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in Banach Spaces
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Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) — Z
is to be interpreted as a time dependent vector-field on U ⊂ X. In this section
we will consider the ordinary differential equation (ODE for short)

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U. (15.1)

The reader should check that any solution y ∈ C1(J, U) to Eq. (15.1) gives a
solution y ∈ C(J, U) to the integral equation:

y(t) = x+

Z t

0

Z(τ, y(τ))dτ (15.2)

and conversely if y ∈ C(J, U) solves Eq. (15.2) then y ∈ C1(J, U) and y solves
Eq. (15.1).

Remark 15.1. For notational simplicity we have assumed that the initial con-
dition for the ODE in Eq. (15.1) is taken at t = 0. There is no loss in generality
in doing this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (15.1) with Z(t, x) = Z̃(t+ t0, x).

15.1 Examples

Let X = R, Z(x) = xn with n ∈ N and consider the ordinary differential
equation

ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R. (15.3)

If y solves Eq. (15.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore
up to the first time y possibly hits 0, we must have
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t =

Z t

0

ẏ(τ)

y(τ)n
dτ =

Z y(t)

0

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
¯̄̄
y(t)
x

¯̄̄
if n = 1

and solving these equations for y(t) implies

y(t) = y(t, x) =

(
x

n−1√1−(n−1)txn−1 if n > 1

etx if n = 1.
(15.4)

The reader should verify by direct calculation that y(t, x) defined above does
indeed solve Eq. (15.3). The above argument shows that these are the only
possible solutions to the Equations in (15.3).
Notice that when n = 1, the solution exists for all time while for n > 1,

we must require
1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1

(1− n) |x|n−1 if x
n−1 < 0.

Moreover for n > 1, y(t, x) blows up as t approaches the value for which
1− (n− 1)txn−1 = 0. The reader should also observe that, at least for s and
t close to 0,

y(t, y(s, x)) = y(t+ s, x) (15.5)

for each of the solutions above. Indeed, if n = 1 Eq. (15.5) is equivalent to the
well know identity, etes = et+s and for n > 1,

y(t, y(s, x)) =
y(s, x)

n−1
p
1− (n− 1)ty(s, x)n−1

=

x
n−1√1−(n−1)sxn−1

n−1

s
1− (n− 1)t

·
x

n−1√1−(n−1)sxn−1
¸n−1

=

x
n−1√1−(n−1)sxn−1

n−1
q
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
p
1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
p
1− (n− 1)(s+ t)xn−1

= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the
ordinary differential equation
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ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R. (15.6)

Working as above we find, if x 6= 0 that

t =

Z t

0

ẏ(τ)

|y(t)|α dτ =
Z y(t)

0

|u|−α du = [y(t)]
1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation
implies

sgn(x)(1− α)t = sgn(x)
h
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

i
= |y(t)|1−α − |x|1−α

and therefore,

y(t, x) = sgn(x)
³
|x|1−α + sgn(x)(1− α)t

´ 1
1−α

(15.7)

is uniquely determined by this formula until the first time t where |x|1−α +
sgn(x)(1− α)t = 0. As before y(t) = 0 is a solution to Eq. (15.6), however it
is far from being the unique solution. For example letting x ↓ 0 in Eq. (15.7)
gives a function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (15.6) for t > 0. Moreover if we define

y(t) :=

½
((1− α)t)

1
1−α if t > 0

0 if t ≤ 0 ,

(for example if α = 1/2 then y(t) = 1
4 t
21t≥0) then the reader may easily check

y also solve Eq. (15.6). Furthermore, ya(t) := y(t − a) also solves Eq. (15.6)
for all a ≥ 0, see Figure 15.1 below.
With these examples in mind, let us now go to the general theory. The

case of linear ODE’s has already been studied in Section 8.3 above.

15.2 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 15.2. Gronwall’s Lemma. Suppose that f, ε, and k are non-
negative functions of a real variable t such that

f(t) ≤ ε(t) +

¯̄̄̄Z t

0

k(τ)f(τ)dτ

¯̄̄̄
. (15.8)

Then
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Fig. 15.1. Three different solutions to the ODE ẏ(t) = |y(t)|1/2 with y(0) = 0.

f(t) ≤ ε(t) +

¯̄̄̄Z t

0

k(τ)ε(τ)e|
R t
τ
k(s)ds|dτ

¯̄̄̄
, (15.9)

and in particular if ε and k are constants we find that

f(t) ≤ εek|t|. (15.10)

Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived
by applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and ε(t) = ε(−t). Set
F (t) =

R t
0
k(τ)f(τ)dτ . Then by (15.8),

Ḟ = kf ≤ kε+ kF.

Hence,

d

dt
(e−

R t
0
k(s)dsF ) = e−

R t
0
k(s)ds(Ḟ − kF ) ≤ kεe−

R t
0
k(s)ds.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
R t
0
k(s)ds ·

Z t

0

dτk(τ)ε(τ)e−
R τ
0
k(s)ds =

Z t

0

dτk(τ)ε(τ)e
R t
τ
k(s)ds.

But by the definition of F we have that

f ≤ ε+ F,

and hence the last two displayed equations imply (15.9). Equation (15.10)
follows from (15.9) by a simple integration.

Corollary 15.3 (Continuous Dependence on Initial Data). Let U ⊂o
X, 0 ∈ (a, b) and Z : (a, b) × U → X be a continuous function which is K—
Lipschitz function on U, i.e. kZ(t, x)−Z(t, x0)k ≤ Kkx− x0k for all x and x0
in U. Suppose y1, y2 : (a, b)→ U solve
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dyi(t)

dt
= Z(t, yi(t)) with yi(0) = xi for i = 1, 2. (15.11)

Then
ky2(t)− y1(t)k ≤ kx2 − x1keK|t| for t ∈ (a, b) (15.12)

and in particular, there is at most one solution to Eq. (15.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) := ky2(t) − y1(t)k. Then by the fundamental theorem of
calculus,

f(t) = ky2(0)− y1(0) +

Z t

0

(ẏ2(τ)− ẏ1(τ)) dτk

≤ f(0) +

¯̄̄̄Z t

0

kZ(τ, y2(τ))− Z(τ, y1(τ))k dτ
¯̄̄̄

= kx2 − x1k+K

¯̄̄̄Z t

0

f(τ) dτ

¯̄̄̄
.

Therefore by Gronwall’s inequality we have,

ky2(t)− y1(t)k = f(t) ≤ kx2 − x1keK|t|.

15.3 Local Existence (Non-Linear ODE)

We now show that Eq. (15.1) under a Lipschitz condition on Z. Another
existence theorem was given in Exercise 11.16.

Theorem 15.4 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0
and

C(x0, r) := {x ∈ X : kx− x0k ≤ r}
be the closed r — ball centered at x0 ∈ X. Assume

M = sup {kZ(t, x)k : (t, x) ∈ J × C(x0, r)} <∞ (15.13)

and there exists K <∞ such that

kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ C(x0, r) and t ∈ J. (15.14)

Let T0 < min {r/M, T} and J0 := (−T0, T0), then for each x ∈ B(x0, r−MT0)
there exists a unique solution y(t) = y(t, x) to Eq. (15.2) in C (J0, C(x0, r)) .
Moreover y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t,
ẏ(t, x) is jointly continuous for all (t, x) ∈ J0 × B(x0, r −MT0) and satisfies
Eq. (15.1).
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Proof. The uniqueness assertion has already been proved in Corollary
15.3. To prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

Sx(y)(t) := x+

Z t

0

Z(τ, y(τ))dτ. (15.15)

With this notation, Eq. (15.2) becomes y = Sx(y), i.e. we are looking for a
fixed point of Sx. If y ∈ Y, then

kSx(y)(t)− x0k ≤ kx− x0k+
¯̄̄̄Z t

0

kZ(τ, y(τ))k dτ
¯̄̄̄
≤ kx− x0k+M |t|

≤ kx− x0k+MT0 ≤ r −MT0 +MT0 = r,

showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

kSx(y)(t)− Sx(z)(t)k =
°°°°Z t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ

°°°°
≤
¯̄̄̄Z t

0

kZ(τ, y(τ))− Z(τ, z(τ))k dτ
¯̄̄̄

≤ K

¯̄̄̄Z t

0

ky(τ)− z(τ)k dτ
¯̄̄̄
. (15.16)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by

yn(·, x) := Sx(yn−1(·, x)) = x+

Z t

0

Z(τ, yn−1(τ, x))dτ. (15.17)

Using the estimate in Eq. (15.16) repeatedly we find

|| yn+1(t)− yn(t) ||

≤ K

¯̄̄̄Z t

0

kyn(τ)− yn−1(τ)k dτ
¯̄̄̄

≤ K2

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 kyn−1(t2)− yn−2(t2)k
¯̄̄̄¯̄̄̄

...

≤ Kn

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 . . .

¯̄̄̄Z tn−1

0

dtn ky1(tn)− y0(tn)k
¯̄̄̄
. . .

¯̄̄̄¯̄̄̄
≤ Kn ky1(·, x)− y0(·, x)k∞

Z
∆n(t)

dτ

=
Kn |t|n

n!
ky1(·, x)− y0(·, x)k∞ ≤ 2r

Kn |t|n
n!

(15.18)

wherein we have also made use of Lemma 8.19. Combining this estimate with
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ky1(t, x)− y0(t, x)k =
°°°°Z t

0

Z(τ, x)dτ

°°°° ≤ ¯̄̄̄Z t

0

kZ(τ, x)k dτ
¯̄̄̄
≤M0,

where

M0 = T0max

(Z T0

0

kZ(τ, x)k dτ,
Z 0

−T0
kZ(τ, x)k dτ

)
≤MT0,

shows

kyn+1(t, x)− yn(t, x)k ≤M0
Kn |t|n

n!
≤M0

KnTn
0

n!

and this implies

∞X
n=0

sup{ kyn+1(·, x)− yn(·, x)k∞,J0
: t ∈ J0}

≤
∞X
n=0

M0
KnTn

0

n!
=M0e

KT0 <∞

where

kyn+1(·, x)− yn(·, x)k∞,J0
:= sup {kyn+1(t, x)− yn(t, x)k : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (15.14)
we also have

sup{ kZ(t, y(t))− Z(t, yn−1(t))k : t ∈ J0}
≤ K ky(·, x)− yn−1(·, x)k∞,J0

→ 0 as n→∞.

Now passing to the limit in Eq. (15.17) shows y solves Eq. (15.2). From this
equation it follows that y(t, x) is differentiable in t and y satisfies Eq. (15.1).
The continuity of y(t, x) follows from Corollary 15.3 and mean value inequality
(Corollary 8.14):

ky(t, x)− y(t0, x0)k ≤ ky(t, x)− y(t, x0)k+ ky(t, x0)− y(t0, x0)k

= ky(t, x)− y(t, x0)k+
°°°°Z t

t0
Z(τ, y(τ, x0))dτ

°°°°
≤ ky(t, x)− y(t, x0)k+

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
≤ kx− x0keKT +

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
(15.19)

≤ kx− x0keKT +M |t− t0| .

The continuity of ẏ(t, x) is now a consequence Eq. (15.1) and the continuity
of y and Z.
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Corollary 15.5. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ X and t ∈ J. (15.20)

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (15.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0,X) . By compactness, M := supt∈J̄0 kZ(t, 0)k < ∞ which combined
with Eq. (15.20) implies

sup
t∈J̄0

kZ(t, x)k ≤M +K kxk for all x ∈ X.

Using this estimate and Lemma 8.7 one easily shows Sx(Y ) ⊂ Y for all x ∈ X.
The proof of Theorem 15.4 now goes through without any further change.

15.4 Global Properties

Definition 15.6 (Local Lipschitz Functions). Let U ⊂o X, J be an open
interval and Z ∈ C(J×U,X). The function Z is said to be locally Lipschitz in
x if for all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) <
∞ and ε = ε(x, I) > 0 such that B(x, ε(x, I)) ⊂ U and

kZ(t, x1)− Z(t, x0)k ≤ K(x, I)kx1 − x0k ∀ x0, x1 ∈ B(x, ε(x, I)) & t ∈ I.
(15.21)

For the rest of this section, we will assume J is an open interval containing
0, U is an open subset ofX and Z ∈ C(J×U,X) is a locally Lipschitz function.
Lemma 15.7. Let Z ∈ C(J × U,X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
ε > 0 such that Z(t, x) is bounded for (t, x) ∈ I × Eε and and Z(t, x) is K —
Lipschitz on Eε for all t ∈ I, where

Eε := {x ∈ U : dist(x,E) < ε} .

Proof. Let ε(x, I) and K(x, I) be as in Definition 15.6 above. Since
E is compact, there exists a finite subset Λ ⊂ E such that E ⊂ V :=
∪x∈ΛB(x, ε(x, I)/2). If y ∈ V, there exists x ∈ Λ such that ky − xk < ε(x, I)/2
and therefore

kZ(t, y)k ≤ kZ(t, x)k+K(x, I) ky − xk ≤ kZ(t, x)k+K(x, I)ε(x, I)/2

≤ sup
x∈Λ,t∈I

{kZ(t, x)k+K(x, I)ε(x, I)/2} =:M <∞.

This shows Z is bounded on I × V. Let
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ε := d(E, V c) ≤ 1
2
min
x∈Λ

ε(x, I)

and notice that ε > 0 since E is compact, V c is closed and E ∩ V c = ∅.
If y, z ∈ Eε and ky − zk < ε, then as before there exists x ∈ Λ such that
ky − xk < ε(x, I)/2. Therefore

kz − xk ≤ kz − yk+ ky − xk < ε+ ε(x, I)/2 ≤ ε(x, I)

and since y, z ∈ B(x, ε(x, I)), it follows that

kZ(t, y)− Z(t, z)k ≤ K(x, I)ky − zk ≤ K0ky − zk
where K0 := maxx∈ΛK(x, I) < ∞. On the other hand if y, z ∈ Eε and
ky − zk ≥ ε, then

kZ(t, y)− Z(t, z)k ≤ 2M ≤ 2M
ε
ky − zk .

Thus if we let K := max {2M/ε,K0} , we have shown
kZ(t, y)− Z(t, z)k ≤ Kky − zk for all y, z ∈ Eε and t ∈ I.

Proposition 15.8 (Maximal Solutions). Let Z ∈ C(J ×U,X) be a locally
Lipschitz function in x and let x ∈ U be fixed. Then there is an interval Jx =
(a(x), b(x)) with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1—function y : J → U
with the following properties:

1. y solves ODE in Eq. (15.1).
2. If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (15.1) (we assume that
0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .
The function y : J → U is called the maximal solution to Eq. (15.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to
Eq. (15.1). We will start by showing the y1 = y2 on J1 ∩ J2. To do this1 let
1 Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.
(T is the first positive time after which y1 and y2 disagree.
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) =

y2(T ) =: x
0. Applying the local uniqueness theorem to y1(· − T ) and y2(· − T )

thought as function from (−δ, δ) → B(x0, (x0)) for some δ sufficiently small, we
learn that y1(·−T ) = y2(·−T ) on (−δ, δ). But this shows that y1 = y2 on [0, T+δ)
which contradicts the definition of T. Hence we must have the T = min{b1, b2},
i.e. y1 = y2 on J1 ∩ J2 ∩ [0,∞). A similar argument shows that y1 = y2 on
J1 ∩ J2 ∩ (−∞, 0] as well.
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J0 = (a0, b0) be chosen so that 0 ∈ J0 ⊂ J1∩J2, and let E := y1(J0)∪y2(J0) —
a compact subset of X. Choose ε > 0 as in Lemma 15.7 so that Z is Lipschitz
on Eε. Then y1|J0 , y2|J0 : J0 → Eε both solve Eq. (15.1) and therefore are
equal by Corollary 15.3. Since J0 = (a0, b0) was chosen arbitrarily so that
[a, b] ⊂ J1 ∩ J2, we may conclude that y1 = y2 on J1 ∩ J2. Let (yα, Jα =
(aα, bα))α∈A denote the possible solutions to (15.1) such that 0 ∈ Jα. Define
Jx = ∪Jα and set y = yα on Jα. We have just checked that y is well defined
and the reader may easily check that this function y : Jx → U satisfies all the
conclusions of the theorem.

Notation 15.9 For each x ∈ U, let Jx = (a(x), b(x)) be the maximal in-
terval on which Eq. (15.1) may be solved, see Proposition 15.8. Set D(Z) :=
∪x∈U (Jx × {x}) ⊂ J × U and let φ : D(Z) → U be defined by φ(t, x) = y(t)
where y is the maximal solution to Eq. (15.1). (So for each x ∈ U, φ(·, x) is
the maximal solution to Eq. (15.1).)

Proposition 15.10. Let Z ∈ C(J×U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (15.1). If b(x) <
b, then either lim supt↑b(x) kZ(t, y(t))k =∞ or y(b(x)−) := limt↑b(x) y(t) exists
and y(b(x)−) /∈ U. Similarly, if a > a(x), then either lim supt↓a(x) ky(t)k =∞
or y(a(x)+) := limt↓a y(t) exists and y(a(x)+) /∈ U.

Proof. Suppose that b < b(x) and M := lim supt↑b(x) kZ(t, y(t))k < ∞.
Then there is a b0 ∈ (0, b(x)) such that kZ(t, y(t))k ≤ 2M for all t ∈ (b0, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

ky(t)− y(t0)k ≤
¯̄̄̄
¯
Z t0

t

kZ(t, y(τ))k dτ
¯̄̄̄
¯ ≤ 2M |t− t0|

for all t, t0 ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) =
limt↑b(x) y(t) exists. If y(b(x)−) ∈ U, by the local existence Theorem 15.4,
there exists δ > 0 and w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).
Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t) if t ∈ [b(x), b(x) + δ)

.

The reader may now easily show ỹ solves the integral Eq. (15.2) and hence
also solves Eq. 15.1 for t ∈ (a(x), b(x) + δ).2 But this violates the maximality
of y and hence we must have that y(b(x)−) /∈ U. The assertions for t near
a(x) are proved similarly.

2 See the argument in Proposition 15.13 for a slightly different method of extending
y which avoids the use of the integral equation (15.2).
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Example 15.11. Let X = R2, J = R, U =
©
(x, y) ∈ R2 : 0 < r < 1

ª
where

r2 = x2 + y2 and

Z(x, y) =
1

r
(x, y) +

1

1− r2
(−y, x).

The the unique solution (x(t), y(t)) to

d

dt
(x(t), y(t)) = Z(x(t), y(t)) with (x(0), y(0)) = (

1

2
, 0)

is given by

(x(t), y(t)) =

µ
t+

1

2

¶µ
cos

µ
1

1/2− t

¶
, sin

µ
1

1/2− t

¶¶
for t ∈ J(1/2,0) = (−∞, 1/2) . Notice that kZ(x(t), y(t))k→∞ as t ↑ 1/2 and
dist((x(t), y(t)), U c)→ 0 as t ↑ 1/2.
Example 15.12. (Not worked out completely.) Let X = U = 2, ψ ∈ C∞(R2)
be a smooth function such that ψ = 1 in a neighborhood of the line segment
joining (1, 0) to (0, 1) and being supported within the 1/10 — neighborhood of
this segment. Choose an ↑ ∞ and bn ↑ ∞ and define

Z(x) =
∞X
n=1

anψ(bn(xn, xn+1))(en+1 − en). (15.22)

For any x ∈ 2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : 2 → 2 is a smooth and hence locally
Lipshcitz vector field. Let (y(t), J = (a, b)) denote the maximal solution to

ẏ(t) = Z(y(t)) with y(0) = e1.

Then if the an and bn are chosen appropriately, then b < ∞ and there will
exist tn ↑ b such that y(tn) is approximately en for all n. So again y(tn) does
not have a limit yet supt∈[0,b) ky(t)k < ∞. The idea is that Z is constructed
to blow the particle form e1 to e2 to e3 to e4 etc. etc. with the time it takes to
travel from en to en+1 being on order 1/2n. The vector field in Eq. (15.22) is
a first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 15.10 which is more useful when
dim(X) <∞.

Proposition 15.13. Let Z ∈ C(J × U,X) be a locally Lipschitz function in
x and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (15.1).

1. If b(x) < b, then for every compact subset K ⊂ U there exists TK < b(x)
such that y(t) /∈ K for all t ∈ [TK , b(x)).
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2. When dim(X) < ∞, we may write this condition as: if b(x) < b, then
either

lim sup
t↑b(x)

ky(t)k =∞ or lim inf
t↑b(x)

dist(y(t), U c) = 0.

Proof. 1) Suppose that b(x) < b and, for sake of contradiction, there
exists a compact set K ⊂ U and tn ↑ b(x) such that y(tn) ∈ K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
y∞ := limn→∞ y(tn) exists in K ⊂ U. By the local existence Theorem 15.4,
there exists T0 > 0 and δ > 0 such that for each x0 ∈ B (y∞, δ) there exists a
unique solution w(·, x0) ∈ C1((−T0, T0), U) solving

w(t, x0) = Z(t, w(t, x0)) and w(0, x0) = x0.

Now choose n sufficiently large so that tn ∈ (b(x)− T0/2, b(x)) and y(tn) ∈
B (y∞, δ) . Define ỹ : (a(x), b(x) + T0/2)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t− tn, y(tn)) if t ∈ (tn − T0, b(x) + T0/2).

wherein we have used (tn−T0, b(x)+T0/2) ⊂ (tn−T0, tn+T0). By uniqueness
of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + T0/2) ,X) and ỹ
solves the ODE in Eq. 15.1. But this violates the maximality of y. 2) For each
n ∈ N let

Kn := {x ∈ U : kxk ≤ n and dist(x,Uc) ≥ 1/n} .
Then Kn ↑ U and each Kn is a closed bounded set and hence compact if
dim(X) < ∞. Therefore if b(x) < b, by item 1., there exists Tn ∈ [0, b(x))
such that y(t) /∈ Kn for all t ∈ [Tn, b(x)) or equivalently ky(t)k > n or
dist(y(t), U c) < 1/n for all t ∈ [Tn, b(x)).
Remark 15.14. In general it is not true that the functions a and b are contin-
uous. For example, let U be the region in R2 described in polar coordinates
by r > 0 and 0 < θ < 3π/4 and Z(x, y) = (0,−1) as in Figure 15.2 below.
Then b(x, y) = y for all x, y > 0 while b(x, y) = ∞ for all x < 0 and y ∈ R
which shows b is discontinuous. On the other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}
is an open set for all t > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure 15.2. The map
ψ would allow the reader to find an example on R2 if so desired. Some cal-
culations shows that Z transferred to R2 by the map ψ is given by the new
vector

Z̃(x, y) = −e−x
µ
sin

µ
3π

8
+
3

4
tan−1 (y)

¶
, cos

µ
3π

8
+
3

4
tan−1 (y)

¶¶
.
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Fig. 15.2. Manufacturing vector fields where b(x) is discontinuous.

Theorem 15.15 (Global Continuity). Let Z ∈ C(J × U,X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J ×U and the func-
tions φ : D(Z) → U and φ̇ : D(Z) → U are continuous. More precisely, for
all x0 ∈ U and all open intervals J0 such that 0 ∈ J0 @@ Jx0 there exists
δ = δ(x0, J0, Z) > 0 and C = C(x0, J0, Z) <∞ such that for all x ∈ B(x0, δ),
J0 ⊂ Jx and

kφ(·, x)− φ(·, x0)kBC(J0,U) ≤ C kx− x0k . (15.23)

Proof. Let |J0| = b0−a0, I = J̄0 and E := y(J̄0) — a compact subset of U
and let ε > 0 and K <∞ be given as in Lemma 15.7, i.e. K is the Lipschitz
constant for Z on Eε. Also recall the notation: ∆1(t) = [0, t] if t > 0 and
∆1(t) = [t, 0] if t < 0. Suppose that x ∈ Eε, then by Corollary 15.3,

kφ(t, x)− φ(t, x0)k ≤ kx− x0keK|t| ≤ kx− x0keK|J0| (15.24)

for all t ∈ J0 ∩ Jx such that such that φ (∆1(t), x) ⊂ Eε. Letting δ :=
εe−K|J0|/2, and assuming x ∈ B(x0, δ), the previous equation implies

kφ(t, x)− φ(t, x0)k ≤ ε/2 < ε ∀ t ∈ J0 ∩ Jx 3 φ (∆1(t), x) ⊂ Eε.

This estimate further shows that φ(t, x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
15.8 and “continuous induction3” that J0 ⊂ Jx and Eq. (15.24) is valid for all

3 See the argument in the proof of Proposition 8.11.
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t ∈ J0. This proves Eq. (15.23) with C := eK|J0|. Suppose that (t0, x0) ∈ D(Z)
and let 0 ∈ J0 @@ Jx0 such that t0 ∈ J0 and δ be as above. Then we have
just shown J0 × B(x0, δ) ⊂ D(Z) which proves D(Z) is open. Furthermore,
since the evaluation map

(t0, y) ∈ J0 ×BC(J0, U)
e→ y(t0) ∈ X

is continuous (as the reader should check) it follows that φ = e◦(x→ φ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous
maps. The continuity of φ̇(t0, x) is a consequences of the continuity of φ and
the differential equation 15.1 Alternatively using Eq. (15.2),

kφ(t0, x)− φ(t, x0)k ≤ kφ(t0, x)− φ(t0, x0)k+ kφ(t0, x0)− φ(t, x0)k

≤ C kx− x0k+
¯̄̄̄Z t0

t

kZ(τ, φ(τ, x0))k dτ
¯̄̄̄

≤ C kx− x0k+M |t0 − t|

where C is the constant in Eq. (15.23) andM = supτ∈J0 kZ(τ, φ(τ, x0))k <∞.
This clearly shows φ is continuous.

15.5 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t, x) ∈ D(Z), set etZ(x) = φ(t, x). So the path
t→ etZ(x) is the maximal solution to

d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 15.16 We write f : X → X to mean a function defined on some
open subset D(f) ⊂ X. The open set D(f) will be called the domain of f.
Given two functions f : X → X and g : X → X with domains D(f) and
D(g) respectively, we define the composite function f ◦ g : X → X to be the
function with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g
iff D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write
f ⊂ g iff D(f) ⊂ D(g) and g|D(f) = f.
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Theorem 15.17. For fixed t ∈ R we consider etZ as a function from X to X
with domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(φ) = D(Z) ⊂ R×U,
D(Z) and φ are defined in Notation 15.9. Conclusions:
1. If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
2. If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).

3. For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left
to the reader. Suppose that x ∈ D(etZ ◦esZ). Then by assumption x ∈ D(esZ)
and esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =

½
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since,
eτZ(x) is the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t+
s) = e(t+s)Z(x). That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that
etZ ◦ esZ ⊂ e(t+s)Z . To finish the proof of item 1. it suffices to show that
D(e(t+s)Z) ⊂ D(etZ ◦ esZ). Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set
y(τ) = e(τ+s)Z(x) defined for 0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued
problem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ =
t, e(t+s)Z(x) = etZ(esZ(x)). This shows that x ∈ D(etZ ◦ esZ) and in fact
e(t+s)Z ⊂ etZ ◦esZ . Item 2. Let x ∈ D(e−tZ) — again assume for simplicity that
t ≥ 0. Set y(τ) = e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x)
and ẏ(τ) = Z(y(τ)). This shows that y(τ) = eτZ(e−tZ(x)) and in particular
that x ∈ D(etZ ◦e−tZ) and etZ ◦e−tZ(x) = x. This proves item 2. Item 3. I will
only consider the case that s < 0 and t + s ≥ 0, the other cases are handled
similarly. Write u for t+s, so that t = −s+u.We know that etZ = euZ ◦e−sZ
by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .
Notice in general, one has (f ◦ g) ◦ h = f ◦ (g ◦ h) (you prove). Hence, the
above displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial con-
verse to Theorem 15.17.

Proposition 15.18 (Flows and Complete Vector Fields). Suppose U ⊂o
X, φ ∈ C(R× U,U) and φt(x) = φ(t, x). Suppose φ satisfies:
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1. φ0 = IU ,
2. φt ◦ φs = φt+s for all t, s ∈ R, and
3. Z(x) := φ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then φt = etZ .

Proof. Let x ∈ U and y(t) := φt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0φ(t+s)(x) = d

ds
|0φs ◦ φt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 15.3) that φt(x) = y(t) = etZ(x).

15.6 Exercises

Exercise 15.1. Find a vector field Z such that e(t+s)Z is not contained in
etZ ◦ esZ .
Definition 15.19. A locally Lipschitz function Z : U ⊂o X → X is said to
be a complete vector field if D(Z) = R×U. That is for any x ∈ U, t→ etZ(x)
is defined for all t ∈ R.
Exercise 15.2. Suppose that Z : X → X is a locally Lipschitz function.
Assume there is a constant C > 0 such that

kZ(x)k ≤ C(1 + kxk) for all x ∈ X.

Then Z is complete.Hint: use Gronwall’s Lemma 15.2 and Proposition 15.10.

Exercise 15.3. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0.
Show there exists a, b ∈ [0,∞] such that

y(t) =


1
4(t− b)2 if t ≥ b

0 if −a < t < b
−14(t+ a)2 if t ≤ −a.

Exercise 15.4. Using the fact that the solutions to Eq. (15.3) are never 0 if
x 6= 0, show that y(t) = 0 is the only solution to Eq. (15.3) with y(0) = 0.

Exercise 15.5 (Higher Order ODE). LetX be a Banach space, , U ⊂o Xn

and f ∈ C (J × U ,X) be a Locally Lipschitz function in x = (x1, . . . , xn).
Show the nth ordinary differential equation,

y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t)) with y(k)(0) = yk0 for k < n (15.25)

where (y00, . . . , y
n−1
0 ) is given in U , has a unique solution for small t ∈ J.

Hint: let y(t) =
¡
y(t), ẏ(t), . . . y(n−1)(t)

¢
and rewrite Eq. (15.25) as a first

order ODE of the form

ẏ(t) = Z(t,y(t)) with y(0) = (y00 , . . . , y
n−1
0 ).
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Exercise 15.6. Use the results of Exercises 8.20 and 15.5 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2× 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I +B where B2 = 0.

Exercise 15.7 (Non-Homogeneous ODE). Suppose that U ⊂o X is open
and Z : R×U → X is a continuous function. Let J = (a, b) be an interval and
t0 ∈ J. Suppose that y ∈ C1(J,U) is a solution to the “non-homogeneous”
differential equation:

ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U. (15.26)

Define Y ∈ C1(J− t0,R×U) by Y (t) := (t+ t0, y(t+ t0)). Show that Y solves
the “homogeneous” differential equation

Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0), (15.27)

where Z̃(t, x) := (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R × U)
is a solution to Eq. (15.27). Show that Y (t) = (t+ t0, y(t+ t0)) for some y ∈
C1(J, U) satisfying Eq. (15.26). (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 15.8 (Differential Equations with Parameters). LetW be an-
other Banach space, U × V ⊂o X ×W and Z ∈ C(U × V,X) be a locally
Lipschitz function on U ×V. For each (x,w) ∈ U×V, let t ∈ Jx,w → φ(t, x, w)
denote the maximal solution to the ODE

ẏ(t) = Z(y(t), w) with y(0) = x. (15.28)

Prove
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w} (15.29)

is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (15.28), then v(t) :=

(y(t), w) solves the differential equation,

v̇(t) = Z̃(v(t)) with v(0) = (x,w), (15.30)

where Z̃(x,w) := (Z(x,w), 0) ∈ X×W and let ψ(t, (x,w)) := v(t). Now apply
the Theorem 15.15 to the differential equation (15.30).

Exercise 15.9 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=
∞X
n=0

(−1)n
(2n)!

t2nA2n and

sin(tA)

A
:=

∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2n.
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Show that the unique solution y ∈ C2 (R,X) to

ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (15.31)

is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0.

Remark 15.20. Exercise 15.9 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (15.31) as a first order ODE using Exercise
15.5. In doing so you will be lead to compute etB where B ∈ L(X × X) is
given by

B =

µ
0 I
−A2 0

¶
,

where we are writing elements ofX×X as column vectors,
µ
x1
x2

¶
. You should

then show

etB =

µ
cos(tA) sin(tA)

A−A sin(tA) cos(tA)
¶

where

A sin(tA) :=
∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2(n+1).

Exercise 15.10 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 15.9, but now consider the ODE,

ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (15.32)

where f ∈ C(R,X). Show the unique solution to Eq. (15.32) is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0 +

Z t

0

sin((t− τ)A)

A
f(τ)dτ (15.33)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (15.33) from Exercise 8.22 and the comments in
Remark 15.20.
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Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 16.1 (ε, O, and o notation) Let 0 ∈ U ⊂o X, and f : U → Y
be a function. We will write:

1. f(x) = ε(x) if limx→0 kf(x)k = 0.
2. f(x) = O(x) if there are constants C < ∞ and r > 0 such that
kf(x)k ≤ Ckxk for all x ∈ B(0, r). This is equivalent to the condition
that lim supx→0

¡kxk−1kf(x)k¢ <∞, where

lim sup
x→0

kf(x)k
kxk := lim

r↓0
sup{kf(x)k : 0 < kxk ≤ r}.

3. f(x) = o(x) if f(x) = ε(x)O(x), i.e. limx→0 kf(x)k/kxk = 0.
Example 16.2. Here are some examples of properties of these symbols.

1. A function f : U ⊂o X → Y is continuous at x0 ∈ U if f(x0 + h) =
f(x0) + ε(h).

2. If f(x) = ε(x) and g(x) = ε(x) then f(x) + g(x) = ε(x).
Now let g : Y → Z be another function where Z is another Banach space.

3. If f(x) = O(x) and g(y) = o(y) then g ◦ f(x) = o(x).
4. If f(x) = ε(x) and g(y) = ε(y) then g ◦ f(x) = ε(x).

16.1 The Differential

Definition 16.3. A function f : U ⊂o X → Y is differentiable at x0 ∈ U
if there exists a linear transformation Λ ∈ L(X,Y ) such that

f(x0 + h)− f(x0)− Λh = o(h). (16.1)

We denote Λ by f 0(x0) or Df(x0) if it exists. As with continuity, f is dif-
ferentiable on U if f is differentiable at all points in U.
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Remark 16.4. The linear transformation Λ in Definition 16.3 is necessarily
unique. Indeed if Λ1 is another linear transformation such that Eq. (16.1)
holds with Λ replaced by Λ1, then

(Λ− Λ1)h = o(h),

i.e.

lim sup
h→0

k(Λ− Λ1)hk
khk = 0.

On the other hand, by definition of the operator norm,

lim sup
h→0

k(Λ− Λ1)hk
khk = kΛ− Λ1k.

The last two equations show that Λ = Λ1.

Exercise 16.1. Show that a function f : (a, b) → X is a differentiable at
t ∈ (a, b) in the sense of Definition 8.8 iff it is differentiable in the sense of
Definition 16.3. Also show Df(t)v = vḟ(t) for all v ∈ R.
Example 16.5. If T ∈ L (X,Y ) and x, h ∈ X, then

T (x+ h)− T (x)− Th = 0

which shows T 0 (x) = T for all x ∈ X.

Example 16.6. Assume that GL(X,Y ) is non-empty. Then by Corollary 7.20,
GL(X,Y ) is an open subset of L(X,Y ) and the inverse map f : GL(X,Y )→
GL(Y,X), defined by f(A) := A−1, is continuous. We will now show that f
is differentiable and

f 0(A)B = −A−1BA−1 for all B ∈ L(X,Y ).

This is a consequence of the identity,

f(A+H)− f(A) = (A+H)−1 (A− (A+H))A−1 = −(A+H)−1HA−1

which may be used to find the estimate,°°f(A+H)− f(A) +A−1HA−1
°° = °°£A−1 − (A+H)−1

¤
HA−1

°°
≤ °°A−1 − (A+H)−1

°° kHk°°A−1°°
≤ kA−1k3 kHk2
1− kA−1k kHk = O

³
kHk2

´
wherein we have used the bound in Eq. (7.8) of Corollary 7.20 for the last
inequality.
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16.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.

Theorem 16.7. The differential D has the following properties:

1. Linearity: D is linear, i.e. D(f + λg) = Df + λDg.
2. Product Rule: If f : U ⊂o X → Y and A : U ⊂o X → L(X,Z) are
differentiable at x0 then so is x→ (Af)(x) := A(x)f(x) and

D(Af)(x0)h = (DA(x0)h)f(x0) +A(x0)Df(x0)h.

3. Chain Rule: If f : U ⊂o X → V ⊂o Y is differentiable at x0 ∈ U, and
g : V ⊂o Y → Z is differentiable at y0 := f(x0), then g◦f is differentiable
at x0 and (g ◦ f)0(x0) = g0(y0)f 0(x0).

4. Converse Chain Rule: Suppose that f : U ⊂o X → V ⊂o Y is contin-
uous at x0 ∈ U, g : V ⊂o Y → Z is differentiable y0 := f(ho), g

0(y0) is
invertible, and g ◦ f is differentiable at x0, then f is differentiable at x0
and

f 0(x0) := [g0(x0)]−1(g ◦ f)0(x0). (16.2)

Proof. Linearity. Let f, g : U ⊂o X → Y be two functions which are
differentiable at x0 ∈ U and λ ∈ R, then

(f + λg)(x0 + h)

= f(x0) +Df(x0)h+ o(h) + λ(g(x0) +Dg(x0)h+ o(h)

= (f + λg)(x0) + (Df(x0) + λDg(x0))h+ o(h),

which implies that (f + λg) is differentiable at x0 and that

D(f + λg)(x0) = Df(x0) + λDg(x0).

Product Rule. The computation,

A(x0 + h)f(x0 + h)

= (A(x0) +DA(x0)h+ o(h))(f(x0) + f 0(x0)h+ o(h))

= A(x0)f(x0) +A(x0)f
0(x0)h+ [DA(x0)h]f(x0) + o(h),

verifies the product rule holds. This may also be considered as a special case
of Proposition 16.9. Chain Rule. Using f(x0 + h) − f(x0) = O(h) (see Eq.
(16.1)) and o(O(h)) = o(h),

(g◦f)(x0 + h)

= g(f(x0)) + g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g(f(x0)) + g0(f(x0))(Df(x0)x0 + o(h)) + o(f(x0 + h)− f(x0)

= g(f(x0)) + g0(f(x0))Df(x0)h+ o(h).
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Converse Chain Rule. Since g is differentiable at y0 = f(x0) and g0 (y0) is
invertible,

g(f(x0 + h))− g(f(x0))

= g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g0(f(x0)) [f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))] .

And since g ◦ f is differentiable at x0,
(g ◦ f)(x0 + h)− g(f(x0)) = (g ◦ f)0(x0)h+ o(h).

Comparing these two equations shows that

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g0(f(x0))−1 [(g ◦ f)0(x0)h+ o(h)]

which is equivalent to

f(x0 + h)− f(x0) + o(f(x0 + h)− f(x0))

= g0(f(x0))−1 [(g ◦ f)0(x0)h+ o(h)]

= g0(f(x0))−1{(g ◦ f)0(x0)h+ o(h)− o(f(x0 + h)− f(x0))}
= g0(f(x0))−1(g ◦ f)0(x0)h+ o(h) + o(f(x0 + h)− f(x0)). (16.3)

Using the continuity of f, f(x0 + h)− f(x0) is close to 0 if h is close to zero,
and hence

ko(f(x0 + h)− f(x0))k ≤ 1
2
kf(x0 + h)− f(x0)k (16.4)

for all h sufficiently close to 0. (We may replace 1
2 by any number α > 0

above.) Taking the norm of both sides of Eq. (16.3) and making use of Eq.
(16.4) shows, for h close to 0, that

kf(x0 + h)− f(x0)k
≤ kg0(f(x0))−1(g ◦ f)0(x0)kkhk+ o(khk) + 1

2
kf(x0 + h)− f(x0)k.

Solving for kf(x0 + h)− f(x0)k in this last equation shows that
f(x0 + h)− f(x0) = O(h). (16.5)

(This is an improvement, since the continuity of f only guaranteed that f(x0+
h) − f(x0) = ε(h).) Because of Eq. (16.5), we now know that o(f(x0 + h) −
f(x0)) = o(h), which combined with Eq. (16.3) shows that

f(x0 + h)− f(x0) = g0(f(x0))−1(g ◦ f)0(x0)h+ o(h),

i.e. f is differentiable at x0 and f 0(x0) = g0(f(x0))−1(g ◦ f)0(x0).
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Corollary 16.8 (Chain Rule). Suppose that σ : (a, b)→ U ⊂o X is differ-
entiable at t ∈ (a, b) and f : U ⊂o X → Y is differentiable at σ(t) ∈ U. Then
f ◦ σ is differentiable at t and

d(f ◦ σ)(t)/dt = f 0(σ(t))σ̇(t).

Proposition 16.9 (Product Rule II). Suppose that X := X1 × · · · × Xn

with each Xi being a Banach space and T : X1×· · ·×Xn → Y is a multilinear
map, i.e.

xi ∈ Xi → T (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ Y

is linear when x1, . . . , xi−1, xi+1, . . . , xn are held fixed. Then the following are
equivalent:

1. T is continuous.
2. T is continuous at 0 ∈ X.
3. There exists a constant C <∞ such that

kT (x)kY ≤ C
nY
i=1

kxikXi
(16.6)

for all x = (x1, . . . , xn) ∈ X.
4. T is differentiable at all x ∈ X1 × · · · ×Xn.

Moreover if T the differential of T is given by

T 0 (x)h =
nX
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn) (16.7)

where h = (h1, . . . , hn) ∈ X.

Proof. Let us equip X with the norm

kxkX := max
©kxikXi

ª
.

If T is continuous then T is continuous at 0. If T is continuous at 0, using
T (0) = 0, there exists a δ > 0 such that kT (x)kY ≤ 1 whenever kxkX ≤ δ.

Now if x ∈ X is arbitrary, let x0 := δ
³
kx1k−1X1

x1, . . . , kxnk−1Xn
xn

´
. Then

kx0kX ≤ δ and hence°°°°°
Ã
δn

nY
i=1

kxik−1Xi

!
T (x1, . . . , xn)

°°°°°
Y

= kT (x0)k ≤ 1

from which Eq. (16.6) follows with C = δ−n.
Now suppose that Eq. (16.6) holds. For x, h ∈ X and ε ∈ {0, 1}n let

|ε| =Pn
i=1 εi and
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xε (h) := ((1− ε1)x1 + ε1h1, . . . , (1− εn)xn + εnhn) ∈ X.

By the multi-linearity of T,

T (x+ h) = T (x1 + h1, . . . , xn + hn) =
X

ε∈{0,1}n
T (xε (h))

= T (x) +
nX
i=1

T (x1, . . . , xi−1, hi, xi+1, . . . , xn)

+
X

ε∈{0,1}n:|ε|≥2
T (xε (h)) . (16.8)

From Eq. (16.6), °°°°°°
X

ε∈{0,1}n:|ε|≥2
T (xε (h))

°°°°°° = O
³
khk2

´
,

and so it follows from Eq. (16.8) that T 0 (x) exists and is given by Eq. (16.7).
This completes the proof since it is trivial to check that T being differentiable
at x ∈ X implies continuity of T at x ∈ X.

Exercise 16.2. Let det : L (Rn) → R be the determinant function on n× n
matrices and for A ∈ L ( 6 Rn) we will let Ai denote the ith — column of A and
write A = (A1|A2| . . . |An) .

1. Show det0 (A) exists for all A ∈ L ( 6 Rn) and
0
det (A)H =

nX
i=1

det (A1| . . . |Ai−1|Hi|Ai+1| . . . |An) (16.9)

for all H ∈ L (Rn) . Hint: recall that det (A) is a multilinear function of
its columns.

2. Use Eq. (16.9) along with basic properties of the determinant to show
det0 (I)H = tr(H).

3. Suppose now that A ∈ GL (Rn) , show

0
det (A)H = det (A) tr(A−1H).

Hint: Notice that det (A+H) = det (A) det
¡
I +A−1H

¢
.

4. If A ∈ L (Rn) , show det
¡
eA
¢
= etr(A). Hint: use the previous item and

Corollary 16.8 to show

d

dt
det

¡
etA
¢
= det

¡
etA
¢
tr(A).
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Definition 16.10. Let X and Y be Banach spaces and let L1(X,Y ) :=
L(X,Y ) and for k ≥ 2 let Lk(X,Y ) be defined inductively by Lk+1(X,Y ) =
L(X,Lk(X,Y )). For example L2(X,Y ) = L(X,L(X,Y )) and L3(X,Y ) =
L (X,L(X,L(X,Y ))) .

Suppose f : U ⊂o X → Y is a function. If f is differentiable on U, then it
makes sense to ask if f 0 = Df : U → L(X,Y ) = L1(X,Y ) is differentiable. If
Df is differentiable on U then f 00 = D2f := DDf : U → L2(X,Y ). Similarly
we define f (n) = Dnf : U → Ln(X,Y ) inductively.

Definition 16.11. Given k ∈ N, let Ck (U, Y ) denote those functions f :
U → Y such that f (j) := Djf : U → Lj (X,Y ) exists and is continuous for
j = 1, 2, . . . , k.

Example 16.12. Let us continue on with Example 16.6 but now let X = Y to
simplify the notation. So f : GL(X)→ GL(X) is the map f(A) = A−1 and

f 0(A) = −LA−1RA−1 , i.e. f
0 = −LfRf .

where LAB = AB and RAB = AB for all A,B ∈ L(X). As the reader may
easily check, the maps

A ∈ L(X)→ LA, RA ∈ L(L(X))

are linear and bounded. So by the chain and the product rule we find f 00(A)
exists for all A ∈ L(X) and

f 00(A)B = −Lf 0(A)BRf − LfRf 0(A)B.

More explicitly

[f 00(A)B]C = A−1BA−1CA−1 +A−1CA−1BA−1. (16.10)

Working inductively one shows f : GL(X)→ GL(X) defined by f(A) := A−1

is C∞.

16.3 Partial Derivatives

Definition 16.13 (Partial or Directional Derivative). Let f : U ⊂o X →
Y be a function, x0 ∈ U, and v ∈ X. We say that f is differentiable at x0 in
the direction v iff d

dt |0(f(x0 + tv)) =: (∂vf)(x0) exists. We call (∂vf)(x0) the
directional or partial derivative of f at x0 in the direction v.

Notice that if f is differentiable at x0, then ∂vf(x0) exists and is equal to
f 0(x0)v, see Corollary 16.8.
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Proposition 16.14. Let f : U ⊂o X → Y be a continuous function and
D ⊂ X be a dense subspace of X. Assume ∂vf(x) exists for all x ∈ U and
v ∈ D, and there exists a continuous function A : U → L(X,Y ) such that
∂vf(x) = A(x)v for all v ∈ D and x ∈ U ∩ D. Then f ∈ C1(U, Y ) and
Df = A.

Proof. Let x0 ∈ U, ε > 0 such that B(x0, 2ε) ⊂ U andM := sup{kA(x)k :
x ∈ B(x0, 2ε)} < ∞1. For x ∈ B(x0, ε) ∩ D and v ∈ D ∩ B(0, ε), by the
fundamental theorem of calculus,

f(x+ v)− f(x) =

Z 1

0

df(x+ tv)

dt
dt

=

Z 1

0

(∂vf)(x+ tv) dt =

Z 1

0

A(x+ tv) v dt. (16.11)

For general x ∈ B(x0, ε) and v ∈ B(0, ε), choose xn ∈ B(x0, ε) ∩ D and
vn ∈ D ∩B(0, ε) such that xn → x and vn → v. Then

f(xn + vn)− f(xn) =

Z 1

0

A(xn + tvn) vn dt (16.12)

holds for all n. The left side of this last equation tends to f(x+ v)− f(x) by
the continuity of f. For the right side of Eq. (16.12) we have

k
Z 1

0

A(x+ tv) v dt−
Z 1

0

A(xn + tvn) vn dtk

≤
Z 1

0

kA(x+ tv)−A(xn + tvn) kkvk dt+Mkv − vnk.

It now follows by the continuity of A, the fact that kA(x+tv)−A(xn+tvn) k ≤
M, and the dominated convergence theorem that right side of Eq. (16.12)
converges to

R 1
0
A(x+ tv) v dt. Hence Eq. (16.11) is valid for all x ∈ B(x0, ε)

and v ∈ B(0, ε). We also see that

f(x+ v)− f(x)−A(x)v = ε(v)v, (16.13)

where ε(v) :=
R 1
0
[A(x+ tv) −A(x)] dt. Now

1 It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not sufficient to choose sufficiently small so that
B(x0, 2 ) ⊂ U. Here is a counter example. Let X ≡ H be a Hilbert space, {en}∞n=1
be an orthonormal set. Define f(x) ≡P∞

n=1 nφ(kx− enk), where φ is any contin-
uous function on R such that φ(0) = 1 and φ is supported in (−1, 1). Notice that
ken−emk2 = 2 for all m 6= n, so that ken−emk =

√
2. Using this fact it is rather

easy to check that for any x0 ∈ H, there is an > 0 such that for all x ∈ B(x0, ),
only one term in the sum defining f is non-zero. Hence, f is continuous. However,
f(en) = n→∞ as n→∞.
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kε(v)k ≤
Z 1

0

kA(x+ tv) −A(x)k dt
≤ max

t∈[0,1]
kA(x+ tv) −A(x)k → 0 as v → 0,

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x).

Corollary 16.15. Suppose now that X = Rd, f : U ⊂o X → Y be a contin-
uous function such that ∂if(x) := ∂eif (x) exists and is continuous on U for
i = 1, 2, . . . , d, where {ei}di=1 is the standard basis for Rd. Then f ∈ C1(U, Y )
and Df (x) ei = ∂if (x) for all i.

Proof. For x ∈ U, let A (x) : Rd → Y be the unique linear map such that
A (x) ei = ∂if (x) for i = 1, 2, . . . , d. Then A : U → L(Rd, Y ) is a continuous
map. Now let v ∈ Rd and v(i) := (v1, v2, . . . , vi, 0, . . . , 0) for i = 1, 2, . . . , d and
v(0) := 0. Then for t ∈ R near 0, using the fundamental theorem of calculus
and the definition of ∂if (x) ,

f (x+ tv)− f (x) =
dX
i=1

h
f
³
x+ tv(i)

´
− f

³
x+ tv(i−1)

´i
=

dX
i=1

Z 1

0

d

ds
f
³
x+ tv(i−1) + stviei

´
ds

=
dX
i=1

tvi

Z 1

0

∂if
³
x+ tv(i−1) + stviei

´
ds

=
dX
i=1

tvi

Z 1

0

A
³
x+ tv(i−1) + stviei

´
eids.

Using the continuity of A, it now follows that

lim
t→0

f (x+ tv)− f (x)

t
=

dX
i=1

vi lim
t→0

Z 1

0

A
³
x+ tv(i−1) + stviei

´
eids

=
dX
i=1

vi

Z 1

0

A (x) eids = A (x) v

which shows ∂vf (x) exists and ∂vf (x) = A (x) v. The result now follows from
an application of Proposition 16.14.

16.4 Higher Order Derivatives

It is somewhat inconvenient to work with the Banach spaces Lk(X,Y ) in De-
finition 16.10. For this reason we will introduce an isomorphic Banach space,
Mk(X,Y ).
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Definition 16.16. For k ∈ {1, 2, 3, . . .}, let Mk(X,Y ) denote the set of func-
tions f : Xk → Y such that

1. For i ∈ {1, 2, . . . , k}, v ∈ X → fhv1, v2, . . . , vi−1, v, vi+1, . . . , vki ∈ Y is
linear 2 for all {vi}ni=1 ⊂ X.

2. The norm kfkMk(X,Y ) should be finite, where

kfkMk(X,Y ) := sup{
kfhv1, v2, . . . , vkikY
kv1kkv2k · · · kvkk : {vi}ki=1 ⊂ X \ {0}}.

Lemma 16.17. There are linear operators jk : Lk(X,Y ) → Mk(X,Y )
defined inductively as follows: j1 = IdL(X,Y ) (notice that M1(X,Y ) =
L1(X,Y ) = L(X,Y )) and

(jk+1A)hv0, v1, . . . , vki = (jk(Av0))hv1, v2, . . . , vki ∀vi ∈ X.

(Notice that Av0 ∈ Lk(X,Y ).) Moreover, the maps jk are isometric isomor-
phisms.

Proof. To get a feeling for what jk is let us write out j2 and j3 explicitly.
If A ∈ L2(X,Y ) = L(X,L(X,Y )), then (j2A)hv1, v2i = (Av1)v2 and if A ∈
L3(X,Y ) = L(X,L(X,L(X,Y ))), (j3A)hv1, v2, v3i = ((Av1)v2)v3 for all vi ∈
X. It is easily checked that jk is linear for all k.We will now show by induction
that jk is an isometry and in particular that jk is injective. Clearly this is true
if k = 1 since j1 is the identity map. For A ∈ Lk+1(X,Y ),

kjk+1AkMk+1(X,Y )

:= sup{k(jk(Av0))hv1, v2, . . . , vkikYkv0kkv1kkv2k · · · kvkk : {vi}ki=0 ⊂ X \ {0}}

= sup{k(jk(Av0))kMk(X,Y )

kv0k : v0 ∈ X \ {0}}

= sup{kAv0kLk(X,Y )kv0k : v0 ∈ X \ {0}}
= kAkL(X,Lk(X,Y )) := kAkLk+1(X,Y ),

wherein the second to last inequality we have used the induction hypothesis.
This shows that jk+1 is an isometry provided jk is an isometry. To finish the
proof it suffices to show that jk is surjective for all k. Again this is true for
k = 1. Suppose that jk is invertible for some k ≥ 1. Given f ∈Mk+1(X,Y ) we
must produce A ∈ Lk+1(X,Y ) = L(X,Lk(X,Y )) such that jk+1A = f. If such
an equation is to hold, then for v0 ∈ X, we would have jk(Av0) = fhv0, · · · i.
That is Av0 = j−1k (fhv0, · · · i). It is easily checked that A so defined is linear,
bounded, and jk+1A = f.
From now on we will identify Lk with Mk without further mention. In

particular, we will view Dkf as function on U with values in Mk(X,Y ).

2 I will routinely write fhv1, v2, . . . , vki rather than f(v1, v2, . . . , vk) when the func-
tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Theorem 16.18 (Differentiability). Suppose k ∈ {1, 2, . . .} and D is
a dense subspace of X, f : U ⊂o X → Y is a function such that
(∂v1∂v2 · · · ∂vlf)(x) exists for all x ∈ D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k.
Further assume there exists continuous functions Al : U ⊂o X → Ml(X,Y )
such that such that (∂v1∂v2 · · · ∂vlf)(x) = Al(x)hv1, v2, . . . , vli for all x ∈
D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k. Then Dlf(x) exists and is equal
to Al(x) for all x ∈ U and l = 1, 2, . . . , k.

Proof. We will prove the theorem by induction on k. We have already
proved the theorem when k = 1, see Proposition 16.14. Now suppose that
k > 1 and that the statement of the theorem holds when k is replaced by k−1.
Hence we know that Dlf(x) = Al(x) for all x ∈ U and l = 1, 2, . . . , k− 1. We
are also given that

(∂v1∂v2 · · ·∂vkf)(x) = Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D. (16.14)

Now we may write (∂v2 · · · ∂vkf)(x) as (Dk−1f)(x)hv2, v3, . . . , vki so that Eq.
(16.14) may be written as

∂v1(D
k−1f)(x)hv2, v3, . . . , vki)

= Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D. (16.15)

So by the fundamental theorem of calculus, we have that

((Dk−1f)(x+ v1)− (Dk−1f)(x))hv2, v3, . . . , vki

=

Z 1

0

Ak(x+ tv1)hv1, v2, . . . , vki dt (16.16)

for all x ∈ U ∩ D and {vi} ⊂ D with v1 sufficiently small. By the same
argument given in the proof of Proposition 16.14, Eq. (16.16) remains valid
for all x ∈ U and {vi} ⊂ X with v1 sufficiently small. We may write this last
equation alternatively as,

(Dk−1f)(x+ v1)− (Dk−1f)(x) =
Z 1

0

Ak(x+ tv1)hv1, · · · i dt. (16.17)

Hence

(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)hv1, · · · i

=

Z 1

0

[Ak(x+ tv1)−Ak(x)]hv1, · · · i dt

from which we get the estimate,

k(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)hv1, · · · ik ≤ ε(v1)kv1k (16.18)

where ε(v1) :=
R 1
0
kAk(x + tv1) − Ak(x)k dt. Notice by the continuity of Ak

that ε(v1) → 0 as v1 → 0. Thus it follow from Eq. (16.18) that Dk−1f is
differentiable and that (Dkf)(x) = Ak(x).
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Example 16.19. Let f : GL(X,Y ) → GL(Y,X) be defined by f(A) := A−1.
We assume that GL(X,Y ) is not empty. Then f is infinitely differentiable and

(Dkf)(A)hV1, V2, . . . , Vki
= (−1)k

X
σ

{B−1Vσ(1)B−1Vσ(2)B−1 · · ·B−1Vσ(k)B−1}, (16.19)

where sum is over all permutations of σ of {1, 2, . . . , k}.
Let me check Eq. (16.19) in the case that k = 2. Notice that we have

already shown that (∂V1f)(B) = Df(B)V1 = −B−1V1B−1. Using the product
rule we find that

(∂V2∂V1f)(B) = B−1V2B−1V1B−1 +B−1V1B−1V2B−1 =: A2(B)hV1, V2i.

Notice that kA2(B)hV1, V2ik ≤ 2kB−1k3kV1k · kV2k, so that kA2(B)k ≤
2kB−1k3 <∞. Hence A2 : GL(X,Y )→M2(L(X,Y ), L(Y,X)). Also

k(A2(B)−A2(C))hV1, V2ik ≤ 2kB−1V2B−1V1B−1 − C−1V2C−1V1C−1k
≤ 2kB−1V2B−1V1B−1 −B−1V2B−1V1C−1k
+ 2kB−1V2B−1V1C−1 −B−1V2C−1V1C−1k
+ 2kB−1V2C−1V1C−1 − C−1V2C−1V1C−1k

≤ 2kB−1k2kV2kkV1kkB−1 − C−1k
+ 2kB−1kkC−1kkV2kkV1kkB−1 − C−1k
+ 2kC−1k2kV2kkV1kkB−1 − C−1k.

This shows that

kA2(B)−A2(C)k ≤ 2kB−1 − C−1k{kB−1k2 + kB−1kkC−1k+ kC−1k2}.

Since B → B−1 is differentiable and hence continuous, it follows that A2(B)
is also continuous in B. Hence by Theorem 16.18 D2f(A) exists and is given
as in Eq. (16.19)

Example 16.20. Suppose that f : R → R is a C∞— function and F (x) :=R 1
0
f(x(t)) dt for x ∈ X := C([0, 1],R) equipped with the norm kxk :=

maxt∈[0,1] |x(t)|. Then F : X → R is also infinitely differentiable and

(DkF )(x)hv1, v2, . . . , vki =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt, (16.20)

for all x ∈ X and {vi} ⊂ X.

To verify this example, notice that
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(∂vF )(x) :=
d

ds
|0F (x+ sv) =

d

ds
|0
Z 1

0

f(x(t) + sv(t)) dt

=

Z 1

0

d

ds
|0f(x(t) + sv(t)) dt =

Z 1

0

f 0(x(t))v(t) dt.

Similar computations show that

(∂v1∂v2 · · · ∂vkf)(x) =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt =: Ak(x)hv1, v2, . . . , vki.

Now for x, y ∈ X,

|Ak(x)hv1, v2, . . . , vki−Ak(y)hv1, v2, . . . , vki|

≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))| · |v1(t) · · · vk(t) |dt

≤
kY
i=1

kvik
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt,

which shows that

kAk(x)−Ak(y)k ≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt.

This last expression is easily seen to go to zero as y → x in X. Hence Ak is
continuous. Thus we may apply Theorem 16.18 to conclude that Eq. (16.20)
is valid.

16.5 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, R > 0, U = B = B(0, R) ⊂ X
and ε : U → X be a continuous function such that ε (0) = 0. Our immedi-
ate goal is to give a sufficient condition on ε so that F (x) := x + ε(x) is a
homeomorphism from U to F (U) with F (U) being an open subset of X. Let’s
start by looking at the one dimensional case first. So for the moment assume
that X = R, U = (−1, 1), and ε : U → R is C1. Then F will be injective
iff F is either strictly increasing or decreasing. Since we are thinking that F
is a “small” perturbation of the identity function we will assume that F is
strictly increasing, i.e. F 0 = 1+ ε0 > 0. This positivity condition is not so eas-
ily interpreted for operators on a Banach space. However the condition that
|ε0| ≤ α < 1 is easily interpreted in the Banach space setting and it implies
1 + ε0 > 0.

Lemma 16.21. Suppose that U = B = B(0, R) (R > 0) is a ball in X and
ε : B → X is a C1 function such that kDεk ≤ α <∞ on U. Then

kε(x)− ε(y)k ≤ αkx− yk for all x, y ∈ U. (16.21)
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Proof. By the fundamental theorem of calculus and the chain rule:

ε(y)− ε(x) =

Z 1

0

d

dt
ε(x+ t(y − x))dt

=

Z 1

0

[Dε(x+ t(y − x))](y − x)dt.

Therefore, by the triangle inequality and the assumption that kDε(x)k ≤ α
on B,

kε(y)− ε(x)k ≤
Z 1

0

kDε(x+ t(y − x))kdt · k(y − x)k ≤ αk(y − x)k.

Remark 16.22. It is easily checked that if ε : U = B(0, R) → X is C1 and
satisfies (16.21) then kDεk ≤ α on U.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 16.23. Suppose α ∈ (0, 1), R > 0, U = B(0, R) ⊂o X and
ε : U → X is a continuous function such that ε (0) = 0 and

kε(x)− ε(y)k ≤ αkx− yk ∀ x, y ∈ U. (16.22)

Then F : U → X defined by F (x) := x+ ε(x) for x ∈ U satisfies:

1. F is an injective map and G = F−1 : V := F (U)→ U is continuous.
2. If x0 ∈ U, z0 = F (x0) and r > 0 such the B(x0, r) ⊂ U, then

B(z0, (1− α)r) ⊂ F (B(x0, r)) ⊂ B(z0, (1 + α)r). (16.23)

In particular, for all r ≤ R,

B(0, (1− α) r) ⊂ F (B(0, r)) ⊂ B(0, (1 + α) r), (16.24)

see Figure 16.1 below.
3. V := F (U) is open subset of X and F : U → V is a homeomorphism.

Proof.

1. Using the definition of F and the estimate in Eq. (16.22),

kx− yk = k(F (x)− F (y))− (ε(x)− ε(y))k
≤ kF (x)− F (y)k+ kε(x)− ε(y)k
≤ kF (x)− F (y)k+ αk(x− y)k

for all x, y ∈ U. This implies
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( ( α) )

( ( α) )

( ( ))

Fig. 16.1. Nesting of F (B(x0, r)) between B(z0, (1− α)r) and B(z0, (1 + α)r).

kx− yk ≤ (1− α)−1kF (x)− F (y)k (16.25)

which shows F is injective on U and hence shows the inverse function
G = F−1 : V := F (U) → U is well defined. Moreover, replacing x, y in
Eq. (16.25) by G (x) and G (y) respectively with x, y ∈ V shows

kG (x)−G (y) k ≤ (1− α)−1kx− yk for all x, y ∈ V. (16.26)

Hence G is Lipschitz on V and hence continuous.
2. Let x0 ∈ U, r > 0 and z0 = F (x0) = x0 + ε(x0) be as in item 2. The
second inclusion in Eq. (16.23) follows from the simple computation:

kF (x0 + h)− z0k = kh+ ε (x0 + h)− ε (x0)k
≤ khk+ kε (x0 + h)− ε (x0)k
≤ (1 + α) khk < (1 + α) r

for all h ∈ B (0, r) . To prove the first inclusion in Eq. (16.23) we must
find, for every z ∈ B(z0, (1−α)r), an h ∈ B (0, r) such that z = F (x0 + h)
or equivalently an h ∈ B (0, r) solving

z − z0 = F (x0 + h)− F (x0) = h+ ε(x0 + h)− ε(x0).

Let k := z − z0 and for h ∈ B (0, r) , let δ (h) := ε(x0 + h)− ε(x0). With
this notation it suffices to show for each k ∈ B(z0, (1 − α)r) there exists
h ∈ B (0, r) such that k = h+ δ (h) . Notice that δ (0) = 0 and

kδ (h1)− δ (h2)k = kε(x0 + h1)− ε(x0 + h2)k ≤ α kh1 − h2k (16.27)

for all h1, h2 ∈ B (0, r) . We are now going to solve the equation k =
h+ δ (h) for h by the method of successive approximations starting with
h0 = 0 and then defining hn inductively by

hn+1 = k − δ (hn) . (16.28)

A simple induction argument using Eq. (16.27) shows that
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khn+1 − hnk ≤ αn kkk for all n ∈ N0
and in particular that

khNk =
°°°°°
N−1X
n=0

(hn+1 − hn)

°°°°° ≤
N−1X
n=0

khn+1 − hnk

≤
N−1X
n=0

αn kkk = 1− αN

1− α
kkk . (16.29)

Since kkk < (1− α) r, this implies that khNk < r for all N showing the
approximation procedure is well defined. Let

h := lim
N→∞

hn =
∞X
n=0

(hn+1 − hn) ∈ X

which exists since the sum in the previous equation is absolutely con-
vergent. Passing to the limit in Eqs. (16.29) and (16.28) shows that
khk ≤ (1 − α)−1 kkk < r and h = k − δ (h) , i.e. h ∈ B (0, r) solves
k = h+ δ (h) as desired.

3. Given x0 ∈ U, the first inclusion in Eq. (16.23) shows that z0 = F (x0) is
in the interior of F (U) . Since z0 ∈ F (U) was arbitrary, it follows that
V = F (U) is open. The continuity of the inverse function has already
been proved in item 1.

For the remainder of this section let X and Y be two Banach spaces,
U ⊂o X, k ≥ 1, and f ∈ Ck(U, Y ).

Lemma 16.24. Suppose x0 ∈ U, R > 0 is such that BX(x0, R) ⊂ U and
T : BX(x0, R)→ Y is a C1 — function such that T 0(x0) is invertible. Let

α (R) := sup
x∈BX(x0,R)

°°T 0(x0)−1T 0(x)− I
°°
L(X)

(16.30)

and ε ∈ C1
¡
BX(0, R),X

¢
be defined by

ε (h) = T 0(x0)−1 [T (x0 + h)− T (x0)]− h (16.31)

so that
T (x0 + h) = T (x0) + T 0(x0) (h+ ε(h)) . (16.32)

Then ε(h) = o(h) as h→ 0 and

kε(h0)− ε(h)k ≤ α (R) kh0 − hk for all h, h0 ∈ BX(0, R). (16.33)

If α (R) < 1 (which may be achieved by shrinking R if necessary), then T 0(x)
is invertible for all x ∈ BX(x0, R) and

sup
x∈BX(x0,R)

°°T 0(x)−1°°
L(Y,X)

≤ 1

1− α (R)

°°T 0(x0)−1°°L(Y,X) . (16.34)
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Proof. By definition of T 0 (x0) and using T 0 (x0)
−1 exists,

T (x0 + h)− T (x0) = T 0(x0)h+ o(h)

from which it follows that ε(h) = o(h). In fact by the fundamental theorem
of calculus,

ε(h) =

Z 1

0

¡
T 0(x0)−1T 0(x0 + th)− I

¢
hdt

but we will not use this here. Let h, h0 ∈ BX(0, R) and apply the fundamental
theorem of calculus to t→ T (x0 + t(h0 − h)) to conclude

ε(h0)− ε(h) = T 0(x0)−1 [T (x0 + h0)− T (x0 + h)]− (h0 − h)

=

·Z 1

0

¡
T 0(x0)−1T 0(x0 + t(h0 − h))− I

¢
dt

¸
(h0 − h).

Taking norms of this equation gives

kε(h0)− ε(h)k ≤
·Z 1

0

°°T 0(x0)−1T 0(x0 + t(h0 − h))− I
°° dt¸ kh0 − hk

≤ α (R) kh0 − hk
It only remains to prove Eq. (16.34), so suppose now that α (R) < 1. Then by
Proposition 7.19, T 0(x0)−1T 0(x) = I − ¡I − T 0(x0)−1T 0(x)

¢
is invertible and°°°£T 0(x0)−1T 0(x)¤−1°°° ≤ 1

1− α (R)
for all x ∈ BX(x0, R).

Since T 0(x) = T 0(x0)
£
T 0(x0)−1T 0(x)

¤
this implies T 0(x) is invertible and°°T 0(x)−1°° = °°°£T 0(x0)−1T 0(x)¤−1 T 0(x0)−1°°° ≤ 1

1− α (R)

°°T 0(x0)−1°°
for all x ∈ BX(x0, R).

Theorem 16.25 (Inverse Function Theorem). Suppose U ⊂o X, k ≥ 1
and T ∈ Ck(U, Y ) such that T 0(x) is invertible for all x ∈ U. Further assume
x0 ∈ U and R > 0 such that BX(x0, R) ⊂ U.

1. For all r ≤ R,

T (BX(x0, r)) ⊂ T (x0) + T 0 (x0)BX (0, (1 + α (r))r) . (16.35)

2. If we further assume that

α (R) := sup
x∈BX(x0,R)

°°T 0(x0)−1T 0(x)− I
°° < 1,

which may always be achieved by taking R sufficiently small, then

T (x0) + T 0 (x0)BX (0, (1− α (r))r) ⊂ T (BX(x0, r)) (16.36)

for all r ≤ R, see Figure 16.2.
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3. T : U → Y is an open mapping, in particular V := T (U) ⊂o Y.
4. Again if R is sufficiently small so that α (R) < 1, then T |BX(x0,R) :

BX(x0, R)→ T (BX(x0, R)) is invertible and T |−1BX(x0,R)
: T
¡
BX(x0, R)

¢→
BX(x0, R) is a Ck — map.

5. If T is injective, then T−1 : V → U is also a Ck — map and¡
T−1

¢0
(y) =

£
T 0(T−1(y))

¤−1
for all y ∈ V.

Fig. 16.2. The nesting of T (BX(x0, r)) between T (x0)+T 0 (x0)BX (0, (1− α (r))r)
andT (x0) + T 0 (x0)BX (0, (1 + α (r))r) .

Proof. Let ε ∈ C1
¡
BX(0, R),X

¢
be as defined in Eq. (16.31).

1. Using Eqs. (16.32) and (16.24),

T
¡
BX(x0, r)

¢
= T (x0) + T 0 (x0) (I + ε)

¡
BX (0, r)

¢
(16.37)

⊂ T (x0) + T 0 (x0)BX (0, (1 + α (r)) r)

which proves Eq. (16.35).
2. Now assume α (R) < 1, then by Eqs. (16.37) and (16.24),

T (x0) + T 0 (x0)BX (0, (1− α (r)) r)

⊂ T (x0) + T 0 (x0) (I + ε)
¡
BX (0, r)

¢
= T

¡
BX (x0, r)

¢
which proves Eq. (16.36).

3. Notice that h ∈ X → T (x0) + T 0 (x0)h ∈ Y is a homeomorphism. The
fact that T is an open map follows easily from Eq. (16.36) which shows
that T (x0) is interior of T (W ) for any W ⊂o X with x0 ∈W.

4. The fact that T |BX(x0,R) : B
X(x0, R) → T (BX(x0, R)) is invertible with

a continuous inverse follows from Eq. (16.32) and Proposition 16.23. It
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now follows from the converse to the chain rule, Theorem 16.7, that g :=
T |−1

BX(x0,R)
: T
¡
BX(x0, R)

¢→ BX(x0, R) is differentiable and

g0 (y) = [T 0 (g (y))]−1 for all y ∈ T
¡
BX(x0, R)

¢
.

This equation shows g is C1. Now suppose that k ≥ 2. Since T 0 ∈
Ck−1(B,L(X)) and i(A) := A−1 is a smooth map by Example 16.19,
g0 = i ◦ T 0 ◦ g is C1, i.e. g is C2. If k ≥ 2, we may use the same argument
to now show g is C3. Continuing this way inductively, we learn g is Ck.

5. Since differentiability and smoothness is local, the assertion in item 5.
follows directly from what has already been proved.

Theorem 16.26 (Implicit Function Theorem). Suppose that X, Y, and
W are three Banach spaces, k ≥ 1, A ⊂ X × Y is an open set, (x0, y0) is
a point in A, and f : A → W is a Ck — map such f(x0, y0) = 0. Assume
that D2f(x0, y0) := D(f(x0, ·))(y0) : Y → W is a bounded invertible linear
transformation. Then there is an open neighborhood U0 of x0 in X such that
for all connected open neighborhoods U of x0 contained in U0, there is a unique
continuous function u : U → Y such that u(x0) = yo, (x, u(x)) ∈ A and
f(x, u(x)) = 0 for all x ∈ U. Moreover u is necessarily Ck and

Du(x) = −D2f(x, u(x))
−1D1f(x, u(x)) for all x ∈ U. (16.38)

Proof. By replacing f by (x, y) → D2f(x0, y0)
−1f(x, y) if necessary, we

may assume with out loss of generality that W = Y and D2f(x0, y0) = IY .
Define F : A→ X×Y by F (x, y) := (x, f(x, y)) for all (x, y) ∈ A. Notice that

DF (x, y) =

·
I D1f(x, y)
0 D2f(x, y)

¸
which is invertible iff D2f(x, y) is invertible and if D2f(x, y) is invertible then

DF (x, y)−1 =
·
I −D1f(x, y)D2f(x, y)

−1

0 D2f(x, y)
−1

¸
.

Since D2f(x0, y0) = I is invertible, the inverse function theorem guarantees
that there exists a neighborhood U0 of x0 and V0 of y0 such that U0×V0 ⊂ A,
F (U0 × V0) is open in X × Y, F |(U0×V0) has a Ck—inverse which we call F−1.
Let π2(x, y) := y for all (x, y) ∈ X × Y and define Ck — function u0 on U0 by
u0(x) := π2 ◦ F−1(x, 0). Since F−1(x, 0) = (x̃, u0(x)) iff

(x, 0) = F (x̃, u0(x)) = (x̃, f(x̃, u0(x))),

it follows that x = x̃ and f(x, u0(x)) = 0. Thus

(x, u0(x)) = F−1(x, 0) ∈ U0 × V0 ⊂ A
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and f(x, u0(x)) = 0 for all x ∈ U0. Moreover, u0 is Ck being the composition
of the Ck— functions, x→ (x, 0), F−1, and π2. So if U ⊂ U0 is a connected set
containing x0, we may define u := u0|U to show the existence of the functions
u as described in the statement of the theorem. The only statement left to
prove is the uniqueness of such a function u. Suppose that u1 : U → Y is
another continuous function such that u1(x0) = y0, and (x, u1(x)) ∈ A and
f(x, u1(x)) = 0 for all x ∈ U. Let

O := {x ∈ U |u(x) = u1(x)} = {x ∈ U |u0(x) = u1(x)}.
Clearly O is a (relatively) closed subset of U which is not empty since x0 ∈ O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u1 = u0 on U. So suppose that x ∈ O,
i.e. u0(x) = u1(x). For x̃ near x ∈ U,

0 = 0− 0 = f(x̃, u0(x̃))− f(x̃, u1(x̃)) = R(x̃)(u1(x̃)− u0(x̃)) (16.39)

where

R(x̃) :=

Z 1

0

D2f((x̃, u0(x̃) + t(u1(x̃)− u0(x̃)))dt. (16.40)

From Eq. (16.40) and the continuity of u0 and u1, limx̃→xR(x̃) =
D2f(x, u0(x)) which is invertible.3 Thus R(x̃) is invertible for all x̃ sufficiently
close to x which combined with Eq. (16.39) implies that u1(x̃) = u0(x̃) for all
x̃ sufficiently close to x. Since x ∈ O was arbitrary, we have shown that O is
open.

16.6 Smooth Dependence of ODE’s on Initial
Conditions*

In this subsection, letX be a Banach space, U ⊂o X and J be an open interval
with 0 ∈ J.

Lemma 16.27. If Z ∈ C(J ×U,X) such that DxZ(t, x) exists for all (t, x) ∈
J × U and DxZ(t, x) ∈ C(J × U,X) then Z is locally Lipschitz in x, see
Definition 15.6.

Proof. Suppose I @@ J and x ∈ U. By the continuity of DZ, for every
t ∈ I there an open neighborhood Nt of t ∈ I and εt > 0 such that B(x, εt) ⊂
U and

sup {kDxZ(t
0, x0)k : (t0, x0) ∈ Nt ×B(x, εt)} <∞.

By the compactness of I, there exists a finite subset Λ ⊂ I such that I ⊂
∪t∈INt. Let ε(x, I) := min {εt : t ∈ Λ} and
3 Notice that DF (x, u0(x)) is invertible for all x ∈ U0 since F |U0×V0 has a C1

inverse. Therefore D2f(x, u0(x)) is also invertible for all x ∈ U0.
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K(x, I) := sup {kDZ(t, x0)k(t, x0) ∈ I ×B(x, ε(x, I))} <∞.

Then by the fundamental theorem of calculus and the triangle inequality,

kZ(t, x1)− Z(t, x0)k ≤
µZ 1

0

kDxZ(t, x0 + s(x1 − x0)k ds
¶
kx1 − x0k

≤ K(x, I)kx1 − x0k

for all x0, x1 ∈ B(x, ε(x, I)) and t ∈ I.

Theorem 16.28 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U ⊂o X, Z ∈ C(R × U,X) such that
DxZ ∈ C(R×U,X) and φ : D(Z) ⊂ R×X → X denote the maximal solution
operator to the ordinary differential equation

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U, (16.41)

see Notation 15.9 and Theorem 15.15. Then φ ∈ C1(D(Z), U), ∂tDxφ(t, x)
exists and is continuous for (t, x) ∈ D(Z) and Dxφ(t, x) satisfies the linear
differential equation,

d

dt
Dxφ(t, x) = [(DxZ) (t, φ(t, x))]Dxφ(t, x) with Dxφ(0, x) = IX (16.42)

for t ∈ Jx.

Proof. Let x0 ∈ U and J be an open interval such that 0 ∈ J ⊂ J̄ @@ Jx0 ,
y0 := y(·, x0)|J and

Oε := {y ∈ BC(J, U) : ky − y0k∞ < ε} ⊂o BC(J,X).

By Lemma 16.27, Z is locally Lipschitz and therefore Theorem 15.15 is ap-
plicable. By Eq. (15.23) of Theorem 15.15, there exists ε > 0 and δ > 0 such
that G : B(x0, δ)→ Oε defined by G(x) := φ(·, x)|J is continuous. By Lemma
16.29 below, for ε > 0 sufficiently small the function F : Oε → BC(J,X)
defined by

F (y) := y −
Z ·

0

Z(t, y(t))dt. (16.43)

is C1 and

DF (y)v = v −
Z ·

0

DyZ(t, y(t))v(t)dt. (16.44)

By the existence and uniqueness Theorem 8.21 for linear ordinary differen-
tial equations, DF (y) is invertible for any y ∈ BC(J, U). By the definition
of φ, F (G(x)) = h(x) for all x ∈ B(x0, δ) where h : X → BC(J,X) is de-
fined by h(x)(t) = x for all t ∈ J, i.e. h(x) is the constant path at x. Since
h is a bounded linear map, h is smooth and Dh(x) = h for all x ∈ X.
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We may now apply the converse to the chain rule in Theorem 16.7 to con-
cludeG ∈ C1 (B(x0, δ),O) andDG(x) = [DF (G(x))]−1Dh(x) or equivalently,
DF (G(x))DG(x) = h which in turn is equivalent to

Dxφ(t, x)−
Z t

0

[DZ(φ(τ, x)]Dxφ(τ, x) dτ = IX .

As usual this equation implies Dxφ(t, x) is differentiable in t, Dxφ(t, x) is
continuous in (t, x) and Dxφ(t, x) satisfies Eq. (16.42).

Lemma 16.29. Continuing the notation used in the proof of Theorem 16.28
and further let

f(y) :=

Z ·

0

Z(τ, y(τ)) dτ for y ∈ Oε.

Then f ∈ C1(Oε, Y ) and for all y ∈ Oε,

f 0(y)h =
Z ·

0

DxZ(τ, y(τ))h(τ) dτ =: Λyh.

Proof. Let h ∈ Y be sufficiently small and τ ∈ J, then by fundamental
theorem of calculus,

Z(τ,y(τ) + h(τ))− Z(τ, y(τ))

=

Z 1

0

[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]dr

and therefore,

f(y + h)− f(y)− Λyh(t)

=

Z t

0

[Z(τ, y(τ) + h(τ))− Z(τ, y(τ))−DxZ(τ, y(τ))h(τ) ] dτ

=

Z t

0

dτ

Z 1

0

dr[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]h(τ).

Therefore,
k(f(y + h)− f(y)− Λyh)k∞ ≤ khk∞δ(h) (16.45)

where

δ(h) :=

Z
J

dτ

Z 1

0

dr kDxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))k .

With the aide of Lemmas 16.27 and Lemma 15.7,

(r, τ, h) ∈ [0, 1]× J × Y → kDxZ(τ, y(τ) + rh(τ))k
is bounded for small h provided ε > 0 is sufficiently small. Thus it follows
from the dominated convergence theorem that δ(h)→ 0 as h→ 0 and hence
Eq. (16.45) implies f 0(y) exists and is given by Λy. Similarly,



16.7 Existence of Periodic Solutions 235

||f 0(y + h)− f 0(y)||op
≤
Z
J

kDxZ(τ, y(τ) + h(τ))−DxZ(τ, y(τ))k dτ → 0 as h→ 0

showing f 0 is continuous.

Remark 16.30. If Z ∈ Ck(U,X), then an inductive argument shows that
φ ∈ Ck(D(Z),X). For example if Z ∈ C2(U,X) then (y(t), u(t)) :=
(φ(t, x),Dxφ(t, x)) solves the ODE,

d

dt
(y(t), u(t)) = Z̃ ((y(t), u(t))) with (y(0), u(0)) = (x, IdX)

where Z̃ is the C1 — vector field defined by

Z̃ (x, u) = (Z(x),DxZ(x)u) .

Therefore Theorem 16.28 may be applied to this equation to deduce:D2
xφ(t, x)

and D2
xφ̇(t, x) exist and are continuous. We may now differentiate Eq. (16.42)

to find D2
xφ(t, x) satisfies the ODE,

d

dt
D2
xφ(t, x) = [

¡
∂Dxφ(t,x)DxZ

¢
(t, φ(t, x))]Dxφ(t, x)

+ [(DxZ) (t, φ(t, x))]D
2
xφ(t, x)

with D2
xφ(0, x) = 0.

16.7 Existence of Periodic Solutions

A detailed discussion of the inverse function theorem on Banach and Frechét
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper. In what follows we say f ∈ Ck

2π(R, (c, d)) if f ∈ Ck
2π(R, (c, d)) and f is

2π — periodic, i.e. f (x+ 2π) = f (x) for all x ∈ R.
Theorem 16.31 (Taken from Hamilton, p. 110.). Let p : U := (a, b) →
V := (c, d) be a smooth function with p0 > 0 on (a, b). For every g ∈
C∞2π(R, (c, d)) there exists a unique function y ∈ C∞2π(R, (a, b)) such that

ẏ(t) + p(y(t)) = g(t).

Proof. Let Ṽ := C02π(R, (c, d)) ⊂o C02π(R,R) and Ũ ⊂o C12π(R, (a, b)) be
given by

Ũ :=
©
y ∈ C12π(R,R) : a < y(t) < b & c < ẏ(t) + p(y(t)) < d ∀ tª .

The proof will be completed by showing P : Ũ → Ṽ defined by
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P (y)(t) = ẏ(t) + p(y(t)) for y ∈ Ũ and t ∈ R

is bijective. Note that if P (y) is smooth then so is y.
Step 1. The differential of P is given by P 0(y)h = ḣ+p0(y)h, see Exercise

16.8. We will now show that the linear mapping P 0(y) is invertible. Indeed let
f = p0(y) > 0, then the general solution to the Eq. ḣ+ fh = k is given by

h(t) = e−
R t
0
f(τ)dτh0 +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

where h0 is a constant. We wish to choose h0 so that h(2π) = h0, i.e. so that

h0

³
1− e−c(f)

´
=

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ

where

c(f) =

Z 2π

0

f(τ)dτ =

Z 2π

0

p0(y(τ))dτ > 0.

The unique solution h ∈ C12π(R,R) to P 0(y)h = k is given by

h(t) =
³
1− e−c(f)

´−1
e−

R t
0
f(τ)dτ

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

=
³
1− e−c(f)

´−1
e−

R t
0
f(s)ds

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ.

Therefore P 0(y) is invertible for all y. Hence by the inverse function Theorem
16.25, P : Ũ → Ṽ is an open mapping which is locally invertible.
Step 2. Let us now prove P : Ũ → Ṽ is injective. For this suppose

y1, y2 ∈ Ũ such that P (y1) = g = P (y2) and let z = y2 − y1. Since

ż(t) + p(y2(t))− p(y1(t)) = g(t)− g(t) = 0,

if tm ∈ R is point where z(tm) takes on its maximum, then ż(tm) = 0 and
hence

p(y2(tm))− p(y1(tm)) = 0.

Since p is increasing this implies y2(tm) = y1(tm) and hence z(tm) = 0. This
shows z(t) ≤ 0 for all t and a similar argument using a minimizer of z shows
z(t) ≥ 0 for all t. So we conclude y1 = y2.
Step 3. Let W := P (Ũ), we wish to show W = Ṽ . By step 1., we know

W is an open subset of Ṽ and since Ṽ is connected, to finish the proof it
suffices to show W is relatively closed in Ṽ . So suppose yj ∈ Ũ such that
gj := P (yj)→ g ∈ Ṽ .Wemust now show g ∈W, i.e. g = P (y) for some y ∈W.
If tm is a maximizer of yj , then ẏj(tm) = 0 and hence gj(tm) = p(yj(tm)) < d
and therefore yj(tm) < b because p is increasing. A similar argument works
for the minimizers then allows us to conclude Ranp ◦ yj) ⊂ Rangj) @@ (c, d)



16.8 Contraction Mapping Principle 237

for all j. Since gj is converging uniformly to g, there exists c < γ < δ < d
such that Ran(p ◦ yj) ⊂ Ran(gj) ⊂ [γ, δ] for all j. Again since p0 > 0,

Ran(yj) ⊂ p−1 ([γ, δ]) = [α, β] @@ (a, b) for all j.

In particular sup {|ẏj(t)| : t ∈ R and j} <∞ since

ẏj(t) = gj(t)− p(yj(t)) ⊂ [γ, δ]− [γ, δ] (16.46)

which is a compact subset of R. The Ascoli-Arzela Theorem 11.29 now allows
us to assume, by passing to a subsequence if necessary, that yj is converging
uniformly to y ∈ C02π(R, [α, β]). It now follows that

ẏj(t) = gj(t)− p(yj(t))→ g − p(y)

uniformly in t. Hence we concluded that y ∈ C12π(R,R)∩C02π(R, [α, β]), ẏj → y
and P (y) = g. This has proved that g ∈ W and hence that W is relatively
closed in Ṽ .

16.8 Contraction Mapping Principle

Some of the arguments uses in this chapter and in Chapter 15 may be ab-
stracted to a general principle of finding fixed points on a complete metric
space. This is the content of this chapter.

Theorem 16.32. Suppose that (X,ρ) is a complete metric space and S : X →
X is a contraction, i.e. there exists α ∈ (0, 1) such that ρ(S(x), S(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X, i.e. there
exists a unique point x ∈ X such that S(x) = x.

Proof. For uniqueness suppose that x and x0 are two fixed points of S,
then

ρ(x, x0) = ρ(S(x), S(x0)) ≤ αρ(x, x0).

Therefore (1− α)ρ(x, x0) ≤ 0 which implies that ρ(x, x0) = 0 since 1− α > 0.
Thus x = x0. For existence, let x0 ∈ X be any point in X and define xn ∈ X
inductively by xn+1 = S(xn) for n ≥ 0. We will show that x := limn→∞ xn
exists in X and because S is continuous this will imply,

x = lim
n→∞xn+1 = lim

n→∞S(xn) = S( lim
n→∞xn) = S(x),

showing x is a fixed point of S. So to finish the proof, because X is complete,
it suffices to show {xn}∞n=1 is a Cauchy sequence in X. An easy inductive
computation shows, for n ≥ 0, that

ρ(xn+1, xn) = ρ(S(xn), S(xn−1)) ≤ αρ(xn, xn−1) ≤ · · · ≤ αnρ(x1, x0).
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Another inductive argument using the triangle inequality shows, for m > n,
that,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xn) ≤ · · · ≤
m−1X
k=n

ρ(xk+1, xk).

Combining the last two inequalities gives (using again that α ∈ (0, 1)),

ρ(xm, xn) ≤
m−1X
k=n

αkρ(x1, x0) ≤ ρ(x1, x0)α
n
∞X
l=0

αl = ρ(x1, x0)
αn

1− α
.

This last equation shows that ρ(xm, xn)→ 0 as m,n →∞, i.e. {xn}∞n=0 is a
Cauchy sequence.

Corollary 16.33 (Contraction Mapping Principle II). Suppose that
(X, ρ) is a complete metric space and S : X → X is a continuous map such
that S(n) is a contraction for some n ∈ N. Here

S(n) :=

n timesz }| {
S ◦ S ◦ . . . ◦ S

and we are assuming there exists α ∈ (0, 1) such that ρ(S(n)(x), S(n)(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X.

Proof. Let T := S(n), then T : X → X is a contraction and hence T has
a unique fixed point x ∈ X. Since any fixed point of S is also a fixed point of
T, we see if S has a fixed point then it must be x. Now

T (S(x)) = S(n)(S(x)) = S(S(n)(x)) = S(T (x)) = S(x),

which shows that S(x) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = x. So we have shown that x is a fixed point
of S and this fixed point is unique.

Lemma 16.34. Suppose that (X, ρ) is a complete metric space, n ∈ N, Z is
a topological space, and α ∈ (0, 1). Suppose for each z ∈ Z there is a map
Sz : X → X with the following properties:

Contraction property ρ(S(n)z (x), S
(n)
z (y)) ≤ αρ(x, y) for all x, y ∈ X and z ∈

Z.
Continuity in z For each x ∈ X the map z ∈ Z → Sz(x) ∈ X is continuous.

By Corollary 16.33 above, for each z ∈ Z there is a unique fixed point
G(z) ∈ X of Sz.
Conclusion: The map G : Z → X is continuous.
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Proof. Let Tz := S
(n)
z . If z, w ∈ Z, then

ρ(G(z),G(w)) = ρ(Tz(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + ρ(Tw(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + αρ(G(z), G(w)).

Solving this inequality for ρ(G(z), G(w)) gives

ρ(G(z), G(w)) ≤ 1

1− α
ρ(Tz(G(z)), Tw(G(z))).

Since w → Tw(G(z)) is continuous it follows from the above equation that
G(w)→ G(z) as w→ z, i.e. G is continuous.

16.9 Exercises

Exercise 16.3. Suppose that A : R → L(X) is a continuous function and
V : R→ L(X) is the unique solution to the linear differential equation

V̇ (t) = A(t)V (t) with V (0) = I. (16.47)

Assuming that V (t) is invertible for all t ∈ R, show that V −1(t) := [V (t)]−1
must solve the differential equation

d

dt
V −1(t) = −V −1(t)A(t) with V −1(0) = I. (16.48)

See Exercise 8.13 as well.

Exercise 16.4 (Differential Equations with Parameters). LetW be an-
other Banach space, U × V ⊂o X × W and Z ∈ C1(U × V,X). For each
(x,w) ∈ U × V, let t ∈ Jx,w → φ(t, x, w) denote the maximal solution to the
ODE

ẏ(t) = Z(y(t), w) with y(0) = x (16.49)

and
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}

as in Exercise 15.8.

1. Prove that φ is C1 and that Dwφ(t, x, w) solves the differential equation:

d

dt
Dwφ(t, x, w) = (DxZ)(φ(t, x, w), w)Dwφ(t, x,w)+(DwZ)(φ(t, x, w), w)

with Dwφ(0, x, w) = 0 ∈ L(W,X). Hint: See the hint for Exercise 15.8
with the reference to Theorem 15.15 being replace by Theorem 16.28.
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2. Also show with the aid of Duhamel’s principle (Exercise 8.23) and Theo-
rem 16.28 that

Dwφ(t, x, w) = Dxφ(t, x, w)

Z t

0

Dxφ(τ, x, w)
−1(DwZ)(φ(τ, x, w), w)dτ

Exercise 16.5. (Differential of eA) Let f : L(X) → GL(X) be the expo-
nential function f(A) = eA. Prove that f is differentiable and that

Df(A)B =

Z 1

0

e(1−t)ABetA dt. (16.50)

Hint: Let B ∈ L(X) and define w(t, s) = et(A+sB) for all t, s ∈ R. Notice that

dw(t, s)/dt = (A+ sB)w(t, s) with w(0, s) = I ∈ L(X). (16.51)

Use Exercise 16.4 to conclude that w is C1 and that w0(t, 0) := dw(t, s)/ds|s=0
satisfies the differential equation,

d

dt
w0(t, 0) = Aw0(t, 0) +BetA with w(0, 0) = 0 ∈ L(X). (16.52)

Solve this equation by Duhamel’s principle (Exercise 8.23) and then apply
Proposition 16.14 to conclude that f is differentiable with differential given
by Eq. (16.50).

Exercise 16.6 (Local ODE Existence). Let Sx be defined as in Eq. (15.15)
from the proof of Theorem 15.4. Verify that Sx satisfies the hypothesis of
Corollary 16.33. In particular we could have used Corollary 16.33 to prove
Theorem 15.4.

Exercise 16.7 (Local ODE Existence Again). Let J = (−1, 1) , Z ∈
C1(X,X), Y := BC(J,X) and for y ∈ Y and s ∈ J let ys ∈ Y be defined by
ys(t) := y(st). Use the following outline to prove the ODE

ẏ(t) = Z(y(t)) with y(0) = x (16.53)

has a unique solution for small t and this solution is C1 in x.

1. If y solves Eq. (16.53) then ys solves

ẏs(t) = sZ(ys(t)) with ys(0) = x

or equivalently

ys(t) = x+ s

Z t

0

Z(ys(τ))dτ. (16.54)

Notice that when s = 0, the unique solution to this equation is y0(t) = x.
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2. Let F : J × Y → J × Y be defined by

F (s, y) := (s, y(t)− s

Z t

0

Z(y(τ))dτ).

Show the differential of F is given by

F 0(s, y)(a, v) =
µ
a, t→ v(t)− s

Z t

0

Z0(y(τ))v(τ)dτ − a

Z ·

0

Z(y(τ))dτ

¶
.

3. Verify F 0(0, y) : R×Y → R×Y is invertible for all y ∈ Y and notice that
F (0, y) = (0, y).

4. For x ∈ X, let Cx ∈ Y be the constant path at x, i.e. Cx(t) = x for all
t ∈ J. Use the inverse function Theorem 16.25 to conclude there exists
ε > 0 and a C1 map φ : (−ε, ε)×B(x0, ε)→ Y such that

F (s, φ(s, x)) = (s,Cx) for all (s, x) ∈ (−ε, ε)×B(x0, ε).

5. Show, for s ≤ ε that ys(t) := φ(s, x)(t) satisfies Eq. (16.54). Now define
y(t, x) = φ(ε/2, x)(2t/ε) and show y(t, x) solve Eq. (16.53) for |t| < ε/2
and x ∈ B(x0, ε).

Exercise 16.8. Show P defined in Theorem 16.31 is continuously differen-
tiable and P 0(y)h = ḣ+ p0(y)h.

Exercise 16.9. Embedded sub-manifold problems.

Exercise 16.10. Lagrange Multiplier problems.

16.9.1 Alternate construction of g. To be made into an exercise.

Suppose U ⊂o X and f : U → Y is a C2 — function. Then we are looking for
a function g(y) such that f(g(y)) = y. Fix an x0 ∈ U and y0 = f(x0) ∈ Y.
Suppose such a g exists and let x(t) = g(y0 + th) for some h ∈ Y. Then
differentiating f(x(t)) = y0 + th implies

d

dt
f(x(t)) = f 0(x(t))ẋ(t) = h

or equivalently that

ẋ(t) = [f 0(x(t))]−1 h = Z(h, x(t)) with x(0) = x0 (16.55)

where Z(h, x) = [f 0(x(t))]−1 h. Conversely if x solves Eq. (16.55) we have
d
dtf(x(t)) = h and hence that

f(x(1)) = y0 + h.

Thus if we define
g(y0 + h) := eZ(h,·)(x0),

then f(g(y0+h)) = y0+h for all h sufficiently small. This shows f is an open
mapping.




