (0 1) be the open unit ball in If is compact and
is bounded, then ( (0 1)) ( (0 1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we conclude
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that ( (0 1)) is compact, being the closed subset of the compact set
( (0 1)) If is continuous and is compact, then ( (0 1)) is a

bounded set and so by the compactness of ( (0 1)) is a precompact
subset of i.e. is compact.

11.3 Local and — Compactness

Notation 11.19 If is a topological spaces and is a normed space, let

( ) := { ( ) : sup k ( )k }

and
( ) := { ( ) : supp( ) is compact}

If = R or C we will simply write ( ) ( ) and ( ) for ( )
( ) and ( ) respectively.

Remark 11.20. Let be a topological space and be a Banach space.
By combining Exercise 11.1 and Theorem 11.7 it follows that ( )

( )

Definition 11.21 (Local and — compactness). Let ( ) be a topolog-
ical space.

1. ( ) is locally compact if for all there exists an open neigh-
borhood of such that ¯ is compact. (Alternatively, in light of
Definition 10.29 (also see Definition 6.5), this is equivalent to requiring
that to each there exists a compact neighborhood of )

2. ( ) is — compact if there exists compact sets such that
= =1 (Notice that we may assume, by replacing by 1 2

· · · if necessary, that )

Example 11.22. Any open subset of R is a locally compact and —
compact metric space. The proof of local compactness is easy and is left to
the reader. To see that is — compact, for N let

:= { : | | and ( ) 1 }
Then is a closed and bounded subset of R and hence compact. Moreover

as since3

{ : | | and ( ) 1 } as

Exercise 11.7. If ( ) is locally compact and second countable, then there
is a countable basis B0 for the topology consisting of precompact open sets.
Use this to show ( ) is - compact.

3 In fact this is an equality, but we will not need this here.
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Exercise 11.8. Every separable locally compact metric space is — compact.

Exercise 11.9. Every — compact metric space is second countable (or equiv-
alently separable), see Corollary 11.8.

Exercise 11.10. Suppose that ( ) is a metric space and is an open
subset.

1. If is locally compact then ( ) is locally compact.
2. If is — compact then ( ) is — compact. Hint: Mimic Example
11.22, replacing { R : | | } by compact sets @@ such that

Lemma 11.23. Let ( ) be locally and — compact. Then there exists com-
pact sets such that +1 +1 for all

Proof. Suppose that is a compact set. For each let
be an open neighborhood of such that ¯ is compact. Then so
there exists such that

¯ =:

Then is a compact set, being a finite union of compact subsets of and
Now let be compact sets such that as

Let 1 = 1 and then choose a compact set 2 such that 2 2

Similarly, choose a compact set 3 such that 2 3 3 and continue
inductively to find compact sets such that +1 +1 for all
Then { } =1 is the desired sequence.

Remark 11.24. Lemma 11.23 may also be stated as saying there exists pre-
compact open sets { } =1 such that ¯

+1 for all and
as Indeed if { } =1 are as above, let := ¯ and if { } =1 are
as in Lemma 11.23, let :=

Proposition 11.25. Suppose is a locally compact metric space and
and @@ Then there exists such that

and ¯ is compact.

Proof. (This is done more generally in Proposition 12.7 below.) By local
compactness or for each there exists 0 such that ( ) is
compact and by shrinking if necessary we may assume,

( ) ( ) (2 )

for each By compactness of there exists such that
( ) =: Notice that ¯ ( ) and ¯ is a closed subset

of the compact set ( ) and hence compact as well.
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Definition 11.26. Let be an open subset of a topological space ( ) We
will write to mean a function ( [0 1]) such that supp( ) :=
{ 6= 0}
Lemma 11.27 (Urysohn’s Lemma for Metric Spaces). Let be a lo-
cally compact metric space and @@ Then there exists such
that = 1 on In particular, if is compact and is closed in such
that = there exists ( [0 1]) such that = 1 on and = 0
on

Proof. Let be as in Proposition 11.25 and then use Lemma 6.15 to find
a function ( [0 1]) such that = 1 on and = 0 on Then
supp( ) ¯ and hence

11.4 Function Space Compactness Criteria

In this section, let ( ) be a topological space.

Definition 11.28. Let F ( )

1. F is equicontinuous at i for all 0 there exists such
that | ( ) ( )| for all and F

2. F is equicontinuous if F is equicontinuous at all points
3. F is pointwise bounded if sup{| ( )| : | F} for all .

Theorem 11.29 (Ascoli-Arzela Theorem). Let ( ) be a compact topo-
logical space and F ( ) Then F is precompact in ( ) i F is equicon-
tinuous and point-wise bounded.

Proof. ( ) Since ( ) ( ) is a complete metric space, we must
show F is totally bounded. Let 0 be given. By equicontinuity, for all

there exists such that | ( ) ( )| 2 if and
F Since is compact we may choose such that =

We have now decomposed into “blocks” { } such that each F is
constant to within on Since sup {| ( )| : and F} it is
now evident that

= sup {| ( )| : and F}
sup {| ( )| : and F}+

Let D := { 2 : Z} [ ] If F and D (i.e. : D is a
function) is chosen so that | ( ) ( )| 2 for all then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )| and

From this it follows that F = S©F : D
ª

where, for D
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F := { F : | ( ) ( )| for and }
Let :=

©

D : F 6= ª

and for each choose F F For
F and we have

| ( ) ( )| | ( ) ( ))|+ | ( ) ( )| 2

So k k 2 for all F showing that F (2 ) Therefore,

F = F (2 )

and because 0 was arbitrary we have shown that F is totally bounded.
( ) (*The rest of this proof may safely be skipped.) Since k·k : ( )

[0 ) is a continuous function on ( ) it is bounded on any compact subset
F ( ) This shows that sup {k k : F} which clearly implies
that F is pointwise bounded.4 Suppose F were not equicontinuous at some
point that is to say there exists 0 such that for all
sup sup

F
| ( ) ( )| 5 Equivalently said, to each we may choose

F and 3 | ( ) ( )| (11.3)

Set C = { : and }k·k F and notice for any V
that

VC C V 6=
so that {C } F has the finite intersection property.6 Since F is
compact, it follows that there exists some

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps : ( ) R given by ( ) = ( ) for all

5 If is first countable we could finish the proof with the following argument.
Let { } =1 be a neighborhood base at such that 1 2 3 By
the assumption that F is not equicontinuous at there exist F and

such that | ( ) ( )| Since F is a compact metric space by
passing to a subsequence if necessary we may assume that converges uniformly
to some F Because as we learn that

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2k k+ | ( ) ( )| 0 as

which is a contradiction.
6 If we are willing to use Net’s described in Appendix C below we could finish
the proof as follows. Since F is compact, the net { } F has a cluster
point F ( ) Choose a subnet { } of { } such that
uniformly. Then, since implies we may conclude from Eq.
(11.3) that

| ( ) ( )| | ( ) ( )| = 0
which is a contradiction.
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C 6=

Since is continuous, there exists such that | ( ) ( )| 3 for
all Because C there exists such that k k 3
We now arrive at a contradiction;

| ( ) ( )|
| ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
3 + 3 + 3 =

The following result is a corollary of Lemma 11.23 and Theorem 11.29.

Corollary 11.30 (Locally Compact Ascoli-Arzela Theorem). Let ( )
be a locally compact and — compact topological space and { } ( )
be a pointwise bounded sequence of functions such that { | } is equicon-
tinuous for any compact subset Then there exists a subsequence
{ } { } such that { := } =1 ( ) is a sequence which is uni-
formly convergent on compact subsets of

Proof. Let { } =1 be the compact subsets of constructed in Lemma
11.23. We may now apply Theorem 11.29 repeatedly to find a nested family
of subsequences

{ } { 1 } { 2 } { 3 }
such that the sequence { } =1 ( ) is uniformly convergent on
Using Cantor’s trick, define the subsequence { } of { } by := Then
{ } is uniformly convergent on for each N Now if is an
arbitrary compact set, there exists such that and
therefore { } is uniformly convergent on as well.

Proposition 11.31. Let R such that ¯ is compact and 0 1
Then the inclusion map : ( ) ( ) is a compact operator. See
Chapter 9 and Lemma 9.9 for the notation being used here.

Let { } =1 ( ) such that k k 1 i.e. k k 1 and

| ( ) ( )| | | for all

By the Arzela-Ascoli Theorem 11.29, there exists a subsequence of {˜ } =1

of { } =1 and ( ¯) such that ˜ in 0 Since

| ( ) ( )| = lim |˜ ( ) ˜ ( )| | |

as well. Define := ˜ then

[ ] + k k 0 = k k 2
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and 0 in 0 To finish the proof we must show that 0 in Given
0

[ ] = sup
6=
| ( ) ( )|

| | +

where

= sup

½ | ( ) ( )|
| | : 6= and | |

¾

= sup

½ | ( ) ( )|
| | · | | : 6= and | |

¾

· [ ] 2

and

= sup

½ | ( ) ( )|
| | : | |

¾

2 k k 0 0 as

Therefore,

lim sup [ ] lim sup + lim sup 2 + 0 0 as 0

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 11.18 below.

Theorem 11.32. Let be a precompact open subset of R [0 1] and
N0 If + + then

¡

¯
¢

is compactly contained in
¡

¯
¢

11.5 Tychono ’s Theorem

The goal of this section is to show that arbitrary products of compact spaces
is still compact. Before going to the general case of an arbitrary number of
factors let us start with only two factors.

Proposition 11.33. Suppose that and are non-empty compact topolog-
ical spaces, then × is compact in the product topology.

Proof. Let U be an open cover of × Then for each ( ) ×
there exist U such that ( ) By definition of the product topology,
there also exist and such that × Therefore
V := { × : ( ) × } is also an open cover of × We will now
show that V has a finite sub-cover, say V0 V Assuming this is proved for
the moment, this implies that U also has a finite subcover because each V0
is contained in some U So to complete the proof it su ces to show every
cover V of the form V = { × : } where and has
a finite subcover. Given let : × be the map ( ) = ( )



154 11 Compactness

and notice that is continuous since ( ) = and ( ) = are
continuous maps. From this we conclude that { } × = ( ) is compact.
Similarly, it follows that × { } is compact for all Since V is a cover
of { }× there exist such that { }× S

( × ) without

loss of generality we may assume that is chosen so that for all
Let :=

T

and notice that

[

( × )
[

( × ) = × (11.4)

see Figure 11.4 below. Since { } is now an open cover of and is

Fig. 11.4. Constructing the open set

compact, there exists such that = The finite subcol-
lection, V0 := { × : } of V is the desired finite subcover.
Indeed using Eq. (11.4),

V0 = ( × ) ( × ) = ×

The results of Exercises 11.19 and 10.26 prove Tychono ’s Theorem for a
countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 11.34 (Tychono ’s Theorem). Let { } be a collection of
non-empty compact spaces. Then := =

Q

is compact in the prod-

uct space topology. (Compare with Exercise 11.19 which covers the special case
of a countable product of compact metric spaces.)
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Proof. (The proof is taken from Loomis [13] which followed Bourbaki. Re-
mark 11.35 below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem B.7 of Appendix B
below. For let denote the projection map from to Suppose
that F is a family of closed subsets of which has the finite intersection
property, see Definition 11.3. By Proposition 11.4 the proof will be complete
if we can show F 6= The first step is to apply Zorn’s lemma to construct a
maximal collection F0 of (not necessarily closed) subsets of with the finite
intersection property. To do this, let :=

©G 2 : F Gª equipped with
the partial order, G1 G2 if G1 G2 If is a linearly ordered subset of
then G:= is an upper bound for which still has the finite intersection
property as the reader should check. So by Zorn’s lemma, has a maximal
element F0 The maximal F0 has the following properties.
1. F0 is closed under finite intersections. Indeed, if we let (F0) denote the
collection of all finite intersections of elements from F0 then (F0) has
the finite intersection property and contains F0 Since F0 is maximal, this
implies (F0) = F0

2. If and 6= for all F0 then F0 For if not
F0 { } would still satisfy the finite intersection property and would
properly contain F0 But this would violate the maximallity of F0

3. For each

(F0) := { ( ) : F0}
has the finite intersection property. Indeed, if { } =1 F0 then

=1 ( ) ( =1 ) 6=
Since is compact, property 3. above along with Proposition 11.4 implies
F0 ( ) 6= Since this true for each using the axiom of choice,

there exists such that = ( ) F0 ( ) for all The
proof will be completed by showing F which will prove F is not empty
as desired.
Since :=

©

¯ : F0
ª F it su ces to show Let be an

open neighborhood of in By the definition of the product topology (or
item 2. of Proposition 10.25), there exists and open sets
for all such that 1( ) Since F0 ( ) and

for all it follows that ( ) 6= for all F0 and all
This then implies 1 ( ) 6= for all F0 and all By

property 2.7 above we concluded that 1 ( ) F0 for all and then
by property 1. that 1 ( ) F0 In particular

6= ¡

1 ( )
¢

for all F0
7 Here is where we use that F0 is maximal among the collection of all, not just
closed, sets having the finite intersection property and containing F
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which shows ¯ for each F0 i.e.
Remark 11.35. Consider the following simple example where = [ 1 1] ×
[ 1 1] and F = { 1 2} as in Figure 11.5. Notice that ( 1) ( 2) =
[ 1 1] for each and so gives no help in trying to find the th — coordinate
of one of the two points in 1 2 This is why it is necessary to introduce
the collection F0 in the proof of Theorem 11.34. In this case one might take
F0 to be the collection of all subsets such that We then have

F0 ( ) = { } so the th — coordinate of may now be determined by
observing the sets, { ( ) : F0}

Fig. 11.5. Here F = { 1 2} where 1 and 2 are the two parabolic arcs and
1 2 = { }

11.6 Exercises

Exercise 11.11. Prove Lemma 11.5.

Exercise 11.12. Let be a closed proper subset of R and R \ Show
there exists a such that ( ) = ( )

Exercise 11.13. Let F = R in this problem and 2(N) be defined by

= { 2(N) : ( ) 1 + 1 for some N}
= =1{ 2(N) : ( ) 1 + 1 }

Show is a closed subset of 2(N) with the property that (0) = 1 while
there is no such that ( ) = 1 (Remember that in general an infinite
union of closed sets need not be closed.)

Exercise 11.14. Let [1 ] and be an infinite set. Show directly, with-
out using Theorem 11.15, the closed unit ball in ( ) is not compact.
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11.6.1 Ascoli-Arzela Theorem Problems

Exercise 11.15. Let (0 ) and F ([0 ]) be a family of functions
such that:

1. ˙( ) exists for all (0 ) and F
2. sup F | (0)| and

3. := sup F sup (0 )

¯

¯

¯

˙( )
¯

¯

¯

Show F is precompact in the Banach space ([0 ]) equipped with the
norm k k = sup [0 ] | ( )|

Exercise 11.16 (Peano’s Existence Theorem). Suppose : R × R
R is a bounded continuous function. Then for each 8 there exists a
solution to the di erential equation

˙( ) = ( ( )) for 0 with (0) = 0 (11.5)

Do this by filling in the following outline for the proof.

1. Given 0 show there exists a unique function ([ ) R )
such that ( ) := 0 for 0 and

( ) = 0 +

Z

0

( ( )) for all 0 (11.6)

Here
Z

0

( ( )) =

µ

Z

0
1( ( ))

Z

0

( ( ))

¶

where = ( 1 ) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For

[0 ] it follows from Eq. (11.6) that

( ) = 0 +

Z

0

( 0)

Now that ( ) is known for [ ] it can be found by integration for
[ 2 ] The process can be repeated.

2. Then use Exercise 11.15 to show there exists { } =1 (0 ) such that
lim = 0 and converges to some ([0 ]) with respect to
the sup-norm: k k = sup [0 ] | ( )|) Also show for this sequence that

lim sup | ( ) ( )| = 0

8 Using Corollary 11.30 below, we may in fact allow =
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3. Pass to the limit (with justification) in Eq. (11.6) with replaced by
to show satisfies

( ) = 0 +

Z

0

( ( )) [0 ]

4. Conclude from this that ˙ ( ) exists for (0 ) and that solves Eq.
(11.5).

5. Apply what you have just prove to the ODE,

˙( ) = ( ( )) for 0 with (0) = 0

Then extend ( ) above to [ ] by setting ( ) = ( ) if [ 0]
Show so defined solves Eq. (11.5) for ( )

Exercise 11.17. Folland Problem 4.63. (Compactness of integral operators.)

Exercise 11.18. Prove Theorem 11.32. Hint: First prove
¡

¯
¢

@@
¡

¯
¢

is compact if 0 1 Then use Lemma 11.18 repeatedly to
handle all of the other cases.

11.6.2 Tychono ’s Theorem Problem

Exercise 11.19 (Tychono ’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise 6.12. Further assume that
the spaces are compact for all Show, without using Theorem 11.34,
( ) is compact. Hint: Either use Cantor’s method to show every sequence
{ } =1 has a convergent subsequence or alternatively show ( ) is
complete and totally bounded. (Compare with Tychono ’s Theorem 11.34
above which covers the general case.)

12

Locally Compact Hausdor Spaces

In this section will always be a topological space with topology We
are now interested in restrictions on in order to insure there are “plenty”
of continuous functions. One such restriction is to assume = — is the
topology induced from a metric on For example the results in Lemma
6.15 and Theorem 7.4 above shows that metric spaces have lots of continuous
functions.
The main thrust of this section is to study locally compact (and — com-

pact) “Hausdor ” spaces as defined in Definitions 12.2 and 11.21. We will see
again that this class of topological spaces have an ample supply of continuous
functions. We will start out with the notion of a Hausdor topology. The fol-
lowing example shows a pathology which occurs when there are not enough
open sets in a topology.

Example 12.1. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2
for all Then for every !

Definition 12.2 (Hausdor Topology). A topological space, ( ) is
Hausdor if for each pair of distinct points, there exists dis-
joint open neighborhoods, and of and respectively. (Metric spaces are
typical examples of Hausdor spaces.)

Remark 12.3.When is Hausdor the “pathologies” appearing in Example
12.1 do not occur. Indeed if and \ { } we may choose

and such that = Then a.a. implies
for all but a finite number of and hence 9 so limits are unique.

Proposition 12.4. Let ( ) be Hausdor topological spaces. Then the
product space =

Q

equipped with the product topology is Haus-
dor .

Proof. Let be distinct points. Then there exists such that
( ) = 6= = ( ) Since is Hausdor , there exists disjoint open
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sets such ( ) and ( ) Then 1( ) and 1( ) are
disjoint open sets in containing and respectively.

Proposition 12.5. Suppose that ( ) is a Hausdor space, @@ and
Then there exists such that = and

In particular is closed. (So compact subsets of Hausdor topological spaces
are closed.) More generally if and are two disjoint compact subsets of
there exist disjoint open sets such that and

Proof. Because is Hausdor , for all there exists and
such that = The cover { } of has a finite subcover,

{ } for some Let = and = then
satisfy and = This shows that is open and hence
that is closed. Suppose that and are two disjoint compact subsets of
For each there exists disjoint open sets and such that

and Since { } is an open cover of there exists a finite subset
of such that := The proof is completed by defining
:=

Exercise 12.1. Show any finite set admits exactly one Hausdor topology

Exercise 12.2. Let ( ) and ( ) be topological spaces.

1. Show is Hausdor i := {( ) : } is a closed in × equipped
with the product topology

2. Suppose is Hausdor and : are continuous maps. If

{ = } = then = Hint: make use of the map × : ×
defined by ( × ) ( ) = ( ( ) ( ))

Exercise 12.3. Given an example of a topological space which has a non-
closed compact subset.

Proposition 12.6. Suppose that is a compact topological space, is a
Hausdor topological space, and : is a continuous bijection then
is a homeomorphism, i.e. 1 : is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdor spaces
are closed, it follows that

¡

1
¢ 1

( ) = ( ) is closed in for all closed
subsets of Thus 1 is continuous.
The next two results shows that locally compact Hausdor spaces have

plenty of open sets and plenty of continuous functions.

Proposition 12.7. Suppose is a locally compact Hausdor space and
and @@ Then there exists such that

and ¯ is compact. (Compare with Proposition 11.25 above.)

12 Locally Compact Hausdor Spaces 161

Proof. By local compactness, for all there exists such
that ¯ is compact. Since is compact, there exists such that
{ } is a cover of The set = ( ) is an open set such that

and is precompact since ¯ is a closed subset of the compact
set ¯ ( ¯ is compact because it is a finite union of compact sets.)
So by replacing by if necessary, we may assume that ¯ is compact. Since
¯ is compact and bd( ) = ¯ is a closed subset of ¯ bd( ) is compact.
Because bd( ) it follows that bd( ) = so by Proposition 12.5,
there exists disjoint open sets and such that and bd( ) By
replacing by if necessary we may further assume that see
Figure 12.1. Because ¯ is a closed set containing and bd( ) =

Fig. 12.1. The construction of

¯ ¯ = ( bd( )) = ¯

Since ¯ is compact it follows that ¯ is compact and the proof is complete.
The following Lemma is analogous to Lemma 11.27.

Lemma 12.8 (Urysohn’s Lemma for LCH Spaces). Let be a locally
compact Hausdor space and @@ Then there exists (see
Definition 11.26) such that = 1 on In particular, if is compact and
is closed in such that = there exists ( [0 1]) such that
= 1 on and = 0 on

Proof. For notational ease later it is more convenient to construct :=
1 rather than To motivate the proof, suppose ( [0 1]) such
that = 0 on and = 1 on For 0 let = { } Then for
0 1 { } and since { } is closed this implies

¯ { }
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Therefore associated to the function is the collection open sets { } 0

with the property that ¯ for all 0 1 and
= if 1 Finally let us notice that we may recover the function from

the sequence { } 0 by the formula

( ) = inf{ 0 : } (12.1)

The idea of the proof to follow is to turn these remarks around and define
by Eq. (12.1).
Step 1. (Construction of the ) Let

D :=
©

2 : = 1 2 2 1 = 1 2
ª

be the dyadic rationals in (0 1] Use Proposition 12.7 to find a precompact
open set 1 such that 1

¯
1 Apply Proposition 12.7 again to

construct an open set 1 2 such that

1 2
¯
1 2 1

and similarly use Proposition 12.7 to find open sets 1 2 3 4 such that

1 4
¯
1 4 1 2

¯
1 2 3 4

¯
3 4 1

Likewise there exists open set 1 8 3 8 5 8 7 8 such that

1 8
¯
1 8 1 4

¯
1 4 3 8

¯
3 8 1 2

¯
1 2 5 8

¯
5 8 3 4

¯
3 4 7 8

¯
7 8 1

Continuing this way inductively, one shows there exists precompact open sets
{ } D such that

1
¯
1

for all D with 0 1
Step 2. Let := if 1 and define

( ) = inf{ D (1 ) : }
see Figure 12.2. Then ( ) [0 1] for all ( ) = 0 for since

for all D If 1 then for all D and hence
( ) = 1 Therefore := 1 is a function such that = 1 on and
{ 6= 0} = { 6= 1} 1

¯
1 so that supp( ) = { 6= 0} ¯

1 is
a compact subset of Thus it only remains to show or equivalently is
continuous.
Since E = {( ) ( ) : R} generates the standard topology on

R to prove is continuous it su ces to show { } and { } are open
sets for all R But ( ) i there exists D (1 ) with
such that Therefore
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Fig. 12.2. Determining from { }

{ } =
[

{ : D (1 ) 3 }

which is open in If 1 { } = and if 0 { } = If
(0 1) then ( ) i there exists D such that and

Now if and then for D ( ) ¯ Thus we have
shown that

{ } =
[

n

¡ ¢

: D 3
o

which is again an open subset of

Theorem 12.9 (Locally Compact Tietz Extension Theorem). Let
( ) be a locally compact Hausdor space, @@ ( R)
= min ( ) and = max ( ) Then there exists ( [ ])

such that | = Moreover given [ ] can be chosen so that
supp( ) = { 6= }
The proof of this theorem is similar to Theorem 7.4 and will be left to the

reader, see Exercise 12.5.

12.1 Locally compact form of Urysohn’s Metrization
Theorem

Notation 12.10 Let := [0 1]N denote the (infinite dimensional) unit cube
in RN For let

( ) :=
X

=1

1

2
| | (12.2)
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The metric introduced in Exercise 11.19 would be defined, in this context,
as (̃ ) :=

P

=1
1
2

| |
1+| | Since 1 1+| | 2 it follows that ˜

2 So the metrics and ˜are equivalent and in particular the topologies
induced by and ˜ are the same. By Exercises 10.26, the — topology on
is the same as the product topology and by Tychono ’s Theorem 11.34 or by
Exercise 11.19, ( ) is a compact metric space.

Theorem 12.11. To every separable metric space ( ) there exists a con-
tinuous injective map : such that : ( ) is a homeo-
morphism. In short, any separable metrizable space is homeomorphic to a
subset of ( )

Remark 12.12. Notice that if we let 0( ) := ( ( ) ( )) then 0 induces
the same topology on as and : ( 0) ( ) is isometric.

Proof. Let = { } =1 be a countable dense subset of

( ) :=
1 if 0

1 if 0 1
0 if 1

(see Figure 12.3) and for N let

( ) := 1 ( ( ))

Then = 0 if ( ) 1 and = 1 if ( ) 2 Let

210-1-2

1

0.75

0.5

0.25

0

tt

Fig. 12.3. The graph of the function

{ } =1 be an enumeration of { : N} and define : by

( ) = ( 1( ) 2( ) )

We will now show : ( ) is a homeomorphism. To show
is injective suppose and ( ) = 1 In this case we may
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find such that ( ) 1
2 ( ) 1

2
1
2 and hence

4 ( ) = 1 while 4 ( ) = 0 From this it follows that ( ) 6= ( ) if
6= and hence is injective. The continuity of is a consequence of the

continuity of each of the components of So it only remains to show
1 : ( ) is continuous. Given = ( ) ( ) and 0

choose N and such that ( ) 1
2 2 Then ( ) = 0

and for ( 2 ) ( ) = 1 So if is chosen so that = we
have shown that for

( ( ) ( )) 2 for ( 2 )

or equivalently put, if

( ( ) ( )) 2 then ( 2 ) ( 1 ) ( )

This shows that if ( ) is su ciently close to ( ) then ( ) i.e. 1

is continuous at = ( )

Theorem 12.13 (Urysohn Metrization Theorem for LCH’s). Every
second countable locally compact Hausdor space, ( ) is metrizable, i.e.
there is a metric on such that = Moreover, may be chosen so that
is isometric to a subset 0 equipped with the metric in Eq. (12.2).

In this metric is totally bounded and hence the completion of (which is
isometric to ¯0 ) is compact. (Also see Theorem 12.44.)

Proof. Let B be a countable base for and set

:= {( ) B × B | ¯ and ¯ is compact}
To each and there exist ( ) such that
Indeed, since B is a base for there exists B such that
Now apply Proposition 12.7 to find 0 such that 0 ¯ 0

with ¯ 0 being compact. Since B is a base for there exists B such that
0 and since ¯ ¯ 0 ¯ is compact so ( ) In particular this

shows that B0 := { B : ( ) for some B} is still a base for If
is a finite, then B0 is finite and only has a finite number of elements as well.

Since ( ) is Hausdor , it follows that is a finite set. Letting { } =1 be
an enumeration of define : by ( ) = for = 1 2
where = (0 0 0 1 0 ) with the 1 occurring in the th spot. Then
( ) := ( ( ) ( )) for is the desired metric.
So we may now assume that is an infinite set and let {( )} =1 be an

enumeration of By Urysohn’s Lemma 12.8 there exists ( [0 1])
such that = 0 on ¯ and = 1 on . Let F := { | ( ) }
and set := — an enumeration of F We will now show that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on The proof will involve a number of steps.
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1. ( is a metric on ) It is routine to show satisfies the triangle inequal-
ity and is symmetric. If are distinct points then there exists
(

0 0) such that 0 and 0 := { } Since 0( ) = 0
and

0( ) = 1 it follows that ( ) 2 0 0
2. (Let 0 = ( : N) then = 0 = ) As usual we have 0

Since, for each ( ) is 0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that ( ) :=
{ : ( ) } 0 for all and 0 Thus 0

Suppose that and Let ( 0 0) be such that 0

and 0 Then 0( ) = 0 and 0 = 1 on Therefore if and

0
( ) 1 then so {

0
1} This shows that may be

written as a union of elements from 0 and therefore 0 So 0 and
hence = 0 Moreover, if (2 0) then 2 0 ( ) 2 0

0( )
and therefore (2 0) { 0 1} This shows is — open
and hence 0

3. ( is isometric to some 0 ) Let : be defined by ( ) =
( 1( ) 2( ) ( ) ) Then is an isometry by the very definitions
of and and therefore is isometric to 0 := ( ) Since 0 is a subset
of the compact metric space ( ) 0 is totally bounded and therefore
is totally bounded.

BRUCE: Add Stone Chech Compactification results.

12.2 Partitions of Unity

Definition 12.14. Let ( ) be a topological space and 0 be a set. A
collection of sets { } 2 is locally finite on 0 if for all 0

there is an open neighborhood of such that #{ : 6=
}
Definition 12.15. Suppose that U is an open cover of 0 A collection
{ } =1 ( [0 1]) ( = is allowed here) is a partition of unity on
0 subordinate to the cover U if:
1. for all there is a U such that supp( )
2. the collection of sets, {supp( )} =1 is locally finite on 0 and
3.
P

=1 = 1 on 0 (Notice by (2), that for each 0 there is a
neighborhood such that | is not identically zero for only a finite
number of terms. So the sum is well defined and we say the sum is locally
finite.)

Proposition 12.16 (Partitions of Unity: The Compact Case). Suppose
that is a locally compact Hausdor space, is a compact set and
U = { } =1 is an open cover of Then there exists a partition of unity
{ } =1 of such that for all = 1 2
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Proof. For all choose a precompact open neighborhood, of
such that Since is compact, there exists a finite subset, of
such that

S

Let

=
©

¯ : and
ª

Then is compact, for all and =1 By Urysohn’s
Lemma 12.8 there exists such that = 1 on We will now give
two methods to finish the proof.
Method 1. Let 1 = 1 2 = 2(1 1) = 2(1 1)

3 = 3(1 1 2) = 3(1 1 (1 1) 2) = 3(1 1)(1 2)

and continue on inductively to define

= (1 1 · · · 1) = ·
1

Y

=1

(1 ) = 2 3 (12.3)

and to show

(1 1 · · · ) =
Y

=1

(1 ) (12.4)

From these equations it clearly follows that ( [0 1]) and that
supp( ) supp( ) i.e. Since

Q

=1(1 ) = 0 on
P

=1 = 1 on and { } =1 is the desired partition of unity.

Method 2. Let :=
P

=1
( ) Then 1 on and hence

{ 1
2} Choose ( [0 1]) such that = 1 on and supp( )

{ 1
2} and define 0 := 1 Then 0 = 0 on 0 = 1 if 1

2 and
therefore,

0 + 1 + · · ·+ = 0 + 0

on The desired partition of unity may be constructed as

( ) =
( )

0( ) + · · ·+ ( )

Indeed supp ( ) = supp ( ) ( [0 1]) and on

1 + · · ·+ =
1 + · · ·+

0 + 1 + · · ·+ =
1 + · · ·+
1 + · · ·+ = 1

Proposition 12.17. Let ( ) be a locally compact and — compact Haus-
dor space. Suppose that U is an open cover of Then we may construct
two locally finite open covers V = { } =1 and W = { } =1 of ( =
is allowed here) such that:
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1. ¯ ¯ and ¯ is compact for all
2. For each there exist U such that ¯

Proof. By Remark 11.24, there exists an open cover of G = { } =1

of such that ¯
+1 Then = =1(

¯ \ ¯ 1) where
by convention 1 = 0 = For the moment fix 1 For each
¯ \ 1 let U be chosen so that and by Proposition 12.7
choose an open neighborhood of such that ¯ ( +1 \ ¯ 2) see
Figure 12.4 below. Since { } ¯ \ 1

is an open cover of the compact set

Fig. 12.4. Constructing the { } =1

¯ \ 1 there exist a finite subset { } ¯ \ 1
which also covers

¯ \ 1 By construction, for each there is a U such that
¯ ( +1 \ ¯ 2) Apply Proposition 12.7 one more time to find, for
each an open set such that ¯ ¯ ( +1 \ ¯ 2)
We now choose and enumeration { } =1 of the countable open cover =1

of and define = Then the collection { } =1 and { } =1 are easily
checked to satisfy all the conclusions of the proposition. In particular notice
that for each that the set of ’s such that 6= is finite.

Theorem 12.18 (Partitions of Unity in locally and — compact
spaces). Let ( ) be locally compact, — compact and Hausdor and let
U be an open cover of Then there exists a partition of unity of { } =1
( = is allowed here) subordinate to the cover U such that supp( ) is
compact for all

Proof. Let V = { } =1 and W = { } =1 be open covers of with the
properties described in Proposition 12.17. By Urysohn’s Lemma 12.8, there
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exists such that = 1 on ¯ for each As in the proof of Proposition
12.16 there are two methods to finish the proof.
Method 1. Define 1 = 1 by Eq. (12.3) for all other Then as in

Eq. (12.4)

1
X

=1

=
Y

=1

(1 ) = 0

since for ( ) = 1 for some As in the proof of Proposition 12.16, it
is easily checked that { } =1 is the desired partition of unity.
Method 2. Let :=

P

=1 a locally finite sum, so that ( )
Since { } =1 is a cover of 1 on so that 1 ( )) as well. The
functions := for = 1 2 give the desired partition of unity.

Lemma 12.19. Let ( ) be a locally compact Hausdor space.

1. A subset is closed i is closed for all @@
2. Let { } be a locally finite collection of closed subsets of then

= is closed in (Recall that in general closed sets are only
closed under finite unions.)

Proof. 1. Since compact subsets of Hausdor spaces are closed, is
closed if is closed and is compact. Now suppose that is closed
for all compact subsets and let Since is locally compact,
there exists a precompact open neighborhood, of 1 By assumption ¯

is closed so
¡

¯
¢

— an open subset of By Proposition 12.7 there
exists an open set such that ¯

¡

¯
¢

see Figure 12.5. Let
:= Since

= ¯ =

and is an open neighborhood of and was arbitrary, we have shown
is open hence is closed.
2. Let be a compact subset of and for each let be an

open neighborhood of such that #{ : 6= } Since is
compact, there exists a finite subset such that Letting
0 := { : 6= } then

#( 0)
X

#{ : 6= }

and hence ( ) = ( 0 ) The set ( 0 ) is a finite
union of closed sets and hence closed. Therefore, ( ) is closed and
by item 1. it follows that is closed as well.
1 If were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of which is disjoint from then there would exists

such that Since ¯ is closed and ¯ for all large
it follows (see Exercise 6.4) that ¯ and in particular that But we
chose
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Fig. 12.5. Showing is open.

Corollary 12.20. Let ( ) be a locally compact and — compact Hausdor
space and U = { } be an open cover of Then there exists a
partition of unity of { } subordinate to the cover U such that supp( )

for all (Notice that we do not assert that has compact support.
However if ¯ is compact then supp( ) will be compact.)

Proof. By the — compactness of we may choose a countable subset,
{ } ( = allowed here), of such that { := } is still an
open cover of Let { } be a partition of unity subordinate to the
cover { } as in Theorem 12.18. Define ˜ := { : supp( ) } and
:= ˜ \

³

1
=1
˜
´

, where by convention 0̃ = Then

{ N : }=
[

=1

˜ =
a

=1

If = let := 0 otherwise let :=
P

a locally finite sum. Then
P

=1 =
P

=1 = 1 and the sum
P

=1 is still locally finite. (Why?)
Now for = { } =1 let := and for { } =1 let := 0
Since

{ 6= 0} = { 6= 0} supp( )

and, by Item 2. of Lemma 12.19, supp( ) is closed, we see that

supp( ) = { 6= 0} supp( )

Therefore { } is the desired partition of unity.

Corollary 12.21. Let ( ) be a locally compact and — compact Haus-
dor space and be disjoint closed subsets of Then there exists

( [0 1]) such that = 1 on and = 0 on In fact can be
chosen so that supp( )
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Proof. Let 1 = and 2 = then { 1 2} is an open cover of
By Corollary 12.20 there exists 1 2 ( [0 1]) such that supp( )
for = 1 2 and 1 + 2 = 1 on The function = 2 satisfies the desired
properties.

12.3 C0(X) and the Alexanderov Compactification

Definition 12.22. Let ( ) be a topological space. A continuous function
: C is said to vanish at infinity if {| | } is compact in for

all 0 The functions, ( ) vanishing at infinity will be denoted by
0( )

Proposition 12.23. Let be a topological space, ( ) be the space of
bounded continuous functions on with the supremum norm topology. Then

1. 0( ) is a closed subspace of ( )
2. If we further assume that is a locally compact Hausdor space, then

0( ) = ( )

Proof.

1. If 0( ) 1 := {| | 1} is a compact subset of and there-
fore ( 1) is a compact and hence bounded subset of C and so :=
sup

1
| ( )| Therefore k k 1 showing ( )

Now suppose 0( ) and in ( ) Let 0 be given and
choose su ciently large so that k k 2 Since

| | | |+ | | | |+ k k | |+ 2

{| | } {| |+ 2 } = {| | 2}
Because {| | } is a closed subset of the compact set {| | 2}
{| | } is compact and we have shown 0( )

2. Since 0( ) is a closed subspace of ( ) and ( ) 0( ) we
always have ( ) 0( ) Now suppose that 0( ) and let :=
{| | 1 } @@ By Lemma 12.8 we may choose ( [0 1]) such
that 1 on Define := ( ) Then

k k = k(1 ) k 1
0 as

This shows that ( )

Proposition 12.24 (Alexanderov Compactification). Suppose that ( )
is a non-compact locally compact Hausdor space. Let = { } where
{ } is a new symbol not in The collection of sets,
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= { \ : @@ } 2

is a topology on and ( ) is a compact Hausdor space. Moreover
( ) extends continuously to i = + with 0( ) and C

in which case the extension is given by ( ) =

Proof. 1. ( is a topology.) Let F := { : \ } i.e.
F i is a compact subset of or = 0 { } with 0 being a closed

subset of Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of are closed and closed subsets of compact
subsets of are compact, it is also easily checked that F is closed under
arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence is a topology.
2. (( ) is a Hausdor space.) It su ces to show any point

can be separated from To do this use Proposition 12.7 to find an open
precompact neighborhood, of Then and := \ ¯ are disjoint open
subsets of such that and
3. (( ) is compact.) Suppose that U is an open cover of

Since U covers there exists a compact set such that \ U
Clearly is covered by U0 := { \ { } : U} and by the definition of
(or using ( ) is Hausdor ), U0 is an open cover of In particular U0 is
an open cover of and since is compact there exists U such that

{ \ { } : } It is now easily checked that { \ } U
is a finite subcover of
4. (Continuous functions on ( ) statements.) Let : be the

inclusion map. Then is continuous and open, i.e. ( ) is open in for all
open in If ( ) then = | ( ) = ( ) is continuous

on Moreover, for all 0 there exists an open neighborhood of
such that

| ( )| = | ( ) ( )| for all

Since is an open neighborhood of there exists a compact subset,
such that = \ By the previous equation we see that

{ : | ( )| } so {| | } is compact and we have shown van-
ishes at
Conversely if 0( ) extend to by setting ( ) = 0 Given
0 the set = {| | } is compact, hence \ is open in Since

( \ ) ( ) we have shown that is continuous at Since is also
continuous at all points in it follows that is continuous on Now it
= + with C and 0( ) it follows by what we just proved that

defining ( ) = extends to a continuous function on

Example 12.25. Let be an uncountable set and be the discrete topology
on Let ( = { } ) be the one point compactification of The
smallest dense subset of is the uncountable set Hence is a compact
but non-separable and hence non-metrizable space.
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The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 12.26 (Summary). Let ( ) be a topological space.

1. If ( ) is second countable, then ( ) is separable; see Exercise 10.9.
2. If ( ) is separable and metrizable then ( ) is second countable; see
Exercise 10.10.

3. If ( ) is locally compact and metrizable then ( ) is — compact i
( ) is separable; see Exercises 11.9 and 11.10.

4. If ( ) is locally compact and second countable, then ( ) is - com-
pact, see Exercise 11.7.

5. If ( ) is locally compact and metrizable, then ( ) is — compact i
( ) is separable, see Exercises 11.8 and 11.9.

12.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem 8.34 to more general topological spaces.
We will first need some definitions.

Definition 12.27. Let be a topological space and A ( ) = ( R) or
( C) be a collection of functions. Then

1. A is said to separate points if for all distinct points there exists
A such that ( ) 6= ( )

2. A is an algebra if A is a vector subspace of ( ) which is closed under
pointwise multiplication.

3. A is called a lattice if := max( ) and = min( ) A for
all A

4. A ( ) is closed under conjugation if ¯ A whenever A 2

Remark 12.28. If is a topological space such that ( R) separates points
then is Hausdor . Indeed if and ( R) such that
( ) 6= ( ) then 1( ) and 1( ) are disjoint open sets containing
and respectively when and are disjoint intervals containing ( ) and
( ) respectively.

Lemma 12.29. If A ( R) is a closed algebra then | | A for all A
and A is a lattice.

Proof. Let A and let = sup | ( )| Using Theorem 8.34 or Exercise
12.10, there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

2 This is of course no restriction when ( ) = ( R)
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By replacing by (0) if necessary we may assume that (0) = 0
Since A is an algebra, it follows that = ( ) A and | | A because
| | is the uniform limit of the ’s. Since

=
1

2
( + + | |) and

=
1

2
( + | |)

we have shown A is a lattice.

Lemma 12.30. Let A ( R) be an algebra which separates points and
be distinct points such that

A 3 ( ) 6= 0 and ( ) 6= 0 (12.5)

Then
:= {( ( ) ( )) : A}= R2 (12.6)

Proof. It is clear that is a non-zero subspace of R2 If dim( ) = 1 then
= span( ) with 6= 0 and 6= 0 by the assumption in Eq. (12.5). Since

( ) = ( ( ) ( )) for some A and 2 A it follows that ( 2 2) =
( 2( ) 2( )) as well. Since dim = 1 ( ) and ( 2 2) are linearly
dependent and therefore

0 = det

µ

2

2

¶

= 2 2 = ( )

which implies that = But this the implies that ( ) = ( ) for all A
violating the assumption that A separates points. Therefore we conclude that
dim( ) = 2 i.e. = R2

Theorem 12.31 (Stone-Weierstrass Theorem). Suppose is a compact
Hausdor space and A ( R) is a closed subalgebra which separates
points. For let

A := { ( ) : A} and
I = { ( R) : ( ) = 0}

Then either one of the following two cases hold.

1. A = R for all i.e. for all there exists A such that
( ) 6= 0 3

2. There exists a unique point 0 such that A 0 = {0}
Moreover in case (1) A = ( R) and in case (2) A = I 0 = {
( R) : ( 0) = 0}
3 If A contains the constant function 1 then this hypothesis holds.
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Proof. If there exists 0 such that A 0 = {0} ( 0 is unique since A
separates points) then A I 0 If such an 0 exists let C = I 0 and if A = R
for all set C = ( R) Let C then by Lemma 12.30, for all
such that 6= there exists A such that = on { } 4 The basic
idea of the proof is contained in the following identity,

( ) = inf sup ( ) for all (12.7)

To prove this identity, let := sup and notice that since
( ) = ( ) for all Moreover, ( ) = ( ) for all since
( ) = ( ) for all Therefore,

inf sup = inf =

The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (12.7) becoming only an
approximate identity.

Claim. Given 0 and there exists A such that ( ) = ( )
and + on

To prove the claim, let be an open neighborhood of such that |
| on so in particular + on By compactness, there

exists such that =
S

Set

( ) = max{ ( ) : }
then for any + + on and therefore + on
Moreover, by construction ( ) = ( ) see Figure 12.6 below. We now will
finish the proof of the theorem. For each let be a neighborhood of
such that | | on Choose such that =

S

and

define
= min{ : } A

Then + on and for + on and hence +
on Since =

S

we conclude

+ and + on

i.e. | | on Since 0 is arbitrary it follows that Ā = A
Theorem 12.32 (Complex Stone-Weierstrass Theorem). Let be a
compact Hausdor space. Suppose A ( C) is closed in the uniform
topology, separates points, and is closed under conjugation. Then either A =
( C) or A = IC

0
:= { ( C) : ( 0) = 0} for some 0

4 If A 0 = {0} and = 0 or = 0 then exists merely by the fact that A
separates points.
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Fig. 12.6. Constructing the funtions

Proof. Since

Re =
+ ¯

2
and Im =

¯

2

Re and Im are both in A Therefore

AR = {Re Im : A}

is a real sub-algebra of ( R) which separates points. Therefore either AR =
( R) or AR = I 0

( R) for some 0 and hence A = ( C) or IC
0

respectively.
As an easy application, Theorems 12.31 and 12.32 imply Theorem 8.34

and Corollary 8.36 respectively. Here are a couple of more applications.

Example 12.33. Let ([ ]) be a positive function which is injective.
Then functions of the form

P

=1 with C and N are dense in
([ ]) For example if = 1 and = 2 then one may take ( ) = for

any 6= 0 or ( ) = etc.

Exercise 12.4. Let ( ) be a separable compact metric space. Show that
( ) is also separable. Hint: Let be a countable dense set and then

consider the algebra, A ( ) generated by { ( ·)}
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12.5 Locally Compact Version of Stone-Weierstrass
Theorem

Theorem 12.34. Let be non-compact locally compact Hausdor space. If
A is a closed subalgebra of 0( R) which separates points. Then either A =
0( R) or there exists 0 such that A = { 0( R) : ( 0) = 0}
Proof. There are two cases to consider. Case 1. There is no point

0 such that A { 0( R) : ( 0) = 0} In this case let
= { } be the one point compactification of Because of Propo-

sition 12.24 to each A there exists a unique extension ˜ ( R)
such that = |̃ and moreover this extension is given by (̃ ) = 0 Let
eA := { ˜ ( R) : A} Then eA is a closed (you check) sub-algebra
of ( R) which separates points. An application of Theorem 12.31 im-
plies eA = { ( R) 3 ( ) = 0} and therefore by Proposition 12.24
A = { | : eA} = 0( R) Case 2. There exists 0 such
A { 0( R) : ( 0) = 0} In this case let := \ { 0} and
A := { | : A} Since is locally compact, one easily checks A
0( R) is a closed subalgebra which separates points. By Case 1. it follows
that A = 0( R) So if 0( R) and ( 0) = 0 | 0( R) =A
i.e. there exists A such that | = | Since ( 0) = ( 0) = 0 it follows
that = A and therefore A = { 0( R) : ( 0) = 0}
Example 12.35. Let = [0 ) 0 be fixed,A be the algebra generated by

So the general element A is of the form ( ) = ( ) where
( ) is a polynomial. Since A 0( R) separates points and A is
pointwise positive, Ā = 0( R) See Theorem 22.9 for an application of this
result.

12.6 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 12.36 ( 0 — 2 Separation Axioms). Let ( ) be a topological
space. The topology is said to be:

1. 0 if for 6= in there exists such that and or
such that but

2. 1 if for every with 6= there exists such that
and Equivalently, is 1 i all one point subsets of are closed.5

3. 2 if it is Hausdor .

5 If one point subsets are closed and 6= in then := { } is an open set
containing but not Conversely if is 1 and there exists such
that and for all 6= Therefore, { } = 6=
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Note 2 implies 1 which implies 0 The topology in Example 12.1 is 0

but not 1 If is a finite set and is a 1 — topology on then = 2 To
prove this let be fixed. Then for every 6= in there exists
such that while Thus { } = 6= showing contains
all one point subsets of and therefore all subsets of So we have to look
to infinite sets for an example of 1 topology which is not 2

Example 12.37. Let be any infinite set and let = { : #( ) }
{ } — the so called cofinite topology. This topology is 1 because if 6= in
then = { } with while This topology however is not

2 Indeed if are open sets such that and =
then But this implies #( ) which is impossible unless =
which is impossible since

The uniqueness of limits of sequences which occurs for Hausdor topologies
(see Remark 12.3) need not occur for 1 — spaces. For example, let = N
and be the cofinite topology on as in Example 12.37. Then = is a
sequence in such that as for all N For the most part
we will avoid these pathologies in the future by only considering Hausdor
topologies.

Definition 12.38 (Normal Spaces: 4 — Separation Axiom). A topolog-
ical space ( ) is said to be normal or 4 if:

1. is Hausdor and
2. if for any two closed disjoint subsets there exists disjoint open
sets such that and

Example 12.39. By Lemma 6.15 and Corollary 12.21 it follows that metric
spaces and topological spaces which are locally compact, — compact and
Hausdor (in particular compact Hausdor spaces) are normal. Indeed, in
each case if are disjoint closed subsets of there exists ( [0 1])
such that = 1 on and = 0 on Now let =

©

1
2

ª

and = { 1
2}

Remark 12.40. A topological space, ( ) is normal i for any
with being closed and being open there exists an open set such
that

¯

To prove this first suppose is normal. Since is closed and =
there exists disjoint open sets and such that and
Therefore and since is closed, ¯

For the converse direction suppose and are disjoint closed subsets of
Then and is open, and so by assumption there exists

such that ¯ and by the same token there exists such
that ¯ ¯ Taking complements of the last expression implies

¯ ¯

Let = ¯ Then and =
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Theorem 12.41 (Urysohn’s Lemma for Normal Spaces). Let be a
normal space. Assume are disjoint closed subsets of . Then there exists

( [0 1]) such that = 0 on and = 1 on

Proof. To make the notation match Lemma 12.8, let = and =
Then and it su ces to produce a function ( [0 1]) such that
= 1 on and supp( ) The proof is now identical to that for Lemma

12.8 except we now use Remark 12.40 in place of Proposition 12.7.

Theorem 12.42 (Tietze Extension Theorem). Let ( ) be a normal
space, be a closed subset of and ( [ ])
Then there exists ( [ ]) such that | =

Proof. The proof is identical to that of Theorem 7.4 except we now use
Theorem 12.41 in place of Lemma 6.15.

Corollary 12.43. Suppose that is a normal topological space, is
closed, ( R) Then there exists ( ) such that | =

Proof. Let = arctan( ) ( ( 2 2 )) Then by the Tietze ex-
tension theorem, there exists ( [ 2 2 ]) such that | = Let
:= 1({ 2 2 }) @ then = By Urysohn’s lemma (Theo-

rem 12.41) there exists ( [0 1]) such that 1 on and = 0
on and in particular ( ( 2 2 )) and ( ) | = The function
:= tan( ) ( ) is an extension of

Theorem 12.44 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, ( ) is metrizable, i.e. there is a
metric on such that = Moreover, may be chosen so that is
isometric to a subset 0 ( is as in Notation 12.10) equipped with the
metric in Eq. (12.2). In this metric is totally bounded and hence the
completion of (which is isometric to ¯0 ) is compact.

Proof. (The proof here will be very similar to the proof of Theorem 12.13.)
Let B be a countable base for and set

:= {( ) B × B | ¯ }
To each and there exist ( ) such that
Indeed, since B is a base for there exists B such that
Because { } = there exists disjoint open sets e and such that e

and e = Choose B such that e Since
e and hence ( ) See Figure 12.7 below. In

particular this shows that

B0 := { B : ( ) for some B}
is still a base for
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Fig. 12.7. Constructing ( )

If is a finite set, the previous comment shows that only has a finite
number of elements as well. Since ( ) is Hausdor , it follows that is a
finite set. Letting { } =1 be an enumeration of define : by
( ) = for = 1 2 where = (0 0 0 1 0 ) with the 1
occurring in the th spot. Then ( ) := ( ( ) ( )) for is the
desired metric.
So we may now assume that is an infinite set and let {( )} =1

be an enumeration of By Urysohn’s Lemma for normal spaces (Theorem
12.41) there exists ( [0 1]) such that = 0 on ¯ and = 1
on . Let F := { | ( ) } and set := — an enumeration
of F The proof that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on now follows exactly as the corresponding argument
in the proof of Theorem 12.13.

12.7 Exercises

Exercise 12.5. Prove Theorem 12.9. Hints:

1. By Proposition 12.7, there exists a precompact open set such that
¯ Now suppose that : [0 ] is continuous with

(0 1] and let := 1([0 1
3 ]) and := 1([23 1]) Appeal to

Lemma 12.8 to find a function ( [0 3]) such that = 3 on
and supp( ) \

2. Now follow the argument in the proof of Theorem 7.4 to construct
( [ ]) such that | =
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3. For [ ] choose such that = 1 on and replace by
:= + (1 )

Exercise 12.6 (Sterographic Projection). Let = R := { }
be the one point compactification of := { R +1 : | | = 1} be the
unit sphere in R +1 and = (0 0 1) R +1 Define : by
( ) = and for \ { } let ( ) = R be the unique point such
that ( 0) is on the line containing and see Figure 12.8 below. Find a
formula for and show : is a homeomorphism. (So the one point
compactification of R is homeomorphic to the sphere.)

Fig. 12.8. Sterographic projection and the one point compactification of R

Exercise 12.7. Let ( ) be a locally compact Hausdor space. Show ( )
is separable i ( ) is separable.

Exercise 12.8. Show by example that there exists a locally compact metric
space ( ) such that the one point compactification, ( := { } )
is not metrizable. Hint: use exercise 12.7.

Exercise 12.9. Suppose ( ) is a locally compact and — compact metric
space. Show the one point compactification, ( := { } ) is metriz-
able.

Exercise 12.10. Let show there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

using the following outline.
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1. Let ( ) = 1 for | | 1 and use Taylor’s theorem with integral
remainder (see Eq. A.15 of Appendix A), or analytic function theory if
you know it, to show there are constants6 0 for N such that

1 = 1
X

=1

for all | | 1 (12.8)

2. Let ( ) := 1
P

=1 Use (12.8) to show
P

=1 = 1 and con-
clude from this that

lim sup
| | 1

| 1 ( )| = 0 (12.9)

3. Let 1 = 2 2 i.e. = 1 2 2 then

lim sup
| |

¯

¯

¯

¯

| |
(1 2 2)

¯

¯

¯

¯

= 0

so that ( ) := (1 2 2) are the desired polynomials.

Exercise 12.11. Given a continuous function : R C which is 2 -
periodic and 0 Show there exists a trigonometric polynomial, ( ) =
P

=

such that | ( ) ( )| for all R Hint: show that

there exists a unique function ( 1) such that ( ) = ( ) for all
R

Remark 12.45. Exercise 12.11 generalizes to 2 — periodic functions on R
i.e. functions such that ( +2 ) = ( ) for all = 1 2 where { } =1
is the standard basis for R A trigonometric polynomial ( ) is a function of

R of the form
( ) =

X ·

where is a finite subset of Z The assertion is again that these trigonometric
polynomials are dense in the 2 — periodic functions relative to the supremum
norm.

6 In fact := (2 3)!!
2 ! but this is not needed.

13

Baire Category Theorem

Definition 13.1. Let ( ) be a topological space. A set is said to be
nowhere dense if

¡

¯
¢

= i.e. ¯ has empty interior.

Notice that is nowhere dense is equivalent to

=
¡¡

¯
¢ ¢

=
¡

¯
¢

= ( )

That is to say is nowhere dense i has dense interior.

13.1 Metric Space Baire Category Theorem

Theorem 13.2 (Baire Category Theorem). Let ( ) be a complete met-
ric space.

1. If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

2. If { } =1 is a sequence of nowhere dense sets, then
S

=1
S

=1
¯ & and in particular 6= S =1

Proof. 1) We must shows that ¯ = which is equivalent to showing
that 6= for all non-empty open sets Since 1 is dense,

1 6= and hence there exists 1 and 1 0 such that

( 1 1) 1

Since 2 is dense, ( 1 1) 2 6= and hence there exists 2 and 2 0
such that

( 2 2) ( 1 1) 2

Continuing this way inductively, we may choose { and 0} =1 such
that
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( ) ( 1 1)

Furthermore we can clearly do this construction in such a way that 0
as Hence { } =1 is Cauchy sequence and = lim exists in

since is complete. Since ( ) is closed, ( ) so that
for all and hence Moreover, ( 1 1) 1 implies
and hence showing 6= 2) The second assertion is

equivalently to showing

6=
Ã

[

=1

¯

!

=
\

=1

¡

¯
¢

=
\

=1

( )

As we have observed, is nowhere dense is equivalent to ( ) being a dense
open set, hence by part 1),

T

=1 ( ) is dense in and hence not empty.

13.2 Locally Compact Hausdor Space Baire Category
Theorem

Here is another version of the Baire Category theorem when is a locally
compact Hausdor space.

Proposition 13.3. Let be a locally compact Hausdor space.

1. If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

2. If { } =1 is a sequence of nowhere dense sets, then 6= S =1

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if su ces to show 6= for all open sets

Since 1 is dense, there exists 1 1 and by Proposition 12.7
there exists 1 such that 1 1

¯
1 1 with ¯1 being compact.

Similarly, there exists a non-empty open set 2 such that 2
¯
2 1 2

Working inductively, we may find non-empty open sets { } =1 such that
¯

1 Since =1
¯ = ¯ 6= for all the finite intersection

characterization of ¯1 being compact implies that

6= =1
¯

Definition 13.4. A subset is meager or of the first category if

=
S

=1
where each is nowhere dense. And a set is called

residual if is meager.
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Remarks 13.5 For those readers that already know some measure theory
may want to think of meager as being the topological analogue of sets of mea-
sure 0 and residual as being the topological analogue of sets of full measure.
(This analogy should not be taken too seriously, see Exercise 19.19.)

1. is residual i contains a countable intersection of dense open sets.
Indeed if is a residual set, then there exists nowhere dense sets { }
such that

= =1 =1
¯

Taking complements of this equation shows that

=1
¯

i.e. contains a set of the form =1 with each (= ¯ ) being an
open dense subset of
Conversely, if =1 with each being an open dense subset of
then =1 and hence = =1 where each = is
a nowhere dense subset of

2. A countable union of meager sets is meager and any subset of a meager
set is meager.

3. A countable intersection of residual sets is residual.

Remarks 13.6 The Baire Category Theorems may now be stated as follows.
If is a complete metric space or is a locally compact Hausdor space,
then

1. all residual sets are dense in and
2. is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let ([0 1]) be the subspace of polynomial functions on
[0 1] equipped with the supremum norm. Then = =1 where
denotes the subspace of polynomials of degree less than or equal to You
are asked to show in Exercise 13.1 below that is nowhere dense for all
Hence is meager and the empty set is residual in
Here is an application of Theorem 13.2.

Theorem 13.7. Let N ([0 1] R) be the set of nowhere di erentiable
functions. (Here a function is said to be di erentiable at 0 if 0(0) :=
lim 0

( ) (0) exists and at 1 if 0(1) := lim 0
(1) ( )
1 exists.) Then N is

a residual set so the “generic” continuous functions is nowhere di erentiable.

Proof. If N then 0( 0) exists for some 0 [0 1] and by the
definition of the derivative and compactness of [0 1] there exists N such
that | ( ) ( 0)| | 0| [0 1] Thus if we define

:= { ([0 1]) : 0 [0 1] 3 | ( ) ( 0)| | 0| [0 1]}
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then we have just shown N := =1 So to finish the proof it su ces
to show (for each ) is a closed subset of ([0 1] R) with empty interior.
1) To prove is closed, let { } =1 be a sequence of functions such
that there exists ([0 1] R) such that k k 0 as Since

there exists [0 1] such that

| ( ) ( )| | | [0 1] (13.1)

Since [0 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume 0 = lim [0 1] exists. Passing to the limit
in Eq. (13.1), making use of the uniform convergence of to show
lim ( ) = ( 0) implies

| ( ) ( 0)| | 0| [0 1]

and therefore that This shows is a closed subset of ([0 1] R)
2) To finish the proof, we will show 0 = by showing for each and

0 given, there exists ([0 1] R)\ such that k k We now
construct Since [0 1] is compact and is continuous there exists N
such that | ( ) ( )| 2 whenever | | 1 Let denote the
piecewise linear function on [0 1] such that ( ) = ( ) for = 0 1
and 00( ) = 0 for := { : = 0 1 } Then it is easily seen
that k k 2 and for ( +1) that

| 0( )| = | ( +1) ( )|
1 2

We now make “rougher” by adding a small wiggly function which we define
as follows. Let N be chosen so that 4 2 and define uniquely
by ( ) = ( 1) 2 for = 0 1 and 00( ) = 0 for Then
k k and | 0( )| = 4 2 for See Figure 13.1 below. Finally
define := + Then

k k k k + k k 2 + 2 =

and
| 0( )| | 0( )| | 0 ( )| 2 =

It now follows from this last equation and the mean value theorem that for
any 0 [0 1]

¯

¯

¯

¯

( ) ( 0)

0

¯

¯

¯

¯

for all [0 1] su ciently close to 0 This shows and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 13.3.
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Fig. 13.1. Constgructing a rough approximation, , to a continuous function

Proposition 13.8. Suppose that : R R is a function such that 0( )
exists for all R Let

:= 0

(

R : sup
| |

| 0( + )|
)

Then is a dense open set. (It is not true that = R in general, see Example
31.35 below.)

Proof. It is easily seen from the definition of that is open. Let R
be an open subset of R For N let

:=

½

: | ( ) ( )| | | when | | 1
¾

=
\

:| | 1

{ : | ( + ) ( )| | |}

which is a closed subset of R since is continuous. Moreover, if and
= | 0( )| then

| ( ) ( )| = | 0( ) ( ) + ( )|
( + 1) | |

for close to (Here ( ) denotes a function such that lim (
) ( ) = 0 ) In particular, this shows that for all su ciently
large. Therefore = =1 and since is not meager by the Baire category
Theorem in Proposition 13.3, some has non-empty interior. That is there
exists 0 and 0 such that

:= ( 0 0 + )
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For we have | ( + ) ( )| | | provided that | | 1 and
therefore that | 0( )| for Therefore 0 showing is
dense.

Remark 13.9. This proposition generalizes to functions : R R in an
obvious way.

For our next application of Theorem 13.2, let := (( 1 1)) denote
the set of smooth functions on ( 1 1) such that and all of its derivatives
are bounded. In the metric

( ) :=
X

=0

2

°

°

( ) ( )
°

°

1 +
°

°
( ) ( )

°

°

for

becomes a complete metric space.

Theorem 13.10. Given an increasing sequence of positive numbers { } =1

the set

F :=
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

is dense in In particular, there is a dense set of such that the power
series expansion of at 0 has zero radius of convergence.

Proof. Step 1. Let N Choose (( 1 1)) such that k k 2
while 0(0) = 2 and define

( ) :=

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

Then for

( )( ) =

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

( )( ) = 0( ) ( )
(0) = 2 and ( ) satisfies

°

°

°

( )
°

°

°

2

( 1 )!
2 for

Consequently,

( 0) =
X

=0

2

°

°

°

( )
°

°

°

1 +
°

°

°

( )
°

°

°

1
X

=0

2 2 +
X

=

2 · 1 2
¡

2 + 2
¢

= 4 · 2
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Thus we have constructed such that lim ( 0) = 0 while
( )
(0) = 2 for all Step 2. The set

:=
n

:
¯

¯

¯

( )(0)
¯

¯

¯

o

is a dense open subset of The fact that is open is clear. To see that
is dense, let be given and define := + where :=
( ( )(0)) Then

¯

¯

¯

( )(0)
¯

¯

¯

=
¯

¯

¯

( )(0)
¯

¯

¯

+
¯

¯

¯

( )(0)
¯

¯

¯

2 for all

Therefore, for all and since

( ) = ( 0) 0 as

it follows that ¯ Step 3. By the Baire Category theorem, is a dense
subset of This completes the proof of the first assertion since

F =
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

= =1

½

:

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1 for some
¾

=1

Step 4. Take = ( !)2 and recall that the power series expansion for near
0 is given by

P

=0
(0)
! This series can not converge for any F and

any 6= 0 because

lim sup

¯

¯

¯

¯

(0)

!

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)2
!

¯

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)
2

¯

¯

¯

¯

¯

· lim ! | | =

where we have used lim ! | | = and lim sup
¯

¯

¯

(0)

( !)2

¯

¯

¯

1

Remark 13.11. Given a sequence of real number { } =0 there always exists
such that ( )(0) = To construct such a function let

( 1 1) be a function such that = 1 in a neighborhood of 0 and (0 1)
be chosen so that 0 as and

P

=0 | | The desired
function can then be defined by

( ) =
X

=0
!

( ) =:
X

=0

( ) (13.2)

The fact that is well defined and continuous follows from the estimate:
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| ( )| =
¯

¯

¯

!
( )

¯

¯

¯

k k
!
| |

and the assumption that
P

=0 | | The estimate

| 0 ( )| =
¯

¯

¯

¯( 1)!
1 ( ) +

!
0( )

¯

¯

¯

¯

k k
( 1)!

| | 1 +
k 0k

!
| |

(k k + k 0k ) | |

and the assumption that
P

=0 | | shows 1( 1 1) and
0( ) =

P

=0
0 ( ) Similar arguments show ( 1 1) and ( )( ) =

P

=0
( )
( ) for all and N This completes the proof since, using

( ) = 1 for in a neighborhood of 0 ( )
(0) = and hence

( )(0) =
X

=0

( )(0) =

13.3 Exercises

Exercise 13.1. Let ( k·k) be an infinite dimensional normed space and
be a finite dimensional subspace. Show that is nowhere dense.

Exercise 13.2. Now suppose that ( k·k) is an infinite dimensional Banach
space. Show that can not have a countable algebraic basis. More explicitly,
there is no countable subset such that every element may be
written as a finite linear combination of elements from Hint: make use of
Exercise 13.1 and the Baire category theorem.


