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Topological Space Basics

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 10.1. A collection of subsets T of X is a topology if

1.0, X er
2. 7 is closed under arbitrary unions, i.e. if Vo, € T, fora € I then |J V, € 7.
acl
8. 7 is closed under finite intersections, i.e. if Vi,...,V, € T then V1 N---N
V., €.
A pair (X,7) where T is a topology on X will be called a topological
space.

Notation 10.2 Let (X, T) be a topological space.

1. The elements, V € 1, are called open sets. We will often write V. C, X
to indicate V' is an open subset of X.

2. A subset F' C X is closed if F€ is open and we will write F — X if F is
a closed subset of X.

3. An open meighborhood of a point x € X is an open set V. C X such
that © € V. Let 7, = {V € 7 : x € V} denote the collection of open
neighborhoods of x.

4. A subset W C X is a neighborhood of x if there exists V € 1, such that
Vcw.

5. A collection n C 7, is called a neighborhood base at x € X if for all
V € 1, there exists W € i such that W C V.

The notation 7, should not be confused with
Tz} = ifwl}(T) ={{z}nV:Ver}={0,{z}}.

Ezxample 10.3. 1. Let (X, d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 74 is a topology, see
Exercise 6.2. The collection of sets n = {B,(¢) : € € D} where D is any
dense subset of (0,1] is a neighborhood base at z.
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2. Let X be any set, then 7 = 2% is a topology. In this topology all subsets of
X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {0, X} . In this topology only the empty set and X are open
(closed).

3. Let X = {1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does
not come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and
the sets X, {1}, {2,3},0 are open and closed. The sets {1,2} and {1,3}
are neither open nor closed.

Fig. 10.1. A topology.

Definition 10.4. Let (X, 7x) and (Y,7y) be topological spaces. A function
f: X =Y is continuous if

[ y)={f1(V):Vern}Crx.

We will also say that f is Tx /Ty —continuous or (Tx,Ty) — continuous. Let
C(X,Y) denote the set of continuous functions from X toY.

Exercise 10.1. Show f : X — Y is continuous iff f=!(C) is closed in X for
all closed subsets C' of Y.

Definition 10.5. A map f : X — Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f~1 :
Y — X is continuous. If there exists f : X — Y which is a homeomorphism,
we say that X andY are homeomorphic. (As topological spaces X andY are
essentially the same.)

10.1 Constructing Topologies and Checking Continuity

Proposition 10.6. Let £ be any collection of subsets of X. Then there exists
a unique smallest topology 7(E) which contains E.

10.1 Constructing Topologies and Checking Continuity 119

Proof. Since 2% is a topology and £ C 2%, £ is always a subset of a
topology. It is now easily seen that

7€) = ﬁ{r : 7 is a topology and £ C 7}

is a topology which is clearly the smallest possible topology containing £. m
The following proposition gives an explicit descriptions of 7(€).

Proposition 10.7. Let X be a set and & C 2X. For simplicity of notation,
assume that X, 0 € E. (If this is not the case simply replace £ by EU{X, 0} .)
Then

7 (€) := {arbitrary unions of finite intersections of elements from E}.
(10.1)

Proof. Let 7 be given as in the right side of Eq. (10.1). From the definition
of a topology any topology containing £ must contain 7 and hence £ C 7 C
7(&). The proof will be completed by showing 7 is a topology. The validation
of 7 being a topology is routine except for showing that 7 is closed under
taking finite intersections. Let V, W € 7 which by definition may be expressed
as
V =UgeaVy and W = UﬁeBWﬁ,

where V,, and Wj are sets which are finite intersection of elements from &.
Then
VAW = (UseaVa) N (UsesWs) = | VanWs,
(a,B)EAXB
Since for each (a, 3) € A x B, V,NWp is still a finite intersection of elements
from &, V. NW € 7 showing 7 is closed under taking finite intersections. m

Definition 10.8. Let (X, 1) be a topological space. We say that S C 7 is a
sub-base for the topology 7 iff T = 7(S) and X = US := UyesV. We say
V C 7 is a base for the topology T iff V is a sub-base with the property that
every element V € 7 may be written as

V=U{BeV:BCV}
Exercise 10.2. Suppose that S is a sub-base for a topology 7 on a set X.

1. Show V := Sy (S5 is the collection of finite intersections of elements from
S) is a base for 7.
2. Show S is itself a base for 7 iff

VinVh=U{SeS:5CVinV}.

for every pair of sets V1,5 € S.
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d(x,z)

o

Fig. 10.2. Fitting balls in the intersection.

Remark 10.9. Let (X,d) be a metric space, then & = {B,(d) : = € X and
0 > 0} is a base for 74 — the topology associated to the metric d. This is the
content of Exercise 6.3.

Let us check directly that £ is a base for a topology. Suppose that z,y € X
and €,0 > 0. If z € B(x,0) N B(y,¢), then

B(z,a) C B(z,0) N B(y,¢) (10.2)

where a = min{d — d(z,2),e — d(y,2)}, see Figure 10.2. This is a formal
consequence of the triangle inequality. For example let us show that B(z,«) C
B(z,9). By the definition of a, we have that o < 6 — d(z, z) or that d(z, z) <
0 — a. Hence if w € B(z,«), then

d(z,w) < d(z,z) +d(z,w) <0 —a+d(z,w) <d—a+a=4§

which shows that w € B(x,0). Similarly we show that w € B(y,¢) as well.
Owing to Exercise 10.2, this shows £ is a base for a topology. We do not
need to use Exercise 10.2 here since in fact Equation (10.2) may be generalized
to finite intersection of balls. Namely if z; € X, §; > 0 and z € NI ; B(z;, d;),
then
B(z,a) C Ni1B(z4, ;) (10.3)

where now « := min {d; — d(z;,2) : i =1,2,...,n}. By Eq. (10.3) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Exercise 10.3. Suppose f: X — Y is a function and 7x and 7y are topolo-
gies on X and Y respectively. Show

iy = {f71 (V)ycX:Ve Ty} and f.rx = {V cY:fH(vV)e Tx}

(as in Notation 2.7) are also topologies on X and Y respectively.
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Remark 10.10. Let f : X — Y be a function. Given a topology 7y C 2V, the
topology Tx = f~1(1y) is the smallest topology on X such that f is (1x, 7y)
- continuous. Similarly, if 7y is a topology on X then 7y = f.7x is the largest
topology on Y such that f is (7x,7y) - continuous.

Definition 10.11. Let (X, 7) be a topological space and A subset of X. The
relative topology or induced topology on A is the collection of sets

Ta=ix (1) ={ANV:V €T},
where i4 : A — X be the inclusion map as in Definition 2.8.

Lemma 10.12. The relative topology, Ta, is a topology on A. Moreover a
subset B C A is T4 — closed iff there is a 7 — closed subset, C, of X such that
B=CnA.

Proof. The first assertion is a consequence of Exercise 10.3. For the second,
BC AisTa —closed iff A\ B=ANYV for some V € 7 which is equivalent to
B=A\(ANV)=ANV¢ for some V € 1. ]

Exercise 10.4. Show if (X, d) is a metric space and 7 = 74 is the topology
coming from d, then (74) 4 is the topology induced by making A into a metric
space using the metric d|sx 4.

Lemma 10.13. Suppose that (X,7x), (Y,7v) and (Z,7z) are topological
spaces. If f + (X,7x) — (Y,7v) and g : (Y,7v) — (Z,7z) are continuous
functions then go f : (X, 7x) — (Z,7z) is continuous as well.

Proof. This is easy since by assumption g~ 1(7z) C 7y and f~! (7v) C 7x
so that
(o) () =1 (97" () € F (7v) C7x.

|

The following elementary lemma turns out to be extremely useful because

it may be used to greatly simplify the verification that a given function is
continuous.

Lemma 10.14. Suppose that f : X — Y is a function, £ C 2¥ and A C Y,
then

T(f7HE) = F7H(x () and (10.4)
T (E4) = (1) (10.5)

Moreover, if v = 7(€) and 7x is a topology on X, then f is (tx,7v) —
continuous iff f~1(€) C Tx.
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Proof. We will give two proof of Eq. (10.4). The first proof is more con-
structive than the second, but the second proof will work in the context of
o — algebras to be developed later. First Proof. There is no harm (as the
reader should verify) in replacing £ by € U {0,Y} if necessary so that we
may assume that ,Y € £. By Proposition 10.7, the general element V of
7(&) is an arbitrary unions of finite intersections of elements from £. Since
7! preserves all of the set operations, it follows that f~'7(£) consists of
sets which are arbitrary unions of finite intersections of elements from f~'&,
which is precisely 7 ( e )) by another application of Proposition 10.7. Sec-
ond Proof. By Exercise 10.3, f~1(7(&)) is a topology and since & C 7 (&),
F7YE) C fF~Y7(E)). Tt now follows that 7(f~1(E)) C f~H(7(£)). For the

reverse inclusion notice that
L (FFUE)={BcY : f"(B)er(f (&)}

is a topology which contains £ and thus 7(£) C f.7 (f_l(é')) . Hence if B €
7(€) we know that f~1(B) € 7 (f71(€)), ie. f7H7(E)) C 7(f71(&)) and
Eq. (10.4) has been proved. Applying Eq. (10.4) with X = A and f = is
being the inclusion map implies

(T(E) 4 = 15 (7(E)) = 7(i31(€)) = 7(Ea)-

Lastly if f~'& C 7x, then f~17(&) = T(f*lg) C rx which shows f is
(tx,Ty) — continuous. -

Corollary 10.15. If (X, 7) is a topological space and f : X — R is a function
then the following are equivalent:

1. f is (1,7r) - continuous,
2. f~Y((a,b)) € 7 for all —0o < a < b < o0,
3. fY(a,00)) € T and f~((—o0,b)) € T for all a,b € Q.

(We are using Tr to denote the standard topology on R induced by the
metric d(z,y) = |z — y|.)

Proof. Apply Lemma 10.14 with appropriate choices of £. ]

Definition 10.16. Let (X, 7x) and (Y, 7y) be topological spaces. A function
f: X =Y is continuous at a point v € X if for every open neighborhood
V' of f(z) there is an open neighborhood U of x such that U C f=%(V). See
Figure 10.3.

Exercise 10.5. Show f : X — Y is continuous (Definition 10.16) iff f is
continuous at all points z € X.

Definition 10.17. Given topological spaces (X,7) and (Y,7') and a subset
A C X. We say a function f : A — Y is continuous iff f is 7a/7 -
continuous.
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57(V)

Fig. 10.3. Checking that a function is continuous at x € X.

Definition 10.18. Let (X, 1) be a topological space and A C X. A collection
of subsets U C T is an open cover of A if A C JU =y, U

Proposition 10.19 (Localizing Continuity). Let (X,7) and (Y,7') be
topological spaces and f: X —Y be a function.

1. If f is continuous and A C X then fla: A —Y is continuous.
2. Suppose there exist an open cover, U C T, of X such that f|a is continuous
for all A €U, then f is continuous.

Proof. 1. If f : X — Y is a continuous, f~1(V) € 7 for all V € 7/ and
therefore
f\Zl (VY=AnfY(V)eryforall Ver.
2. Let V € 7/, then

FHV) = Vaeu (fH (V)N A) = Uacu fI3' (V). (10.6)

Since each A € U is open, 74 C 7 and by assumption, f|;‘1(V) €ETqaCT.
Hence Eq. (10.6) shows f~1 (V) is a union of 7 — open sets and hence is also
T — open. ]

Exercise 10.6 (A Baby Extension Theorem). Suppose V € 7 and f :
V — C is a continuous function. Further assume there is a closed subset C
such that {zx € V' : f(x) 20} C C C V, then F : X — C defined by

fl@)ifz eV
F(“f):{ 0 ifzdV

is continuous.

Exercise 10.7 (Building Continuous Functions). Prove the following
variant of item 2. of Proposition 10.19. Namely, suppose there exists a fi-
nite collection F of closed subsets of X such that X = UaecrA and f|4 is
continuous for all A € F, then f is continuous. Given an example showing
that the assumption that F is finite can not be eliminated. Hint: consider
f~1(C) where C is a closed subset of Y.
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10.2 Product Spaces I

Definition 10.20. Let X be a set and suppose there is a collection of topo-
logical spaces {(Yo,Ta) : a € A} and functions fo : X — Yy for all o € A.
Let 7(fo : a € A) denote the smallest topology on X such that each f, is
continuous, i.e.

T(fo 1 € A) = 7(Uafi (1))

Proposition 10.21 (Topologies Generated by Functions). Assuming
the notation in Definition 10.20 and additionally let (Z,77) be a topologi-
cal space and g : Z — X be a function. Then g is (72,7(fa : @ € A)) —
continuous iff fo 0 g is (Tz,Ta)—continuous for all a € A.

Proof. (=) If g is (72, 7(fo : @ € A)) — continuous, then the composition
fa0gis (7z,7,) — continuous by Lemma 10.13. (<) Let

Tx =T(fa:a€A)=1 (UaeAfgl(Ta)) :
If fo 0gis (7z,7a) — continuous for all e, then
g () CTzVa € A

and therefore

g ! (UaeAfojl(Ta)) = UaeAg_lf(:l(Ta) CT1z

Hence

97 (rx) = 97" (7 (Vaeafa ' (ra)) = (97" (Vaeafs' (1)) C 72

which shows that ¢ is (17, 7x) — continuous. ]

Let {(Xa, Ta)}aeca be a collection of topological spaces, X = X4 = [] X,
a€cA
and 7, : X4 — X, be the canonical projection map as in Notation 2.2.

Definition 10.22. The product topology ™ = RucaTa is the smallest topol-
ogy on X4 such that each projection m, is continuous. Explicitly, T is the
topology generated by the collection of sets,

E={m (Vo) € AV, € 7o} = Ugean ‘74 (10.7)

Applying Proposition 10.21 in this setting implies the following proposi-
tion.

Proposition 10.23. Suppose Y is a topological space and f :Y — X4 is a
map. Then f is continuous iff o o f 1 Y — X, is continuous for all o € A.
In particular if A = {1,2,...,n} so that X4 = X1 x Xo x --- x X,, and
fW) = (@), f2(y),-- - fu(y)) € X1 x Xo x -+ X Xy, then f 1Y — Xy is
continuous iff f; : Y — X, is continuous for all i.
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Proposition 10.24. Suppose that (X,7) is a topological space and {f,} C
XA (see Notation 2.2) is a sequence. Then f, — f in the product topology of
XA Gff fn(@) — f() for all a € A.

Proof. Since 7, is continuous, if f,, — f then f,,(a) = 7o (frn) — ma(f) =
f(a) for all @ € A. Conversely, f,(«) — f(a) for all a € Aiff 7o (fn) — 7a(f)
for all @ € A. Therefore if V = 7;1(V,) € € (with € as in Eq. (10.7)) and
f €V, then mo(f) € Vo and 7o (f,) € V,, for a.a. n and hence f, € V for a.a.
n. This shows that f, — f as n — oo. ]

Proposition 10.25. Suppose that (Xa,Ta)aea 8 a collection of topological
spaces and Rac AT 15 the product topology on X = [[,c 4 Xa-

1. If €, C 74 generates T4 for each o € A, then
OacATa =T (UaeAﬂ'(;l(ga)) (10‘8)

2. If B C T4 is a base for 1o for each a, then the collection of sets, V, of
the form

V =aeamy Vo = [ Va x [ Xa=:Vax Xaws, (10.9)
ag agA

where A CC A and V,, € B, for all o € A is base for QqcaTa-

Proof. 1. Since

UaT5 80 CUam; 7o = Uar; H(1(E,))
=Ua7(m3'Ea) C 7 (Uamy'En)

it follows that
T (Uoﬂr;l&l) C ®aTa C T (anglé’a) .

2. Now let U = [Ugmy 74 ] s denote the collection of sets consisting of finite

intersections of elements from U, 7 L. Notice that I/ may be described as
those sets in Eq. (10.9) where V, € 7, for all & € A. By Exercise 10.2, U is a
base for the product topology, ®acaT,. Hence for W € ®pca1o and x € W,
there exists a V' € U of the form in Eq. (10.9) such that z € V' C W. Since B,
is a base for 7, there exists U, € B, such that x, € U, C V, for each « € A.
With this notation, the set Uy x Xq\q4 € Vand x € Up x Xp\p CV CW.
This shows that every open set in X may be written as a union of elements
from V), i.e. V is a base for the product topology. ]

Notation 10.26 Let & C 2% be a collection of subsets of a set X; for each
i=1,2,...,n. We will write, by abuse of notation, £, X E5 X -+ X &, for the
collection of subsets of X1 x---xX,, of the form Ay X Ay x---X A, with A; € &;
for alli. That is we are identifying (A1, Aa, ..., Ap) with Ay X Ay X -+ X A,
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Corollary 10.27. Suppose A ={1,2,...,n} so X = X1 x Xo X -+ x X,,.
1LIf& Cc 2%, 7, =7(&) and X; € & for each i, then
MM QT =7(E& X E X -+ X &) (10.10)
and in particular
TIRTR - QTy =7(T1 X -+ X Tp). (10.11)

2. Furthermore if B; C 7; is a base for the topology T; for each i, then By X
-+ X By is a base for the product topology, 71 @ To ® -+ ® Ty,

Proof. (The proof is a minor variation on the proof of Proposition 10.25.)
1. Let [Uie AT, 1(&)] f denotes the collection of sets which are finite intersec-

tions from UieAﬂi_l(Ei), then, using X; € &; for all 4,
Uieam; (€ C €1 x 2 x -+ x € C [Uieam; (€],
Therefore
=7 (Uieam; '(&)) CT(E1 x Eax - x &) C T ([UieAﬂ';l(fi)]f) =T

2. Observe that 7 x -+ X 7, is closed under finite intersections and generates
T ® T ® -+ ® Ty, therefore 71 X - -+ X 7, is a base for the product topology.
The proof that By x --- x B, is also a base for 7y ® 73 ® - - - ® 7,, follows the
same method used to prove item 2. in Proposition 10.25. ]

Lemma 10.28. Let (X;,d;) fori=1,...,n be metric spaces, X := X3 X+ X
X, and for x = (x1,22,...,2,) and y = (Y1,Y2, ..., Yn) in X let

d(w,y) =D dilwi; ). (10.12)

Then the topology, T4, associated to the metric d is the product topology on X,
i.e.
Td=Tdy Q@Tdy @+ X Tq,, -

Proof. Let p(z,y) = max{d;(z;,y;) : i = 1,2,...,n}. Then p is equivalent
to d and hence 7, = 74. Moreover if € > 0 and = = (21,22, ...,2,) € X, then

BP(e) = Bz} () x -+ x Bi» (e).

Tn

By Remark 10.9,
E:={B’e):x € X and € > 0}

is a base for 7, and by Proposition 10.25 £ is also a base for 74, ®74, ®- - -®7q,, .
Therefore,
Tdy @Tdy @+ @ Tq, =7T(E) =7, = T4
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10.3 Closure operations

Definition 10.29. Let (X, 7) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set A containing A, i.e.
A=n{F:ACFCX}.

(Because of Exercise 6.4 this is consistent with Definition 6.10 for the
closure of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.

A°=U{Ver:VCA}.

(With this notation the definition of a neighborhood of v € X may be
stated as: A C X is a neighborhood of a point x € X if v € A°.)
3. The accumulation points of A is the set

acc(A) ={z e X : VNA\{x} #0 for al V € 7, }.
4. The boundary of A is the set bd(A) := A\ A°.

Remark 10.30. The relationships between the interior and the closure of a set
are:

(A”)c:ﬂ{V”:VETand VCA}:ﬂ{C:C’isclosedCDAc} =Ac
and similarly, (4)¢ = (A¢)°. Hence the boundary of A may be written as
bd(A) := A\ A° = AN (A°)° = AN Ae, (10.13)
which is to say bd(A) consists of the points in both the closure of A and A°.

Proposition 10.31. Let A C X and xz € X.

LIV Co X and ANV =0 then ANV = 0.

2.2 €AffVNAAD forallV € 1,.

3.xebd(A) iff VNAAD and VN AS £ for allV € 1.
4. A= AUacc(A).

Proof. 1. Since ANV =0, A C V¢ and since V¢ is closed, A C V°. That
is to say ANV = . 2. By Remark 10.30', A = ((A°)°)°soz € Aiff x ¢ (A°)°
which happens iff V ¢ A forall V € 7, ie. if VNA#Q for all V € 7,. 3.
This assertion easily follows from the Item 2. and Eq. (10.13). 4. Item 4. is an
easy consequence of the definition of acc(A) and item 2. [ ]

! Here is another direct proof of item 2. which goes by showing ¢ A iff there exists

V € 7, such that VNA = 0. Ifx ¢ Athen V = (4)° € 7, and VNACVNA=0.
Conversely if there exists V' € 7, such that ANV = () then by Item 1. ANV = 0.
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Lemma 10.32. Let ACY C X, AY denote the closure of A in'Y with its
relative topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using Lemma 10.12,
AY =n{BCY:AcCB}=n{CNnY:AcCCC X}
=Ynn{C:AcCcC X})=YnA*
Alternative proof. Let t € Y thenz € AY if VNA#Qforall V ey
such that € V. This happens iff for all U € 7., UNY NA = UNA # 0 which

happens iff x € AX. That is to say AY = AX NY. [
The support of a function may now be defined as in Definition 8.25 above.

Definition 10.33 (Support). Let f : X — Y be a function from a topo-
logical space (X,Tx) to a vector space Y. Then we define the support of f

by

supp(f) :={z € X : f(z) # 0},
a closed subset of X.

The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 10.34. Suppose that f : X — Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(A) C f(A) forall AC X

3. f(B)C f~YB) for all BC X.

Proof. If f is continuous, then f~! <f(A)> is closed and since A C
FH(fA) c 1 (f(A)) it follows that A C f~1 <f(A)) . From this equa-

tion we learn that f(A) C f(A) so that (1) implies (2) Now assume (2), then
for B CY (taking A = f~1(B)) we have

JU=H(B) C f(f~H(B)) C f(fH(B)) C B

and therefore -

f~1(B) c f74(B). (10.14)
This shows that (2) implies (3) Finally if Eq. (10.14) holds for all B, then
when B is closed this shows that

FAB)Cc f7U(B) = f1(B) c f7U(B)

which shows that

f7UB) = f~L(B).
Therefore f~!(B) is closed whenever B is closed which implies that f is con-
tinuous. ]
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10.4 Countability Axioms

Definition 10.35. Let (X, 7) be a topological space. A sequence {x,}. , C
X converges to a point x € X if for all V € 1., x, € V almost always
(abbreviated a.a.), i.e. # ({n:x, ¢ V}) < co. We will write ,, — = asn —
oo or limy, o0 x,, = T when x, converges to x.

Example 10.86. Let Y = {1,2,3} and 7 = {Y, 0, {1,2},{2,3},{2}} and y,, = 2
for all n. Then y,, — y for every y € Y. So limits need not be unique!

Definition 10.37 (First Countable). A topological space, (X,T), is first
countable iff every point x € X has a countable neighborhood base as defined
in Notation 10.2

All metric spaces are first countable and, like for metric spaces,when 7
is first countable, we may formulate many topological notions in terms of
sequences.

Proposition 10.38. If f : X — Y is continuous at x € X and lim,, o z, =

x € X, then lim,, o f(z,) = f(x) € Y. Moreover, if there exists a countable

neighborhood base n of © € X, then f is continuous at x iff im f(x,) = f(x)
n—o0

for all sequences {z,}re; C X such that x, — x as n — oco.

Proof. If f: X — Y is continuous and W € 7y is a neighborhood of
f(z) €Y, then there exists a neighborhood V of x € X such that f(V) Cc W.
Since z, — x, , € V a.a. and therefore f(z,) € f(V) C W a.a., ie.
f(zn) — f(x) as n — oo. Conversely suppose that n := {W,}>2 is a
countable neighborhood base at x and nan;o f(zn) = f(z) for all sequences

{z,}.2, C X such that x,, — x. By replacing W,, by Wi N ---NW,, if neces-
sary, we may assume that {W,} -, is a decreasing sequence of sets. If f were
not continuous at = then there exists V' € 74, such that z ¢ [f_l(V)]o.
Therefore, W, is not a subset of f~1(V) for all n. Hence for each n, we may
choose x,, € W,, \ f~1(V). This sequence then has the property that x,, —
as n — oo while f(z,) ¢ V for all n and hence lim,, o f(zn) # f(x). ]

Lemma 10.39. Suppose there exists {zn}oo, C A such that z,, — =, then
z € A. Conversely if (X,T) is a first countable space (like a metric space)
then if € A there exists {z,},., C A such that z, — z.

o)
n=1

Proof. Suppose {z,} C Aand z, — = € X. Since A° is an open
set, if x € A° then z, € A° C A° a.a. contradicting the assumption that
{z,}72, C A. Hence z € A. For the converse we now assume that (X,7) is
first countable and that {V,,} -, is a countable neighborhood base at = such
that V; D Vo D V3 D .... By Proposition 10.31, z € A iff VN A # ) for all
V € 7,. Hence € A implies there exists z, € V,, N A for all n. It is now
easily seen that z,, — x as n — oo. ]
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Definition 10.40. A topological space, (X,T), is second countable if there
exists a countable base ¥V for T, i.e. V C T is a countable set such that for
every W e,

W=uU{V:VeVsVcCcW}

Definition 10.41. A subset D of a topological space X is dense if D = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Example 10.42. The following are examples of countable dense sets.

1. The rational number QQ are dense in R equipped with the usual topology.

2. More generally, Q¢ is a countable dense subset of R? for any d € N.

3. Even more generally, for any function p : N — (0,00), ¢P(p) is separable
for all 1 < p < 0. For example, let I' C F be a countable dense set, then

D :={xeP(n):x; €5 foralliand #{j: z; # 0} < oo}.

The set I" can be taken to be Qif F=R or Q +iQ if F = C.
4. 1f (X, d) is a metric space which is separable then every subset Y C X is
also separable in the induced topology.

To prove 4. above, let A = {z,}72; C X be a countable dense subset of
X. Let dy (z) = inf{d(z,y) : y € Y} be the distance from z to Y and recall
that dy : X — [0,00) is continuous. Let &, = max {dy (z,), 2} > 0 and for
each n let y, € By, (2¢,,). Then if y € Y and € > 0 we may choose n € N such
that d(y, z,) < e, < €/3. Then d(yn, z,) < 2e, < 2¢/3 and therefore

Ay, yn) < d(y, zn) + d(@n, yn) <e.
This shows that B := {y,}22, is a countable dense subset of Y.
Exercise 10.8. Show /> (N) is not separable.

Exercise 10.9. Show every second countable topological space (X, 7) is sep-
arable. Show the converse is not true by by showing X := R with 7 =
{0tu{V C R:0 € V} is a separable, first countable but not second countable
topological space.

Exercise 10.10. Every separable metric space, (X, d) is second countable.

Exercise 10.11. Suppose £ C 2¥ is a countable collection of subsets of X,
then 7 = 7(€) is a second countable topology on X.
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10.5 Connectedness

Definition 10.43. (X, 7) is disconnected if there exists non-empty open sets
U and V of X such that UNV =0 and X = UUV. We say {U,V} is a
disconnection of X. The topological space (X, T) is called connected if it
is not disconnected, i.e. if there is no disconnection of X. If A C X we say
A is connected iff (A,Ta) is connected where T4 is the relative topology on
A. Ezplicitly, A is disconnected in (X, T) iff there exists U,V € T such that
UNA#D, UNA#D, ANUNV =0 and ACUUYV.

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space (X, 7) is connected iff the only
sets A C X which are both open and closed are the sets X and 0.

Remark 10.44. Let ACY C X. Then A is connected in X iff A is connected
inY.

Proof. Since
TA={VNA:VCX}={VNANY:VCX}={UNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y. Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y. [ |

The following elementary but important lemma is left as an exercise to
the reader.

Lemma 10.45. Suppose that f : X — Y is a continuous map between topo-
logical spaces. Then f(X) CY is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Ezxample 10.46. Suppose that f : X — Y is a continuous map between two
topological spaces, the space X is connected and the space Y is “Ty,” i.e. {y}
is a closed set for all y € Y as in Definition 12.36 below. Further assume f
is locally constant, i.e. for all z € X there exists an open neighborhood V' of
z in X such that f|y is constant. Then f is constant, i.e. f(X) = {yo} for
some yo € Y. To prove this, let yo € f(X) and let W := f~1({yo}). Since
{yo} C Y is a closed set and since f is continuous W C X is also closed. Since
f is locally constant, W is open as well and since X is connected it follows
that W = X, i.e. f(X)={yo}-

Theorem 10.47 (Properties of Connected Sets). Let (X,7) be a topo-
logical space.

1. If B C X is a connected set and X is the disjoint union of two open sets
U and V, then either BC U or B C V.
2. If A C X is connected,
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a) then A is connected.
b) More generally, if A is connected and B C acc(A), then AU B is
connected as well. (Recall that acc(A) — the set of accumulation points
of A was defined in Definition 10.29 above.)
3. If {Es}aca is a collection of connected sets such that (\,c 4 Ea 7 0, then
Y :=U,ca Fao is connected as well. B
4. Suppose A, B C X are non-empty connected subsets of X such that AN
B #0, then AU B is connected in X.

5. Bvery point x € X is contained in a unique mazimal connected subset
C, of X and this subset is closed. The set C, is called the connected
component of x.

Proof.

1. Since B is the disjoint union of the relatively open sets BNU and BNV,
we must have BNU = B or BNV = B for otherwise {BNU, BNV}
would be a disconnection of B.

2. a. Let Y = A be equipped with the relative topology from X. Suppose
that U,V C, Y form a disconnection of Y = A. Then by 1. either A C U
or A C V. Say that A C U. Since U is both open an closed in Y, it follows
that Y = A C U. Therefore V = () and we have a contradiction to the
assumption that {U,V} is a disconnection of ¥ = A. Hence we must
conclude that Y = A is connected as well.

b. Now let Y = AU B with B C acc(A), then

AY = AnY = (AUacc(4))NY = AUB.

Because A is connected in Y, by (2a) Y = AU B = AY is also connected.

3. Let Y := J,ca Fo- By Remark 10.44, we know that E, is connected
in Y for each o € A. If {U,V} were a disconnection of Y, by item (1),
either E, C U or E, C V for all a. Let A = {a € A: E, C U} then
U = UacaBq and V = Uy a\ 4 Eo. (Notice that neither A or A\ A can be
empty since U and V are not empty.) Since

(Z):UmVZUaEA,ﬁEAC(EamEﬁ) D ﬂ E, #0.
a€cA

we have reached a contradiction and hence no such disconnection exists.

4. (A good example to keep in mind here is X = R, A = (0,1) and B =
[1,2).) For sake of contradiction suppose that {U, V'} were a disconnection
of Y = AU B. By item (1) either A C U or A C V, say A C U in which
case B C V. Since Y = AU B we must have A = U and B = V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies

A=A =AnY =AN(AUB)=AU (AN B)
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and therefore
0=ANB=[AU(ANB)|NnB=ANB#0

which gives us the desired contradiction.

5. Let C denote the collection of connected subsets C' C X such that x € C.
Then by item 3., the set C, := UC is also a connected subset of X which
contains z and clearly this is the unique maximal connected set containing
x. Since C,, is also connected by item (2) and C, is maximal, C, = Cg,
i.e. C, is closed.

Theorem 10.48 (The Connected Subsets of R). The connected subsets
of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with
a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—oco,c) N A
and V := (¢,00) N A would form a disconnection of A. Hence (a,b) C A. Let
a :=inf(A4) and 3 := sup(A4) and choose a,, B, € A such that a,, < 3, and
an | aand B, 1 B as n — oo. By what we have just shown, (a,,3,) C A
for all n and hence (o, 3) = U5, (an,Bn) C A. From this it follows that
A= (o, ), [o,B), (a, B] or [a, B], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction,
suppose that {U, V'} is a disconnection of A with a € U, b € V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a,b] C A. Let p =sup ([a,b] N U), then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a,b] NU) > p and p can not be in
V for otherwise p < sup ([a,b] N U). From this it follows that p ¢ U UV and
hence A # UUV contradicting the assumption that {U, V'} is a disconnection.
]

Theorem 10.49 (Intermediate Value Theorem). Suppose that (X,7) is
a connected topological space and f : X — R is a continuous map. Then f
satisfies the intermediate value property. Namely, for every pair x,y € X such

that f (z) < f(y) and c € (f (z), f(y)), there exits z € X such that f(z) = c.

Proof. By Lemma 10.45, f (X) is connected subset of R. So by Theorem
10.48, f (X) is a subinterval of R and this completes the proof. [

Definition 10.50. A topological space X is path connected if to every pair
of points {xo,x1} C X there exists a continuous path, o € C([0,1], X), such
that o(0) = zg and o(1) = z1. The space X is said to be locally path con-
nected if for each x € X, there is an open neighborhood V- C X of x which is
path connected.

Proposition 10.51. Let X be a topological space.
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1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
8. If X is any connected open subset of R™, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 10.18 —
10.20 below. u

Proposition 10.52 (Stability of Connectedness Under Products). Let
(Xa,Ta) be connected topological spaces. Then the product space X4 =
[Toca Xa equipped with the product topology is connected.

Proof. Let us begin with the case of two factors, namely assume that X
and Y are connected topological spaces, then we will show that X x Y is
connected as well. To do this let p = (zg,y0) € X x Y and E denote the
connected component of p. Since {zp} X Y is homeomorphic to Y, {z¢} x Y
is connected in X X Y and therefore {zo} x Y C FE, ie. (zo,y) € E for all
y € Y. A similar argument now shows that X x {y} C E for any y € Y, that
is to X x Y = E, see Figure 10.4. By induction the theorem holds whenever
A is a finite set, i.e. for products of a finite number of connected spaces.

Fig. 10.4. This picture illustrates why the connected component of p in X x Y
must contain all points of X x Y.

For the general case, again choose a point p € X4 = X4 and let C = Cp
be the connected component of p in X 4. Recall that C), is closed and therefore
if C, is a proper subset of X 4, then X4 \ C}, is a non-empty open set. By the
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definition of the product topology, this would imply that X 4 \ C} contains an
open set of the form

V= Naeamy (Vo) = Va x Xaa

where A CC A and V,, € 7, for all & € A. We will now show that no such V'
can exist and hence X4 = (), i.e. X4 is connected. Define ¢ : X4 — X4 by
¢(y) = z where

pa if a ¢ A

Ifae A maod(y) =ya = ma(y) and if « € A\ A then m, 0 ¢(y) = p, so that
in every case 7, 0 ¢ : X4 — X, is continuous and therefore ¢ is continuous.
Since X 4 is a product of a finite number of connected spaces it is connected by
step 1. above. Hence so is the continuous image, ¢(X4) = X4 x {pa}aeA\A ,
of X4. Now p € ¢(X ) and ¢(X ) is connected implies that ¢(X,) C C. On
the other hand one easily sees that

ma:{yalfCYEA

D#VNne(Xy)cVnC

contradicting the assumption that V' C C*. ]

10.6 Exercises

10.6.1 General Topological Space Problems

Exercise 10.12. Let V' be an open subset of R. Show V may be written as
a disjoint union of open intervals J,, = (an,by,), where a,,b, € RU{xoo} for
n=1,2--- <N with N = oo possible.

Exercise 10.13. Let (X,7) and (Y,7’) be a topological spaces, f : X — Y
be a function, i be an open cover of X and {Fj };.1:1 be a finite cover of X by
closed sets.

1.IfAC Xisanysetand f : X — Y is (7, 7’) — continuous then f|4: A - Y
is (T4, 7') — continuous.

2.Show f: X — Y is (r,7') — continuous iff fly : U — Y is (1y,7’)
continuous for all U € U.

3. Show f : X — Y is (7,7') — continuous iff f|p, : F; — Y is (7p,,7') -
continuous for all j =1,2,...,n.

Exercise 10.14. Suppose that X is a set, {(Ya,7a) : @ € A} is a family of
topological spaces and f, : X — Y, is a given function for all @ € A. Assuming
that S, C 74 is a sub-base for the topology 7, for each o € A, show S :=
Uaeafa1(S,) is a sub-base for the topology 7 := 7(fs : a € A).
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10.6.2 Connectedness Problems

Exercise 10.15. Show any non-trivial interval in Q is disconnected.

Exercise 10.16. Suppose a < b and f : (a,b) — R is a non-decreasing func-
tion. Show if f satisfies the intermediate value property (see Theorem 10.49),
then f is continuous.

Exercise 10.17. Suppose —00 < a < b < o0 and f : [a,b) — R is a strictly
increasing continuous function. By Lemma 10.45, f ([a, b)) is an interval and
since f is strictly increasing it must of the form [c, d) for some ¢ € Rand d € R
with ¢ < d. Show the inverse function f~!: [¢,d) — [a,b) is continuous and
is strictly increasing. In particular if n € N, apply this result to f (z) = 2"
for = € [0,00) to construct the positive n'" — root of a real number. Compare
with Exercise 3.8

Exercise 10.18. Prove item 1. of Proposition 10.51. Hint: show X is not
connected implies X is not path connected.

Exercise 10.19. Prove item 2. of Proposition 10.51. Hint: fix o € X and let
W denote the set of z € X such that there exists o € C([0,1], X) satisfying
0(0) = 2o and o(1) = 2. Then show W is both open and closed.

Exercise 10.20. Prove item 3. of Proposition 10.51.
Exercise 10.21. Let
X = {(z,y) eR*:y=sin(z™")} U{(0,0)}
equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.
10.6.3 Metric Spaces as Topological Spaces

Definition 10.53. Two metrics d and p on a set X are said to be equivalent
if there exists a constant ¢ € (0,00) such that c™*p < d < cp.

Exercise 10.22. Suppose that d and p are two metrics on X.

1. Show 74 = 7, if d and p are equivalent.
2. Show by example that it is possible for 74 = 7, even thought d and p are
inequivalent.

Exercise 10.23. Let (X;,d;) for i = 1,...,n be a finite collection of metric
spaces and for 1 < p < oo and x = (z1,22,...,2,) and y = (y1,...,Yn) in
X =117, X, let

- (Z?: [di(zuyi)]p)l/p if p# o0
pp(z,y) f{ T, by i ploo
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1. Show (X, pp) is a metric space for p € [1,00]. Hint: Minkowski’s inequal-
ity.

2. Show for any p,q € [1,00], the metrics p, and p, are equivalent. Hint:
This can be done with explicit estimates or you could use Theorem 11.12
below.

Notation 10.54 Let X be a set and p := {p,},—, be a family of semi-metrics
on X, i.e. p, : X Xx X — [0,00) are functions satisfying the assumptions
of metric except for the assertion that p,(x,y) = 0 implies © = y. Further
assume that pp(x,y) < pni1(x,y) for all n and if p,(z,y) =0 for alln € N
then x =y. Givenn € N and x € X let

By (z,e) :={y € X : pn(z,y) <e}.

We will write 7(p) form the smallest topology on X such that p,(z,): X —
[0,00) is continuous for alln € N and © € X, i.e. 7(p) := 7(pp(z) :n €N
and x € X).

Exercise 10.24. Using Notation 10.54, show that collection of balls,
B:={Bu(z,e):neN, z€ X and ¢ > 0},

forms a base for the topology 7(p). Hint: Use Exercise 10.14 to show B is a
sub-base for the topology 7(p) and then use Exercise 10.2 to show B is in fact
a base for the topology 7(p).

Exercise 10.25 (A minor variant of Exercise 6.12). Let p, be as in
Notation 10.54 and

oo
ZQ n_Pn(z y)
=7 T+pa(ay)
Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zj}pe; C
X converges to x € X iff
lim pn(xk,m) =0forallneN.

Exercise 10.26. Let {(X,,d,)}.-, be a sequence of metric spaces, X :
[I2, Xy, and for z = (z(n)),—, and y=(y(n)),—; in X let

_ N gn_dn(@m),y(n)
d(x,y)*;Q 1+dn(z(n),y(n))’

(See Exercise 6.12.) Moreover, let m, : X — X, be the projection maps, show
Ta = Q02 174, = T({m :n € N}).

That is show the d — metric topology is the same as the product topology on
X. Suggestions: 1) show 7, is 74 continuous for each n and 2) show for each
z € X that d(z,-) is ®32,74, — continuous. For the second assertion notice

o du(z(n),
that d (z,-) = > o7 | fn where f, =27" (%) O Ty
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Compactness

Definition 11.1. The subset A of a topological space (X T) is said to be com-
pact if every open cover (Definition 10.18) of A has finite a sub-cover, i.e. if
U is an open cover of A there exists Uy CC U such that Uy is a cover of A.
(We will write A CC X to denote that A C X and A is compact.) A subset
A C X is precompact if A is compact.

Proposition 11.2. Suppose that K C X is a compact set and F C K is a
closed subset. Then F is compact. If {K;}""_, is a finite collections of compact
subsets of X then K = U] K; is also a compact subset of X.

Proof. Let U C 7 be an open cover of F, then YU {F*°} is an open cover
of K. The cover UU{F°} of K has a finite subcover which we denote by
UoU{F*°} where Uy CC U. Since F N F° = (), it follows that Uy is the desired
subcover of F. For the second assertion suppose U C 7 is an open cover of K.
Then U covers each compact set K; and therefore there exists a finite subset
U; CC U for each i such that K; C UlU;. Then Uy := UP_,U; is a finite cover
of K. ]

Exercise 11.1. Suppose f : X — Y is continuous and K C X is compact,
then f(K) is a compact subset of Y. Give an example of continuous mabp,
f:X — Y, and a compact subset K of Y such that f~!(K) is not compact.

Exercise 11.2 (Dini’s Theorem). Let X be a compact topological space
and f,, : X — [0,00) be a sequence of continuous functions such that f,(z) | 0
as n — oo for each x € X. Show that in fact f, | 0 uniformly in =z, i.e.
sup,ex fo(z) | 0 as n — oo. Hint: Given ¢ > 0, consider the open sets
Vii={z e X: fulz) <e}.

Definition 11.3. A collection F of closed subsets of a topological space (X, T)
has the finite intersection property if N\Fy # 0 for all Fo CC F.

The notion of compactness may be expressed in terms of closed sets as
follows.
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Proposition 11.4. A topological space X is compact iff every family of closed
sets F C 2% having the finite intersection property satisfies (| F # 0.

Proof. (=) Suppose that X is compact and F C 2% is a collection of
closed sets such that (| F = 0. Let

U=F:={C°:CeF}cCr,

then ¢ is a cover of X and hence has a finite subcover, Uy. Let Fo = U5 CC F,
then NFy = 0 so that F does not have the finite intersection property. (<) If
X is not compact, there exists an open cover U of X with no finite subcover.
Let

F=U={U°:U U},

then F is a collection of closed sets with the finite intersection property while

NF=0. ]

Exercise 11.3. Let (X, 7) be a topological space. Show that A C X is com-
pact iff (A4, 74) is a compact topological space.

11.1 Metric Space Compactness Criteria

Let (X, d) be a metric space and for z € X and e > 0let B (g) = By(e)\{z} -
the deleted ball centered at = of radius € > 0. Recall from Definition 10.29 that
a point € X is an accumulation point of a subset £ C X if ) £ ENV \ {z}
for all open neighborhoods, V, of z. The proof of the following elementary
lemma is left to the reader.

Lemma 11.5. Let E C X be a subset of a metric space (X,d). Then the
following are equivalent:

1. x € X is an accumulation point of E.

2.Bl(e)NE #0 for alle > 0.

3. B, (e) N E is an infinite set for all € > 0.

4. There exists {;vn}zo:l C E\ {z} with lim,_,oc =, = .

Definition 11.6. A metric space (X, d) ise — bounded (¢ > 0) if there exists
a finite cover of X by balls of radius € and it is totally bounded if it is € —
bounded for all € > 0.

Theorem 11.7. Let (X, d) be a metric space. The following are equivalent.

(a) X is compact.

(b) Every infinite subset of X has an accumulation point.

(¢) Every sequence {z,},-, C X has a convergent subsequence.
(d) X is totally bounded and complete.
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Proof. The proof will consist of showing that ¢« = b = ¢ = d = a.
(a = b) We will show that not b = not a. Suppose there exists an infinite
subset £ C X which has no accumulation points. Then for all z € X there
exists 6, > 0 such that V, := B,(d,) satisfies (V, \ {z}) N E = 0. Clearly
V = {Ve},cx is a cover of X, yet V has no finite sub cover. Indeed, for each
z€X,V,NE C {z} and hence if 4 CC X, UyeaV, can only contain a finite
number of points from £ (namely ANE). Thus for any A CC X, E € UzeaVs
and in particular X # UzeaVy. (See Figure 11.1.) (b = ¢) Let {zn},—; C X

< i4 - L e‘/ hd - - e e >
. -
. N
R
~ re

Fig. 11.1. The construction of an open cover with no finite sub-cover.

be a sequence and E := {z, :n € N}. If #(E) < oo, then {z,} -, has a
subsequence {z,, },-, which is constant and hence convergent. On the other
hand if #(F) = oo then by assumption E has an accumulation point and hence
by Lemma 11.5, {z,}.., has a convergent subsequence. (c = d) Suppose
{z,}2, C X is a Cauchy sequence. By assumption there exists a subsequence
{@p, }re; which is convergent to some point z € X. Since {z,,},., is Cauchy
it follows that x,, — x as n — oo showing X is complete. We now show that X
is totally bounded. Let € > 0 be given and choose an arbitrary point z; € X.
If possible choose x5 € X such that d(za,z1) > ¢, then if possible choose
x3 € X such that dig, ,,3(23) > € and continue inductively choosing points
{mj};lzl C X such that dg,,, . 5. ,1(%n) > €. (See Figure 11.2.) This process
must terminate, for otherwise we would produce a sequence {;v"}f;l c X
which can have no convergent subsequences. Indeed, the z,, have been chosen
so that d(x,,z,) > € > 0 for every m # n and hence no subsequence of
{z,}72, can be Cauchy. (d = a) For sake of contradiction, assume there
exists an open cover V = {V,}qeca of X with no finite subcover. Since X is
totally bounded for each n € N there exists A, CC X such that

X=J B.(1/n)c | Cu(1/n).

zEN, €N,

Choose 1 € A; such that no finite subset of V covers K; := Cj,(1). Since
K1 = Uzea, K1NC,(1/2), there exists 22 € A such that Ky := K1NCy,(1/2)
can not be covered by a finite subset of V), see Figure 11.3. Continuing this
way inductively, we construct sets K, = K,,—1 N Cy, (1/n) with =, € 4,
such no K, can be covered by a finite subset of V. Now choose vy, € K,
for each n. Since {K,,} -, is a decreasing sequence of closed sets such that
diam(K,,) < 2/n, it follows that {y,} is a Cauchy and hence convergent with
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Fig. 11.2. Constructing a set with out an accumulation point.

y= lim y, € N0 _1 K.
n—oo

Since V is a cover of X, there exists V' € V such that z € V. Since K,, | {y}
and diam(K,) — 0, it now follows that K,, C V for some n large. But this
violates the assertion that K, can not be covered by a finite subset of V.

%7

K

Fig. 11.3. Nested Sequence of cubes.

Corollary 11.8. Any compact metric space (X,d) is second countable and
hence also separable by Exercise 10.9. (See Example 12.25 below for an exam-
ple of a compact topological space which is not separable.)

Proof. To each integer n, there exists A, CC X such that X =
Ugzea, B(z,1/n). The collection of open balls,

V= UnGN UacEAn {B(.’E7 1/”)}
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forms a countable basis for the metric topology on X. To check this, suppose
that g € X and ¢ > 0 are given and choose n € N such that 1/n < ¢/2
and = € A,, such that d (zo,z) < 1/n. Then B(z,1/n) C B (xo,¢) because for
y € B(z,1/n),
d(y,x0) < d(y,z) +d(z,z9) < 2/n <e.
|
Corollary 11.9. The compact subsets of R™ are the closed and bounded sets.

Proof. This is a consequence of Theorem 8.2 and Theorem 11.7. Here is
another proof. If K is closed and bounded then K is complete (being the
closed subset of a complete space) and K is contained in [—M, M]™ for some
positive integer M. For 6 > 0, let

As =0Z" N [-M,M|" := {0z : x € Z" and §|z;| < M for i = 1,2,...,n}.
We will show, by choosing 6 > 0 sufficiently small, that
K C[-M,M]" CUgzea,B(x,¢) (11.1)

which shows that K is totally bounded. Hence by Theorem 11.7; K is compact.
Suppose that y € [—M, M]", then there exists z € As such that |y; — x;] < J
for i =1,2,...,n. Hence

n

d*(z,y) = Z (yi — 2:)? < no?

i=1
which shows that d(z,y) < v/nd. Hence if choose § < ¢/y/n we have shows
that d(z,y) < ¢, i.e. Eq. (11.1) holds. ]

Example 11.10. Let X = (P(N) with p € [1,00) and p € ¢P(N) such that
w(k) > 0 for all £ € N. The set

K :={z e X :|z(k)| < p(k) for all k € N}

is compact. To prove this, let {xn}:;l C K be a sequence. By com-

pactness of closed bounded sets in C, for each £k € N there is a subse-
quence of {z,(k)}.~, C C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence {y,}.—, of {z,},-, such that
y(k) = lim, o0 yn(k) exists for all k& € N.! Since |y, (k)| < p(k) for all n
it follows that |y(k)| < u(k), i.e. y € K. Finally
! The argument is as follows. Let {n] }52; be a subsequence of N = {n}2 | such that
lim; - o0 zn}(l) exists. Now choose a subsequence {n?}32; of {n}}52, such that
lim; o0 7,2(2) exists and similarly {n3}52; of {n3}2; such that lim; e 7,3(3)
J J
exists. Continue on this way inductively to get
()5 D () > (02332 > ()3 o ..
such that lim;j o x,x (k) exists for all k € N. Let m; := n§ so that eventually
J

{m;}32, is a subsequence of {n¥}52, for all k. Therefore, we may take y; := T -
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lim [ly —yallp = lim D [y(k) —ya(k)" =Y lim [y(k) —ya (k)] =0
k=1 k=1

wherein we have used the Dominated convergence theorem. (Note |y(k) — y, (k)[*
2P P (k) and pP is summable.) Therefore y, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and
totally bounded. It is simple to show K is closed, for if {z,} -, C K is a
convergent sequence in X, x :=lim,_. o, T, then

lz(k)| < lim |z, (k)| < p(k) V keN.

This shows that z € K and hence K is closed. To see that K is totally
bounded, let & > 0 and choose N such that (3.7 v, |u(k)[") Y7 ¢ Since
Hgil Cluiy(0) € CN is closed and bounded, it is compact. Therefore there
exists a finite subset A C Hivzl Cu(k)(0) such that

N
H CH(’C)(O) C UzEABiv(E)
k=1

where BXY(¢) is the open ball centered at z € CV relative to the
#({1,2,3,...,N}) — norm. For each z € A, let Z € X be defined by
Z(k) = z(k) if k < N and Z(k) =0 for k > N + 1. I now claim that

K C U.eaB:(2¢) (11.2)

which, when verified, shows K is totally bounded. To verify Eq. (11.2), let
z € K and write z = u + v where u(k) = x(k) for k¥ < N and u(k) = 0 for
k < N. Then by construction u € B;(¢) for some z € A and

0 1/p
|v||p<< > u(k)p> <e.

k=N+1

So we have
lz =2, = llu+v—=Z[, < flu—-2|, + v, < 2.

Exercise 11.4 (Extreme value theorem). Let (X, 7) be a compact topo-
logical space and f : X — R be a continuous function. Show —oo < inf f <
sup f < oo and there exists a,b € X such that f(a) = inf f and f(b) = sup f2.
Hint: use Exercise 11.1 and Corollary 11.9.

% Here is a proof if X is a metric space. Let {z,}>2, C X be a sequence such that
f(zn) 7 sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that z, — b € X as n — oo. By continuity of f, f(b) =sup f.
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Exercise 11.5 (Uniform Continuity). Let (X,d) be a compact metric
space, (Y, p) be a metric space and f : X — Y be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists ¢ > 0 such that
o(f(y), f(z)) < e if z,y € X with d(z,y) < §. Hint: you could follow the
argument in the proof of Theorem 8.2.

Definition 11.11. Let L be a vector space. We say that two norms, |-| and
IIIl, on L are equivalent if there exists constants a, 8 € (0,00) such that

IfIl < e|f] and |f| < BIfIl forall f€ L.

Theorem 11.12. Let L be a finite dimensional vector space. Then any two
norms |-| and ||-|| on L are equivalent. (This is typically not true for norms
on infinite dimensional spaces, see for example Ezercise 7.7.)

Proof. Let {f;}]_, be a basis for L and define a new norm on L by

n
> aifi
i=1

By the triangle inequality for the norm ||, we find

n n n n

2 2
Soaifil < Ml £l < DA D il < M
i=1 i=1 i=1 i=1

n
Z \ai\2 for a; € F.
=1

2

n
> aifi
i=1

2
where M = /> | | fiI?. Thus we have

If1 < M| flly

for all f € L and this inequality shows that |-| is continuous relative to
I/l - Since the normed space (L, ||||,) is homeomorphic and isomorphic
to F" with the standard euclidean norm, the closed bounded set, S :=
{feL:|fll,=1} C L, is a compact subset of L relative to [-]|,. There-
fore by Exercise 11.4 there exists fo € S such that

m=nt{|f]: f €S} =Ifol > 0.

Hence given 0 # f € L, then W%z € S so that

_f
"= ‘Ilf\lz

1
=l 57
1/l
or equivalently

1
171l < — 11

This shows that |-| and ||-||, are equivalent norms. Similarly one shows that
[|I-|| and [|-]|, are equivalent and hence so are |-| and ||-|| . ]
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Corollary 11.13. If (L, ||-|)) is a finite dimensional normed space, then A C
L is compact iff A is closed and bounded relative to the given norm, ||| .

Corollary 11.14. Every finite dimensional normed vector space (L, ||-||) is
complete. In particular any finite dimensional subspace of a normed vector
space is automatically closed.

Proof. If {f,},-, C L is a Cauchy sequence, then {f,} -, is bounded
and hence has a convergent subsequence, g = fy,, by Corollary 11.13. It is
now routine to show lim, o fn = f := limg_c0 gk- |

Theorem 11.15. Suppose that (X, ||-||) is a normed vector in which the unit
ball, V := By (1), is precompact. Then dim X < oo.

Proof. Since V is compact, we may choose A CC X such that

_ 1

where, for any § > 0,
oV :={0x:xeV}=DB)().
Let Y := span(A), then the previous equation implies that
_ 1
Vcvcy+ 51/.
Multiplying this equation by % then shows
1 1 1 1

and hence L L L
VCY+§VCY+Y+ZV:Y+ZV.

Continuing this way inductively then shows that
1
VCY—}—FVforallnEN.

Hence if 2 € V, there exists y, € Y and z, € By (27") such that y,, +z, — =.
Since lim, .o 2, = 0, it follows that z = lim, o ¥y, € Y. Since dimY <

#(4) < oo, Corollary 11.14 implieb Y = Y and so we have shown that
V C Y. Since for any z € X, QHIHHSEVCY wehavexeroralla:eX ie.
X=Y [ ]

Exercise 11.6. Suppose (Y, ||-||y) is a normed space and (X, ||| y) is a finite
dimensional normed space. Show every linear transformation 7 : X — Y is
necessarily bounded.
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11.2 Compact Operators

Definition 11.16. Let A: X — Y be a bounded operator between two (sepa-
rable) Banach spaces. Then A is compact if A[Bx(0,1)] is precompact in' Y’
or equwalently for any {z,}°2, C X such that ||z,|| <1 for alln the sequence
Yn = Az, €Y has a convergent subsequence.

Example 11.17. Let X =2 =Y and \, € C such that lim,_,o A, = 0, then
A: X —Y defined by (Az)(n) = A,z(n) is compact.

Proof. Suppose {z;}52, C ¢* such that ||z;]* = 3 |ch(n)|2 <1 for all 7.
By Cantor’s Diagonalization argument, there exists {j5} C {4} such that, for
each n, x(n) = x;, (n) converges to some Z(n) € C as k — oo. Since for any

M < oo,
M
>

|%(
n=1

1 <1
kHEODwk nl° <

e}

we may conclude that > [#(n)|? < 1,1i.e. & € (2. Let y;, := A%, and y := AZ.
n=1

We will finish the verification of this example by showing v — y in £2 as

k — oo. Indeed if A}, = max |A,|, then

| Az, — Az|?

I
>
3
o
Bl
=
=
3
<
[
8
=
3
<
o

I
¢
s
_w
§

B (n) — 2(n)[* + | Xy Z |2k (n) — 2(n)?

n=1 M+1

M
<3 aPlar(n) — &) + [Nyl |3 — )2

n=1

M
<D Il lER(n) = 2(n))* + 4IA5 1
n=1

Passing to the limit in this inequality then implies

lim sup |AZy, — AZ|? < 4|\5]% — 0 as M — oo.
k—

Lemma 11.18. If X 2,y 2. 7 are bounded operators such the either A
or B is compact then the composition BA : X — Z is also compact.

Proof. Let Bx(0,1) be the open unit ball in X. If A is compact and B
is bounded, then BA(Bx(0,1)) C B(ABx(0,1)) which is compact since the
image of compact sets under continuous maps are compact. Hence we conclude
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that BA(Bx(0,1)) is compact, being the closed subset of the compact set
B(ABx(0,1)). If A is continuous and B is compact, then A(Bx(0,1)) is a
bounded set and so by the compactness of B, BA(Bx(0,1)) is a precompact
subset of Z, i.e. BA is compact. [ |

11.3 Local and o — Compactness

Notation 11.19 If X is a topological spaces and Y is a normed space, let
BC(X,Y):={feC(X)Y): sup 1 (@)lly < oo}

and

Co(X,Y) :={f € C(X,Y) : supp(f) is compact}.

If Y =R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

Remark 11.20. Let X be a topological space and Y be a Banach space.
By combining Exercise 11.1 and Theorem 11.7 it follows that C.(X,Y) C
BC(X,Y).

Definition 11.21 (Local and o — compactness). Let (X, 7) be a topolog-
ical space.

1. (X,7) is locally compact if for all x € X there exists an open neigh-
borhood V. C X of x such that V is compact. (Alternatively, in light of
Definition 10.29 (also see Definition 6.5), this is equivalent to requiring
that to each x € X there exists a compact neighborhood N, of x.)

2.(X,7) is o — compact if there exists compact sets K, C X such that
X =UX 1 K,. (Notice that we may assume, by replacing K,, by K1 UKyU

U K, if necessary, that K,, T X.)

Example 11.22. Any open subset of U C R™ is a locally compact and o —
compact metric space. The proof of local compactness is easy and is left to
the reader. To see that U is o — compact, for k € N, let

K :={zeU:|z| <kanddye(x)>1/k}.

Then K} is a closed and bounded subset of R™ and hence compact. Moreover
K 1Uask — o0 since®

Ky >{zeU:|z| <kanddy:(z)>1/k} TU as k — oo.

Exercise 11.7. If (X, 7) is locally compact and second countable, then there
is a countable basis By for the topology consisting of precompact open sets.
Use this to show (X, 7) is o - compact.

3 In fact this is an equality, but we will not need this here.
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Exercise 11.8. Every separable locally compact metric space is o — compact.

Exercise 11.9. Every o — compact metric space is second countable (or equiv-
alently separable), see Corollary 11.8.

Exercise 11.10. Suppose that (X, d) is a metric space and U C X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.

2.1f X is o — compact then (U,d) is ¢ — compact. Hint: Mimic Example
11.22, replacing {x € R™ : |z| < k} by compact sets X} CC X such that
Xi 1 X.

Lemma 11.23. Let (X, 1) be locally and o — compact. Then there exists com-
pact sets K, T X such that K,, C K| C Kpq1 for all n.

Proof. Suppose that C C X is a compact set. Foreachz € Clet V, C, X
be an open neighborhood of x such that V. is compact. Then C' C UeccV, so
there exists A CcC C such that

C CUgeaVy C UpenVy = K.

Then K is a compact set, being a finite union of compact subsets of X, and
C C UzeaV, C K° Now let C,, C X be compact sets such that C,, T X as
n — o0. Let K; = C; and then choose a compact set Ky such that Cy C K9.
Similarly, choose a compact set K3 such that Ky U Cs C K§ and continue
inductively to find compact sets K, such that K, UC,;1 C K, for all n.

Then {K,},-, is the desired sequence. ]

Remark 11.24. Lemma 11.23 may also be stated as saying there exists pre-
compact open sets {G,, }>o | such that G, C G, C Gpy1 for allmand G, T X
as n — oo. Indeed if {G,}o- | are as above, let K, := G,, and if {K,,},o, are
as in Lemma 11.23, let G,, := K.

Proposition 11.25. Suppose X is a locally compact metric space and U C,
X and K CC U. Then there exists V Co X such that K CV CV CUCX
and V' is compact.

Proof. (This is done more generally in Proposition 12.7 below.) By local
compactness or X, for each z € K there exists ¢, > 0 such that B, (g;) is
compact and by shrinking ¢, if necessary we may assume,

B,(e;) C Cyley) C By(2e,) CU

for each z € K. By compactness of K, there exists A CC K such that K C
UzeaBz () =: V. Notice that V' C U,eca B, (e,) C U and V' is a closed subset
of the compact set U,ec B, (e,) and hence compact as well. [ |
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Definition 11.26. Let U be an open subset of a topological space (X, 7). We
will write f < U to mean a function f € C.(X,[0,1]) such that supp(f) :=

0} CU.

Lemma 11.27 (Urysohn’s Lemma for Metric Spaces). Let X be a lo-
cally compact metric space and K CC U C, X. Then there exists f < U such
that f =1 on K. In particular, if K is compact and C is closed in X such
that KNC = ), there exists f € C.(X,[0,1]) such that f =1 on K and f =0
on C.

Proof. Let V be as in Proposition 11.25 and then use Lemma 6.15 to find
a function f € C(X,[0,1]) such that f = 1 on K and f = 0 on V°. Then
supp(f) C V C U and hence f < U. ]

11.4 Function Space Compactness Criteria

In this section, let (X, 7) be a topological space.
Definition 11.28. Let F C C(X).

1. F is equicontinuous at x € X iff for all € > 0 there exists U € 7, such
that |f(y) — f(z)| <eforally e U and f € F.

2. F is equicontinuous if F is equicontinuous at all points x € X.

3. F is pointwise bounded if sup{|f(z)| : |f € F} < oo for all z € X.

Theorem 11.29 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topo-
logical space and F C C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (<) Since C(X) C ¢*°(X) is a complete metric space, we must
show F is totally bounded. Let ¢ > 0 be given. By equicontinuity, for all
z € X, there exists V, € 7, such that |f(y) — f(z)] < /2 if y € V, and
f € F. Since X is compact we may choose A CC X such that X = U,eca V..
We have now decomposed X into “blocks” {V4},, such that each f € F is
constant to within € on V. Since sup {|f(z)|:z € Aand f € F} < oo, it is
now evident that

M =sup{|f(z)|:z € X and f € F}
<sup{|f(z)|:z€Adand f € F} +¢ < 0.

Let D:={ke/2: k€ Z}N[-M,M]. If f€ Fand ¢ € DA (ie. p: A — Disa
function) is chosen so that |¢(z) — f(z)| < e/2 for all z € A, then

[f(y) = (@) < [f(y) = f(@)| + [f(z) = d(x)| <e Ve Adand y € V.

From this it follows that F = |J {.7-'¢ NS ]D)A} where, for ¢ € D4,
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Fo ={feF:|fly)—o(x)| <eforyeV, and x € A}.

Let I' := {¢e DA Fy 75(0} and for each ¢ € I' choose fy € Fy N F. For
f€Fy, x € Aand y € V, we have

1f () = o)l < [f(y) — &(@)) + [o(z) = fo(y)] < 2.
So [|f = fslleo < 2¢ for all f € Fy showing that Fy C By, (2¢). Therefore,
F = U¢ep.7'—¢ C U¢epr¢(26)

and because € > 0 was arbitrary we have shown that F is totally bounded.
(=) (*The rest of this proof may safely be skipped.) Since |||, : C(X) —
[0, 00) is a continuous function on C'(X) it is bounded on any compact subset
F C C(X). This shows that sup {||f||,, : f € F} < oo which clearly implies
that F is pointwise bounded.* Suppose F were not equicontinuous at some
point x € X that is to say there exists ¢ > 0 such that for all V € 7.,

sup sup |f(y) — f(x)| > €.5 Equivalently said, to each V € 7, we may choose
yev feF

fveFanday €V 5 [fv(z) - fv(zv) >e. (11.3)

Set Cy = {fw:Wer, and W C V}‘le C F and notice for any V CC 7,
that
NvevCy 2 Cay # 0,

so that {Cy},, € 7, C F has the finite intersection property.5 Since F is
compact, it follows that there exists some

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps e, : C(X) — R given by e, (f) = f(z) for all x € X.

If X is first countable we could finish the proof with the following argument.
Let {V,}nl1 be a neighborhood base at x such that Vi D V2 D V3 D .... By
the assumption that F is not equicontinuous at x, there exist f,, € F and z, €
Vi such that |fn(x) — fu(zn)| > € V n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that f, converges uniformly
to some f € F. Because x, — = as n — oo we learn that

€ < |fn(@) = fal@n)l < |fal@) — f@)] + |f(2) = flzn)| + |f(zn) — fo(zn)]
< 2| fn = fIl +1f(x) = f(zn)] = 0as n — oo

5

which is a contradiction.

If we are willing to use Net’s described in Appendix C below we could finish
the proof as follows. Since F is compact, the net {fv}ver, C F has a cluster
point f € F C C(X). Choose a subnet {ga}aca of {fv}very such that go — f
uniformly. Then, since xv — « implies zv, — z, we may conclude from Eq.
(11.3) that

=

€ < |ga(2) = ga(zvi)| — l9(z) — g(2)| = 0

which is a contradiction.
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fe () cv#o.

Ver,

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < /3 for
all y € V. Because f € Cy, there exists W C V such that ||f — fw| < /3.
We now arrive at a contradiction;

e < |fw(x) = fw(zw)]
< |fw(@) = f@)| +f (@) = flaw)] + [f(aw) = fw (zw)]
<e/3+¢e/3+¢/3=¢.

|
The following result is a corollary of Lemma 11.23 and Theorem 11.29.

Corollary 11.30 (Locally Compact Ascoli-Arzela Theorem). Let (X, 7)
be a locally compact and o — compact topological space and {fn,} C C(X)
be a pointwise bounded sequence of functions such that {fm|x} is equicon-
tinuous for any compact subset K C X. Then there exists a subsequence
{my} C {m} such that {g, := fm, }oey C C(X) is a sequence which is uni-
formly convergent on compact subsets of X.

Proof. Let {K,},-; be the compact subsets of X constructed in Lemma
11.23. We may now apply Theorem 11.29 repeatedly to find a nested family

of subsequences
{fm} 2 {om} 2 {om} 2 {gm} > -

such that the sequence {¢%}>_, C C(X) is uniformly convergent on K,.
Using Cantor’s trick, define the subsequence {h,,} of {fn,} by hy, := g/*. Then
{hn} is uniformly convergent on K; for each [ € N. Now if K C X is an
arbitrary compact set, there exists [ < oo such that K C Ky C K; and
therefore {h,} is uniformly convergent on K as well. ]

Proposition 11.31. Let 2 C, ]Rd_such that Q_is compact and 0 < o < < 1.
Then the inclusion map i : CP(Q) — C*(£2) is a compact operator. See
Chapter 9 and Lemma 9.9 for the notation being used here.

Let {u,}52; C CA(0) such that ||u,|lcs < 1, i.e. [[un]loo < 1 and
[t () — un(y)| < |z —y|® for all 2,y € 2.

By the Arzela-Ascoli Theorem 11.29, there exists a subsequence of {1, }52;
of {u,}2°; and u € C°(£2) such that @, — u in C°. Since

[u(@) —uly)| = lim_|in(z) = dn(y)] < o - y|",
u € CP as well. Define g,, := u — i, € C?, then

[9n]s +llgnllco = llgnllcs <2
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and g, — 0in C°. To finish the proof we must show that g, — 0 in C®. Given
60>0,

[gn]a = sup ‘gn(x) — gn(y)l < An + Bn

THY |l._y|u¢
where
An:sup{w cx#yand |z—y] §5}
|z — y|*
|z —yl?
S (56_a : [gn}ﬁ S 26[3_&

:Sup{Lgn(m) _gn(y)| . |1,_y|ﬁ—a . x;éyand ‘.’E—y| Sé}

and
B, = SUP{M e -yl > (5} < 267%|gnllgo — 0 as n — oo.
T —yl“
Therefore,

lim sup [gn]e < lim sup A, + lim sup B, < 200~ +0—0asé |0.
n—oo n—00 n—0o0
This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 11.18 below.

Theorem 11.32. Let §2 be a precompact open subset of Re «, B € [0,1] and
k,j €Ny If j+8 > k+a, then CIP (.Q) is compactly contained in C* (Q) .

11.5 Tychonoff’s Theorem

The goal of this section is to show that arbitrary products of compact spaces
is still compact. Before going to the general case of an arbitrary number of
factors let us start with only two factors.

Proposition 11.33. Suppose that X and Y are non-empty compact topolog-
ical spaces, then X XY is compact in the product topology.

Proof. Let U be an open cover of X x Y. Then for each (z,y) € X x Y
there exist U € U such that (z,y) € U. By definition of the product topology,
there also exist V, € 7,5 and W, € 7" such that V, x W, C U. Therefore
Vi={V, x Wy : (z,y) € X x Y} is also an open cover of X x Y. We will now
show that V has a finite sub-cover, say Vy CC V. Assuming this is proved for
the moment, this implies that I/ also has a finite subcover because each V' € V,
is contained in some Uy € U. So to complete the proof it suffices to show every
cover V of the form V = {V,, x W, : a« € A} where V, C, X and W,, C, Y has
a finite subcover. Given z € X, let f, : Y — X XY be the map f,(y) = (z,y)
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and notice that f, is continuous since 7x o f(y) = = and 7y o f,(y) =y are
continuous maps. From this we conclude that {z} x Y = f,(Y) is compact.
Similarly, it follows that X x {y} is compact for all y € Y. Since V is a cover

of {z} x Y, there exist I, CC A such that {z} xY C |J (Vo x W,) without
acly,
loss of generality we may assume that I, is chosen so that x € V,, for all

a€l,. Let Uy ;== [ Vo Co X, and notice that

acly
U VaxWa) 2 | (Ue x Wa) =U, xY, (11.4)
a€ly a€ly

see Figure 11.4 below. Since {U,} .y is now an open cover of X and X is

XxY

{)xY

|

. ¢ Y
|

| X

T

Fig. 11.4. Constructing the open set U,.

compact, there exists A CC X such that X = U,caU,. The finite subcol-
lection, Vo := {Vy x Wy : @ € Ugeal,}, of V is the desired finite subcover.
Indeed using Eq. (11.4),

UVo = Uzea Uaer, (Va X Wo) D Ugzea (U xY) = X x Y.

[

The results of Exercises 11.19 and 10.26 prove Tychonoff’s Theorem for a

countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 11.34 (Tychonoff’s Theorem). Let {X,}aca be a collection of

non-empty compact spaces. Then X := Xa = [[ X is compact in the prod-
acA

uct space topology. (Compare with Exercise 11.19 which covers the special case

of a countable product of compact metric spaces.)

t
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Proof. (The proof is taken from Loomis [13] which followed Bourbaki. Re-
mark 11.35 below should help the reader understand the strategy of the proof
to follow.) The proof requires a form of “induction” known as Zorn’s lemma
which is equivalent to the axiom of choice, see Theorem B.7 of Appendix B
below. For o € A let 7, denote the projection map from X to X,. Suppose
that F is a family of closed subsets of X which has the finite intersection
property, see Definition 11.3. By Proposition 11.4 the proof will be complete
if we can show NF # (). The first step is to apply Zorn’s lemma to construct a
maximal collection Fy of (not necessarily closed) subsets of X with the finite
intersection property. To do this, let I" := {g c2X:Fc Q} equipped with
the partial order, G; < Go if Gy C Gs. If @ is a linearly ordered subset of I
then G:= U® is an upper bound for I" which still has the finite intersection
property as the reader should check. So by Zorn’s lemma, I" has a maximal
element Fy. The maximal F; has the following properties.

1. Fo is closed under finite intersections. Indeed, if we let (fo)f denote the
collection of all finite intersections of elements from Fy, then (Fo)f has
the finite intersection property and contains Fy. Since Fy is maximal, this
implies (Fo); = Fo.

2.If AC X and ANF # ( for all F € Fy then A € Fy. For if not
Fo U {A} would still satisfy the finite intersection property and would
properly contain Fy. But this would violate the maximallity of F.

3. For each a € A,

TI'a(fo) = {WQ(F) CXQIFG_'FO}

has the finite intersection property. Indeed, if {F;}]_, C Fo, then
m?:lﬂ'a(Fi) D Ty (m’:L:le) 95 0.

Since X, is compact, property 3. above along with Proposition 11.4 implies
Nper,ma(F) # 0. Since this true for each o € A, using the axiom of choice,
there exists p € X such that p, = 74 (p) € Nper,ma(F) for all @ € A. The
proof will be completed by showing p € NF which will prove NF is not empty
as desired.

Since C' :=nN {F :Fe fo} C NF, it suffices to show p € C. Let U be an
open neighborhood of p in X. By the definition of the product topology (or
item 2. of Proposition 10.25), there exists A CC A and open sets U, C X,
for all a € A such that p € Npean, (Us) C U. Since po € Nper,ma(F) and
Pa € Uy for all a € A, it follows that U, N7 (F) # 0 for all F € Fy and all
« € A. This then implies 7,1 (Uy) N F # 0 for all F € Fy and all o € A. By
property 2.7 above we concluded that 7! (U,) € Fp for all @ € A and then
by property 1. that Naeam, !t (Us) € Fo. In particular

0 # F N (Naeary' (Us)) C FNU for all F e Fy

7 Here is where we use that Fp is maximal among the collection of all, not just
closed, sets having the finite intersection property and containing F.
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which shows p € F' for each ' € Fy, i.e. p € C.

X

Remark 11.85. Consider the following simple example where X = [—1,1]
[-1,1] and F = {Fy, F>} as in Figure 11.5. Notice that m;(Fy) N m; (F2)
[~1,1] for each i and so gives no help in trying to find the i*" — coordinate
of one of the two points in Fy N Fy. This is why it is necessary to introduce
the collection Fy in the proof of Theorem 11.34. In this case one might take
Fo to be the collection of all subsets F' C X such that p € F. We then have
Nrer,m (F) = {p;}, so the i'" — coordinate of p may now be determined by

observing the sets, {m; (F)): F € Fo}.

X

Fy
2

Fg

o

Fig. 11.5. Here F = {Fi, F>} where F; and F» are the two parabolic arcs and
F1 OFQ = {p,q}.

11.6 Exercises

Exercise 11.11. Prove Lemma 11.5.

Exercise 11.12. Let C be a closed proper subset of R™ and z € R™\ C. Show
there exists a y € C such that d(z,y) = dc(z).

Exercise 11.13. Let F = R in this problem and A C ¢2(N) be defined by
A={z € A(N):x(n)>1+1/n for some n € N}
=% {z € A(N):z(n) >1+1/n}.
Show A is a closed subset of £2(N) with the property that d(0) = 1 while

there is no y € A such that da(y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

Exercise 11.14. Let p € [1,00] and X be an infinite set. Show directly, with-
out using Theorem 11.15, the closed unit ball in ¢P(X) is not compact.
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11.6.1 Ascoli-Arzela Theorem Problems

Exercise 11.15. Let T € (0,00) and F C C([0,T7]) be a family of functions
such that:

1. f(t) exists for all ¢t € (0,T) and f € F.
2. supse | f(0)] < oo and

3. M :=SuDsc £ SUDse (o 1) ‘f(t)‘ < o0.

Show F is precompact in the Banach space C(]0,7]) equipped with the
norm || f|l, = supsepor £ ()]

Exercise 11.16 (Peano’s Existence Theorem). Suppose Z : R x R% —
R? is a bounded continuous function. Then for each T < oo® there exists a
solution to the differential equation

(t) = Z(t,z(t)) for 0 <t < T with 2(0) = zg. (11.5)
Do this by filling in the following outline for the proof.
1. Given € > 0, show there exists a unique function z. € C([—¢,00) — R?)
such that z.(t) := x¢ for —e <t <0 and
¢
ze(t) = o + / Z(1,xe(T —€))dr for all t > 0. (11.6)
Jo

Here

/Ot Z(r, we (r—))dr = (/Ot Zi(r,wo(r — £))dr, ..., /Ot Za(r,a(r — s))dT>

where Z = (Z3,...,Z4) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t € [0,¢], it follows from Eq. (11.6) that

t
2o(t) = 30+ / Z(r, 2 dr.
0

Now that z.(¢) is known for ¢ € [—¢, €] it can be found by integration for
t € [—¢,2¢]. The process can be repeated.

2. Then use Exercise 11.15 to show there exists {ex}-, C (0,00) such that
limy_ o0 £ = 0 and z., converges to some z € C([0,T]) with respect to
the sup-norm: ||z||, = sup,e( 7y [#(t)[). Also show for this sequence that

lim sup |z (T —ex) —x(7)] =0.
k—co g <r<T

8 Using Corollary 11.30 below, we may in fact allow T = co.
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3. Pass to the limit (with justification) in Eq. (11.6) with e replaced by
ey, to show z satisfies

2(t) = 30 + /Ot Z(r,a(r))dr V't € [0,T].

4. Conclude from this that #(t) exists for ¢t € (0,T) and that x solves Eq.
(11.5).
5. Apply what you have just prove to the ODE,

y(t) = —=Z(—t,y(t)) for 0 <t < T with z(0) = zo.

Then extend z(t) above to [T, T] by setting z(t) = y(—t) if t € [-T,0].
Show z so defined solves Eq. (11.5) for t € (=T, T).

Exercise 11.17. Folland Problem 4.63. (Compactness of integral operators.)

Exercise 11.18. Prove Theorem 11.32. Hint: First prove CJ8 (_(_2) CC
Cie (Q) is compact if 0 < o < 8 < 1. Then use Lemma 11.18 repeatedly to
handle all of the other cases.

11.6.2 Tychonoff’s Theorem Problem

Exercise 11.19 (Tychonoff’s Theorem for Compact Metric Spaces).
Let us continue the Notation used in Exercise 6.12. Further assume that
the spaces X, are compact for all n. Show, without using Theorem 11.34,
(X, d) is compact. Hint: Either use Cantor’s method to show every sequence
{Zm}.’_, C X has a convergent subsequence or alternatively show (X,d) is
complete and totally bounded. (Compare with Tychonoff’s Theorem 11.34
above which covers the general case.)

12

Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology 7. We
are now interested in restrictions on 7 in order to insure there are “plenty”
of continuous functions. One such restriction is to assume 7 = 74 — is the
topology induced from a metric on X. For example the results in Lemma
6.15 and Theorem 7.4 above shows that metric spaces have lots of continuous
functions.

The main thrust of this section is to study locally compact (and o — com-
pact) “Hausdorfl” spaces as defined in Definitions 12.2 and 11.21. We will see
again that this class of topological spaces have an ample supply of continuous
functions. We will start out with the notion of a Hausdorff topology. The fol-
lowing example shows a pathology which occurs when there are not enough
open sets in a topology.

Ezample 12.1. Let X ={1,2,3} and 7 = {X, 0, {1,2},{2,3},{2}} and z,, = 2
for all n. Then z,, — z for every z € X !

Definition 12.2 (Hausdorff Topology). A topological space, (X,7), is
Hausdorff if for each pair of distinct points, x,y € X, there exists dis-
joint open neighborhoods, U and V' of x and y respectively. (Metric spaces are
typical examples of Hausdorff spaces.)

Remark 12.3. When 7 is Hausdorff the “pathologies” appearing in Example
12.1 do not occur. Indeed if z,, — 2 € X and y € X \ {z} we may choose
Ver, and W € 7, such that VNW = 0. Then z,, € V a.a. implies z,, ¢ W
for all but a finite number of n and hence x,, - y, so limits are unique.

Proposition 12.4. Let (X, 7a) be Hausdorff topological spaces. Then the
product space Xa = [[,c4 Xo equipped with the product topology is Haus-

dorff.

Proof. Let z,y € X4 be distinct points. Then there exists « € A such that
To(Z) = To # Yo = Ta(y). Since X, is Hausdorff, there exists disjoint open
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sets U,V C X, such 7 (z) € U and 7, (y) € V. Then 7,1 (U) and 7, 1(V) are
disjoint open sets in X 4 containing x and y respectively. ]

Proposition 12.5. Suppose that (X, 1) is a Hausdorff space, K CC X and
x € K. Then there exists U,V € 7 such that UNV =0, x € U and K C V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U,V € T such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V,, € 7, and
Uy € 7y such that V; NU, = 0. The cover {V,}, _, of K has a finite subcover,
{Vy}t e for some A CC K. Let V =UyeaV, and U = NyeaUy, then U,V € 7
satisfy x € U, K C V and U NV = (). This shows that K¢ is open and hence
that K is closed. Suppose that K and F are two disjoint compact subsets of
X. For each x € F there exists disjoint open sets U, and V. such that K C V,
and z € U,. Since {U}, is an open cover of F, there exists a finite subset
A of F such that FF C U := UzeaU,. The proof is completed by defining
Vi=NeeaVs. ]

Exercise 12.1. Show any finite set X admits exactly one Hausdorff topology
T.

Exercise 12.2. Let (X, 7) and (Y, 7v) be topological spaces.

1. Show 7 is Hausdorff iff A := {(z,z) : € X} isaclosed in X x X equipped
with the product topology 7 ® 7.

2. Suppose 7 is Hausdorff and f,¢g : ¥ — X are continuous maps. If
{f:g}Y:Ythenf:g.Hint: make use of themap fxg:Y — X xX
defined by (f x g) (y) = (f(¥), 9(y))-

Exercise 12.3. Given an example of a topological space which has a non-
closed compact subset.

Proposition 12.6. Suppose that X is a compact topological space, Y is a
Hausdorff topological space, and f : X — Y is a continuous bijection then f
is a homeomorphism, i.e. f~1:Y — X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that (f_1)71 (C) = f(C) is closed in X for all closed
subsets C of X. Thus f~! is continuous. ]

The next two results shows that locally compact Hausdorff spaces have
plenty of open sets and plenty of continuous functions.

Proposition 12.7. Suppose X is a locally compact Hausdorff space and U C,
X cm_d K CcC U. Then there exists V C, X such that K CV CcV cU CX
and V is compact. (Compare with Proposition 11.25 above.)
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Proof. By local compactness, for all x € K, there exists U, € 7, such
that U, is compact. Since K is compact, there exists A CC K such that
{Us} e 18 a cover of K. The set O = U N (UzeaUs,) is an open set such that
K Cc O Cc U and O is precompact since O is a closed subset of the compact
set UIEAUE. (UIEAUI. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that U is compact. Since
U is compact and bd(U) = U NU€ is a closed subset of U/, bd(U) is compact.
Because bd(U) C U¢, it follows that bd(U) N K = (), so by Proposition 12.5,
there exists disjoint open sets V' and W such that K C V and bd(U) C W. By
replacing V by VNU if necessary we may further assume that K C V C U, see
Figure 12.1. Because UNW¢ is a closed set containing V and bd(U)NW¢ = (),

Fig. 12.1. The construction of V.

VCcUNWe=(UUbdU)NWe=UnNW*CUCU.

Since U is compact it follows that V is compact and the proof is complete. m
The following Lemma is analogous to Lemma 11.27.

Lemma 12.8 (Urysohn’s Lemma for LCH Spaces). Let X be a locally
compact Hausdorff space and K C”C U C, X. Then there exists f < U (see
Definition 11.26) such that f =1 on K. In particular, if K is compact and
C is closed in X such that K NC =0, there exists f € C.(X,[0,1]) such that
f=1on K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 — f rather than f. To motivate the proof, suppose g € C(X,|0,1]) such
that g = 0 on K and g = 1 on U®. For r > 0, let U, = {g <r}. Then for
0<r<s<1,U.C{g<r}CUsandsince {g < r} is closed this implies

KcU.cU.c{g<r}cU,cU.
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Therefore associated to the function g is the collection open sets {U,},.q C T
with the property that K C U, C U, CUs C U forall 0 < r < s <1 and
U, = X if r > 1. Finally let us notice that we may recover the function g from

the sequence {U,},., by the formula
g(x) =inf{r >0:2 € U,}. (12.1)
The idea of the proof to follow is to turn these remarks around and define g

by Eq. (12.1).
Step 1. (Construction of the U,.) Let

D:={k2":k=12...,2" "' n=12..}

be the dyadic rationals in (0, 1]. Use Proposition 12.7 to find a precompact
open set Uy such that K C U; C U; C U. Apply Proposition 12.7 again to
construct an open set Uy /» such that

K C Uy CUyyp CUL
and similarly use Proposition 12.7 to find open sets Uy /2, Us ;4 C, X such that
K C Uiy CUyyy CUypg CU o CUspy C Uz C UL
Likewise there exists open set Uy g, Us/s, Us /g, Ur/s such that

K C U1/8 C Ul/g C U1/4 C 01/4 C U3/8 C Ug/g C Ul/g
C U1/2 C U5/8 C U5/8 C U3/4 C U3/4 C U7/8 C U7/8 c U;.

Continuing this way inductively, one shows there exists precompact open sets
{Ur},cp C 7 such that

KcU cU,cU,cU cU,CcU

forall ;s e Dwith0<r <s<1.
Step 2. Let U, := X if r > 1 and define

g(z) =inf{r e DU (1,00) : z € U, },

see Figure 12.2. Then g(z) € [0,1] for all z € X, g(z) = 0 for z € K since
z e K CU, forall r € D. If z € Uf, then « ¢ U, for all » € D and hence
g(x) = 1. Therefore f := 1 — g is a function such that f = 1 on K and
{f#£0}={g# 1} c U, c U, C U so that supp(f) = {f #0} c U, C U is
a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since £ = {(, ), (—00, @) : @ € R} generates the standard topology on
R, to prove g is continuous it suffices to show {g < a} and {g > a} are open
sets for all @ € R. But g(z) < « iff there exists r € DU (1,00) with r < «
such that x € U,.. Therefore
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Fig. 12.2. Determining ¢ from {U,}.

{g<a}:U{UT.:r€]]])U(17oo) > r<a}

which is open in X. If « > 1, {g>a} =0 and if « < 0, {g>a} = X. If
a € (0,1), then g(z) > o iff there exists r € D such that r > a and z ¢ U,.
Now if 7 > o and x ¢ U, then for s € DN (a,r), z ¢ Us C U,. Thus we have

shown that
{g>a}=U{(Us)C:s€D > s>a}

which is again an open subset of X. [

Theorem 12.9 (Locally Compact Tietz Extension Theorem). Let
(X,7) be a locally compact Hausdorff space, K CC U C, X, f € C(K,R),
a = min f(K) and b = max f(K). Then there exists F € C(X,][a,b])
such that F|x = f. Moreover given ¢ € [a,b], F can be chosen so that
supp(F —c¢) ={F #c} CU.

The proof of this theorem is similar to Theorem 7.4 and will be left to the
reader, see Exercise 12.5.

12.1 Locally compact form of Urysohn’s Metrization
Theorem

Notation 12.10 Let Q := [0, 1] denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

da,b) =3 2% lay — b (12.2)
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The metric introduced in Exercise 11.19 would be defined, in this context,

as a?(a,b) =3 21" % Since 1 < 1+|a, — b, | < 2, it follows that d<

d < 2d. So the metrics d and d are equivalent and in particular the topologies
induced by d and d are the same. By Exercises 10.26, the d — topology on @
is the same as the product topology and by Tychonoff’s Theorem 11.34 or by
Exercise 11.19, (@, d) is a compact metric space.

Theorem 12.11. To every separable metric space (X, p), there exists a con-
tinuous injective map G : X — Q such that G : X — G(X) C Q is a homeo-
morphism. In short, any separable metrizable space X is homeomorphic to a

subset of (Q,d).

Remark 12.12. Notice that if we let p/(z,y) := d(G(x), G(y)), then p’ induces
the same topology on X as p and G : (X, p') — (Q,d) is isometric.

Proof. Let D = {x,} ~, be a countable dense subset of X,

n=1
1 if t<0
pt) =S 1—tifo<t<1
0 if t>1,

(see Figure 12.3) and for m,n € N let

frmn(2) =1— ¢ (mp(zn, T)).
Then fn,, = 0 if p(z,2z,) < 1/m and fn,, = 1 if p(z,z,) > 2/m. Let

2 -1 0 1 2
t

Fig. 12.3. The graph of the function ¢.

{gk}zozl be an enumeration of {f,,, : m,n € N} and define G : X — Q by

G(z) = (91(2), 92(),...) € Q.

We will now show G : X — G(X) C @ is a homeomorphism. To show G
is injective suppose z,y € X and p(z,y) = § > 1/m. In this case we may
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find z,, € X such that p(z,z,) < 2m, oy, zn) >0 — 5= > QL and hence
famn(y) = 1 while fap, n(y) = 0. From this it follows that G(z) # G(y) if
x # y and hence G is injective. The continuity of G is a consequence of the
continuity of each of the components g; of G. So it only remains to show
G7!: G(X) — X is continuous. Given a = G(z ) € G( ) CQande >0,
choose m € N and z,, € X such that p(z,,z) < 2m < 5. Then fpn(x) =0
and for y ¢ B(zy, m) fmn(y) = 1. So if k is chosen so that gr = fm.n, We
have shown that for

d(G(y),G(x)) > 27" for y ¢ B(xn,2/m)
or equivalently put, if
d(G(y),G(x)) < 27" then y € B(zy,2/m) C B(z,1/m) C B(x,¢).

This shows that if G(y) is sufficiently close to G(z) then p(y,z) < ¢, i.e. G~}
is continuous at a = G(z). ]

Theorem 12.13 (Urysohn Metrization Theorem for LCH’s). Every
second countable locally compact Hausdorff space, (X,T), is metrizable, i.e.
there is a metric p on X such that T = 7,. Moreover, p may be chosen so that
X is isometric to a subset Qo C Q equipped with the metric d in Eq. (12.2).
In this metric X is totally bounded and hence the completion of X (which is
isometric to Qo C Q) is compact. (Also see Theorem 12.44.)

Proof. Let B be a countable base for 7 and set
I''={({U,V)eBxB|UcCV and U is compact}.

To each O € 7 and z € O there exist (U,V) € I" such that z e U C V C O.
Indeed, since B is a base for 7, there exists V' € B such that z € V C O.
Now apply Proposition 12.7 to find U’ C, X such that x € U’ c U’ C V
with U’ being compact. Since B is a base for 7, there exists U € B such that
x € U C U’ and since U c U’, U is compact so (U, V) € I'. In particular this
shows that B’ := {U € B: (U,V) € I' for some V € B} is still a base for 7. If
I is a finite, then B’ is finite and 7 only has a finite number of elements as well.
Since (X, 7) is Hausdorff, it follows that X is a finite set. Letting {mn}szl be
an enumeration of X, define T : X — Q by T'(z,,) = €, forn =1,2,...,N
where e, = (0,0,...,0,1,0,...), with the 1 occurring in the n'* spot. Then
p(x,y) :=d(T(x), T(y)) for z,y € X is the desired metric.

So we may now assume that I" is an infinite set and let {(U,, V;,)}-—, be an
enumeration of I'. By Urysohn’s Lemma 12.8 there exists fy v € C(X,0,1])
such that fyy =0 on U and fyyv = 1 on VC. Let F := {fuv | (U, V) eI}
and set f,, := fy, v, — an enumeration of . We will now show that

ZQL )

is the desired metric on X. The proof will involve a number of steps.
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1. (pis a metric on X.) It is routine to show p satisfies the triangle inequal-
ity and p is symmetric. If z,y € X are distinct points then there exists
(Ungs Vo) € I' such that z € Uy, and V,,, C O := {y}°. Since f,(z) =0
and fn,(y) = 1, it follows that p(z,y) > 27" > 0.

2. (Let 0 = 7(fn : n €N), then 7 = 79 = 7,.) As usual we have 7y C 7.
Since, for each z € X, y — p(z,y) is 79 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B, (e) :=
{ye X :p(z,y) <e} € g forallz € X and € > 0. Thus 7, C 79 C 7.
Suppose that O € 7 and = € O. Let (Uy,, Va,) € I be such that z € U,,
and V,,, C O. Then f,,(x) =0 and f,, = 1 on O°. Therefore if y € X and
fno(y) <1, then y € O so z € {f,, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 73. So 7 C 79 and
hence 7 = 79. Moreover, if y € B, (27"0) then 27 > p(x,y) > 27 f,,, ()
and therefore z € B,(27") C {fn, <1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.

3. (X is isometric to some Qo C @.) Let T : X — @ be defined by T(z) =
(fi(x), f2(x), ..., fu(x),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qp := T'(X). Since Q) is a subset
of the compact metric space (Q,d), Qp is totally bounded and therefore
X is totally bounded.

BRUCE: Add Stone Chech Compactification results.

12.2 Partitions of Unity

Definition 12.14. Let (X, 7) be a topological space and Xog C X be a set. A
collection of sets {Ba}yaca C 2% is locally finite on X if for all x € X,
there is an open neighborhood N, € T of x such that #{a € A : B, N N, #
0} < oo.

Definition 12.15. Suppose that U is an open cover of Xg C X. A collection
{¢:i}N, C C(X,[0,1]) (N = oo is allowed here) is a partition of unity on
Xo subordinate to the cover U if:

1. for all i there is a U € U such that supp(¢;) C U,

2. the collection of sets, {supp(¢;)} X ,, is locally finite on Xo, and

3. Zfil ¢; = 1 on Xo. (Notice by (2), that for each x € Xy there is a
neighborhood N, such that ¢;|n, is not identically zero for only a finite
number of terms. So the sum is well defined and we say the sum is locally

finite.)

Proposition 12.16 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K C X is a compact set and
u= {Uj}?zl is an open cover of K. Then there exists a partition of unity

{hj};f:l of K such that h; < U; for all j =1,2,...,n.
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Proof. For all z € K choose a precompact open neighborhood, V;, of =
such that V, C U;. Since K is compact, there exists a finite subset, A, of K

such that K C |J V;. Let
€A

F7:U{VTxEAa’ndvTCUJ}

Then Fj is compact, F; C Uj for all j, and K C U}_;F;. By Urysohn’s
Lemma 12.8 there exists f; < U; such that f; = 1 on F;. We will now give
two methods to finish the proof.

Method 1. Let hl = f17 hz = f2(1 — hl) = f2(1 — fl)7

hs = fs(1—hy — ha) = fa(L— fi — (1= fi)f2) = fa(1 = f1)(1 = fo)

and continue on inductively to define

k—1
he=0—hi——he)fi=fi- [JA=F)VE=23,...,n  (123)
j=1
and to show N
(L=hi—-—ha) = [T(L= f). (12.4)

Jj=1

From these equations it clearly follows that h; € C.(X,[0,1]) and that
supp(h;) C supp(f;) C Uj, ie. hj < Uj. Since H;'L=1(1 — fj) = 0 on K,
>i—1hj=1on K and {h;}]_, is the desired partition of unity.
Method 2. Let g := Y f; € Co(X). Then ¢ > 1 on K and hence
j=1
K C {g > 3}. Choose ¢ € C.(X,[0,1]) such that ¢ = 1 on K and supp(¢) C
{g > %} and define fop ;=1 —¢. Then fo =0on K, fop =1if g < % and

therefore,
fot i+t +f=fo+tg>0

on X. The desired partition of unity may be constructed as

fi(@)
fo(z) +---+ fn(x).

Indeed supp (h;) = supp (f;) C Uj, h; € C.(X,[0,1]) and on K,

fl+"'+fn :fl+“‘+fn:
fot ittt fitothe

hj(z) =

hit ot by =
]

Proposition 12.17. Let (X, 7) be a locally compact and o — compact Haus-
dorff space. Suppose thatU C T is an open cover of X. Then we may construct
two locally finite open covers V = {Vi}¥, and W = {W;}¥, of X (N = 00
is allowed here) such that:



168 12 Locally Compact Hausdorff Spaces

1.W; cW; CV; CV; and V; is compact fgr all 1.
2. For each i there exist U € U such that V; C U.

Proof. By Remark 11.24, there exists an open cover of § = {G,}22;
of X such that G,, C G, C Gpy1. Then X = UL, (G \ Gi-1), where
by convention G_; = Gg = (. For the moment fix & > 1. For each = €
Gi \ Gr_1, let U, € U be chosen so that x € U, and by Proposition 12.7
choose an open neighborhood N, of z such that N, C U, N (Gx11\Gr_2), see
Figure 12.4 below. Since {Ny},cq,\,_, 15 an open cover of the compact set

G b O Gwe

Fig. 12.4. Constructing the {W;}., .

G\ Gj_1, there exist a finite subset I}, C {Nw}zeék\ck,l which also covers
G4 \ Gi_1. By construction, for each W € I}, there is a U € U such that
W C UN (Gry1 \ Gr_2). Apply Proposition 12.7 one more time to find, for
each W € I, an open set Vjy such that W C Vi C Vi C UN(Gra1\ Gi_2).
We now choose and enumeration {W;}¥; of the countable open cover U, I’
of X and define V; = Vjy,. Then the collection {W;}¥ ; and {V;}¥ | are easily
checked to satisfy all the conclusions of the proposition. In particular notice
that for each k that the set of i’s such that V; N Gy # 0 is finite. ]

Theorem 12.18 (Partitions of Unity in locally and ¢ — compact
spaces). Let (X, 7) be locally compact, o — compact and Hausdorff and let
U C 7 be an open cover of X. Then there exists a partition of unity of {hi} N,
(N = oo is allowed here) subordinate to the cover U such that supp(h;) is
compact for all i.

Proof. Let V = {V;}¥, and W = {W;}¥, be open covers of X with the
properties described in Proposition 12.17. By Urysohn’s Lemma 12.8, there
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exists f; < V; such that f; = 1 on W; for each i. As in the proof of Proposition
12.16 there are two methods to finish the proof.
Method 1. Define hy = fi, h; by Eq. (12.3) for all other j. Then as in
Eq. (12.4)
N N
1= m=1[a-f=o0
Jj=1 Jj=1
since for z € X, f;(z) =1 for some j. As in the proof of Proposition 12.16, it
is easily checked that {hz}fil is the desired partition of unity.
Method 2. Let f := vazl fi, a locally finite sum, so that f € C(X).
Since {W;};2, is a cover of X, f > 1 on X so that 1/f € C' (X)) as well. The
functions h; := f;/f for i =1,2,..., N give the desired partition of unity. m

Lemma 12.19. Let (X, 7) be a locally compact Hausdorff space.

1. A subset E C X is closed iff EN K is closed for all K CC X.

2. Let {Ca}oca be a locally finite collection of closed subsets of X, then
C' = UqaeaCy is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. 1. Since compact subsets of Hausdorff spaces are closed, £ N K is
closed if F is closed and K is compact. Now suppose that F N K is closed
for all compact subsets K C X and let z € E°. Since X is locally compact,
there exists a precompact open neighborhood, V, of z.! By assumption ENV
is closed so x € (E n V)c — an open subset of X. By Proposition 12.7 there
exists an open set U such that z € U C U C (E N V)C, see Figure 12.5. Let
W :=UnNYV. Since

WNE=UNVNECUNVNE=0,

and W is an open neighborhood of x and « € E° was arbitrary, we have shown
E€ is open hence F is closed.

2. Let K be a compact subset of X and for each x € K let N, be an
open neighborhood of  such that #{a € A: C, N N, # 0} < co. Since K is
compact, there exists a finite subset A C K such that K C UzeaN,. Letting
Ao ={a € A:CyNK # 0}, then

#(A0) <Y #{a€ A: Cun N, # 0} < 00

€N

and hence K N (UpeaCh) = K N (Uaea,Ca) - The set (Ugea,Cq) is a finite
union of closed sets and hence closed. Therefore, K N (UaecaCly) is closed and
by item 1. it follows that UyecaCy, is closed as well. ]

L If X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of z which is disjoint from F, then there would exists
x, € E such that 2, — x. Since ENV is closed and x, € ENV for all large n,
it follows (see Exercise 6.4) that € ENV and in particular that = € E. But we
chose z € E°.
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Fig. 12.5. Showing E° is open.

Corollary 12.20. Let (X, 7) be a locally compact and o — compact Hausdorff
space and U = {Ua}oca C 7 be an open cover of X. Then there exists a
partition of unity of {hqa taca subordinate to the cover U such that supp(hy) C
U, for all a € A. (Notice that we do not assert that he, has compact support.
However if U, is compact then supp(hq) will be compact.)

Proof. By the ¢ — compactness of X, we may choose a countable subset,
{ai}icn (N = oo allowed here), of A such that {U; := Ua, }, .y is still an
open cover of X. Let {g;};<n be a partition of unity subordinate to the
cover {U;}i<n as in Theorem 12.18. Define I}, := {j : supp(g;) C Ux} and

Ip=1%\ (U?;llfk), where by convention I = §. Then

{ieN:i<N}:Ufk,:ka.
k=1 k=1
If I, = 0 let hy := 0 otherwise let hy, 1= Ejel“k g5, a locally finite sum. Then
oo hi =301, g; = 1 and the sum Y37, hy, is still locally finite. (Why?)
Now for o = oy, € {a;}¥,, let hy := hy and for a ¢ {a;}Y; let hy := 0.
Since
{hi # 0} = Ujer, {95 # 0} C Ujen,supp(g;) C Uy

and, by Item 2. of Lemma 12.19, Ujcrsupp(g;) is closed, we see that
supp(hi) = {hx # 0} C Ujen,supp(g;) C Us.
Therefore {ha},c 4 is the desired partition of unity. ]

Corollary 12.21. Let (X,7) be a locally compact and o — compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f € C(X,[0,1]) such that f =1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) C B°.
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Proof. Let U; = A° and Uz = B¢, then {Uy, Uz} is an open cover of X.
By Corollary 12.20 there exists hi, he € C(X,[0,1]) such that supp(h;) C U;
for i = 1,2 and hy + hy = 1 on X. The function f = ho satisfies the desired
properties. |

12.3 Cp(X) and the Alexanderov Compactification

Definition 12.22. Let (X, 7) be a topological space. A continuous function
f X — C is said to vanish at infinity if {|f| > e} is compact in X for
all e > 0. The functions, f € C(X), vanishing at infinity will be denoted by
Co(X).

Proposition 12.23. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

1. Cyp(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
CO(X) = CC(X)

Proof.

1. If f € Co(X), Ky := {|f| > 1} is a compact subset of X and there-
fore f(K1) is a compact and hence bounded subset of C and so M :=
sup,c g, |f(2)| < oo. Therefore || f||,, < M V1 < oo showing f € BC(X).
Now suppose f,, € Co(X) and f,, — f in BC(X). Let £ > 0 be given and
choose n sufficiently large so that || f — fn|l, < /2. Since

I <Al +1f = Fal S Ufal+1f = falloo < [fnl +2/2,

{IfI>et C{lful +e/2> e} = {|ful > €/2}.

Because {|f| > ¢} is a closed subset of the compact set {|fn| >¢/2},
{|f] > €} is compact and we have shown f € Cyp(X).

2. Since Cy(X) is a closed subspace of BC(X) and C.(X) C Cy(X), we
always have C,(X) C Cy(X). Now suppose that f € Cy(X) and let K, :=
{If| > £} cC X. By Lemma 12.8 we may choose ¢,, € C.(X,[0,1]) such
that ¢, = 1 on K,,. Define f,, := ¢, f € C.(X). Then

IF = falla =11 = 60)flloc < = — 0 a5 m — oo,

This shows that f € C.(X).
|

Proposition 12.24 (Alexanderov Compactification). Suppose that (X, )
is a non-compact locally compact Hausdorff space. Let X* = X U{oo}, where
{0} is a new symbol not in X. The collection of sets,
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™ =7U{X*\K:KcC X}c2¥,

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover
f € C(X) extends continuously to X* iff f = g+ c with g € Co(X) and c € C
in which case the extension is given by f(oc0) = c.

Proof. 1. (7* is a topology.) Let F := {F C X* : X*\ F € 7%}, ie.
F e Fiff Fis a compact subset of X or F' = FyU{oo} with F being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence 7* is a topology.

2. ((X*,7*) is a Hausdorfl space.) It suffices to show any point z € X
can be separated from oco. To do this use Proposition 12.7 to find an open
precompact neighborhood, U, of x. Then U and V := X*\ U are disjoint open
subsets of X* such that x € U and co € V.

3. ((X*,7*) is compact.) Suppose that & C 7* is an open cover of X*.
Since U covers oo, there exists a compact set K C X such that X*\ K € U.
Clearly X is covered by Uy := {V \ {oo} : V € U} and by the definition of 7*
(or using (X*,7) is Hausdorfl), Uy is an open cover of X. In particular Uy is
an open cover of K and since K is compact there exists A CC U such that
K Cc U{V\{oo}:V € A}. It is now easily checked that AU {X*\ K} C U
is a finite subcover of X*.

4. (Continuous functions on C'(X*) statements.) Let ¢ : X — X* be the
inclusion map. Then ¢ is continuous and open, i.e. i(V) is open in X* for all
Vopenin X. If f € C(X™), then g = f|x — f(c0) = foi— f(o0) is continuous
on X. Moreover, for all € > 0 there exists an open neighborhood V' € 7* of co
such that

lg(z)| = | f(z) — f(o0)| < e for all z € V.

Since V is an open neighborhood of oo, there exists a compact subset,
K C X, such that V = X*\ K. By the previous equation we see that
{z € X :|g(z)] > e} C K, so {|g| > €} is compact and we have shown g van-
ishes at oo.

Conversely if g € Cy(X), extend g to X* by setting g(co) = 0. Given
e > 0, the set K = {|g| > ¢} is compact, hence X* \ K is open in X*. Since
g(X*\ K) C (—¢,¢) we have shown that g is continuous at co. Since ¢ is also
continuous at all points in X it follows that ¢ is continuous on X*. Now it
f =g+ cwith c € Cand g € Cy(X), it follows by what we just proved that
defining f(00) = ¢ extends f to a continuous function on X*. ]

Example 12.25. Let X be an uncountable set and 7 be the discrete topology
on X. Let (X* = X U{oo},7*) be the one point compactification of X. The
smallest dense subset of X* is the uncountable set X. Hence X* is a compact
but non-separable and hence non-metrizable space.

12.4 Stone-Weierstrass Theorem 173

The next proposition gathers a number of results involving countability
assumptions which have appeared in the exercises.

Proposition 12.26 (Summary). Let (X, 7) be a topological space.

1. If (X, 7) is second countable, then (X, T) is separable; see Exercise 10.9.

2. If (X, 1) is separable and metrizable then (X, T) is second countable; see
Exercise 10.10.

3. If (X, 1) is locally compact and metrizable then (X, 7) is o — compact iff
(X,7) is separable; see Exercises 11.9 and 11.10.

4. If (X, 1) is locally compact and second countable, then (X,T) is o - com-
pact, see Ezxercise 11.7.

5. If (X, ) is locally compact and metrizable, then (X,T) is o — compact iff
(X,7) is separable, see Exercises 11.8 and 11.9.

12.4 Stone-Weierstrass Theorem

We now wish to generalize Theorem 8.34 to more general topological spaces.
We will first need some definitions.

Definition 12.27. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x,y € X there exists

f € A such that f(x) # f(y).

2. A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

3. A is called a lattice if fV g := max(f,g) and f A g = min(f,g) € A for
all f,g € A.

4. A C C(X) is closed under conjugation if f € A whenever f € A2

Remark 12.28. If X is a topological space such that C'(X,R) separates points
then X is Hausdorfl. Indeed if z,y € X and f € C(X,R) such that
f(z) # f(y), then f~%(J) and f~!(I) are disjoint open sets containing x
and y respectively when I and J are disjoint intervals containing f(z) and
f(y) respectively.

Lemma 12.29. If A C C(X,R) is a closed algebra then |f| € A forall f € A
and A is a lattice.

Proof. Let f € Aandlet M = sup |f(z)|. Using Theorem 8.34 or Exercise
zeX
12.10, there are polynomials p,,(t) such that

lim sup ||| — pn(t)| = 0.

2 This is of course no restriction when C(X) = C(X,R).
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By replacing p, by pn — pn(0) if necessary we may assume that p,(0) = 0.
Since A is an algebra, it follows that f, = p,(f) € A and |f| € A, because
| f| is the uniform limit of the f,’s. Since

1
fvg=5 (f+g+If—gl)and
1
fng=5 (f+g=If =D
we have shown A is a lattice. [

Lemma 12.30. Let A C C(X,R) be an algebra which separates points and
z,y € X be distinct points such that

3 f,ge A > f(z)#0 and g(y) #0. (12.5)

Then
Vi={(f(2),f(v): f € A= R*. (12:6)
Proof. It is clear that V' is a non-zero subspace of R? If dim(V) = 1, then
V = span(a,b) with a # 0 and b # 0 by the assumption in Eq. (12.5). Since
(a,b) = (f(z), f(y)) for some f € A and f2 € A, it follows that (a?,b?) =
(f3(z), f2(y)) € V as well. Since dimV = 1, (a,b) and (a?,b?) are linearly
dependent and therefore

2
0 = det (ZZQ) = ab?® — ba® = ab(b — a)

which implies that a = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2, i.e. V =R2. ]

Theorem 12.31 (Stone-Weierstrass Theorem). Suppose X is a compact
Hausdorff space and A C C(X,R) is a closed subalgebra which separates
points. For x € X let

Ay :={f(z): f € A} and

I, ={f € C(X,R) : f(z) = 0}.

Then either one of the following two cases hold.

1. A, =R forall z € X, i.e. for all z € X there exists f € A such that

f(z) £ 0.
2. There exists a unique point xo € X such that Ay, = {0}.

Moreover in case (1) A = C(X,R) and in case (2) A = 1I,, = {f €
C(X,R): f(xo) = 0}.

3 If A contains the constant function 1, then this hypothesis holds.
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Proof. If there exists zo such that A,, = {0} (z¢ is unique since A
separates points) then A C Z,,. If such an z exists let C = Z,, and if A, =R
for all z, set C = C(X,R). Let f € C, then by Lemma 12.30, for all z,y € X
such that = # y there exists g,, € A such that f = g, on {z,y}.* The basic
idea of the proof is contained in the following identity,

f(z) = inf sup g,y(z) for all z € X. (12.7)
zeX yeXx

To prove this identity, let g, := sup,cx gy and notice that g, > f since
9xy(y) = f(y) for all y € X. Moreover, g,(x) = f(z) for all z € X since
9zy(2) = f(z) for all . Therefore,

inf = inf g, = f.

nf flelg Guy = Inf 9o f
The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (12.7) becoming only an
approximate identity.

Claim. Given ¢ > 0 and x € X there exists g, € A such that g,(z) = f(x)
and f < g, +¢€on X.

To prove the claim, let Vj, be an open neighborhood of y such that |f —
Jay| < € on Vj, so in particular f < € + g5, on V. By compactness, there

exists A CC X such that X = |J Vj,. Set
yeA

9 (2) = max{g., (2) : y € A},
then for any y € A, f < €+ gyy < €+ g, on V, and therefore f < ¢+ g, on X.
Moreover, by construction f(z) = g.(z), see Figure 12.6 below. We now will

finish the proof of the theorem. For each x € X let U, be a neighborhood of
z such that |f — g,| < e on U,. Choose I' CC X such that X = |J U, and

zel’
define
g=min{g,:z €I} € A

Then f <g+eon X andforz €I, g, < f+¢con U, and hence g < f +¢

on U,. Since X = |J U,, we conclude
xzel’

f<gt+eandg< f+eon X,
ie. |f —g| <eon X. Since ¢ > 0 is arbitrary it follows that f€c A=.A4. =

Theorem 12.32 (Complex Stone-Weierstrass Theorem). Let X be a
compact Hausdorff space. Suppose A C C(X,C) is closed in the uniform

topology, separates points, and is closed under conjugation. Then either A =
C(X,C) or A=1I$ :={f € C(X,C) : f(wo) = 0} for some ¢ € X.

41 Ayy = {0} and = = z¢ or y = 20, then g,, exists merely by the fact that A
separates points.



176 12 Locally Compact Hausdorff Spaces

Fig. 12.6. Constructing the funtions g.

f

Proof. Since

h|

f+
2
Re f and Im f are both in A. Therefore

f,

Re f —
ef %

and Imf =

Ar ={Re f,Im [ : f € A}

is a real sub-algebra of C'(X,R) which separates points. Therefore either Agp =
C(X,R) or Ag = I,, N C(X,R) for some zy and hence A = C(X,C) or I,
respectively. [

As an easy application, Theorems 12.31 and 12.32 imply Theorem 8.34

and Corollary 8.36 respectively. Here are a couple of more applications.

Ezxample 12.33. Let f € C([a,b]) be a positive function which is injective.
Then functions of the form Zg:l ar f* with a;, € C and N € N are dense in
C([a,b]). For example if a = 1 and b = 2, then one may take f(z) = z* for
any a # 0, or f(z) = e*, etc.

Exercise 12.4. Let (X,d) be a separable compact metric space. Show that
C(X) is also separable. Hint: Let E C X be a countable dense set and then

consider the algebra, A C C(X), generated by {d(z,-)},cp -
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12.5 Locally Compact Version of Stone-Weierstrass
Theorem

Theorem 12.34. Let X be non-compact locally compact Hausdorff space. If
A is a closed subalgebra of Co(X,R) which separates points. Then either A =
Co(X,R) or there exists vg € X such that A= {f € Co(X,R) : f(zo) = 0}.

Proof. There are two cases to consider. Case 1. There is no point
2o € X such that A C {f € Co(X,R) : f(zg) = 0}. In this case let
X* = X U{oc} be the one point compactification of X. Because of Propo-
sition 12.24 to each f € A there exists a unique extension f € C(X*R)
such that f = f|x and moreover this extension is given by f(co) = 0. Let
A= {f € C(X*,R) : f € A}. Then A is a closed (you check) sub-algebra
of C(X*,R) which separates points. An application of Theorem 12.31 im-
plies A = {F € C(X*,R) 3 F(c0) = 0} and therefore by Proposition 12.24
A= {Flx : F e A} = Cy(X,R). Case 2. There exists 7o € X such
A C {f € Co(X,R) : f(zg) = 0}. In this case let Y := X \ {zo} and
Ay = {fly : f € A}. Since X is locally compact, one easily checks Ay C
Co(Y,R) is a closed subalgebra which separates points. By Case 1. it follows
that Ay = C‘()(Yv7 R) So if f c C'()()(7 R) and f(w()) =0, f|y € CQ(Y, R) :AY,
i.e. there exists g € A such that gy = f|y. Since g(xo) = f(zo) = 0, it follows
that f = g € A and therefore A = {f € Cy(X,R) : f(z¢) = 0}. ]

Ezxample 12.35. Let X = [0,00), A > 0 be fixed, A be the algebra generated by
t — e . So the general element f € A is of the form f(t) = p(e™*), where
p(z) is a polynomial. Since A C Cy(X,R) separates points and e~ € A is
pointwise positive, A = Cy(X,R). See Theorem 22.9 for an application of this
result.

12.6 *More on Separation Axioms: Normal Spaces

(This section may safely be omitted on the first reading.)

Definition 12.36 (1, — 1> Separation Axioms). Let (X, 7) be a topological
space. The topology T is said to be:

1. Ty if for x #y in X there exists V € 7 such that x €V andy ¢ V or V
such thaty € V but x ¢ V.

2.1y if for every x,y € X with x # y there exists V. € 7 such that x € V
and y ¢ V. Equivalently, T is Ty iff all one point subsets of X are closed.?

3. Ty if it is Hausdorff.

5 If one point subsets are closed and x # y in X then V := {z}¢ is an open set
containing y but not x. Conversely if 7 is 71 and « € X there exists V}, € 7 such
that y € V, and z ¢ V, for all y # z. Therefore, {z}° = Uyx,Vy € T.
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Note 75 implies 77 which implies 7. The topology in Example 12.1 is Tj
but not 7%. If X is a finite set and 7 is a T} — topology on X then 7 = 2X. To
prove this let € X be fixed. Then for every y # « in X there exists V, € 7
such that € V,, while y ¢ V. Thus {z} = Nyx,V}, € 7 showing 7 contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of 17 topology which is not T5.

Ezxample 12.37. Let X be any infinite set and let 7 = {A C X : #(A°) < oc0}U
{0} — the so called cofinite topology. This topology is 7} because if 2 # y in
X, then V = {z}° € 7 with ¢ V while y € V. This topology however is not
Ty. Indeed if U,V € T are open sets such that z € U,y € Vand UNV = ()
then U C V. But this implies #(U) < oo which is impossible unless U = ()
which is impossible since z € U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark 12.3) need not occur for T; — spaces. For example, let X = N
and 7 be the cofinite topology on X as in Example 12.37. Then z,, = n is a
sequence in X such that z,, — x as n — oo for all z € N. For the most part
we will avoid these pathologies in the future by only considering Hausdorff
topologies.

Definition 12.38 (Normal Spaces: T, — Separation Axiom). A4 topolog-
ical space (X,T) is said to be mormal or Ty if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A, B C X there exists disjoint open
sets V,W C X such that ACV and B C W.

Example 12.39. By Lemma 6.15 and Corollary 12.21 it follows that metric
spaces and topological spaces which are locally compact, ¢ — compact and
Hausdorff (in particular compact Hausdorfl spaces) are normal. Indeed, in
each case if A, B are disjoint closed subsets of X, there exists f € C(X, [0,1])
such that f = lonAand f =0on B.Nowlet U = {f > s} and V = {f < 1}.

Remark 12.40. A topological space, (X, 7), is normal iff for any C C W C X
with C being closed and W being open there exists an open set U C, X such
that

CcUCUCW.

To prove this first suppose X is normal. Since W€ is closed and C N W¢ = (),
there exists disjoint open sets U and V such that C C U and W¢ C V.
Therefore C C U C V¢ C W and since V¢ is closed, C CU c U C V¢ C W.
For the converse direction suppose A and B are disjoint closed subsets of
X. Then A C B¢ and B¢ is open, and so by assumption there exists U C, X
such that A C U ¢ U C B¢ and by the same token there exists W C, X such
that U ¢ W Cc W C B¢. Taking complements of the last expression implies

BcWecWwecUe.
LetVzWC.ThenACUCOX,BCVCDXandUﬂVCUﬂWczw.
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Theorem 12.41 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A, B are disjoint closed subsets of X. Then there exists
feC(X,[0,1]) such that f =0 on A and f =1 on B.

Proof. To make the notation match Lemma 12.8, let U = A° and K = B.
Then K C U and it suffices to produce a function f € C(X, [0, 1]) such that
f=1on K and supp(f) C U. The proof is now identical to that for Lemma
12.8 except we now use Remark 12.40 in place of Proposition 12.7. [ ]

Theorem 12.42 (Tietze Extension Theorem). Let (X,7) be a normal
space, D be a closed subset of X, —00o < a < b < o0 and f € C(D,]|a,b]).
Then there exists F' € C(X,[a,b]) such that F|p = f.

Proof. The proof is identical to that of Theorem 7.4 except we now use
Theorem 12.41 in place of Lemma 6.15. ]

Corollary 12.43. Suppose that X is a normal topological space, D C X is
closed, F € C(D,R). Then there exists F € C(X) such that F|p = f.

3
B := G'({-%,3}) C X, then BN D = (). By Urysohn’s lemma (Theo-
rem 12.41) there exists h € C(X,[0,1]) such

on B and in particular hG € C'(D, (-5,

3
F :=tan(hG) € C(X) is an extension of f. ]

Theorem 12.44 (Urysohn Metrization Theorem for Normal Spaces).
Every second countable normal space, (X,T), is metrizable, i.e. there is a
metric p on X such that T = 1,. Moreover, p may be chosen so that X is
isometric to a subset Qo C Q (Q 1is as in Notation 12.10) equipped with the
metric d in Eq. (12.2). In this metric X is totally bounded and hence the
completion of X (which is isometric to Qo C Q) is compact.

Proof. (The proof here will be very similar to the proof of Theorem 12.13.)
Let B be a countable base for 7 and set

r={UV)eBxB|UcCV}.

To each O € 7 and = € O there exist (U,V) € I such that ¢ U C V C O.
Indeed, since B is a base for 7, there exists V' € B such that x € V C O.
Because {z}NV¢ = (), there exists disjoint open sets U and W such that x € U,
Ve C_ W and UNW = 0. Choose U € B such that z € U C U. Since
UcUcWeUcWecV and hence (U, V) € I See Figure 12.7 below. In
particular this shows that

By:={U € B: (U, V) el for someV € B}

is still a base for 7.
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Fig. 12.7. Constructing (U, V) € I

If I' is a finite set, the previous comment shows that 7 only has a finite
number of elements as well. Since (X, 7) is Hausdorff, it follows that X is a
finite set. Letting {mn}f:’:l be an enumeration of X, define T : X — @Q by
T(xn) = e, for n =1,2,..., N where e, = (0,0,...,0,1,0,...), with the 1
occurring in the n'" spot. Then p(x,y) := d(T(x),T(y)) for z,y € X is the
desired metric.

So we may now assume that I" is an infinite set and let {(Un,Vn)}:o:1
be an enumeration of I'. By Urysohn’s Lemma for normal spaces (Theorem
12.41) there exists fy,y € C(X,[0,1]) such that fyy =0on U and fyy =1
on Ve Let F:={fuv | (UV) e '} and set f, := fu, v, — an enumeration
of F. The proof that

o0

pey) = 3 5 1) — uly)]

n=1

is the desired metric on X now follows exactly as the corresponding argument
in the proof of Theorem 12.13. [ |

12.7 Exercises

Exercise 12.5. Prove Theorem 12.9. Hints:

1. By Proposition 12.7, there exists a precompact open set V such that
K c V ¢V c U Now suppose that f : K — [0,qa] is continuous with
o € (0,1] and let A := f~1([0,1a]) and B := f~!([2a,1]). Appeal to
Lemma 12.8 to find a function g € C'(X, [0, /3]) such that g = «/3 on B
and supp(g) C V'\ A.

2. Now follow the argument in the proof of Theorem 7.4 to construct F €
C(X,[a,b]) such that F|x = f.
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3. For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F by
F,:=¢F + (1 - ¢)c.

Exercise 12.6 (Sterographic Projection). Let X = R", X* := X U {o0}
be the one point compactification of X, S" := {y € R**! : |y| = 1} be the
unit sphere in R"*! and N = (0,...,0,1) € R**L. Define f : S — X* by
f(N) =00, and for y € ™\ {N} let f(y) =b € R" be the unique point such
that (b,0) is on the line containing N and y, see Figure 12.8 below. Find a
formula for f and show f:S™ — X* is a homeomorphism. (So the one point
compactification of R™ is homeomorphic to the n sphere.)

Fig. 12.8. Sterographic projection and the one point compactification of R™.

Exercise 12.7. Let (X, 7) be a locally compact Hausdorff space. Show (X, 7)
is separable iff (X*,7*) is separable.

Exercise 12.8. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X* := X U {oco},7*),
is not metrizable. Hint: use exercise 12.7.

Exercise 12.9. Suppose (X, d) is a locally compact and o — compact metric
space. Show the one point compactification, (X* := X U {oo},7*), is metriz-
able.

Exercise 12.10. Let M < oo, show there are polynomials p,(t) such that

lim sup [|t| —pn(¢)|=0
n=00 <y

using the following outline.



182 12 Locally Compact Hausdorff Spaces

1. Let f(z) = /1 —a for |z| < 1 and use Taylor’s theorem with integral
remainder (see Eq. A.15 of Appendix A), or analytic function theory if
you know it, to show there are constants® ¢, > 0 for n € N such that

oo
VI—z=1-) cua" forall |z <1 (12.8)

n=1

2. Let g (z) :=1— > ¢ua™. Use (12.8) to show > 2 ¢, = 1 and con-
clude from this that

lim sup [V1—2—gm(z)| =0. (12.9)

M0 |z|<1

3.Let 1 —x =t2/M? ie. 2 =1—t2/M?, then

t
lim sup |—]M‘*(Jm(1*t2/]\/[2) =0

m— o0 ‘T‘SAI
50 that p,(t) := Mg, (1 — t2/M?) are the desired polynomials.

Exercise 12.11. Given a continuous function f : R — C which is 27 -

periodic and € > 0. Show there exists a trigonometric polynomial, p(6) =
> e such that |f() — P(9)| < ¢ for all § € R. Hint: show that

n=—N

there exists a unique function F' € C(S') such that f(0) = F(e") for all

0eR.

Remark 12.45. Exercise 12.11 generalizes to 2 — periodic functions on R¢,
i.e. functions such that f(0+ 2me;) = f(0) for alli = 1,2,...,d where {ei}le
is the standard basis for R?. A trigonometric polynomial p(#) is a function of
6 € R? of the form
p(0) = Z ane™?
nel’
where I' is a finite subset of Z?. The assertion is again that these trigonometric

polynomials are dense in the 27 — periodic functions relative to the supremum
norm.

_ (2n—3)N
- 2nn!

5 In fact a : , but this is not needed.

13

Baire Category Theorem

Definition 13.1. Leti(X, 7) be a topological space. A set EC X is said to be
nowhere dense if (E)O =0 i.e. E has empty interior.

Notice that F is nowhere dense is equivalent to
X=((B)) =B =

That is to say E is nowhere dense iff ¢ has dense interior.

13.1 Metric Space Baire Category Theorem

Theorem 13.2 (Baire Category Theorem). Let (X, p) be a complete met-
ric space.

o0
1. If{V,}.2 | is a sequence of dense open sets, then G := (| V,, is dense in

n=1
X.
2.If {En},_, is a sequence of nowhere dense sets, then \J;_y E, C
Ure, En & X and in particular X # J;—, En.

Proof. 1) We must shows that G = X which is equivalent to showing
that W NG # 0 for all non-empty open sets W C X. Since V; is dense,
W N Vi # 0 and hence there exists ;1 € X and £; > 0 such that

B(.Tl,El) cWwWnv.

Since V3 is dense, B(z1,£1)N V2 # 0 and hence there exists zo € X and g5 > 0
such that
B(:EQ,&Q) C B(CL’l,El) NVs.

Continuing this way inductively, we may choose {z,, € X and ¢, > 0}, such
that
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B(zp,en) C B(Tn—1,en—1) NV, Vn.

Furthermore we can clearly do this construction in such a way that €, | 0

as n T oo. Hence {z,}>2, is Cauchy sequence and z = lim z, exists in X
n— 00

since X is complete. Since B(x,,¢€,) is closed, € B(zp,e,) C V, so that
x € V, for all n and hence z € G. Moreover, z € B(z1,e1) C W N Vi implies
xz € W and hence x € W N G showing W N G # 0. 2) The second assertion is
equivalently to showing

0 ([] E> N e = e

n=1 n=1

As we have observed, E,, is nowhere dense is equivalent to (E¢)° being a dense
open set, hence by part 1), ()~ (ES)° is dense in X and hence not empty. m

13.2 Locally Compact Hausdorff Space Baire Category
Theorem

Here is another version of the Baire Category theorem when X is a locally
compact Hausdorff space.

Proposition 13.3. Let X be a locally compact Hausdorff space.

1. If{V,}.2, is a sequence of dense open sets, then G := (| V, is dense in

n=1
X.
2. If {E,}.2, is a sequence of nowhere dense sets, then X # |, Ey,.

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if suffices to show G N W # () for all open sets
W C X. Since V; is dense, there exists 1 € V3 N W and by Proposition 12.7
there exists U; C, X such that z; € U; € U; € ViNnW with Uy being compact.
Similarly, there exists a non-empty open set Uy such that Us C Uy C Uy N Vs.
Working inductively, we may find non-empty open sets {Uy},-; such that
U, C U, C U,_1NV. Since ﬂzlek = U, # 0 for all n, the finite intersection
characterization of U; being compact implies that

D#£n, U CcGNW.
||

Definition 13.4. A subset E C X is meager or of the first category if
oo
E = |J E, where each E,, is nowhere dense. And a set R C X is called

n=1
residual if R¢ is meager.
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Remarks 13.5 For those readers that already know some measure theory
may want to think of meager as being the topological analogue of sets of mea-
sure 0 and residual as being the topological analogue of sets of full measure.
(This analogy should not be taken too seriously, see Exercise 19.19.)

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {E,}
such that

R =Uy B, CUY E,.

Taking complements of this equation shows that
N, ES C R,

i.e. R contains a set of the form NV, with each V,, (= E¢) being an
open dense subset of X.
Conversely, if N7V, C R with each V,, being an open dense subset of X,
then R® C U2, V¢ and hence R® = U2 E,, where each E,, = RENV,7, is
a nowhere dense subset of X.

2. A countable union of meager sets is meager and any subset of a meager
set is meager.

3. A countable intersection of residual sets is residual.

Remarks 13.6 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space,
then

1. all residual sets are dense in X and
2. X is not meager.

It should also be remarked that incomplete metric spaces may be meager.
For example, let X C C([0,1]) be the subspace of polynomial functions on
[0,1] equipped with the supremum norm. Then X = U2, E,, where E,, C X
denotes the subspace of polynomials of degree less than or equal to n. You
are asked to show in Exercise 13.1 below that F,, is nowhere dense for all n.
Hence X is meager and the empty set is residual in X.

Here is an application of Theorem 13.2.

Theorem 13.7. Let N' C C([0,1],R) be the set of nowhere differentiable
functions. (Here a function f is said to be differentiable at 0 if f'(0) :=
f)—£(0) FA)—f(t)

limy g S=7= exists and at 1 if f'(1) := limyo S9=~ eaists.) Then N is

a residual set so the “generic” continuous functions is nowhere differentiable.

Proof. If f ¢ N, then f/(zo) exists for some zo € [0,1] and by the
definition of the derivative and compactness of [0,1], there exists n € N such
that | f(z) — f(zo)| < n|z — zo| V z € [0,1]. Thus if we define

By = {f€C(0,1): T2 € [0,1] 5 |f(x) — f(wo)| < nle — 20| V & € [0,1]},
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then we have just shown N¢ C E := U2, E,,. So to finish the proof it suffices
to show (for each n) E,, is a closed subset of C([0, 1], R) with empty interior.
1) To prove E,, is closed, let { fm}ﬁz1 C E, be a sequence of functions such
that there exists f € C([0,1],R) such that || f — fm|l.o — 0 as m — co. Since
fm € Ey, there exists z,, € [0, 1] such that

|[f(2) = fon(@m)| < nlz — 20| V 2 € [0,1]. (13.1)

Since [0,1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume xo = lim,, oo T € [0,1] exists. Passing to the limit
in Eq. (13.1), making use of the uniform convergence of f, — f to show
limy,— o0 fn(@m) = f(z0), implies

|f(z) = f(wo)| < nle —zo| ¥z €0,1]

and therefore that f € E,. This shows E, is a closed subset of C([0, 1], R).
2) To finish the proof, we will show E? = () by showing for each f € E,, and
€ > 0 given, there exists g € C([0,1],R)\ E,, such that || f — g|| ., < e. We now
construct g. Since [0,1] is compact and f is continuous there exists N € N
such that |f(z) — f(y)| < /2 whenever |y — x| < 1/N. Let k denote the
piecewise linear function on [0, 1] such that k(%) = f(%) for m=0,1,...,N
and k"’ (z) =0for z ¢ ny :={m/N :m =0,1,...,N}. Then it is easily seen

that || f — k||, < /2 and for z € (&, L) that
mtly _ r(m
N

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M € N be chosen so that 4eM > 2n and define h uniquely
by h(4) = (—1)™e/2 for m = 0,1,..., M and h"(z) = 0 for = ¢ mp;. Then
IRl < e and |h(x)| = 4eM > 2n for z ¢ mp. See Figure 13.1 below. Finally
define g := k + h. Then

If = 9l SN = Fllo + IRl <e/2+e/2=¢
and
|9 (z)] > W ()| — |k (z)] >2n—n=nVz ¢ Ty Unn.

It now follows from this last equation and the mean value theorem that for
any zo € [0,1],
) st

T — X9

for all z € [0, 1] sufficiently close to . This shows g ¢ E,, and so the proof is
complete. -
Here is an application of the Baire Category Theorem in Proposition 13.3.
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|

Fig. 13.1. Constgructing a rough approximation, g, to a continuous function f.

Proposition 13.8. Suppose that f : R — R is a function such that f'(z)
exists for all v € R. Let

U:U5>0{IER2 sup |f'(z +y)| <oo}.

lyl<e

Then U is a dense open set. (It is not true that U = R in general, see Example
31.35 below.)

Proof. It is easily seen from the definition of U that U is open. Let W C, R
be an open subset of R. For k£ € N, let

By = {azeW:lf(y)*f(w)l < kly — 2| when |y —a| < %}

= () {zeW:lfa+2) - f@)l <k},

zi|z|<k—1

which is a closed subset of R since f is continuous. Moreover, if x € W and
M =[f'(z)|, then

|f(y) = f@) =1f'(x) (y —2) +o(y — )|
< (M+1)|y— x|

for y close to z. (Here o(y — ) denotes a function such that lim,_., o(y —
z)/(y — ) = 0.) In particular, this shows that x € Ej for all k sufficiently
large. Therefore W= U2, E), and since W is not meager by the Baire category
Theorem in Proposition 13.3, some Ej has non-empty interior. That is there
exists xg € B C W and € > 0 such that

J:=(zo —e,2z0+¢) C B, CW.
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For z € J, we have |f(z + 2) — f(x)| < k|z| provided that |2| < k71 and
therefore that |f'(z)] < k for z € J. Therefore oy € U N W showing U is
dense. .

Remark 13.9. This proposition generalizes to functions f : R™ — R™ in an
obvious way.

For our next application of Theorem 13.2, let X := BC* ((—1,1)) denote
the set of smooth functions f on (—1,1) such that f and all of its derivatives
are bounded. In the metric

Es o |f<k> _g(k>||oc . N

X becomes a complete metric space.

Theorem 13.10. Given an increasing sequence of positive numbers { My, }>°
the set )
JRIOTI
M, |~

is dense in X. In particular, there is a dense set of f € X such that the power
series expansion of f at 0 has zero radius of convergence.

n=17

n—oo

:{fGX:Iimsup

Proof. Step 1. Let n € N. Choose g € C°((—1,1)) such that ||g||,, < 27"
while ¢’(0) = 2M,, and define

T tn—1 ta
:/ dtnfl\/ dtn72 / dtlg(tl).
0 0 0
Then for k£ < n,

z tn—k—1 to
f7(zk) (x) = / dtnszfl / dtn7k72 e / dtlg(tl)7
0 0 0

f™(2) = ¢ (2), (”)(0) =2M, and f{* satisfies

Hf}f)H < (nfﬁ <27"for k < n.

Consequently,

el ‘“)H

n—1

<y ok +Z2—k 1<2(27m+27") =4.27"
k=0 k=n
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Thus we have constructed f, € X such that lim, .. p(fn,0) = 0 while
7(L”)(0) = 2M,, for all n. Step 2. The set

G = Umn {f cX: ‘f(m)(o)’ > Mm}

is a dense open subset of X. The fact that G,, is open is clear. To see that
G, is dense, let g € X be given and define g,, := g + &, f, Where €, 1=
sgn (g™ (0)). Then

‘ ggg")(())‘ — ‘ gtm (0)) + ‘ fé;">(0)‘ > 2M,, > M,, for all m.
Therefore, g,, € G, for all m > n and since

P(gm,g) = P(fm,O) — 0asm — oo

it follows that g € G,. Step 3. By the Baire Category theorem, NG, is a dense
subset of X. This completes the proof of the first assertion since

f(n)(())‘ . 1}

M,

F(0)
M,

n

n—o00

fz{feX:limsup

=ﬁ;’f:1{f€X:‘ ‘Zlforsomenzm}jﬂ;’ozlGn.

Step 4. Take M,, = (n!)2 and recall that the power series expansion for f near
H 3 S fn(0)

0 is given by > > ) 2=

any x # 0 because

x™. This series can not converge for any f € F and

0 0
lim sup f”—(')a:” = lim sup fn—(Q)n!x"
n—o00 n n— o0 TL')
n 0 .
= limsup I 2) - lim n! 2" =0
where we have used lim,,_,o, n! |2"| = 0o and limsup,,_, ., {Z,()Oz) > 1. ]

Remark 13.11. Given a sequence of real number {a, },., there always exists
f € X such that f((0) = a,. To construct such a function f, let ¢ €
C2°(—1,1) be a function such that ¢ = 1 in a neighborhood of 0 and ¢,, € (0,1)
be chosen so that e, | 0 as n — oo and Y - |an|el < oco. The desired
function f can then be defined by

[e o]

fl@)=) %x% x/en) = Zgn (13.2)

n=0

The fact that f is well defined and continuous follows from the estimate:
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|I¢H

n
n

|gn ()] =

" g(x/en)| <

= lan|e

and the assumption that Y |a,|e? < oo. The estimate

()] = ] G o) +

(n—1)!
[0l 111l
(n_ ) ‘ 'fl|5 + ’)’L ‘ Tl|8

< (I19llog + 14'llo0) lan| €7

and the assumption that > 2 |a,|e? < oo shows f € C'(—1,1) and
f'(x) = 322, gh(z). Similar arguments show f € C#(—1,1) and f k)( ) =
S 0gsbk)( ) for all © and k& € N. This completes the proof since, using

an "¢ (z/en)
nle,

¢(z/en) =1 for z in a neighborhood of 0, g(k)( 0) = 0y nar and hence

FM(0) = fj 9i(0) = ay.
n=0

13.3 Exercises

Exercise 13.1. Let (X, ||-||) be an infinite dimensional normed space and E C
X be a finite dimensional subspace. Show that £ C X is nowhere dense.

Exercise 13.2. Now suppose that (X, ||-]|) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S C X such that every element x € X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise 13.1 and the Baire category theorem.




