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Lebesgue Integration Theory
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Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure p “on” a set X is a function
2% — [0,00] such that
1. (@) =0
2. If {Ai}f\[:l is a finite (N < 00) or countable (N = 00) collection of subsets
of X which are pair-wise disjoint (i.e. A;NA; =0 if i # j) then

z 1A Z:u‘

Ezxample 17.2. Suppose that X is any set and = € X is a point. For A C X,

let
1if z€ A

51(14)2{0 if o ¢ Al

Then p = 6§, is a measure on X called the Dirac delta measure at z.

Example 17.3. Suppose that p is a measure on X and A > 0, then X\ - p
is also a measure on X. Moreover, if {pq}acs are all measures on X, then

1= S o i
= Z to(A) forall AcC X
acJ

is a measure on X. (See Section 2 for the meaning of this sum.) To prove
this we must show that yp is countably additive. Suppose that {4;};°, is a
collection of pair-wise disjoint subsets of X, then

(U1 A;) Z,LL ZZMQ(A

i=1 acJ
— Z Z‘LLQ(AZ) = Z /La(Ufi1Ai)
acJ i=1 acJ

= p(UZ, A)



246 17 Introduction: What are measures and why “measurable” sets

wherein the third equality we used Theorem 4.22 and in the fourth we used
that fact that u, is a measure.

Ezample 17.4. Suppose that X is a set A : X — [0, 00] is a function. Then

W= Z Az)d,

zeX

is a measure, explicitly
p(A) = 3" A@)
z€A
for all A C X.

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R. Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R.

Theorem 17.5. There is no measure pi : 28—[0, 00] such that

1. p([a, b)) = (b—a) for alla < b and
2. is translation invariant, i.e. p(A + z) = p(A) for all x € R and A € 2%,
where
A+z:={y+z:yc A} CR.

In fact the theorem is still true even if (1) is replaced by the weaker con-
dition that 0 < p((0,1]) < oo.

The counting measure p(A) = # (A) is translation invariant. However
1((0,1]) = oo in this case and so p does not satisfy condition 1.

Proof. First proof. Let us identify [0, 1) with the unit circle S* := {z €
C: |z] = 1} by the map

o(t) = e?™ = (cos 27t 4 i sin 2nt) € S*

for t € [0,1). Using this identification we may use p to define a function v on
25" by v(¢(A)) = u(A) for all A C [0,1). This new function is a measure on
S' with the property that 0 < v((0,1]) < co. For z € ST and N C S! let

zN :={n € S":nec N}, (17.1)
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that is to say €’’ N is N rotated counter clockwise by angle #. We now claim
that v is invariant under these rotations, i.e.

v(zN) = v(N) (17.2)

for all z € S and N C S*. To verify this, write N = ¢(A) and z = ¢(t) for
some ¢t € [0,1) and A C [0,1). Then

H(1)6(A) = o(t + Amod 1)
where for A C [0,1) and a € [0, 1),

t+Amodl:={a+tmodle€0,1):a€ N}
=(a+Anfa<l—thHu(t-1)+An{a>1-1t}).

Thus

v(o(t)p(A)) = pu(t + Amod 1)
(a+Anfa<1—tHu(t—1)+ANn{a>1-1t}))
((a+Anfa<1—t}))+p(t-1)+An{a>1-1}))
(

(

Anfa<l—thH)+pAn{a>1-1t})
(An{a<1-tHUuAn{a>1-1t}))

(4) = v(o(A)).

Therefore it suffices to prove that no finite non-trivial measure v on S* such

that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
N = ¢(A) for some A C [0,1). Let

I
I
=K
"
I

Ri={z=¢"":teQ}={z=€":1t€[0,1)NQ}

— a countable subgroup of S'. As above R acts on S! by rotations and divides
S1 up into equivalence classes, where z,w € S are equivalent if z = rw for
some r € R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N C S! be the set of these
representative points. Then every point z € S! may be uniquely written as
z=nr withn € N and r € R. That is to say

s =T ™) (17.3)

rcR

where [, Aq is used to denote the union of pair-wise disjoint sets {A,} . By
Egs. (17.2) and (17.3),

v(SY) = ZV(TN) = Z v(N).

TER reR
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The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S') € (0,1). Thus we have reached
the desired contradiction. [

Proof. Second proof of Theorem 17.5. For N C [0,1) and « € [0,1),
let

N*=N+amod1
={a+amodl €[0,1):a € N}
=(a+Nn{a<l—ahU((a=1)+Nn{a>1—-a}).
Then
p(N)Y=pla+Nnfa<l—a})+p((ea—1)+Nn{a>1-a})
=p(Nn{a<l—-a})+u(Nn{a>1-a})
=uNn{a<l—-a}lU(NNn{a>1-a}))
= pu(N). (17.4)

We will now construct a bad set N which coupled with Eq. (17.4) will lead to
a contradiction. Set

Q: ={x+reR:reQ} =x+Q.

Notice that Q, N Qy # 0 implies that Q, = Q. Let O = {Q, : € R} — the
orbit space of the Q action. For all A € O choose f(A) € [0,1/3) N A! and
define N = f(O). Then observe:

1. f(A) = f(B) implies that AN B # () which implies that A = B so that f
is injective.
2. 0={Qn:n €N}

Let R be the countable set,

R:=QnJo0,1).
We now claim that
N'NN®*=0ifr+# s and (17.5)
[Oa 1) = UTGRNT~ (176)

Indeed, if x € N"NN® # () then x = r + nmod 1 and x = s +n' mod 1, then
n—n' € Q,ie Qn = Q. Thatis to say, n = f(Qn,) = f(Qn) = n' and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if z € [0,1)
and n = f(Q.), then x —n =r € Q and x € N"™°41 Now that we have
constructed N, we are ready for the contradiction. By Equations (17.4-17.6)
we find

' We have used the Axiom of choice here, i.e. [T (AN [0,1/3]) #0
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L=p([0,1) =) u(N") = n(N)

reR reR
_ Jooif u(N)>0
Tl 0ifu(N)=0"
which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set. [ |

Because of Theorem 17.5, it is necessary to modify Definition 17.1. Theo-
rem 17.5 points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of o — algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition 19.1 of Chapter 19 below.



18

Measurability

18.1 Algebras and o — Algebras

Definition 18.1. A collection of subsets A of a set X is an algebra if

1.0, Xe A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then A;U---UA,, €
A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 18.2. A collection of subsets M of X is a o — algebra (or some-
times called a o — field) if M is an algebra which also closed under countable
unions, i.e. if {A;};o; C M, then U2, A; € M. (Notice that since M is also
closed under taking complements, M is also closed under taking countable in-
tersections.) A pair (X, M), where X is a set and M is a o — algebra on X,
1s called a measurable space.

The reader should compare these definitions with that of a topology in
Definition 10.1. Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a ¢ — algebra M will be called
measurable sets.

Example 18.3. Here are some examples of algebras.

1. M = 2% then M is a topology, an algebra and a o — algebra.

2. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not
an algebra.

3.7 =A={{1},{2,3},0, X} is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3}, @ are open and closed. The sets {1,2} and
{1,3} are neither open nor closed and are not measurable.

The reader should compare this example with Example 10.3.
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Proposition 18.4. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(&) which contains E.

Proof. The proof is the same as the analogous Proposition 10.6 for topolo-
gies, i.e.

AE) = m{A : A is an algebra such that & C A}

and

o(€):= m{./\/l : M is a o — algebra such that £ C M}.
|

Ezample 18.5. Suppose X = {1,2,3} and €& = {0, X, {1, 2}, {1, 3}}, see Figure
18.1.

I

Fig. 18.1. A collection of subsets.

Then

(&)
A(E)

0, X, {1},{1,2},{1,3}}
o(€) = 2%,

The next proposition is the analogue to Proposition 10.7 for topologies
and enables us to give and explicit descriptions of A(£). On the other hand
it should be noted that o(€) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let X be a set and € C 2%, Let £ := {A°: A€ £} and
E=EU{X,0} UEC Then

A(E) := {finite unions of finite intersections of elements from E.}. (18.1)
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Proof. Let A denote the right member of Eq. (18.1). From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=UN4y

i=1j=1

where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:ﬂUszz U (Byj, N Byj, N---NByjy) € A
i=1j5=1 J1seJN=1

wherein we have used the fact that Bi;, N By, N---N By, is a finite inter-
section of sets from &.. [ |

Remark 18.7. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is in
general false, since if

with A;; € &, then

e 0 ()

Ji=1,j2=1,...58=1,...

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe o(£), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition 18.13 below.

Exercise 18.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F' is closed and V is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition 10.8) does for a topology.

Definition 18.8. A set £ C 2% is said to be an elementary family or
elementary class provided that

e De&

o & is closed under finite intersections

o if E €&, then E€ is a finite disjoint union of sets from E. (In particular
X = ° is a finite disjoint union of elements from £.)
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Ezxample 18.9. Let X = R, then

E:={(a,b)NR:a,beR}
= {(a,b] : a € [~00,00) and a < b < 0o} U {0, R}

is an elementary family.

Exercise 18.2. Let A C 2% and B C 2Y be elementary families. Show the
collection
E=AxB={AxB:AcAand B € B}

is also an elementary family.

Proposition 18.10. Suppose £ C 2% is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E.

Proof. This could be proved making use of Proposition 18.6. However it
is easier to give a direct proof. Let A denote the collection of sets which may
be written as finite disjoint unions of sets from &. Clearly £ C A C A(E) so it
suffices to show A is an algebra since A(E) is the smallest algebra containing
E. By the properties of £, we know that #, X € A. Now suppose that A; =
HFeAi F € A where, fori =1,2,...,n, A; is a finite collection of disjoint sets
from &. Then

ﬁAFﬁ(H F)z U (FLNFyN---NF,)

(F1yyeey Fp) €A1 XX Ay,

and this is a disjoint (you check) union of elements from €. Therefore A is
closed under finite intersections. Similarly, if A = [],., F' with A being a
finite collection of disjoint sets from &, then A° = (., F°. Since by assump-
tion F© € Afor F € A C £ and A is closed under finite intersections, it
follows that A° € A. ]

Definition 18.11. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F.

Ezample 18.12. Let X be a set and £ = {Ay,..., A, } where Ay,... A, isa
partition of X. In this case

AE)=0(&) =7(€) ={Uiead; : AC{1,2,...,n}}
where U;c 1 A; := () when A = ). Notice that

#(A(E)) = #2002 = 2.
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Proposition 18.13. Suppose that M C 2% is a 0 — algebra and M is at most
a countable set. Then there exists a unique finite partition F of X such that
F C M and every element B € M 1is of the form

B=U{AeF:ACB}. (18.2)
In particular M is actually a finite set and # (M) = 2™ for some n € N.
Proof. For each x € X let
A =nN{AeM:ze€ A} e M,

wherein we have used M is a countable o — algebra to insure A, € M. Hence
A, is the smallest set in M which contains z. Let C' = A, NA,. If ¢ C then
A \C C A, is an element of M which contains z and since A, is the smallest
member of M containing z, we must have that C' = ). Similarly if y ¢ C then
C = 0. Therefore if C' # 0, then z,y € A, N A, € M and A, N A, C A, and
AzNA, C Ay from which it follows that 4, = A, N A, = A,. This shows that
F={A,:z € X} C Misa (necessarily countable) partition of X for which
Eq. (18.2) holds for all B € M. Enumerate the elements of F as F = {P,}N_;
where N € N or N = oco. If N = o0, then the correspondence

ac{0, 1} - A4, =U{P, :a, =1} e M

is bijective and therefore, by Lemma 2.6, M is uncountable. Thus any count-
able o — algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader. ]

Ezxample 18.14. Let X =R and
E={(a,0):a € R}U{R,0} = {(a,00) NR:a € R} C 2%

Notice that £ = £ and that £ is closed under unions, which shows that
T(E) = &, i.e. € is already a topology. Since (a,00)¢ = (—00,a] we find that
& ={(a,0), (—00,a],—o0 < a < oo} U{R,P}. Noting that

(a,00) N (—00,b] = (a,b)

it follows that A(E) = A(€) where
£ = {(a,b]NR:a,beR}.

Since € is an elementary family of subsets of R, Proposition 18.10 implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from £. The ¢ — algebra, o(&), generated by £ is very complicated.
Here are some sets in o(€) — most of which are not in A(E).

oo

(a) (a,0) = U (a,b— 3] € o(£)

n=1
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(b) All of the standard open subsets of R are in o ().
() {z}=N(z—1,2] €c(&)

)
) n
(d) [a,b] = {a} U (a,b] € o(€)
(e) Any countable subset of R is in o(£).

Remark 18.15. In the above example, one may replace £ by £ = {(a,00) : a €
Q} U {R, 0}, in which case A(€) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,00), (—00,al, (a,b] : a,b € Q} U{D,R}.

This shows that A(E) is a countable set — a useful fact which will be needed
later.

Notation 18.16 For a general topological space (X, T), the Borel o — alge-
bra is the o — algebra Bx := o(7) on X. In particular if X = R", Brn will
be used to denote the Borel o — algebra on R™ when R™ is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the o — algebra, Bg, is generated by any of the following
collection of sets:

1. {(a,00):a €R}, 2. {(a,00) :a € Q} or 3. {[a,0):acQ}.

Proposition 18.17. If 7 is a second countable topology on X and & is a
countable collection of subsets of X such that 7 = 7(€), then Bx := o(7) =
(&), i.e. o(7(€)) = a(€).

Proof. Let £; denote the collection of subsets of X which are finite inter-
section of elements from € along with X and (. Notice that & is still countable
(you prove). A set Z is in 7(€) iff Z is an arbitrary union of sets from &y.

Therefore Z = |J A for some subset F C &; which is necessarily count-
AceF
able. Since &5 C o(€) and o(€) is closed under countable unions it follows

that Z € o(€) and hence that 7(£) C o(&). Lastly, since & C 7(€) C a(€),
o(&) co(r(&)) Co(é). ]

18.2 Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-

tinuous function. For motivational purposes, suppose (X, M, 1) is a measure
space and f : X — R,. Roughly speaking, in the next Chapter we are going
to define [ fdu as a certain limit of sums of the form,

X

o

> aip(fH (@i, aira)).-

0<a1<az<asz<...
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For this to make sense we will need to require f~'((a,b]) € M for all a <
b. Because of Lemma 18.22 below, this last condition is equivalent to the
condition f~!(Br) C M.

Definition 18.18. Let (X, M) and (Y,F) be measurable spaces. A function
f: X —Y is measurable if f~*(F) C M. We will also say that f is M/F
— measurable or (M, F) — measurable.

Ezample 18.19 (Characteristic Functions). Let (X, M) be a measurable space
and A C X. We define the characteristic function 14 : X — R by

lifxe A
1A("”)_{Oifx¢A.

If A € M, then 14 is (M, 2R) — measurable because 1, (W) is either ), X,
A or A€ for any W C R. Conversely, if F is any o — algebra on R containing
a set W C R such that 1 € W and 0 € W€, then A € M if 14 is (M, F) -
measurable. This is because A = 1, (W) € M.

Exercise 18.4. Suppose f : X — Y is a function, F C 2¥ and M C 2¥.
Show f~!F and f.M (see Notation 2.7) are algebras (o — algebras) provided
F and M are algebras (o — algebras).

Remark 18.20. Let f : X — Y be a function. Given a o — algebra F C 2V,
the o — algebra M := f~1(F) is the smallest o — algebra on X such that f is
(M, F) - measurable . Similarly, if M is a ¢ - algebra on X then F = f. M
is the largest o — algebra on Y such that f is (M, F) - measurable .

Recall from Definition 2.8 that for £ C 2% and A C X that
Ea=i"()={ANE:E€&}

where i4 : A — X is the inclusion map. Because of Exercise 10.3, when
£ = M is an algebra (o — algebra), M 4 is an algebra (o — algebra) on A and
we call M4 the relative or induced algebra (o — algebra) on A.

The next two Lemmas are direct analogues of their topological counter
parts in Lemmas 10.13 and 10.14. For completeness, the proofs will be given
even though they are same as those for Lemmas 10.13 and 10.14.

Lemma 18.21. Suppose that (X, M), (Y,F) and (Z,G) are measurable
spaces. If f : (X, M) — (Y, F) and g : (Y,F) — (Z,G) are measurable
functions then go f : (X, M) — (Z,G) is measurable as well.

Proof. By assumption ¢=(G) C F and f~! (F) C M so that

(go /)7 (G) =F (g7 (@) C fH(F) M.
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Lemma 18.22. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o (f71E)) = (o(&)) and (18.3)
(0(€)a=0(a ). (18.4)

(Similar assertion hold with o () being replaced by A(-).) Moreover, if F =
o(E) and M is a o — algebra on X, then f is (M, F) — measurable iff f~1(€) C
M.

Proof. By Exercise 18.4, f~1(c(£)) is a o — algebra and since £ C F,
&) C fL(a(€)). It now follows that o (f~1(€)) C f~1(o (£)). For the
reverse inclusion, notice that

Lo (FNE) ={BCY: /(B eo(f ()}

is a o — algebra which contains € and thus ¢(€) C fio (f71(£)). Hence if
B € (&) we know that f~1(B) € o (f71(£)), ie. f7Ho(E)) C o (f71(E))
and Eq. (18.3) has been proved. Applying Eq. (18.3) with X = A and f =i4
being the inclusion map implies

(0(€))a =i (0(£)) = a(ix (£)) = o(Ea).

Lastly if f~'£ ¢ M, then f~'o () = o (f~'€) C M which shows f is
(M, F) — measurable. |

Corollary 18.23. Suppose that (X, M) is a measurable space. Then the fol-
lowing conditions on a function f: X — R are equivalent:

1. f is (M, Bgr) — measurable,

2. f7((a,00)) € M for all a € R,
3. f71((a,00)) € M for all a € Q,
4. fH((—o0,a]) € M for all a € R.

Proof. An exercise in using Lemma 18.22 and is the content of Exercise
18.8. [

Here is yet another way to generate o — algebras. (Compare with the
analogous topological Definition 10.20.)

Definition 18.24 (¢ — Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Yo, Fo) : @ € A}
and functions fo : X — Y, for all « € A. Let o(fs : a € A) denote the
smallest o — algebra on X such that each f, is measurable, i.e.

U(fa NS A) = U(Uafojl(}—oz))'

Proposition 18.25. Assuming the notation in Definition 18.24 and addition-
ally let (Z, M) be a measurable space and g : Z — X be a function. Then g
is (M,0(fo : a € A)) — measurable iff fo 0 g is (M, F,)-measurable for all
a € A
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Proof. This proof is essentially the same as the proof of the topological
analogue in Proposition 10.21. (=) If g is (M, 0(fs : @ € A)) — measurable,
then the composition f, o g is (M, F,) — measurable by Lemma 18.21. (<)
Let

G=0(fa:a€A)= O’(UaeAf(;l(]:a)).
If fo0gis (M,F,) — measurable for all o, then

g Fa) CMYac A
and therefore

gfl (UaeAfojl(}—a)) = UaeAgilfojl(}—a) cM.

Hence
g_l (g> = g_l (J (UaeAfojl(fa))) = U(g_l (UaeAfojl(fa)) cM
which shows that g is (M, G) — measurable. ]

Definition 18.26. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 18.27. Let X and Y be two topological spaces and f : X — Y
be a continuous function. Then f is Borel measurable.

Proof. Using Lemma 18.22 and By = o(71y),
f(By) = fHo(ry)) = o(f ' (rv)) Colrx) = Bx.
| ]

Definition 18.28. Given measurable spaces (X, M) and (Y, F) and a subset
A C X. We say a function f : A — Y is measurable iff f is Ma/F -
measurable.

Proposition 18.29 (Localizing Measurability). Let (X, M) and (Y, F)
be measurable spaces and f: X —Y be a function.

1. If f is measurable and A C X then fla: A —Y is measurable.
2. Suppose there exist A, € M such that X = U2, A, and f|A, is My,
measurable for all n, then f is M — measurable.

Proof. As the reader will notice, the proof given below is essentially iden-
tical to the proof of Proposition 10.19 which is the topological analogue of
this proposition. 1. If f : X — Y is measurable, f~1(B) € M for all B € F
and therefore

f‘;ll (B)=AnNfYB) e My for all B¢ F.
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2. If B € F, then

(B =u, (f_l(B) NA,) =Up, f ;1,11 (B).

Since each A,, € M, M 4, C M and so the previous displayed equation shows
f~1(B) e M. |

Proposition 18.30. If (X, M) is a measurable space, then
f: (f17f23"'7fn) :X—)Rn

is (M, Bgn) — measurable iff f; : X — R is (M, Br) — measurable for each
i. In particular, a function f: X — C is (M, Bc) — measurable iff Re f and
Im f are (M, Bgr) — measurable.

Proof. This is formally a consequence of Corollary 18.65 and Proposition
18.60 below. Nevertheless it is instructive to give a direct proof now. Let
T = 1pn denote the usual topology on R™ and 7w; : R® — R be projection
onto the i™ — factor. Since 7; is continuous, 7; is Bgn /Br — measurable and
therefore if f : X — R"™ is measurable then so is f; = m; o f. Now suppose
fi : X — R is measurable for all : = 1,2, ... ,n. Let

E:={(a,b) :a,be Q" 3a < b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a)b> = (alab1> X X (anabn)~

Since £ C 7 and every element V' € 7 may be written as a (necessarily)
countable union of elements from &£, we have 0 (£) C Brn =0 (1) C 0 (), i.e.
0 () = Bgn. (This part of the proof is essentially a direct proof of Corollary
18.65 below.) Because

71 ((a,0)) = £ ((a1,00)) 0 fo* ((ag,b2)) N0 £t (@, ba)) € M
for all a,b € Q with a < b, it follows that f~'& C M and therefore
[ Brn = fTlo (&) =0 (f'E) C M.
|

Corollary 18.31. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f 4+ g and f - g are also (M,B¢) -
measurable.

Proof. Define FF: X - CxC, AL :CxC—-Cand M :CxC — C by
F(z) = (f(z),9(x)), Ax(w,z) = w=+ z and M(w,z) = wz. Then Ay and M
are continuous and hence (Bgz, Bc) — measurable. Also F is (M, Be ® Be) =
(M, Bez) — measurable since m o F = f and mp 0 F = g are (M, Bc) —
measurable. Therefore AyoF = f+gand MoF = f-g, being the composition
of measurable functions, are also measurable. [ |
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Lemma 18.32. Let o € C, (X, M) be a measurable space and f : X — C be
a (M, Bg) — measurable function. Then

A if f(@) #0

P = {70 0L

is measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z)_{Oif 2=0.

For any open set V C C we have
HV) =it (VA {oh vt (V n{o})

Because 4 is continuous except at z = 0, i~1(V'\ {0}) is an open set and hence
in Bc. Moreover, i~1(V N {0}) € Bg since i~ 1(V N {0}) is either the empty
set or the one point set {0} . Therefore i ~!(7¢) C B¢ and hence i~(Bg) =
i1 (o(7c)) = o(i71(7c)) C Bc which shows that i is Borel measurable. Since
F =1io f is the composition of measurable functions, F' is also measurable. m
We will often deal with functions f : X — R = RU {400} . When talking
about measurability in this context we will refer to the o — algebra on R

defined by
Bg := 0 ({[a,0] : a € R}). (18.5)

Proposition 18.33 (The Structure of Bg). Let Br and Bg be as above,
then ~
B ={ACR:ANR eBg}. (18.6)

In particular {oo},{—oc} € By and Br C Bg.

Proof. Let us first observe that

{_OO} = m’?ﬁ:l [_007 _n> = m;l.ozl [_n, OO}C S BR,
{00} =N [n, 0] € Bg and R = R\ {+0} € Bg.

Letting i : R — R be the inclusion map,

i (Bg) =0 (i7" ({[a,00] :a € R})) =0 ({i7! ([a,]) : a € R})
=0 ({la,0]NR:a eR}) =0 ({[a,0) : a € R}) = B.

Thus we have shown
Br=i! (Bg) ={ANR: A€ Bz}

This implies:
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1. Ae Bg= ANR &Bgr and

2. if A C R is such that ANR €Bg there exists B € B such that ANR =
B NR. Because AAB C {£oo} and {o0},{—00} € Bz we may conclude
that A € Bg as well.

This proves Eq. (18.6). [
The proofs of the next two corollaries are left to the reader, see Exercises
18.5 and 18.6.

Corollary 18.34. Let (X, M) be a measurable space and f : X — R be a
function. Then the following are equivalent

1. f is (M, Bg) - measurable,

2. f~Y((a,0]) € M for all a € R,

3. f7((—o0 ])EMforallaeR

4. - oo}) eEM, f1({oc}) € M and f°: X — R defined by

£ (@) =1 (f (2)) = {féx) sz (J;>($e) ftﬂio}
is measurable.

Corollary 18.35. Let (X, M) be a measurable space, f,g: X — R be func-
tions and define f-g: X — R and (f +g) : X — R using the conventions,
0-co=0and (f+9g)(z)=0if f(z) =00 and g(x) = —00 or f(z) = —0
and g (x) = oo. Then f-g and f + g are measurable functions on X if both f
and g are measurable.

Exercise 18.5. Prove Corollary 18.34 noting that the equivalence of items 1.
— 3. is a direct analogue of Corollary 18.23. Use Proposition 18.33 to handle
item 4.

Exercise 18.6. Prove Corollary 18.35.

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence
of M/Bg — measurable functions. Then

sup; fj, inf;f;, limsup f; and hmlnf fi

Jj—o0

are all M/Bg — measurable functions. (Note that this result is in generally
false when (X, M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g (x) := sup ; fj(z), then

{z:94+(2) <a} ={z: fi(x) <aVj}
=Nj{z: fj(z) <a} e M
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so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then
fo:g-() > a} = N{o: fi(@) > a} e M.

Since
limsup f; =infsup{f;:j >n} and
j—oo n
liminf f; =supinf{f;:j >n}
j—oo n
we are done by what we have already proved. [ |

Definition 18.37. Given a function f : X — R let fi(z) := max{f(z),0}
and f_ (z) := max (— f(x),0) = —min (f(x),0). Notice that f = f1 — f_.

Corollary 18.38. Suppose (X, M) is a measurable space and f : X — R is
a function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition 18.36 implies fi are measur-
able. Conversely if fi are measurable then sois f = fy — f_. ]

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that (X, M) is a measurable space, (Y, d) is a metric
space and f;j : X — Y is (M, By) — measurable for all j. Also assume that for
each x € X, f(x) = limy,— o0 frn(x) exists. Then f: X — Y is also (M, By) -
measurable.

Proof. Let V € 7y and Wy, :={y € Y : dy<(y) > 1/m} for m =1,2,....
Then W,, € 74,

Wi CWo Cly €Y tdye(y) >1/m}CV

for all m and W,,, T V as m — oo. The proof will be completed by verifying
the identity,

f_l(v) = Uﬁ:l U?Vozl ngNfrjl(Wm) € M.

Ifx € f~1(V) then f(x) € V and hence f(z) € W,, for some m. Since f,(z) —
f(z), fu(z) € Wy, for almost all n. That is z € USS_; US_; Nu>n [t (Win).
Conversely when € USS_; US_; Np>n fr L (W) there exists an m such that
fn(z) € W, C W, for almost all n. Since f,,(x) — f(z) € W,,, C V, it follows
that x € f~1(V). n

Remark 18.40. In the previous Lemma 18.39 it is possible to let (Y, 7) be any
topological space which has the “regularity” property that if V' € 7 there
exists W,,, € 7 such that W,,, C W,,, CV and V = Use_; Wi, Moreover, some
extra condition is necessary on the topology 7 in order for Lemma 18.39 to
be correct. For example if Y = {1,2,3} and 7 = {Y,0,{1,2},{2,3},{2}} as
in Example 10.36 and X = {a,b} with the trivial o — algebra. Let f;(a) =
[j(b) = 2 for all j, then f; is constant and hence measurable. Let f(a) = 1
and f(b) = 2, then f; — f as j — oo with f being non-measurable. Notice
that the Borel o — algebra on Y is 2V
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18.3 0 — Function Algebras

In this subsection, we are going to relate o — algebras of subsets of a set X to
certain algebras of functions on X. We will begin this endeavor after proving
the simple but very useful approximation Theorem 18.42 below.

Definition 18.41. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — Bg
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

¢ = Aila, with A; € M and ); € F. (18.7)
i=1
Indeed, take A1, A2, ..., A, to be an enumeration of the range of ¢ and A; =

“1({\;}). Note that this argument shows that any simple function may be

written intrinsically as
6=2 ylo= () (18.8)
y€EF
The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let f : X — [0, 00] be mea-
surable and define, see Figure 18.2,

22n 1
Z 2n Lt ) (8) + 2L n 00 ()
22"—1 k

= o L o < f< 5L (@) + 2"1 500y (x)
k=0

then ¢, < f for all n, ¢, (x) T f(x) for all x € X and ¢, T [ uniformly on
the sets Xpr := {x € X : f(x) < M} with M < oo. Moreover, if f : X —
C is a measurable function, then there exists simple functions ¢, such that
limy, oo ¢n(x) = f() for all x and |pn| T |f] as n — .

Proof. Since

ko k+1, 2 2k+1, 2k+1 2k+2
(2_"7 on ]_ (2n+1’ on+1 ] ( on+1 ’ on+1 },
if z ¢ ( +1v§]3111) theﬂ ¢n( ) = Onyi(z) = 23—111 and if ¢z €
f- ( 2 1 k ) then (bn = 271+1 < %’ﬁﬂ ¢n+1(3?). Similarly

(2™, 00] = (2", 2" U (2", oo,
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Fig. 18.2. Constructing simple functions approximating a function, f : X — [0, co].

and so for x € f71((2"M, q]), ¢p(x) = 2" < 2" = ¢, 1(x) and for z €
F7H(2m, 27, dpya(x) > 27 = ¢y, (). Therefore ¢, < ¢ppq for all n. It is
clear by construction that ¢, (z) < f(z) for all x and that 0 < f(z) — ¢, (z) <
27" if x € Xon. Hence we have shown that ¢, (z) 1 f(z) for all z € X and
¢, T f uniformly on bounded sets. For the second assertion, first assume that

f : X — R is a measurable function and choose ¢ to be simple functions
such that ¢ T fi as n — oo and define ¢, = ¢ — ¢,,. Then

[on] = & + ¢, < ¢r—t+1 + Gpi1 = [Pl

and clearly ¢, = ¢f + 6, 1 fr+ /- = |fl and ¢, = 6f — 6, — fy—f- = f
as n — oco. Now suppose that f: X — C is measurable. We may now choose
simple function w, and v, such that |u,| 1 |[Re f|, |vn| T Im f|, u,, — Re f
and v, — Im f as n — oco. Let ¢, = u,, + iv,, then

6nl” = u2 +02 1T Re f|* + Im f” = | f|°

and ¢, = up +iv, > Ref+ilmf = f asn — oo. ]
For the rest of this section let X be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions f, from X to R or C converges boundedly to a function f if
lim,, o fn(x) = f(z) for allz € X and

sup{|fn(z)] :x € X andn=1,2,...} < c0.

Definition 18.44. A function algebra H on X is a linear subspace of
£ (X, R) which contains 1 and is closed under pointwise multiplication, i.e.
H is a subalgebra of £>° (X, R) which contains 1. If H is further closed under
bounded convergence then 'H is said to be a o — function algebra.
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Ezxample 18.45. Suppose M is a o — algebra on X, then
(2 (MR) :={f €= (X,R): fis M/Bgr — measurable} (18.9)

is a o — function algebra. The next theorem will show that these are the only
example of o — function algebras. (See Exercise 18.7 below for examples of
function algebras on X.)

Notation 18.46 If H C £ (X,R) be a function algebra, let
MMH)={AC X :14€H}. (18.10)
Theorem 18.47. Let H be a 0 — function algebra on a set X. Then

1. M(H) is a 0 — algebra on X.
2. H=1{(°(M(H),R).
3. The map

M € {o - algebras on X} — £ (M,R) € {0 - function algebras on X}
(18.11)
is bijective with inverse given by H — M (H).

Proof. Let M := M (H).

1. Since 0,1 € H, §, X € M. If A € M then, since H is a linear subspace
of £ (X,R), 14c =1 — 14 € H which shows A° € M. If {4,} | C M,
then since H is an algebra,

N

10{:’:1An = H 1A'n. = fN cH
n=1

for all N € N. Because H is closed under bounded convergence it follows

that

oo, = i, fv €7

and this implies N5 A,, € M. Hence we have shown M is a ¢ — algebra.
2. Since H is an algebra, p (f) € H for any f € H and any polynomial p on R.
The Weierstrass approximation Theorem 8.34, asserts that polynomials on
R are uniformly dense in the space of continuos functions on any compact
subinterval of R. Hence if f € H and ¢ € C (R), there exists polynomials
prn on R such that p, o f (x) converges to ¢ o f (x) uniformly (and hence
boundedly) in € X as n — oo. Therefore ¢ o f € H for all f € H and
¢ € C(R) and in particular |f| € H and fy := If\% e Hif f € H.

Fix an o € R and for n € N let ¢, (¢) := (t—a)i_/", where (t —a), =
max {t — o, 0}. Then ¢, € C(R) and ¢, (t) — li>o as n — oo and the
convergence is bounded when ¢ is restricted to any compact subset of R.

Hence if f € H it follows that 15, = lim, o ¢p (f) € H for all a € R,
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ie. {f > a} € M for all @ € R. Therefore if f € H then f € £ (M,R)
and we have shown H C ¢*° (M,R). Conversely if f € £° (M,R), then
for any a < B, {a< f<p} € M = M(H) and so by assumption
l{a<f<py € H. Combining this remark with the approximation Theo-
rem 18.42 and the fact that H is closed under bounded convergence shows
that f € H. Hence we have shown ¢*° (M, R) C ‘H which combined with
H C £2° (M, R) already proved shows H = £ (M (H),R).

3. Items 1. and 2. shows the map in Eq. (18.11) is surjective. To see the
map is injective suppose M and F are two o — algebras on X such that
02° (M,R) = (> (F,R), then

M={ACX:1u€l>*(M,R)}
={ACX:14€el>™(FR}=F

Notation 18.48 Suppose M is a subset of £ (X,R).

1. Let H(M) denote the smallest subspace of £>° (X, R) which contains M
and the constant functions and is closed under bounded convergence.
2. Let H, (M) denote the smallest o — function algebra containing M.

Theorem 18.49. Suppose M is a subset of £ (X,R), then H, (M) =
£ (o (M) ,R) or in other words the following diagram commutes:

M — o (M)
M {Multiplicative Subsets} — {o — algebras} M
! 1 1 !

Hy (M) {o— function algebras} = {o— function algebras} ¢ (M,R).

Proof. Since ¢ (o (M),R) is o — function algebra which contains M it
follows that
Hy (M) C (o (M),R).

For the opposite inclusion, let
M=MMH,(M)):={ACX:14 €H,(M)}.

By Theorem 1847, M C H, (M) = £~ (M,R) which implies that every
f € M is M — measurable. This then implies o (M) C M and therefore

0% (0 (M), R) C £ (M,R) = H, (M).
|

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system
if f-g€ M whenever f and g are in M.
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Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
M C £ (X,R) is a multiplicative system, then

H (M) =H, (M) == (0 (M),R). (18.12)

In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued o (M) — measurable functions on X.

Proof. We begin by proving H := H (M) is a ¢ — function algebra. To do
this, for any f € H let

Hry={geH: fgecH}CH

and notice that Hy is a linear subspace of ¢>° (X,R) which is closed under
bounded convergence. Moreover if f € M, M C Hy since M is multiplicative.
Therefore Hy = ‘H and we have shown that fg € H whenever f € M and
g € H. Given this it now follows that M C Hj for any f € H and by
the same reasoning just used, H; = H. Since f € H is arbitrary, we have
shown fg € H for all f,g € H, i.e. H is an algebra. Since it is harder to
be an algebra of functions containing M (see Exercise 18.13) than it is to
be a subspace of functions containing M it follows that H (M) C H, (M).
But as we have just seen H (M) is a o — function algebra which contains
M so we must have H, (M) C H (M) because H, (M) is by definition the
smallest such ¢ — function algebra. Hence H, (M) = H (M) . The assertion
that Hy (M) = £*° (o (M) ,R) has already been proved in Theorem 18.49. m

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of £°°(X,C) such that: 1 € H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M C 'H
s multiplicative system which is closed under conjugation, then H contains all
bounded complex valued o(M )-measurable functions, i.e. £ (o (M),C) C H.

Proof. Let My = spang(M U {1}) be the complex span of M. As the
reader should verify, M is an algebra, My C ‘H, My is closed under complex
conjugation and that o (My) = o (M) . Let H® := H N ¢>°(X,R) and Mg =
M (X, R). Then (you verify) MY is a multiplicative system, M5 C H® and
H® is a linear space containing 1 which is closed under bounded convergence.
Therefore by Theorem 18.51, £*° (U (M(]?) ,R) C HR. Since H and M, are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = % (f—l—f) and Im f = % (f— f) are in H (M)
or My respectively. Therefore H = H* + iH®, My = Mg + iMg, o (Mg) =
o (My) =0 (M) and

(> (o (M),C) == (o (M) ,R) + it (o (M) ,R)
CH* +iH" =H.
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Exercise 18.7 (Algebra analogue of Theorem 18.47). Call a function
algebra H C £*° (X,R) a simple function algebra if the range of each func-
tion f € H is a finite subset of R. Prove there is a one to one correspondence
between algebras A on a set X and simple function algebras H on X.

Definition 18.53. A collection of subsets, C, of X is a multiplicative
class(or am — class) if C is closed under finite intersections.

Corollary 18.54. Suppose H is a subspace of £°(X,R) which is closed under
bounded convergence and 1 € H. If C C 2% is a multiplicative class such
that 14 € H for all A € C, then H contains all bounded o(C) — measurable
functions.

Proof. Let M = {1} U{l4: A€ C}. Then M C H is a multiplicative
system and the proof is completed with an application of Theorem 18.51. m

Corollary 18.55. Suppose that (X,d) is a metric space and Bx = o(7q)
is the Borel o — algebra on X and H is a subspace of {*°(X,R) such that
BC(X,R) C 'H and H is closed under bounded convergence'. Then H contains
all bounded Bx — measurable real valued functions on X. (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains BC(X,R) is the space of bounded Bx —
measurable real valued functions on X.)

Proof. Let V € 74 be an open subset of X and for n € N let
fn(x) :=min(n - dye(x),1) for all x € X.

Notice that f,, = ¢, o dye where ¢,,(t) = min(nt, 1) (see Figure 18.3) which
is continuous and hence f,, € BC(X,R) for all n. Furthermore, f,, converges
boundedly to 14,.>0 = 1y as n — oo and therefore 1y, € H for all V' € 7.
Since 7 is a m — class, the result now follows by an application of Corollary
18.54.

0.75 T

057

025 T

Plots of ¢1, ¢2 and ¢3.
! Recall that BC(X,R) are the bounded continuous functions on X.
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Here are some more variants of Corollary 18.55.

Proposition 18.56. Let (X,d) be a metric space, Bx = o(14) be the Borel
o — algebra and assume there exists compact sets K, C X such that K T X.
Suppose that H is a subspace of £°(X,R) such that C.(X,R) C H (C.(X,R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded Bx — measurable
real valued functions on X.

Proof. Let k and n be positive integers and set ¢, x(x) = min(1,n -
d(KZ)c(aﬂ)). Then ¢, 5 € Co(X,R) and {¢, 1 # 0} C K7. Let H,,  denote
those bounded Bx — measurable functions, f: X — R, such that ¢, . f € H.
It is easily seen that H,, ; is closed under bounded convergence and that
Hp k. contains BC(X,R) and therefore by Corollary 18.55, ¢, 1 f € H for all
bounded measurable functions f : X — R. Since ¢k f — 1kpf boundedly
as n — 00, 1xo f € H for all k and similarly 1k, f — f boundedly as k — oo
and therefore f € H. [

Lemma 18.57. Suppose that (X,7) is a locally compact second countable
Hausdorff space.? Then:

1. every open subset U C X is o — compact.

2.If F C X is a closed set, there exist open sets V,, C X such that V,, | F
as n — oo.

3. To each open set U C X there exists fp, < U (i.e. fp, € C.(U,[0,1])) such
that lim,, o frn = lu.

4. Bx = 0(C.(X,R)), i.e. the o — algebra generated by C.(X) is the Borel o
— algebra on X.

Proof.
1. Let U be an open subset of X, V be a countable base for 7 and

VW.={W eV :W CU and W is compact}.

For each x € U, by Proposition 12.7, there exists an open neighborhood
V of z such that V C U and V is compact. Since V is a base for the
topology T, there exists W € V such that € W C V. Because W C V, it
follows that W is compact and hence W € VY. As = € U was arbitrary,
U=UVY. Let {W,} 2, be an enumeration of VU and set K,, := Up_, Wi.
Then K,, T U as n — oo and K, is compact for each n.

2. Let {K,} -, be compact subsets of F such that K,, T F° as n — oo and
set V,, := K = X\ K,,. Then V,, | F and by Proposition 12.5, V,, is open
for each n.

2 For example any separable locally compact metric space and in particular any
open subset of R".
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3. Let U C X be an open set and {K,}.-, be compact subsets of U such
that K, T U. By Lemma 12.8, there exist f,, < U such that f, = 1 on
K,,. These functions satisfy, 1y = lim,, .o fn.

4. By item 3., 1y is o(C.(X,R)) — measurable for all U € 7 and hence
7 C 0(C(X,R)). Therefore Bx = o(7) C o(Ce(X,R)). The converse
inclusion holds because continuous functions are always Borel measurable.

|
Here is a variant of Corollary 18.55.

Corollary 18.58. Suppose that (X, 7) is a second countable locally compact
Hausdorff space and Bx = o(1) is the Borel o — algebra on X. If H is a
subspace of £°(X,R) which is closed under bounded convergence and contains
C.(X,R), then H contains all bounded Bx — measurable real valued functions
on X.

Proof. By Item 3. of Lemma 18.57, for every U € 7 the characteristic
function, 1y, may be written as a bounded pointwise limit of functions from
C. (X,R). Therefore 1y € H for all U € 7. Since 7 is a w — class, the proof is
finished with an application of Corollary 18.54 [

18.4 Product o — Algebras

Let {(Xa; Ma)},ca be a collection of measurable spaces X = X4 = [] X,
acA
and 7, : X4 — X, be the canonical projection map as in Notation 2.2.

Definition 18.59 (Product o — Algebra). The product ¢ — algebra,
RacaMa, is the smallest o — algebra on X such that each w, for a € A is
measurable, i.e.

RaecaMy i =0(m:a€Ad)=0c (angl(/\/la)) )

Applying Proposition 18.25 in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose Y is a measurable space and f:Y — X = X4
is a map. Then f is measurable iff 7o o f :' Y — X, is measurable for all
a € A. In particular if A=1{1,2,...,n} so that X = X1 x Xa X ---x X, and

f@) = (L), f2(y)s.- . faly)) € X1 X Xg X --- X Xy, then f:Y — X4 is
measurable iff f; :' Y — X; is measurable for all i.

Proposition 18.61. Suppose that (Xa, Ma),e 4 15 a collection of measurable
spaces and E, C M, generates M, for each a € A, then

QacaMa =0 (Uaeam, ' (Ea)) (18.13)
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Moreover, suppose that A is either finite or countably infinite, X, € &, for
each a € A, and M, = o(&,) for each o € A. Then the product o — algebra
satisfies

RacaMa =0 ({ I Eo: Ea € & for alia e A}) : (18.14)
acA
In particular if A={1,2,...,n}, then X = X3 x Xo x--- x X, and
Mi@Ma®- @M, =0(Mi X My x -+ x My),
where My X My X -+ X M, is as defined in Notation 10.26.
Proof. Since Uy, (E4) C Uam, (My), it follows that
F =0 (Uam; ' (Ea)) C o (Uamy ' (Ma)) = @acaMa.

Conversely,

Foo(rg(Ea)) = 75t (0(Ea)) = 15 (Ma)
holds for all o implies that
UaTy H(Ma) C F

and hence that ®,caM, C F. We now prove Eq. (18.14). Since we are
assuming that X, € &, for each o € A, we see that

Uam ' (Ea) C { [[ Bo:Ea €&y forallac A}

acA

and therefore by Eq. (18.13)

RacaMa =0 (Uam ' (Ea)) Co ({ H E,:E,€&, forall ac A}) .

acA

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,

H E, = maGAﬁgl(Ea) S ®a€AMa
acA

and hence

o ({ [] Bo: Ea €& forallac A}) C QacaMaq.

acA
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Remark 18.62. One can not relax the assumption that X, € &, in the second
part of Proposition 18.61. For example, if X; = Xy = {1,2} and & = & =

{{1}}, then o(& x &) = {0, X1 x Xo,{(1,1)}} while o(c(&1) x o(&2)) =
2X1><X2_

Theorem 18.63. Let {X,},c4 be a sequence of sets where A is at most
countable. Suppose for each o € A we are given a countable set £, C 2%X. Let
Ta = T(Ea) be the topology on X, generated by £, and X be the product space
[Toca Xa with equipped with the product topology T := @acaT(Ea). Then the
Borel o — algebra Bx = o(7) is the same as the product o — algebra:

Bx = ®acaBx.,,
where Bx, = 0(17(&y)) = 0(Ea) for all a € A.

In particular if A = {1,2,...,n} and each (X;,7;) is a second countable
topological space, then

BX ::O'(T1®7_2®"'®Tn):a—(BXl X"'XBXn) ::BX1®"'®BX”~

Proof. By Proposition 10.25, the topology 7 may be described as the
smallest topology containing € = U,e a7, *(£4). Now & is the countable union
of countable sets so is still countable. Therefore by Proposition 18.17 and
Proposition 18.61,

Bx =0o(r) =0(7(£)) = (&) = ®acao(€a)
= ®aca0(Ta) = acaBx,.
|
Corollary 18.64. If (X;,d;) are separable metric spaces fori =1,...,n, then
BXl K- BX" = B(X1><~~-><Xn)

where Bx, 1is the Borel o — algebra on X; and Bix,x..xx,) 1S the Borel
o — algebra on Xy x -+ x X,, equipped with the metric topology associ-
ated to the metric d(z,y) = Y i, di(xi,y;) where x = (z1,z2,...,2,) and
Y= (ylay% s ,yn>

Proof. This is a combination of the results in Lemma 10.28, Exercise 10.10
and Theorem 18.63. [ |

Because all norms on finite dimensional spaces are equivalent, the usual
Euclidean norm on R™ x R"™ is equivalent to the “product” norm defined by

1, Yllgmxrn = [Zlgm + 15llgn -

Hence by Lemma 10.28, the Euclidean topology on R™*™ is the same as the
product topology on R =2 R™ x R™. Here we are identifying R™ x R"™ with
R™*" by the map

(ZC,y) eER™ x R" — (x17._.,xm’y17._.7yn) c R™™,

These comments along with Corollary 18.64 proves the following result.
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Corollary 18.65. After identifying R™ x R™ with R™T" as above and letting
Brn denote the Borel o —algebra on R™, we have

n-times

—_——
Brm+n = Brn ® Brm and Brn = Br @ - - @ Bg.

18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that (Y, F) is a measurable space and F : X =Y s
a map. Then to every (o(F), Bg) — measurable function, H : X — R, there is
a (F,Bg) — measurable function h:Y — R such that H = ho F.

Proof. First suppose that H = 14 where A € o(F) = F~Y(F). Let
B € F such that A = F~(B) then 14 = 1p-1(p) = 1p o F and hence the
Lemma is valid in this case with h = 1p. More generally if H = > a;14,
is a simple function, then there exists B; € F such that 14, = 15, o F' and
hence H = ho F with h := ) a;1p, — a simple function on R. For general
(o(F),F) — measurable function, H, from X — R, choose simple functions
H,, converging to H. Let h,, be simple functions on R such that H,, = h,, o F.
Then it follows that

H = lim H, =limsup H,, =limsuph, o FF =hoF
where h := limsup,, ., h, — a measurable function from Y to R. ]

The following is an immediate corollary of Proposition 18.25 and Lemma
18.66.

Corollary 18.67. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Y4 Let Y := ] c 4 Ya,
F = QacaFa be the product o — algebra on'Y and M = o(f, : a € A)
be the smallest o — algebra on X such that each f, is measurable. Then the
function F' : X — 'Y defined by [F(z)], := fa(x) for each o € A is (M, F)
— measurable and a function H : X — R is (M, Bg) — measurable iff there

exists a (F,Bg) — measurable function h from'Y to R such that H = ho F.

18.5 Exercises

Exercise 18.8. Prove Corollary 18.23. Hint: See Exercise 18.3.

Exercise 18.9. If M is the o — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &. (Folland,
Problem 1.5 on p.24.)

Exercise 18.10. Let (X, M) be a measure space and f,, : X — F be a se-
quence of measurable functions on X. Show that {z : lim,, . fn(z) exists in F} €

M.
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Exercise 18.11. Show that every monotone function f : R — R is (Bg, Br)
— measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)

Exercise 18.13. Let X =

(1,2,3,4}, A = {1,2}, B = {2,3) and M :=
{14,1p}. Show H, (M) # H(

M) in this case.
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Measures and Integration

Definition 19.1. A measure p on a measurable space (X, M) is a function
p: M —[0,00] such that

1. (0) =0 and
2. (Finite Additivity) If {A;};_, C M are pairwise disjoint, i.e. A;NA; =0
when i # j, then

m(lJ 4 = Zu(Ai)-

3. (Continuity) If A, € M and A, T A, then u(Ay) T p(A).

We call a triple (X, M, ), where (X, M) is a measurable space and i :
M — [0,00] is a measure, a measure space.

Remark 19.2. Properties 2) and 3) in Definition 19.1 are equivalent to the
following condition. If {4;};°, C M are pairwise disjoint then

p(lJ A) =D (A (19.1)
i=1 =1

To prove this assume that Properties 2) and 3) in Definition 19.1 hold and
{A;}:2, C M are pairwise disjoint. Letting B, := |J 4; 1 B := |J 4;, we
i=1 i

=1
have

(4 = p(B) 2 tim p(B,) 2 tim 37 (A =3 u(4).
i=1 i=1 i=1

Conversely, if Eq. (19.1) holds we may take A; = () for all j > n to see that

Property 2) of Definition 19.1 holds. Also if 4,, T A, let B,, := A,,\ A,,—1 with

Ag := 0. Then {B,,} -, are pairwise disjoint, A, = Uj_1Bj and A = U372, B;.

So if Eq. (19.1) holds we have
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u(A) = p( Zu

n—oo

= nliggoZu(Bj) = lim p(Uj_,B;) = lim p(A,).

Proposition 19.3 (Basic properties of measures). Suppose that (X, M, 1)
is a measure space and E,F € M and {Ej};’il C M, then :

1. u(B) < u(F) if E C F.

2. n(UE;) <3 pu(Ej).

3[fu(E1)<ooandE L E,ie. 1D FEyDFE3D ... and E=N;E;, then
W(E;) | u(E) as j — oo.

Proof.

1. Since F = EU(F\ E),
u(F) = w(E) + p(F'\ E) = p(E).

2. Let E = F; \ (E; U---UE;_) so that the E; ’s are pair-wise disjoint
and E = UE Since E; C E; it follows from Remark 19.2 and part (1),

that
IR I

3. Define D; := F;y \ E; then D; T E; \ E which implies that

p(Er) — p(B) = lim p(Di) = p(Ex) = lim u(E;)

which shows that lim; o p(E;) = u(E).
]

Definition 19.4. A set E C X is a null set if E € M and u(E) =0. If P is
some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for x}

is a null set. For example if f and g are two measurable functions on
(X, M,p), f =g a.e. means that u(f # g) = 0.

Definition 19.5. A measure space (X, M, ) is complete if every subset of
a null set is in M, i.e. for all F C X such that F C E € M with (E) =0
implies that F € M.
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Proposition 19.6. Let (X, M, u) be a measure space. Set
N:={NCX:3FeM> N CF and u(F) =0}

and

M={AUN:Aec M,N N},

see Fig. 19.1. Then M is a 0 — algebra. Define p(AU N) = pu(A), then fi is
the unique measure on M which extends p.

Proof. Clearly X,() € M. Let A € M and N € N and choose F € M

Fig. 19.1. Completing a o — algebra.

such that N C F' and p(F) = 0. Since N° = (F'\ N) U F°,

(AUN)® = A°NN° = A°N (F\ N UF°)
= [A°N (F\ N)]U[A® N F°]

where [A°N (F\ N)] € N and [A°N F¢] € M. Thus M is closed under
complements. If 4, € M and N; C F; € M such that p(F;) = 0 then
U(A;UN;) = (UA;)U(UN;) € M since UA; € M and UN; C UF; and pu(UF;) <
> u(F;) = 0. Therefore, M is a o — algebra. Suppose AU Ny = B U N, with
A.B e Mand Ny,No,e€ N. Then AC AUN, C AUN; UF, = BU Fj which
shows that

1(A) < p(B) + p(Fz) = p(B).

Similarly, we show that p(B) < p(A) so that u(A) = p(B) and hence (AU
N) := u(A) is well defined. It is left as an exercise to show [ is a measure,
i.e. that it is countable additive. [

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a o — finite measure defined next.

Definition 19.7. Suppose X is a set, € C M C 2% and p: M — [0,00] is a
function. The function p is o — finite on & if there exists F,, € £ such that
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w(Ey) < oo and X = U2 Ey,. If M is a o — algebra and p is a measure on
M which is o - finite on M we will say (X, M,p) is a o — finite measure
space.

The reader should check that if p is a finitely additive measure on an
algebra, M, then p is o — finite on M iff there exists X,, € M such that
Xn T X and pu(X,) < oo.

19.1 Example of Measures

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F C 2% is a countable or finite partition of X and M C 2% is
the o — algebra which consists of the collection of sets A C X such that

A=U{aeF:acC A}. (19.2)

It is easily seen that M is a o — algebra.
Any measure p : M — [0, 00] is determined uniquely by its values on F.
Conversely, if we are given any function A : F — [0,00] we may define, for

Ae M,
pA) = D Ma)=D M)laca

ac€Fd3aCA aEF

where 14c4 is one if @« C A and zero otherwise. We may check that p is a
measure on M. Indeed, if A =[], A; and @ € F, then o C A iff &« C A; for
one and hence exactly one A;. Therefore 1,4 = Z;’il laca,; and hence

plA) = 30 M) laca = Y0 M) Y Laca,

aEF acF
— Z Z AMa)laca, = ZM(Ai)
i=1 acF i=1

as desired. Thus we have shown that there is a one to one correspondence
between measures p on M and functions A : F — [0, 00].

The construction of measures will be covered in Chapters 27 — 29 below.
However, let us record here the existence of an interesting class of measures.

Theorem 19.8. To every right continuous non-decreasing function F
R — R there exists a unique measure ug on By such that

ur((a,b]) =F(b)—F(a) ¥V —co<a<b< o (19.3)

Moreover, if A € Br then
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pir(A) = inf {Z(F(bi) — Fla;)) : A C U2, (as, bi]} (19.4)

i=1

= inf {Z(F(bi) — F(a;)) : A C [](a, bi]} : (19.5)

i=1 =1

In fact the map F — up is a one to one correspondence between right con-
tinuous functions F with F(0) = 0 on one hand and measures p on Br such
that pi(J) < oo on any bounded set J € Bg on the other.

Proof. This follows directly from Proposition 26.18 and Theorem 26.2
below. It can also be easily derived from Theorem 26.26 below. [ |

Ezxample 19.9. The most important special case of Theorem 19.8 is when
F(z) = z, in which case we write m for up. The measure m is called Lebesgue
measure.

Theorem 19.10. Lebesgue measure m is invariant under translations, i.e.
for B € Br and z € R,
m(z + B) = m(B). (19.6)

Moreover, m is the unique measure on Bg such that m((0,1]) = 1 and FEq.
(19.6) holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |\| m(B) (19.7)
where A € R, B € Bg and AB := {\x : z € B}.

Proof. Let m,(B) := m(z + B), then one easily shows that m, is a
measure on Bg such that m,((a,b]) = b — a for all a < b. Therefore, m, =m
by the uniqueness assertion in Theorem 19.8. For the converse, suppose that
m is translation invariant and m((0, 1]) = 1. Given n € N, we have

k=1 k, . (k-1 1
0.1 =uin (o B - (S 0.g).

n

Therefore,

1 =m((0,1]) :im(k_l +(0,1])

P n n
S ml(0, ) = n-m((, )

n
k=1

That is to say
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Similarly, m((0, %]) = [/n for all [,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,, b, € Q such that b, | b and
an 1 a, then (an,b,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—a,
i.e. m is Lebesgue measure. To prove Eq. (19.7) we may assume that A # 0
since this case is trivial to prove. Now let my(B) := |A| "' m(AB). It is easily
checked that m) is again a measure on Bg which satisfies

ma((a, b)) = X7 m (Aa, Ab)) = A1 (b — Xa) = b —a
if A >0 and
ma((a,b]) = (A" m (A6, Aa)) = — A" (Ab—Xa) =b—a

if A < 0. Hence my = m. [ ]

We are now going to develop integration theory relative to a measure. The
integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

Product measure for the flipping of a coin.

Haar Measure

Measure on embedded submanifolds, i.e. Hausdorfl measure.
Wiener measure.

Gibbs states.

Measure associated to self-adjoint operators and classifying them.

SR

19.2 Integrals of Simple functions

Let (X, M, u) be a fixed measure space in this section.

Definition 19.11. Let F=C or [0,00) and suppose that ¢ : X — T is
a simple function as in Definition 18.41. If T =C assume further that
w(d{y})) < oo for all y # 0 in C. For such functions ¢, define I,(¢) by

= yule~ ({y})-

y€ER
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Proposition 19.12. Let A € F and ¢ and v be two simple functions, then I,
satisfies:

1.
1,(A0) = ALL(6). (19.8)

IM(¢ +1) = Iu(w) + IM(¢>-
3. If ¢ and ¥ are non-negative simple functions such that ¢ < 1) then
1u(8) < 1. (¥).

Proof. Let us write {¢ =y} for the set ¢~ 1({y}) C X and u(¢ = y) for
n({o =y}) = u(@~" ({y})) so that

L) =Y yu(d =)

yelF

We will also write {¢ = a, = b} for ¢~ ({a}) N~1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that A\ € F then

I,(¢) =D yu(Aé=1) =y ul¢=y/N

y€eF y€F
= Az (6 = 2) = Mu(9)
z€F

provided that A # 0. The case A = 0 is clear, so we have proved 1. Suppose
that ¢ and v are two simple functions, then

I($+v) =D 2z o+ =2)

z€F

=Y zp(Uuer {¢=w, ¥ =z —w})

z€F

=Y z) plo=w ¢Y=z-w
zeF  weF

= Y Gt =w, v ="2)
z,weF

=Y 2 pW=2)+ Y wp(¢=w)
z€F welF

:IM(¢)+IM(¢)-

which proves 2. For 3. if ¢ and v are non-negative simple functions such that

o<1



284 19 Measures and Integration

:Zau(qﬁ:a) = Z ap(¢ = a,p = b)

a>0 a,b>0
< Y bul¢=ap=b) =) bu(=b)=1L),
a,b>0 b>0
wherein the third inequality we have used {¢ = a, =b} =0 if a > b. [

19.3 Integrals of positive functions

Definition 19.13. Let LT = LT (M) = {f : X — [0,00] : f is measurable}.
Define

/f ) dp (x /fd,U—Sup{I( ) : ¢ is simple and ¢ < f}.
We say the f € L is integrable if [ fdu < oo. If A€ M, let

/f ) dp (a /fdu—/lAfdu

Remark 19.14. Because of item 3. of Proposition 19.12, if ¢ is a non-negative
simple function, [y ¢du = I,(¢) so that [ is an extension of I,,. This exten-
sion still has the monotonicity property if I,, : namely if 0 < f < g then

/ fdp =sup {I.(¢) : ¢ is simple and ¢ < f}

<sup{I,(¢) : ¢ is simple and ¢ < g} < / gdu.
X

/chdu:c/xfd,u.

Also notice that if f is integrable, then u ({f = c0}) = 0.

Similarly if ¢ > 0,

Lemma 19.15 (Sums as Integrals). Let X be a set and p: X — [0,00] be
a function, let p =3 o p(x)dy on M =2% ie.

p(A) =" pla).

T€EA

If f : X —[0,00] is a function (which is necessarily measurable), then

/deu = ZX:fp-
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Proof. Suppose that ¢ : X — [0,00) is a simple function, then ¢ =
ZzE[Opo) Zl{¢:Z} and

Sop=> pla) Y algen@)= Y 2> pla)lg_.y(@)
X

zeX z€[0,00) z€[0,00) z€X
— 3 u(fo=2h = / b,
z€[0,00) X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

/ ¢dp=> dp <> fp.
X X X

Taking the sup over ¢ in this last equation then shows that

/X e <3 1o

For the reverse inequality, let A CC X be a finite set and N € (0, 00).
Set fN(x) = min{N, f(x)} and let ¢y 4 be the simple function given by
dn.a(z) = 14(2) fN (). Because ¢y 4(z) < f(x),

ngp—§¢N,AP—/X¢N7Ad,ug/deu,

Since fN 1 f as N — oo, we may let N — oo in this last equation to concluded

gm<wa

Since A is arbitrary, this implies

;MSAM%

Theorem 19.16 (Monotone Convergence Theorem). Suppose f, € LT
is a sequence of functions such that f, 1 f (f is necessarily in L™) then

[t [asn—oc.

Proof. Since f,, < fi, < f, for all n < m < o0,

[hos [fuz 1
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from which if follows [ f, is increasing in n and

lim [ f, < / 7. (19.9)

For the opposite inequality, let ¢ : X — [0,00) be a simple function such
that 0 < ¢ < f, @ € (0,1) and X,, := {f, > a¢}. Notice that X,, T X and
fn > alx, ¢ and so by definition of [ f,,

/fn > /alxncéza/lx"(ﬁ. (19.10)

Then using the continuity property of p,

lim [ 1x,0=lim [1x, > ylig—y

n—oo
y>0

= nlirgo Zy,u(Xn N{p=y}) = Z ynlggo WX N{¢p =y}

y>0 y>0

=Y tim (o =u) = [ o

y>0

This identity allows us to let n — oo in Eq. (19.10) to conclude

o n—00

/Xassl lim [ fa.

Since this is true for all non-negative simple functions ¢ with ¢ < f;

o n—00

/f—sup{/xqﬁ:gf)issimpleandgbgf}gllim I

Because « € (0,1) was arbitrary, it follows that [ f < lim [ f, which com-

bined with Eq. (19.9) proves the theorem. ]
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that f > 0 is a mea-
surable function, then for any e > 0,

p(f2e) <2 /X fdu. (19.11)

In particular if [y fdp < oo then u(f = 00) =0 (i.e. f < 0o a.e.) and the
set {f >0} is o — finite.

Proof. Since 17>} < 1{f26}%f < %f’

1 1
u(fZE)Z/ l{fZE}dMS/ Lipzey=fdp < —/ fdp.
X X € €Jx
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If M := [, fdu < oo, then

—0asn— oo

p(7 =o0) < p(f 2 m) < o

and {f > 1/n} 1 {f > 0} with u(f > 1/n) <nM < co for all n. ]

Corollary 19.18. If f, € LT is a sequence of functions then

=% [n

In particular, if Y ooy [ fn < oo then Y " | fn < 00 a.e.

Proof. First off we show that

/(f1+f2)=/f1+/f2

by choosing non-negative simple function ¢, and %, such that ¢, T f1 and

¥n 1 fo. Then (b, + 10y,) is simple as well and (¢, + ) T (f1 + f2) so by the
monotone convergence theorem,

[t = Jim [(ntvn) = m ([o.+ [0.)
:nllrréo (bn—l—hm/wn—/fl—i-/fQ

Now to the general case. Let gy := Z fnand g = an, then gy 7 g and so

again by monotone convergence theorem and the add1t1v1ty just proved,

Z/fn.— lim ;/fn— lim /an

n=1

=J\}§nw/gw=/g=:/7;fn-

Remark 19.19. It is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition [ fdu makes sense for all functions f : X —
[0,00] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary 19.18, we use the approximation Theorem 18.42 which
relies heavily on the measurability of the functions to be approximated.
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The following Lemma and the next Corollary are simple applications of
Corollary 19.18.

Lemma 19.20 (The First Borell — Carntelli Lemma). Let (X, M, i) be
a measure space, A, € M, and set
{4, i.0.} ={z € X : x € A, for infinitely many n’s} = ﬂ U Ay

N=1n>N

If > u(Ay) < oo then p({A, i.0.}) =0.
Proof. (First Proof.) Let us first observe that

{4, i.0.} = {x €X: ilAn(:r) = oo}.

n=1

Hence if Y | u(Ay) < co then
00> Y p(A,) = Z/ La, dp =/ > la,du
n=1 n=17X X n=1

implies that Z 14, (z) < oo for p - a.e. x. That is to say u({A4, i.o.}) =0.

(Second Proof ) Of course we may give a strictly measure theoretic proof of
this fact:

w(Ay, i0.) = A}Enoou U A,

n>N

< jim, ¥ d

n>N
and the last limit is zero since Y | u(A,) < oo. ]

Corollary 19.21. Suppose that (X, M, p) is a measure space and {A,} | C
M is a collection of sets such that (A; N A;) =0 for all i # j, then

n IA Z:u‘

Proof. Since

w (U A :/ Ly 4, dp and
X

i w(A,) = /X 7; L, dp

n=1
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it suffices to show

S 1a, =1ue,a, 1 ac. (19.12)

n=1

Now Zzo:l 1a, > 1y 4, and 2211 1a,(z) # luse 4, (x) iff x € A;NA; for
some 4 # j, that is

{.’E : Z 1An($) 7& 1U§=1An($)} = Ui<in N Aj
n=1

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12) and hence the corollary. [ |

Notation 19.22 Ifm is Lebesgue measure on Bg, f is a non-negative Borel
measurable function and a < b with a,b € R, we will often write fabf (z)dx

or f; fdm for f(a’b]mR fdm.

Ezample 19.23. Suppose —oco < a < b < oo, f € C([a,b],[0,00)) and m be
Lebesgue measure on R. Also let m, = {a = af < af <--- <af =b}bea
sequence of refining partitions (i.e. mp C 741 for all k) such that

mesh(7y) := max{\a? — a?fll cj=1,...,n} — 0as k — oo.

For each k, let

ni—1

fe(@) = f@)lay + Y min{f(z): af <z <afy;} 1rar (@)
=0

k
l+1]

then fi T f as k — oo and so by the monotone convergence theorem,

b b
/ fdm ::/ fdm = lim / fr dm
a [a,b] k—oo /g

ne—1

= klingo ZZ min { f(z) : af <a < af_lrl} m ((af,aéﬁrl])

, 0
_ / f(x)da.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Ezample 19.24. For all A > 0,

/ e Mdm(x) = A7 and / L dm(z) = 7.
0 R
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The proof of these identities are similar. By the monotone convergence the-
orem, Example 19.23 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.13 above or Theorem 19.40 below),

&S] N N
/ e Mdm(z) = lim e Mdm(x) = lim e Mdg
0 N—o0 0 N—oo 0

1
= — lim Xe—/\th)v =\t

N—oo
and
/;dm(x)— lim ! ;dm(x)— lim ! ;d:n
R1—|—$2 _N—>oo _N1—|—.I‘2 _N—>oo _N 1—|—$2

= A}Enoo [tan™'(N) — tan™' (—N)] = .

Let us also consider the functions z 77,

1
/( L dm(z) = lim Lex g (m)x—lpdm(:n)

0,1] *P n—oo Jo  tn
1 p—p+1 !
= lim —dx = lim
n—oo [1 xP n—oo P 1/n
1 .
oo ifp>1

If p=1 we find

1 "1
/ — dm(z) = lim —dzr = lim ln(:r)H/n = 00.
(0

1] xP n—oo 1 X n—oo
s

Ezample 19.25. Let {r,}52; be an enumeration of the points in QN [0, 1] and
define

with the convention that

Since, By Theorem 19.40,

/1 L /1 . d+/m L
—F—ax = —F—ax —F—ax
0 1/|gp_7=n| r, VI — Ty 0o VIn—<x

=2VT = oly, = 2V —zly =2 (VI =70 — /1)

<4,
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we find

[0,1]

oo 1 o0
f(x)dm(x) = 2_”/ ———dz < 27" =4 < 0.
’I’LZ::I [071] V ‘.’E - 7nn| Z

n=1

In particular, m(f = oo0) = 0, i.e. that f < oo for almost every z € [0, 1] and
this implies that

- 1
22*"— < oo for a.e. z € [0,1].
n=1

V0T =yl

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 19.26. Suppose that f > 0 is a measurable function. Then
fX fdu=04ff f =0 a.e. Also if f,g > 0 are measurable functions such that
f<gae then [ fdu < [ gdp. In particular if f = g a.e. then [ fdu = [ gdp.

Proof. If f = 0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e.
This implies that pu(¢~'({y})) = 0 for all y > 0 and hence [y ¢dp = 0
and therefore [  fdp = 0. Conversely, if [ fdp = 0, then by Chebyshev’s
Inequality (Lemma 19.17),

u(f >1/n) §n/fdu:0for all n.

Therefore, p(f > 0) < > u(f > 1/n) =0, i.e. f =0 a.e. For the second
assertion let E be the exceptional set where f > g,i.e. E:={z € X : f(z) >
g(x)}. By assumption E is a null set and 1ge f < 1geg everywhere. Because
g=1gcg+ 1gg and 1gg =0 a.e.,

/gdu=/1Ecgdu+/1E9du=/1Ecgdu

and similarly [ fdu = [ 1ge fdu. Since 1ge f < 1geg everywhere,
/fd,u:/lchd,uS/1Ecgd,u:/gdu.

Corollary 19.27. Suppose that { f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

/hT/f%nHm~
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Proof. Let £ C X be a null set such that f,1gc T flgc as n — co. Then
by the monotone convergence theorem and Proposition 19.26,

/fn:/fnlECT/flECz/faSnHoo.

Lemma 19.28 (Fatou’s Lemma). If f, : X — [0,00] is a sequence of
measurable functions then

/liminf fn <lim inf/fn

Proof. Define g; := 1I;fk fn so that gx T liminf, .. f. as k — oo. Since

gr < fn for all k <n,
/gkﬁ/fnforalank

/gk <lim inf /fn for all k.

n—oo

and therefore

We may now use the monotone convergence theorem to let & — oo to find

/lim inf f, :/ lim g MET i /gk <lim inf /fn
n—00 k—o0 k—o0 n—00

19.4 Integrals of Complex Valued Functions

Definition 19.29. A measurable function f: X — R is integrable if f, =
flirsoy and f— = —f 1{y<oy are integrable. We write L' (u; R) for the space
of real valued integrable functions. For f € L' (u;R), let

/fduz/f+du—/f—du

Convention: If f g : X — R are two measurable functions, let f + ¢
denote the collection of measurable functions h : X — R such that h(z) =
f(z)+g(z) whenever f(x)+g(x) is well defined, i.e. is not of the form co—oo or
—00 +00. We use a similar convention for f — g. Notice that if f, g € L (u; R)
and hi, he € f + g, then hy = hg a.e. because |f| < oo and |g| < oo a.e.

Notation 19.30 (Abuse of notation) We will sometimes denote the in-
tegral [y fdp by p(f). With this notation we have p(A) = p(1a) for all
AeM.
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Remark 19.31. Since
fe <|fI< fo + 1,

a measurable function f is integrable iff [ |f| du < co. Hence

L' (4;R) := {f:X—>R: f is measurable and /X|f| d,u<oo}.

If f,g € L' (u;R) and f = g a.e. then fi = g4 a.e. and so it follows from
Proposition 19.26 that [ fdu = [ gdu. In particular if f, g € L' (41; R) we may

define
/X(f+g)du=/xhdu

where h is any element of f + g.

Proposition 19.32. The map
fell R — [ fiucr
X

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
LY (4;R) such that f < g a.e.

Proof. Let f,g € L' (4;R) and a,b € R. By modifying f and g on a null
set, we may assume that f,g are real valued functions. We have af + bg €
L' (u; R) because

laf +bgl < lal |f] + [bl]g| € L' (11 R).

If a < 0, then
(af)+ = —af- and (af)- = —afs

Jot=—afrvafri=afr-[r)=a]s

A similar calculation works for a > 0 and the case a = 0 is trivial so we have

shown that
/af :a/f.

Now set h = f +g. Since h=hy — h_,

so that

hy —h-=fy—f-+9+—9g-

or

hy+f-+g9-=h_+ fi +94+.

Therefore,
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and hence /h++/f_+/g_ :/h_+/f++/g+
I S Y Y P (R P

Finally if f — f- = f <g=g94+ —g- then fi +g_ < g4+ + f- which implies

that
/f++/97§/9++/f7
or equivalently that

1= [ foo- [~ [

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that f < g a.e. implies 0 < g — f a.e. and Proposition 19.26.
[

Definition 19.33. A measurable function f : X — C is integrable if
Jx |f] dp < oo. Analogously to the real case, let

L' (4;C) := {f:X—>(C: f is measurable and /X|f| d,u<oo}.

denote the complex valued integrable functions. Because, max (|Re f], [Im f]) <

[fI < V2max ([Re f|, [Im f[), [|f] dpu < oo iff
/\Ref|du+/|1mf|du<oo.
For f € L' (1;C) define

/fdu:/Refdqui/Imfdu.

It is routine to show the integral is still linear on L' (11; C) (prove!). In the
remainder of this section, let L' (11) be either L (11;C) or L! (u;R) . If A € M
and f € L' (u;C) or f: X — [0,00] is a measurable function, let

/A fp = /X 1afdp.

Proposition 19.34. Suppose that f € L' (u;C), then

‘ /X fdu'é /X fldp. (19.13)
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Proof. Start by writing fX f dp = Re* with R > 0. We may assume that
R= ’ / e fdu| > 0 since otherwise there is nothing to prove. Since

R:e*iG/deN:/Xe*“’f du:/XRe(e’wf) dqui/ Im (e f) dp,

X

it must be that [ + Im [e‘w f] dp = 0. Using the monotonicity in Proposition
19.26,

[oa] = [ retepan< [ e an< [ i

Proposition 19.35. Let f,g € L' (1), then
1. The set {f # 0} is o — finite, in fact {|f| > 2} 1 {f # 0} and u(|f| >

1) < oo for all n.
2. The following are equivalent

a) [pf=[pg foral E€ M
b))[lf—g|=0

¢c) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma 19.17,

u(IfIZ%)Sn/X\fldu<oo

for all n. 2. (a) = (c) Notice that

/Ef:/Eg@/Ewg):o

for all E € M. Taking E = {Re(f — g) > 0} and using 1z Re(f — g) > 0, we
learn that

0:Re/ (f—g)du= /1ERe(ffg) = 1lgRe(f —¢g) =0 ae.
E
This implies that 1z = 0 a.e. which happens iff

1 ({Re(f —g) > 0}) = u(E) = 0.

Similar u(Re(f—g) < 0) = 0so that Re(f—g) = 0 a.e. Similarly, Im(f—g) =0
a.e and hence f — g =0 a.e., i.e. f =g a.e. (¢) = (b) is clear and so is (b)

= (a) since
L1 [o< [1-a=0
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Definition 19.36. Let (X, M, ;1) be a measure space and L' (1) = L*(X, M, )
denote the set of L' () functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

17 =gl :/\f—gldu

and into a metric space using p1(f,q) = ||f — gl -

Warning: in the future we will often not make much of a distinction
between L'(u) and L' (1) . On occasion this can be dangerous and this danger
will be pointed out when necessary.

Remark 19.87. More generally we may define LP(u) = LP(X, M, ) for p €
[1,00) as the set of measurable functions f such that

/ 1P du < o
X

modulo the equivalence relation; f ~ g iff f =g a.e.

We will see in Chapter 21 that

1/p
T ( / Iflpdu> for f € LP()

is a norm and (LP(p), ||-||») is a Banach space in this norm.

Theorem 19.38 (Dominated Convergence Theorem). Suppose fr,, gn, g €
L' (), fo — f ae, |fal S gn €LY (1), gn — g ae. and [y gndp — [ gdp.

Then f € L (1) and
/ fdp = lim / fndp.
b'e h—oo Jx

(In most typical applications of this theorem g, = g € L () for all n.)

Proof. Notice that |f| = lim,— oo |fn] < limp oo [gn] < g a.e. so that
f € L' (). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

/ (9% fldu= / liminf (g, + f,) dpu < liminf/ (gn £ fn) dp
X x n—oo n—oo [y
= lim gndp + lim inf (:t/ fndu)

/ gdp + lim inf (i/ fndu>
X n—oo X

Since liminf,_,(—a,) = —limsup,,_, ., an, we have shown,
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[ [ pans [ s { It
X X X

—limsup,, ., [y fadp

and therefore

limsup/ frndp < fdu < hmlnf/ fndp.
X

n—o0o n—00

This shows that lim [ f,du exists and is equal to [y fdp. =

Exercise 19.1. Give another proof of Proposition 19.34 by first proving Eq.
(19.13) with f being a cylinder function in which case the triangle inequality
for complex numbers will do the trick. Then use the approximation Theorem
18.42 along with the dominated convergence Theorem 19.38 to handle the
general case.

Corollary 19.39. Let {fn},_, C L' (1) be a sequence such that 3207 || falli1 () <

oo, then > 07 | fn is convergent a.e. and

/. (2 fn> dp = il /.

Proof. The condition 3372, || fallp(,) < oo is equivalent to 337%  [fu| €
L' (n). Hence Y o7, fn is almost everywhere convergent and if Sy :=

ijzl fn, then
N [e%s)
ENEDIAES AR AR
n=1 n=1

So by the dominated convergence theorem,

fn d,u:/ lim Sydp = lim /S du
/X<nzl x N—oo N N—o0 N

~ lim Z [, o= Z ], e

]
Theorem 19.40 (The Fundamental Theorem of Calculus) Suppose
—00 <a<b<oo, feC((ab),RINL ((a,b),m) and F(z) := [T f(y
Then
1. F € C(]a,

o], R) N C*((a,b), R).

2. F'(x) = (:E)forallxe(a b).

3. If G € C([a,b],R) N C*((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f= G/|(ab> then

b
/ F(@)dm(z) = G(b) — Gla).
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Proof. Since F(x) := [ 1(q)(v)f(y)dm(y), lime_.. 1g2)(4) = L(a,2) ()
for m — a.e. y and ll(a’z)(y)f(y” < L)) [f(y)] is an L' — function, it
follows from the dominated convergence Theorem 19.38 that F' is continuous
on [a, b]. Simple manipulations show,

1) - f@)dm)| ith >0

B S, () = f(@)]dm(y)| it h < 0
- ﬁ {f;”*h F@) — f(@)|dm(y) i b > 0
— |h

F(z+h)— F(z)
h

— f(x)

Jon 1f(@) = f(@)[dm(y) if h <0
<sup{|f(y) — f(2)| :y € [z — |h],x +|R[]}

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F' = f on (a,b). For the converse direction, we have by assumption
that G'(z) = F'(z) for € (a,b). Therefore by the mean value theorem,
F — G = C for some constant C. Hence

b
/ f(z)dm(z) = F(b) = F(b) — F(a)
— (G(b) + C) — (G(a) + C) = G(b) — G(a).

Ezxample 19.41. The following limit holds,

n

lim (1- E)"dm(:n) =1

n—oo [q n

Let fn(z) = (1 — £)"1[0,»)(z) and notice that lim, .. fn(z) = e™*. We will
now show
0< fo(z) <e forall z>0.
It suffices to consider = € [0,n]. Let g(z) = e® f,(x), then for z € (0,n),
d 1 1 1
| —lt+n——(—=)=1——— <0
iz 19 +”(1—§)( ) 1-z) =

which shows that Ing(z) and hence g(z) is decreasing on [0,7n]. Therefore
g(x) < g(0) =1, ie.
0< fn(z) <e™™.

From Example 19.24, we know
/ e Tdm(z) =1 < oo,
0

so that e~” is an integrable function on [0, c0). Hence by the dominated con-
vergence theorem,
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n

im [ (1= Sydm(z) = tim [ fo(@)dm(a)

n— oo 0 n n—oo 0

_ /0 h lim_f, (2)dm(x) = /O " et dm(z) = 1.

Ezample 19.42 (Integration of Power Series). Suppose R > 0 and {a,}, -, is
a sequence of complex numbers such that > |an|r™ < oo for all » € (0, R).
Then

[ (St = 3o [ ante) = 3o, P8

for all —R < a < 8 < R. Indeed this follows from Corollary 19.39 since

|8] [
Z / (@] 2] dr(e <Z</ (@] 2] dr(z) + / a2 dm<x>>

BnJrl n+1

n+1 n+1 [ee]
<Z|n‘|ﬁ| +|a| <2rZ|an|r”<oo
n=0 n=0

where r = max(|5], |a]).

Corollary 19.43 (Differentiation Under the Integral). Suppose that
J C R is an open interval and f : J x X — C is a function such that

1.z — f(t,x) is measurable for each t € J.

2. f&to, ) € LY(p) for some ty € J.

3. %(t,x) exists for all (t,x).

4. There is a function g € L' () such that ’ ’ < g € L' (i) for each
teJ
Then f(t,-) € L' (p) for all t € J (ie. [y |f(t,x)|du(z) < o00), t —
fX ft, x)du(x) is a differentiable function on J and

& | feaduta) = [ St oyin).

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also
notice that

of

ot

and therefore, for x — %%(t, x) is a sequential limit of measurable functions
and hence is measurable for all ¢ € J. By the mean value theorem,

Gr(ta) = lim n(f(t+n"2) = f(t.2)

|f(t,x) — f(to,z)| < g(z)|t —to| forallt e J (19.14)

and hence
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[f(t,2)] < |f(Ex) = f(to, 2)| + [ f(to, )| < g(@) |t —to| + [ (to, =) -
This shows f(t,-) € L (u) for all t € J. Let G(t) := [y f(t,2)dp(x), then

G to ftSL‘ ( )
t—to / @)

lim ftw) = Flto,) = ﬁ(t,ac) for all x € X
t—to t—to ot

and by Eq. (19.14),

w <g(z) forallt € Jand z € X.
—to

By assumption,

Therefore, we may apply the dominated convergence theorem to conclude

lim G( ) t(] :n*)oo/ ftn,.’lﬁ t07x>dlu,(1')

n—o0 tn, — to t, — to

_ f(tnax) f(to,.’]?) T
- [ Jim. e

7t0

=A%%mwm

for all sequences t, € J\ {to} such that t, — to. Therefore, G(to) =
G(t)=G(to)
t—to

exists and

amzA%%mmw

limt_‘to

Ezxzample 19.4/4. Recall from Example 19.24 that
A= / e~ dm(z) for all A > 0.
[0,00)

Let € > 0. For A > 2¢ > 0 and n € N there exists C,,(¢) < oo such that

d\" _\ Y -
< _ xT — n xr < sx_
0< ( _d>\> e z"e < Cl(e)e

Using this fact, Corollary 19.43 and induction gives

d\" d\"
-1 _ [ -1 _ - -z
nI\ ( d)\> A /[O,oo) ( d)\> e dm(x)

= / z"e M dm(x).
[0,00)
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That is n! = A" [, ) 2"~ dm(z). Recall that
I := / z'~te *dx for t > 0.
[0,00)

(The reader should check that I'(t) < oo for all ¢ > 0.) We have just shown
that I'(n+ 1) = n! for all n € N.

Remark 19.45. Corollary 19.43 may be generalized by allowing the hypothesis
to hold for x € X \ E where E € M is a fixed null set, i.e. £ must be
independent of ¢. Consider what happens if we formally apply Corollary 19.43
to g(t) := [y la<edm(z),

. d [ 2 [ D
9(t) _E/o Ly<tdm(z) —/O Elxgdm(x).

The last integral is zero since %cht = 0 unless ¢ = x in which case it is
not defined. On the other hand g(¢) = ¢ so that §(¢) = 1. (The reader should
decide which hypothesis of Corollary 19.43 has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.46. Suppose that (X, M,u) is a complete measure space!
and f: X — R is measurable.

1. If g: X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If fn, + X — R are measurable and f : X — R is a function such that
limy, oo fn = f, t - a.e., then f is measurable as well.

Proof. 1. Let E = {z : f(z) # g(x)} which is assumed to be in M and
#(E)=0. Then g = 1gcf 4+ 1gg since f = g on E°. Now 1gf is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

1,0 JEUQEg)~t(A\{0})if0€ A
Since (1gg)~Y(B) C Eif 0 ¢ B and u(E) = 0, it follow by completeness of
M that (1gg)~1(B) € M if 0 ¢ B. Therefore Eq. (19.15) shows that 1xg is
measurable. 2. Let F = {z : lim f,(z) # f(x)} by assumption £ € M and

! Recall this means that if N C X is a set such that N C A € M and p(A4) = 0,
then N € M as well.
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w(FE) = 0. Since g := 1gf = limy— o 1ge fn, g is measurable. Because f =g
on E¢and pu(F) =0, f =g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, M, u) is not complete. For
example, let X = {0,1,2}, M = {{0}, {1,2}, X, ¢} and u = dy. Take ¢g(0) =
0, g(1) =1, g(2) =2, then g =0 a.e. yet g is not measurable.

Lemma 19.47. Suppose that (X, M, p) is a measure space and M is the
completion of M relative to i and [i is the extension of u to M. Then a
function f : X — R is (M, B = Bg) — measurable iff there exists a function
g: X — R that is (M, B) — measurable such E = {x : f(z) # g(z)} € M and
L (E)=0,ie f(z)=g(x) for i — a.e. xz. Moreover for such a pair f and g,
f € LY(n) iff g € L*(n) and in which case

/X fdpi = /X gap.

Proof. Suppose first that such a function g exists so that i(E) = 0. Since
g is also (M, B) — measurable, we see from Proposition 19.46 that f is (M, B)
— measurable. Conversely if f is (M, B) — measurable, by considering fi we
may assume that f > 0. Choose (M, B) — measurable simple function ¢,, > 0
such that ¢, T f as n — oco. Writing

On = Z apla,

with Ay € M, we may choose By, € M such that By, C Ay and ji(A\By) = 0.

Letting
d)n = Z akrlB;c

we have produced a (M, B) — measurable simple function én > 0 such that
E, = {¢n # ¢n} has zero fi — measure. Since i (U, E,) < > i (E,), there
exists F' € M such that U, E,, C F and u(F) = 0. It now follows that

lpgn = 1pdn 1 g:=1pf asn — occ.

This shows that ¢ = 1pf is (M, B) — measurable and that {f # g} C F has
[ — measure zero. Since f = g, i — a.e., fX fdp = fX gdp so to prove Eq.
(19.16) it suffices to prove

/gdﬂz/ gdu. (19.16)
X X

Because i = p on M, Eq. (19.16) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 18.42 it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by
considering (Reg), and (Img), . ]
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19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let —00 < a < b < co and f : [a,b] — R be a
bounded function. A partition of [a, b] is a finite subset 7 C [a, b] containing
{a,b}. To each partition

r={a=ty <ty <---<t, =0} (19.17)
of [a, b] let
mesh(7) == max{|t; —t,_1|:j=1,...,n},
M =sup{f(z):t; <x<tj_1}, mj=inf{f(z):t; <z <t;_1}

Gr=f@)(ay + > Ml y ey gr = f(@)lay + Y mjle, ., and
1 1

Sof = ZM tj—1) and s f = ij tj—1).
Notice that
b b
S,rf:/ G.dm and s,rf:/ grdm.

The upper and lower Riemann integrals are defined respectively by
b a
/ f(z)dx = inf S, f and / f(z)dx = sup s, f.
a 4 2 _p 77

Definition 19.48. The function f is Riemann integrable iff f:f = fbf €

R and which case the Riemann integral f: [ is defined to be the common value:

/ab f(z)dz = ff(x)dm = /_abf(a:)dx

The proof of the following Lemma is left to the reader as Exercise 19.20.
Lemma 19.49. If ©’ and © are two partitions of [a,b] and m C 7’ then

Gﬂ'ZGTI‘/ZfZgTK‘/ZgTI‘ and
SwaSn/fZSw'fZSTrf-

There exists an increasing sequence of partitions {my}re, such that mesh(my) |
0 and

Smflff andsﬂka/bf as k — oo.
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If we let
G := klim G, and g := klim G (19.18)

then by the dominated convergence theorem,

b
/ gdm = lim G, = lim sq, f :/ f(z)dz (19.19)
] F=eo Jab] hoo Ja_
and
s
/ Gdm = lim Gy, = lim kaf:/ f(z)dz. (19.20)
[a,b] k=00 Jia,b] k—o0 a

Notation 19.50 For x € [a,b], let

H(z) =limsup f(y) := 151%1 sup{f(y) : ly—z| < e, y € [a,b]} and

y—w
h(z) = liminf f(y) := 11%1 inf {f(y):|ly—2z| <e, y€la,b]}.
y—x E
Lemma 19.51. The functions H,h : [a,b] — R satisfy:

1. h(z) < f(z) < H(z) for all x € [a,b] and h(z) = H(z) iff f is continuous
at .

2. If {m}1—, is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in FEq. (19.18), then

G(z)=H(z) > f(x) > h(z) = g(x) Va¢r:=Up m. (19.21)

(Note 7 is a countable set.)
3. H and h are Borel measurable.

Proof. Let G, :=G,, | G and gx :==gr, T g
1. Tt is clear that h(z) < f(x) < H(z) for all z and H(x) = h(z) iff lim f(y)
y—a

exists and is equal to f(z). That is H(x) = h(z) iff f is continuous at z.
2. For z ¢ m,
Gr(z) > H(z) > f(x) 2 h(z) > gi(2) V k

and letting k£ — oo in this equation implies
Gz)> Hz) > f(z) > hz) > g(x) Vo g (19.22)
Moreover, given € > 0 and z ¢ T,

sup{f(y) : ly —z[ <&, y € [a,b]} > Gi(2)

for all k large enough, since eventually G (z) is the supremum of f(y)
over some interval contained in [z — ¢,z +¢€|. Again letting k¥ — oo implies

sup f(y) > G(x) and therefore, that
ly—z|<e
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H(z) =limsup f(y) > G(x)

Yy—x

for all x ¢ m. Combining this equation with Eq. (19.22) then implies
H(z) = G(z) if * ¢ m. A similar argument shows that h(z) = g(x) if
x ¢ 7 and hence Eq. (19.21) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 19.52. Let f : [a,b] — R be a bounded function. Then

) b
/ f= Hdm and/ f:/ hdm (19.23)
a [a,b] Ja [aab]

and the following statements are equivalent:

1. H(z) = h(z) for m -a.e. x,
2. the set
E :={z €a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesque measurable?, i.e. f is L/B —
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm:/ f(ac)dxz/ fdm:/ hdm. (19.24)
la,b] a [a,b] [a,b]

Proof. Let {m};-, be an increasing sequence of partitions of [a,b] as
described in Lemma 19.49 and let G and g be defined as in Lemma 19.51.
Since m(w) =0, H = G a.e., Eq. (19.23) is a consequence of Egs. (19.19) and
(19.20). From Eq. (19.23), f is Riemann integrable iff

/ Hdm = hdm
[a,b] [a,b]

and because h < f < H this happens iff h(z) = H(z) for m - a.e. z. Since
E = {z : H(z) # h(z)}, this last condition is equivalent to E being a m
— null set. In light of these results and Eq. (19.21), the remaining assertions
including Eq. (19.24) are now consequences of Lemma 19.47. ]

Notation 19.53 In view of this theorem we will often write f: f(z)dz for
b
[, fdm.

2 f need not be Borel measurable.
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19.7 Determining Classes of Measures

Definition 19.54 (o — finite). Let X be a set and € C F C 2%. We say
that a function p : F — [0,00] is o — finite on & if there exist X,, € € such
that X, T X and pu(X,,) < oo for all n.

Theorem 19.55 (Uniqueness). Suppose that C C 2% is a © — class (see
Definition 18.53), M = o(C) and p and v are two measure on M. If p and v
are o — finite on C and p=v on C, then u =v on M.

Proof. We begin first with the special case where u(X) < oo and therefore
also
v(X)= lim v(X,) = lim p(X,) =pX) < co.

Let
He={fel*MR):n(f)=v(f)}.

Then H is a linear subspace which is closed under bounded convergence (by the
dominated convergence theorem), contains 1 and contains the multiplicative
system, M := {1¢ : C € C} . Therefore, by Theorem 18.51 or Corollary 18.54,
H = £~ (M,R) and hence p = v. For the general case, let X} X2 € C be
chosen so that X} 7 X and X2 17 X as n — oo and p (X)) + v (X2) < oo for
all n. Then X,, := X! N X2 € C increases to X and v (X,,) = pu(X,,) < oo for
all n. For each n € N, define two measures p,, and v,, on M by

pn(A) == p(AN X,) and vy, (4) =v(AN X,).

Then, as the reader should verify, u, and v, are finite measure on M such
that u,, = v, on C. Therefore, by the special case just proved, p,, = v, on M.
Finally, using the continuity properties of measures,

w(A) = lim u(ANX,)= lim v(ANX,)=v(A)

n—oo n—oo

for all A € M. [
As an immediate consequence we have the following corollaries.

Corollary 19.56. Suppose that (X, 7) is a topological space, Bx = o(7) is
the Borel o — algebra on X and p and v are two measures on Bx which are
o — finiteonT. If u=v on 7 then p=v on Bx, i.e. u =v.

Corollary 19.57. Suppose that p and v are two measures on Brn which are
finite on bounded sets and such that u(A) = v(A) for all sets A of the form

A = (a,b] = (a1,b1] X -+ X (an, by]

with a,b € R™ and a < b, i.e. a; < b; for all i. Then u=v on Bgn.
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Proposition 19.58. Suppose that (X,d) is a metric space, p and v are two
measures on Bx := o(1q4) which are finite on bounded measurable subsets of

X and
/fd,u:/fdu (19.25)
X X

for all f € BCy(X,R) where
BCy(X,R) ={f € BC(X,R) : supp(f) is bounded}. (19.26)
Then pu = v.
Proof. To prove this fix a 0 € X and let
Yr(z)=([R+1—-d(z,0)]A1)VO0 (19.27)

so that ¥r € BCy(X,[0,1]), supp(vr) C B(o,R+2) and g T 1 as R — oo.
Let Hpi denote the space of bounded real valued Bx — measurable functions
f such that

X X

Then Hp is closed under bounded convergence and because of Eq. (19.25)

contains BC(X,R). Therefore by Corollary 18.55, Hpr contains all bounded

measurable functions on X. Take f = 14 in Eq. (19.28) with A € Bx, and

then use the monotone convergence theorem to let R — oo. The result is

w(A) =v(A) for all A € Bx. ]
Here is another version of Proposition 19.58.

Proposition 19.59. Suppose that (X,d) is a metric space, u and v are two
measures on Bx = o(14) which are both finite on compact sets. Further assume
there exists compact sets Kj, C X such that K7 T X. If

/X fdp = /X fdv (19.29)
for all f € Co(X,R) then p=v.

Proof. Let v, be defined as in the proof of Proposition 18.56 and let
‘H,,, 1 denote those bounded Bx — measurable functions, f : X — R such that

/X Fiompidp = /X P

By assumption BC(X,R) C H, i and one easily checks that H,, j is closed
under bounded convergence. Therefore, by Corollary 18.55, H,, ;, contains all
bounded measurable function. In particular for A € By,

/lAwmde:/ Laty pdv.
X X
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Letting n — oo in this equation, using the dominated convergence theorem,

one shows
/lAlKde:/ 1A1KZdV
X X

holds for k. Finally using the monotone convergence theorem we may let
k — oo to conclude

,u(A):/XlAdu:/XlAdu:y(A)

for all A € Bx. [ ]

19.8 Exercises

Exercise 19.2. Let 1 be a measure on an algebra A C 2%, then u(A4) +
w(B) =pu(AUB) + u(ANB) for all A,B € A.

Exercise 19.3 (From problem 12 on p. 27 of Folland.). Let (X, M, u)
be a finite measure space and for A, B € M let p(A, B) = u(AAB) where
AAB = (A\B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

2. Define A ~ B iff u(AAB) = 0 and notice that p(A,B) = 0 iff A ~ B.
Show “~ 7 is an equivalence relation.

3.Let M/ ~ denote M modulo the equivalence relation, ~, and let
[A] := {Be M : B~ A}. Show that p([4],[B]) := p(4,B) is gives a
well defined metric on M/ ~ .

4. Similarly show fi ([A]) = p(A) is a well defined function on M/ ~ and
show fi: (M/ ~) — R4 is p — continuous.

Exercise 19.4. Suppose that p, : M — [0, 00] are measures on M for n €
N. Also suppose that p,(A) is increasing in n for all A € M. Prove that
i M — [0, 00| defined by p(A) :=lim, o n(A) is also a measure.

Exercise 19.5. Now suppose that A is some index set and for each A € A,
ux : M — [0,00] is a measure on M. Define p : M — [0,00] by pu(A) =
Y rea Ha(A) for each A € M. Show that p is also a measure.

Exercise 19.6. Let (X, M, u) be a measure space and p : X — [0,00] be a
measurable function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, ] is a measure.
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2. Let f: X — [0, 00] be a measurable function, show

/deVZ/Xfde. (19.30)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — Cis in L'(v) iff |f|p € L' (u)
and if f € L'(v) then Eq. (19.30) still holds.

Notation 19.60 It is customary to informally describe v defined in Exercise
19.6 by writing dv = pdp.

Exercise 19.7. Let (X, M, ;1) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0, o0]
by v(A) := p(f~1(A)) for all A € F.

1. Show v is a measure. (We will write v = fopu or v =po f=1)

2. Show
/gdu—/ go f)du (19.31)

for all measurable functions g : ¥ — [0,00]. Hint: see the hint from
Exercise 19.6.

3. Show a measurable function g : ¥ — C is in L'(v) iff go f € L*(n) and
that Eq. (19.31) holds for all g € L!(v).

Exercise 19.8. Let F': R — R be a C!-function such that F'(x) > 0 for all
x € R and lim,_, 4 F(z) = +o0. (Notice that F' is strictly increasing so that
F~1:R — R exists and moreover, by the inverse function theorem that F~!
is a ! — function.) Let m be Lebesgue measure on Bg and

v(A) = m(F(A)) =m((F~") " (4) = (F-'m) (4)

for all A € Bg. Show dv = F’dm. Use this result to prove the change of
variable formula,

/hoF-F’dm:/hdm (19.32)
R R

which is valid for all Borel measurable functions & : R — [0, c0].

Hint: Start by showing dv = F’dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Theorem 19.8 (or
see Corollary 19.57) to conclude dv = F'dm on all of Bg. To prove Eq. (19.32)
apply Exercise 19.7 with g =ho F and f = F~ L.

Exercise 19.9. Let (X, M, 1) be a measure space and {A4,,},—; C M, show
p({A, a.a.}) <liminf u (A4,)

and if p (Upy>nAm) < 0o for some n, then

p({Ay i0.}) > limsup p (A,).

n—oo
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Exercise 19.10. BRUCE: Delete this exercise which is contained in Lemma
19.17. Suppose (X, M, 1) be a measure space and f : X — [0o0] be a mea-
surable function such that [, fdu < oo. Show p ({f = co}) = 0 and the set
{f > 0} is o — finite.

Exercise 19.11. Folland 2.13 on p. 52. Hint: “Fatou times two.”
Exercise 19.12. Folland 2.14 on p. 52. BRUCE: delete this exercise

Exercise 19.13. Give examples of measurable functions {f,,} on R such that
[n decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0, 1] such that g, — 0 while
[ gndm =1 for all n.

Exercise 19.14. Folland 2.19 on p. 59. (This problem is essentially covered
in the previous exercise.)

Exercise 19.15. Suppose {a,},- . C C is a summable sequence (i.e.
S lan] < 00), then f(0) := Y00 ane™ is a continuous function
for § € R and

1 " —inf
n = 5 /_7T f(@)e ""do.

Exercise 19.16. For any function f € L (m),showz € R — f(ioo ot (t) dm (t)
is continuous in z. Also find a finite measure, p, on Br such that z —
f(_oo 2 f (£) dpe () is not continuous.

Exercise 19.17. Folland 2.28 on p. 60.

Exercise 19.18. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of —1 and the sum is on k£ = 1 to co. In part e, s should be
taken to be a. You may also freely use the Taylor series expansion

o0 (o)
_ @2n -1 2n)!
(1—2)"12 = E A E m (n')QZ for |z] < 1.

n=0 n=0

Exercise 19.19. There exists a meager (see Definition 13.4 and Proposition
13.3) subsets of R which have full Lebesgue measure, i.e. whose complement
is a Lebesgue null set. (This is Folland 5.27. Hint: Consider the generalized
Cantor sets discussed on p. 39 of Folland.)

Exercise 19.20. Prove Lemma 19.49.



20

Multiple Integrals

In this chapter we will introduce iterated integrals and product measures. We
are particularly interested in when it is permissible to interchange the order
of integration in multiple integrals.

Ezample 20.1. As an example let X = [1,00) and Y = [0, 1] equipped with
their Borel o - algebras and let p = v = m, where m is Lebesgue measure.
The iterated integrals of the function f (z,y) := e~*¥ — 2e~2%¥ satisfy,

LI [ o (57w
and
P e =

and therefore are not equal. Hence it is not always true that order of integra-
tion is irrelevant.

Lemma 20.2. Let F be either [0,00), R or C. Suppose (X, M) and (Y,N)
are two measurable spaces and f : X XY — F s a (M Q N, Br) — measurable
function, then for each y €Y,

x — f(x,y) is (M, Brp) measurable, (20.1)

for each x € X,
y — f(z,y) is (N, Br) measurable. (20.2)

Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then
f(xay) = ]-AXB(xay) = ].A(.’E)lB(y)

from which it follows that Eqgs. (20.1) and (20.2) for this function. Let H be the
collection of all bounded (M ® N, Bg) — measurable functions on X x Y such
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that Egs. (20.1) and (20.2) hold, here we assume F = R or C. Because mea-
surable functions are closed under taking linear combinations and pointwise
limits, H is linear subspace of £>° (M @ N, F) which is closed under bounded
convergence and contain 1g € H for all F in the m — class, £. Therefore by by
Corollary 18.54, that H = (* (M @ N ,F).

For the general (M ® N, Br) — measurable functions f: X x Y — F and
M € N, let fp := 1\f|§]p{f € L (M QN, F). Then Eqgs. (20.1) and (20.2)
hold with f replaced by fi; and hence for f as well by letting M — co. =

Notation 20.3 (Iterated Integrals) If (X, M,p) and (Y,N,v) are two
measure spaces and f : X xY — C is a M @ N - measurable function,
the iterated integrals of f (when they make sense) are:

[ no [ st = [ [ i f<x,y>du<y>} du(z)

[ [ as)sen = [ [ / f<x,y>du<x>} v (y).

Notation 20.4 Suppose that f: X — C and g : Y — C are functions, let
f ® g denote the function on X XY given by

f®@g(x,y) = f(z)g(y).

Notice that if f, g are measurable, then f®g is (M ® N, Bc) — measurable.
To prove this let F(x,y) = f(z) and G(z,y) = ¢g(y) so that f®g = F -G will
be measurable provided that F' and G are measurable. Now F' = f om; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

20.1 Fubini-Tonelli’s Theorem and Product Measure

Theorem 20.5. Suppose (X, M, u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N,Br) — measurable function, then for each
yey,

x — f(z,y) is M — Big,o) measurable, (20.3)
for each x € X,
y — f(x,y) is N — Bjg,o0) measurable, (20.4)
x —>/ f(z,y)dv(y) is M — By o) measurable, (20.5)
v

y —>/ f(z,y)dp(z) is N — B, o) measurable, (20.6)
p's
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and

[ uta) [ s = [ ) [ dusea). 20
Proof. Suppose that E=Ax B€ & := M x N and f = 1g. Then

f(xay) = ]-AXB(xay) = ].A(.’E)lB(y)
and one sees that Egs. (20.3) and (20.4) hold. Moreover

/ Fy)du(y) = / La(2)Lp(y)du(y) = La(@)(B),
Y Y

so that Eq. (20.5) holds and we have

/ dju(z) / dv(y) f(z.y) = v(B)u(A). (208)
X Y

Similarly,
/X F( y)du(x) = u(A)Lp(y) and
[ ) [ aute) ) = v(muta)
Y X

from which it follows that Eqgs. (20.6) and (20.7) hold in this case as well. For
the moment let us further assume that u(X) < oo and v(Y) < oo and let
H be the collection of all bounded (M @ N, Bgr) — measurable functions on
X x Y such that Egs. (20.3) — (20.7) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1p € H for all E in the m — class, &, it follows by Corollary 18.54 that H is the
space of all bounded (M ® N, Bg) — measurable functions on X x Y. Finally if
[: X XY —[0,00] is a (M ®N, Bg) — measurable function, let fay = M A f
so that fas T f as M — oo and Eqgs. (20.3) — (20.7) hold with f replaced by
fa for all M € N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M — oo in these equations to deduce the theorem in
the case p and v are finite measures. For the o — finite case, choose X,, € M,
Y, € N such that X,, T X, Y, 1Y, u(X,) < oo and v(Y,,) < oo for all
m,n € N. Then define p,(A) = (X, N A) and v, (B) = v(Y, N B) for all
A€ M and B € N or equivalently du,, = 1x,, dp and dv, = ly, dv. By what
we have just proved Egs. (20.3) — (20.7) with u replaced by p, and v by v,
for all (M ® N, Bg) — measurable functions, f : X XY — [0, oo]. The validity
of Egs. (20.3) — (20.7) then follows by passing to the limits m — oo and then
n — oo making use of the monotone convergence theorem in the form,

/udum:/ uled,uT/ud,uasmHoo
X X X
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/vd,un:/vlynduT/vdp as n — 00
Y Y Y

for all w € L1 (X, M) and v € LT (Y, N). |

and

Corollary 20.6. Suppose (X, M,pn) and (Y,N,v) are o — finite measure
spaces. Then there exists a unique measure m on MQN such that (A x B) =
w(A)v(B) for all A€ M and B € N. Moreover T is given by

n(E) = /X dpu(x) /Y dv(y)L(z,y) = /Y v (y) /X (@) lg(e,y)  (20.9)

foral E€ M QN and 7 is o - finite.

Proof. Notice that any measure 7w such that 7(A x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y,, € N be chosen so that u(X,,) < oo, v(Y,,) < oo, X,, T X and Y,, 1Y, then
Xp XY, e MRN, X, xY, T X xY and m(X,, xY,,) < oo for all n. The
uniqueness assertion is a consequence of Theorem 19.55 or see Theorem 25.6
below with £ = M x N. For the existence, it suffices to observe, using the
monotone convergence theorem, that 7 defined in Eq. (20.9) is a measure on
M@ N. Moreover this measure satisfies m(A x B) = u(A)v(B) for all A € M
and B € N from Eq. (20.8 |

Notation 20.7 The measure 7 is called the product measure of u and v and
will be denoted by 1 @ v.

Theorem 20.8 (Tonelli’s Theorem). Suppose (X, M, ) and (Y,N,v) are
o — finite measure spaces and ™ = p @ v is the product measure on M Q N.
If fe LN (X xY,M®N), then f(-,y) € LY (X, M) for ally €Y, f(z,-) €
LY(Y,N) foradll z € X,

/ o p)du(y) € LH(X, M), / f(, Yduz) € LH(Y, N)
Y X

and

/Xxyf d”:/xdﬂ(f)/de(y)f(fc,y) (20.10)
~ [ ) [ dutorste.), 2011

Proof. By Theorem 20.5 and Corollary 20.6, the theorem holds when
f =1 with E € M®N. Using the linearity of all of the statements, the the-
orem is also true for non-negative simple functions. Then using the monotone
convergence theorem repeatedly along with the approximation Theorem 18.42,
one deduces the theorem for general f € LT (X x Y, M @ N). [
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The following convention will be in force for the rest of this chapter.

Convention: If (X, M, i) is a measure space and f : X — C is a measur-
able but non-integrable function, i.e. f < |f | du = oo, by convention we will de-
fine [, fdp := 0. However if f is a non-negative function (i.e. f: X — [0, oc])
is a non-integrable function we will still write [ ¢ Jdp = oo.

Theorem 20.9 (Fubini’s Theorem). Suppose (X, M, u) and (Y,N,v) are
o — finite measure spaces, 1 = u @ v is the product measure on M @ N and
f: X XY —>Cisa M®N - measurable function. Then the following three
conditions are equivalent:

/ |f|dr < oo, i.e. f€ L (m), (20.12)
XxY

/X (/Y |f(z,v)| dV(y)) du(z) < oo and (20.13)

/Y ( /X |f(m,y)du(x)) dv(y) < . (20.14)

If any one (and hence all) of these condition hold, then f(x,-) € L*(v) for u

a.e. z, f(-,y) € LY (u) for v a.e. y, Jy fCydu(y) € LY (u), Jx flz,)du(z) €
LY (v) and Egs. (20.10) and (20.11) are still valid.

Proof. The equivalence of Egs. (20.12) — (20.14) is a direct consequence
of Tonelli’s Theorem 20.8. Now suppose f € L!() is a real valued function
and let

o {xeX:/Y|f(:c,y)|du(y):oo}. (20.15)

Then by Tonelli’s theorem, & — [ |f (z,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X{/y|f(x,y)|dy(y)} d,u(x):/Xxy|f|d7T<oo

which implies that p (F) = 0. Let fi be the positive and negative parts of f,
then using the above convention we have

/ f(@,y) dv (y) = / 15 (@) f (@,9) dv ()
Y Y
_ /Y 1p (2) [fs (2,9) — f— (2,9)] dv (y)

_ / 1p (@) £+ (2,) dv (y) — / 15 (@) f- (2, 9) dv (3).
Y Y
(20.16)

Noting that 1g (z) f+ (z,y) = (1 ® 1y - f+) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem
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that * — [, f(x,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

[ s @narw|ame < [ ][ 17| <o

which shows [, f(-,y)dv(y) € L*(n). Integrating Eq. (20.16) on = and using
Tonelli’s theorem repeatedly implies,

/X [/Yf(x,y)dy(y)] dp (z)
= [ dute) [ vz

(2) f1 (2.) — /X e () /Y dv (9) 15 (2) f- (z,)
- /Y v (y) /X a1 (2) 15 (2) f (2,9) — / dv (y) /X a1 (2) 15 (@) f- (2,9)

:/Ydl/(y)/xdu(ac)ﬂr(x,y)—/Yd’/(y})//xdﬂ(w)f(m,y)

which proves Eq. (20.10) holds.

Now suppose that f = u + iv is complex valued and again let E be as
in Eq. (20.15). Just as above we still have E € M and u(E) < oo. By our
convention,

/Yf(w,y)dV(y)Z/YlE(w)f(w y) dv (y) = /Y1E< ) [ (2, ) + v (2,9)] dv ()
=/YlE <w>u<x,y>du<y>+ifylE (2)v (2,9) dv (3)

which is measurable in by what we have just proved. Similarly one shows
Jy f( (y) € L' (i) and Eq. (20.10) still holds by a computation similar
to that done in Eq. (20.17). The assertions pertaining to Eq. (20.11) may be
proved in the same way. [

Notation 20.10 Given E C X XY and x € X, let
E:={yeY:(z,y) € E}.

Similarly if y € Y is given let
E,:={zeX:(z,y) € E}.

If f : X xY — C is a function let f, = f(z,-) and fY := f(-,y) so that
fz:Y —=Cand f¥: X — C.
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Theorem 20.11. Suppose (X, M, u) and (Y,N,v) are complete o — finite
measure spaces. Let (X XY, L, ) be the completion of (X XY, M QN , nQv).
If f is L — measurable and (a) f > 0 or (b) f € L*(\) then f, is N —
measurable for i a.e. x and fY is M — measurable for v a.e. y and in case (b)
fr € L*(v) and fY € L' (u) for p a.e. x and v a.e. y respectively. Moreover,

(x—> /YfIdu) € L' (p) and <y — /Xfyd,u) € L' (v)
/Xxyfd)\ /du/duf /d,u/dyf

Proof. f E€e M®@N isa p® v null set (ie. (u®@v)(E) = 0), then

and

0= (1@ )(E) = [viB)in(e) = [ u(E,)dv(w)
X

X

This shows that

p({ V(. E) #0}) = 0 and v({y : pu(E,) #0}) =0,

ie. v(yF) =0for pa.e. x and p(Ey,) =0 for v a.e. y. If h is £ measurable and
h =0 for X — a.e., then there exists E € M ® N such that {(z,y) : h(z,y) #
0} C Fand (u®v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and (n@v)(E) = 0.
Since

{hs #0} ={y €Y : h(z,y) #0} C . F and

{hy #0} ={z € X : h(z,y) #0} C E,
we learn that for p a.e. z and v a.e. y that {h, # 0} € M, {h, #O}GN
v({hg #0}) = 0 and a.e. and p({h, # 0}) = 0. This 1mphes Jy bz, y)dv(y)

exists and equals O for 4 a.e. x and similarly that [, h + h(z,y)du(x) exists and
equals 0 for v a.e. y. Therefore

0_/Xxyhd/\_/y</xhdu> du-/}((/yhdu) dp.

For general f € L'(\), we may choose g € LY(M ® N,u ® v) such that
f(z,y) = g(z,y) for A\— a.e. (z,y). Define h := f — g. Then h = 0, A\— a.c.
Hence by what we have just proved and Theorem 20.8 f = g + h has the
following properties:

L. For pae z,y — f(z,y) = g(z,y) + h(z,y) is in L (v) and

/Yf(w,y)dV(y)=/Y9(w,y)dV(y)-
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2. For v a.e. y, x — f(x,y) = g(z,y) + h(x,y) is in L' (u) and

/X f(,y)du(z) = /X oz, y)dp(z).

From these assertions and Theorem 20.8, it follows that

[ aut@) [ avwran) = [ duto) [ avtwgta.n)

:/Ydy(y)/ydl/(x)g(m,y)
- [ swdpe @y
XxXY

- /X fa)aX.).

Similarly it is shown that

| [ au@sen = [ f@aaey.

[
The previous theorems have obvious generalizations to products of any

finite number of o — finite measure spaces. For example the following theorem
holds.

Theorem 20.12. Suppose {(X;, M, i)}, are o — finite measure spaces
and X = X; X --- X X,,. Then there exists a unique measure, T, on
(X, M1 ® - ® M,) such that m(Ay x -+ X Ay) = p1(A1) ... pn(Ay) for all
A; € M;. (This measure and its completion will be denote by p1 ® -+ ® pi,.)
Iff: X —1[0,00] is a My ®--- @ M,, — measurable function then

/ fdﬂ' = / dug(l) (wg(l)) N / dﬂa(n) (.’L‘g(n)) f(xl, PN ,;L‘n) (20.18)
X Xo(1)

a(n)

where o is any permutation of {1,2,...,n}. This equation also holds for any
f € LY(w) and moreover, f € L*(m) iff

/ d:ua(l)(xa(l)) o / d,ua(n) (ma(n)) |f(@1,. . 20)] < o0
Xa(l) o(n)

for some (and hence all) permutations, o.

This theorem can be proved by the same methods as in the two factor case,
see Exercise 20.4. Alternatively, one can use the theorems already proved and
induction on n, see Exercise 20.5 in this regard.
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Ezample 20.13. In this example we will show

. M ging
lim
M—o0 0 X

de =m/2. (20.19)

To see this write % = fooo e ¥ dt and use Fubini-Tonelli to conclude that

M _. M 0o
/ Smxdw = / {/ e T ging dt] dx
0 T 0 0
oo M
z/ / e sing de| dt
0 0

oo
1
= / m (1 — te_Mt sin M — e_Mt COS M) dt
0

< 1
—>/ dt:EaSM—>oo,
o 1+1¢2 2

wherein we have used the dominated convergence theorem to pass to the limit.
The next example is a refinement of this result.

FEzxzample 20.14. We have

/ ST Ay = 57 arctan A for all A > 0 (20.20)
0 x

and ford, M € [0, c0),

efMA

<C

M -
1
/ L 37 + arctan A (20.21)
0

X

where C' = max,>o % = 2\/%72 = 1.2. In particular Eq. (20.19) is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
x x
/ |Cosy|dy‘ < ‘/ 1dy’ = |z|
0 0

SO }%’ < 1 for all z # 0. Making use of the identity

/ e dt =1/x
0

x
|sinz| = ’/ cosydy’ <
0

and Fubini’s theorem,
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M . M o)
/ we‘“d / da:sinxe_/k”/ et dt
0 X
/ dt/ da sin g e~ (A1

_/Ool— (cos M + (A+t)sin M) e~ (A—H)dt
0 (A+t)?+1
:/oo 12 dt—/ cosM+(A+t)SlnM —M(A+) gy
o (A+t)"+1 0 (A+t)>+1
= %7‘( —arctan A — (M, A) (20.22)
where
s(M,A):/ cosM+(/1+t)s1nM —M(A+) gy
0 (A+t)2+1
Since
cos M + (A +t)sin M < 14+ (A+1)
(A+1)>+1 T (A1
0 e—MA
0L < [ et —c
0 M

This estimate along with Eq. (20.22) proves Eq. (20.21) from which Eq. (20.19)
follows by taking A — co and Eq. (20.20) follows (using the dominated con-
vergence theorem again) by letting M — oo.

20.2 Lebesgue Measure on R? and the Change of
Variables Theorem

Notation 20.15 Let

d times d times
—_—— o N———
mt=mx---@m on Bra = Br ® - - - ® Br

be the d — fold product of Lebesque measure m on Br. We will also use m?

to denote its completion and let Lq be the completion of Bga relative to m.
A subset A € Lg is called a Lebesque measurable set and m® is called d —
dimensional Lebesque measure, or just Lebesque measure for short.

Definition 20.16. A function f : R* — R is Lebesgue measurable if
f1(Br) C Ly.

Notation 20.17 I will often be sloppy in the sequel and write m for m® and
dz for dm(z) = dm?(z), i.e.
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f(x)der = / fdm= [ fdm.
R4 R4 Rd

Hopefully the reader will understand the meaning from the context.

Theorem 20.18. Lebesque measure m® is translation invariant. Moreover m?

is the unique translation invariant measure on Bga such that m®((0,1]¢) = 1.
Proof. Let A= J; x --- x J; with J; € Bg and = € R?%. Then
x4+ A= (x1+ ) X (@2 + o) X+ X (wg + Jg)
and therefore by translation invariance of m on Bg we find that
m(x+ A) =m(xy + J1)...m(zqg + Ja) = m(J1) ... m(Jy) = m¥(A)

and hence m?(x + A) = m?4(A) for all A € Bga by Corollary 19.57. From this
fact we see that the measure m?(z + -) and m?(-) have the same null sets.
Using this it is easily seen that m(x + A) = m(A) for all A € L4. The proof
of the second assertion is Exercise 20.6. ]

Theorem 20.19 (Change of Variables Theorem). Let 2 C, R? be an
open set and T : 2 — T(2) C, RY be a C' — diffeomorphism,' see Figure
20.1. Then for any Borel measurable function, f :T(£2) — [0, c0],

/ £ (T (@) | det T () |da = / f () dy, (20.23)
(9]

T(02)

where T'(z) is the linear transformation on R? defined by T'(z)v := &[T (z+
tv). More explicitly, viewing vectors in R as columns, T' (z) may be repre-
sented by the matrix

81T1 (ac) N BdTl (ac)
T' (z) = SRRV : (20.24)
ale (:E) e 8de (:L‘)

i.e. the i - j — matriz entry of T'(x) is giwen by T'(x);; = 0;T;(x) where
T(z) = (Ty(x),...,Ty(x))" and 0; = 8/0w;.

Remark 20.20. Theorem 20.19 is best remembered as the statement: if we
make the change of variables y = T (), then dy = |detT' (z) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if z ranges
through {2 then y must range through 7' (£2).

' That is T : 2 — T(£2) Co R? is a continuously differentiable bijection and the
inverse map T~ : T(§2) — £2 is also continuously differentiable.
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AN

o)A

5
K= sferce

T(=y=¢

v

Y - Spece

Aé = l:ioi"f’b«)\ dx
Fig. 20.1. The geometric setup of Theorem 20.19.

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 19.8. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < o < 8 < b such that [a,b] is a compact
subinterval of 2. Then |det 7’| = |T”| and

B8
/[a,b] Lr((a,p) (T (2)) [T (2)| dz :/ Lia,6 () T ()| dz :/a T ()| da.

[a,

If T’ (x) > 0 on [a,b], then

B8 B8
/ b <w>|dw=/ T' (z)de = T (8) — T (a)

«

= m (T (0, B)) = /T o L ()

while if 77 () < 0 on [a, )], then

B8 B
/ T (2)| da = —/ T (@) de = T () — T (8)
— m (T (o B])) = / Lr((as)) (4) dy.
T([a,b])

a7

Combining the previous three equations shows

f(T (@) |T ()| de = / f () dy (20.25)
] T([a,b])

la,b
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whenever f is of the form f = 1p((,,g)) With a < a < 3 < b. An application of
Dynkin’s multiplicative system Theorem 18.51 then implies that Eq. (20.25)
holds for every bounded measurable function f : T ([a,b]) — R. (Observe
that |T” (z)| is continuous and hence bounded for z in the compact interval,
[a,b]. From Exercise 10.12, 2 = ]_[2[:1 (an,byn) where ay, b, € RU{xo0} for
n=1,2---< N with N = oo possible. Hence if f : T ({2) — R 4 is a Borel
measurable function and a,, < ap < Bk < b, with ax | a, and S T by, then
by what we have already proved and the monotone convergence theorem

/1(an,bn) (foT)-|T'|dm = / (Ir((an by - f) o T - |T"|dm
? )
= lim <1T([&kﬁk]) ’ f) ol |Tl| dm

k—oo

0

= lim lT([ak,ﬁk]) - dm

k—oo
T(£2)

= / 1T((<lmbn)) . f dm.

7(02)

Summing this equality on n, then shows Eq. (20.23) holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d—1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, 77 (x), will always be taken to be
given as in Eq. (20.24).

Case 1. Suppose T' (z) has the form

T (z) = (i, T2 (x), ..., T4 (2)) (20.26)

or
T(x)=(T1(x),...,Ta-1(x),z;) (20.27)
for some i € {1,...,d}. For definiteness we will assume T is as in Eq. (20.26),

the case of T in Eq. (20.27) may be handled similarly. For ¢t € R, let 4; :
R%1 — R? be the inclusion map defined by

it (W) :=wy := (W, .., Wi—1, t, Wit 1, -, Wi—1) ,
2; be the (possibly empty) open subset of R?~! defined by
2 = {w e R (Wi, .y Wim1, b Wig1,y . v, W—1) € Q}
and T} : 2, — R be defined by

T (w) = (Ta (wi) ..., Ta (we)),
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z3

Tu)=(4, Ty(w)

" Q)

yl

Fig. 20.2. In this picture d = ¢ = 3 and {2 is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map 7' and
slicing the set {2 along planes where x3 = ¢.

see Figure 20.2. Expanding det T” (w;) along the first row of the matrix T (w;)
shows
|det T (wy)| = |det T (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
/foT|detT'\dm = /19 - foT|detT'|dm
2 R

- /19 (1) (f o T) (wy) | det T' (wy) |duwdt

Rd

:/R /(foT)(wt)|detT’(wt)\dw di

L2;
= / /f (t, Ty (w)) | det T} (w) |dw | dt
® |y

[7:(£2:) d=t

|
—
~
—
<
U
<

wherein the last two equalities we have used Fubini-Tonelli along with the
identity;
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=7 G () =][{(t.2): 2 € T (2)}.
teR teR

Case 2. (Eq. (20.23) is true locally.) Suppose that 7" : £2 — R? is a general
map as in the statement of the theorem and xg € (2 is an arbitrary point. We
will now show there exists an open neighborhood W C 2 of x( such that

/fOT|detT’\dm:/ fdm
W (W)

holds for all Borel measurable function, f : T (W) — [0, co]. Let M; be the 1-
minor of 7" (x), i.e. the determinant of 7" (zo) with the first row and ‘" —
column removed. Since

)0,y (o) - M;,

M&

0# detT' (z0) =
1:1

there must be some 4 such that M; # 0. Fix an ¢ such that M; # 0 and let,
S(x) = (x5, T (x),..., Ty (x)). (20.28)

Observe that |det S” (xo)| = |M;| # 0. Hence by the inverse function Theorem
16.25, there exist an open neighborhood W of xy such that W C, {2 and
S(W)C,Rand S: W — S (W) is a C! - diffeomorphism. Let R : S (W) —
T (W) C, R? to be the C* — diffeomorphism defined by

R(z):=T oS8 (z) forall z € S(W).
Because
(Ty (), ..., T4 () =T (z) = R(S(2)) = R((2:, T2 (2) ..., Ty (x)))
for all z € W, if
(21,22, 2a) = S (2) = (20, T2 (2) , ..., Tu (x))

then
R(z)=(T1 (S7'(2)) 22, .., 2a) - (20.29)

Observe that S is a map of the form in Eq. (20.26), R is a map of the form
in Eq. (20.27), T’ (z) = R’ (S (z)) S’ (x) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|det T" (x)| = |det R’ (S (z)) ]| |det " (z)] ¥V x € W.

So if f: T(W) — [0,00] is a Borel measurable function, two applications of
the results in Case 1. shows,
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/fOT-|detT’|dm=/(f0R-|detR’\)OS~|detS’| dm
W

:/foR-|detR'\dm: / fdm
S(W) R(S(W))

= / fdm
T(W)
and Case 2. is proved.

Case 3. (General Case.) Let f : 2 — [0,00] be a general non-negative
Borel measurable function and let

K, = {z € 2 :dist(z,2°) > 1/n and |z| < n}.

Then each K, is a compact subset of {2 and K,, T {2 as n — oo. Using the
compactness of K, and case 2, for each n € N, there is a finite open cover
Wi, of K, such that W C 2 and Eq. (20.23) holds with {2 replaced by W for
each W € W,,. Let {W; }Z | be an enumeration of U2 ; W, and set W, = W,
and W; := W; \ (W, U---UW;_y) for all i > 2. Then 2 = [[;°, W; and by
repeated use of case 2.,

/foT|detT’|dm Z/ ) - | det T'|dm.

119
[e%S)

Z/ () T} | det T'|dm
z:lWI

_i / Ly(ivy) - f dm = Z/lT(—i)jdm

=lr(e)
/ fdm.

T(02)

Remark 20.21. When d = 1, one often learns the change of variables formula
as o)
[re@rwa=["rway (20.30)
T(a)
where f : [a,b] — R is a continuous function and 7" is C' — function defined
in a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b))
and Eq. (20.30) is implies Eq. (20.23) with 2 = (a,b). On the other hand if
T" <0 on (a,b) then T ((a,b)) = (T'(b),T (a)) and Eq. (20.30) is equivalent
to
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T(a)

F(T (@) ([T <x>|>dx=—/ f (y) dy = —/T(( )

(a;b) T(b)

which is again implies Eq. (20.23). On the other hand Eq. Eq. (20.30) is
more general than Eq. (20.23) since it does not require 7" to be injective. The
standard proof of Eq. (20.30) is as follows. For z € T ([a, b]) , let

F(2) = / £ (4)dy.

T(a)

Then by the chain rule and the fundamental theorem of calculus,

b b b
[ Hr@ T @do= [ F @) @ d = [ (P @)
a a b ) a
=F (T (x = dy.
(T @) /T(a) 7 () dy

An application of Dynkin’s multiplicative systems theorem (in the form of
Corollary 18.55) now shows that Eq. (20.30) holds for all bounded measurable
functions f on (a,b). Then by the usual truncation argument, it also holds
for all positive measurable functions on (a,b) .

Ezxample 20.22. Continuing the setup in Theorem 20.19, if A € By, then
() = [ Arey @y =[x (To) et T (@) do

:/ La (2) |det T' ()] da
Rd

wherein the second equality we have made the change of variables, y = T (z) .
Hence we have shown

d(moT)=|detT" (-)| dm.

In particular if T € GL(d, R) = GL(R?) - the space of dxd invertible matrices,
then mo T = |det T| m, i.e.

m (T (A)) = |det T|m (A) for allA € Bga. (20.31)

This equation also shows that moT and m have the same null sets and hence
the equality in Eq. (20.31) is valid for any A € L.

Exercise 20.1. Show that f € L' (T (£2),m?) iff

/|foT||detT’|dm<oo
(9]

and if f € L! (T (2) ,md) , then Eq. (20.23) holds.



328 20 Multiple Integrals

Example 20.28 (Polar Coordinates). Suppose T : (0,00) x (0,27) — R? is
defined by
x=T(r,0) = (rcosf,rsinf),

i.e. we are making the change of variable,
x1 =rcosf and x5 = rsinf for 0 <r < oo and 0 < 6 < 2.
In this case ) -
100 = (509 Jeos”)

and therefore
dx = |det T (r,0)| drdf = rdrde.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(z,0) : © > 0}

has m? — measure zero, it follows from the change of variables Theorem 20.19
that

f(z)dx = /027r de /OOO dr r- f(r(cosf,sin@)) (20.32)

R2

for any Borel measurable function f : R? — [0, oc].

Ezample 20.24 (Holomorphic Change of Variables). Suppose that f : 2 C,
C = R2— C is an injective holomorphic function such that f’(z) # 0 for all
z € §2. We may express f as

fle+iy) =U(z,y) +iV (z,9)
for all z = = + iy € (2. Hence if we make the change of variables,
w=u+iv=f(z+iy)=U(z,y)+iV (z,y)

then
dudv =

det {Um Uy]

Ve Vy

dzdy = U, Vy — U, V| dzdy.

Recalling that U and V satisfy the Cauchy Riemann equations, U, =V, and
U, = =V, with f' = U, + iV,, we learn

UsVy = UV = U2+ V2 =|f.

Therefore
dudv = | (z + iy)|* dady.
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Fig. 20.3. The region {2 consists of the two curved rectangular regions shown.

Ezample 20.25. In this example we will evaluate the integral

I:= //Q (554 — y4) dzxdy

Q:{(m,y):1<x2—y2<2,O<xy<1},

where

see Figure 20.3 We are going to do this by making the change of variables,
(u,0) =T (2,y) = (2 — y*, 2y) ,
in which case

dudv =

det [2; jy] ‘ drdy = 2 (2 + y?) dady
Notice that
(z' —y") = (2 —9?) (¥ +¥°) =u(2® +47) = %ududv.
The function T is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that

2 =-DUD and T (+D) = (1,2) x (0,1) The change of variables theorem
then implies

1 1u? 3
Ii::// ot —yt d:rdy:—// ududv:——|2-1:—
iD( ) 2 JJa2xo.) 22" 4

and therefore I =1, +1_=2-(3/4) = 3/2.
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Exercise 20.2 (Spherical Coordinates). Let T : (0, 00) x (0, ) x (0, 27) —
R3 be defined by

T (r,¢,0) = (rsin¢gcosf,rsin ¢sin b, r cos ¢)

= r (sin @ cos 0, sin ¢ sin 6, cos ¢) ,

see Figure 20.4. By making the change of variables x = T (7, ¢, 6) , show

Fig. 20.4. The relation of = to (r, ®,6) in spherical coordinates.

T 2 ¢S]
= 0 rr?sing - r,¢,0
[ tayia= [ a0 [ o ["aritsing. 17 (.0.0)

for any Borel measurable function, f : R — [0, 00].

Lemma 20.26. Let a > 0 and

Ii(a) := /efalmﬁdm(x).

Rd
Then Iy(a) = (7/a)¥/?.
Proof. By Tonelli’s theorem and induction,
Ii(a) = / e‘“ly‘Qe_“ﬁmd,l(dy) dt
RI-1xR
=I;1(a)Ii(a) = I¥a). (20.33)

So it suffices to compute:

Ir(a) = /e_“lx‘zdm(x) = / e~ H73) dgy dy.

R2 R2\{0}
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Using polar coordinates, see Eq. (20.32), we find,

oo 2m e
I5(a) :/ dr 7"/ g e = 277/ re= dr
0 0 0
M

2

—ar M

. o . e 2T

=27 lim re " dr =27 lim =— =7/a.
M—oo [ M—oo —2a 0

This shows that I5(a) = w/a and the result now follows from Eq. (20.33). =

20.3 The Polar Decomposition of Lebesgue Measure

Let .,
St = {zeR?: |z = Z:cf =1}
i=1

be the unit sphere in R? equipped with its Borel o — algebra, Bgs—1 and
@ : R4\ {0} — (0,00) x S9! be defined by #(z) := (|z|,|z| " 2). The inverse
map, &1 : (0,00) x S4°1 — R\ {0}, is given by ¢~ 1(r,w) = rw. Since &
and @1 are continuous, they are both Borel measurable. For E € Bga—1 and
a >0, let

E,:={rw:r€(0,a) and w € E} = & ((0,a] x E) € Bga.

Definition 20.27. For E € Bga-1, let o(E) := d - m(FEy). We call o the
surface measure on S¢1.

It is easy to check that o is a measure. Indeed if E € Bga—1, then F; =
&1 ((0,1] x E) € Bga so that m(E} ) is well defined. Moreover if E = [[2 | E;,
then E1 = H;)il (El)l and

o) = d-m(Ex) = 3 m((B),) = Y o(E),

The intuition behind this definition is as follows. If £ C S9! is a set and
¢ > 0 is a small number, then the volume of

(L1+e]-E={rw:re(l,14+¢]and w € E}

should be approximately given by m ((1,1+¢] - E) 2 o(F)e, see Figure 20.5
below. On the other hand

m((1,14€]E) =m(Eige \ E1) = {1 +) — 1} m(E).
Therefore we expect the area of E should be given by

) i 2 1)
AT €

The following theorem is motivated by Example 20.23 and Exercise 20.2.
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Fig. 20.5. Motivating the definition of surface measure for a sphere.

Theorem 20.28 (Polar Coordinates). If f : R? — [0,00] is a (Bga, B)-
measurable function then

/f(x)dm(x) = / frw)yr®=t drdo(w). (20.34)
R (0,00) x Sd=1
Proof. By Exercise 19.7,
/fdm: / (fod ') od dm = / (fod™') d(®.m) (20.35)
R RI\{0} (0,00) x §4=1

and therefore to prove Eq. (20.34) we must work out the measure ®,.m on
B(O,oo) ® Bga-1 defined by

d.m(A) :=m (@71(14)) vV Ae B(O,oo) ® Bga-1. (20.36)
If A=(a,b] x E with0<a<band E € Bga-1, then
oY A)={rw:r € (a,b] and w € E} = bE; \ aFy

wherein we have used F, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(®.m) ((a,b] x E) =m (bE1 \ aFy) = m(bEy) — m(aFE)
= bIm(Ey) — a®m(E,) = d - m(E) / ’ rd=tdr.  (20.37)

a
Letting dp(r) = r¢=tdr, i.e.

o(J) = /er_ldr V J € B,00) (20.38)

Eq. (20.37) may be written as
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(@.m) ((a, 8] x E) = p((a,b]) - o (E) = (p@0) ((a,8] x E). (20.39)

Since
E={(a,b] x E:0<a<band F € Bga-1},

is a 7 class (in fact it is an elementary class) such that (&) = B(o,o0) ® Bga-1,
it follows from Theorem 19.55 and Eq. (20.39) that &.m = p ® 0. Using this
result in Eq. (20.35) gives

[tim=" [ (roe7) dpeo)
Rd (0,00) x Sd—1
which combined with Tonelli’s Theorem 20.8 proves Eq. (20.35). |

Corollary 20.29. The surface area o(S%1) of the unit sphere S*~1 C R is

27Td/2
d—1
= 20.4
where I" is the gamma function given by
o0
I'(x) ::/ u” e dr (20.41)
0

Moreover, I'(1/2) = /7, I'(1) =1 and I'(x + 1) = zI'(x) for z > 0.
Proof. Using Theorem 20.28 we find
I;(1) = / dr e / do = O’(Sdil)/ ri=le="dr.
0 0

gd—1

We simplify this last integral by making the change of variables u = r2 so

that r = »/2 and dr = %u‘lﬂdu. The result is

o0 2 o0 d—1 1
/ rd=te=" dr :/ W e w2 dy
0 0 2

_1 / wdle=vqu = Lpaya). (20.42)
2 /, 2

Combing the the last two equations with Lemma 20.26 which states that
I4(1) = 7%2, we conclude that

72 = [,(1) = %U(Sd‘l)F(d/Z)

which proves Eq. (20.40). Example 19.24 implies I'(1) = 1 and from Eq.
(20.42),
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Ir1/2) = 2/0Oo e dr = /_Z e dr
=1L(1) = /.

The relation, I'(z+1) = xI'(x) is the consequence of the following integration
by parts argument:

> d ° d
I'(z+1) :/ eu oyttt & :/ u® (— e“) du
0 u 0 du

= x/ u" e du =z ().
0
BRUCE: add Morrey’s Inequality 72.1 here.

20.4 More proofs of the classical Weierstrass
approximation Theorem 8.34

In each of these proofs we will use the reduction explained the previous proof
of Theorem 8.34 to reduce to the case where f € C([0,1]?). The first proof we
will give here is based on the “weak law” of large numbers. The second will
be another approximate § — function argument.

Proof. of Theorem 8.34. Let 0: = (0,0,...,0), 1: = (1,1,...,1) and
[0,1] := [0, 1]%. By considering the real and imaginary parts of f separately,
it suffices to assume f € C([0,1],R). For z € [0, 1], let v, be the measure on
{0,1} such that v, ({0}) =1 — 2 and v, ({1}) = 2. Then

/ ydvg(y) =0-(1—z)+1-2 ==z and (20.43)

0.1}

/ (y— 22dva(y) = 2(1— )+ (1 —2)2 -z = a(l—z).  (20.44)
0.1}

For z € [0,1] let pp = vy, ® -+ ® vy, be the product of vg,,...,v;, on
2 :=Ho, 1}d. Alternatively the measure u, may be described by

d
pe (o) = [T (1 =) 2 (20.45)

for e € £2. Notice that p, ({¢}) is a degree d polynomial in z for each ¢ € (2.
For n € N and z € [0,1], let u denote the n — fold product of u, with itself
on 2" X;(w) =w; € 2 CR? for w € N" and let

Sp=(S:,..., 8N = (X1 +Xo 4+ X,)/n,

s0 S, : 2" — R%. The reader is asked to verify (Exercise 20.3) that
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Spdpl = ( Stdu”, ..., Sgd,u;‘) = (21,...,zq) = (20.46)
n n ol
and
1< d
2 n
/m S, — z|* du” :E;xi(kxi) < (20.47)

From these equations it follows that S, is concentrating near x as n — oo, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

pu(@) = o f(Sn)dp (20.48)

should approach f(x) asn — co. Let € > 0 be given, M = sup {|f(z)| : z € [0,1]}
and

d. =sup{|f(y) — f(x)]: z,y € [0,1] and |y — x| < e}.
By uniform continuity of f on [0, 1], lim. ¢ d. = 0. Using these definitions and
the fact that p?(2") =1,

@) =@l = | [ (@) = FSdiz| < [ 15w - 1Sl
x) — f(Sn)| duy x) — f(Sn)|dul
< /{lsn_m}m) F(Sl it + /{Sn_xlge}m) F(S0)] dp
<2Mul (|Sn, — x| > ¢€) + 6. (20.49)

By Chebyshev’s inequality,

n 1 2 n d
(S, —al > )< 5 [ (8wl = 5,

and therefore, Eq. (20.49) yields the estimate

2dM
1f = Palloe < PSR + 0

and hence
limsup || f — pull, <9 = 0ase | 0.

This completes the proof since, using Eq. (20.45),

n

pal@) = Y fSa@)pi{wh) = Y f(Sa@)) [T ral{wid),

wenn wenn i=1
is an nd — degree polynomial in x € R9). [ |

Exercise 20.3. Verify Egs. (20.46) and (20.47). This is most easily done using
Egs. (20.43) and (20.44) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless
it is convenient to use this formulation.)
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The second proof requires the next two lemmas.

Lemma 20.30 (Approximate § — sequences). Suppose that {Q,},—, is a
sequence of positive functions on R? such that

Qn(z) dz =1 and (20.50)
Rd

lim Qn(x)dz =0 for all e > 0. (20.51)

n— 00
|z|>e

For f € BO(RY), Q, * f converges to f uniformly on compact subsets of R%.

Proof. The proof is exactly the same as the proof of Lemma 8.28, it is
only necessary to replace R by R? everywhere in the proof. [ |
Define

Qn :R" = [0,00) by Qn(x) = gn(1) - .. gn(za)- (20.52)
where ¢, is defined in Eq. (8.23).

Lemma 20.31. The sequence {Q,} -, is an approzimate § — sequence, i.e.
they satisfy FEqs. (20.50) and (20.51).

Proof. The fact that @, integrates to one is an easy consequence of
Tonelli’s theorem and the fact that ¢, integrates to one. Since all norms on
R are equivalent, we may assume that |z| = max {|=;| : i = 1,2,...,d} when
proving Eq. (20.51). With this norm

{zeR:|z|>c} =UL, {z eR?: |z4] > ¢}

and therefore by Tonelli’s theorem,

d
x)dx < Z / Qn(z)dr =d / qn(t)dt
{lz]>e} (R CHED {weRlz|>e}
which tends to zero as n — oo by Lemma 8.29. [
Proof. Proof of Theorem 8.34. Again we assume f € C' (Rd, (C) and f=0

on Q§ where Qg := (0, 1)*. Let Q,(z) be defined as in Eq. (20.52). Then by
Lemma 20.31 and 20.30, p,(z) := (Qn* F)(x) — F(z) uniformly for 2 € [0,1]
as n — 00. So to finish the proof it only remains to show p,, (z) is a polynomial
when z € [0,1]. For z € [0,1],

/an— (y)dy
d

_ () [T [en (0 = (@i = 4)) Vg, -y, <1] dy

[0 1] i=1

| \
<
L 1Y
\
e
)ﬁ
\
Ned
S
N~—
(V]
N
)
IS
N

[0 1] -
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Since the product in the above integrand is a polynomial if (z,y) € R x R%,
it follows easily that p,(x) is polynomial in z. ]

20.5 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,0) € (0,00) x

[0,27) so that
z1\ [rcosf\
($2) - <Tsin0) =T2(0,7).

For n = 3 we let 3 = rcos ¢; and then

(371) = TQ(Q,rSiHQSl)a

T2

as can be seen from Figure 20.6, so that

Fig. 20.6. Setting up polar coordinates in two and three dimensions.

T . 7 sin ¢ cos 6
T5(0,rsin . :
zo | = ( Q(rcos¢1¢1)> = | rsing;sind | =:T3(6, ¢1,7,).

T3 7 COS ¢1

We continue to work inductively this way to define

Z1
_ Tn(oaqslv"'7¢n—27TSin¢n—17) _
., - < TCOS¢n_1 —Tn+1(97¢17"'7¢n727¢n717r)-
Tn+41

So for example,
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T1 = 7 8in ¢ sin ¢; cos 6
To = T 8in ¢ sin ¢q sin O
T3 = 7 8in ¢ cos P1

T4 = T COS P2
and more generally,
T1 =T8N, _o...sin ¢y sin ¢ cos

To = T8in@y,_o...sin ¢y sin ¢q sinf

T3 = TS8in@,_o...sin @y Ccos P1

Tp—2 = 18N ¢n—2 sin ¢n73 Ccos ¢n74
Tp—1 = TSin ¢n72 Cos ¢n73

Ty =T COS Dp_2. (20.53)

By the change of variables formula,

| ra)am(a)

- / dr / dbs .. sd0 00 (0,01, bnzs 1) F(Tn (s b1, s Bsit))
0 0<¢p; <7,0<0<27

(20.54)
where
An(0,01, ...y no,7) = |det T\ (0,¢1,...,Pn_2,7)|.
Proposition 20.32. The Jacobian, A, is given by
A0, 01, ... bp_o,r) =7""1sin" "% ¢, _o...sin? o sin 1. (20.55)

If f is a function on rS™~' — the sphere of radius r centered at 0 inside of
R™, then

/TSH*1 f(zx)do(z) = r”—l/ Frw)do(w)

Snfl
f(Tn(ev (blv LR ¢n—27 r))An(ea ¢1a RS ¢n—2a T)d(bl s d¢n—2d0
(20.56)

/OS%SW,USGS?W

Proof. We are going to compute 4A,, inductively. Letting p := 7sin ¢,,_;
and writing 88% for 68%(0, D1y Pn_2,p) we have
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An+1(97¢15 LR ¢n—27 ¢n—17 ’I")

oT, 9T, T, 9T, T,
90 Bpy " Dpn-a 0Op | COS Gn—1 5, Sin On_1
0 0 ... 0 —rsingp1 cOoSPn_1

=r (COS2 (bnfl + SiDQ (bnfl) An(v 97 ¢17 ceey (bnf?v P)
= TAn(aa @1y, Pp_2,7sin ¢n71)a
ie.

Api1(0,01,. . P2, 0n—1,7) =17An(0, 01, ..., Pp—2,7sin@,_1). (20.57)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ay(6,r) = r already derived in Example 20.23, Eq. (20.57)
implies,
A3(0,¢1,7) = rAs(B,7sin ¢1) = ¥ sin ¢y
A4(0a ¢17 ¢27 ’I") = TA?)(&a ¢1a 7 sin ¢2) = 7"3 Sin2 ¢2 sin (bl

An(ﬁ, ¢1, ey ¢7l_2,’l") = Tn71 sin"_2 Qf)n_g PN sin2 (;52 sin (;51

which proves Eq. (20.55). Eq. (20.56) now follows from Egs. (50.3), (20.54)
and (20.55). ]
As a simple application, Eq. (20.56) implies

o(S" ) = / Sin""2 ¢p_s . ..sin% posin @1dey . . . dpp_odf
0<¢;<m,0<0<2m

n—2

=27 [ =0(5" )y (20.58)
k=1

where v 1= foﬂ sin® ¢de. If k > 1, we have by integration by parts that,

Ve = / sin® ¢dg = 7/ sinf* "¢ dcos ¢ = 201 + (k — 1)/ sin®* =2 ¢ cos? pde
0 0

0

=261+ (k—1) /ﬁ sin" 2 ¢ (1 —sin® @) dp = 2051 + (k — 1) [ve—2 — 7#]
0

and hence 7y, satisfies 79 = 7, 71 = 2 and the recursion relation

k—1
Vi = A Yg—o for k > 2.

Hence we may conclude

2 31 42 531

1
= =92 = = =292 - = —-=92 = _——_
Yo=T, N1 y V2 27T, 73 3 y V4 42777 5 y V6 277
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and more generally by induction that

2k —1)! (2R
Yo = T a0tk = 2
Indeed,
2k +2 _2%+2, (200, R(k+ D)
T2 T gL T o T 2k DI 20k + 1) + DI
and
C2%4+1 2%+1 (26— (2k+ 1)
PO T 1R T 22 (2R (2k+ 2l
The recursion relation in Eq. (20.58) may be written as
o(S™) =0 (5"") -1 (20.59)

which combined with ¢ (S*) = 27 implies

O'(Sl) =2,
0(S%) =21 -y =21 -2,
. 1 2272
3) — — Y=
o(S°) =212 -7 =2m-2 57 = o
222 2272 2 2372
o(5) = on BT T T3 T T3n
1 2 31 2373
5 = . . —_ . —_ - —_— —_— —_—
o(S°) =2m-2 57 32 127 = T

31 42 2473

127537 T

2
nn
\_C/n
|
N
3
)
|
3
wl o
)

and more generally that

2 (2m)" (2m)" !
2ny\ _ 2n+1y __
which is verified inductively using Eq. (20.59). Indeed,
202" @2n-1It  (2n)"
2n+1y __ 2n _ —
o) = 05T = G T @ T @)t
and
n+1 n 2 2 n+1
(n+1)y — 2042y _ 2n+1 _ (2m) (2n)!! _ (2m)
(S = o(ST) = o (ST Meni = T S g o T e
Using

)l =2n(2(n—-1))...(2-1) =2"n!
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we may write o(S* 1) = which shows that Eqgs. (50.9) and (20.60 in

27T71,+1
n!
agreement. We may also write the formula in Eq. (20.60) as

2(2m)"/2
=Yl for n even

o(S") =

S
B ’\7|+
. -

for n odd.

20.6 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower’s Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 20.33. LetU C, R™, f € C*(U,R?) and C := {x € U : rank(f'(z)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel mea-
surable subset of R% of Lebesgue measure 0.

Remark 20.34. This result clearly extends to manifolds.
For simplicity in the proof given below it will be convenient to use the

norm, |z| := max; |z;| . Recall that if f € C1(U,R?) and p € U, then

1 1
f(p+z) = f(p)+/0 I (p+tz)zdt = f(p)+f’(p)x+/0 [f'(p+tx)— f(p)] xdt

so that if

R(p,z) = f(p+2) — F(o) — ' (o) = / (0 + 1) — ['(p)) adt

we have

1
R(p. )| < |a] / 0+ t2) — /()| dt = || e(p, ).

By uniform continuity, it follows for any compact subset K C U that
sup{le(p,z)|:p€ K and |z| <é} - 0asd | 0.

Proof. Notice that if z € U \ C, then f/'(z) : R™ — R" is surjective,
which is an open condition, so that U \ C' is an open subset of U. This shows
C is relatively closed in U, i.e. there exists C' = R™ such that C = C N U.
Let K,, C U be compact subsets of U such that K, T U, then K, NnC T C
and K, NC = K, N C is compact for each n. Therefore, f(K,NnC) 1 f(C)
ie. f(C)=U,f(K,NC) is a countable union of compact sets and therefore
is Borel measurable. Moreover, since m(f(C)) = lim,_,.. m(f (K, N C)), it
suffices to show m(f(K)) = 0 for all compact subsets K C C. Case 1. (n < m)
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Let K = [a,a + ] be a cube contained in U and by scaling the domain we
may assume v = (1,1,1,...,1). For N € Nand j € Sy :={0,1,...,N — 1}"
let K; = j/N + [a,a + 7/N] so that K = Ujes, K; with K¢ N K¢ = () if
j#j . Let {Q;:j=1...,M} be the collection of those {K : j € Sx} which
intersect C. For each j, let p; € @; N C and for = € (); — p; we have

flpj + )= f(p;) + f'(pj)z + R;(x)
where |R;(z)| < e;(N)/N and e(N) := max;e;(N) — 0 as N — oco. Now

m (f(Q;)) =m (f(p;) + (f'(ps) + R;) (Q; = pj))
=m((f'(pj) + R;) (@ —p;))
=m (0; (f'(pj) + R;) (Q; — p5)) (20.61)
where O; € SO(n) is chosen so that O;f'(p;)R"™ C R™! x {0}. Now
O, f'(pj)(Qj — pj) is contained in I' x {0} where I' C R™~! is a cube cen-
tered at 0 € R™~! with side length at most 2|f'(p;)| /N < 2M/N where

M = max,ek |f'(p)|. It now follows that O; (f'(p;) + R;) (Q; — p;) is con-
tained the set of all points within e(N)/N of I' x {0} and in particular

O; (f'(pj) + B;) (Qj —p;) C (L +&(N)/N)I" x [e(N)/N,&(N)/NJ.
From this inclusion and Eq. (20.61) it follows that

m—1

m(FQ) < 257 (W enm)| 2

. 1
= 2" ML+ (NN (W) o
and therefore,

m(F(CNK) £ Y m (@) < N2 WM™ [(1+ (V) /N)]" " e(N)

= M (14 (V) /N () e

Nm—n

since m > n. This proves the easy case since we may write U as a countable
union of cubes K as above. Remark. The case (m < n) also follows from the
case m = n as follows. When m < n, C = U and we must show m(f(U)) = 0.
Letting F' : UxR"™™ ™ — R" be the map F(z,y) = f(x). Then F’(x,y)(v,w) =
f/(z)v, and hence Cr := U x R"™™. So if the assertion holds for m = n we
have

—0as N — o0

m(f(U)) =m(F(U xR""™)) = 0.

Case 2. (m > n) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

Ci={xeU:0%(x) =0 when |o| <i}

so that C' D C7; D Cy D Cs D .... The proof is by induction on n and goes by
the following steps:
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1. m(f(C\Cy))=0.
2. m(f(C’z \Ci+1)) =0 for all ¢ Z 1.
3. m(f(C;)) =0 for all i sufficiently large.

Step 1. If m = 1, there is nothing to prove since C = C; so we may assume
m > 2. Suppose that © € C'\ Cy, then f/'(p) # 0 and so by reordering the
components of z and f(p) if necessary we may assume that 0y f1 (p) # 0 where
we are writing 0f(p)/0z; as 0;f (p) . The map h(z) := (f1(x),z2,...,2,) has

differential
O1f1(p) O2f1 (p) --- Onf1 (P)
, 0 1 0 0
W)= . ST
0 0 0 1

which is not singular. So by the implicit function theorem, there exists there
exists V' € 7, such that h : V. — h(V) € 73, is a diffeomorphism and in
particular df;(z)/0x1 # 0 for x € V and hence V C U \ C;. Consider the
map g:= foh !: V' :=h(V)— R™, which satisfies

(fi(2), fo(), -, (@) = [(2) = g(h(2)) = g((f1 (@), 22, .., 20))

which implies g(t,y) = (t,u(t,y)) for (t,y) € V' := h(V) € 7j(p), see Figure
20.7 below where p = Z and m = p. Since

Figure . Construction of the map g

Fig. 20.7. Making a change of variable so as to apply induction.

1 0
"(+ _
I = | bult,y) dyult,y)

it follows that (¢,y) is a critical point of g iff y € C} — the set of critical points
of y — u(t,y). Since h is a diffeomorphism we have C' := h(C' NV) are the
critical points of g in V'’ and
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FCNV)=g(C") = U [{t} x w(C)].

By the induction hypothesis, m,_1(u;(Cy)) = 0 for all ¢, and therefore by
Fubini’s theorem,

m(f(CNV)) = /Rmm_l(ut(cg)nwﬂdt ~0.

Since C'\ C7 may be covered by a countable collection of open sets V' as above,
it follows that m(f(C\ C1)) = 0. Step 2. Suppose that p € Cj, \ Ci1, then
there is an « such that || = k + 1 such that 9®f(p) = 0 while 3°f(p) = 0
for all |] < k. Again by permuting coordinates we may assume that ay # 0
and 0 f1(p) # 0. Let w(z) := 9% fi(x), then w(p) = 0 while d1w(p) # 0.
So again the implicit function theorem there exists V' € 7, such that h(z) :=
(w(z),x2,...,2,) maps V — V' := h(V) € 7, in a diffeomorphic way and
in particular djw(z) # 0 on V so that V C U\Cj1. As before, let g := foh™!
and notice that Cj, := h(C, N V) C {0} x R"~! and

f(Cen V) =g(Cy) =3 (Cy)

where g := g[ ({0} xrn-1)nv/- Clearly C} is contained in the critical points of g,
and therefore, by induction

0=m(g(Cy)) =m(f(CeNV)).

Since C\Ck41 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Cx+1)) =0 for all k > 1.
Step 3. Suppose that @ is a closed cube with edge length § contained in U
and k£ > n/m — 1. We will show m(f(Q NCy)) = 0 and since @ is arbitrary it
will follows that m(f(Cy)) = 0 as desired. By Taylor’s theorem with (integral)
remainder, it follows for x € N Cy, and h such that z + h € @ that

flz+h)= f(z)+ R(z,h)
where
|R(z,h)| < c|n]**!

where ¢ = ¢(Q, k). Now subdivide @ into 7™ cubes of edge size ¢/r and let
@' be one of the cubes in this subdivision such that Q' N Cy # () and let
x € Q' N Cg. Tt then follows that f(Q’) is contained in a cube centered at

f(z) € R™ with side length at most 2¢(/7)**" and hence volume at most
(2c)™ (5/r)m<k+1) . Therefore, f(Q N C}) is contained in the union of at most
™ cubes of volume (2¢)™ (5/r)™*™) and hence meach

m (F(QNCr)) < (2¢)™ (5/r)™ D pr = (2¢)™ gD pn=mk+1) _, 0 ag p 1 0o

provided that n — m(k + 1) < 0, i.e. provided k > n/m — 1. [
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20.7 Exercises

Exercise 20.4. Prove Theorem 20.12. Suggestion, to get started define

7 (A) ::/Xldu(ml).../Xndu(xn)lA(xl,...,xn)

and then show Eq. (20.18) holds. Use the case of two factors as the model of
your proof.

Exercise 20.5. Let (X, M;, u;) for j =1,2,3 be o — finite measure spaces.
Let F': (X1 X XQ) X X3 — Xl X X2 X X3 be defined by

F((z1,22),23) = (w1, T2, 23).

1. Show F is (M7 ® M3) ® M3, M1 ® My ® M3) — measurable and F~!
is (M1 @ Mg @ M3, (M1 ® M3) ® M3) — measurable. That is

F ((Xl X XQ)XXg, (Ml ®M2)®Md> — (X1 XXQ XX3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. m(A) = [(u1 ® p2) @ pz] (F~1(A)) for all
A e M;® My ® Ms. Then 7 is the unique measure on M1 ® My @ M3y
such that

m(Ar X Az X Ag) = pu1 (A1) p2(Az2)p3(As)
for all A; € M;. We will write 7 := p1 ® 2 ® us.

3. Let f: X1 X Xa x X3 — [0,00] be a (M1 @ Ma ® M3, Bg) — measurable
function. Verify the identity,

/Xlxxgxx3 fal7r:/X3 dM3(:v3)/X2 duz(xz)/Xl dpy (z1) f (21, T, 3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six
possible orderings of the iterated integrals.

Exercise 20.6. Prove the second assertion of Theorem 20.18. That is show
m is the unique translation invariant measure on Bga such that m?((0, 1]¢) =
1. Hint: Look at the proof of Theorem 19.10.

Exercise 20.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],
M = Byg,1) be the Borel ¢ — field on X, m be Lebesgue measure on [0, 1] and
v be counting measure, v(A) = #(A). Finally let D = {(z,7) € X?:z € X}
be the diagonal in X2. Show

[ [ 1ot amta) # [ [ [ 1oe i) avi

by explicitly computing both sides of this equation.
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Exercise 20.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 20.9. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note the M x Bg should be M ® Bz in this problem.)

Exercise 20.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 20.11. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm),
g(z)=[* L0 gt for x € (0,a), show g € L*((0,a),dm) and

/Oa g(x)dx = /Oa f)dte.

Exercise 20.12. Show [ |22£| dm(z) = cc. So 22 ¢ L([0,00),m) and
Jo° 22Ldm(x) is not defined as a Lebesgue integral.

Exercise 20.13. Folland Problem 2.57 on p. 77.

Exercise 20.14. Folland Problem 2.58 on p. 77.

Exercise 20.15. Folland Problem 2.60 on p. 77. Properties of the I" — func-
tion.

Exercise 20.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 20.17. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on S™1.

Exercise 20.18. Folland Problem 2.64 on p. 80. On the integrability of
|z|* |log |z||” for & near 0 and & near oo in R™.
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LP-spaces

Let (X, M, ) be a measure space and for 0 < p < oo and a measurable

function f: X — C let
1/p
1= ([ 157a) (21.1)

[flloc =inf{a >0:p(|f] > a)=0} (21.2)

When p = oo, let

For 0 < p < o0, let
LP(X,M,p) ={f: X — C: f is measurable and ||f]|, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g|, =0iff f ~gandif f~g
then ||f]l, = ||g]|,- In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 21.1. Suppose that || f|lec < M, then for all a > M, u(|f| > a) =0
and therefore p(|f] > M) = lim,, oo u(|f| > M +1/n) =0, ie. |f(zx)]| < M
for u - a.e. x. Conversely, if |f| < M a.e. and a > M then pu(|f| > a) = 0 and
hence || f]lco < M. This leads to the identity:

|| flloc =inf{a>0:]|f(x)| <afor p—ae x}.

The next theorem is a generalization Theorem 5.6 to general integrals and
the proof is essentially identical to the proof of Theorem 5.6.

Theorem 21.2 (Hélder’s inequality). Suppose that 1 < p < co and q :=

2 or equivalently p~' + ¢ ' = 1. If f and g are measurable functions then

p—1’
£gllx < 11f1lp - lgllq- (21.3)

Assuming p € (1,00) and ||fl-|lgllq < oo, equality holds in Eq. (21.3) iff | f|”
and |g|? are linearly dependent as elements of L' which happens iff

gl NS 115 = Nlgllg 117 a-e. (21.4)
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Proof. The cases where || f||; = 0 or 0o or ||g]|, = 0 or co are easy to deal
with and are left to the reader. So we will now assume that 0 < || f|4, [lg]l, <
oo. Let s = |f| /|| fll, and t = |g|/||g]lq then Lemma 5.5 implies

p q
ol LU 1 gl
Iflpllglly = 2 Ifll, — a llgll®

. . . —1 —1 .
with equality iff [g/|lgllql = [F7~" /IFIE~ = 171774 /I FIE'%, e lglo) £1I5 =
lgllZ]f|". Integrating Eq. (21.5) implies

1 1
el 1,1,
Ifllpllglle = p 4

(21.5)

with equality iff Eq. (21.4) holds. The proof is finished since it is easily checked

that equality holds in Eq. (21.3) when |f|" = ¢|g|? of |g|? = ¢|f|" for some

constant c. ]
The following corollary is an easy extension of Holder’s inequality.

Corollary 21.3. Suppose that f; : X — C are measurable functions for i =

1,...,n and p1,...,pn and v are positive numbers such that Z;L:l p{l =1,

then
n n
< H | fill,, where Zpi—l .
=1 i=1

Proof. To prove this inequality, start with n = 2, then for any p € [1, o0,

n

117

i=1

T

1fallr = /X I Lol de < 1771 16"

where p* = p%l is the conjugate exponent. Let p1 = pr and ps = p*r so that

pfl + py ! = =1 as desired. Then the previous equation states that

1fgll. < fll, lgll,,

as desired. The general case is now proved by induction. Indeed,

I17 fann 11+
i=1

i=1

n+1

17
i=1

< | fusall,,,

q

s T

1

where g~ +p,,{; =771 Since 3, p; ' = ¢~!, we may now use the induction

hypothesis to conclude
n n
15 <ITus,, .
i=1 i=1

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality. |

q
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Theorem 21.4 (Minkowski’s Inequality). If 1 < p < oo and f,g € LP
then

1+ gllo < 11fllp + llglp- (21.6)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(21.6) iff sgn(f) = sgn(g) a.e. (see the notation in Definition 5.7) when p =1
and f = cg a.e. for some ¢ >0 forp € (1,00).

Proof. When p = oo, |f| < || f||, a-e. and |g| < ||g]|, a-e. sothat |f + g| <
If1+ 19! < [[flloo + 119l a-e. and therefore

1f + 9l < Ifllee + llgll s -
When p < o0,
If +gl” < 2max (|f],|g)" = 2" max (|, |g]") < 27 (If" + 1gI") .

1f +gllp < 27 (ILF15 + llgllp) < oo.

In case p =1,

Hf+g||1=/X\f+gldu§/X|f|du+/X\g\du

with equality iff |f| + |g| = |f + g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p € (1,00), we may assume [|f + g[[,, [|f], and [|g]|, are all positive
since otherwise the theorem is easily verified. Now

[f + 9" =If +gllf + 9P~ < (1 +1gDIf + 9P~

with equality iff sgn(f) = sgn(g). Integrating this equation and applying
Holder’s inequality with ¢ = p/(p — 1) gives

P p—1 p—1
/X\f+g| duS/XIfI gl du+/Xlg| 1+ glPdu
< (1o + gl 117 + 917 11 (21.7)

with equality iff

sgn(f) = sgn(g) and

(IIfllp 17+~ \Tol) ™ (21.8)

I1f + glP~ 2 = /X (I + gl dp = /X fglPdn. (2L9)

Therefore

Combining Egs. (21.7) and (21.9) implies
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1 + gl < AN+ gle/e + Ngllpllf + gl (21.10)

with equality iff Eq. (21.8) holds which happens iff f = cg a.e. with ¢ > 0.
Solving for ||f + g, in Eq. (21.10) gives Eq. (21.6). ]
The next theorem gives another example of using Holder’s inequality

Theorem 21.5. Suppose that (X, M,u) and (Y,N,v) be o - finite measure
spaces, p € [1,00], g =p/(p—1) andk : X XY — C be a M QN — measurable
function. Assume there exist finite constants C1 and Cs such that

/X k(z,y)| du(x) < Cy for v a.c. y and
[ el ) < o for e
If f € LP(v), then
/ ez, ) £ ()] dv(y) < oo for i — a.e. x,
2 — Kf(@) = [, kz,y)fy)dv(y) € LP(n) and

K Fll o < CPCY |l ooy (21.11)

Proof. Suppose p € (1,00) to begin with and let ¢ = p/(p — 1), then by
Holder’s inequality,

/\kxy v dv(y) /\kxyl/q\k(:cy)l””\f( )] du(y)

<[ [ et avty } [ el a )]1/,,
<cy/t| [ eallsol an)| "

Therefore,

| [ el )

;(# = [ )| [ i |du<>}

<l /X dp(z) /Y duly) [k, )] | F @)
—cpl /Y dv() | F ()P /X du(z) [k(z, )|
<cyicy | )W)l = 5 Cu I
Y
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wherein we used Tonelli’s theorem in third line. From this it follows that
Jy [E(z,9) f(y) dv(y) < oo for p - ace. =,

v Kf(x) = /Y k() f () dv(y) € LP ()

and that Eq. (21.11) holds.
Similarly if p = oo,

[ e @ ) < Ul | bl dvla) < Ca [l for - ae.
Y Y

so that [|K fll ey < C2llfllpe() -  p=1, then

/X dy(z) /Y dv(y) k(. 9) f (4)] = /Y dv(y) | W) /X dpu(z) (2. )]
<o / () £ ()
Y

Wthh ShOWS ||KfHL1(‘u,) S Cl ||fHL1(l/) . | |

21.1 Jensen’s Inequality

Definition 21.6. A function ¢ : (a,b) — R is convex if for all a < o < z1 <
bandt € [0,1] ¢p(zy) < tp(x1) + (1 — t)P(wo) where z = tx1 + (1 — t)zo.

Ezample 21.7. The functions exp(x) and —log(x) are convex and zP is
convex iff p > 1 as follows from Corollary 21.9 below which in part states
that any ¢ € C? ((a,b),R) such that ¢ > 0 is convex.

The following Proposition is clearly motivated by Figure 21.1.
Proposition 21.8. Suppose ¢ : (a,b) — R is a convex function, then

1. For all u,v,w, z € (a,b) such that u < z, w € [u, 2) and v € (u, 2],

$(v) = d(w) _ 6(2) — $(w) (21.12)

v —Uu - Z—w

2. For each ¢ € (a,b), the right and left sided derivatives ¢’ (c) exists in R
and if a <u <wv <b, then ¢’ (u) < ¢’ (v) < ¢/ (v).
3. The function ¢ is continuous.

4. For all t € (a,b) and B € [¢__(t), ¢ (t)], ¢(z) > ¢(t) + B(z —t) for all

x € (a,b). In particular,

d(x) > o(t) + @' (t)(z —t) for all z,t € (a,b).
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Fig. 21.1. A convex function along with two cords corresponding to o = —2 and
1 =4 and xg = —5 and x1 = —2.

Proof. 1a) Suppose first that © < v = w < z, in which case Eq. (21.12) is
equivalent to

(¢(v) = ¢(u)) (z = v) < (¢(2) = ¢(v)) (v —u)
which after solving for ¢(v) is equivalent to the following equations holding:

v—1Uu zZ—0

+ ¢(u)

Z—u z—u

p(v) < o(2)

But this last equation states that ¢(v) < ¢(2)t + ¢(u) (1 —t) where t = £=2

u

and v =tz + (1 — t)u and hence is valid by the definition of ¢ being convex.
1b) Now assume u = w < v < z, in which case Eq. (21.12) is equivalent to

(@(v) — d(u)) (z — u) < ($(2) — (u)) (v —u)

which after solving for ¢(v) is equivalent to

$(v) (z —u) < ¢(2) (v —u) + ¢(u) (z — v)

which is equivalent to

o(v) < (2) + ¢(u)

Z—u z—u

Again this equation is valid by the convexity of ¢. 1c) u < w < v = 2z, in
which case Eq. (21.12) is equivalent to

(¢(2) — d(u)) (z —w) < (6(2) — P(w)) (2 — )

and this is equivalent to the inequality,
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w—u zZ—w

+ ¢(u)

Z—U Z—U

which again is true by the convexity of ¢. 1) General case. If u < w < v < z,
then by la-1c)

P(2) — d(w) > ¢(v) — p(w) > P(v) — d(u)
andifu<v<w<z
#(2) — p(w) > P(w) — ¢(v) > $(w) — d(u)

We have now taken care of all possible cases. 2) On the set a < w < z < b,
Eq. (21.12) shows that (¢(z) — ¢(w)) / (z — w) is a decreasing function in w
and an increasing function in z and therefore ¢/, (z) exists for all z € (a,b).
Also from Eq. (21.12) we learn that

¢ (u) < Wbr alla <u<w<z<b, (21.13)
W <¢ (2)foralla<u<v<z<b, (21.14)

and letting w T z in the first equation also implies that

¢\ (u) < ¢ (2) forall a <u < z <b.

/

The inequality, ¢’ (2) < ¢/, (2), is also an easy consequence of Eq. (21.12). 3)
Since ¢(x) has both left and right finite derivatives, it follows that ¢ is contin-
uous. (For an alternative proof, see Rudin.) 4) Given ¢, let 3 € [¢'_(t), ¢, (t)],
then by Eqs. (21.13) and (21.14),

t) — — ot
M=) s (< )< HDZ 0
forall a <u <t < z<b. Item 4. now follows. [ ]

Corollary 21.9. Suppose ¢ : (a,b) — R is differential then ¢ is convex iff ¢/
is non decreasing. In particular if ¢ € C*(a,b) then ¢ is convex iff ¢ > 0.

Proof. By Proposition 21.8, if ¢ is convex then ¢’ is non-decreasing. Con-
versely if ¢ is increasing then by the mean value theorem,

% = ¢'(&) for some & € (¢, 21)
and

c—wzo ¢' (&) for some & € (zg,c).
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Hence
P(z1) — ¢(c) > d(c) — p(wo)

xr1 —C C— X

for all 29 < ¢ < x1. Solving this inequality for ¢(c) gives

C— X 1 —¢C

P(x1) +

< B(x0)
1 — o T1 — o

showing ¢ is convex. [

Theorem 21.10 (Jensen’s Inequality). Suppose that (X, M, u) is a prob-
ability space, i.e. p is a positive measure and u(X) = 1. Also suppose that
ferLl(u), f: X —(a,b), and ¢ : (a,b) — R is a convex function. Then

<z>( /. fdu) < [ othan

where if ¢ o f ¢ LY (), then ¢ o f is integrable in the extended sense and

Proof. Let t = [y fdu € (a,b) and let 3 € R be such that ¢(s) — @(t) >
B(s—t) for all s € (a,b). Then integrating the inequality, ¢(f)—¢(t) > B(f—t),

implies that
0</¢ ) — (1) /¢> ) — ¢>/fdu

Moreover, if ¢(f) is not integrable, then ¢(f) > ¢(t) + B(f — t) which shows
that negative part of ¢(f) is integrable. Therefore, [ ¢(f)dp = oo in this
case. ]

Example 21.11. The convex functions in Example 21.7 lead to the following

inequalities,
exp (/ fdu) §/ efdu, (21.15)
X X

o1 < 1o (/leldu)
fau| < ([ 19100) < [ 147
X X X

The last equation may also easily be derived using Holder’s inequality. As a
special case of the first equation, we get another proof of Lemma 5.5. Indeed,
more generally, suppose p;,s; >0 fori=1,2,...,n and > =1, then

and for p > 1,

zlp_
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2 Ins; 7, EInslt - 1 In s¥i - S?
S1...8p = e&i=t N = esi=t g 0 E —e"%i = E — (21.16)
iz Pi - P

where the inequality follows from Eq. (21.15) with X = {1,2,...,n}, p =

>ic1 50 and f (4) := Ins}". Of course Eq. (21.16) may be proved directly

using the convexity of the exponential function.

21.2 Modes of Convergence

As usual let (X, M, p) be a fixed measure space, assume 1 < p < oo and let
{fn}oe; U{[f} be a collection of complex valued measurable functions on X.
We have the following notions of convergence and Cauchy sequences.

Definition 21.12. 1. f,, — f a.e. if there is a set E € M such that u(E) =
0 and limy, o0 1ge frn = 1ge f.
2. fn — fin p — measure if limy, o pu(|fn — f| > ¢€) =0 for alle > 0. We
will abbreviate this by saying f, — f in LO or by fn 5 f.
3. f— finLP iff f € LP and f,, € LP for alln, and lim,_, || fr, — f”p =0.

Definition 21.13. 1. {f,} is a.e. Cauchy if there is a set E € M such that
w(E) =0 and{1gc f,} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in p — measure (or L° — Cauchy) if limy, oo p(|fr —
fm| >¢€) =0 for alle > 0.
8. {fn} is Cauchy in L if limy, oo || fn — finll, = 0.

Lemma 21.14 (Chebyshev’s inequality again). Let p € [1,00) and f €
LP, then

1
—_— p
p(flze) < S for alle > 0.

In particular if {fn} C LP is LP — convergent (Cauchy) then {f,} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (19.11),
(1f12 )= p(fF 2 < = [ 117 du= 151
pllfl o) = plfl" 2 < 55 | 11" dp= SIS
and therefore if {f,} is LP? — Cauchy, then

1
w(|fn—fml =€) < €—p||fn—fm||g—>0as m,n — 0o

showing {f,,} is L° — Cauchy. A similar argument holds for the L — convergent
case. ]
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. . . m
Here is a sequence of functions where f,, — 0 a.e., f, - 0in L', f, 55 0.

Above is a sequence of functions where f,, — 0 a.e., yet f,, -» 0in L'. or in

measure.

. . m
Here is a sequence of functions where f, — 0 a.e., f, —

0 but f, - 0 in L'.

Above is a sequence of functions where f, — 0 in L', f,, - 0 a.e., and

m

o0
Lemma 21.15. Suppose a,, € C and |an+1 —an| < e, and > &, < 0o. Then
n=1

o0
lim a, =a € C exists and |a — ap| < 0y, := Y €.

n—oo k=n
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Proof. (This is a special case of Exercise 6.9.) Let m > n then

m—1 00

§ Z |ak+1 —ak| S Z Ek i — 5n (2117)
k=n k

=n

m—1

> (ak+1 — ax)

k=n

|am _an‘ =

S0 |am — an| < dmin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (21.17) to find |a — ay,| < d,. ]

Theorem 21.16. Suppose {f,} is L°-Cauchy. Then there exists a subse-
quence g; = fn, of {fu} such that limg; := f exists a.e. and f, 5 f

asn — co. Moreover if g is a measurable function such that f, % g asn — oo,
then f =g a.e.

Proof. Let €, > 0 such that > &, < oo (g, = 27" would do) and set

n=1

dn = ) ek Choose g; = fy,, such that {n;} is a subsequence of N and
k=n

p({lgi+1 — gil > €;}) < ¢y

Let Ej = {|gj+1 — gj| > &},

Fy=J Bi= U {lgirs — g5l > &5}
j=N

J=N
and
oo [e'e] [e%e]
E= ﬂ Fy = m U Ej ={lgj+1 — g;] > ¢j i.0.}.
N=1 N=1j=N

Then u(E) =0 by Lemma 19.20 or the computation

o0 o0
w(E) < Z,u(Ej)g Zej:(FNHOasNﬁoo.
=N j=N

If © ¢ Fy, ie. |gj+1(x) —gj(z)| < g; for all j > N, then by Lemma 21.15,
f(z) = lim g;(z) exists and |f(z) — g;(z)] < 6; for all j > N. Therefore,
j—00

since E¢ = |J F§, lim g;(z) = f(z) exists for all ¢ E. Moreover, {z :
N=1 j—oo
|f(z) — gj(z)] > d;} C Fj for all j > N and hence

IS = g4l > 65) < p(Fy) < 65 — 0 as j — oo

Therefore g; £ fas j — oco. Since

{fn=t1>et=Alf —9; + 95— ful >}
CAlf = gil > /2y Udlg; = ful > /23,
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w{lfn = fI>e}) < p({lf — g5l > €/2}) + ullg; — ful > £/2)

and

#({llfn = f1>€}) < lim sup (lg; — ful > €/2) — 0 asn — oo.

If there is another function ¢ such that f, - g as n — oo, then arguing as
above

p(lf =gl >e) <u(lf = ful > €/2}) + p(lg = ful > €/2) = 0 as n — oc.

Hence
pllf =gl > 0) = WU {1 — gl >~ 1) < S ulF — gl > ) =0,
n=1
ie. f=ga.e. [

Corollary 21.17 (Dominated Convergence Theorem). Suppose {f,},
{gn}, and g are in L' and f € L° are functions such that

‘fn|§gn a.e., fnl’fa gnLga and /gnﬁ/g as n — o0.

Then f € L' and lim,—oo ||f — full, = 0, ice. fr, — f in L'. In particular

Proof. First notice that |f| < g a.e. and hence f € L! since g € L'. To
see that | f| < g, use Theorem 21.16 to find subsequences {f,,} and {gn,} of
{fn} and {g,} respectively which are almost everywhere convergent. Then

[fl= lim [fo ] < Hm gn, =g ae.

If (for sake of contradiction) lim,—, || f — ful|l; # O there exists ¢ > 0 and a
subsequence {f,, } of {f,} such that

/If = [l = € for all k. (21.18)

Using Theorem 21.16 again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — g almost everywhere. Noting,
If = fonl < 9+ gne — 29 and [(9+ gn,) — [ 29, an application of the
dominated convergence Theorem 19.38 implies limy oo [ |f — fn,| = 0 which
contradicts Eq. (21.18). ]

Exercise 21.1 (Fatou’s Lemma). If f, > 0 and f, — f in measure, then
[ f <liminf, oo [ fa.
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Theorem 21.18 (Egoroff’s Theorem). Suppose u(X) < oo and f, — f
a.e. Then for all € > 0 there exists E € M such that u(E) < € and f, — f
uniformly on E°. In particular f, -~ f asn — oco.

Proof. Let f, — f a.e. Then pu({|f, — f| > 1 i.0. n}) =0 for all k > 0,

ie.
_ 1 ~ 1
Jim | A= f1> 2 =0l () U= f1> 2] =0
< >N N=1n>N
Let B, := |J {|fn — f| > 1} and choose an increasing sequence {Nj}p-,
n>Ng

such that u(Ey) < €27% for all k. Setting E := UEy, u(E) < >, e27% =¢
and if ¢ E, then |f, — f| < ¢ for all n > Ny and all k. That is f, — f
uniformly on E*. [

Exercise 21.2. Show that Egoroff’s Theorem remains valid when the as-
sumption p(X) < oo is replaced by the assumption that | f,| < g € L* for all n.
Hint: make use of Theorem 21.18 applied to f,|x, where Xj := {|g] > k~'}.

21.3 Completeness of L? — spaces

Theorem 21.19. Let ||-|| , be as defined in Eq. (21.2), then (L*°(X, M, p), |||l ) is
a Banach space. A sequence {f,},-.; C L™ converges to f € L> iff there ex-

ists E € M such that w(E) = 0 and f, — f uniformly on E€. Moreover,
bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem 21.4, |-||  satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure |||
is a norm. Suppose that {f,} -, C L> is a sequence such f, — f € L™, i.e.
I|f = fulloo — 0 as n — oo. Then for all k € N, there exists N}, < oo such that

w(|f = fal > k") =0 for all n > Ny,
Let
E=U2Unsn, {If = fal > k7).

Then p(E) = 0 and for z € E°, |f(x) — fo(x)| < k7! for all n > Nj. This
shows that f,, — f uniformly on E°. Conversely, if there exists £ € M such
that u(F) =0 and f, — f uniformly on E°, then for any € > 0,

p(f =fal Zze) =p{lf = ful 2} NET) =0

for all n sufficiently large. That is to say limsup, . ||f — full,, < € for

o =
all ¢ > 0. The density of simple functions follows from the approximation
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Theorem 18.42. So the last item to prove is the completeness of L°° for which
we will use Theorem 7.13.

Suppose that {f,} —; C L* is a sequence such that Y~ [|fnll, < oc.
Let My, := ||fallo s En = {|fn] > My}, and E := U2 E, so that u(E) = 0.
Then

) 0o
Z Sué) |fn(x)‘ < ZMH < 0
6 c

n=17% n=1

which shows that Sy(z) = Zi\’:l fn(x) converges uniformly to S(x) :=
Yoo 1 fu(z) on E€ ie. lim, o |[|S — S|, = 0.

Alternatively, suppose €, n = [[fm — fullo — 0 as m,n — oo. Let
Emn ={|fn — fm| > €mn} and E := UE,, ,,, then pu(E) = 0 and

sué) | frn (2) — fo (2)] < €mpn — 0 as m,n — o0.
ASY O

Therefore, f := lim, . f, exists on E¢ and the limit is uniform on FE°.
Letting f = limy, oo 1ge fpn, it then follows that lim, .o ||fn — f||.,, =0. =

Theorem 21.20 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. (21.1)), is a Banach space.

Proof. By Minkowski’s Theorem 21.4, ||-[|, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure
[|[[,, is a norm. So we are left to prove the completeness of LP () for 1 < p < oo,
the case p = oo being done in Theorem 21.19.

Let {fn} -, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 21.14), {f,} is L°-Cauchy (i.e. Cauchy in measure) and by Theorem
21.16 there exists a subsequence {g;} of { f,,} such that g; — f a.e. By Fatou’s
Lemma,

lgs = flI5 = /kllrgo inf |g; — ge[Pdp < lim inf/ 95 — gk["dp

= lim inf||g; — gr[|) — 0 as j — oo.
k—o0

In particular, || f|l, < [lg; — fllp + l|g;ll, < 0o so the f € LP and g; L%, f. The
proof is finished because,

1fr = Fllp < lfn = gillp + g5 = fllp = 0 as j,n — oo

[

The LP(u) — norm controls two types of behaviors of f, namely the “be-
havior at infinity” and the behavior of “local singularities.” So in particular, if
f is blows up at a point zy € X, then locally near xg it is harder for f to be in
LP(u) as p increases. On the other hand a function f € LP(u) is allowed to de-
cay at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L(u) or Li(u) C LP(u). However,
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there are two notable exceptions. (1) If ;(X) < oo, then there is no behavior
at infinity to worry about and L%(u) C LP(u) for all ¢ < p as is shown in
Corollary 21.21 below. (2) If p is counting measure, i.e. u(A) = #(A4), then
all functions in L?(u) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case LP(u) C L7(u) for all ¢ < p,
see Corollary 21.25 below.

Corollary 21.21. If u(X) < 00 and 0 < p < q < oo, then L1(u) C LP(p),
the inclusion map is bounded and in fact

171, < (ONE=3 p1),-

Proof. Take a € [1, 00] such that

=—+4—-, e a=—.
a q

"=
=)

|
=3

Then by Corollary 21.3,

11, = 1S 2, < IFllg - 1L = £COYFllg = w(X)F7 | £l

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. ]

Proposition 21.22. Suppose that 0 < py < p1 < 00, A € (0,1) and px €
(Po,p1) be defined by

pPx Do b1
with the interpretation that \/p1 = 0 if p1 = co.! Then LP» C LPo + LP*, d.e.
every function f € LP> may be written as f = g+h with g € LP° and h € LP*.
For1<py<p <ooand f e LP°+ LP [et

11—
1=, (21.19)

11 = int {llgll,, + Al : £ =g+h}.

Then (LPo 4+ LP*,||-||) is a Banach space and the inclusion map from LP> to
Lo + LP' is bounded; in fact || f|| < 2||f|,, for all f € LP.

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f| > M} and the behavior of f at “infinity” is solely determined
by f on E°. Hence let g = flg and h = flge so that f = g+ h. By our earlier
discussion we expect that g € LP9 and h € LP' and this is the case since,

L A little algebra shows that A may be computed in terms of po, px and p1 by

N= Po Pr—Px

Px P1—DPo
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po __ p — f
o2 = 151 tipon = 30 [ |

[l

Po
Lig>m

Px
Lo < MPOTPY I[P < o0

and

P1
Lii<m

P11 __ P11 p1 . i
Il = sl = [ 17 vpear =2 [

o [

Moreover this shows

Px
Lipjem < MPTP|FIEY < oo

| f|| < Mi=Pa/po ||f\|£i/p0 + MipA/p HprA/m _

Px

Taking M = || f|,, then gives

1Al < (Wme/m e X))

and then taking A = 1 shows |[f|| < 2|f[l,, . The the proof that
(LPo 4 LP1 ||-||) is a Banach space is left as Exercise 21.7 to the reader. m

Corollary 21.23 (Interpolation of L? — norms). Suppose that 0 < py <
p1 < 00, A € (0,1) and px € (po,p1) be defined as in Eq. (21.19), then
Lo LPr C LP> and

A 1-A
1y < F I 115, " (21.20)
Further assume 1 < pg < py < p1 < 00, and for f € LPo N LP* et
1= 11f g + 11, -

Then (Lo N LP', ||-||) is a Banach space and the inclusion map of LP° N LP*
into LP> is bounded, in fact

1], < max (A%, (1= X)) (Hf||p0 + ||f\|p1) : (21.21)

The heuristic explanation of this corollary is that if f € LPo N LP then f
has local singularities no worse than an LP' function and behavior at infinity
no worse than an LP° function. Hence f € LP* for any p) between py and p;.

Proof. Let A be determined as above, a = po/A and b = p; /(1 — A\), then
by Corollary 21.3,

11y = {1 1

A 1-X A 1-X
s, = g,

It is easily checked that ||-|| is a norm on LP° N LP'. To show this space is
complete, suppose that {f,} C LP° N LP' is a ||-|| — Cauchy sequence. Then
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{fn} is both LPo and LP* — Cauchy. Hence there exist f € LP° and g € LP* such
that lim, o || f — fall,, = 0 and lim, . [[g — full,, = 0. By Chebyshev’s
inequality (Lemma 21.14) f, — f and f,, — ¢ in measure and therefore by
Theorem 21.16, f = g a.e. It now is clear that lim, o ||f — fn|]| = 0. The
estimate in Eq. (21.21) is left as Exercise 21.6 to the reader. ]

Remark 21.24. Combining Proposition 21.22 and Corollary 21.23 gives
Lp(l N Lpl C LP/\ C LPO + Lpl
for 0 < po < p1 < o0, A€ (0,1) and py € (po,p1) as in Eq. (21.19).

Corollary 21.25. Suppose now that p is counting measure on X. Then
LP(p) C L9(p) for all0 <p < q < oo and || fl|, < |Ifll,-

Proof. Suppose that 0 < p < ¢ = o0, then

1% = sup {|f@) sz € X3 < D7 f @)1 = |IF1I},

zeX

Le. [[fllo < [Ifll, for all 0 < p < co. For 0 < p < ¢ < oo, apply Corollary
21.23 with py = p and p; = oo to find

L, < WA LI < IR 1AL~ = 1AL,

21.3.1 Summary:

L. Since p(|f| > ) < e P|/f|;, L? — convergence implies LY — convergence.

2. LY — convergence implies almost everywhere convergence for some subse-
quence.

3. If u(X) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L? —
convergence.

4. Tf u(X) < oo, then L9 C LP for all p < g and L? — convergence implies L?
— convergence.

5. LPoNLPr C L9 C LPo 4 LP* for any q € (po,p1).

6. If p < g, then ¢» C £7 and||f[|, < [|f]l, -

21.4 Converse of Holder’s Inequality
Throughout this section we assume (X, M, ) is a o — finite measure space,

q € [1,00] and p € [1,00] are conjugate exponents, i.e. p~! + ¢~! = 1. For
g € L4, let ¢, € (LP)* be given by
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bq(f) = /gf d. (21.22)

By Holder’s inequality

6g()] < /Igf\du < llgllgll £l (21.23)
which implies that

[6gll(Lr)- == sup{log(f)] : [IfIl, =1} < llgllq- (21.24)

Proposition 21.26 (Converse of Hélder’s Inequality). Let (X, M, ) be
a o — finite measure space and 1 < p < oo as above. For all g € L9,

Il = 19yl zey- = sup {165 (A : 151, = 1} (21.25)
and for any measurable function g : X — C,
ol =su{ [ lol - 17, =1 ana f=0f. 212

Proof. We begin by proving Eq. (21.25). Assume first that ¢ < oo so
p > 1. Then

165()] = \ [ar du] < [ lofldu < gl 1

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 21.2, when |f|” = c|g|? for some
constant ¢ > 0. So let f := sgn(g)|g|?/? which for p = co is to be interpreted

as f = sgn(g), i.e. |g|q/oo = 1. When p = oo,

|69(f)] = /nggn(g)du = Mgl = lally 1£ll

which shows that [[¢g (L) > |[lg]l1. If p < 0o, then

12 = / P = / 1917 = lglle

while
6o(f) = / gfdp = / l9llg|*/Pdp = / l917dps = [lg].
Hence | (f)| H Hq
10) g q(1-2)
i, ~ gy~ 1ol 7= el

This shows that ||¢4]| > ||g||q which combined with Eq. (21.24) implies Eq.
(21.25).
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The last case to consider is p =1 and g = 0o. Let M := ||¢||cc and choose
X, € M such that X,, 1 X as n — oo and u(X,) < oo for all n. For any
e>0,u(lgl > M—e)>0and X,N{|lg| > M —e} 1 {|lg| > M —e}. Therefore,
w(X, N{lgl > M —e}) > 0 for n sufficiently large. Let

f=sgn(g)lx,n{g|>m—c}

then
£l = (X0 N {lg] > M —¢}) € (0,00)

and

|pg (f)] :/ sgn(g)gdu:/ lg|dp
Xnn{lg|>M—c} XN {lgl>M—c}

> (M —e)u(Xn N {lgl = M —e}) = (M =€)l

Since € > 0 is arbitrary, it follows from this equation that ||¢,||(p1)x > M =
191

Now for the proof of Eq. (21.26). The key new point is that we no longer
are assuming that g € L9. Let M(g) denote the right member in Eq. (21.26)
and set g, = lx,n{|g/<n}g- Then [g,| T |g| as n — oo and it is clear that
M/(gy) is increasing in n. Therefore using Lemma 4.10 and the monotone
convergence theorem,

lim M(gn) = sup M(gn) = SUPsup{/X \9n| fp || f]l, =1 and f > 0}

n—oo n

- sup{sup/X (gnl fdpu: 11, =1 and f > o}

- sup{nlgn;o [ ol s 151, =1 an 7 > o}

—sup{ [ lol e 171, =1 and £ = 0} = br(g)
X

Since g, € L7 for all n and M(g,) = ||¢gn||(L,,)* (as you should verify), it
follows from Eq. (21.25) that M(gn) = ||gnl|, - When g < oo (by the monotone
convergence theorem) and when ¢ = oo (directly from the definitions) one
learns that lim, e [|gnl|, = [l9]l, - Combining this fact with lim,.cc M(g,) =
M(g) just proved shows M(g) = [|g], - ]

As an application we can derive a sweeping generalization of Minkowski’s
inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 21.27 (Minkowski’s Inequality for Integrals). Let (X, M, u)
and (Y,N,v) be o - finite measure spaces and 1 <p < oo. If f isa M QN
measurable function, then y — || f(-,y)| Lr(u) s measurable and
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1. 4f f is a positive M ® N measurable function, then

I el < [ 17C vl (21.27)

2. If f : XxY — Cis a M@N measurable function and [y || f(-,y)|lLruydr(y) <
oo then

a) for u — a.e. z, f(x,-) € L*(v),
b) the . —a.e. defined function, x — [y, f(x,y)dv(y), is in LP(u) and
¢) the bound in Eq. (21.27) holds.

Proof. For p € [1,00], let F,(y) := | f(-,9) |l L) I p € [1,00)

Bp() = 1FC9)llv g = </X ()" du(x)>1/p

is a measurable function on Y by Fubini’s theorem. To see that F, is mea-
surable, let X,, € M such that X,, T X and u(X,) < oo for all n. Then by
Exercise 21.5,

Foo(y) = lim lim Hf(vy)anHLP(,u)

n—oo p—oo

which shows that Fi, is (Y, ) — measurable as well. This shows that integral
on the right side of Eq. (21.27) is well defined.

Now suppose that f >0, g =p/(p—1)and g € L%(u) such that g > 0 and
llgl] ra(uy = 1. Then by Tonelli’s theorem and Holder’s inequality,

[\ st saute) = [ avt) [ dute) s mate)

<ol [ 1G9

= [ WDl dto).
Y
Therefore by the converse to Holder’s inequality (Proposition 21.26),
I [ £Cndr@li
Y
—sw{ [ | [ fe.navin] at@dn(o) : ol =1 ant 9 > 0}
< [ 15 Clivty)

proving Eq. (21.27) in this case.
Now let f: X XY — C be as in item 2) of the theorem. Applying the first
part of the theorem to |f| shows
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/Y @,y dvly) < oo for - ae. =,

i.e. f(z,-) € L*(v) for the u —a.e. . Since | [y, f(z,y)dv(y)| < [y | f(z,y)|dv(y)
it follows by item 1) that

y)dv(y

y)|dv(y

/ 1 Comll o d():

Hence the function, 2 € X — [|, f(x,y)dv(y), is in LP(u) and the bound in
Eq. (21.27) holds. ]

Here is an application of Minkowski’s inequality for integrals. In this the-
orem we will be using the convention that z =1/ := 1.

L"(u) Lr(p

Theorem 21.28 (Theorem 6.20 in Folland). Suppose that k : (0,00) x
(0,00) — C is a measurable function such that k is homogenous of degree —1,
i.e. k(Ax, \y) = A" Yk(z,y) for all X > 0. If, for some p € [1,00],

Cp = / |k(z,1)| 2™ Pde < oo
0

then for f € LP((0,00),m), k(z,-)f(:) € L*((0,00),m) for m — a.e. . More-
over, the m — a.e. defined function

(EN@ = [ ko) @iy (21.28)
0
is in LP((0,00),m) and
1K SN 2o ((0,00),m) < Cpllfll2r((0,00),m)-

Proof. By the homogeneity of k, k(z,y) = 2~ 'k(1, £). Using this relation
and making the change of variables, y = zz, gives

| wensla = [ b D)

_ Ooxfl z xZ)|lxdz = - z Tz Z.
_/0 k(1, 2) f(22)| zd /0 |k(1,2) f(z2)|d

Since - - p
XL
6 Wy = [ WPy = [ 11@P

z

£ 2) 1o ((0,00),m) = 2PN Lo ((0,00)m)-

Using Minkowski’s inequality for integrals then shows
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/0 " lk(9) F )] dy

< / (L 212 o e €2
LP((0,00),m) 0

= W lznooorm [ K127 /7ds

= Cpll fll e ((0,00),m) < 00
This shows that K f in Eq. (21.28) is well defined from m — a.e. . The proof
is finished by observing

< Cpllf Il ((0,00),m)
L?((0,00),m)

1 Pl oy < H [ sy

for all f € LP((0,00), m). ]
The following theorem is a strengthening of Proposition 21.26. It may be
skipped on the first reading.

Theorem 21.29 (Converse of Holder’s Inequality II). Assume that
(X, M, ) is a o — finite measure space, q,p € [1,00] are conjugate exponents
and let Sy denote the set of simple functions ¢ on X such that p (¢ # 0) < oo.
Let g : X — C be a measurable function such that ¢pg € L* () for all ¢ € Sy,?
and define

My(g) = sup {' /. ¢gdu' 6 €57 with ], =1 (21.20)

If My(g) < oo then g € L7 (p) and My(g) = |\l -

Proof. Let X,, € M be sets such that u(X,) < oo and X, 1 X asn T oc.
Suppose that ¢ = 1 and hence p = oco. Choose simple functions ¢, on X

such that |¢,| < 1 and sgn(g) = lim,—c ¢, in the pointwise sense. Then
1x,,¢n € Sy and therefore

for all m,n. By assumption 1x, g € L'(1) and therefore by the dominated
convergence theorem we may let n — oo in this equation to find

/X Ix,, lgldu < My(g)

for all m. The monotone convergence theorem then implies that

/ gldi = lim / Ly, lgldyt < My(g)
X m—oo Jx

2 This is equivalent to requiring 14g € L' (1) for all A € M such that u(A) < oo.
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showing g € L*(p) and ||g||; < M,(g). Since Holder’s inequality implies that
M,(9) < |lgll; ; we have proved the theorem in case ¢ = 1. For ¢ > 1, we will
begin by assuming that g € L7(u). Since p € [1,00) we know that Sy is a
dense subspace of LP(u) and therefore, using ¢, is continuous on LP(p),

M,(g) = sup {} /. ¢gdu} o€ L0 with [, =1 = g,

where the last equality follows by Proposition 21.26. So it remains to show
that if ¢pg € L' for all ¢ € Sy and M,(g) < oo then g € L9(u). For n € N, let
gn = 1x,1gj<ng. Then g, € Li(p), in fact ||g,|lq < nu(Xn)l/q < 00. So by
the previous paragraph, ||gn|l, = Mq(gn) and hence
Joull, =00 {| [ 615, tcngn] 6 € £2() with o], =1}
< My(9) [|91x, Lgi<nll, < My(g) - 1 = My(9)

wherein the second to last inequality we have made use of the definition of
M, (g) and the fact that ¢lx, 114<, € Sy. If ¢ € (1,00), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, H-||p, implies

lall, = lim_llgal, < My(g) < oo.
If ¢ = o0, then ||gn |l < My(g) < oo for all n implies |g,,| < M,(g) a.e. which

then implies that |g| < M, (g) a.e. since |g| = lim,,_ |gn|. That is g € L ()
and g/l < Moo (9)- L

21.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L° — convergent sequence is LP — convergent.

Notation 21.30 For f € L*(u) and E € M, let
plf: E) = / fdp.
E
and more generally if A, B € M let
u(f: A B) ::/ fdu.
ANB

Lemma 21.31. Suppose g € L*(p), then for any ¢ > 0 there exist a § > 0
such that p(lg| : E) < € whenever u(E) < 4.
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Proof. If the Lemma is false, there would exist € > 0 and sets E,, such
that u(E,) — 0 while u(|g| : E,) > ¢ for all n. Since |1g,g| < |g| € L' and
for any 6 € (0,1), pu(lg, |g] > ) < p(E,) — 0 as n — oo, the dominated
convergence theorem of Corollary 21.17 implies lim,, s p(|g| : Er) = 0. This
contradicts u(|g| : En) > ¢ for all n and the proof is complete. ]

Suppose that { fn};:o:1 is a sequence of measurable functions which con-
verge in L(u) to a function f. Then for E € M and n € N,

[u(fn s E) < [u(f = fu: E) 4+ u(f - E) <\ = fally + [u(f : )]

Let ey :=sup,~n ||f — full;, then ex | 0 as N T co and

sup [u(fo : B)| < sup W fn: E)V (en +(f: E)) Sen+plgn  E),

(21.30)
where gy = |f]| + Zi:;l |fn| € L'. From Lemma 21.31 and Eq. (21.30) one
easily concludes,

Ve>036>0 3 sup|u(fn: E)| <e when u(E) < 4. (21.31)

Definition 21.32. Functions {f,},—, C L'(u) satisfying Eq. (21.51) are
said to be uniformly integrable.

Remark 21.83. Let {f,} be real functions satisfying Eq. (21.31), E be a set
where pu(E) < § and E,, = EN{f, >0}. Then p(E,) < ¢ so that u(f, :
E) = u(fn : En) < € and similarly u(f,, : E) < e. Therefore if Eq. (21.31)
holds then

sup u(|fn] : E) < 2¢ when p(E) < 6. (21.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of f,,. Therefore {f,} -, C L'(x) is uniformly integrable iff

Ve>036>0 3 supu(|fn]: F) < e when pu(FE) < 4. (21.33)

Lemma 21.34. Assume that pu(X) < oo, then {f,} is uniformly bounded in
LY(p) (i.e. K =sup,, || fall, < 00) and {fn} is uniformly integrable iff

lim sup p(|fn] : |fn] = M) =0. (21.34)
M—oo p

Proof. Since {f,} is uniformly bounded in L!(u), u(|fn] > M) < K/M.
So if (21.33) holds and € > 0 is given, we may choose M sufficiently large so
that p(|fn] > M) < 6(e) for all n and therefore,

sup (| ful = | ful =2 M) <e.

Since ¢ is arbitrary, we concluded that Eq. (21.34) must hold. Conversely,
suppose that Eq. (21.34) holds, then automatically K = sup,, u(|fn]) < o0
because
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N('an = M(|fn| : |fn| > M) +:u(‘fn| : |fn‘ < M)
< SITILPM(|fn\ ful 2 M) + Mp(X) < o

Moreover,

1 fal : B) = gl fal < 1fal = M, B) + (| ful : | ful < M, E)
< supp(lfal ] 2 M) + Mu(E).

So given £ > 0 choose M so large that sup,, u(|fn| : |fn] > M) < /2 and then
take § = ¢/ (2M). ]

Remark 21.85. It is not in general true that if {f,} C L'(u) is uniformly
integrable then sup,, (| fn]) < co. For example take X = {*} and p({+}) = 1.
Let fn(%) = n. Since for § < 1 a set £ C X such that u(E) < ¢ is in fact
the empty set, we see that Eq. (21.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every § > 0 we may find a finite
partition of X by sets {Eg}if:l with u(E¢) < 6. Then if Eq. (21.32) holds with
2e = 1, then

k
pful) = p(lfnl s Be) <k
=1

showing that pu(|f,]) < k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 21.36. Suppose that u(X) < oo, and A C L°(X) is a collection of
functions.

1. If there exists a mon decreasing function ¢ : Ry — Ry such that
lim, 00 ¢(x)/x = 00 and

K= sup p(o(|f])) < oo (21.35)
fea

then
]V}linm;lelguﬂf\ Lif>m) = 0. (21.36)

2. Conversely if Eq. (21.86) holds, there exists a non-decreasing continuous
function ¢ : Ry — Ry such that ¢(0) = 0, lim, . ¢(z)/x = 0o and Eq.
(21.35) is valid.

Proof. 1. Let ¢ be as in item 1. above and set e)s 1= sup, >, % —0
as M — oo by assumption. Then for f € A
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| f1 = [f] = M) = pu( |(J|;|c|) o (f1) : 1f1 = M) < emp(@ (If]) : [f| = M)

<emm(o(|f]) < Ken

and hence

s sup e (11 Npi200) < Jim Keag = 0.

2. By assumption, eps 1= supsc  pt (If11) ;=) — 0 as M — oo. Therefore
we may choose M,, T co such that

o0

Z(n—i—l)sMn < 00

n=0
where by convention M := 0. Now define ¢ so that ¢(0) = 0 and

o0

¢'(x) = (n+1) Lag, a0 (@),
n=0
ie. -
) :/ ¢ (y)dy = Z(n—l—l) (x A My —x AM,).
0 n=0

By construction ¢ is continuous, ¢(0) = 0, ¢'(z) is increasing (so ¢ is convex)
and ¢'(z) > (n+ 1) for x > M,,. In particular

o)  G(My) + (n+ 1)z

x T

>n+1for x > M,

from which we conclude lim,_,o ¢(x)/z = oco. We also have ¢'(z) < (n+ 1)
on [0, M,,+1] and therefore

o(z) < (n+ 1)z for & < My4q.

So for f € A,
S150) = 3 1 ()1 31, 0,0111D)
n=0
<Z n+1)p |f\1(M Mn+1]<‘f|))
< Z (n+ 1) u(1fl1Lp20r,) < i(“H)EMﬂ
n=0

and hence -

Js}elgﬂ o(|f]) < ;) e, < oo.
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Theorem 21.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 < p < co. A sequence {f,} C L? is Cauchy iff

1. {fn} is L° - Cauchy,

2.{|fnl?} — is uniformly integrable.

3. For all € > 0, there exists a set E € M such that u(E) < oo and
Jge [ fnl? dp < € for all n. (This condition is vacuous when p(X) < oc.)

Proof. (=) Suppose {f,} C LP is Cauchy. Then (1) {f,} is L° —
Cauchy by Lemma 21.14. (2) By completeness of L?, there exists f € LP such
that || f, — fl|, — 0 as n — oco. By the mean value theorem,

AP = 1 fal?) < p(max(|f], D)7 = 1fall < pOF1+ 1 DP T = 1l

and therefore by Holder’s inequality,

/ A7 = |ful? di < p / Uf1+ P 1) = full dpe < p / UF1 4 1P A — fuldu
<IF = Fallol(UF1+ 1P g = Pl A+ Ul I2/90F = Full
< o1y + 1l 91F = Fully

where g := p/(p — 1). This shows that [ |[f|" — |f.|’|dp — 0 as n — 00.® By
the remarks prior to Definition 21.32, {| f,|”} is uniformly integrable. To verify
(3), for M >0 and n € Nlet Eyy = {|f| > M} and Ep(n) = {|fn| > M}.
Then pu(Ey) < 575 11f]5 < 0o and by the dominated convergence theorem,

/|f\de=/\f|p1\f\<MdM—>OasM—>0-

By,
Moreover,
e, |l < I 1mg L+ 1CFa = P1mg, Il < I Lmg, L+ 10— £l - (2137)

So given € > 0, choose N sufficiently large such that for all n > N, ||f —
fully < €. Then choose M sufficiently small such that [,. [f[" du < e and
M

fEfM(n) I[fI” du < eforalln =1,2,...,N — 1. Letting E := Ep U Ep(1) U
-+ UEpM(N —1), we have

w(E) < oo, [fnl? du <eforn < N-—1
EC

and by Eq. (21.37)

3 Here is an alternative proof. Let hy, = || fal? — | fIP| < |fal? + 1P =: gn € L' and
g = 2|f[”. Then g, 5 g, hy, & 0 and [ g, — [ g. Therefore by the dominated
convergence theorem in Corollary 21.17, lim [ hy, dp = 0.
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/ |fulP dp < (1P 4 €'/P)P < 2P¢ for n > N.
EC

Therefore we have found E € M such that u(E) < oo and

n

sw/\n%ngs

which verifies (3) since £ > 0 was arbitrary. (<) Now suppose{f,} C L?
satisfies conditions (1) - (3). Let ¢ > 0, E be as in (3) and

A = A{x € E|fm(x) — fu(z)] > €}

Then
”(fn - fm) lECHp < ”fnlEC”p + Hfm 1E‘3HP < 251/;0

and

an - fm”p = ”(fn - fm)lEC”p + H(fn - fm)lE\Amn,”p
+ H(fn - fm)lAmn H;D
Using properties (1) and (3) and 1gngjs,,— fo 1<} fm — fnl? < €Plp € LY, the

dominated convergence theorem in Corollary 21.17 implies

1 = ) Lot = [ Lenttpmpoicer o = al? | = 0.

,N—00

which combined with Eq. (21.38) implies

limsup | fo — fonllp < limsup | (fu = )L, Iy + 2677,

m,n— o0 m,n— o0

Finally
H(fn - fm)]‘Amn

p S Ifalag,llp + 1 fm 1, [l < 26(e)

where
d(e) :=sup sup{ ||fn 1ellp: E€M > p(E) <e}

By property (2), 6(¢) — 0 as € — 0. Therefore

limsup || fr — fmllp < 267 +0420() = 0ase | 0

m,n— o0

and therefore {f,,} is LP-Cauchy. ]
Here is another version of Vitali’s Convergence Theorem.

Theorem 21.38 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that 1(X) < oo, {fn} is uniformly integrable, f, —
f a.e. and |f| < oo a.e., then f € L*(n) and f, — f in L*(p).
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Proof. Let € > 0 be given and choose ¢ > 0 as in the Eq. (21.32). Now use
Egoroff’s Theorem 21.18 to choose a set E€ where { f,,} converges uniformly on
E° and p(FE) < 0. By uniform convergence on E*, there is an integer N < 0o
such that |f, — fm] < 1 on E€ for all m,n > N. Letting m — oo, we learn
that

lfv — fI < 1on E°.

Therefore |f| < |fn|+ 1 on E° and hence
u(lf) = u(lf]: EY) + pllf]: E)
S ([N + (X)) + pllf] - E).

Now by Fatou’s lemma,

u(If] 2 E) < lim inf p(|f]: E) < 25 < oo
n—oo

by Eq. (21.32). This shows that f € L'. Finally
w(lf = ful) = 5l f = fal - E) + | f = ful - E)
< pllf = fal - E9) + p(lf] + | fnl - E)
< ullf = ful - B¥) + 4

and so by the Dominated convergence theorem we learn that

lim sup p(lf — ful) < 4e.

n—oo
Since € > 0 was arbitrary this completes the proof. [

Theorem 21.39 (Vitali again). Suppose that f, — f in p measure and Eq.
(21.84) holds, then f, — f in L .

Proof. This could of course be proved using 21.38 after passing to sub-
sequences to get {f,} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f € L'(u). Now let

oK (z) = 2l)p<k + Kljg> k-
then ¢x (fn) & ¢ (f) because ¢k (f) — dx (fa)| < |f — ful and since
lf = fol S1f = o)+ 1ok (f) — o (fa)l + [0 (fn) — fal
we have that

plf = ful < plf = ox (NI + plox (f) = o (fu)l + pldx (fn) = fal
= (S 1f1 = K) + plox (f) = ¢r(fu)| + pllful : [fo] = K).

Therefore by the dominated convergence theorem

lim sup ulf — ful < p(f1 5 1] = K) +Tim sup (1l : 1] > K.

n—oo n—0o0

This last expression goes to zero as K — oo by uniform integrability. [
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21.6 Exercises

Definition 21.40. The essential range of f, essran(f), consists of those
A € C such that p(|f — Al <€) >0 for all e > 0.

Definition 21.41. Let (X, 7) be a topological space and v be a measure on
Bx = o(1). The support of v, supp(v), consists of those x € X such that
v(V) > 0 for all open neighborhoods, V, of .

Exercise 21.3. Let (X, 7) be a second countable topological space and v be
a measure on Bx — the Borel o — algebra on X. Show

1. supp(v) is a closed set. (This is actually true on all topological spaces.)

2. v(X \ supp(v)) = 0 and use this to conclude that W := X \ supp(v)
is the largest open set in X such that v(W) = 0. Hint: &/ C 7 be a
countable base for the topology 7. Show that W may be written as a
union of elements from V' € V with the property that u(V) = 0.

Exercise 21.4. Prove the following facts about essran(f).

1. Let v = fou:= pof~' —a Borel measure on C. Show essran(f) = supp(v).

2. essran(f) is a closed set and f(z) € essran(f) for almost every z, i.e.
pu(f & essran(f)) = 0.

3.If F C Cis a closed set such that f(x) € F for almost every x then
essran(f) C F. So essran(f) is the smallest closed set F’ such that f(z) € F
for almost every x.

4. || fllo =sup{|A| : X € essran(f)}.

Exercise 21.5. Let f € LP N L*> for some p < oo. Show |f|, =
limg—.co [| ], - If we further assume p(X) < oo, show || f[|, = limg—c || f]|, for
all measurable functions f : X — C. In particular, f € L iff lim,_, oo ||fﬁq <
oco. Hints: Use Corollary 21.23 to show limsup,_. [|f[, < [[fll and to
show liminf, oo || fll, = 1]l » let M < |[f]|,, and make use of Chebyshev’s
inequality.

Exercise 21.6. Prove Eq. (21.21) in Corollary 21.23. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! + b~ = 1 chosen
appropriately,
s b
st S — + 7
a b

(see Lemma 5.5 for Eq. (21.16)) applied to the right side of Eq. (21.20).

Exercise 21.7. Complete the proof of Proposition 21.22 by showing (LP +
L",||I-|l) is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 21.8. Folland 6.5 on p. 186.



21.6 Exercises 377
Exercise 21.9. By making the change of variables, © = Inx, prove the fol-

lowing facts:

1/2
/ x_a|1nx|bdx<oo<:)a<1ora:1andb<—1
0
/:r*a|1n:v|bd$<oo<:>a>1ora:1andb<fl
2

1

/x_“|lnx|bdx<oo<:>a<1andb>—1

0

oo

/x_“|lnx|bdx<oo<:>a>landb>—1.

1

Suppose 0 < pp < p1 < oo and m is Lebesgue measure on (0,00). Use
the above results to manufacture a function f on (0,00) such that f €

LP ((0,00) ,m) iff (a) p € (po,p1), (b) p € [po,p1] and (c) p = po.
Exercise 21.10. Folland 6.9 on p. 186.

Exercise 21.11. Folland 6.10 on p. 186. Use the strong form of Theorem
19.38.

Exercise 21.12. Let (X, M, u) and (Y, N,v) be o — finite measure spaces,
feL?v)and k € L?>(u®v). Show

/|k:xy y)| dv(y) < oo for p — a.e. .
Let K f(x fy x,9) f(y) dy( ) when the integral is defined. Show K f €
L?(u) and K L*(v) — L*(u) is a bounded operator with [|K||,, <

||kHL2(M®1/) :

Exercise 21.13. Folland 6.27 on p. 196. Hint: Theorem 21.28.
Exercise 21.14. Folland 2.32 on p. 63.

Exercise 21.15. Folland 2.38 on p. 63.





