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Introduction: What are measures and why
“measurable” sets

Definition 17.1 (Preliminary). A measure µ “on” a set X is a function
µ : 2X → [0,∞] such that
1. µ(∅) = 0
2. If {Ai}Ni=1 is a finite (N <∞) or countable (N =∞) collection of subsets
of X which are pair-wise disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then

µ(∪Ni=1Ai) =
NX
i=1

µ(Ai).

Example 17.2. Suppose that X is any set and x ∈ X is a point. For A ⊂ X,
let

δx(A) =

½
1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 17.3. Suppose that µ is a measure on X and λ > 0, then λ · µ
is also a measure on X. Moreover, if {µα}α∈J are all measures on X, then
µ =

P
α∈J µα, i.e.

µ(A) =
X
α∈J

µα(A) for all A ⊂ X

is a measure on X. (See Section 2 for the meaning of this sum.) To prove
this we must show that µ is countably additive. Suppose that {Ai}∞i=1 is a
collection of pair-wise disjoint subsets of X, then

µ(∪∞i=1Ai) =
∞X
i=1

µ(Ai) =
∞X
i=1

X
α∈J

µα(Ai)

=
X
α∈J

∞X
i=1

µα(Ai) =
X
α∈J

µα(∪∞i=1Ai)

= µ(∪∞i=1Ai)



246 17 Introduction: What are measures and why “measurable” sets

wherein the third equality we used Theorem 4.22 and in the fourth we used
that fact that µα is a measure.

Example 17.4. Suppose that X is a set λ : X → [0,∞] is a function. Then

µ :=
X
x∈X

λ(x)δx

is a measure, explicitly
µ(A) =

X
x∈A

λ(x)

for all A ⊂ X.

17.1 The problem with Lebesgue “measure”

So far all of the examples of measures given above are “counting” type mea-
sures, i.e. a weighted count of the number of points in a set. We certainly are
going to want other types of measures too. In particular, it will be of great
interest to have a measure on R (called Lebesgue measure) which measures
the “length” of a subset of R. Unfortunately as the next theorem shows, there
is no such reasonable measure of length if we insist on measuring all subsets
of R.

Theorem 17.5. There is no measure µ : 2R→[0,∞] such that
1. µ([a, b)) = (b− a) for all a < b and
2. is translation invariant, i.e. µ(A+ x) = µ(A) for all x ∈ R and A ∈ 2R,
where

A+ x := {y + x : y ∈ A} ⊂ R.
In fact the theorem is still true even if (1) is replaced by the weaker con-
dition that 0 < µ((0, 1]) <∞.

The counting measure µ (A) = #(A) is translation invariant. However
µ((0, 1]) =∞ in this case and so µ does not satisfy condition 1.
Proof. First proof. Let us identify [0, 1) with the unit circle S1 := {z ∈

C : |z| = 1} by the map

φ(t) = ei2πt = (cos 2πt+ i sin 2πt) ∈ S1

for t ∈ [0, 1). Using this identification we may use µ to define a function ν on
2S

1

by ν(φ(A)) = µ(A) for all A ⊂ [0, 1). This new function is a measure on
S1 with the property that 0 < ν((0, 1]) <∞. For z ∈ S1 and N ⊂ S1 let

zN := {zn ∈ S1 : n ∈ N}, (17.1)
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that is to say eiθN is N rotated counter clockwise by angle θ. We now claim
that ν is invariant under these rotations, i.e.

ν(zN) = ν(N) (17.2)

for all z ∈ S1 and N ⊂ S1. To verify this, write N = φ(A) and z = φ(t) for
some t ∈ [0, 1) and A ⊂ [0, 1). Then

φ(t)φ(A) = φ(t+Amod1)

where for A ⊂ [0, 1) and α ∈ [0, 1),

t+Amod1 := {a+ tmod1 ∈ [0, 1) : a ∈ N}
= (a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}) .

Thus

ν(φ(t)φ(A)) = µ(t+Amod1)

= µ ((a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}))
= µ ((a+A ∩ {a < 1− t})) + µ (((t− 1) +A ∩ {a ≥ 1− t}))
= µ (A ∩ {a < 1− t}) + µ (A ∩ {a ≥ 1− t})
= µ ((A ∩ {a < 1− t}) ∪ (A ∩ {a ≥ 1− t}))
= µ(A) = ν(φ(A)).

Therefore it suffices to prove that no finite non-trivial measure ν on S1 such
that Eq. (17.2) holds. To do this we will “construct” a non-measurable set
N = φ(A) for some A ⊂ [0, 1). Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

— a countable subgroup of S1. As above R acts on S1 by rotations and divides
S1 up into equivalence classes, where z, w ∈ S1 are equivalent if z = rw for
some r ∈ R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N ⊂ S1 be the set of these
representative points. Then every point z ∈ S1 may be uniquely written as
z = nr with n ∈ N and r ∈ R. That is to say

S1 =
a
r∈R

(rN) (17.3)

where
`

αAα is used to denote the union of pair-wise disjoint sets {Aα} . By
Eqs. (17.2) and (17.3),

ν(S1) =
X
r∈R

ν(rN) =
X
r∈R

ν(N).
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The right member from this equation is either 0 or∞, 0 if ν(N) = 0 and∞ if
ν(N) > 0. In either case it is not equal ν(S1) ∈ (0, 1). Thus we have reached
the desired contradiction.
Proof. Second proof of Theorem 17.5. For N ⊂ [0, 1) and α ∈ [0, 1),

let

Nα = N + αmod1

= {a+ αmod1 ∈ [0, 1) : a ∈ N}
= (α+N ∩ {a < 1− α}) ∪ ((α− 1) +N ∩ {a ≥ 1− α}) .

Then

µ (Nα) = µ (α+N ∩ {a < 1− α}) + µ ((α− 1) +N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α}) + µ (N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α} ∪ (N ∩ {a ≥ 1− α}))
= µ(N). (17.4)

We will now construct a bad set N which coupled with Eq. (17.4) will lead to
a contradiction. Set

Qx := {x+ r ∈ R : r∈ Q} =x+Q.
Notice that Qx ∩Qy 6= ∅ implies that Qx = Qy. Let O = {Qx : x ∈ R} — the
orbit space of the Q action. For all A ∈ O choose f(A) ∈ [0, 1/3) ∩ A1 and
define N = f(O). Then observe:
1. f(A) = f(B) implies that A ∩B 6= ∅ which implies that A = B so that f
is injective.

2. O = {Qn : n ∈ N}.
Let R be the countable set,

R := Q ∩ [0, 1).
We now claim that

Nr ∩Ns = ∅ if r 6= s and (17.5)

[0, 1) = ∪r∈RNr. (17.6)

Indeed, if x ∈ Nr ∩Ns 6= ∅ then x = r + nmod1 and x = s+ n0mod1, then
n−n0 ∈ Q, i.e. Qn = Qn0 . That is to say, n = f(Qn) = f(Qn0) = n0 and hence
that s = rmod1, but s, r ∈ [0, 1) implies that s = r. Furthermore, if x ∈ [0, 1)
and n := f(Qx), then x − n = r ∈ Q and x ∈ Nrmod 1. Now that we have
constructed N, we are ready for the contradiction. By Equations (17.4—17.6)
we find
1 We have used the Axiom of choice here, i.e.

Q
A∈F (A ∩ [0, 1/3]) 6= ∅
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1 = µ([0, 1)) =
X
r∈R

µ(Nr) =
X
r∈R

µ(N)

=

½∞ if µ(N) > 0
0 if µ(N) = 0

.

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set.
Because of Theorem 17.5, it is necessary to modify Definition 17.1. Theo-

rem 17.5 points out that we will have to give up the idea of trying to measure
all subsets of R but only measure some sub-collections of “measurable” sets.
This leads us to the notion of σ — algebra discussed in the next chapter. Our
revised notion of a measure will appear in Definition 19.1 of Chapter 19 below.
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Measurability

18.1 Algebras and σ — Algebras

Definition 18.1. A collection of subsets A of a set X is an algebra if

1. ∅,X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪ · · ·∪An ∈
A.
In view of conditions 1. and 2., 3. is equivalent to

30. A is closed under finite intersections.

Definition 18.2. A collection of subsetsM of X is a σ — algebra (or some-
times called a σ — field) ifM is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂M, then ∪∞i=1Ai ∈M. (Notice that sinceM is also
closed under taking complements,M is also closed under taking countable in-
tersections.) A pair (X,M), where X is a set andM is a σ — algebra on X,
is called a measurable space.

The reader should compare these definitions with that of a topology in
Definition 10.1. Recall that the elements of a topology are called open sets.
Analogously, elements of and algebra A or a σ — algebra M will be called
measurable sets.

Example 18.3. Here are some examples of algebras.

1.M = 2X , thenM is a topology, an algebra and a σ — algebra.
2. Let X = {1, 2, 3}, then τ = {∅,X, {2, 3}} is a topology on X which is not
an algebra.

3. τ = A = {{1}, {2, 3}, ∅,X} is a topology, an algebra, and a σ — algebra
on X. The sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and
{1, 3} are neither open nor closed and are not measurable.
The reader should compare this example with Example 10.3.
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Proposition 18.4. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ — algebra σ(E) which contains E .
Proof. The proof is the same as the analogous Proposition 10.6 for topolo-

gies, i.e.
A(E) :=

\
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

\
{M :M is a σ — algebra such that E ⊂M}.

Example 18.5. Suppose X = {1, 2, 3} and E = {∅,X, {1, 2}, {1, 3}}, see Figure
18.1.

1
2

3

Fig. 18.1. A collection of subsets.

Then

τ(E) = {∅,X, {1}, {1, 2}, {1, 3}}
A(E) = σ(E) = 2X .

The next proposition is the analogue to Proposition 10.7 for topologies
and enables us to give and explicit descriptions of A(E). On the other hand
it should be noted that σ(E) typically does not admit a simple concrete de-
scription.

Proposition 18.6. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (18.1)
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Proof. LetA denote the right member of Eq. (18.1). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing thatA is closed under complementation. To checkA is closed
under complementation, let Z ∈ A be expressed as

Z =
N[
i=1

K\
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Ac
ij ∈ Ec, we find that

Zc =
N\
i=1

K[
j=1

Bij =
K[

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1 ∩B2j2 ∩ · · · ∩BNjN is a finite inter-
section of sets from Ec.
Remark 18.7. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞[
i=1

∞\
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞[

j1=1,j2=1,...jN=1,...

Ã ∞\
=1

Ac
,j

!

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe σ(E), see Proposition
1.23 on page 39 of Folland for details. Also see Proposition 18.13 below.

Exercise 18.1. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

The following notion will be useful in the sequel and plays an analogous
role for algebras as a base (Definition 10.8) does for a topology.

Definition 18.8. A set E ⊂ 2X is said to be an elementary family or
elementary class provided that

• ∅ ∈ E
• E is closed under finite intersections
• if E ∈ E, then Ec is a finite disjoint union of sets from E. (In particular

X = ∅c is a finite disjoint union of elements from E.)
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Example 18.9. Let X = R, then

E := ©(a, b] ∩ R : a, b ∈ R̄ª
= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is an elementary family.

Exercise 18.2. Let A ⊂ 2X and B ⊂ 2Y be elementary families. Show the
collection

E = A× B = {A×B : A ∈ A and B ∈ B}
is also an elementary family.

Proposition 18.10. Suppose E ⊂ 2X is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E .
Proof. This could be proved making use of Proposition 18.6. However it

is easier to give a direct proof. Let A denote the collection of sets which may
be written as finite disjoint unions of sets from E. Clearly E ⊂ A ⊂ A(E) so it
suffices to show A is an algebra since A(E) is the smallest algebra containing
E . By the properties of E, we know that ∅,X ∈ A. Now suppose that Ai =`

F∈Λi F ∈ A where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets
from E . Then

n\
i=1

Ai =
n\
i=1

Ã a
F∈Λi

F

!
=

[
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from E. Therefore A is
closed under finite intersections. Similarly, if A =

`
F∈Λ F with Λ being a

finite collection of disjoint sets from E, then Ac =
T
F∈Λ F

c. Since by assump-
tion F c ∈ A for F ∈ Λ ⊂ E and A is closed under finite intersections, it
follows that Ac ∈ A.
Definition 18.11. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union
of the sets in F .
Example 18.12. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = τ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

#(A(E)) = #(2{1,2,...,n}) = 2n.
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Proposition 18.13. Suppose thatM ⊂ 2X is a σ — algebra andM is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂M and every element B ∈M is of the form

B = ∪ {A ∈ F : A ⊂ B} . (18.2)

In particularM is actually a finite set and #(M) = 2n for some n ∈ N.
Proof. For each x ∈ X let

Ax = ∩ {A ∈M : x ∈ A} ∈M,

wherein we have usedM is a countable σ — algebra to insure Ax ∈M. Hence
Ax is the smallest set inM which contains x. Let C = Ax∩Ay. If x /∈ C then
Ax \C ⊂ Ax is an element ofM which contains x and since Ax is the smallest
member ofM containing x, we must have that C = ∅. Similarly if y /∈ C then
C = ∅. Therefore if C 6= ∅, then x, y ∈ Ax ∩ Ay ∈M and Ax ∩ Ay ⊂ Ax and
Ax∩Ay ⊂ Ay from which it follows that Ax = Ax∩Ay = Ay. This shows that
F = {Ax : x ∈ X} ⊂M is a (necessarily countable) partition of X for which
Eq. (18.2) holds for all B ∈M. Enumerate the elements of F as F = {Pn}Nn=1
where N ∈ N or N =∞. If N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈M
is bijective and therefore, by Lemma 2.6,M is uncountable. Thus any count-
able σ — algebra is necessarily finite. This finishes the proof modulo the unique-
ness assertion which is left as an exercise to the reader.

Example 18.14. Let X = R and

E = {(a,∞) : a ∈ R} ∪ {R, ∅} = {(a,∞) ∩ R : a ∈ R̄} ⊂ 2R.
Notice that Ef = E and that E is closed under unions, which shows that
τ(E) = E , i.e. E is already a topology. Since (a,∞)c = (−∞, a] we find that
Ec = {(a,∞), (−∞, a],−∞ ≤ a <∞} ∪ {R, ∅}. Noting that

(a,∞) ∩ (−∞, b] = (a, b]

it follows that A(E) = A(Ẽ) where
Ẽ := ©(a, b] ∩ R : a, b ∈ R̄ª .

Since Ẽ is an elementary family of subsets of R, Proposition 18.10 implies
A(E) may be described as being those sets which are finite disjoint unions of
sets from Ẽ . The σ — algebra, σ(E), generated by E is very complicated.
Here are some sets in σ(E) — most of which are not in A(E).

(a) (a, b) =
∞S
n=1
(a, b− 1

n ] ∈ σ(E).
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(b) All of the standard open subsets of R are in σ(E).
(c) {x} = T

n

¡
x− 1

n , x
¤ ∈ σ(E)

(d) [a, b] = {a} ∪ (a, b] ∈ σ(E)
(e) Any countable subset of R is in σ(E).
Remark 18.15. In the above example, one may replace E by E = {(a,∞) : a ∈
Q} ∪ {R, ∅}, in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,∞), (−∞, a], (a, b] : a, b ∈ Q} ∪ {∅,R} .
This shows that A(E) is a countable set — a useful fact which will be needed
later.

Notation 18.16 For a general topological space (X, τ), the Borel σ — alge-
bra is the σ — algebra BX := σ(τ) on X. In particular if X = Rn, BRn will
be used to denote the Borel σ — algebra on Rn when Rn is equipped with its
standard Euclidean topology.

Exercise 18.3. Verify the σ — algebra, BR, is generated by any of the following
collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .
Proposition 18.17. If τ is a second countable topology on X and E is a
countable collection of subsets of X such that τ = τ(E), then BX := σ(τ) =
σ(E), i.e. σ(τ(E)) = σ(E).
Proof. Let Ef denote the collection of subsets of X which are finite inter-

section of elements from E along withX and ∅. Notice that Ef is still countable
(you prove). A set Z is in τ(E) iff Z is an arbitrary union of sets from Ef .
Therefore Z =

S
A∈F

A for some subset F ⊂ Ef which is necessarily count-
able. Since Ef ⊂ σ(E) and σ(E) is closed under countable unions it follows
that Z ∈ σ(E) and hence that τ(E) ⊂ σ(E). Lastly, since E ⊂ τ(E) ⊂ σ(E),
σ(E) ⊂ σ(τ(E)) ⊂ σ(E).

18.2 Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X,M, µ) is a measure
space and f : X → R+. Roughly speaking, in the next Chapter we are going
to define

R
X

fdµ as a certain limit of sums of the form,

∞X
0<a1<a2<a3<...

aiµ(f
−1(ai, ai+1]).
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For this to make sense we will need to require f−1((a, b]) ∈ M for all a <
b. Because of Lemma 18.22 below, this last condition is equivalent to the
condition f−1(BR) ⊂M.

Definition 18.18. Let (X,M) and (Y,F) be measurable spaces. A function
f : X → Y is measurable if f−1(F) ⊂M. We will also say that f isM/F
— measurable or (M,F) — measurable.
Example 18.19 (Characteristic Functions). Let (X,M) be a measurable space
and A ⊂ X. We define the characteristic function 1A : X → R by

1A(x) =

½
1 if x ∈ A
0 if x /∈ A.

If A ∈M, then 1A is (M, 2R) — measurable because 1−1A (W ) is either ∅, X,
A or Ac for any W ⊂ R. Conversely, if F is any σ — algebra on R containing
a set W ⊂ R such that 1 ∈ W and 0 ∈ W c, then A ∈M if 1A is (M,F) —
measurable. This is because A = 1−1A (W ) ∈M.

Exercise 18.4. Suppose f : X → Y is a function, F ⊂ 2Y and M ⊂ 2X .
Show f−1F and f∗M (see Notation 2.7) are algebras (σ — algebras) provided
F andM are algebras (σ — algebras).

Remark 18.20. Let f : X → Y be a function. Given a σ — algebra F ⊂ 2Y ,
the σ — algebraM := f−1(F) is the smallest σ — algebra on X such that f is
(M,F) - measurable . Similarly, ifM is a σ - algebra on X then F = f∗M
is the largest σ — algebra on Y such that f is (M,F) - measurable .
Recall from Definition 2.8 that for E ⊂ 2X and A ⊂ X that

EA = i−1A (E) = {A ∩E : E ∈ E}
where iA : A → X is the inclusion map. Because of Exercise 10.3, when
E =M is an algebra (σ — algebra),MA is an algebra (σ — algebra) on A and
we callMA the relative or induced algebra (σ — algebra) on A.
The next two Lemmas are direct analogues of their topological counter

parts in Lemmas 10.13 and 10.14. For completeness, the proofs will be given
even though they are same as those for Lemmas 10.13 and 10.14.

Lemma 18.21. Suppose that (X,M), (Y,F) and (Z,G) are measurable
spaces. If f : (X,M) → (Y,F) and g : (Y,F) → (Z,G) are measurable
functions then g ◦ f : (X,M)→ (Z,G) is measurable as well.
Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
¡
g−1 (G)¢ ⊂ f−1 (F) ⊂M.
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Lemma 18.22. Suppose that f : X → Y is a function and E ⊂ 2Y and A ⊂ Y
then

σ
¡
f−1(E)¢ = f−1(σ(E)) and (18.3)

(σ(E))A = σ(EA ). (18.4)

(Similar assertion hold with σ (·) being replaced by A (·) .) Moreover, if F =
σ(E) andM is a σ — algebra on X, then f is (M,F) — measurable iff f−1(E) ⊂
M.

Proof. By Exercise 18.4, f−1(σ(E)) is a σ — algebra and since E ⊂ F ,
f−1(E) ⊂ f−1(σ(E)). It now follows that σ (f−1(E)) ⊂ f−1(σ (E)). For the
reverse inclusion, notice that

f∗σ
¡
f−1(E)¢ = ©B ⊂ Y : f−1(B) ∈ σ

¡
f−1(E)¢ª

is a σ — algebra which contains E and thus σ(E) ⊂ f∗σ
¡
f−1(E)¢ . Hence if

B ∈ σ(E) we know that f−1(B) ∈ σ
¡
f−1(E)¢ , i.e. f−1(σ(E)) ⊂ σ

¡
f−1(E)¢

and Eq. (18.3) has been proved. Applying Eq. (18.3) with X = A and f = iA
being the inclusion map implies

(σ(E))A = i−1A (σ(E)) = σ(i−1A (E)) = σ(EA).
Lastly if f−1E ⊂ M, then f−1σ (E) = σ

¡
f−1E¢ ⊂ M which shows f is

(M,F) — measurable.
Corollary 18.23. Suppose that (X,M) is a measurable space. Then the fol-
lowing conditions on a function f : X → R are equivalent:

1. f is (M,BR) — measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.
Proof. An exercise in using Lemma 18.22 and is the content of Exercise

18.8.
Here is yet another way to generate σ — algebras. (Compare with the

analogous topological Definition 10.20.)

Definition 18.24 (σ — Algebras Generated by Functions). Let X be a
set and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ A}
and functions fα : X → Yα for all α ∈ A. Let σ(fα : α ∈ A) denote the
smallest σ — algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ A) = σ(∪αf−1α (Fα)).
Proposition 18.25. Assuming the notation in Definition 18.24 and addition-
ally let (Z,M) be a measurable space and g : Z → X be a function. Then g
is (M, σ(fα : α ∈ A)) — measurable iff fα ◦ g is (M,Fα)—measurable for all
α ∈ A.
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Proof. This proof is essentially the same as the proof of the topological
analogue in Proposition 10.21. (⇒) If g is (M, σ(fα : α ∈ A)) — measurable,
then the composition fα ◦ g is (M,Fα) — measurable by Lemma 18.21. (⇐)
Let

G = σ(fα : α ∈ A) = σ
¡∪α∈Af−1α (Fα)

¢
.

If fα ◦ g is (M,Fα) — measurable for all α, then

g−1f−1α (Fα) ⊂M∀α ∈ A

and therefore

g−1
¡∪α∈Af−1α (Fα)

¢
= ∪α∈Ag−1f−1α (Fα) ⊂M.

Hence

g−1 (G) = g−1
¡
σ
¡∪α∈Af−1α (Fα)

¢¢
= σ(g−1

¡∪α∈Af−1α (Fα)
¢ ⊂M

which shows that g is (M,G) — measurable.
Definition 18.26. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .
Proposition 18.27. Let X and Y be two topological spaces and f : X → Y
be a continuous function. Then f is Borel measurable.

Proof. Using Lemma 18.22 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Definition 18.28. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A → Y is measurable iff f is MA/F —
measurable.

Proposition 18.29 (Localizing Measurability). Let (X,M) and (Y,F)
be measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn

measurable for all n, then f isM — measurable.

Proof. As the reader will notice, the proof given below is essentially iden-
tical to the proof of Proposition 10.19 which is the topological analogue of
this proposition. 1. If f : X → Y is measurable, f−1(B) ∈M for all B ∈ F
and therefore

f |−1A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .
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2. If B ∈ F , then
f−1(B) = ∪∞n=1

¡
f−1(B) ∩An

¢
= ∪∞n=1f |−1An(B).

Since each An ∈M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Proposition 18.30. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) — measurable iff fi : X → R is (M,BR) — measurable for each
i. In particular, a function f : X → C is (M,BC) — measurable iff Re f and
Im f are (M,BR) — measurable.
Proof. This is formally a consequence of Corollary 18.65 and Proposition

18.60 below. Nevertheless it is instructive to give a direct proof now. Let
τ = τRn denote the usual topology on Rn and πi : Rn → R be projection
onto the ith — factor. Since πi is continuous, πi is BRn/BR — measurable and
therefore if f : X → Rn is measurable then so is fi = πi ◦ f. Now suppose
fi : X → R is measurable for all i = 1, 2, . . . , n. Let

E := {(a, b) : a, b ∈ Qn 3 a < b} ,
where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) .
Since E ⊂ τ and every element V ∈ τ may be written as a (necessarily)
countable union of elements from E , we have σ (E) ⊂ BRn = σ (τ) ⊂ σ (E) , i.e.
σ (E) = BRn . (This part of the proof is essentially a direct proof of Corollary
18.65 below.) Because

f−1 ((a, b)) = f−11 ((a1, b1)) ∩ f−12 ((a2, b2)) ∩ · · · ∩ f−1n ((an, bn)) ∈M
for all a, b ∈ Q with a < b, it follows that f−1E ⊂M and therefore

f−1BRn = f−1σ (E) = σ
¡
f−1E¢ ⊂M.

Corollary 18.31. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) — measurable functions. Then f ± g and f · g are also (M,BC) —
measurable.

Proof. Define F : X → C×C, A± : C×C→ C and M : C×C −→ C by
F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and M
are continuous and hence (BC2 ,BC) — measurable. Also F is (M,BC ⊗ BC) =
(M,BC2) — measurable since π1 ◦ F = f and π2 ◦ F = g are (M,BC) —
measurable. Therefore A±◦F = f±g andM ◦F = f ·g, being the composition
of measurable functions, are also measurable.
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Lemma 18.32. Let α ∈ C, (X,M) be a measurable space and f : X → C be
a (M,BC) — measurable function. Then

F (x) :=

½ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =

½
1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \{0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.
We will often deal with functions f : X → R̄ = R∪ {±∞} . When talking

about measurability in this context we will refer to the σ — algebra on R̄
defined by

BR̄ := σ ({[a,∞] : a ∈ R}) . (18.5)

Proposition 18.33 (The Structure of BR̄). Let BR and BR̄ be as above,
then

BR̄ = {A ⊂ R̄ : A ∩R ∈BR}. (18.6)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.
Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,
{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
¡
i−1

¡©
[a,∞] : a ∈ R̄ª¢¢ = σ

¡©
i−1 ([a,∞]) : a ∈ R̄ª¢

= σ
¡©
[a,∞] ∩R : a ∈ R̄ª¢ = σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩R : A ∈ BR̄}.

This implies:
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1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A ∩ R ∈BR there exists B ∈ BR̄ such that A ∩ R =

B ∩ R. Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude
that A ∈ BR̄ as well.
This proves Eq. (18.6).
The proofs of the next two corollaries are left to the reader, see Exercises

18.5 and 18.6.

Corollary 18.34. Let (X,M) be a measurable space and f : X → R̄ be a
function. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) := 1R (f (x)) =

½
f (x) if f (x) ∈ R
0 if f (x) ∈ {±∞}

is measurable.

Corollary 18.35. Let (X,M) be a measurable space, f, g : X → R̄ be func-
tions and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions,
0 ·∞ = 0 and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞
and g (x) =∞. Then f · g and f + g are measurable functions on X if both f
and g are measurable.

Exercise 18.5. Prove Corollary 18.34 noting that the equivalence of items 1.
— 3. is a direct analogue of Corollary 18.23. Use Proposition 18.33 to handle
item 4.

Exercise 18.6. Prove Corollary 18.35.

Proposition 18.36 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M) → R for j ∈ N is a sequence
ofM/BR — measurable functions. Then

supjfj , infjfj, lim sup
j→∞

fj and lim inf
j→∞

fj

are all M/BR — measurable functions. (Note that this result is in generally
false when (X,M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈M
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so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈M.

Since

lim sup
j→∞

fj = inf
n
sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n
inf {fj : j ≥ n}

we are done by what we have already proved.

Definition 18.37. Given a function f : X → R̄ let f+(x) := max {f(x), 0}
and f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 18.38. Suppose (X,M) is a measurable space and f : X → R̄ is
a function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 18.36 implies f± are measur-
able. Conversely if f± are measurable then so is f = f+ − f−.

18.2.1 More general pointwise limits

Lemma 18.39. Suppose that (X,M) is a measurable space, (Y, d) is a metric
space and fj : X → Y is (M,BY ) — measurable for all j. Also assume that for
each x ∈ X, f(x) = limn→∞ fn(x) exists. Then f : X → Y is also (M,BY ) —
measurable.

Proof. Let V ∈ τd and Wm := {y ∈ Y : dV c(y) > 1/m} for m = 1, 2, . . . .
Then Wm ∈ τd,

Wm ⊂ W̄m ⊂ {y ∈ Y : dV c(y) ≥ 1/m} ⊂ V

for all m and Wm ↑ V as m → ∞. The proof will be completed by verifying
the identity,

f−1(V ) = ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) ∈M.

If x ∈ f−1(V ) then f(x) ∈ V and hence f(x) ∈Wm for somem. Since fn(x)→
f(x), fn(x) ∈ Wm for almost all n. That is x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm).
Conversely when x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) there exists an m such that
fn(x) ∈Wm ⊂ W̄m for almost all n. Since fn(x)→ f(x) ∈ W̄m ⊂ V, it follows
that x ∈ f−1(V ).

Remark 18.40. In the previous Lemma 18.39 it is possible to let (Y, τ) be any
topological space which has the “regularity” property that if V ∈ τ there
exists Wm ∈ τ such that Wm ⊂ W̄m ⊂ V and V = ∪∞m=1Wm. Moreover, some
extra condition is necessary on the topology τ in order for Lemma 18.39 to
be correct. For example if Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} as
in Example 10.36 and X = {a, b} with the trivial σ — algebra. Let fj(a) =
fj(b) = 2 for all j, then fj is constant and hence measurable. Let f(a) = 1
and f(b) = 2, then fj → f as j → ∞ with f being non-measurable. Notice
that the Borel σ — algebra on Y is 2Y .
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18.3 σ — Function Algebras

In this subsection, we are going to relate σ — algebras of subsets of a set X to
certain algebras of functions on X. We will begin this endeavor after proving
the simple but very useful approximation Theorem 18.42 below.

Definition 18.41. Let (X,M) be a measurable space. A function φ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if φ isM — BF
measurable and φ(X) contains only finitely many elements.

Any such simple functions can be written as

φ =
nX
i=1

λi1Ai with Ai ∈M and λi ∈ F. (18.7)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of φ and Ai =
φ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

φ =
X
y∈F

y1φ−1({y}). (18.8)

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 18.42 (Approximation Theorem). Let f : X → [0,∞] be mea-
surable and define, see Figure 18.2,

φn(x) :=
22n−1X
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2

n1f−1((2n,∞])(x)

=
22n−1X
k=0

k

2n
1{ k

2n<f≤k+1
2n }(x) + 2

n1{f>2n}(x)

then φn ≤ f for all n, φn(x) ↑ f(x) for all x ∈ X and φn ↑ f uniformly on
the sets XM := {x ∈ X : f(x) ≤M} with M < ∞. Moreover, if f : X →
C is a measurable function, then there exists simple functions φn such that
limn→∞ φn(x) = f(x) for all x and |φn| ↑ |f | as n→∞.

Proof. Since

(
k

2n
,
k + 1

2n
] = (

2k

2n+1
,
2k + 1

2n+1
] ∪ (2k + 1

2n+1
,
2k + 2

2n+1
],

if x ∈ f−1
¡
( 2k
2n+1 ,

2k+1
2n+1 ]

¢
then φn(x) = φn+1(x) = 2k

2n+1 and if x ∈
f−1

¡
( 2k+12n+1 ,

2k+2
2n+1 ]

¢
then φn(x) =

2k
2n+1 < 2k+1

2n+1 = φn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],
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Fig. 18.2. Constructing simple functions approximating a function, f : X → [0,∞].

and so for x ∈ f−1((2n+1,∞]), φn(x) = 2n < 2n+1 = φn+1(x) and for x ∈
f−1((2n, 2n+1]), φn+1(x) ≥ 2n = φn(x). Therefore φn ≤ φn+1 for all n. It is
clear by construction that φn(x) ≤ f(x) for all x and that 0 ≤ f(x)−φn(x) ≤
2−n if x ∈ X2n . Hence we have shown that φn(x) ↑ f(x) for all x ∈ X and
φn ↑ f uniformly on bounded sets. For the second assertion, first assume that
f : X → R is a measurable function and choose φ±n to be simple functions
such that φ±n ↑ f± as n→∞ and define φn = φ+n − φ−n . Then

|φn| = φ+n + φ−n ≤ φ+n+1 + φ−n+1 = |φn+1|
and clearly |φn| = φ+n +φ−n ↑ f++f− = |f | and φn = φ+n −φ−n → f+−f− = f
as n→∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f
and vn → Im f as n→∞. Let φn = un + ivn, then

|φn|2 = u2n + v2n ↑ |Re f |2 + |Im f |2 = |f |2

and φn = un + ivn → Re f + i Im f = f as n→∞.
For the rest of this section let X be a given set.

Definition 18.43 (Bounded Convergence). We say that a sequence of
functions fn from X to R or C converges boundedly to a function f if
limn→∞ fn(x) = f(x) for all x ∈ X and

sup{|fn(x)| : x ∈ X and n = 1, 2, . . .} <∞.

Definition 18.44. A function algebra H on X is a linear subspace of
∞ (X,R) which contains 1 and is closed under pointwise multiplication, i.e.
H is a subalgebra of ∞ (X,R) which contains 1. If H is further closed under
bounded convergence then H is said to be a σ — function algebra.
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Example 18.45. SupposeM is a σ — algebra on X, then

∞ (M,R) := {f ∈ ∞ (X,R) : f isM/BR — measurable} (18.9)

is a σ — function algebra. The next theorem will show that these are the only
example of σ — function algebras. (See Exercise 18.7 below for examples of
function algebras on X.)

Notation 18.46 If H ⊂ ∞ (X,R) be a function algebra, let

M (H) := {A ⊂ X : 1A ∈ H} . (18.10)

Theorem 18.47. Let H be a σ — function algebra on a set X. Then

1.M (H) is a σ — algebra on X.
2. H = ∞ (M (H) ,R) .
3. The map

M ∈ {σ — algebras on X}→ ∞ (M,R) ∈ {σ — function algebras on X}
(18.11)

is bijective with inverse given by H→M (H) .
Proof. LetM :=M (H) .

1. Since 0, 1 ∈ H, ∅,X ∈M. If A ∈ M then, since H is a linear subspace
of ∞ (X,R) , 1Ac = 1− 1A ∈ H which shows Ac ∈M. If {An}∞n=1 ⊂M,
then since H is an algebra,

1∩Nn=1An =
NY
n=1

1An =: fN ∈ H

for all N ∈ N. Because H is closed under bounded convergence it follows
that

1∩∞n=1An = lim
N→∞

fN ∈ H
and this implies ∩∞n=1An ∈M. Hence we have shownM is a σ — algebra.

2. SinceH is an algebra, p (f) ∈ H for any f ∈ H and any polynomial p on R.
The Weierstrass approximation Theorem 8.34, asserts that polynomials on
R are uniformly dense in the space of continuos functions on any compact
subinterval of R. Hence if f ∈ H and φ ∈ C (R) , there exists polynomials
pn on R such that pn ◦ f (x) converges to φ ◦ f (x) uniformly (and hence
boundedly) in x ∈ X as n → ∞. Therefore φ ◦ f ∈ H for all f ∈ H and
φ ∈ C (R) and in particular |f | ∈ H and f± := |f|±f

2 ∈ H if f ∈ H.
Fix an α ∈ R and for n ∈ N let φn (t) := (t− α)1/n+ , where (t− α)+ :=
max {t− α, 0} . Then φn ∈ C (R) and φn (t) → 1t>α as n → ∞ and the
convergence is bounded when t is restricted to any compact subset of R.
Hence if f ∈ H it follows that 1f>α = limn→∞ φn (f) ∈ H for all α ∈ R,
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i.e. {f > α} ∈M for all α ∈ R. Therefore if f ∈ H then f ∈ ∞ (M,R)
and we have shown H ⊂ ∞ (M,R) . Conversely if f ∈ ∞ (M,R) , then
for any α < β, {α < f ≤ β} ∈ M = M (H) and so by assumption
1{α<f≤β} ∈ H. Combining this remark with the approximation Theo-
rem 18.42 and the fact that H is closed under bounded convergence shows
that f ∈ H. Hence we have shown ∞ (M,R) ⊂ H which combined with
H ⊂ ∞ (M,R) already proved shows H = ∞ (M (H) ,R) .

3. Items 1. and 2. shows the map in Eq. (18.11) is surjective. To see the
map is injective supposeM and F are two σ — algebras on X such that
∞ (M,R) = ∞ (F ,R) , then

M = {A ⊂ X : 1A ∈ ∞ (M,R)}
= {A ⊂ X : 1A ∈ ∞ (F ,R)} = F .

Notation 18.48 Suppose M is a subset of ∞ (X,R) .

1. Let H (M) denote the smallest subspace of ∞ (X,R) which contains M
and the constant functions and is closed under bounded convergence.

2. Let Hσ (M) denote the smallest σ — function algebra containing M.

Theorem 18.49. Suppose M is a subset of ∞ (X,R) , then Hσ (M) =
∞ (σ (M) ,R) or in other words the following diagram commutes:

M −→ σ (M)
M {Multiplicative Subsets} −→ {σ — algebras} M
↓ ↓ ↓ ↓

Hσ (M) {σ— function algebras} = {σ— function algebras} ∞ (M,R) .

Proof. Since ∞ (σ (M) ,R) is σ — function algebra which contains M it
follows that

Hσ (M) ⊂ ∞ (σ (M) ,R) .

For the opposite inclusion, let

M =M (Hσ (M)) := {A ⊂ X : 1A ∈ Hσ (M)} .
By Theorem 18.47, M ⊂ Hσ (M) =

∞ (M,R) which implies that every
f ∈M isM — measurable. This then implies σ (M) ⊂M and therefore

∞ (σ (M) ,R) ⊂ ∞ (M,R) = Hσ (M) .

Definition 18.50 (Multiplicative System). A collection of bounded real or
complex valued functions, M, on a set X is called a multiplicative system
if f · g ∈M whenever f and g are in M.
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Theorem 18.51 (Dynkin’s Multiplicative System Theorem). Suppose
M ⊂ ∞ (X,R) is a multiplicative system, then

H (M) = Hσ (M) =
∞ (σ (M) ,R) . (18.12)

In words, the smallest subspace of bounded real valued functions on X which
contains M that is closed under bounded convergence is the same as the space
of bounded real valued σ (M) — measurable functions on X.

Proof.We begin by proving H := H (M) is a σ — function algebra. To do
this, for any f ∈ H let

Hf := {g ∈ H : fg ∈ H} ⊂ H
and notice that Hf is a linear subspace of ∞ (X,R) which is closed under
bounded convergence. Moreover if f ∈M, M ⊂ Hf since M is multiplicative.
Therefore Hf = H and we have shown that fg ∈ H whenever f ∈ M and
g ∈ H. Given this it now follows that M ⊂ Hf for any f ∈ H and by
the same reasoning just used, Hf = H. Since f ∈ H is arbitrary, we have
shown fg ∈ H for all f, g ∈ H, i.e. H is an algebra. Since it is harder to
be an algebra of functions containing M (see Exercise 18.13) than it is to
be a subspace of functions containing M it follows that H (M) ⊂ Hσ (M) .
But as we have just seen H (M) is a σ — function algebra which contains
M so we must have Hσ (M) ⊂ H (M) because Hσ (M) is by definition the
smallest such σ — function algebra. Hence Hσ (M) = H (M) . The assertion
that Hσ (M) =

∞ (σ (M) ,R) has already been proved in Theorem 18.49.

Theorem 18.52 (Complex Multiplicative System Theorem). Suppose
H is a complex linear subspace of ∞(X,C) such that: 1 ∈ H, H is closed under
complex conjugation, and H is closed under bounded convergence. If M ⊂ H
is multiplicative system which is closed under conjugation, then H contains all
bounded complex valued σ(M)-measurable functions, i.e. ∞ (σ (M) ,C) ⊂ H.
Proof. Let M0 = spanC(M ∪ {1}) be the complex span of M. As the

reader should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex
conjugation and that σ (M0) = σ (M) . Let HR := H ∩ ∞(X,R) and MR

0 =
M∩ ∞(X,R). Then (you verify)MR

0 is a multiplicative system,M
R
0 ⊂ HR and

HR is a linear space containing 1 which is closed under bounded convergence.
Therefore by Theorem 18.51, ∞

¡
σ
¡
MR
0

¢
,R
¢ ⊂ HR. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈M0, the functions Re f = 1

2

¡
f + f̄

¢
and Im f = 1

2i

¡
f − f̄

¢
are in H (M0)

or M0 respectively. Therefore H = HR + iHR, M0 = MR
0 + iMR

0 , σ
¡
MR
0

¢
=

σ (M0) = σ (M) and

∞ (σ (M) ,C) = ∞ ¡σ ¡MR
0

¢
,R
¢
+ i ∞

¡
σ
¡
MR
0

¢
,R
¢

⊂ HR + iHR = H.
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Exercise 18.7 (Algebra analogue of Theorem 18.47). Call a function
algebra H ⊂ ∞ (X,R) a simple function algebra if the range of each func-
tion f ∈ H is a finite subset of R. Prove there is a one to one correspondence
between algebras A on a set X and simple function algebras H on X.

Definition 18.53. A collection of subsets, C, of X is a multiplicative
class(or a π — class) if C is closed under finite intersections.
Corollary 18.54. Suppose H is a subspace of ∞(X,R) which is closed under
bounded convergence and 1 ∈ H. If C ⊂ 2X is a multiplicative class such
that 1A ∈ H for all A ∈ C, then H contains all bounded σ(C) — measurable
functions.

Proof. Let M = {1} ∪ {1A : A ∈ C} . Then M ⊂ H is a multiplicative
system and the proof is completed with an application of Theorem 18.51.

Corollary 18.55. Suppose that (X, d) is a metric space and BX = σ(τd)
is the Borel σ — algebra on X and H is a subspace of ∞(X,R) such that
BC(X,R) ⊂ H and H is closed under bounded convergence1 . Then H contains
all bounded BX — measurable real valued functions on X. (This may be stated
as follows: the smallest vector space of bounded functions which is closed under
bounded convergence and contains BC(X,R) is the space of bounded BX —
measurable real valued functions on X.)

Proof. Let V ∈ τd be an open subset of X and for n ∈ N let
fn(x) := min(n · dV c(x), 1) for all x ∈ X.

Notice that fn = φn ◦ dV c where φn(t) = min(nt, 1) (see Figure 18.3) which
is continuous and hence fn ∈ BC(X,R) for all n. Furthermore, fn converges
boundedly to 1dV c>0 = 1V as n → ∞ and therefore 1V ∈ H for all V ∈ τ.
Since τ is a π — class, the result now follows by an application of Corollary
18.54.

21.510.50

1

0.75

0.5

0.25

0

x

y

x

y

Plots of φ1, φ2 and φ3.

1 Recall that BC(X,R) are the bounded continuous functions on X.
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Here are some more variants of Corollary 18.55.

Proposition 18.56. Let (X, d) be a metric space, BX = σ(τd) be the Borel
σ — algebra and assume there exists compact sets Kk ⊂ X such that Ko

k ↑ X.
Suppose that H is a subspace of ∞(X,R) such that Cc(X,R) ⊂ H (Cc(X,R)
is the space of continuous functions with compact support) and H is closed
under bounded convergence. Then H contains all bounded BX — measurable
real valued functions on X.

Proof. Let k and n be positive integers and set ψn,k(x) = min(1, n ·
d(Ko

k)
c(x)). Then ψn,k ∈ Cc(X,R) and {ψn,k 6= 0} ⊂ Ko

k . Let Hn,k denote

those bounded BX — measurable functions, f : X → R, such that ψn,kf ∈ H.
It is easily seen that Hn,k is closed under bounded convergence and that
Hn,k contains BC(X,R) and therefore by Corollary 18.55, ψn,kf ∈ H for all
bounded measurable functions f : X → R. Since ψn,kf → 1Ko

k
f boundedly

as n→∞, 1Ko
k
f ∈ H for all k and similarly 1Ko

k
f → f boundedly as k →∞

and therefore f ∈ H.
Lemma 18.57. Suppose that (X, τ) is a locally compact second countable
Hausdorff space.2 Then:

1. every open subset U ⊂ X is σ — compact.
2. If F ⊂ X is a closed set, there exist open sets Vn ⊂ X such that Vn ↓ F
as n→∞.

3. To each open set U ⊂ X there exists fn ≺ U (i.e. fn ∈ Cc (U, [0, 1])) such
that limn→∞ fn = 1U .

4. BX = σ(Cc(X,R)), i.e. the σ — algebra generated by Cc(X) is the Borel σ
— algebra on X.

Proof.

1. Let U be an open subset of X, V be a countable base for τ and
VU := {W ∈ V : W̄ ⊂ U and W̄ is compact}.

For each x ∈ U, by Proposition 12.7, there exists an open neighborhood
V of x such that V̄ ⊂ U and V̄ is compact. Since V is a base for the
topology τ, there exists W ∈ V such that x ∈W ⊂ V. Because W̄ ⊂ V̄ , it
follows that W̄ is compact and hence W ∈ VU . As x ∈ U was arbitrary,
U = ∪VU . Let {Wn}∞n=1 be an enumeration of VU and setKn := ∪nk=1W̄k.
Then Kn ↑ U as n→∞ and Kn is compact for each n.

2. Let {Kn}∞n=1 be compact subsets of F c such that Kn ↑ F c as n→∞ and
set Vn := Kc

n = X \Kn. Then Vn ↓ F and by Proposition 12.5, Vn is open
for each n.

2 For example any separable locally compact metric space and in particular any
open subset of Rn.
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3. Let U ⊂ X be an open set and {Kn}∞n=1 be compact subsets of U such
that Kn ↑ U. By Lemma 12.8, there exist fn ≺ U such that fn = 1 on
Kn. These functions satisfy, 1U = limn→∞ fn.

4. By item 3., 1U is σ(Cc(X,R)) — measurable for all U ∈ τ and hence
τ ⊂ σ(Cc(X,R)). Therefore BX = σ(τ) ⊂ σ(Cc(X,R)). The converse
inclusion holds because continuous functions are always Borel measurable.

Here is a variant of Corollary 18.55.

Corollary 18.58. Suppose that (X, τ) is a second countable locally compact
Hausdorff space and BX = σ(τ) is the Borel σ — algebra on X. If H is a
subspace of ∞(X,R) which is closed under bounded convergence and contains
Cc(X,R), then H contains all bounded BX — measurable real valued functions
on X.

Proof. By Item 3. of Lemma 18.57, for every U ∈ τ the characteristic
function, 1U , may be written as a bounded pointwise limit of functions from
Cc (X,R) . Therefore 1U ∈ H for all U ∈ τ. Since τ is a π — class, the proof is
finished with an application of Corollary 18.54

18.4 Product σ — Algebras

Let {(Xα,Mα)}α∈A be a collection of measurable spaces X = XA =
Q
α∈A

Xα

and πα : XA → Xα be the canonical projection map as in Notation 2.2.

Definition 18.59 (Product σ — Algebra). The product σ — algebra,
⊗α∈AMα, is the smallest σ — algebra on X such that each πα for α ∈ A is
measurable, i.e.

⊗α∈AMα := σ(πα : α ∈ A) = σ
¡∪απ−1α (Mα)

¢
.

Applying Proposition 18.25 in this setting implies the following proposi-
tion.

Proposition 18.60. Suppose Y is a measurable space and f : Y → X = XA

is a map. Then f is measurable iff πα ◦ f : Y → Xα is measurable for all
α ∈ A. In particular if A = {1, 2, . . . , n} so that X = X1×X2× · · · ×Xn and
f(y) = (f1(y), f2(y), . . . , fn(y)) ∈ X1 ×X2 × · · · ×Xn, then f : Y → XA is
measurable iff fi : Y → Xi is measurable for all i.

Proposition 18.61. Suppose that (Xα,Mα)α∈A is a collection of measurable
spaces and Eα ⊂Mα generatesMα for each α ∈ A, then

⊗α∈AMα = σ
¡∪α∈Aπ−1α (Eα)

¢
(18.13)
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Moreover, suppose that A is either finite or countably infinite, Xα ∈ Eα for
each α ∈ A, and Mα = σ(Eα) for each α ∈ A. Then the product σ — algebra
satisfies

⊗α∈AMα = σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
. (18.14)

In particular if A = {1, 2, . . . , n} , then X = X1 ×X2 × · · · ×Xn and

M1 ⊗M2 ⊗ · · ·⊗Mn = σ(M1 ×M2 × · · · ×Mn),

whereM1 ×M2 × · · · ×Mn is as defined in Notation 10.26.

Proof. Since ∪απ−1α (Eα) ⊂ ∪απ−1α (Mα), it follows that

F := σ
¡∪απ−1α (Eα)

¢ ⊂ σ
¡∪απ−1α (Mα)

¢
= ⊗α∈AMα.

Conversely,
F ⊃ σ(π−1α (Eα)) = π−1α (σ(Eα)) = π−1α (Mα)

holds for all α implies that

∪απ−1α (Mα) ⊂ F

and hence that ⊗α∈AMα ⊂ F . We now prove Eq. (18.14). Since we are
assuming that Xα ∈ Eα for each α ∈ A, we see that

∪απ−1α (Eα) ⊂
(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)

and therefore by Eq. (18.13)

⊗α∈AMα = σ
¡∪απ−1α (Eα)

¢ ⊂ σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
.

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,Y

α∈A
Eα = ∩α∈Aπ−1α (Eα) ∈ ⊗α∈AMα

and hence

σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
⊂ ⊗α∈AMα.
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Remark 18.62. One can not relax the assumption that Xα ∈ Eα in the second
part of Proposition 18.61. For example, if X1 = X2 = {1, 2} and E1 = E2 =
{{1}} , then σ(E1 × E2) = {∅,X1 × X2, {(1, 1)}} while σ(σ(E1) × σ(E2)) =
2X1×X2 .

Theorem 18.63. Let {Xα}α∈A be a sequence of sets where A is at most
countable. Suppose for each α ∈ A we are given a countable set Eα ⊂ 2Xα . Let
τα = τ(Eα) be the topology on Xα generated by Eα and X be the product spaceQ

α∈AXα with equipped with the product topology τ := ⊗α∈Aτ(Eα). Then the
Borel σ — algebra BX = σ(τ) is the same as the product σ — algebra:

BX = ⊗α∈ABXα
,

where BXα = σ(τ(Eα)) = σ(Eα) for all α ∈ A.
In particular if A = {1, 2, . . . , n} and each (Xi, τi) is a second countable

topological space, then

BX := σ(τ1 ⊗ τ2 ⊗ · · ·⊗ τn) = σ(BX1 × · · · × BXn) =: BX1 ⊗ · · ·⊗ BXn .

Proof. By Proposition 10.25, the topology τ may be described as the
smallest topology containing E = ∪α∈Aπ−1α (Eα). Now E is the countable union
of countable sets so is still countable. Therefore by Proposition 18.17 and
Proposition 18.61,

BX = σ(τ) = σ(τ(E)) = σ(E) = ⊗α∈Aσ(Eα)
= ⊗α∈Aσ(τα) = ⊗α∈ABXα .

Corollary 18.64. If (Xi, di) are separable metric spaces for i = 1, . . . , n, then

BX1
⊗ · · ·⊗ BXn

= B(X1×···×Xn)

where BXi is the Borel σ — algebra on Xi and B(X1×···×Xn) is the Borel
σ — algebra on X1 × · · · × Xn equipped with the metric topology associ-
ated to the metric d(x, y) =

Pn
i=1 di(xi, yi) where x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn).

Proof. This is a combination of the results in Lemma 10.28, Exercise 10.10
and Theorem 18.63.
Because all norms on finite dimensional spaces are equivalent, the usual

Euclidean norm on Rm ×Rn is equivalent to the “product” norm defined by

k(x, y)kRm×Rn = kxkRm + kykRn .
Hence by Lemma 10.28, the Euclidean topology on Rm+n is the same as the
product topology on Rm+n ∼= Rm×Rn. Here we are identifying Rm×Rn with
Rm+n by the map

(x, y) ∈ Rm ×Rn → (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.
These comments along with Corollary 18.64 proves the following result.
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Corollary 18.65. After identifying Rm×Rn with Rm+n as above and letting
BRn denote the Borel σ —algebra on Rn, we have

BRm+n = BRn ⊗ BRm and BRn =
n—timesz }| {

BR ⊗ · · ·⊗ BR.

18.4.1 Factoring of Measurable Maps

Lemma 18.66. Suppose that (Y,F) is a measurable space and F : X → Y is
a map. Then to every (σ(F ),BR̄) — measurable function, H : X → R̄, there is
a (F ,BR̄) — measurable function h : Y → R̄ such that H = h ◦ F.
Proof. First suppose that H = 1A where A ∈ σ(F ) = F−1(F). Let

B ∈ F such that A = F−1(B) then 1A = 1F−1(B) = 1B ◦ F and hence the
Lemma is valid in this case with h = 1B . More generally if H =

P
ai1Ai

is a simple function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦ F and
hence H = h ◦ F with h :=

P
ai1Bi — a simple function on R̄. For general

(σ(F ),F) — measurable function, H, from X → R̄, choose simple functions
Hn converging to H. Let hn be simple functions on R̄ such that Hn = hn ◦F.
Then it follows that

H = lim
n→∞Hn = lim sup

n→∞
Hn = lim sup

n→∞
hn ◦ F = h ◦ F

where h := lim supn→∞ hn — a measurable function from Y to R̄.
The following is an immediate corollary of Proposition 18.25 and Lemma

18.66.

Corollary 18.67. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

Q
α∈A Yα,

F := ⊗α∈AFα be the product σ — algebra on Y and M := σ(fα : α ∈ A)
be the smallest σ — algebra on X such that each fα is measurable. Then the
function F : X → Y defined by [F (x)]α := fα(x) for each α ∈ A is (M,F)
— measurable and a function H : X → R̄ is (M,BR̄) — measurable iff there
exists a (F ,BR̄) — measurable function h from Y to R̄ such that H = h ◦ F.

18.5 Exercises

Exercise 18.8. Prove Corollary 18.23. Hint: See Exercise 18.3.

Exercise 18.9. IfM is the σ — algebra generated by E ⊂ 2X , thenM is the
union of the σ — algebras generated by countable subsets F ⊂ E. (Folland,
Problem 1.5 on p.24.)

Exercise 18.10. Let (X,M) be a measure space and fn : X → F be a se-
quence of measurable functions onX. Show that {x : limn→∞ fn(x) exists in F} ∈
M.
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Exercise 18.11. Show that every monotone function f : R→ R is (BR,BR)
— measurable.

Exercise 18.12. Show by example that the supremum of an uncountable
family of measurable functions need not be measurable. (Folland problem 2.6
on p. 48.)

Exercise 18.13. Let X = {1, 2, 3, 4} , A = {1, 2} , B = {2, 3} and M :=
{1A, 1B} . Show Hσ (M) 6= H (M) in this case.
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Measures and Integration

Definition 19.1. A measure µ on a measurable space (X,M) is a function
µ :M→ [0,∞] such that
1. µ(∅) = 0 and
2. (Finite Additivity) If {Ai}ni=1 ⊂M are pairwise disjoint, i.e. Ai ∩Aj = ∅
when i 6= j, then

µ(
n[
i=1

Ai) =
nX
i=1

µ(Ai).

3. (Continuity) If An ∈M and An ↑ A, then µ(An) ↑ µ(A).
We call a triple (X,M, µ), where (X,M) is a measurable space and µ :

M→ [0,∞] is a measure, a measure space.
Remark 19.2. Properties 2) and 3) in Definition 19.1 are equivalent to the
following condition. If {Ai}∞i=1 ⊂M are pairwise disjoint then

µ(
∞[
i=1

Ai) =
∞X
i=1

µ(Ai). (19.1)

To prove this assume that Properties 2) and 3) in Definition 19.1 hold and

{Ai}∞i=1 ⊂ M are pairwise disjoint. Letting Bn :=
nS
i=1

Ai ↑ B :=
∞S
i=1

Ai, we

have

µ(
∞[
i=1

Ai) = µ(B)
(3)
= lim

n→∞µ(Bn)
(2)
= lim

n→∞

nX
i=1

µ(Ai) =
∞X
i=1

µ(Ai).

Conversely, if Eq. (19.1) holds we may take Aj = ∅ for all j > n to see that
Property 2) of Definition 19.1 holds. Also if An ↑ A, let Bn := An \An−1 with
A0 := ∅. Then {Bn}∞n=1 are pairwise disjoint, An = ∪nj=1Bj and A = ∪∞j=1Bj .
So if Eq. (19.1) holds we have
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µ(A) = µ
¡∪∞j=1Bj

¢
=
∞X
j=1

µ(Bj)

= lim
n→∞

nX
j=1

µ(Bj) = lim
n→∞µ(∪nj=1Bj) = lim

n→∞µ(An).

Proposition 19.3 (Basic properties of measures). Suppose that (X,M, µ)
is a measure space and E,F ∈M and {Ej}∞j=1 ⊂M, then :

1. µ(E) ≤ µ(F ) if E ⊂ F.
2. µ(∪Ej) ≤

P
µ(Ej).

3. If µ(E1) <∞ and Ej ↓ E, i.e. E1 ⊃ E2 ⊃ E3 ⊃ . . . and E = ∩jEj , then
µ(Ej) ↓ µ(E) as j →∞.

Proof.

1. Since F = E ∪ (F \E),

µ(F ) = µ(E) + µ(F \E) ≥ µ(E).

2. Let eEj = Ej \ (E1 ∪ · · · ∪ Ej−1) so that the Ẽj ’s are pair-wise disjoint
and E = ∪ eEj. Since Ẽj ⊂ Ej it follows from Remark 19.2 and part (1),
that

µ(E) =
X

µ( eEj) ≤
X

µ(Ej).

3. Define Di := E1 \Ei then Di ↑ E1 \E which implies that

µ(E1)− µ(E) = lim
i→∞

µ(Di) = µ(E1)− lim
i→∞

µ(Ei)

which shows that limi→∞ µ(Ei) = µ(E).

Definition 19.4. A set E ⊂ X is a null set if E ∈M and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ X : P is false for x}

is a null set. For example if f and g are two measurable functions on
(X,M, µ), f = g a.e. means that µ(f 6= g) = 0.

Definition 19.5. A measure space (X,M, µ) is complete if every subset of
a null set is in M, i.e. for all F ⊂ X such that F ⊂ E ∈M with µ(E) = 0
implies that F ∈M.
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Proposition 19.6. Let (X,M, µ) be a measure space. Set

N := {N ⊂ X : ∃ F ∈M 3 N ⊂ F and µ(F ) = 0}
and

M̄ = {A ∪N : A ∈M, N ∈ N},
see Fig. 19.1. Then M̄ is a σ — algebra. Define µ̄(A ∪N) = µ(A), then µ̄ is
the unique measure on M̄ which extends µ.

Proof. Clearly X, ∅ ∈ M̄. Let A ∈ M and N ∈ N and choose F ∈ M

Fig. 19.1. Completing a σ — algebra.

such that N ⊂ F and µ(F ) = 0. Since Nc = (F \N) ∪ F c,

(A ∪N)c = Ac ∩Nc = Ac ∩ (F \N ∪ F c)

= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ M. Thus M̄ is closed under
complements. If Ai ∈ M and Ni ⊂ Fi ∈ M such that µ(Fi) = 0 then
∪(Ai∪Ni) = (∪Ai)∪(∪Ni) ∈ M̄ since ∪Ai ∈M and ∪Ni ⊂ ∪Fi and µ(∪Fi) ≤P

µ(Fi) = 0. Therefore, M̄ is a σ — algebra. Suppose A ∪N1 = B ∪N2 with
A,B ∈M and N1, N2,∈ N . Then A ⊂ A∪N1 ⊂ A∪N1 ∪F2 = B ∪F2 which
shows that

µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure,
i.e. that it is countable additive.
Many theorems in the sequel will require some control on the size of a

measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ — finite measure defined next.

Definition 19.7. Suppose X is a set, E ⊂M ⊂ 2X and µ :M→ [0,∞] is a
function. The function µ is σ — finite on E if there exists En ∈ E such that
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µ(En) < ∞ and X = ∪∞n=1En. If M is a σ — algebra and µ is a measure on
M which is σ — finite on M we will say (X,M, µ) is a σ — finite measure
space.

The reader should check that if µ is a finitely additive measure on an
algebra, M, then µ is σ — finite on M iff there exists Xn ∈ M such that
Xn ↑ X and µ(Xn) <∞.

19.1 Example of Measures

Most σ — algebras and σ -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F ⊂ 2X is a countable or finite partition of X andM ⊂ 2X is
the σ — algebra which consists of the collection of sets A ⊂ X such that

A = ∪ {α ∈ F : α ⊂ A} . (19.2)

It is easily seen thatM is a σ — algebra.
Any measure µ :M → [0,∞] is determined uniquely by its values on F .

Conversely, if we are given any function λ : F → [0,∞] we may define, for
A ∈M,

µ(A) =
X

α∈F3α⊂A
λ(α) =

X
α∈F

λ(α)1α⊂A

where 1α⊂A is one if α ⊂ A and zero otherwise. We may check that µ is a
measure onM. Indeed, if A =

`∞
i=1Ai and α ∈ F , then α ⊂ A iff α ⊂ Ai for

one and hence exactly one Ai. Therefore 1α⊂A =
P∞

i=1 1α⊂Ai and hence

µ(A) =
X
α∈F

λ(α)1α⊂A =
X
α∈F

λ(α)
∞X
i=1

1α⊂Ai

=
∞X
i=1

X
α∈F

λ(α)1α⊂Ai =
∞X
i=1

µ(Ai)

as desired. Thus we have shown that there is a one to one correspondence
between measures µ onM and functions λ : F → [0,∞].
The construction of measures will be covered in Chapters 27 — 29 below.

However, let us record here the existence of an interesting class of measures.

Theorem 19.8. To every right continuous non-decreasing function F :
R→ R there exists a unique measure µF on BR such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞ (19.3)

Moreover, if A ∈ BR then
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µF (A) = inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]
)

(19.4)

= inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂
∞a
i=1

(ai, bi]

)
. (19.5)

In fact the map F → µF is a one to one correspondence between right con-
tinuous functions F with F (0) = 0 on one hand and measures µ on BR such
that µ(J) <∞ on any bounded set J ∈ BR on the other.
Proof. This follows directly from Proposition 26.18 and Theorem 26.2

below. It can also be easily derived from Theorem 26.26 below.

Example 19.9. The most important special case of Theorem 19.8 is when
F (x) = x, in which case we write m for µF . The measure m is called Lebesgue
measure.

Theorem 19.10. Lebesgue measure m is invariant under translations, i.e.
for B ∈ BR and x ∈ R,

m(x+B) = m(B). (19.6)

Moreover, m is the unique measure on BR such that m((0, 1]) = 1 and Eq.
(19.6) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (19.7)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x + B), then one easily shows that mx is a

measure on BR such that mx((a, b]) = b− a for all a < b. Therefore, mx = m
by the uniqueness assertion in Theorem 19.8. For the converse, suppose that
m is translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

µ
k − 1
n

+ (0,
1

n
]

¶
.

Therefore,

1 = m((0, 1]) =
nX

k=1

m

µ
k − 1
n

+ (0,
1

n
]

¶

=
nX

k=1

m((0,
1

n
]) = n ·m((0, 1

n
]).

That is to say

m((0,
1

n
]) = 1/n.
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Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞m((an, bn]) = lim

n→∞ (bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (19.7) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
We are now going to develop integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

19.1.1 ADD: Examples of Measures

BRUCE: ADD details.

1. Product measure for the flipping of a coin.
2. Haar Measure
3. Measure on embedded submanifolds, i.e. Hausdorff measure.
4. Wiener measure.
5. Gibbs states.
6. Measure associated to self-adjoint operators and classifying them.

19.2 Integrals of Simple functions

Let (X,M, µ) be a fixed measure space in this section.

Definition 19.11. Let F = C or [0,∞) and suppose that φ : X → F is
a simple function as in Definition 18.41. If F = C assume further that
µ(φ−1({y})) <∞ for all y 6= 0 in C. For such functions φ, define Iµ(φ) by

Iµ(φ) =
X
y∈F

yµ(φ−1({y})).
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Proposition 19.12. Let λ ∈ F and φ and ψ be two simple functions, then Iµ
satisfies:

1.
Iµ(λφ) = λIµ(φ). (19.8)

2.
Iµ(φ+ ψ) = Iµ(ψ) + Iµ(φ).

3. If φ and ψ are non-negative simple functions such that φ ≤ ψ then

Iµ(φ) ≤ Iµ(ψ).

Proof. Let us write {φ = y} for the set φ−1({y}) ⊂ X and µ(φ = y) for
µ({φ = y}) = µ(φ−1 ({y})) so that

Iµ(φ) =
X
y∈F

yµ(φ = y).

We will also write {φ = a, ψ = b} for φ−1({a}) ∩ ψ−1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that λ ∈ F then

Iµ(λφ) =
X
y∈F

y µ(λφ = y) =
X
y∈F

y µ(φ = y/λ)

=
X
z∈F

λz µ(φ = z) = λIµ(φ)

provided that λ 6= 0. The case λ = 0 is clear, so we have proved 1. Suppose
that φ and ψ are two simple functions, then

Iµ(φ+ ψ) =
X
z∈F

z µ(φ+ ψ = z)

=
X
z∈F

z µ (∪w∈F {φ = w, ψ = z − w})

=
X
z∈F

z
X
w∈F

µ(φ = w, ψ = z − w)

=
X
z,w∈F

(z + w)µ(φ = w, ψ = z)

=
X
z∈F

z µ(ψ = z) +
X
w∈F

w µ(φ = w)

= Iµ(ψ) + Iµ(φ).

which proves 2. For 3. if φ and ψ are non-negative simple functions such that
φ ≤ ψ
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Iµ(φ) =
X
a≥0

aµ(φ = a) =
X
a,b≥0

aµ(φ = a, ψ = b)

≤
X
a,b≥0

bµ(φ = a, ψ = b) =
X
b≥0

bµ(ψ = b) = Iµ(ψ),

wherein the third inequality we have used {φ = a, ψ = b} = ∅ if a > b.

19.3 Integrals of positive functions

Definition 19.13. Let L+ = L+ (M) = {f : X → [0,∞] : f is measurable}.
DefineZ

X

f (x) dµ (x) =

Z
X

fdµ := sup {Iµ(φ) : φ is simple and φ ≤ f} .

We say the f ∈ L+ is integrable if
R
X
fdµ <∞. If A ∈M, letZ

A

f (x) dµ (x) =

Z
A

fdµ :=

Z
X

1Af dµ.

Remark 19.14. Because of item 3. of Proposition 19.12, if φ is a non-negative
simple function,

R
X
φdµ = Iµ(φ) so that

R
X
is an extension of Iµ. This exten-

sion still has the monotonicity property if Iµ : namely if 0 ≤ f ≤ g thenZ
X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f}

≤ sup {Iµ(φ) : φ is simple and φ ≤ g} ≤
Z
X

gdµ.

Similarly if c > 0, Z
X

cfdµ = c

Z
X

fdµ.

Also notice that if f is integrable, then µ ({f =∞}) = 0.
Lemma 19.15 (Sums as Integrals). Let X be a set and ρ : X → [0,∞] be
a function, let µ =

P
x∈X ρ(x)δx onM = 2X , i.e.

µ(A) =
X
x∈A

ρ(x).

If f : X → [0,∞] is a function (which is necessarily measurable), thenZ
X

fdµ =
X
X

fρ.
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Proof. Suppose that φ : X → [0,∞) is a simple function, then φ =P
z∈[0,∞) z1{φ=z} andX

X

φρ =
X
x∈X

ρ(x)
X

z∈[0,∞)
z1{φ=z}(x) =

X
z∈[0,∞)

z
X
x∈X

ρ(x)1{φ=z}(x)

=
X

z∈[0,∞)
zµ({φ = z}) =

Z
X

φdµ.

So if φ : X → [0,∞) is a simple function such that φ ≤ f, thenZ
X

φdµ =
X
X

φρ ≤
X
X

fρ.

Taking the sup over φ in this last equation then shows thatZ
X

fdµ ≤
X
X

fρ.

For the reverse inequality, let Λ ⊂⊂ X be a finite set and N ∈ (0,∞).
Set fN (x) = min {N, f(x)} and let φN,Λ be the simple function given by
φN,Λ(x) := 1Λ(x)f

N (x). Because φN,Λ(x) ≤ f(x),X
Λ

fNρ =
X
X

φN,Λρ =

Z
X

φN,Λdµ ≤
Z
X

fdµ.

Since fN ↑ f asN →∞, we may letN →∞ in this last equation to concludedX
Λ

fρ ≤
Z
X

fdµ.

Since Λ is arbitrary, this impliesX
X

fρ ≤
Z
X

fdµ.

Theorem 19.16 (Monotone Convergence Theorem). Suppose fn ∈ L+

is a sequence of functions such that fn ↑ f (f is necessarily in L+) thenZ
fn ↑

Z
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,Z
fn ≤

Z
fm ≤

Z
f
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from which if follows
R
fn is increasing in n and

lim
n→∞

Z
fn ≤

Z
f. (19.9)

For the opposite inequality, let φ : X → [0,∞) be a simple function such
that 0 ≤ φ ≤ f, α ∈ (0, 1) and Xn := {fn ≥ αφ} . Notice that Xn ↑ X and
fn ≥ α1Xnφ and so by definition of

R
fn,Z

fn ≥
Z

α1Xnφ = α

Z
1Xnφ. (19.10)

Then using the continuity property of µ,

lim
n→∞

Z
1Xnφ = lim

n→∞

Z
1Xn

X
y>0

y1{φ=y}

= lim
n→∞

X
y>0

yµ(Xn ∩ {φ = y}) =
X
y>0

y lim
n→∞µ(Xn ∩ {φ = y})

=
X
y>0

y lim
n→∞µ({φ = y}) =

Z
φ.

This identity allows us to let n→∞ in Eq. (19.10) to concludeZ
X

φ ≤ 1

α
lim
n→∞

Z
fn.

Since this is true for all non-negative simple functions φ with φ ≤ f ;Z
f = sup

½Z
X

φ : φ is simple and φ ≤ f

¾
≤ 1

α
lim
n→∞

Z
fn.

Because α ∈ (0, 1) was arbitrary, it follows that R f ≤ lim
n→∞

R
fn which com-

bined with Eq. (19.9) proves the theorem.
The following simple lemma will be use often in the sequel.

Lemma 19.17 (Chebyshev’s Inequality). Suppose that f ≥ 0 is a mea-
surable function, then for any ε > 0,

µ(f ≥ ε) ≤ 1
ε

Z
X

fdµ. (19.11)

In particular if
R
X
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the

set {f > 0} is σ — finite.
Proof. Since 1{f≥ε} ≤ 1{f≥ε} 1εf ≤ 1

εf,

µ(f ≥ ε) =

Z
X

1{f≥ε}dµ ≤
Z
X

1{f≥ε}
1

ε
fdµ ≤ 1

ε

Z
X

fdµ.
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If M :=
R
X
fdµ <∞, then

µ(f =∞) ≤ µ(f ≥ n) ≤ M

n
→ 0 as n→∞

and {f ≥ 1/n} ↑ {f > 0} with µ(f ≥ 1/n) ≤ nM <∞ for all n.

Corollary 19.18. If fn ∈ L+ is a sequence of functions thenZ ∞X
n=1

fn =
∞X
n=1

Z
fn.

In particular, if
P∞

n=1

R
fn <∞ then

P∞
n=1 fn <∞ a.e.

Proof. First off we show thatZ
(f1 + f2) =

Z
f1 +

Z
f2

by choosing non-negative simple function φn and ψn such that φn ↑ f1 and
ψn ↑ f2. Then (φn +ψn) is simple as well and (φn+ψn) ↑ (f1+ f2) so by the
monotone convergence theorem,Z

(f1 + f2) = lim
n→∞

Z
(φn + ψn) = lim

n→∞

µZ
φn +

Z
ψn

¶
= lim

n→∞

Z
φn + lim

n→∞

Z
ψn =

Z
f1 +

Z
f2.

Now to the general case. Let gN :=
NP
n=1

fn and g =
∞P
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞X
n=1

Z
fn := lim

N→∞

NX
n=1

Z
fn = lim

N→∞

Z NX
n=1

fn

= lim
N→∞

Z
gN =

Z
g =:

Z ∞X
n=1

fn.

Remark 19.19. It is in the proof of this corollary (i.e. the linearity of the
integral) that we really make use of the assumption that all of our functions are
measurable. In fact the definition

R
fdµ makes sense for all functions f : X →

[0,∞] not just measurable functions. Moreover the monotone convergence
theorem holds in this generality with no change in the proof. However, in
the proof of Corollary 19.18, we use the approximation Theorem 18.42 which
relies heavily on the measurability of the functions to be approximated.
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The following Lemma and the next Corollary are simple applications of
Corollary 19.18.

Lemma 19.20 (The First Borell — Carntelli Lemma). Let (X,M, µ) be
a measure space, An ∈M, and set

{An i.o.} = {x ∈ X : x ∈ An for infinitely many n’s} =
∞\

N=1

[
n≥N

An.

If
P∞

n=1 µ(An) <∞ then µ({An i.o.}) = 0.
Proof. (First Proof.) Let us first observe that

{An i.o.} =
(
x ∈ X :

∞X
n=1

1An(x) =∞
)
.

Hence if
P∞

n=1 µ(An) <∞ then

∞ >
∞X
n=1

µ(An) =
∞X
n=1

Z
X

1An dµ =

Z
X

∞X
n=1

1An dµ

implies that
∞P
n=1

1An(x) < ∞ for µ - a.e. x. That is to say µ({An i.o.}) = 0.
(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 [
n≥N

An


≤ lim

N→∞

X
n≥N

µ(An)

and the last limit is zero since
P∞

n=1 µ(An) <∞.

Corollary 19.21. Suppose that (X,M, µ) is a measure space and {An}∞n=1 ⊂
M is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞X
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =

Z
X

1∪∞n=1Andµ and

∞X
n=1

µ(An) =

Z
X

∞X
n=1

1Andµ
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it suffices to show ∞X
n=1

1An = 1∪∞n=1An µ — a.e. (19.12)

Now
P∞

n=1 1An ≥ 1∪∞n=1An and
P∞

n=1 1An(x) 6= 1∪∞n=1An(x) iff x ∈ Ai∩Aj for
some i 6= j, that is(

x :
∞X
n=1

1An(x) 6= 1∪∞n=1An(x)
)
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (19.12) and hence the corollary.

Notation 19.22 If m is Lebesgue measure on BR, f is a non-negative Borel
measurable function and a < b with a, b ∈ R̄, we will often write R b

a
f (x) dx

or
R b
a
fdm for

R
(a,b]∩R fdm.

Example 19.23. Suppose −∞ < a < b < ∞, f ∈ C([a, b], [0,∞)) and m be
Lebesgue measure on R. Also let πk = {a = ak0 < ak1 < · · · < aknk = b} be a
sequence of refining partitions (i.e. πk ⊂ πk+1 for all k) such that

mesh(πk) := max{
¯̄
akj − ak+1j−1

¯̄
: j = 1, . . . , nk}→ 0 as k →∞.

For each k, let

fk(x) = f(a)1{a} +
nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
1(akl ,akl+1](x)

then fk ↑ f as k →∞ and so by the monotone convergence theorem,Z b

a

fdm :=

Z
[a,b]

fdm = lim
k→∞

Z b

a

fk dm

= lim
k→∞

nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
m
¡
(akl , a

k
l+1]

¢
=

Z b

a

f(x)dx.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Example 19.24. For all λ > 0,Z ∞
0

e−λxdm(x) = λ−1 and
Z
R

1

1 + x2
dm(x) = π.
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The proof of these identities are similar. By the monotone convergence the-
orem, Example 19.23 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.13 above or Theorem 19.40 below),Z ∞

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdx

= − lim
N→∞

1

λ
e−λx|N0 = λ−1

and Z
R

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dx

= lim
N→∞

£
tan−1(N)− tan−1(−N)¤ = π.

Let us also consider the functions x−p,Z
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

0

1( 1n ,1](x)
1

xp
dm(x)

= lim
n→∞

Z 1

1
n

1

xp
dx = lim

n→∞
x−p+1

1− p

¯̄̄̄1
1/n

=

½ 1
1−p if p < 1
∞ if p > 1

If p = 1 we findZ
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

1
n

1

x
dx = lim

n→∞ ln(x)|
1
1/n =∞.

Example 19.25. Let {rn}∞n=1 be an enumeration of the points in Q∩ [0, 1] and
define

f(x) =
∞X
n=1

2−n
1p|x− rn|

with the convention that

1p|x− rn|
= 5 if x = rn.

Since, By Theorem 19.40,Z 1

0

1p|x− rn|
dx =

Z 1

rn

1√
x− rn

dx+

Z rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

¡√
1− rn −√rn

¢
≤ 4,
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we findZ
[0,1]

f(x)dm(x) =
∞X
n=1

2−n
Z
[0,1]

1p|x− rn|
dx ≤

∞X
n=1

2−n4 = 4 <∞.

In particular, m(f =∞) = 0, i.e. that f <∞ for almost every x ∈ [0, 1] and
this implies that

∞X
n=1

2−n
1p|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 19.26. Suppose that f ≥ 0 is a measurable function. ThenR
X
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
R
fdµ ≤ R gdµ. In particular if f = g a.e. then

R
fdµ =

R
gdµ.

Proof. If f = 0 a.e. and φ ≤ f is a simple function then φ = 0 a.e.
This implies that µ(φ−1({y})) = 0 for all y > 0 and hence

R
X
φdµ = 0

and therefore
R
X
fdµ = 0. Conversely, if

R
fdµ = 0, then by Chebyshev’s

Inequality (Lemma 19.17),

µ(f ≥ 1/n) ≤ n

Z
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤ P∞n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e. For the second
assertion let E be the exceptional set where f > g, i.e. E := {x ∈ X : f(x) >
g(x)}. By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because
g = 1Ecg + 1Eg and 1Eg = 0 a.e.,Z

gdµ =

Z
1Ecgdµ+

Z
1Egdµ =

Z
1Ecgdµ

and similarly
R
fdµ =

R
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,Z

fdµ =

Z
1Ecfdµ ≤

Z
1Ecgdµ =

Z
gdµ.

Corollary 19.27. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, thenZ

fn ↑
Z

f as n→∞.
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Proof. Let E ⊂ X be a null set such that fn1Ec ↑ f1Ec as n→∞. Then
by the monotone convergence theorem and Proposition 19.26,Z

fn =

Z
fn1Ec ↑

Z
f1Ec =

Z
f as n→∞.

Lemma 19.28 (Fatou’s Lemma). If fn : X → [0,∞] is a sequence of
measurable functions thenZ

lim inf
n→∞ fn ≤ lim inf

n→∞

Z
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, Z
gk ≤

Z
fn for all n ≥ k

and therefore Z
gk ≤ lim inf

n→∞

Z
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findZ
lim inf

n→∞ fn =

Z
lim
k→∞

gk
MCT
= lim

k→∞

Z
gk ≤ lim inf

n→∞

Z
fn.

19.4 Integrals of Complex Valued Functions

Definition 19.29. A measurable function f : X → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ;R) for the space
of real valued integrable functions. For f ∈ L1 (µ;R) , letZ

fdµ =

Z
f+dµ−

Z
f−dµ

Convention: If f, g : X → R̄ are two measurable functions, let f + g
denote the collection of measurable functions h : X → R̄ such that h(x) =
f(x)+g(x) whenever f(x)+g(x) is well defined, i.e. is not of the form∞−∞ or
−∞+∞.We use a similar convention for f −g. Notice that if f, g ∈ L1 (µ;R)
and h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 19.30 (Abuse of notation) We will sometimes denote the in-
tegral

R
X
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all

A ∈M.
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Remark 19.31. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
R |f | dµ <∞. Hence

L1 (µ;R) :=
½
f : X → R̄ : f is measurable and

Z
X

|f | dµ <∞
¾
.

If f, g ∈ L1 (µ;R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 19.26 that

R
fdµ =

R
gdµ. In particular if f, g ∈ L1 (µ;R) we may

define Z
X

(f + g) dµ =

Z
X

hdµ

where h is any element of f + g.

Proposition 19.32. The map

f ∈ L1 (µ;R)→
Z
X

fdµ ∈ R

is linear and has the monotonicity property:
R
fdµ ≤ R

gdµ for all f, g ∈
L1 (µ;R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ;R) and a, b ∈ R. By modifying f and g on a null
set, we may assume that f, g are real valued functions. We have af + bg ∈
L1 (µ;R) because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ;R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that Z
af = −a

Z
f− + a

Z
f+ = a(

Z
f+ −

Z
f−) = a

Z
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that Z

af = a

Z
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore,
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h+ +

Z
f− +

Z
g− =

Z
h− +

Z
f+ +

Z
g+

and henceZ
h =

Z
h+ −

Z
h− =

Z
f+ +

Z
g+ −

Z
f− −

Z
g− =

Z
f +

Z
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that Z

f+ +

Z
g− ≤

Z
g+ +

Z
f−

or equivalently thatZ
f =

Z
f+ −

Z
f− ≤

Z
g+ −

Z
g− =

Z
g.

The monotonicity property is also a consequence of the linearity of the inte-
gral, the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 19.26.

Definition 19.33. A measurable function f : X → C is integrable ifR
X
|f | dµ <∞. Analogously to the real case, let

L1 (µ;C) :=
½
f : X → C : f is measurable and

Z
X

|f | dµ <∞
¾
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤ √2max (|Re f | , |Im f |) , R |f | dµ <∞ iffZ

|Re f | dµ+
Z
|Im f | dµ <∞.

For f ∈ L1 (µ;C) defineZ
f dµ =

Z
Re f dµ+ i

Z
Im f dµ.

It is routine to show the integral is still linear on L1 (µ;C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ;C) or L1 (µ;R) . If A ∈M
and f ∈ L1 (µ;C) or f : X → [0,∞] is a measurable function, letZ

A

fdµ :=

Z
X

1Afdµ.

Proposition 19.34. Suppose that f ∈ L1 (µ;C) , then¯̄̄̄Z
X

fdµ

¯̄̄̄
≤
Z
X

|f | dµ. (19.13)
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Proof. Start by writing
R
X
f dµ = Reiθ with R ≥ 0.We may assume that

R =
¯̄R
X
fdµ

¯̄
> 0 since otherwise there is nothing to prove. Since

R = e−iθ
Z
X

f dµ =

Z
X

e−iθf dµ =

Z
X

Re
¡
e−iθf

¢
dµ+ i

Z
X

Im
¡
e−iθf

¢
dµ,

it must be that
R
X
Im
£
e−iθf

¤
dµ = 0. Using the monotonicity in Proposition

19.26, ¯̄̄̄Z
X

fdµ

¯̄̄̄
=

Z
X

Re
¡
e−iθf

¢
dµ ≤

Z
X

¯̄
Re
¡
e−iθf

¢¯̄
dµ ≤

Z
X

|f | dµ.

Proposition 19.35. Let f, g ∈ L1 (µ) , then
1. The set {f 6= 0} is σ — finite, in fact {|f | ≥ 1

n} ↑ {f 6= 0} and µ(|f | ≥
1
n) <∞ for all n.

2. The following are equivalent
a)
R
E
f =

R
E
g for all E ∈M

b)
R
X

|f − g| = 0
c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 19.17,

µ(|f | ≥ 1

n
) ≤ n

Z
X

|f | dµ <∞

for all n. 2. (a) =⇒ (c) Notice thatZ
E

f =

Z
E

g ⇔
Z
E

(f − g) = 0

for all E ∈M. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re

Z
E

(f − g)dµ =

Z
1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e. (c) =⇒ (b) is clear and so is (b)
=⇒ (a) since ¯̄̄̄Z

E

f −
Z
E

g

¯̄̄̄
≤
Z
|f − g| = 0.
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Definition 19.36. Let (X,M, µ) be a measure space and L1(µ) = L1(X,M, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

kf − gkL1 =
Z
|f − g| dµ

and into a metric space using ρ1(f, g) = kf − gkL1 .
Warning: in the future we will often not make much of a distinction

between L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger
will be pointed out when necessary.

Remark 19.37. More generally we may define Lp(µ) = Lp(X,M, µ) for p ∈
[1,∞) as the set of measurable functions f such thatZ

X

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in Chapter 21 that

kfkLp =
µZ

|f |p dµ
¶1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), k·kLp) is a Banach space in this norm.
Theorem 19.38 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

R
X
gndµ→

R
X
gdµ.

Then f ∈ L1 (µ) and Z
X

fdµ = lim
h→∞

Z
X

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)
Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that

f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,Z

X

(g ± f)dµ =

Z
X

lim inf
n→∞ (gn ± fn) dµ ≤ lim inf

n→∞

Z
X

(gn ± fn) dµ

= lim
n→∞

Z
X

gndµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
=

Z
X

gdµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,
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X

gdµ±
Z
X

fdµ ≤
Z
X

gdµ+

½
lim infn→∞

R
X
fndµ

− lim supn→∞
R
X
fndµ

and therefore

lim sup
n→∞

Z
X

fndµ ≤
Z
X

fdµ ≤ lim inf
n→∞

Z
X

fndµ.

This shows that lim
n→∞

R
X
fndµ exists and is equal to

R
X
fdµ.

Exercise 19.1. Give another proof of Proposition 19.34 by first proving Eq.
(19.13) with f being a cylinder function in which case the triangle inequality
for complex numbers will do the trick. Then use the approximation Theorem
18.42 along with the dominated convergence Theorem 19.38 to handle the
general case.

Corollary 19.39. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that
P∞

n=1 kfnkL1(µ) <
∞, then

P∞
n=1 fn is convergent a.e. andZ

X

Ã ∞X
n=1

fn

!
dµ =

∞X
n=1

Z
X

fndµ.

Proof. The condition
P∞

n=1 kfnkL1(µ) < ∞ is equivalent to
P∞

n=1 |fn| ∈
L1 (µ) . Hence

P∞
n=1 fn is almost everywhere convergent and if SN :=PN

n=1 fn, then

|SN | ≤
NX
n=1

|fn| ≤
∞X
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,Z
X

Ã ∞X
n=1

fn

!
dµ =

Z
X

lim
N→∞

SNdµ = lim
N→∞

Z
X

SNdµ

= lim
N→∞

NX
n=1

Z
X

fndµ =
∞X
n=1

Z
X

fndµ.

Theorem 19.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b <∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

R x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩C1((a, b),R).
2. F 0(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.

f = G0|(a,b)) then Z b

a

f(x)dm(x) = G(b)−G(a).
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Proof. Since F (x) :=
R
R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y)

for m — a.e. y and
¯̄
1(a,x)(y)f(y)

¯̄ ≤ 1(a,b)(y) |f(y)| is an L1 — function, it
follows from the dominated convergence Theorem 19.38 that F is continuous
on [a, b]. Simple manipulations show,¯̄̄̄

F (x+ h)− F (x)

h
− f(x)

¯̄̄̄
=
1

|h|


¯̄̄R x+h
x

[f(y)− f(x)] dm(y)
¯̄̄
if h > 0¯̄̄R x

x+h
[f(y)− f(x)] dm(y)

¯̄̄
if h < 0

≤ 1

|h|

(R x+h
x

|f(y)− f(x)| dm(y) if h > 0R x
x+h

|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}
and the latter expression, by the continuity of f, goes to zero as h→ 0 . This
shows F 0 = f on (a, b). For the converse direction, we have by assumption
that G0(x) = F 0(x) for x ∈ (a, b). Therefore by the mean value theorem,
F −G = C for some constant C. HenceZ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

Example 19.41. The following limit holds,

lim
n→∞

Z n

0

(1− x

n
)ndm(x) = 1.

Let fn(x) = (1 − x
n)

n1[0,n](x) and notice that limn→∞ fn(x) = e−x. We will
now show

0 ≤ fn(x) ≤ e−x for all x ≥ 0.
It suffices to consider x ∈ [0, n]. Let g(x) = exfn(x), then for x ∈ (0, n),

d

dx
ln g(x) = 1 + n

1

(1− x
n)
(− 1

n
) = 1− 1

(1− x
n)
≤ 0

which shows that ln g(x) and hence g(x) is decreasing on [0, n]. Therefore
g(x) ≤ g(0) = 1, i.e.

0 ≤ fn(x) ≤ e−x.

From Example 19.24, we knowZ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,
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lim
n→∞

Z n

0

(1− x

n
)ndm(x) = lim

n→∞

Z ∞
0

fn(x)dm(x)

=

Z ∞
0

lim
n→∞ fn(x)dm(x) =

Z ∞
0

e−xdm(x) = 1.

Example 19.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is
a sequence of complex numbers such that

P∞
n=0 |an| rn <∞ for all r ∈ (0, R).

ThenZ β

α

Ã ∞X
n=0

anx
n

!
dm(x) =

∞X
n=0

an

Z β

α

xndm(x) =
∞X
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 19.39 since

∞X
n=0

Z β

α

|an| |x|n dm(x) ≤
∞X
n=0

ÃZ |β|

0

|an| |x|n dm(x) +
Z |α|

0

|an| |x|n dm(x)
!

≤
∞X
n=0

|an| |β|
n+1

+ |α|n+1
n+ 1

≤ 2r
∞X
n=0

|an| rn <∞

where r = max(|β| , |α|).
Corollary 19.43 (Differentiation Under the Integral). Suppose that
J ⊂ R is an open interval and f : J ×X → C is a function such that

1. x→ f(t, x) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f∂t (t, x) exists for all (t, x).

4. There is a function g ∈ L1 (µ) such that
¯̄̄
∂f
∂t (t, ·)

¯̄̄
≤ g ∈ L1 (µ) for each

t ∈ J.
Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.

R
X
|f(t, x)| dµ(x) < ∞), t →R

X
f(t, x)dµ(x) is a differentiable function on J and

d

dt

Z
X

f(t, x)dµ(x) =

Z
X

∂f

∂t
(t, x)dµ(x).

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also
notice that

∂f

∂t
(t, x) = lim

n→∞n(f(t+ n−1, x)− f(t, x))

and therefore, for x → ∂f
∂t (t, x) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, x)− f(t0, x)| ≤ g(x) |t− t0| for all t ∈ J (19.14)

and hence
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|f(t, x)| ≤ |f(t, x)− f(t0, x)|+ |f(t0, x)| ≤ g(x) |t− t0|+ |f(t0, x)| .
This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=

R
X
f(t, x)dµ(x), then

G(t)−G(t0)

t− t0
=

Z
X

f(t, x)− f(t0, x)

t− t0
dµ(x).

By assumption,

lim
t→t0

f(t, x)− f(t0, x)

t− t0
=

∂f

∂t
(t, x) for all x ∈ X

and by Eq. (19.14),¯̄̄̄
f(t, x)− f(t0, x)

t− t0

¯̄̄̄
≤ g(x) for all t ∈ J and x ∈ X.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)

tn − t0
= lim

n→∞

Z
X

f(tn, x)− f(t0, x)

tn − t0
dµ(x)

=

Z
X

lim
n→∞

f(tn, x)− f(t0, x)

tn − t0
dµ(x)

=

Z
X

∂f

∂t
(t0, x)dµ(x)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0 exists and

Ġ(t0) =

Z
X

∂f

∂t
(t0, x)dµ(x).

Example 19.44. Recall from Example 19.24 that

λ−1 =
Z
[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
µ
− d

dλ

¶n
e−λx = xne−λx ≤ C(ε)e−εx.

Using this fact, Corollary 19.43 and induction gives

n!λ−n−1 =
µ
− d

dλ

¶n
λ−1 =

Z
[0,∞)

µ
− d

dλ

¶n
e−λxdm(x)

=

Z
[0,∞)

xne−λxdm(x).
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That is n! = λn
R
[0,∞) x

ne−λxdm(x). Recall that

Γ (t) :=

Z
[0,∞)

xt−1e−xdx for t > 0.

(The reader should check that Γ (t) < ∞ for all t > 0.) We have just shown
that Γ (n+ 1) = n! for all n ∈ N.
Remark 19.45. Corollary 19.43 may be generalized by allowing the hypothesis
to hold for x ∈ X \ E where E ∈ M is a fixed null set, i.e. E must be
independent of t. Consider what happens if we formally apply Corollary 19.43
to g(t) :=

R∞
0
1x≤tdm(x),

ġ(t) =
d

dt

Z ∞
0

1x≤tdm(x)
?
=

Z ∞
0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is

not defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should
decide which hypothesis of Corollary 19.43 has been violated in this example.)

19.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 19.46. Suppose that (X,M, µ) is a complete measure space1

and f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ — a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in M and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)
−1(A) =

½
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)

−1(A) if 0 /∈ A
(19.15)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness of
M that (1Eg)−1(B) ∈M if 0 /∈ B. Therefore Eq. (19.15) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞ fn(x) 6= f(x)} by assumption E ∈M and

1 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈M and µ(A) = 0,
then N ∈M as well.
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µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.
The above results are in general false if (X,M, µ) is not complete. For

example, let X = {0, 1, 2}, M = {{0}, {1, 2},X, φ} and µ = δ0. Take g(0) =
0, g(1) = 1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 19.47. Suppose that (X,M, µ) is a measure space and M̄ is the
completion of M relative to µ and µ̄ is the extension of µ to M̄. Then a
function f : X → R is (M̄,B = BR) — measurable iff there exists a function
g : X → R that is (M,B) — measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and
µ̄ (E) = 0, i.e. f(x) = g(x) for µ̄ — a.e. x. Moreover for such a pair f and g,
f ∈ L1(µ̄) iff g ∈ L1(µ) and in which caseZ

X

fdµ̄ =

Z
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) — measurable, we see from Proposition 19.46 that f is (M̄,B)
— measurable. Conversely if f is (M̄,B) — measurable, by considering f± we
may assume that f ≥ 0. Choose (M̄,B) — measurable simple function φn ≥ 0
such that φn ↑ f as n→∞. Writing

φn =
X

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak\Bk) = 0.
Letting

φ̃n :=
X

ak1Bk

we have produced a (M,B) — measurable simple function φ̃n ≥ 0 such that
En := {φn 6= φ̃n} has zero µ̄ — measure. Since µ̄ (∪nEn) ≤

P
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F φ̃n = 1Fφn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) — measurable and that {f 6= g} ⊂ F has
µ̄ — measure zero. Since f = g, µ̄ — a.e.,

R
X
fdµ̄ =

R
X
gdµ̄ so to prove Eq.

(19.16) it suffices to prove Z
X

gdµ̄ =

Z
X

gdµ. (19.16)

Because µ̄ = µ on M, Eq. (19.16) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 18.42 it holds for allM — measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .
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19.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition

π = {a = t0 < t1 < · · · < tn = b} (19.17)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
nX
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
nX
1

mj1(tj−1,tj ] and

Sπf =
X

Mj(tj − tj−1) and sπf =
X

mj(tj − tj−1).

Notice that

Sπf =

Z b

a

Gπdm and sπf =

Z b

a

gπdm.

The upper and lower Riemann integrals are defined respectively byZ b

a

f(x)dx = inf
π
Sπf and

Z a

b

f(x)dx = sup
π

sπf.

Definition 19.48. The function f is Riemann integrable iff
R b
a
f =

R b
a
f ∈

R and which case the Riemann integral
R b
a
f is defined to be the common value:

Z b

a

f(x)dx =

Z b

a

f(x)dx =

Z b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 19.20.

Lemma 19.49. If π0 and π are two partitions of [a, b] and π ⊂ π0 then

Gπ ≥ Gπ0 ≥ f ≥ gπ0 ≥ gπ and

Sπf ≥ Sπ0f ≥ sπ0f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
Z b

a

f and sπkf ↑
Z b

a

f as k →∞.
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If we let
G := lim

k→∞
Gπk and g := lim

k→∞
gπk (19.18)

then by the dominated convergence theorem,Z
[a,b]

gdm = lim
k→∞

Z
[a,b]

gπk = lim
k→∞

sπkf =

Z b

a

f(x)dx (19.19)

andZ
[a,b]

Gdm = lim
k→∞

Z
[a,b]

Gπk = lim
k→∞

Sπkf =

Z b

a

f(x)dx. (19.20)

Notation 19.50 For x ∈ [a, b], let
H(x) = lim sup

y→x
f(y) := lim

ε↓0
sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 19.51. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (19.18), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (19.21)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk ↓ G and gk := gπk ↑ g.
1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim

y→x
f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k
and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (19.22)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y)
over some interval contained in [x−ε, x+ε]. Again letting k →∞ implies
sup

|y−x|≤ε
f(y) ≥ G(x) and therefore, that
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H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (19.22) then implies
H(x) = G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if
x /∈ π and hence Eq. (19.21) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 19.52. Let f : [a, b]→ R be a bounded function. ThenZ b

a

f =

Z
[a,b]

Hdm and
Z b

a

f =

Z
[a,b]

hdm (19.23)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}
is an m̄ — null set.

3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2 , i.e. f is L/B —
measurable where L is the Lebesgue σ — algebra and B is the Borel σ — algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, thenZ

[a,b]

Hdm =

Z b

a

f(x)dx =

Z
[a,b]

fdm̄ =

Z
[a,b]

hdm. (19.24)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as
described in Lemma 19.49 and let G and g be defined as in Lemma 19.51.
Since m(π) = 0, H = G a.e., Eq. (19.23) is a consequence of Eqs. (19.19) and
(19.20). From Eq. (19.23), f is Riemann integrable iffZ

[a,b]

Hdm =

Z
[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m
— null set. In light of these results and Eq. (19.21), the remaining assertions
including Eq. (19.24) are now consequences of Lemma 19.47.

Notation 19.53 In view of this theorem we will often write
R b
a
f(x)dx forR b

a
fdm.

2 f need not be Borel measurable.
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19.7 Determining Classes of Measures

Definition 19.54 (σ — finite). Let X be a set and E ⊂ F ⊂ 2X . We say
that a function µ : F → [0,∞] is σ — finite on E if there exist Xn ∈ E such
that Xn ↑ X and µ(Xn) <∞ for all n.

Theorem 19.55 (Uniqueness). Suppose that C ⊂ 2X is a π — class (see
Definition 18.53),M = σ(C) and µ and ν are two measure onM. If µ and ν
are σ — finite on C and µ = ν on C, then µ = ν onM.

Proof.We begin first with the special case where µ(X) <∞ and therefore
also

ν(X) = lim
n→∞ ν (Xn) = lim

n→∞µ (Xn) = µ(X) <∞.

Let
H := {f ∈ ∞ (M,R) : µ (f) = ν (f)} .

ThenH is a linear subspace which is closed under bounded convergence (by the
dominated convergence theorem), contains 1 and contains the multiplicative
system, M := {1C : C ∈ C} . Therefore, by Theorem 18.51 or Corollary 18.54,
H = ∞ (M,R) and hence µ = ν. For the general case, let X1

n,X
2
n ∈ C be

chosen so that X1
n ↑ X and X2

n ↑ X as n→∞ and µ
¡
X1
n

¢
+ ν

¡
X2
n

¢
<∞ for

all n. Then Xn := X1
n ∩X2

n ∈ C increases to X and ν (Xn) = µ (Xn) <∞ for
all n. For each n ∈ N, define two measures µn and νn onM by

µn(A) := µ(A ∩Xn) and νn(A) = ν(A ∩Xn).

Then, as the reader should verify, µn and νn are finite measure on M such
that µn = νn on C. Therefore, by the special case just proved, µn = νn onM.
Finally, using the continuity properties of measures,

µ(A) = lim
n→∞µ(A ∩Xn) = lim

n→∞ ν(A ∩Xn) = ν(A)

for all A ∈M.
As an immediate consequence we have the following corollaries.

Corollary 19.56. Suppose that (X, τ) is a topological space, BX = σ(τ) is
the Borel σ — algebra on X and µ and ν are two measures on BX which are
σ — finite on τ. If µ = ν on τ then µ = ν on BX , i.e. µ ≡ ν.

Corollary 19.57. Suppose that µ and ν are two measures on BRn which are
finite on bounded sets and such that µ(A) = ν(A) for all sets A of the form

A = (a, b] = (a1, b1]× · · · × (an, bn]

with a, b ∈ Rn and a < b, i.e. ai < bi for all i. Then µ = ν on BRn .
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Proposition 19.58. Suppose that (X,d) is a metric space, µ and ν are two
measures on BX := σ(τd) which are finite on bounded measurable subsets of
X and Z

X

fdµ =

Z
X

fdν (19.25)

for all f ∈ BCb(X,R) where

BCb(X,R) = {f ∈ BC(X,R) : supp(f) is bounded}. (19.26)

Then µ ≡ ν.

Proof. To prove this fix a o ∈ X and let

ψR(x) = ([R+ 1− d(x, o)] ∧ 1) ∨ 0 (19.27)

so that ψR ∈ BCb(X, [0, 1]), supp(ψR) ⊂ B(o,R + 2) and ψR ↑ 1 as R →∞.
Let HR denote the space of bounded real valued BX — measurable functions
f such that Z

X

ψRfdµ =

Z
X

ψRfdν. (19.28)

Then HR is closed under bounded convergence and because of Eq. (19.25)
contains BC(X,R). Therefore by Corollary 18.55, HR contains all bounded
measurable functions on X. Take f = 1A in Eq. (19.28) with A ∈ BX , and
then use the monotone convergence theorem to let R → ∞. The result is
µ(A) = ν(A) for all A ∈ BX .
Here is another version of Proposition 19.58.

Proposition 19.59. Suppose that (X,d) is a metric space, µ and ν are two
measures on BX = σ(τd) which are both finite on compact sets. Further assume
there exists compact sets Kk ⊂ X such that Ko

k ↑ X. IfZ
X

fdµ =

Z
X

fdν (19.29)

for all f ∈ Cc(X,R) then µ ≡ ν.

Proof. Let ψn,k be defined as in the proof of Proposition 18.56 and let
Hn,k denote those bounded BX — measurable functions, f : X → R such thatZ

X

fψn,kdµ =

Z
X

fψn,kdν.

By assumption BC(X,R) ⊂ Hn,k and one easily checks that Hn,k is closed
under bounded convergence. Therefore, by Corollary 18.55, Hn,k contains all
bounded measurable function. In particular for A ∈ BX ,Z

X

1Aψn,kdµ =

Z
X

1Aψn,kdν.
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Letting n → ∞ in this equation, using the dominated convergence theorem,
one shows Z

X

1A1Ko
k
dµ =

Z
X

1A1Ko
k
dν

holds for k. Finally using the monotone convergence theorem we may let
k →∞ to conclude

µ(A) =

Z
X

1Adµ =

Z
X

1Adν = ν(A)

for all A ∈ BX .

19.8 Exercises

Exercise 19.2. Let µ be a measure on an algebra A ⊂ 2X , then µ(A) +
µ(B) = µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.
Exercise 19.3 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B.
Show “∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let
[A] := {B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a
well defined metric onM/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function on M/ ∼ and
show µ̃ : (M/ ∼)→ R+ is ρ̄ — continuous.

Exercise 19.4. Suppose that µn :M → [0,∞] are measures on M for n ∈
N. Also suppose that µn(A) is increasing in n for all A ∈ M. Prove that
µ :M→ [0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 19.5. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =P

λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 19.6. Let (X,M, µ) be a measure space and ρ : X → [0,∞] be a
measurable function. For A ∈M, set ν(A) :=

R
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
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2. Let f : X → [0,∞] be a measurable function, showZ
X

fdν =

Z
X

fρdµ. (19.30)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (19.30) still holds.

Notation 19.60 It is customary to informally describe ν defined in Exercise
19.6 by writing dν = ρdµ.

Exercise 19.7. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F .
1. Show ν is a measure. (We will write ν = f∗µ or ν = µ ◦ f−1.)
2. Show Z

Y

gdν =

Z
X

(g ◦ f) dµ (19.31)

for all measurable functions g : Y → [0,∞]. Hint: see the hint from
Exercise 19.6.

3. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (19.31) holds for all g ∈ L1(ν).

Exercise 19.8. Let F : R → R be a C1-function such that F 0(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1

is a C1 — function.) Let m be Lebesgue measure on BR and
ν(A) = m(F (A)) = m(

¡
F−1

¢−1
(A)) =

¡
F−1∗ m

¢
(A)

for all A ∈ BR. Show dν = F 0dm. Use this result to prove the change of
variable formula, Z

R
h ◦ F · F 0dm =

Z
R
hdm (19.32)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F 0dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Theorem 19.8 (or
see Corollary 19.57) to conclude dν = F 0dm on all of BR. To prove Eq. (19.32)
apply Exercise 19.7 with g = h ◦ F and f = F−1.

Exercise 19.9. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞ µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .
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Exercise 19.10. BRUCE: Delete this exercise which is contained in Lemma
19.17. Suppose (X,M, µ) be a measure space and f : X → [0∞] be a mea-
surable function such that

R
X
fdµ < ∞. Show µ ({f =∞}) = 0 and the set

{f > 0} is σ — finite.
Exercise 19.11. Folland 2.13 on p. 52. Hint: “Fatou times two.”

Exercise 19.12. Folland 2.14 on p. 52. BRUCE: delete this exercise

Exercise 19.13. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

R
fndm =∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 whileR
gndm = 1 for all n.

Exercise 19.14. Folland 2.19 on p. 59. (This problem is essentially covered
in the previous exercise.)

Exercise 19.15. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.P∞
n=−∞ |an| < ∞), then f(θ) :=

P∞
n=−∞ ane

inθ is a continuous function
for θ ∈ R and

an =
1

2π

Z π

−π
f(θ)e−inθdθ.

Exercise 19.16. For any function f ∈ L1 (m) , show x ∈ R→ R
(−∞,x]

f (t) dm (t)

is continuous in x. Also find a finite measure, µ, on BR such that x →R
(−∞,x]

f (t) dµ (t) is not continuous.

Exercise 19.17. Folland 2.28 on p. 60.

Exercise 19.18. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is
wrong by a factor of −1 and the sum is on k = 1 to ∞. In part e, s should be
taken to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =
∞X
n=0

(2n− 1)!!
2nn!

zn =
∞X
n=0

(2n)!

4n (n!)
2 z

n for |z| < 1.

Exercise 19.19. There exists a meager (see Definition 13.4 and Proposition
13.3) subsets of R which have full Lebesgue measure, i.e. whose complement
is a Lebesgue null set. (This is Folland 5.27. Hint: Consider the generalized
Cantor sets discussed on p. 39 of Folland.)

Exercise 19.20. Prove Lemma 19.49.
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Multiple Integrals

In this chapter we will introduce iterated integrals and product measures. We
are particularly interested in when it is permissible to interchange the order
of integration in multiple integrals.

Example 20.1. As an example let X = [1,∞) and Y = [0, 1] equipped with
their Borel σ - algebras and let µ = ν = m, where m is Lebesgue measure.
The iterated integrals of the function f (x, y) := e−xy − 2e−2xy satisfy,Z 1

0

·Z ∞
1

(e−xy − 2e−2xy)dx
¸
dy =

Z 1

0

e−y
µ
1− e−y

y

¶
dy ∈ (0,∞)

andZ ∞
1

·Z 1

0

(e−xy − 2e−2xy)dy
¸
dx = −

Z ∞
1

e−x
·
1− e−x

x

¸
dx ∈ (−∞, 0)

and therefore are not equal. Hence it is not always true that order of integra-
tion is irrelevant.

Lemma 20.2. Let F be either [0,∞), R or C. Suppose (X,M) and (Y,N )
are two measurable spaces and f : X×Y → F is a (M⊗N ,BF) — measurable
function, then for each y ∈ Y,

x→ f(x, y) is (M,BF) measurable, (20.1)

for each x ∈ X,
y → f(x, y) is (N ,BF) measurable. (20.2)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

from which it follows that Eqs. (20.1) and (20.2) for this function. LetH be the
collection of all bounded (M⊗N ,BF) — measurable functions on X×Y such
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that Eqs. (20.1) and (20.2) hold, here we assume F = R or C. Because mea-
surable functions are closed under taking linear combinations and pointwise
limits, H is linear subspace of ∞ (M⊗N ,F) which is closed under bounded
convergence and contain 1E ∈ H for all E in the π — class, E . Therefore by by
Corollary 18.54, that H = ∞ (M⊗N ,F) .
For the general (M⊗N ,BR) — measurable functions f : X × Y → F and

M ∈ N, let fM := 1|f |≤Mf ∈ ∞ (M⊗N ,F) . Then Eqs. (20.1) and (20.2)
hold with f replaced by fM and hence for f as well by letting M →∞.

Notation 20.3 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two
measure spaces and f : X × Y → C is a M ⊗ N — measurable function,
the iterated integrals of f (when they make sense) are:Z

X

dµ(x)

Z
Y

dν(y)f(x, y) :=

Z
X

·Z
Y

f(x, y)dν(y)

¸
dµ(x)

and Z
Y

dν(y)

Z
X

dµ(x)f(x, y) :=

Z
Y

·Z
X

f(x, y)dµ(x)

¸
dν(y).

Notation 20.4 Suppose that f : X → C and g : Y → C are functions, let
f ⊗ g denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f⊗g is (M⊗N ,BC) — measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦π1 where
π1 : X ×Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

20.1 Fubini-Tonelli’s Theorem and Product Measure

Theorem 20.5. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) — measurable function, then for each
y ∈ Y,

x→ f(x, y) isM — B[0,∞] measurable, (20.3)

for each x ∈ X,

y → f(x, y) is N — B[0,∞] measurable, (20.4)

x→
Z
Y

f(x, y)dν(y) isM — B[0,∞] measurable, (20.5)

y →
Z
X

f(x, y)dµ(x) is N — B[0,∞] measurable, (20.6)
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and Z
X

dµ(x)

Z
Y

dν(y)f(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y). (20.7)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (20.3) and (20.4) hold. MoreoverZ
Y

f(x, y)dν(y) =

Z
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (20.5) holds and we haveZ
X

dµ(x)

Z
Y

dν(y)f(x, y) = ν(B)µ(A). (20.8)

Similarly, Z
X

f(x, y)dµ(x) = µ(A)1B(y) andZ
Y

dν(y)

Z
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (20.6) and (20.7) hold in this case as well. For
the moment let us further assume that µ(X) < ∞ and ν(Y ) < ∞ and let
H be the collection of all bounded (M⊗N ,BR) — measurable functions on
X × Y such that Eqs. (20.3) — (20.7) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1E ∈ H for all E in the π — class, E , it follows by Corollary 18.54 that H is the
space of all bounded (M⊗N ,BR) — measurable functions on X×Y. Finally if
f : X ×Y → [0,∞] is a (M⊗N ,BR̄) — measurable function, let fM =M ∧ f
so that fM ↑ f as M → ∞ and Eqs. (20.3) — (20.7) hold with f replaced by
fM for all M ∈ N. Repeated use of the monotone convergence theorem allows
us to pass to the limit M → ∞ in these equations to deduce the theorem in
the case µ and ν are finite measures. For the σ — finite case, choose Xn ∈M,
Yn ∈ N such that Xn ↑ X, Yn ↑ Y, µ(Xn) < ∞ and ν(Yn) < ∞ for all
m,n ∈ N. Then define µm(A) = µ(Xm ∩ A) and νn(B) = ν(Yn ∩ B) for all
A ∈M and B ∈ N or equivalently dµm = 1Xmdµ and dνn = 1Yndν. By what
we have just proved Eqs. (20.3) — (20.7) with µ replaced by µm and ν by νn
for all (M⊗N ,BR̄) — measurable functions, f : X×Y → [0,∞]. The validity
of Eqs. (20.3) — (20.7) then follows by passing to the limits m→∞ and then
n→∞ making use of the monotone convergence theorem in the form,Z

X

udµm =

Z
X

u1Xmdµ ↑
Z
X

udµ as m→∞
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and Z
Y

vdµn =

Z
Y

v1Yndµ ↑
Z
Y

vdµ as n→∞

for all u ∈ L+(X,M) and v ∈ L+(Y,N ).
Corollary 20.6. Suppose (X,M, µ) and (Y,N , ν) are σ — finite measure
spaces. Then there exists a unique measure π onM⊗N such that π(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =

Z
X

dµ(x)

Z
Y

dν(y)1E(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)1E(x, y) (20.9)

for all E ∈M⊗N and π is σ — finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ — finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) <∞, ν(Yn) <∞, Xn ↑ X and Yn ↑ Y, then
Xn × Yn ∈M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n. The
uniqueness assertion is a consequence of Theorem 19.55 or see Theorem 25.6
below with E = M×N . For the existence, it suffices to observe, using the
monotone convergence theorem, that π defined in Eq. (20.9) is a measure on
M⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B) for all A ∈M
and B ∈ N from Eq. (20.8

Notation 20.7 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Theorem 20.8 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ — finite measure spaces and π = µ ⊗ ν is the product measure on M⊗N .
If f ∈ L+(X × Y,M ⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,Z

Y

f(·, y)dν(y) ∈ L+(X,M),

Z
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and Z
X×Y

f dπ =

Z
X

dµ(x)

Z
Y

dν(y)f(x, y) (20.10)

=

Z
Y

dν(y)

Z
X

dµ(x)f(x, y). (20.11)

Proof. By Theorem 20.5 and Corollary 20.6, the theorem holds when
f = 1E with E ∈M⊗N . Using the linearity of all of the statements, the the-
orem is also true for non-negative simple functions. Then using the monotone
convergence theorem repeatedly along with the approximation Theorem 18.42,
one deduces the theorem for general f ∈ L+(X × Y,M⊗N ).
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The following convention will be in force for the rest of this chapter.
Convention: If (X,M, µ) is a measure space and f : X → C is a measur-

able but non-integrable function, i.e.
R
X
|f | dµ =∞, by convention we will de-

fine
R
X
fdµ := 0. However if f is a non-negative function (i.e. f : X → [0,∞])

is a non-integrable function we will still write
R
X
fdµ =∞.

Theorem 20.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ — finite measure spaces, π = µ⊗ ν is the product measure on M⊗N and
f : X × Y → C is a M⊗N — measurable function. Then the following three
conditions are equivalent:Z

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (20.12)Z

X

µZ
Y

|f(x, y)| dν(y)
¶
dµ(x) <∞ and (20.13)Z

Y

µZ
X

|f(x, y)| dµ(x)
¶
dν(y) <∞. (20.14)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ
a.e. x, f(·, y) ∈ L1(µ) for ν a.e. y,

R
Y
f(·, y)dv(y) ∈ L1(µ),

R
X
f(x, ·)dµ(x) ∈

L1(ν) and Eqs. (20.10) and (20.11) are still valid.

Proof. The equivalence of Eqs. (20.12) — (20.14) is a direct consequence
of Tonelli’s Theorem 20.8. Now suppose f ∈ L1(π) is a real valued function
and let

E :=

½
x ∈ X :

Z
Y

|f (x, y)| dν (y) =∞
¾
. (20.15)

Then by Tonelli’s theorem, x → R
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem impliesZ
X

·Z
Y

|f (x, y)| dν (y)
¸
dµ (x) =

Z
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then using the above convention we haveZ

Y

f (x, y) dν (y) =

Z
Y

1E (x) f (x, y) dν (y)

=

Z
Y

1E (x) [f+ (x, y)− f− (x, y)] dν (y)

=

Z
Y

1E (x) f+ (x, y) dν (y)−
Z
Y

1E (x) f− (x, y) dν (y) .

(20.16)

Noting that 1E (x) f± (x, y) = (1E ⊗ 1Y · f±) (x, y) is a positive M ⊗ N —
measurable function, it follows from another application of Tonelli’s theorem
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that x → R
Y
f (x, y) dν (y) is M — measurable, being the difference of two

measurable functions. MoreoverZ
X

¯̄̄̄Z
Y

f (x, y) dν (y)

¯̄̄̄
dµ (x) ≤

Z
X

·Z
Y

|f (x, y)| dν (y)
¸
dµ (x) <∞,

which shows
R
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (20.16) on x and using

Tonelli’s theorem repeatedly implies,Z
X

·Z
Y

f (x, y) dν (y)

¸
dµ (x)

=

Z
X

dµ (x)

Z
Y

dν (y) 1E (x) f+ (x, y)−
Z
X

dµ (x)

Z
Y

dν (y) 1E (x) f− (x, y)

=

Z
Y

dν (y)

Z
X

dµ (x) 1E (x) f+ (x, y)−
Z
Y

dν (y)

Z
X

dµ (x) 1E (x) f− (x, y)

=

Z
Y

dν (y)

Z
X

dµ (x) f+ (x, y)−
Z
Y

dν (y)

Z
X

dµ (x) f− (x, y)

=

Z
X×Y

f+dπ −
Z
X×Y

f−dπ =
Z
X×Y

(f+ − f−) dπ =
Z
X×Y

fdπ (20.17)

which proves Eq. (20.10) holds.
Now suppose that f = u + iv is complex valued and again let E be as

in Eq. (20.15). Just as above we still have E ∈ M and µ (E) < ∞. By our
convention,Z
Y

f (x, y) dν (y) =

Z
Y

1E (x) f (x, y) dν (y) =

Z
Y

1E (x) [u (x, y) + iv (x, y)] dν (y)

=

Z
Y

1E (x)u (x, y) dν (y) + i

Z
Y

1E (x) v (x, y) dν (y)

which is measurable in x by what we have just proved. Similarly one showsR
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (20.10) still holds by a computation similar

to that done in Eq. (20.17). The assertions pertaining to Eq. (20.11) may be
proved in the same way.

Notation 20.10 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.
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Theorem 20.11. Suppose (X,M, µ) and (Y,N , ν) are complete σ — finite
measure spaces. Let (X×Y,L, λ) be the completion of (X×Y,M⊗N , µ⊗ν).
If f is L — measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N —
measurable for µ a.e. x and fy isM — measurable for ν a.e. y and in case (b)
fx ∈ L1(ν) and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,µ

x→
Z
Y

fxdν

¶
∈ L1 (µ) and

µ
y →

Z
X

fydµ

¶
∈ L1 (ν)

and Z
X×Y

fdλ =

Z
Y

dν

Z
X

dµ f =

Z
X

dµ

Z
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =

Z
X

ν(xE)dµ(x) =

Z
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ — a.e., then there exists E ∈M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and

{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

R
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
R
X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore

0 =

Z
X×Y

hdλ =

Z
Y

µZ
X

hdµ

¶
dν =

Z
X

µZ
Y

hdν

¶
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M ⊗ N , µ ⊗ ν) such that
f(x, y) = g(x, y) for λ− a.e. (x, y). Define h := f − g. Then h = 0, λ− a.e.
Hence by what we have just proved and Theorem 20.8 f = g + h has the
following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) andZ
Y

f(x, y)dν(y) =

Z
Y

g(x, y)dν(y).
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2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) andZ
X

f(x, y)dµ(x) =

Z
X

g(x, y)dµ(x).

From these assertions and Theorem 20.8, it follows thatZ
X

dµ(x)

Z
Y

dν(y)f(x, y) =

Z
X

dµ(x)

Z
Y

dν(y)g(x, y)

=

Z
Y

dν(y)

Z
Y

dν(x)g(x, y)

=

Z
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=

Z
X×Y

f(x, y)dλ(x, y).

Similarly it is shown thatZ
Y

dν(y)

Z
X

dµ(x)f(x, y) =

Z
X×Y

f(x, y)dλ(x, y).

The previous theorems have obvious generalizations to products of any
finite number of σ — finite measure spaces. For example the following theorem
holds.

Theorem 20.12. Suppose {(Xi,Mi, µi)}ni=1 are σ — finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure, π, on
(X,M1 ⊗ · · ·⊗Mn) such that π(A1 × · · · × An) = µ1(A1) . . . µn(An) for all
Ai ∈Mi. (This measure and its completion will be denote by µ1 ⊗ · · ·⊗ µn.)
If f : X → [0,∞] is aM1 ⊗ · · ·⊗Mn — measurable function thenZ

X

fdπ =

Z
Xσ(1)

dµσ(1)(xσ(1)) . . .

Z
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (20.18)

where σ is any permutation of {1, 2, . . . , n}. This equation also holds for any
f ∈ L1(π) and moreover, f ∈ L1(π) iffZ

Xσ(1)

dµσ(1)(xσ(1)) . . .

Z
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ.

This theorem can be proved by the same methods as in the two factor case,
see Exercise 20.4. Alternatively, one can use the theorems already proved and
induction on n, see Exercise 20.5 in this regard.
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Example 20.13. In this example we will show

lim
M→∞

Z M

0

sinx

x
dx = π/2. (20.19)

To see this write 1
x =

R∞
0

e−txdt and use Fubini-Tonelli to conclude thatZ M

0

sinx

x
dx =

Z M

0

·Z ∞
0

e−tx sinx dt

¸
dx

=

Z ∞
0

"Z M

0

e−tx sinx dx

#
dt

=

Z ∞
0

1

1 + t2
¡
1− te−Mt sinM − e−Mt cosM

¢
dt

→
Z ∞
0

1

1 + t2
dt =

π

2
as M →∞,

wherein we have used the dominated convergence theorem to pass to the limit.

The next example is a refinement of this result.

Example 20.14.We haveZ ∞
0

sinx

x
e−Λxdx =

1

2
π − arctanΛ for all Λ > 0 (20.20)

and forΛ,M ∈ [0,∞),¯̄̄̄
¯
Z M

0

sinx

x
e−Λxdx− 1

2
π + arctanΛ

¯̄̄̄
¯ ≤ C

e−MΛ

M
(20.21)

where C = maxx≥0 1+x
1+x2 =

1
2
√
2−2
∼= 1.2. In particular Eq. (20.19) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
¯̄̄̄Z x

0

cos ydy

¯̄̄̄
≤
¯̄̄̄Z x

0

|cos y| dy
¯̄̄̄
≤
¯̄̄̄Z x

0

1dy

¯̄̄̄
= |x|

so
¯̄
sinx
x

¯̄ ≤ 1 for all x 6= 0. Making use of the identityZ ∞
0

e−txdt = 1/x

and Fubini’s theorem,
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0

sinx

x
e−Λxdx =

Z M

0

dx sinx e−Λx
Z ∞
0

e−txdt

=

Z ∞
0

dt

Z M

0

dx sinx e−(Λ+t)x

=

Z ∞
0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)
2
+ 1

dt

=

Z ∞
0

1

(Λ+ t)2 + 1
dt−

Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)2 + 1
e−M(Λ+t)dt

=
1

2
π − arctanΛ− ε(M,Λ) (20.22)

where

ε(M,Λ) =

Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)2 + 1
e−M(Λ+t)dt.

Since ¯̄̄̄
¯cosM + (Λ+ t) sinM

(Λ+ t)2 + 1

¯̄̄̄
¯ ≤ 1 + (Λ+ t)

(Λ+ t)2 + 1
≤ C,

|ε(M,Λ)| ≤
Z ∞
0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (20.22) proves Eq. (20.21) from which Eq. (20.19)
follows by taking Λ → ∞ and Eq. (20.20) follows (using the dominated con-
vergence theorem again) by letting M →∞.

20.2 Lebesgue Measure on Rd and the Change of
Variables Theorem

Notation 20.15 Let

md :=

d timesz }| {
m⊗ · · ·⊗m on BRd =

d timesz }| {
BR ⊗ · · ·⊗ BR

be the d — fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to md.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d —
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 20.16. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.
Notation 20.17 I will often be sloppy in the sequel and write m for md and
dx for dm(x) = dmd(x), i.e.
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Rd

f (x) dx =

Z
Rd

fdm =

Z
Rd

fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 20.18. Lebesgue measuremd is translation invariant. Moreovermd

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.

Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then

x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that

md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x+A) = md(A) for all A ∈ BRd by Corollary 19.57. From this
fact we see that the measure md(x + ·) and md(·) have the same null sets.
Using this it is easily seen that m(x + A) = m(A) for all A ∈ Ld. The proof
of the second assertion is Exercise 20.6.

Theorem 20.19 (Change of Variables Theorem). Let Ω ⊂o Rd be an
open set and T : Ω → T (Ω) ⊂o Rd be a C1 — diffeomorphism,1 see Figure
20.1. Then for any Borel measurable function, f : T (Ω)→ [0,∞],Z

Ω

f (T (x)) |detT 0 (x) |dx =
Z

T (Ω)

f (y) dy, (20.23)

where T 0(x) is the linear transformation on Rd defined by T 0(x)v := d
dt |0T (x+

tv). More explicitly, viewing vectors in Rd as columns, T 0 (x) may be repre-
sented by the matrix

T 0 (x) =

∂1T1 (x) . . . ∂dT1 (x)...
. . .

...
∂1Td (x) . . . ∂dTd (x)

 , (20.24)

i.e. the i - j — matrix entry of T 0(x) is given by T 0(x)ij = ∂iTj(x) where
T (x) = (T1(x), . . . , Td(x))

tr and ∂i = ∂/∂xi.

Remark 20.20. Theorem 20.19 is best remembered as the statement: if we
make the change of variables y = T (x) , then dy = |detT 0 (x) |dx. As usual,
you must also change the limits of integration appropriately, i.e. if x ranges
through Ω then y must range through T (Ω) .

1 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the
inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.
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Fig. 20.1. The geometric setup of Theorem 20.19.

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 19.8. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < α < β < b such that [a, b] is a compact
subinterval of Ω. Then |detT 0| = |T 0| andZ
[a,b]

1T ((α,β]) (T (x)) |T 0 (x)| dx =
Z
[a,b]

1(α,β] (x) |T 0 (x)| dx =
Z β

α

|T 0 (x)| dx.

If T 0 (x) > 0 on [a, b] , thenZ β

α

|T 0 (x)| dx =
Z β

α

T 0 (x) dx = T (β)− T (α)

= m (T ((α, β])) =

Z
T ([a,b])

1T ((α,β]) (y) dy

while if T 0 (x) < 0 on [a, b] , thenZ β

α

|T 0 (x)| dx = −
Z β

α

T 0 (x) dx = T (α)− T (β)

= m (T ((α, β])) =

Z
T ([a,b])

1T ((α,β]) (y) dy.

Combining the previous three equations showsZ
[a,b]

f (T (x)) |T 0 (x)| dx =
Z
T ([a,b])

f (y) dy (20.25)
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whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application of
Dynkin’s multiplicative system Theorem 18.51 then implies that Eq. (20.25)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe
that |T 0 (x)| is continuous and hence bounded for x in the compact interval,
[a, b] . From Exercise 10.12, Ω =

`N
n=1 (an, bn) where an, bn ∈ R∪ {±∞} for

n = 1, 2, · · · < N with N = ∞ possible. Hence if f : T (Ω) → R + is a Borel
measurable function and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then
by what we have already proved and the monotone convergence theoremZ

Ω

1(an,bn) · (f ◦ T ) · |T 0|dm =

Z
Ω

¡
1T ((an,bn)) · f

¢ ◦ T · |T 0|dm
= lim

k→∞

Z
Ω

¡
1T ([αk,βk]) · f

¢ ◦ T · |T 0| dm
= lim

k→∞

Z
T (Ω)

1T ([αk,βk]) · f dm

=

Z
T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (20.23) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T 0 (x) , will always be taken to be
given as in Eq. (20.24).
Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (20.26)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (20.27)

for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (20.26),
the case of T in Eq. (20.27) may be handled similarly. For t ∈ R, let it :
Rd−1 → Rd be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
©
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

ª
and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,
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Ω

(Ω )

Ω

(Ω)

( (Ω ))

( )

(Ω )

( )=( ( ))

Fig. 20.2. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-
shaped hole. The picture indicates the geometry associated with the map T and
slicing the set Ω along planes where x3 = t.

see Figure 20.2. Expanding detT 0 (wt) along the first row of the matrix T 0 (wt)
shows

|detT 0 (wt)| = |detT 0t (w)| .
Now by the Fubini-Tonelli Theorem and the induction hypothesis,Z
Ω

f ◦ T |detT 0|dm =

Z
Rd

1Ω · f ◦ T |detT 0|dm

=

Z
Rd

1Ω (wt) (f ◦ T ) (wt) |detT 0 (wt) |dwdt

=

Z
R

Z
Ωt

(f ◦ T ) (wt) |detT 0 (wt) |dw
 dt

=

Z
R

Z
Ωt

f (t, Tt (w)) |detT 0t (w) |dw
 dt

=

Z
R

 Z
Tt(Ωt)

f (t, z) dz

 dt = Z
R

 Z
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=

Z
T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the
identity;
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T (Ω) =
a
t∈R

T (it (Ω)) =
a
t∈R

{(t, z) : z ∈ Tt (Ωt)} .

Case 2. (Eq. (20.23) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such thatZ

W

f ◦ T |detT 0|dm =

Z
T (W )

fdm

holds for all Borel measurable function, f : T (W )→ [0,∞]. Let Mi be the 1-i
minor of T 0 (x0) , i.e. the determinant of T 0 (x0) with the first row and ith —
column removed. Since

0 6= detT 0 (x0) =
dX
i=1

(−1)i+1 ∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (20.28)

Observe that |detS0 (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem
16.25, there exist an open neighborhood W of x0 such that W ⊂o Ω and
S (W ) ⊂o Rd and S :W → S (W ) is a C1 — diffeomorphism. Let R : S (W )→
T (W ) ⊂o Rd to be the C1 — diffeomorphism defined by

R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

¡
T1
¡
S−1 (z)

¢
, z2, . . . , zd

¢
. (20.29)

Observe that S is a map of the form in Eq. (20.26), R is a map of the form
in Eq. (20.27), T 0 (x) = R0 (S (x))S0 (x) (by the chain rule) and (by the mul-
tiplicative property of the determinant)

|detT 0 (x)| = |detR0 (S (x)) | |detS0 (x)| ∀ x ∈W.

So if f : T (W ) → [0,∞] is a Borel measurable function, two applications of
the results in Case 1. shows,
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W

f ◦ T · |detT 0|dm =

Z
W

(f ◦R · |detR0|) ◦ S · |detS0| dm

=

Z
S(W )

f ◦R · |detR0|dm =

Z
R(S(W ))

fdm

=

Z
T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative

Borel measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover
Wn of Kn such that W ⊂ Ω and Eq. (20.23) holds with Ω replaced by W for
each W ∈Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 =W1

and W̃i := Wi \ (W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =
`∞

i=1 W̃i and by
repeated use of case 2.,Z

Ω

f ◦ T |detT 0|dm =
∞X
i=1

Z
Ω

1W̃i
· (f ◦ T ) · |detT 0|dm

=
∞X
i=1

Z
Wi

h³
1T(W̃i)f

´
◦ T
i
· |detT 0|dm

=
∞X
i=1

Z
T (Wi)

1T(W̃i) · f dm =
nX
i=1

Z
T (Ω)

1T(W̃i) · f dm

=

Z
T (Ω)

fdm.

Remark 20.21.When d = 1, one often learns the change of variables formula
as Z b

a

f (T (x))T 0 (x) dx =
Z T (b)

T (a)

f (y) dy (20.30)

where f : [a, b] → R is a continuous function and T is C1 — function defined
in a neighborhood of [a, b] . If T 0 > 0 on (a, b) then T ((a, b)) = (T (a) , T (b))
and Eq. (20.30) is implies Eq. (20.23) with Ω = (a, b) . On the other hand if
T 0 < 0 on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (20.30) is equivalent
to
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(a,b)

f (T (x)) (− |T 0 (x)|) dx = −
Z T (a)

T (b)

f (y) dy = −
Z
T ((a,b))

f (y) dy

which is again implies Eq. (20.23). On the other hand Eq. Eq. (20.30) is
more general than Eq. (20.23) since it does not require T to be injective. The
standard proof of Eq. (20.30) is as follows. For z ∈ T ([a, b]) , let

F (z) :=

Z z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,Z b

a

f (T (x))T 0 (x) dx =
Z b

a

F 0 (T (x))T 0 (x) dx =
Z b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =
Z T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem (in the form of
Corollary 18.55) now shows that Eq. (20.30) holds for all bounded measurable
functions f on (a, b) . Then by the usual truncation argument, it also holds
for all positive measurable functions on (a, b) .

Example 20.22. Continuing the setup in Theorem 20.19, if A ∈ BΩ, then

m (T (A)) =

Z
Rd
1T (A) (y) dy =

Z
Rd
1T (A) (Tx) |detT 0 (x)| dx

=

Z
Rd
1A (x) |detT 0 (x)| dx

wherein the second equality we have made the change of variables, y = T (x) .
Hence we have shown

d (m ◦ T ) = |detT 0 (·)| dm.

In particular if T ∈ GL(d,R) = GL(Rd) — the space of d×d invertible matrices,
then m ◦ T = |detT |m, i.e.

m (T (A)) = |detT |m (A) for allA ∈ BRd . (20.31)

This equation also shows that m◦T and m have the same null sets and hence
the equality in Eq. (20.31) is valid for any A ∈ Ld.
Exercise 20.1. Show that f ∈ L1

¡
T (Ω) ,md

¢
iffZ

Ω

|f ◦ T | |detT 0|dm <∞

and if f ∈ L1
¡
T (Ω) ,md

¢
, then Eq. (20.23) holds.
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Example 20.23 (Polar Coordinates). Suppose T : (0,∞) × (0, 2π) → R2 is
defined by

x = T (r, θ) = (r cos θ, r sin θ) ,

i.e. we are making the change of variable,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T 0(r, θ) =
µ
cos θ − r sin θ
sin θ r cos θ

¶
and therefore

dx = |detT 0(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = := {(x, 0) : x ≥ 0}

has m2 — measure zero, it follows from the change of variables Theorem 20.19
that Z

R2
f(x)dx =

Z 2π

0

dθ

Z ∞
0

dr r · f(r (cos θ, sin θ)) (20.32)

for any Borel measurable function f : R2 → [0,∞].
Example 20.24 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o
C ∼= R2→ C is an injective holomorphic function such that f 0 (z) 6= 0 for all
z ∈ Ω. We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =

¯̄̄̄
det

·
Ux Uy
Vx Vy

¸¯̄̄̄
dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f 0 = Ux + iVx, we learn

UxVy − UyVx = U2x + V 2
x = |f 0|2 .

Therefore
dudv = |f 0 (x+ iy)|2 dxdy.
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210-1-2

2

1

0

-1

-2

x

y

x

y

Fig. 20.3. The region Ω consists of the two curved rectangular regions shown.

Example 20.25. In this example we will evaluate the integral

I :=

ZZ
Ω

¡
x4 − y4

¢
dxdy

where
Ω =

©
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

ª
,

see Figure 20.3 We are going to do this by making the change of variables,

(u, v) := T (x, y) =
¡
x2 − y2, xy

¢
,

in which case

dudv =

¯̄̄̄
det

·
2x −2y
y x

¸¯̄̄̄
dxdy = 2

¡
x2 + y2

¢
dxdy

Notice that¡
x4 − y4

¢
=
¡
x2 − y2

¢ ¡
x2 + y2

¢
= u

¡
x2 + y2

¢
=
1

2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪D and T (±D) = (1, 2) × (0, 1) The change of variables theorem
then implies

I± :=
ZZ

±D

¡
x4 − y4

¢
dxdy =

1

2

ZZ
(1,2)×(0,1)

ududv =
1

2

u2

2
|21 · 1 =

3

4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.
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Exercise 20.2 (Spherical Coordinates). Let T : (0,∞)×(0, π)×(0, 2π)→
R3 be defined by

T (r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ)

= r (sinφ cos θ, sinφ sin θ, cosφ) ,

see Figure 20.4. By making the change of variables x = T (r, φ, θ) , show

θ

ϕ

Fig. 20.4. The relation of x to (r, φ, θ) in spherical coordinates.

Z
R3

f(x)dx =

Z π

0

dφ

Z 2π

0

dθ

Z ∞
0

dr r2 sinφ · f(T (r, φ, θ))

for any Borel measurable function, f : R3 → [0,∞].
Lemma 20.26. Let a > 0 and

Id(a) :=

Z
Rd

e−a|x|
2

dm(x).

Then Id(a) = (π/a)
d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =

Z
Rd−1×R

e−a|y|
2

e−at
2

md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (20.33)

So it suffices to compute:

I2(a) =

Z
R2

e−a|x|
2

dm(x) =

Z
R2\{0}

e−a(x
2
1+x

2
2)dx1dx2.
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Using polar coordinates, see Eq. (20.32), we find,

I2(a) =

Z ∞
0

dr r

Z 2π

0

dθ e−ar
2

= 2π

Z ∞
0

re−ar
2

dr

= 2π lim
M→∞

Z M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a
Z M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (20.33).

20.3 The Polar Decomposition of Lebesgue Measure

Let

Sd−1 = {x ∈ Rd : |x|2 :=
dX
i=1

x2i = 1}

be the unit sphere in Rd equipped with its Borel σ — algebra, BSd−1 and
Φ : Rd \ {0}→ (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1 x). The inverse
map, Φ−1 : (0,∞) × Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ
and Φ−1 are continuous, they are both Borel measurable. For E ∈ BSd−1 and
a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]×E) ∈ BRd .
Definition 20.27. For E ∈ BSd−1 , let σ(E) := d · m(E1). We call σ the
surface measure on Sd−1.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]×E) ∈ BRd so thatm(E1) is well defined. Moreover ifE =

`∞
i=1Ei,

then E1 =
`∞

i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞X
i=1

m ((Ei)1) =
∞X
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and
ε > 0 is a small number, then the volume of

(1, 1 + ε] ·E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}
should be approximately given by m ((1, 1 + ε] ·E) ∼= σ(E)ε, see Figure 20.5
below. On the other hand

m ((1, 1 + ε]E) = m (E1+ε \E1) =
©
(1 + ε)d − 1ªm(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

©
(1 + ε)d − 1ªm(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 20.23 and Exercise 20.2.
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Fig. 20.5. Motivating the definition of surface measure for a sphere.

Theorem 20.28 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)—
measurable function thenZ

Rd

f(x)dm(x) =

Z
(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (20.34)

Proof. By Exercise 19.7,Z
Rd

fdm =

Z
Rd\{0}

¡
f ◦ Φ−1¢ ◦ Φ dm =

Z
(0,∞)×Sd−1

¡
f ◦ Φ−1¢ d (Φ∗m) (20.35)

and therefore to prove Eq. (20.34) we must work out the measure Φ∗m on
B(0,∞) ⊗ BSd−1 defined by

Φ∗m(A) := m
¡
Φ−1(A)

¢ ∀ A ∈ B(0,∞) ⊗ BSd−1 . (20.36)

If A = (a, b]×E with 0 < a < b and E ∈ BSd−1 , then
Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]×E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)
Z b

a

rd−1dr. (20.37)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =

Z
J

rd−1dr ∀ J ∈ B(0,∞), (20.38)

Eq. (20.37) may be written as
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(Φ∗m) ((a, b]×E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]×E) . (20.39)

Since
E = {(a, b]×E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞)⊗BSd−1 ,
it follows from Theorem 19.55 and Eq. (20.39) that Φ∗m = ρ⊗ σ. Using this
result in Eq. (20.35) givesZ

Rd

fdm =

Z
(0,∞)×Sd−1

¡
f ◦ Φ−1¢ d (ρ⊗ σ)

which combined with Tonelli’s Theorem 20.8 proves Eq. (20.35).

Corollary 20.29. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(20.40)

where Γ is the gamma function given by

Γ (x) :=

Z ∞
0

ux−1e−udr (20.41)

Moreover, Γ (1/2) =
√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.

Proof. Using Theorem 20.28 we find

Id(1) =

Z ∞
0

dr rd−1e−r
2

Z
Sd−1

dσ = σ(Sd−1)
Z ∞
0

rd−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so
that r = u1/2 and dr = 1

2u
−1/2du. The result isZ ∞

0

rd−1e−r
2

dr =

Z ∞
0

u
d−1
2 e−u

1

2
u−1/2du

=
1

2

Z ∞
0

u
d
2−1e−udu =

1

2
Γ (d/2). (20.42)

Combing the the last two equations with Lemma 20.26 which states that
Id(1) = πd/2, we conclude that

πd/2 = Id(1) =
1

2
σ(Sd−1)Γ (d/2)

which proves Eq. (20.40). Example 19.24 implies Γ (1) = 1 and from Eq.
(20.42),
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Γ (1/2) = 2

Z ∞
0

e−r
2

dr =

Z ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

The relation, Γ (x+1) = xΓ (x) is the consequence of the following integration
by parts argument:

Γ (x+ 1) =

Z ∞
0

e−u ux+1
du

u
=

Z ∞
0

ux
µ
− d

du
e−u

¶
du

= x

Z ∞
0

ux−1 e−u du = x Γ (x).

BRUCE: add Morrey’s Inequality 72.1 here.

20.4 More proofs of the classical Weierstrass
approximation Theorem 8.34

In each of these proofs we will use the reduction explained the previous proof
of Theorem 8.34 to reduce to the case where f ∈ C([0, 1]d). The first proof we
will give here is based on the “weak law” of large numbers. The second will
be another approximate δ — function argument.
Proof. of Theorem 8.34. Let 0 : = (0, 0, . . . , 0), 1 : = (1, 1, . . . , 1) and

[0,1] := [0, 1]d. By considering the real and imaginary parts of f separately,
it suffices to assume f ∈ C([0,1],R). For x ∈ [0, 1], let νx be the measure on
{0, 1} such that νx ({0}) = 1− x and νx ({1}) = x. ThenZ

{0,1}
ydνx(y) = 0 · (1− x) + 1 · x = x and (20.43)Z

{0,1}
(y − x)2dνx(y) = x2(1− x) + (1− x)2 · x = x(1− x). (20.44)

For x ∈ [0,1] let µx = νx1 ⊗ · · · ⊗ νxd be the product of νx1 , . . . , νxd on
Ω := {0, 1}d . Alternatively the measure µx may be described by

µx ({ε}) =
dY
i=1

(1− xi)
1−εi xεii (20.45)

for ε ∈ Ω. Notice that µx ({ε}) is a degree d polynomial in x for each ε ∈ Ω.
For n ∈ N and x ∈ [0,1], let µnx denote the n — fold product of µx with itself
on Ωn, Xi(ω) = ωi ∈ Ω ⊂ Rd for ω ∈ Ωn and let

Sn = (S
1
n, . . . , S

d
n) := (X1 +X2 + · · ·+Xn)/n,

so Sn : Ωn → Rd. The reader is asked to verify (Exercise 20.3) that
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Ωn

Sndµ
n
x :=

µZ
Ωn

S1ndµ
n
x , . . . ,

Z
Ωn

Sdndµ
n
x

¶
= (x1, . . . , xd) = x (20.46)

and Z
Ωn

|Sn − x|2 dµnx =
1

n

dX
i=1

xi(1− xi) ≤ d

n
. (20.47)

From these equations it follows that Sn is concentrating near x as n→∞, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

pn(x) :=

Z
Ωn

f(Sn)dµ
n
x (20.48)

should approach f(x) as n→∞. Let ε > 0 be given,M = sup {|f(x)| : x ∈ [0, 1]}
and

δε = sup {|f(y)− f(x)| : x, y ∈ [0,1] and |y − x| ≤ ε} .
By uniform continuity of f on [0,1], limε↓0 δε = 0. Using these definitions and
the fact that µnx(Ω

n) = 1,

|f(x)− pn(x)| =
¯̄̄̄Z
Ωn

(f(x)− f(Sn)) dµ
n
x

¯̄̄̄
≤
Z
Ωn

|f(x)− f(Sn)| dµnx

≤
Z
{|Sn−x|>ε}

|f(x)− f(Sn)| dµnx +
Z
{|Sn−x|≤ε}

|f(x)− f(Sn)| dµnx
≤ 2Mµnx (|Sn − x| > ε) + δε. (20.49)

By Chebyshev’s inequality,

µnx (|Sn − x| > ε) ≤ 1

ε2

Z
Ωn

(Sn − x)2dµnx =
d

nε2
,

and therefore, Eq. (20.49) yields the estimate

kf − pnk∞ ≤
2dM

nε2
+ δε

and hence
lim sup
n→∞

kf − pnk∞ ≤ δε → 0 as ε ↓ 0.

This completes the proof since, using Eq. (20.45),

pn(x) =
X
ω∈Ωn

f(Sn(ω))µ
n
x({ω}) =

X
ω∈Ωn

f(Sn(ω))
nY
i=1

µx({ωi}),

is an nd — degree polynomial in x ∈ Rd).
Exercise 20.3. Verify Eqs. (20.46) and (20.47). This is most easily done using
Eqs. (20.43) and (20.44) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless
it is convenient to use this formulation.)
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The second proof requires the next two lemmas.

Lemma 20.30 (Approximate δ — sequences). Suppose that {Qn}∞n=1 is a
sequence of positive functions on Rd such thatZ

Rd
Qn(x) dx = 1 and (20.50)

lim
n→∞

Z
|x|≥ε

Qn(x)dx = 0 for all ε > 0. (20.51)

For f ∈ BC(Rd), Qn ∗ f converges to f uniformly on compact subsets of Rd.

Proof. The proof is exactly the same as the proof of Lemma 8.28, it is
only necessary to replace R by Rd everywhere in the proof.
Define

Qn : Rn → [0,∞) by Qn(x) = qn(x1) . . . qn(xd). (20.52)

where qn is defined in Eq. (8.23).

Lemma 20.31. The sequence {Qn}∞n=1 is an approximate δ — sequence, i.e.
they satisfy Eqs. (20.50) and (20.51).

Proof. The fact that Qn integrates to one is an easy consequence of
Tonelli’s theorem and the fact that qn integrates to one. Since all norms on
Rd are equivalent, we may assume that |x| = max {|xi| : i = 1, 2, . . . , d} when
proving Eq. (20.51). With this norm©

x ∈ Rd : |x| ≥ ε
ª
= ∪di=1

©
x ∈ Rd : |xi| ≥ ε

ª
and therefore by Tonelli’s theorem,Z

{|x|≥ε}

Qn(x)dx ≤
dX
i=1

Z
{|xi|≥ε}

Qn(x)dx = d

Z
{x∈R|x|≥ε}

qn(t)dt

which tends to zero as n→∞ by Lemma 8.29.
Proof. Proof of Theorem 8.34. Again we assume f ∈ C

¡
Rd,C

¢
and f ≡ 0

on Qc
d where Qd := (0, 1)

d
. Let Qn(x) be defined as in Eq. (20.52). Then by

Lemma 20.31 and 20.30, pn(x) := (Qn∗F )(x)→ F (x) uniformly for x ∈ [0,1]
as n→∞. So to finish the proof it only remains to show pn(x) is a polynomial
when x ∈ [0,1]. For x ∈ [0,1],

pn(x) =

Z
Rd

Qn(x− y)f(y)dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n1|xi−yi|≤1
¤
dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n
¤
dy.
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Since the product in the above integrand is a polynomial if (x, y) ∈ Rd ×Rd,
it follows easily that pn(x) is polynomial in x.

20.5 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that µ

x1
x2

¶
=

µ
r cos θ
r sin θ

¶
= T2(θ, r).

For n = 3 we let x3 = r cosφ1 and thenµ
x1
x2

¶
= T2(θ, r sinφ1),

as can be seen from Figure 20.6, so that

Fig. 20.6. Setting up polar coordinates in two and three dimensions.

x1
x2
x3

 =

µ
T2(θ, r sinφ1)

r cosφ1

¶
=

 r sinφ1 cos θ
r sinφ1 sin θ
r cosφ1

 =: T3(θ, φ1, r, ).

We continue to work inductively this way to define
x1
...
xn
xn+1

 =

µ
Tn(θ, φ1, . . . , φn−2, r sinφn−1, )

r cosφn−1

¶
= Tn+1(θ, φ1, . . . , φn−2, φn−1, r).

So for example,
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x1 = r sinφ2 sinφ1 cos θ

x2 = r sinφ2 sinφ1 sin θ

x3 = r sinφ2 cosφ1

x4 = r cosφ2

and more generally,

x1 = r sinφn−2 . . . sinφ2 sinφ1 cos θ
x2 = r sinφn−2 . . . sinφ2 sinφ1 sin θ
x3 = r sinφn−2 . . . sinφ2 cosφ1
...

xn−2 = r sinφn−2 sinφn−3 cosφn−4
xn−1 = r sinφn−2 cosφn−3
xn = r cosφn−2. (20.53)

By the change of variables formula,Z
Rn

f(x)dm(x)

=

Z ∞
0

dr

Z
0≤φi≤π,0≤θ≤2π

dφ1 . . . dφn−2dθ∆n(θ, φ1, . . . , φn−2, r)f(Tn(θ, φ1, . . . , φn−2, r))

(20.54)

where
∆n(θ, φ1, . . . , φn−2, r) := |detT 0n(θ, φ1, . . . , φn−2, r)| .

Proposition 20.32. The Jacobian, ∆n is given by

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1. (20.55)

If f is a function on rSn−1 — the sphere of radius r centered at 0 inside of
Rn, thenZ
rSn−1

f(x)dσ(x) = rn−1
Z
Sn−1

f(rω)dσ(ω)

=

Z
0≤φi≤π,0≤θ≤2π

f(Tn(θ, φ1, . . . , φn−2, r))∆n(θ, φ1, . . . , φn−2, r)dφ1 . . . dφn−2dθ

(20.56)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinφn−1
and writing ∂Tn

∂ξ for ∂Tn
∂ξ (θ, φ1, . . . , φn−2, ρ) we have
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∆n+1(θ,φ1, . . . , φn−2, φn−1, r)

=

¯̄̄̄·
∂Tn
∂θ

∂Tn
∂φ1

0 0

. . . ∂Tn
∂φn−2

. . . 0

∂Tn
∂ρ r cosφn−1
−r sinφn−1

∂Tn
∂ρ sinφn−1
cosφn−1

¸¯̄̄̄
= r

¡
cos2 φn−1 + sin2 φn−1

¢
∆n(, θ, φ1, . . . , φn−2, ρ)

= r∆n(θ, φ1, . . . , φn−2, r sinφn−1),

i.e.

∆n+1(θ, φ1, . . . , φn−2, φn−1, r) = r∆n(θ, φ1, . . . , φn−2, r sinφn−1). (20.57)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 20.23, Eq. (20.57)
implies,

∆3(θ, φ1, r) = r∆2(θ, r sinφ1) = r2 sinφ1

∆4(θ, φ1, φ2, r) = r∆3(θ, φ1, r sinφ2) = r3 sin2 φ2 sinφ1

...

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1

which proves Eq. (20.55). Eq. (20.56) now follows from Eqs. (50.3), (20.54)
and (20.55).
As a simple application, Eq. (20.56) implies

σ(Sn−1) =
Z
0≤φi≤π,0≤θ≤2π

sinn−2 φn−2 . . . sin2 φ2 sinφ1dφ1 . . . dφn−2dθ

= 2π
n−2Y
k=1

γk = σ(Sn−2)γn−2 (20.58)

where γk :=
R π
0
sink φdφ. If k ≥ 1, we have by integration by parts that,

γk =

Z π

0

sink φdφ = −
Z π

0

sink−1 φ d cosφ = 2δk,1 + (k − 1)
Z π

0

sink−2 φ cos2 φdφ

= 2δk,1 + (k − 1)
Z π

0

sink−2 φ
¡
1− sin2 φ¢ dφ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1

2
π, γ3 =

2

3
2, γ4 =

3

4

1

2
π, γ5 =

4

5

2

3
2, γ6 =

5

6

3

4

1

2
π
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and more generally by induction that

γ2k = π
(2k − 1)!!
(2k)!!

and γ2k+1 = 2
(2k)!!

(2k + 1)!!
.

Indeed,

γ2(k+1)+1 =
2k + 2

2k + 3
γ2k+1 =

2k + 2

2k + 3
2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!

(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1

2k + 1
γ2k =

2k + 1

2k + 2
π
(2k − 1)!!
(2k)!!

= π
(2k + 1)!!

(2k + 2)!!
.

The recursion relation in Eq. (20.58) may be written as

σ(Sn) = σ
¡
Sn−1

¢
γn−1 (20.59)

which combined with σ
¡
S1
¢
= 2π implies

σ
¡
S1
¢
= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 = 22π2

2!!
· 22
3
=
23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2
3
2 · 3
4

1

2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2
3
2 · 3
4

1

2
π · 4
5

2

3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!! and σ(S2n+1) =
(2π)n+1

(2n)!!
(20.60)

which is verified inductively using Eq. (20.59). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)

n

(2n− 1)!!π
(2n− 1)!!
(2n)!!

=
(2π)

n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)

n+1

(2n)!!
2
(2n)!!

(2n+ 1)!!
=
2 (2π)

n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!
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we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (50.9) and (20.60 in
agreement. We may also write the formula in Eq. (20.60) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.

20.6 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower’s Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 20.33. Let U ⊂o Rm, f ∈ C∞(U,Rd) and C := {x ∈ U : rank(f 0(x)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel mea-
surable subset of Rd of Lebesgue measure 0.

Remark 20.34. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the
norm, |x| := maxi |xi| . Recall that if f ∈ C1(U,Rd) and p ∈ U, then

f(p+x) = f(p)+

Z 1

0

f 0(p+tx)xdt = f(p)+f 0(p)x+
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt

so that if

R(p, x) := f(p+ x)− f(p)− f 0(p)x =
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt

we have

|R(p, x)| ≤ |x|
Z 1

0

|f 0(p+ tx)− f 0(p)| dt = |x| ε(p, x).

By uniform continuity, it follows for any compact subset K ⊂ U that

sup {|ε(p, x)| : p ∈ K and |x| ≤ δ}→ 0 as δ ↓ 0.
Proof. Notice that if x ∈ U \ C, then f 0(x) : Rm → Rn is surjective,

which is an open condition, so that U \C is an open subset of U. This shows
C is relatively closed in U, i.e. there exists C̃ @ Rm such that C = C̃ ∩ U.
Let Kn ⊂ U be compact subsets of U such that Kn ↑ U, then Kn ∩ C ↑ C
and Kn ∩ C = Kn ∩ C̃ is compact for each n. Therefore, f(Kn ∩ C) ↑ f(C)
i.e. f(C) = ∪nf(Kn ∩ C) is a countable union of compact sets and therefore
is Borel measurable. Moreover, since m(f(C)) = limn→∞m(f(Kn ∩ C)), it
suffices to show m(f(K)) = 0 for all compact subsets K ⊂ C. Case 1. (n ≤ m)
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Let K = [a, a + γ] be a cube contained in U and by scaling the domain we
may assume γ = (1, 1, 1, . . . , 1). For N ∈ N and j ∈ SN := {0, 1, . . . , N − 1}n
let Kj = j/N + [a, a + γ/N ] so that K = ∪j∈SNKj with Ko

j ∩ Ko
j0 = ∅ if

j 6= j0. Let {Qj : j = 1 . . . ,M} be the collection of those {Kj : j ∈ SN} which
intersect C. For each j, let pj ∈ Qj ∩ C and for x ∈ Qj − pj we have

f(pj + x) = f(pj) + f 0(pj)x+Rj(x)

where |Rj(x)| ≤ εj(N)/N and ε(N) := maxj εj(N)→ 0 as N →∞. Now

m (f(Qj)) = m (f(pj) + (f
0(pj) +Rj) (Qj − pj))

= m ((f 0(pj) +Rj) (Qj − pj))

= m (Oj (f
0(pj) +Rj) (Qj − pj)) (20.61)

where Oj ∈ SO(n) is chosen so that Ojf
0(pj)Rn ⊂ Rm−1 × {0} . Now

Ojf
0(pj)(Qj − pj) is contained in Γ × {0} where Γ ⊂ Rm−1 is a cube cen-

tered at 0 ∈ Rm−1 with side length at most 2 |f 0(pj)| /N ≤ 2M/N where
M = maxp∈K |f 0(p)| . It now follows that Oj (f

0(pj) +Rj) (Qj − pj) is con-
tained the set of all points within ε(N)/N of Γ × {0} and in particular

Oj (f
0(pj) +Rj) (Qj − pj) ⊂ (1 + ε(N)/N)Γ × [ε(N)/N, ε(N)/N ].

From this inclusion and Eq. (20.61) it follows that

m (f(Qj)) ≤
·
2
M

N
(1 + ε(N)/N)

¸m−1
2ε(N)/N

= 2mMm−1 [(1 + ε(N)/N)]
m−1

ε(N)
1

Nm

and therefore,

m (f(C ∩K)) ≤
X
j

m (f(Qj)) ≤ Nn2mMm−1 [(1 + ε(N)/N)]m−1 ε(N)
1

Nm

= 2nMn−1 [(1 + ε(N)/N)]n−1 ε(N)
1

Nm−n → 0 as N →∞
since m ≥ n. This proves the easy case since we may write U as a countable
union of cubes K as above. Remark. The case (m < n) also follows from the
case m = n as follows. When m < n, C = U and we must show m(f(U)) = 0.
Letting F : U×Rn−m → Rn be the map F (x, y) = f(x). Then F 0(x, y)(v, w) =
f 0(x)v, and hence CF := U × Rn−m. So if the assertion holds for m = n we
have

m(f(U)) = m(F (U ×Rn−m)) = 0.
Case 2. (m > n) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

Ci := {x ∈ U : ∂αf(x) = 0 when |α| ≤ i}
so that C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . . The proof is by induction on n and goes by
the following steps:
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1. m(f(C \ C1)) = 0.
2. m(f(Ci \ Ci+1)) = 0 for all i ≥ 1.
3. m(f(Ci)) = 0 for all i sufficiently large.

Step 1. Ifm = 1, there is nothing to prove since C = C1 so we may assume
m ≥ 2. Suppose that x ∈ C \ C1, then f 0(p) 6= 0 and so by reordering the
components of x and f(p) if necessary we may assume that ∂1f1 (p) 6= 0 where
we are writing ∂f(p)/∂xi as ∂if (p) . The map h(x) := (f1(x), x2, . . . , xn) has
differential

h0(p) =


∂1f1 (p) ∂2f1 (p) . . . ∂nf1 (p)
0 1 0 0
...

...
. . .

...
0 0 0 1


which is not singular. So by the implicit function theorem, there exists there
exists V ∈ τp such that h : V → h(V ) ∈ τh(p) is a diffeomorphism and in
particular ∂f1(x)/∂x1 6= 0 for x ∈ V and hence V ⊂ U \ C1. Consider the
map g := f ◦ h−1 : V 0 := h(V )→ Rm, which satisfies

(f1(x), f2(x), . . . , fm(x)) = f(x) = g(h(x)) = g((f1(x), x2, . . . , xn))

which implies g(t, y) = (t, u(t, y)) for (t, y) ∈ V 0 := h(V ) ∈ τh(p), see Figure
20.7 below where p = x̄ and m = p. Since

Fig. 20.7. Making a change of variable so as to apply induction.

g0(t, y) =
·

1 0
∂tu(t, y) ∂yu(t, y)

¸
it follows that (t, y) is a critical point of g iff y ∈ C0t — the set of critical points
of y → u(t, y). Since h is a diffeomorphism we have C0 := h(C ∩ V ) are the
critical points of g in V 0 and
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f(C ∩ V ) = g(C 0) = ∪t [{t} × ut(C
0
t)] .

By the induction hypothesis, mm−1(ut(C0t)) = 0 for all t, and therefore by
Fubini’s theorem,

m(f(C ∩ V )) =
Z
R
mm−1(ut(C 0t))1V 0

t 6=∅dt = 0.

Since C \C1 may be covered by a countable collection of open sets V as above,
it follows that m(f(C \ C1)) = 0. Step 2. Suppose that p ∈ Ck \ Ck+1, then
there is an α such that |α| = k + 1 such that ∂αf(p) = 0 while ∂βf(p) = 0
for all |β| ≤ k. Again by permuting coordinates we may assume that α1 6= 0
and ∂αf1(p) 6= 0. Let w(x) := ∂α−e1f1(x), then w(p) = 0 while ∂1w(p) 6= 0.
So again the implicit function theorem there exists V ∈ τp such that h(x) :=
(w (x) , x2, . . . , xn) maps V → V 0 := h(V ) ∈ τh(p) in a diffeomorphic way and
in particular ∂1w(x) 6= 0 on V so that V ⊂ U \Ck+1. As before, let g := f ◦h−1
and notice that C 0k := h(Ck ∩ V ) ⊂ {0} ×Rn−1 and

f(Ck ∩ V ) = g(C 0k) = ḡ (C 0k)

where ḡ := g|({0}×Rn−1)∩V 0 . Clearly C0k is contained in the critical points of ḡ,
and therefore, by induction

0 = m(ḡ(C 0k)) = m(f(Ck ∩ V )).
Since Ck\Ck+1 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Ck+1)) = 0 for all k ≥ 1.
Step 3. Suppose that Q is a closed cube with edge length δ contained in U
and k > n/m− 1. We will show m(f(Q∩Ck)) = 0 and since Q is arbitrary it
will follows that m(f(Ck)) = 0 as desired. By Taylor’s theorem with (integral)
remainder, it follows for x ∈ Q ∩ Ck and h such that x+ h ∈ Q that

f(x+ h) = f(x) +R(x, h)

where
|R(x, h)| ≤ c khkk+1

where c = c(Q, k). Now subdivide Q into rn cubes of edge size δ/r and let
Q0 be one of the cubes in this subdivision such that Q0 ∩ Ck 6= ∅ and let
x ∈ Q0 ∩ Ck. It then follows that f(Q0) is contained in a cube centered at
f(x) ∈ Rm with side length at most 2c (δ/r)k+1 and hence volume at most
(2c)

m
(δ/r)

m(k+1)
. Therefore, f(Q∩Ck) is contained in the union of at most

rn cubes of volume (2c)m (δ/r)m(k+1) and hence meach

m (f(Q ∩ Ck)) ≤ (2c)m (δ/r)m(k+1) rn = (2c)m δm(k+1)rn−m(k+1) → 0 as r ↑ ∞
provided that n−m(k + 1) < 0, i.e. provided k > n/m− 1.
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20.7 Exercises

Exercise 20.4. Prove Theorem 20.12. Suggestion, to get started define

π (A) :=

Z
X1

dµ (x1) . . .

Z
Xn

dµ (xn) 1A (x1, . . . , xn)

and then show Eq. (20.18) holds. Use the case of two factors as the model of
your proof.

Exercise 20.5. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ — finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) — measurable and F−1

is (M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) — measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F

−1(A)) for all
A ∈M1 ⊗M2 ⊗M3. Then π is the unique measure onM1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) — measurable
function. Verify the identity,Z

X1×X2×X3

fdπ =

Z
X3

dµ3(x3)

Z
X2

dµ2(x2)

Z
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six
possible orderings of the iterated integrals.

Exercise 20.6. Prove the second assertion of Theorem 20.18. That is show
md is the unique translation invariant measure on BRd such that md((0, 1]d) =
1. Hint: Look at the proof of Theorem 19.10.

Exercise 20.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],
M = B[0,1] be the Borel σ — field on X, m be Lebesgue measure on [0, 1] and
ν be counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X}
be the diagonal in X2. ShowZ

X

·Z
X

1D(x, y)dν(y)

¸
dm(x) 6=

Z
X

·Z
X

1D(x, y)dm(x)

¸
dν(y)

by explicitly computing both sides of this equation.
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Exercise 20.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 20.9. Folland Problem 2.50 on p. 69 pertaining to area under a
curve. (Note theM×BR should beM⊗ BR̄ in this problem.)
Exercise 20.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 20.11. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm),

g(x) =
R a
x

f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) andZ a

0

g(x)dx =

Z a

0

f(t)dt.

Exercise 20.12. Show
R∞
0

¯̄
sinx
x

¯̄
dm(x) = ∞. So sinx

x /∈ L1([0,∞),m) andR∞
0

sinx
x dm(x) is not defined as a Lebesgue integral.

Exercise 20.13. Folland Problem 2.57 on p. 77.

Exercise 20.14. Folland Problem 2.58 on p. 77.

Exercise 20.15. Folland Problem 2.60 on p. 77. Properties of the Γ — func-
tion.

Exercise 20.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 20.17. Folland Problem 2.62 on p. 80. Rotation invariance of sur-
face measure on Sn−1.

Exercise 20.18. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.
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Lp-spaces

Let (X,M, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : X → C let

kfkp :=
µZ

X

|f |p dµ
¶1/p

. (21.1)

When p =∞, let

kfk∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (21.2)

For 0 < p ≤ ∞, let

Lp(X,M, µ) = {f : X → C : f is measurable and kfkp <∞}/ ∼
where f ∼ g iff f = g a.e. Notice that kf − gkp = 0 iff f ∼ g and if f ∼ g
then kfkp = kgkp. In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 21.1. Suppose that kfk∞ ≤ M, then for all a > M, µ(|f | > a) = 0
and therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(x)| ≤ M
for µ - a.e. x. Conversely, if |f | ≤M a.e. and a > M then µ(|f | > a) = 0 and
hence kfk∞ ≤M. This leads to the identity:

kfk∞ = inf {a ≥ 0 : |f(x)| ≤ a for µ — a.e. x} .
The next theorem is a generalization Theorem 5.6 to general integrals and

the proof is essentially identical to the proof of Theorem 5.6.

Theorem 21.2 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p

p−1 , or equivalently p
−1 + q−1 = 1. If f and g are measurable functions then

kfgk1 ≤ kfkp · kgkq. (21.3)

Assuming p ∈ (1,∞) and kfkp · kgkq <∞, equality holds in Eq. (21.3) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|qkfkpp = kgkqq |f |p a.e. (21.4)
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Proof. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easy to deal
with and are left to the reader. So we will now assume that 0 < kfkq, kgkp <
∞. Let s = |f | /kfkp and t = |g|/kgkq then Lemma 5.5 implies

|fg|
kfkpkgkq ≤

1

p

|f |p
kfkp +

1

q

|g|q
kgkq (21.5)

with equality iff |g/kgkq| = |f |p−1 /kfk(p−1)p = |f |p/q /kfkp/qp , i.e. |g|qkfkpp =
kgkqq |f |p . Integrating Eq. (21.5) implies

kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1

with equality iff Eq. (21.4) holds. The proof is finished since it is easily checked
that equality holds in Eq. (21.3) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.
The following corollary is an easy extension of Hölder’s inequality.

Corollary 21.3. Suppose that fi : X → C are measurable functions for i =
1, . . . , n and p1, . . . , pn and r are positive numbers such that

Pn
i=1 p

−1
i = r−1,

then °°°°°
nY
i=1

fi

°°°°°
r

≤
nY
i=1

kfikpi where
nX
i=1

p−1i = r−1.

Proof. To prove this inequality, start with n = 2, then for any p ∈ [1,∞],

kfgkrr =
Z
X

|f |r |g|r dµ ≤ kfrkp kgrkp∗

where p∗ = p
p−1 is the conjugate exponent. Let p1 = pr and p2 = p∗r so that

p−11 + p−12 = r−1 as desired. Then the previous equation states that

kfgkr ≤ kfkp1 kgkp2
as desired. The general case is now proved by induction. Indeed,°°°°°

n+1Y
i=1

fi

°°°°°
r

=

°°°°°
nY
i=1

fi · fn+1
°°°°°
r

≤
°°°°°

nY
i=1

fi

°°°°°
q

kfn+1kpn+1

where q−1+p−1n+1 = r−1. Since
Pn

i=1 p
−1
i = q−1, we may now use the induction

hypothesis to conclude °°°°°
nY
i=1

fi

°°°°°
q

≤
nY
i=1

kfikpi ,

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality.
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Theorem 21.4 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp

then
kf + gkp ≤ kfkp + kgkp. (21.6)

Moreover, assuming f and g are not identically zero, equality holds in Eq.
(21.6) iff sgn(f) $ sgn(g) a.e. (see the notation in Definition 5.7) when p = 1
and f = cg a.e. for some c > 0 for p ∈ (1,∞).
Proof.When p =∞, |f | ≤ kfk∞ a.e. and |g| ≤ kgk∞ a.e. so that |f + g| ≤

|f |+ |g| ≤ kfk∞ + kgk∞ a.e. and therefore

kf + gk∞ ≤ kfk∞ + kgk∞ .

When p <∞,

|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,
kf + gkpp ≤ 2p

¡kfkpp + kgkpp¢ <∞.

In case p = 1,

kf + gk1 =
Z
X

|f + g|dµ ≤
Z
X

|f | dµ+
Z
X

|g|dµ

with equality iff |f |+ |g| = |f + g| a.e. which happens iff sgn(f) $ sgn(g) a.e.
In case p ∈ (1,∞), we may assume kf + gkp, kfkp and kgkp are all positive
since otherwise the theorem is easily verified. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

with equality iff sgn(f) $ sgn(g). Integrating this equation and applying
Holder’s inequality with q = p/(p− 1) givesZ

X

|f + g|pdµ ≤
Z
X

|f | |f + g|p−1dµ+
Z
X

|g| |f + g|p−1dµ

≤ (kfkp + kgkp) k |f + g|p−1 kq (21.7)

with equality iff

sgn(f) $ sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
a.e. (21.8)

Therefore

k|f + g|p−1kqq =
Z
X

(|f + g|p−1)qdµ =
Z
X

|f + g|pdµ. (21.9)

Combining Eqs. (21.7) and (21.9) implies
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kf + gkpp ≤ kfkpkf + gkp/qp + kgkpkf + gkp/qp (21.10)

with equality iff Eq. (21.8) holds which happens iff f = cg a.e. with c > 0.
Solving for kf + gkp in Eq. (21.10) gives Eq. (21.6).
The next theorem gives another example of using Hölder’s inequality

Theorem 21.5. Suppose that (X,M, µ) and (Y,N , ν) be σ — finite measure
spaces, p ∈ [1,∞], q = p/(p−1) and k : X×Y → C be aM⊗N — measurable
function. Assume there exist finite constants C1 and C2 such thatZ

X

|k(x, y)| dµ(x) ≤ C1 for ν a.e. y andZ
Y

|k(x, y)| dν(y) ≤ C2 for µ a.e. x.

If f ∈ Lp(ν), thenZ
Y

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x,

x→ Kf(x) :=
R
Y
k(x, y)f(y)dν(y) ∈ Lp(µ) and

kKfkLp(µ) ≤ C
1/p
1 C

1/q
2 kfkLp(ν) (21.11)

Proof. Suppose p ∈ (1,∞) to begin with and let q = p/(p − 1), then by
Hölder’s inequality,Z
Y

|k(x, y)f(y)| dν(y) =
Z
Y

|k(x, y)|1/q |k(x, y)|1/p |f(y)| dν(y)

≤
·Z

Y

|k(x, y)| dν(y)
¸1/q ·Z

Y

|k(x, y)| |f(y)|p dν(y)
¸1/p

≤ C
1/q
2

·Z
Y

|k(x, y)| |f(y)|p dν(y)
¸1/p

.

Therefore,°°°°Z
Y

|k(·, y)f(y)| dν(y)
°°°°p
Lp(µ)

=

Z
X

dµ(x)

·Z
Y

|k(x, y)f(y)| dν(y)
¸p

≤ C
p/q
2

Z
X

dµ(x)

Z
Y

dν(y) |k(x, y)| |f(y)|p

= C
p/q
2

Z
Y

dν(y) |f(y)|p
Z
X

dµ(x) |k(x, y)|

≤ C
p/q
2 C1

Z
Y

dν(y) |f(y)|p = C
p/q
2 C1 kfkpLp(ν) ,
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wherein we used Tonelli’s theorem in third line. From this it follows thatR
Y
|k(x, y)f(y)| dν(y) <∞ for µ - a.e. x,

x→ Kf(x) :=

Z
Y

k(x, y)f(y)dν(y) ∈ Lp(µ)

and that Eq. (21.11) holds.
Similarly if p =∞,Z

Y

|k(x, y)f(y)| dν(y) ≤ kfkL∞(ν)·
Z
Y

|k(x, y)| dν(y) ≤ C2 kfkL∞(ν) for µ — a.e. x.

so that kKfkL∞(µ) ≤ C2 kfkL∞(ν) . If p = 1, thenZ
X

dµ(x)

Z
Y

dν(y) |k(x, y)f(y)| =
Z
Y

dν(y) |f(y)|
Z
X

dµ(x) |k(x, y)|

≤ C1

Z
Y

dν(y) |f(y)|

which shows kKfkL1(µ) ≤ C1 kfkL1(ν) .

21.1 Jensen’s Inequality

Definition 21.6. A function φ : (a, b)→ R is convex if for all a < x0 < x1 <
b and t ∈ [0, 1] φ(xt) ≤ tφ(x1) + (1− t)φ(x0) where xt = tx1 + (1− t)x0.

Example 21.7. The functions exp(x) and − log(x) are convex and xp is
convex iff p ≥ 1 as follows from Corollary 21.9 below which in part states
that any φ ∈ C2 ((a, b) ,R) such that φ00 ≥ 0 is convex.
The following Proposition is clearly motivated by Figure 21.1.

Proposition 21.8. Suppose φ : (a, b)→ R is a convex function, then

1. For all u, v, w, z ∈ (a, b) such that u < z, w ∈ [u, z) and v ∈ (u, z],
φ(v)− φ(u)

v − u
≤ φ(z)− φ(w)

z − w
. (21.12)

2. For each c ∈ (a, b), the right and left sided derivatives φ0±(c) exists in R
and if a < u < v < b, then φ0+(u) ≤ φ0−(v) ≤ φ0+(v).

3. The function φ is continuous.
4. For all t ∈ (a, b) and β ∈ [φ0−(t), φ0+(t)], φ(x) ≥ φ(t) + β(x − t) for all

x ∈ (a, b). In particular,

φ(x) ≥ φ(t) + φ0−(t)(x− t) for all x, t ∈ (a, b).
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20-2-4-6
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Fig. 21.1. A convex function along with two cords corresponding to x0 = −2 and
x1 = 4 and x0 = −5 and x1 = −2.

Proof. 1a) Suppose first that u < v = w < z, in which case Eq. (21.12) is
equivalent to

(φ(v)− φ(u)) (z − v) ≤ (φ(z)− φ(v)) (v − u)

which after solving for φ(v) is equivalent to the following equations holding:

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

But this last equation states that φ(v) ≤ φ(z)t+ φ(u) (1− t) where t = v−u
z−u

and v = tz + (1− t)u and hence is valid by the definition of φ being convex.
1b) Now assume u = w < v < z, in which case Eq. (21.12) is equivalent to

(φ(v)− φ(u)) (z − u) ≤ (φ(z)− φ(u)) (v − u)

which after solving for φ(v) is equivalent to

φ(v) (z − u) ≤ φ(z) (v − u) + φ(u) (z − v)

which is equivalent to

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

Again this equation is valid by the convexity of φ. 1c) u < w < v = z, in
which case Eq. (21.12) is equivalent to

(φ(z)− φ(u)) (z − w) ≤ (φ(z)− φ(w)) (z − u)

and this is equivalent to the inequality,
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φ(w) ≤ φ(z)
w − u

z − u
+ φ(u)

z − w

z − u

which again is true by the convexity of φ. 1) General case. If u < w < v < z,
then by 1a-1c)

φ(z)− φ(w)

z − w
≥ φ(v)− φ(w)

v − w
≥ φ(v)− φ(u)

v − u

and if u < v < w < z

φ(z)− φ(w)

z − w
≥ φ(w)− φ(v)

w − v
≥ φ(w)− φ(u)

w − u
.

We have now taken care of all possible cases. 2) On the set a < w < z < b,
Eq. (21.12) shows that (φ(z)− φ(w)) / (z − w) is a decreasing function in w
and an increasing function in z and therefore φ0±(x) exists for all x ∈ (a, b).
Also from Eq. (21.12) we learn that

φ0+(u) ≤
φ(z)− φ(w)

z − w
for all a < u < w < z < b, (21.13)

φ(v)− φ(u)

v − u
≤ φ0−(z) for all a < u < v < z < b, (21.14)

and letting w ↑ z in the first equation also implies that
φ0+(u) ≤ φ0−(z) for all a < u < z < b.

The inequality, φ0−(z) ≤ φ0+(z), is also an easy consequence of Eq. (21.12). 3)
Since φ(x) has both left and right finite derivatives, it follows that φ is contin-
uous. (For an alternative proof, see Rudin.) 4) Given t, let β ∈ [φ0−(t), φ0+(t)],
then by Eqs. (21.13) and (21.14),

φ(t)− φ(u)

t− u
≤ φ0−(t) ≤ β ≤ φ0+(t) ≤

φ(z)− φ(t)

z − t

for all a < u < t < z < b. Item 4. now follows.

Corollary 21.9. Suppose φ : (a, b)→ R is differential then φ is convex iff φ0

is non decreasing. In particular if φ ∈ C2(a, b) then φ is convex iff φ00 ≥ 0.
Proof. By Proposition 21.8, if φ is convex then φ0 is non-decreasing. Con-

versely if φ0 is increasing then by the mean value theorem,

φ(x1)− φ(c)

x1 − c
= φ0(ξ1) for some ξ1 ∈ (c, x1)

and
φ(c)− φ(x0)

c− x0
= φ0(ξ2) for some ξ2 ∈ (x0, c).
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Hence
φ(x1)− φ(c)

x1 − c
≥ φ(c)− φ(x0)

c− x0

for all x0 < c < x1. Solving this inequality for φ(c) gives

φ(c) ≤ c− x0
x1 − x0

φ(x1) +
x1 − c

x1 − x0
φ(x0)

showing φ is convex.

Theorem 21.10 (Jensen’s Inequality). Suppose that (X,M, µ) is a prob-
ability space, i.e. µ is a positive measure and µ(X) = 1. Also suppose that
f ∈ L1(µ), f : X → (a, b), and φ : (a, b)→ R is a convex function. Then

φ

µZ
X

fdµ

¶
≤
Z
X

φ(f)dµ

where if φ ◦ f /∈ L1(µ), then φ ◦ f is integrable in the extended sense andR
X
φ(f)dµ =∞.

Proof. Let t =
R
X
fdµ ∈ (a, b) and let β ∈ R be such that φ(s) − φ(t) ≥

β(s−t) for all s ∈ (a, b). Then integrating the inequality, φ(f)−φ(t) ≥ β(f−t),
implies that

0 ≤
Z
X

φ(f)dµ− φ(t) =

Z
X

φ(f)dµ− φ(

Z
X

fdµ).

Moreover, if φ(f) is not integrable, then φ(f) ≥ φ(t) + β(f − t) which shows
that negative part of φ(f) is integrable. Therefore,

R
X
φ(f)dµ = ∞ in this

case.

Example 21.11. The convex functions in Example 21.7 lead to the following
inequalities,

exp

µZ
X

fdµ

¶
≤
Z
X

efdµ, (21.15)Z
X

log(|f |)dµ ≤ log
µZ

X

|f | dµ
¶

and for p ≥ 1, ¯̄̄̄Z
X

fdµ

¯̄̄̄p
≤
µZ

X

|f | dµ
¶p
≤
Z
X

|f |p dµ.

The last equation may also easily be derived using Hölder’s inequality. As a
special case of the first equation, we get another proof of Lemma 5.5. Indeed,
more generally, suppose pi, si > 0 for i = 1, 2, . . . , n and

Pn
i=1

1
pi
= 1, then
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s1 . . . sn = e
Pn

i=1 ln si = e
Pn

i=1
1
pi
ln s

pi
i ≤

nX
i=1

1

pi
eln s

pi
i =

nX
i=1

spii
pi

(21.16)

where the inequality follows from Eq. (21.15) with X = {1, 2, . . . , n} , µ =Pn
i=1

1
pi
δi and f (i) := ln spii . Of course Eq. (21.16) may be proved directly

using the convexity of the exponential function.

21.2 Modes of Convergence

As usual let (X,M, µ) be a fixed measure space, assume 1 ≤ p ≤ ∞ and let
{fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on X.
We have the following notions of convergence and Cauchy sequences.

Definition 21.12. 1. fn → f a.e. if there is a set E ∈M such that µ(E) =
0 and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ — measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ kfn − fkp = 0.
Definition 21.13. 1. {fn} is a.e. Cauchy if there is a set E ∈M such that

µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in µ — measure (or L0 — Cauchy) if limm,n→∞ µ(|fn −

fm| > ε) = 0 for all ε > 0.
3. {fn} is Cauchy in Lp if limm,n→∞ kfn − fmkp = 0.
Lemma 21.14 (Chebyshev’s inequality again). Let p ∈ [1,∞) and f ∈
Lp, then

µ (|f | ≥ ε) ≤ 1

εp
kfkpp for all ε > 0.

In particular if {fn} ⊂ Lp is Lp — convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (19.11),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1

εp

Z
X

|f |p dµ = 1

εp
kfkpp

and therefore if {fn} is Lp — Cauchy, then

µ (|fn − fm| ≥ ε) ≤ 1

εp
kfn − fmkpp → 0 as m,n→∞

showing {fn} is L0 — Cauchy. A similar argument holds for the Lp — convergent
case.
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Here is a sequence of functions where fn → 0 a.e., fn 9 0 in L1, fn
m→ 0.
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Above is a sequence of functions where fn → 0 a.e., yet fn 9 0 in L1. or in
measure.
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Here is a sequence of functions where fn → 0 a.e., fn
m→ 0 but fn 9 0 in L1.
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Above is a sequence of functions where fn → 0 in L1, fn 9 0 a.e., and
fn

m→ 0.

Lemma 21.15. Suppose an ∈ C and |an+1−an| ≤ εn and
∞P
n=1

εn <∞. Then

lim
n→∞ an = a ∈ C exists and |a− an| ≤ δn :=

∞P
k=n

εk.
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Proof. (This is a special case of Exercise 6.9.) Let m > n then

|am − an| =
¯̄̄̄
m−1P
k=n

(ak+1 − ak)

¯̄̄̄
≤

m−1P
k=n

|ak+1 − ak| ≤
∞P
k=n

εk := δn . (21.17)

So |am− an| ≤ δmin(m,n) → 0 as ,m, n→∞, i.e. {an} is Cauchy. Let m→∞
in (21.17) to find |a− an| ≤ δn.

Theorem 21.16. Suppose {fn} is L0-Cauchy. Then there exists a subse-
quence gj = fnj of {fn} such that lim gj := f exists a.e. and fn

µ→ f

as n→∞.Moreover if g is a measurable function such that fn
µ→ g as n→∞,

then f = g a.e.

Proof. Let εn > 0 such that
∞P
n=1

εn < ∞ (εn = 2−n would do) and set

δn =
∞P
k=n

εk. Choose gj = fnj such that {nj} is a subsequence of N and

µ({|gj+1 − gj| > εj}) ≤ εj .

Let Ej = {|gj+1 − gj | > εj} ,

FN =
∞[
j=N

Ej =
∞[

j=N

{|gj+1 − gj | > εj}

and

E :=
∞\

N=1

FN =
∞\

N=1

∞[
j=N

Ej = {|gj+1 − gj | > εj i.o.}.

Then µ(E) = 0 by Lemma 19.20 or the computation

µ(E) ≤
∞X
j=N

µ(Ej) ≤
∞X
j=N

εj = δN → 0 as N →∞.

If x /∈ FN , i.e. |gj+1(x)− gj(x)| ≤ εj for all j ≥ N, then by Lemma 21.15,
f(x) = lim

j→∞
gj(x) exists and |f(x) − gj(x)| ≤ δj for all j ≥ N. Therefore,

since Ec =
∞S

N=1

F c
N , lim

j→∞
gj(x) = f(x) exists for all x /∈ E. Moreover, {x :

|f(x)− gj(x)| > δj} ⊂ Fj for all j ≥ N and hence

µ(|f − gj | > δj) ≤ µ(Fj) ≤ δj → 0 as j →∞.

Therefore gj
µ→ f as j →∞. Since

{|fn − f | > ε} = {|f − gj + gj − fn| > ε}
⊂ {|f − gj | > ε/2} ∪ {|gj − fn| > ε/2},



358 21 Lp-spaces

µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2)

and

µ({|fn − f | > ε}) ≤ lim
j→∞

supµ(|gj − fn| > ε/2)→ 0 as n→∞.

If there is another function g such that fn
µ→ g as n → ∞, then arguing as

above

µ(|f − g| > ε) ≤ µ({|f − fn| > ε/2}) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ(∪∞n=1{|f − g| > 1

n
}) ≤

∞X
n=1

µ(|f − g| > 1

n
) = 0,

i.e. f = g a.e.

Corollary 21.17 (Dominated Convergence Theorem). Suppose {fn} ,
{gn} , and g are in L1 and f ∈ L0 are functions such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
Z

gn →
Z

g as n→∞.

Then f ∈ L1 and limn→∞ kf − fnk1 = 0, i.e. fn → f in L1. In particular
limn→∞

R
fn =

R
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To
see that |f | ≤ g, use Theorem 21.16 to find subsequences {fnk} and {gnk} of
{fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ kf − fnk1 6= 0 there exists ε > 0 and a
subsequence {fnk} of {fn} such thatZ

|f − fnk | ≥ ε for all k. (21.18)

Using Theorem 21.16 again, we may assume (by passing to a further subse-
quences if necessary) that fnk → f and gnk → g almost everywhere. Noting,
|f − fnk | ≤ g + gnk → 2g and

R
(g + gnk) →

R
2g, an application of the

dominated convergence Theorem 19.38 implies limk→∞
R |f − fnk | = 0 which

contradicts Eq. (21.18).

Exercise 21.1 (Fatou’s Lemma). If fn ≥ 0 and fn → f in measure, thenR
f ≤ lim infn→∞

R
fn.
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Theorem 21.18 (Egoroff ’s Theorem). Suppose µ(X) < ∞ and fn → f
a.e. Then for all ε > 0 there exists E ∈M such that µ(E) < ε and fn → f

uniformly on Ec. In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then µ({|fn − f | > 1
k i.o. n}) = 0 for all k > 0,

i.e.

lim
N→∞

µ

 [
n≥N

{|fn − f | > 1

k
}
 = µ

 ∞\
N=1

[
n≥N

{|fn − f | > 1

k
}
 = 0.

Let Ek :=
S

n≥Nk

{|fn − f | > 1
k} and choose an increasing sequence {Nk}∞k=1

such that µ(Ek) < ε2−k for all k. Setting E := ∪Ek, µ(E) <
P

k ε2
−k = ε

and if x /∈ E, then |fn − f | ≤ 1
k for all n ≥ Nk and all k. That is fn → f

uniformly on Ec.

Exercise 21.2. Show that Egoroff’s Theorem remains valid when the as-
sumption µ(X) <∞ is replaced by the assumption that |fn| ≤ g ∈ L1 for all n.
Hint: make use of Theorem 21.18 applied to fn|Xk

where Xk :=
©|g| ≥ k−1

ª
.

21.3 Completeness of Lp — spaces

Theorem 21.19. Let k·k∞ be as defined in Eq. (21.2), then (L∞(X,M, µ), k·k∞) is
a Banach space. A sequence {fn}∞n=1 ⊂ L∞ converges to f ∈ L∞ iff there ex-
ists E ∈ M such that µ(E) = 0 and fn → f uniformly on Ec. Moreover,
bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 21.4, k·k∞ satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure k·k∞
is a norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
kf − fnk∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
¡|f − fn| > k−1

¢
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

©|f − fn| > k−1
ª
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈M such
that µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩Ec) = 0

for all n sufficiently large. That is to say lim supn→∞ kf − fnk∞ ≤ ε for
all ε > 0. The density of simple functions follows from the approximation
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Theorem 18.42. So the last item to prove is the completeness of L∞ for which
we will use Theorem 7.13.
Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such that

P∞
n=1 kfnk∞ < ∞.

Let Mn := kfnk∞ , En := {|fn| > Mn} , and E := ∪∞n=1En so that µ(E) = 0.
Then ∞X

n=1

sup
x∈Ec

|fn(x)| ≤
∞X
n=1

Mn <∞

which shows that SN (x) =
PN

n=1 fn(x) converges uniformly to S(x) :=P∞
n=1 fn(x) on Ec, i.e. limn→∞ kS − Snk∞ = 0.
Alternatively, suppose εm,n := kfm − fnk∞ → 0 as m,n → ∞. Let

Em,n = {|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec.
Letting f = limn→∞ 1Ecfn, it then follows that limn→∞ kfn − fk∞ = 0.
Theorem 21.20 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp — norm, k·kp (see Eq. (21.1)), is a Banach space.
Proof. By Minkowski’s Theorem 21.4, k·kp satisfies the triangle inequality.

As above the reader may easily check the remaining conditions that ensure
k·kp is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞,
the case p =∞ being done in Theorem 21.19.
Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality

(Lemma 21.14), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
21.16 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

kgj − fkpp =
Z
lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf

Z
|gj − gk|pdµ

= lim
k→∞

inf kgj − gkkpp → 0 as j →∞.

In particular, kfkp ≤ kgj −fkp+kgjkp <∞ so the f ∈ Lp and gj
Lp−→ f . The

proof is finished because,

kfn − fkp ≤ kfn − gjkp + kgj − fkp → 0 as j, n→∞.

The Lp(µ) — norm controls two types of behaviors of f, namely the “be-
havior at infinity” and the behavior of “local singularities.” So in particular, if
f is blows up at a point x0 ∈ X, then locally near x0 it is harder for f to be in
Lp(µ) as p increases. On the other hand a function f ∈ Lp(µ) is allowed to de-
cay at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
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there are two notable exceptions. (1) If µ(X) <∞, then there is no behavior
at infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≤ p as is shown in
Corollary 21.21 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then
all functions in Lp(µ) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≤ p,
see Corollary 21.25 below.

Corollary 21.21. If µ(X) < ∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ),
the inclusion map is bounded and in fact

kfkp ≤ [µ(X)](
1
p− 1

q ) kfkq .

Proof. Take a ∈ [1,∞] such that
1

p
=
1

a
+
1

q
, i.e. a =

pq

q − p
.

Then by Corollary 21.3,

kfkp = kf · 1kp ≤ kfkq · k1ka = µ(X)1/akfkq = µ(X)(
1
p− 1

q )kfkq.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

Proposition 21.22. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1

pλ
=
1− λ

p0
+

λ

p1
(21.19)

with the interpretation that λ/p1 = 0 if p1 =∞.1 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g+h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

kfk := inf
n
kgkp0 + khkp1 : f = g + h

o
.

Then (Lp0 + Lp1 , k·k) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact kfk ≤ 2 kfkpλ for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined
by f on Ec. Hence let g = f1E and h = f1Ec so that f = g+h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

1 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0
pλ
· p1 − pλ
p1 − p0

.
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kgkp0p0 =
Z
|f |p0 1|f|>M =Mp0

Z ¯̄̄̄
f

M

¯̄̄̄p0
1|f |>M

≤Mp0

Z ¯̄̄̄
f

M

¯̄̄̄pλ
1|f|>M ≤Mp0−pλ kfkpλpλ <∞

and

khkp1p1 =
°°f1|f |≤M°°p1p1 = Z |f |p1 1|f |≤M =Mp1

Z ¯̄̄̄
f

M

¯̄̄̄p1
1|f|≤M

≤Mp1

Z ¯̄̄̄
f

M

¯̄̄̄pλ
1|f |≤M ≤Mp1−pλ kfkpλpλ <∞.

Moreover this shows

kfk ≤M1−pλ/p0 kfkpλ/p0pλ
+M1−pλ/p1 kfkpλ/p1pλ

.

Taking M = λ kfkpλ then gives

kfk ≤
³
λ1−pλ/p0 + λ1−pλ/p1

´
kfkpλ

and then taking λ = 1 shows kfk ≤ 2 kfkpλ . The the proof that
(Lp0 + Lp1 , k·k) is a Banach space is left as Exercise 21.7 to the reader.
Corollary 21.23 (Interpolation of Lp — norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (21.19), then
Lp0 ∩ Lp1 ⊂ Lpλ and

kfkpλ ≤ kfk
λ
p0
kfk1−λp1

. (21.20)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let
kfk := kfkp0 + kfkp1 .

Then (Lp0 ∩ Lp1 , k·k) is a Banach space and the inclusion map of Lp0 ∩ Lp1
into Lpλ is bounded, in fact

kfkpλ ≤ max
¡
λ−1, (1− λ)−1

¢ ³kfkp0 + kfkp1´ . (21.21)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.
Proof. Let λ be determined as above, a = p0/λ and b = p1/(1− λ), then

by Corollary 21.3,

kfkpλ =
°°°|f |λ |f |1−λ°°°

pλ
≤
°°°|f |λ°°°

a

°°°|f |1−λ°°°
b
= kfkλp0 kfk

1−λ
p1

.

It is easily checked that k·k is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a k·k — Cauchy sequence. Then
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{fn} is both Lp0 and Lp1 — Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ kf − fnkp0 = 0 and limn→∞ kg − fnkpλ = 0. By Chebyshev’s
inequality (Lemma 21.14) fn → f and fn → g in measure and therefore by
Theorem 21.16, f = g a.e. It now is clear that limn→∞ kf − fnk = 0. The
estimate in Eq. (21.21) is left as Exercise 21.6 to the reader.

Remark 21.24. Combining Proposition 21.22 and Corollary 21.23 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (21.19).
Corollary 21.25. Suppose now that µ is counting measure on X. Then
Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞ and kfkq ≤ kfkp .
Proof. Suppose that 0 < p < q =∞, then

kfkp∞ = sup {|f(x)|p : x ∈ X} ≤
X
x∈X

|f(x)|p = kfkpp ,

i.e. kfk∞ ≤ kfkp for all 0 < p < ∞. For 0 < p ≤ q ≤ ∞, apply Corollary
21.23 with p0 = p and p1 =∞ to find

kfkq ≤ kfkp/qp kfk1−p/q∞ ≤ kfkp/qp kfk1−p/qp = kfkp .

21.3.1 Summary:

1. Since µ(|f | > ε) ≤ ε−p kfkpp , Lp — convergence implies L0 — convergence.
2. L0 — convergence implies almost everywhere convergence for some subse-
quence.

3. If µ(X) < ∞ then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L0 —
convergence.

4. If µ(X) <∞, then Lq ⊂ Lp for all p ≤ q and Lq — convergence implies Lp

— convergence.
5. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
6. If p ≤ q, then p ⊂ q andkfkq ≤ kfkp .

21.4 Converse of Hölder’s Inequality

Throughout this section we assume (X,M, µ) is a σ — finite measure space,
q ∈ [1,∞] and p ∈ [1,∞] are conjugate exponents, i.e. p−1 + q−1 = 1. For
g ∈ Lq, let φg ∈ (Lp)∗ be given by
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φg(f) =

Z
gf dµ. (21.22)

By Hölder’s inequality

|φg(f)| ≤
Z
|gf |dµ ≤ kgkqkfkp (21.23)

which implies that

kφgk(Lp)∗ := sup{|φg(f)| : kfkp = 1} ≤ kgkq. (21.24)

Proposition 21.26 (Converse of Hölder’s Inequality). Let (X,M, µ) be
a σ — finite measure space and 1 ≤ p ≤ ∞ as above. For all g ∈ Lq,

kgkq = kφgk(Lp)∗ := sup
n
|φg(f)| : kfkp = 1

o
(21.25)

and for any measurable function g : X → C,

kgkq = sup
½Z

X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
. (21.26)

Proof. We begin by proving Eq. (21.25). Assume first that q < ∞ so
p > 1. Then

|φg(f)| =
¯̄̄̄Z

gf dµ

¯̄̄̄
≤
Z
|gf | dµ ≤ kgkqkfkp

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 21.2, when |f |p = c|g|q for some
constant c > 0. So let f := sgn(g)|g|q/p which for p =∞ is to be interpreted
as f = sgn(g), i.e. |g|q/∞ ≡ 1. When p =∞,

|φg(f)| =
Z
X

g sgn(g)dµ = kgkL1(µ) = kgk1 kfk∞

which shows that kφgk(L∞)∗ ≥ kgk1. If p <∞, then

kfkpp =
Z
|f |p =

Z
|g|q = kgkqq

while

φg(f) =

Z
gfdµ =

Z
|g||g|q/pdµ =

Z
|g|qdµ = kgkqq.

Hence
|φg(f)|
kfkp =

kgkqq
kgkq/pq

= kgkq(1−
1
p )

q = kgkq.

This shows that ||φgk ≥ kgkq which combined with Eq. (21.24) implies Eq.
(21.25).
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The last case to consider is p = 1 and q =∞. Let M := kgk∞ and choose
Xn ∈ M such that Xn ↑ X as n → ∞ and µ(Xn) < ∞ for all n. For any
ε > 0, µ(|g| ≥M −ε) > 0 and Xn∩{|g| ≥M −ε} ↑ {|g| ≥M−ε}. Therefore,
µ(Xn ∩ {|g| ≥M − ε}) > 0 for n sufficiently large. Let

f = sgn(g)1Xn∩{|g|≥M−ε},

then
kfk1 = µ(Xn ∩ {|g| ≥M − ε}) ∈ (0,∞)

and

|φg(f)| =
Z
Xn∩{|g|≥M−ε}

sgn(g)gdµ =

Z
Xn∩{|g|≥M−ε}

|g|dµ

≥ (M − ε)µ(Xn ∩ {|g| ≥M − ε}) = (M − ε)kfk1.

Since ε > 0 is arbitrary, it follows from this equation that kφgk(L1)∗ ≥ M =
kgk∞.
Now for the proof of Eq. (21.26). The key new point is that we no longer

are assuming that g ∈ Lq. Let M(g) denote the right member in Eq. (21.26)
and set gn := 1Xn∩{|g|≤n}g. Then |gn| ↑ |g| as n → ∞ and it is clear that
M(gn) is increasing in n. Therefore using Lemma 4.10 and the monotone
convergence theorem,

lim
n→∞M(gn) = sup

n
M(gn) = sup

n
sup

½Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
sup
n

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
lim
n→∞

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½Z
X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
=M(g).

Since gn ∈ Lq for all n and M(gn) = kφgnk(Lp)∗ (as you should verify), it
follows from Eq. (21.25) thatM(gn) = kgnkq .When q <∞ (by the monotone
convergence theorem) and when q = ∞ (directly from the definitions) one
learns that limn→∞ kgnkq = kgkq . Combining this fact with limn→∞M(gn) =
M(g) just proved shows M(g) = kgkq .
As an application we can derive a sweeping generalization of Minkowski’s

inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 21.27 (Minkowski’s Inequality for Integrals). Let (X,M, µ)
and (Y,N , ν) be σ — finite measure spaces and 1 ≤ p ≤ ∞. If f is a M⊗N
measurable function, then y → kf(·, y)kLp(µ) is measurable and
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1. if f is a positiveM⊗N measurable function, then

k
Z
Y

f(·, y)dν(y)kLp(µ) ≤
Z
Y

kf(·, y)kLp(µ)dν(y). (21.27)

2. If f : X×Y → C is aM⊗N measurable function and
R
Y
kf(·, y)kLp(µ)dν(y) <

∞ then
a) for µ — a.e. x, f(x, ·) ∈ L1(ν),
b) the µ —a.e. defined function, x→ R

Y
f(x, y)dν(y), is in Lp(µ) and

c) the bound in Eq. (21.27) holds.

Proof. For p ∈ [1,∞], let Fp(y) := kf(·, y)kLp(µ). If p ∈ [1,∞)

Fp(y) = kf(·, y)kLp(µ) =
µZ

X

|f(x, y)|p dµ(x)
¶1/p

is a measurable function on Y by Fubini’s theorem. To see that F∞ is mea-
surable, let Xn ∈M such that Xn ↑ X and µ(Xn) < ∞ for all n. Then by
Exercise 21.5,

F∞(y) = lim
n→∞ lim

p→∞ kf(·, y)1XnkLp(µ)
which shows that F∞ is (Y,N ) — measurable as well. This shows that integral
on the right side of Eq. (21.27) is well defined.
Now suppose that f ≥ 0, q = p/(p− 1)and g ∈ Lq(µ) such that g ≥ 0 and

kgkLq(µ) = 1. Then by Tonelli’s theorem and Hölder’s inequality,Z
X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y)g(x)

≤ kgkLq(µ)
Z
Y

kf(·, y)kLp(µ)dν(y)

=

Z
Y

kf(·, y)kLp(µ)dν(y).

Therefore by the converse to Hölder’s inequality (Proposition 21.26),

k
Z
Y

f(·, y)dν(y)kLp(µ)

= sup

½Z
X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) : kgkLq(µ) = 1 and g ≥ 0

¾
≤
Z
Y

kf(·, y)kLp(µ)dν(y)

proving Eq. (21.27) in this case.
Now let f : X×Y → C be as in item 2) of the theorem. Applying the first

part of the theorem to |f | shows
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Y

|f(x, y)| dν(y) <∞ for µ— a.e. x,

i.e. f(x, ·) ∈ L1(ν) for the µ —a.e. x. Since
¯̄R
Y
f(x, y)dν(y)

¯̄ ≤ R
Y
|f(x, y)| dν(y)

it follows by item 1) that°°°°Z
Y

f(·, y)dν(y)
°°°°
Lp(µ)

≤
°°°°Z

Y

|f(·, y)| dν(y)
°°°°
Lp(µ)

≤
Z
Y

kf(·, y)kLp(µ) dν(y).

Hence the function, x ∈ X → R
Y
f(x, y)dν(y), is in Lp(µ) and the bound in

Eq. (21.27) holds.
Here is an application of Minkowski’s inequality for integrals. In this the-

orem we will be using the convention that x−1/∞ := 1.

Theorem 21.28 (Theorem 6.20 in Folland). Suppose that k : (0,∞) ×
(0,∞)→ C is a measurable function such that k is homogenous of degree −1,
i.e. k(λx, λy) = λ−1k(x, y) for all λ > 0. If, for some p ∈ [1,∞],

Cp :=

Z ∞
0

|k(x, 1)|x−1/pdx <∞

then for f ∈ Lp((0,∞),m), k(x, ·)f(·) ∈ L1((0,∞),m) for m — a.e. x. More-
over, the m — a.e. defined function

(Kf)(x) =

Z ∞
0

k(x, y)f(y)dy (21.28)

is in Lp((0,∞),m) and

kKfkLp((0,∞),m) ≤ CpkfkLp((0,∞),m).

Proof. By the homogeneity of k, k(x, y) = x−1k(1, yx). Using this relation
and making the change of variables, y = zx, givesZ ∞

0

|k(x, y)f(y)| dy =
Z ∞
0

x−1
¯̄̄
k(1,

y

x
)f(y)

¯̄̄
dy

=

Z ∞
0

x−1 |k(1, z)f(xz)|xdz =
Z ∞
0

|k(1, z)f(xz)| dz.

Since

kf(· z)kpLp((0,∞),m) =
Z ∞
0

|f(yz)|pdy =
Z ∞
0

|f(x)|p dx

z
,

kf(· z)kLp((0,∞),m) = z−1/pkfkLp((0,∞),m).
Using Minkowski’s inequality for integrals then shows
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0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤
Z ∞
0

|k(1, z)| kf(·z)kLp((0,∞),m) dz

= kfkLp((0,∞),m)
Z ∞
0

|k(1, z)| z−1/pdz
= CpkfkLp((0,∞),m) <∞.

This shows that Kf in Eq. (21.28) is well defined from m — a.e. x. The proof
is finished by observing

kKfkLp((0,∞),m) ≤
°°°°Z ∞

0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤ CpkfkLp((0,∞),m)

for all f ∈ Lp((0,∞),m).
The following theorem is a strengthening of Proposition 21.26. It may be

skipped on the first reading.

Theorem 21.29 (Converse of Hölder’s Inequality II). Assume that
(X,M, µ) is a σ — finite measure space, q, p ∈ [1,∞] are conjugate exponents
and let Sf denote the set of simple functions φ on X such that µ (φ 6= 0) <∞.
Let g : X → C be a measurable function such that φg ∈ L1 (µ) for all φ ∈ Sf ,2
and define

Mq(g) := sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Sf with kφkp = 1

¾
. (21.29)

If Mq(g) <∞ then g ∈ Lq (µ) and Mq(g) = kgkq .
Proof. Let Xn ∈M be sets such that µ(Xn) <∞ and Xn ↑ X as n ↑ ∞.

Suppose that q = 1 and hence p = ∞. Choose simple functions φn on X
such that |φn| ≤ 1 and sgn(g) = limn→∞ φn in the pointwise sense. Then
1Xmφn ∈ Sf and therefore¯̄̄̄Z

X

1Xmφngdµ

¯̄̄̄
≤Mq(g)

for all m,n. By assumption 1Xm
g ∈ L1(µ) and therefore by the dominated

convergence theorem we may let n→∞ in this equation to findZ
X

1Xm |g| dµ ≤Mq(g)

for all m. The monotone convergence theorem then implies thatZ
X

|g| dµ = lim
m→∞

Z
X

1Xm |g| dµ ≤Mq(g)

2 This is equivalent to requiring 1Ag ∈ L1(µ) for all A ∈M such that µ(A) <∞.
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showing g ∈ L1(µ) and kgk1 ≤ Mq(g). Since Holder’s inequality implies that
Mq(g) ≤ kgk1 , we have proved the theorem in case q = 1. For q > 1, we will
begin by assuming that g ∈ Lq(µ). Since p ∈ [1,∞) we know that Sf is a
dense subspace of Lp(µ) and therefore, using φg is continuous on Lp(µ),

Mq(g) = sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
= kgkq

where the last equality follows by Proposition 21.26. So it remains to show
that if φg ∈ L1 for all φ ∈ Sf and Mq(g) <∞ then g ∈ Lq(µ). For n ∈ N, let
gn := 1Xn

1|g|≤ng. Then gn ∈ Lq(µ), in fact kgnkq ≤ nµ(Xn)
1/q < ∞. So by

the previous paragraph, kgnkq =Mq(gn) and hence

kgnkq = sup
½¯̄̄̄Z

X

φ1Xn1|g|≤ngdµ
¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
≤Mq(g)

°°φ1Xn1|g|≤n
°°
p
≤Mq(g) · 1 =Mq(g)

wherein the second to last inequality we have made use of the definition of
Mq(g) and the fact that φ1Xn1|g|≤n ∈ Sf . If q ∈ (1,∞), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, k·kp , implies

kgkq = lim
n→∞ kgnkq ≤Mq(g) <∞.

If q =∞, then kgnk∞ ≤Mq(g) <∞ for all n implies |gn| ≤Mq(g) a.e. which
then implies that |g| ≤Mq(g) a.e. since |g| = limn→∞ |gn| . That is g ∈ L∞(µ)
and kgk∞ ≤M∞(g).

21.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 — convergent sequence is Lp — convergent.

Notation 21.30 For f ∈ L1(µ) and E ∈M, let

µ(f : E) :=

Z
E

fdµ.

and more generally if A,B ∈M let

µ(f : A,B) :=

Z
A∩B

fdµ.

Lemma 21.31. Suppose g ∈ L1(µ), then for any ε > 0 there exist a δ > 0
such that µ(|g| : E) < ε whenever µ(E) < δ.
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Proof. If the Lemma is false, there would exist ε > 0 and sets En such
that µ(En) → 0 while µ(|g| : En) ≥ ε for all n. Since |1Eng| ≤ |g| ∈ L1 and
for any δ ∈ (0, 1), µ(1En |g| > δ) ≤ µ(En) → 0 as n → ∞, the dominated
convergence theorem of Corollary 21.17 implies limn→∞ µ(|g| : En) = 0. This
contradicts µ(|g| : En) ≥ ε for all n and the proof is complete.
Suppose that {fn}∞n=1 is a sequence of measurable functions which con-

verge in L1(µ) to a function f. Then for E ∈M and n ∈ N,
|µ(fn : E)| ≤ |µ(f − fn : E)|+ |µ(f : E)| ≤ kf − fnk1 + |µ(f : E)| .

Let εN := supn>N kf − fnk1 , then εN ↓ 0 as N ↑ ∞ and

sup
n
|µ(fn : E)| ≤ sup

n≤N
|µ(fn : E)| ∨ (εN + |µ(f : E)|) ≤ εN + µ (gN : E) ,

(21.30)
where gN = |f | +PN

n=1 |fn| ∈ L1. From Lemma 21.31 and Eq. (21.30) one
easily concludes,

∀ ε > 0 ∃ δ > 0 3 sup
n
|µ(fn : E)| < ε when µ(E) < δ. (21.31)

Definition 21.32. Functions {fn}∞n=1 ⊂ L1(µ) satisfying Eq. (21.31) are
said to be uniformly integrable.

Remark 21.33. Let {fn} be real functions satisfying Eq. (21.31), E be a set
where µ(E) < δ and En = E ∩ {fn ≥ 0} . Then µ(En) < δ so that µ(f+n :
E) = µ(fn : En) < ε and similarly µ(f−n : E) < ε. Therefore if Eq. (21.31)
holds then

sup
n

µ(|fn| : E) < 2ε when µ(E) < δ. (21.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of fn. Therefore {fn}∞n=1 ⊂ L1(µ) is uniformly integrable iff

∀ ε > 0 ∃ δ > 0 3 sup
n

µ(|fn| : E) < ε when µ(E) < δ. (21.33)

Lemma 21.34. Assume that µ(X) < ∞, then {fn} is uniformly bounded in
L1(µ) (i.e. K = supn kfnk1 <∞) and {fn} is uniformly integrable iff

lim
M→∞

sup
n

µ(|fn| : |fn| ≥M) = 0. (21.34)

Proof. Since {fn} is uniformly bounded in L1(µ), µ(|fn| ≥ M) ≤ K/M.
So if (21.33) holds and ε > 0 is given, we may choose M sufficiently large so
that µ(|fn| ≥M) < δ(ε) for all n and therefore,

sup
n

µ(|fn| : |fn| ≥M) ≤ ε.

Since ε is arbitrary, we concluded that Eq. (21.34) must hold. Conversely,
suppose that Eq. (21.34) holds, then automatically K = supn µ(|fn|) < ∞
because
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µ(|fn|) = µ(|fn| : |fn| ≥M) + µ(|fn| : |fn| < M)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(X) <∞.

Moreover,

µ(|fn| : E) = µ(|fn| : |fn| ≥M,E) + µ(|fn| : |fn| < M,E)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(E).

So given ε > 0 chooseM so large that supn µ(|fn| : |fn| ≥M) < ε/2 and then
take δ = ε/ (2M) .

Remark 21.35. It is not in general true that if {fn} ⊂ L1(µ) is uniformly
integrable then supn µ(|fn|) <∞. For example take X = {∗} and µ({∗}) = 1.
Let fn(∗) = n. Since for δ < 1 a set E ⊂ X such that µ(E) < δ is in fact
the empty set, we see that Eq. (21.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every δ > 0 we may find a finite
partition of X by sets {E }k=1 with µ(E ) < δ. Then if Eq. (21.32) holds with
2ε = 1, then

µ(|fn|) =
kX
=1

µ(|fn| : E ) ≤ k

showing that µ(|fn|) ≤ k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 21.36. Suppose that µ(X) < ∞, and Λ ⊂ L0(X) is a collection of
functions.

1. If there exists a non decreasing function φ : R+ → R+ such that
limx→∞ φ(x)/x =∞ and

K := sup
f∈Λ

µ(φ(|f |)) <∞ (21.35)

then
lim

M→∞
sup
f∈Λ

µ
¡|f | 1|f|≥M¢ = 0. (21.36)

2. Conversely if Eq. (21.36) holds, there exists a non-decreasing continuous
function φ : R+ → R+ such that φ(0) = 0, limx→∞ φ(x)/x = ∞ and Eq.
(21.35) is valid.

Proof. 1. Let φ be as in item 1. above and set εM := supx≥M
x

φ(x) → 0

as M →∞ by assumption. Then for f ∈ Λ
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µ(|f | : |f | ≥M) = µ(
|f |

φ (|f |)φ (|f |) : |f | ≥M) ≤ εMµ(φ (|f |) : |f | ≥M)

≤ εMµ(φ (|f |)) ≤ KεM

and hence
lim

M→∞
sup
f∈Λ

µ
¡|f | 1|f |≥M¢ ≤ lim

M→∞
KεM = 0.

2. By assumption, εM := supf∈Λ µ
¡|f | 1|f |≥M¢ → 0 as M → ∞. Therefore

we may choose Mn ↑ ∞ such that

∞X
n=0

(n+ 1) εMn
<∞

where by convention M0 := 0. Now define φ so that φ(0) = 0 and

φ0(x) =
∞X
n=0

(n+ 1) 1(Mn,Mn+1](x),

i.e.

φ(x) =

Z x

0

φ0(y)dy =
∞X
n=0

(n+ 1) (x ∧Mn+1 − x ∧Mn) .

By construction φ is continuous, φ(0) = 0, φ0(x) is increasing (so φ is convex)
and φ0(x) ≥ (n+ 1) for x ≥Mn. In particular

φ(x)

x
≥ φ(Mn) + (n+ 1)x

x
≥ n+ 1 for x ≥Mn

from which we conclude limx→∞ φ(x)/x = ∞. We also have φ0(x) ≤ (n + 1)
on [0,Mn+1] and therefore

φ(x) ≤ (n+ 1)x for x ≤Mn+1.

So for f ∈ Λ,

µ (φ(|f |)) =
∞X
n=0

µ
¡
φ(|f |)1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1|f |≥Mn

¢ ≤ ∞X
n=0

(n+ 1) εMn

and hence

sup
f∈Λ

µ (φ(|f |)) ≤
∞X
n=0

(n+ 1) εMn <∞.
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Theorem 21.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 ≤ p <∞. A sequence {fn} ⊂ Lp is Cauchy iff

1. {fn} is L0 — Cauchy,
2. {|fn|p} — is uniformly integrable.
3. For all ε > 0, there exists a set E ∈ M such that µ(E) < ∞ andR

Ec |fn|p dµ < ε for all n. (This condition is vacuous when µ(X) <∞.)

Proof. (=⇒) Suppose {fn} ⊂ Lp is Cauchy. Then (1) {fn} is L0 —
Cauchy by Lemma 21.14. (2) By completeness of Lp, there exists f ∈ Lp such
that kfn − fkp → 0 as n→∞. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f |− |fn|| ≤ p(|f |+ |fn|)p−1 ||f |− |fn||
and therefore by Hölder’s inequality,Z
||f |p − |fn|p| dµ ≤ p

Z
(|f |+ |fn|)p−1 ||f |− |fn|| dµ ≤ p

Z
(|f |+ |fn|)p−1|f − fn|dµ

≤ pkf − fnkpk(|f |+ |fn|)p−1kq = pk |f |+ |fn|kp/qp kf − fnkp
≤ p(kfkp + kfnkp)p/qkf − fnkp

where q := p/(p− 1). This shows that R ||f |p − |fn|p| dµ→ 0 as n→∞.3 By
the remarks prior to Definition 21.32, {|fn|p} is uniformly integrable. To verify
(3), for M > 0 and n ∈ N let EM = {|f | ≥ M} and EM (n) = {|fn| ≥ M}.
Then µ(EM ) ≤ 1

Mp kf ||pp <∞ and by the dominated convergence theorem,Z
Ec
M

|f |p dµ =
Z
|f |p 1|f |<Mdµ→ 0 as M → 0.

Moreover,°°fn1Ec
M

°°
p
≤ °°f1Ec

M

°°
p
+
°°(fn − f)1Ec

M

°°
p
≤ °°f1Ec

M

°°
p
+ kfn − fkp . (21.37)

So given ε > 0, choose N sufficiently large such that for all n ≥ N, kf −
fnkpp < ε. Then choose M sufficiently small such that

R
Ec
M
|f |p dµ < ε andR

Ec
M (n)

|f |p dµ < ε for all n = 1, 2, . . . , N − 1. Letting E := EM ∪ EM (1) ∪
· · · ∪EM (N − 1), we have

µ(E) <∞,

Z
Ec

|fn|p dµ < ε for n ≤ N − 1

and by Eq. (21.37)

3 Here is an alternative proof. Let hn ≡ ||fn|p − |f |p| ≤ |fn|p+ |f |p =: gn ∈ L1 and
g ≡ 2|f |p. Then gn

µ→ g, hn
µ→ 0 and

R
gn →

R
g. Therefore by the dominated

convergence theorem in Corollary 21.17, lim
n→∞

R
hn dµ = 0.
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Ec

|fn|p dµ < (ε1/p + ε1/p)p ≤ 2pε for n ≥ N.

Therefore we have found E ∈M such that µ(E) <∞ and

sup
n

Z
Ec

|fn|p dµ ≤ 2pε

which verifies (3) since ε > 0 was arbitrary. (⇐=) Now suppose{fn} ⊂ Lp

satisfies conditions (1) - (3). Let ε > 0, E be as in (3) and

Amn := {x ∈ E|fm(x)− fn(x)| ≥ ε}.
Then

k(fn − fm) 1Eckp ≤ kfn1Eckp + kfm 1Eckp < 2ε1/p
and

kfn − fmkp = k(fn − fm)1Eckp + k(fn − fm)1E\Amn
kp

+ k(fn − fm)1Amnkp
≤ k(fn − fm)1E\Amn

kp + k(fn − fm)1Amnkp + 2ε1/p. (21.38)

Using properties (1) and (3) and 1E∩{|fm−fn|<ε}|fm− fn|p ≤ εp1E ∈ L1, the
dominated convergence theorem in Corollary 21.17 implies

k(fn − fm) 1E\Amn
kpp =

Z
1E∩{|fm−fn|<ε} |fm − fn|p −→

m,n→∞ 0.

which combined with Eq. (21.38) implies

lim sup
m,n→∞

kfn − fmkp ≤ lim sup
m,n→∞

k(fn − fm)1Amnkp + 2ε1/p.

Finally

k(fn − fm)1Amnkp ≤ kfn1Amnkp + kfm 1Amnkp ≤ 2δ(ε)
where

δ(ε) := sup
n
sup{ kfn 1Ekp : E ∈M 3 µ(E) ≤ ε}

By property (2), δ(ε)→ 0 as ε→ 0. Therefore

lim sup
m,n→∞

kfn − fmkp ≤ 2ε1/p + 0 + 2δ(ε)→ 0 as ε ↓ 0

and therefore {fn} is Lp-Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 21.38 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that µ(X) <∞, {fn} is uniformly integrable, fn →
f a.e. and |f | <∞ a.e., then f ∈ L1(µ) and fn → f in L1(µ).
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Proof. Let ε > 0 be given and choose δ > 0 as in the Eq. (21.32). Now use
Egoroff’s Theorem 21.18 to choose a set Ec where {fn} converges uniformly on
Ec and µ(E) < δ. By uniform convergence on Ec, there is an integer N <∞
such that |fn − fm| ≤ 1 on Ec for all m,n ≥ N. Letting m → ∞, we learn
that

|fN − f | ≤ 1 on Ec.

Therefore |f | ≤ |fN |+ 1 on Ec and hence

µ(|f |) = µ(|f | : Ec) + µ(|f | : E)
≤ µ(|fN |) + µ(X) + µ(|f | : E).

Now by Fatou’s lemma,

µ(|f | : E) ≤ lim inf
n→∞µ(|fn| : E) ≤ 2ε <∞

by Eq. (21.32). This shows that f ∈ L1. Finally

µ(|f − fn|) = µ(|f − fn| : Ec) + µ(|f − fn| : E)
≤ µ(|f − fn| : Ec) + µ(|f |+ |fn| : E)
≤ µ(|f − fn| : Ec) + 4ε

and so by the Dominated convergence theorem we learn that

lim sup
n→∞

µ(|f − fn|) ≤ 4ε.

Since ε > 0 was arbitrary this completes the proof.

Theorem 21.39 (Vitali again). Suppose that fn → f in µ measure and Eq.
(21.34) holds, then fn → f in L1.

Proof. This could of course be proved using 21.38 after passing to sub-
sequences to get {fn} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f ∈ L1(µ). Now let

φK(x) = x1|x|≤K +K1|x|>K .

then φK(fn)
µ→ φK(f) because |φK(f)− φK(fn)| ≤ |f − fn| and since

|f − fn| ≤ |f − φK(f)|+ |φK(f)− φK(fn)|+ |φK(fn)− fn|
we have that

µ|f − fn| ≤ µ |f − φK(f)|+ µ|φK(f)− φK(fn)|+ µ |φK(fn)− fn|
= µ(|f | : |f | ≥ K) + µ|φK(f)− φK(fn)|+ µ(|fn| : |fn| ≥ K).

Therefore by the dominated convergence theorem

lim sup
n→∞

µ|f − fn| ≤ µ(|f | : |f | ≥ K) + lim sup
n→∞

µ(|fn| : |fn| ≥ K).

This last expression goes to zero as K →∞ by uniform integrability.
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21.6 Exercises

Definition 21.40. The essential range of f, essran(f), consists of those
λ ∈ C such that µ(|f − λ| < ε) > 0 for all ε > 0.

Definition 21.41. Let (X, τ) be a topological space and ν be a measure on
BX = σ(τ). The support of ν, supp(ν), consists of those x ∈ X such that
ν(V ) > 0 for all open neighborhoods, V, of x.

Exercise 21.3. Let (X, τ) be a second countable topological space and ν be
a measure on BX — the Borel σ — algebra on X. Show

1. supp(ν) is a closed set. (This is actually true on all topological spaces.)
2. ν(X \ supp(ν)) = 0 and use this to conclude that W := X \ supp(ν)
is the largest open set in X such that ν(W ) = 0. Hint: U ⊂ τ be a
countable base for the topology τ. Show that W may be written as a
union of elements from V ∈ V with the property that µ(V ) = 0.

Exercise 21.4. Prove the following facts about essran(f).

1. Let ν = f∗µ := µ◦f−1 — a Borel measure on C. Show essran(f) = supp(ν).
2. essran(f) is a closed set and f(x) ∈ essran(f) for almost every x, i.e.
µ(f /∈ essran(f)) = 0.

3. If F ⊂ C is a closed set such that f(x) ∈ F for almost every x then
essran(f) ⊂ F. So essran(f) is the smallest closed set F such that f(x) ∈ F
for almost every x.

4. kfk∞ = sup {|λ| : λ ∈ essran(f)} .
Exercise 21.5. Let f ∈ Lp ∩ L∞ for some p < ∞. Show kfk∞ =
limq→∞ kfkq . If we further assume µ(X) <∞, show kfk∞ = limq→∞ kfkq for
all measurable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ kfkq <
∞. Hints: Use Corollary 21.23 to show lim supq→∞ kfkq ≤ kfk∞ and to
show lim infq→∞ kfkq ≥ kfk∞ , let M < kfk∞ and make use of Chebyshev’s
inequality.

Exercise 21.6. Prove Eq. (21.21) in Corollary 21.23. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+

tb

b
,

(see Lemma 5.5 for Eq. (21.16)) applied to the right side of Eq. (21.20).

Exercise 21.7. Complete the proof of Proposition 21.22 by showing (Lp +
Lr, k·k) is a Banach space. (Part of Folland 6.4 on p. 186.)
Exercise 21.8. Folland 6.5 on p. 186.
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Exercise 21.9. By making the change of variables, u = lnx, prove the fol-
lowing facts:Z 1/2

0

x−a |lnx|b dx <∞⇐⇒ a < 1 or a = 1 and b < −1Z ∞
2

x−a |lnx|b dx <∞⇐⇒ a > 1 or a = 1 and b < −1Z 1

0

x−a |lnx|b dx <∞⇐⇒ a < 1 and b > −1Z ∞
1

x−a |lnx|b dx <∞⇐⇒ a > 1 and b > −1.

Suppose 0 < p0 < p1 ≤ ∞ and m is Lebesgue measure on (0,∞) . Use
the above results to manufacture a function f on (0,∞) such that f ∈
Lp ((0,∞) ,m) iff (a) p ∈ (p0, p1) , (b) p ∈ [p0, p1] and (c) p = p0.

Exercise 21.10. Folland 6.9 on p. 186.

Exercise 21.11. Folland 6.10 on p. 186. Use the strong form of Theorem
19.38.

Exercise 21.12. Let (X,M, µ) and (Y,N , ν) be σ — finite measure spaces,
f ∈ L2(ν) and k ∈ L2(µ⊗ ν). ShowZ

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x.

Let Kf(x) :=
R
Y
k(x, y)f(y)dν(y) when the integral is defined. Show Kf ∈

L2(µ) and K : L2(ν) → L2(µ) is a bounded operator with kKkop ≤
kkkL2(µ⊗ν) .
Exercise 21.13. Folland 6.27 on p. 196. Hint: Theorem 21.28.

Exercise 21.14. Folland 2.32 on p. 63.

Exercise 21.15. Folland 2.38 on p. 63.




