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Part 1

Background Material






1

Introduction / User Guide

Not written as of yet. Topics to mention.

1. A better and more general integral.
a) Convergence Theorems
b) Integration over diverse collection of sets. (See probability theory.)
c¢) Integration relative to different weights or densities including singular
weights.
d) Characterization of dual spaces.
e) Completeness.
2. Infinite dimensional Linear algebra.
3. ODE and PDE.
4. Harmonic and Fourier Analysis.
5. Probability Theory






2

Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative inte-
gers and Z = No U (—N) — the positive and negative integers including 0, Q
the rational numbers, R the real numbers (see Chapter E'—Below), and C the
complex numbers. We will also use F to stand for either of the fields R or C.

Notation 2.1 Given two sets X and Y, let YX denote the collection of all
functions f :+ X — Y. If X = N, we will say that f € YN is a sequence
with values in' Y and often write f, for f(n) and express f as {fn}or, -
If X = {1,2,...,N}, we will write Y~ in place of Y{12N}t and denote
FEYN by f=(fi, far- ., fx) where fo = f(n).

Notation 2.2 More generally if {X, : a € A} is a collection of non-empty

sets, let X4 = [] Xa and mo : Xa — Xo be the canonical projection map
acA
defined by wo(x) = xo. If If X, = X for some fized space X, then we will

write [] Xo as XA rather than X 4.
acA

Recall that an element z € X 4 is a “choice function,” i.e. an assignmen
To = z(a) € X, for each a € A. The axiom of choice (See Appendix
states that X 4 # () provided that X, # ) for each « € A.

Notation 2.3 Given a set X, let 2% denote the power set of X — the col-
lection of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={ze X :ax)=1} C X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.
For A € 2% let

A =X\A={zeX:x ¢ A}



6 2 Set Operations
and more generally if A, B C X let
B\A:={zxeB:x¢ A} = An B".
We also define the symmetric difference of A and B by
AAB:=(B\ A)U(A\B).

As usual if {Ay},; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

Uacrdo :={z€X:Fael 5 ze€A,} and
Nacrlo ={zeX:z€ A,Vael}.

Notation 2.4 We will also write Hae] A, for UgerAn in the case that
{Aa}oer are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For
example let {A4,} 7 | be a sequence of subsets from X and define

{A,i0} ={zeX : #{n:xz € A,} =oc0} and
{4, a.a.} :={x € X : z € A, for all n sufficiently large}.

(One should read {A,, i.0.} as A, infinitely often and {4,, a.a.} as A, almost
always.) Then = € {4,, i.0.} iff

VNeNdn>N>zxzeA,
and this may be expressed as

{4, 1.0.} =NF_1 Un>nN 4Ap.
Similarly, x € {4,, a.a.} iff

dNeN>Vn>N, x€ A,
which may be written as

{4, aa.} =UF_1 Np>n Ay,

Definition 2.5. A set X is said to be countable if is empty or there is an
injective function f : X — N, otherwise X is said to be uncountable.

Lemma 2.6 (Basic Properties of Countable Sets).

1. If A C X is a subset of a countable set X then A is countable.
2. Any infinite subset A C N is in one to one correspondence with N.

3. A non-empty set X is countable iff there exists a surjective map, g : N —
X.
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2 Set Operations 7

4. If X and'Y are countable then X X Y is countable.

5. Suppose for each m € N that A, is a countable subset of a set X, then
A =U_1 Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y
is uncountable. In particular 2% is uncountable for any infinite set X.

Proof. 1. If f : X — N is an injective map then so is the restriction, f|a,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

J(n+1) = min A\ {f(1), ... f(n)}.

Since A is infinite the process continues indefinitely. The function f: N — A
defined this way is a bijection. 3. If g : N — X is a surjective map, let

f(z) =ming™' ({z}) = min{n € N: f(n) = x}.

Then f: X — N is injective which combined with item 2. (taking A = f(X))
shows X is countable. Conversely if f : X — N is injective let zyp € X be
a fixed point and define g : N — X by g(n) = f~!(n) for n € f(X) and
g(n) = xo otherwise. 4. Let us first construct a bijection, h, from N to N x N.
To do this put the elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(i,7) : ¢ + j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3), etc. etc. If f : N—X and g : N =Y are
surjective functions, then the function (f x g) o h : N =X X Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € Nx N.5.If A = () then A
is countable by definition so we may assume A # (). With out loss of generality
we may assume A; # () and by replacing A,, by A; if necessary we may also
assume A,, # 0 for all m. For each m € N let a,, : N —A4,, be a surjective
function and then define f : N x N — US_; A, by f(m,n) := an(n). The
function f is surjective and hence so is the composition, foh : N — X x Y]
where h : N — N x N is the bijection defined above. 6. Let us begin by showing
9N — {0,1}" is uncountable. For sake of contradiction suppose f : N — {0,1}"
is a surjection and write f (n) as (f1(n), fo(n), f3(n),...). Now define a €
{0,1}" by a, := 1 — fu(n). By construction f, (n) # a, for all n and so
a ¢ f(N). This contradicts the assumption that f is surjective and shows 2"
is uncountable. For the general case, since Y5* C Y for any subset Yy C Y,
if Y;¥ is uncountable then so is YX. In this way we may assume Yj is a two
point set which may as well be Yy = {0,1} . Moreover, since X is an infinite
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8 2 Set Operations

set we may find an injective map  : N — X and use this to set up an
injection, 7 : 2V — 2% by setting i (a) (z,) = a,, for alln € N and i (a) (z) = 0
if z ¢ {z,:n € N}. If 2% were countable we could find a surjective map
f:2%X — N in which case foi: 2N — N would be surjective as well. However
this is impossible since we have already seed that 2V is uncountable. ]

We end this section with some notation which will be used frequently in
the sequel.

Notation 2.7 If f: X — Y is a function and €& C 2V let
fle=f71&) = {1 (B)E e &}

If G C 2%, let
fG:={Ac2Y|f1(A) eg}.

Definition 2.8. Let £ C 2% be a collection of sets, A C X, is: A — X be
the inclusion map (ia(xz) =z for all x € A) and

Ea=i'(E)={ANE:Ec¢&}.

2.1 Exercises

Let f: X — Y be a function and {A;};c; be an indexed family of subsets of
Y, verify the following assertions.

Exercise 2.1. (N;cr4;)¢ = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;crA4;) = Nier(B\ 4;).
Exercise 2.3. f~1(UjerA;) = Uier f 1 (A).

Exercise 2.4. f~1(NierA;) = Nierf 1 (A;).

Exercise 2.5. Find a counter example which shows that f(CND) = f(C)N
f(D) need not hold.
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3

A Brief Review of Real and Complex Numbers

Although it is assumed that the reader of this book is familiar with the prop-
erties of the real numbers, R, nevertheless I feel it is instructive to define them
here and sketch the development of their basic properties. It will most cer-
tainly be assumed that the reader is familiar with basic algebraic properties
of the natural numbers N and the ordered field of rational numbers,

Q:{ﬁ:m,nEZ:niﬂ}.
n
As usual, for ¢ € Q, we define

g = q if ¢g>0
9= —qif ¢ <0.

Notice that if ¢ € Q and |q| < % for all n, then ¢ = 0. Indeed ¢ # 0 then
lgf = 2 for some m,n € N and hence |¢| > 1. A similar argument shows
q>0iff g > —% for all n € N. These trivial remarks will be used in the future
without further reference.

d.3.1] Definition 3.1. A sequence {g,},., C Q converges toq € Q if |g —g,| — 0
asn — 0o, i.e. if for all N € N, |q — qn| < % for a.a. n. As usual if {gn};
converges to q we will write g, — q as n — 00 or ¢ = limy,_o Gn-

d Definition 3.2. 4 sequence {q,},.; C Q is Cauchy if |gn — ¢m| — 0 as
m,n — oo. More precisely we require for each N € N that |qm — gn| < % for
a.a. pairs (m,n).

w w
N

exr.3.1]| Exercise 3.1. Show that all convergent sequences {g,} ., C Q are Cauchy
and that all Cauchy sequences {g, },. , are bounded — i.e. there exists M € N
such that
lgn| < M for all n € N.

exr.3.2| Exercise 3.2. Suppose {q,},., and {r,},-, are Cauchy sequences in Q.
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1. Show {gn 4+ rn}rey and {gn - 7 },o, are Cauchy.
Now assume that {g, },-, and {r,} - are convergent sequences in Q.
2. Show {q,, + 1}y {qn - Tn},—, are convergent in Q and
lim (¢, +7,) = lim ¢, + lim r, and
n—oo n—oo n—oo
lim (gprn) = lim g, - lim 7.
n—oo n—oo n—oo
3. If we further assume g,, < r,, for all n, show lim,, o ¢, < lim,, o 7. (It
suffices to consider the case where g, = 0 for all n.)

The rational numbers Q suffer from the defect that they are not complete,
e, ngb all Cauchy sequences are convergent. In fact, according to Corollary
@"ﬁelow, “most” Cauchy sequences of rational numbers do not converge to
a rational number.

Exercise 3.3. Use the following outline to construct a Cauchy sequence
{gn}.~; C Q which is not convergent in Q.

1. Recall that there is no element ¢ € Q such that ¢% = 2E| To each n € N
let m,, € N be chosen so that

m2 (my, + 1)2
2 < 2< o (3.1)

and let g, := 7.

2. Verify that g2 — 2 as n — oo and that {gn},—, is a Cauchy sequence in
Q.

3. Show {g¢y},-; does not have a limit in Q.

3.1 The Real Numbers

Let C denote the collection of Cauchy sequences a = {a,},., C Q and say
a,b € C are equivalent (write a ~ b) iff lim, o |an — b,| = 0. (The reader
should check that “ ~ 7 is an equivalence relation.)

d.3.3| Definition 3.3. A real number is an equivalence class, a:={b€C:b~ a}
associated to some element a € C. The collection of real numbers will be
denoted by R. For g € Q, let i (q) = a where a is the constant sequence a,, = q
for allm € N. We will simply write 0 for i (0) and 1 fori(1).

Exercise 3.4. Given a,b € R show that the definitions

—a=(—a), at+b:=(a+b)anda-b:=a-b

S 50
! This fact also shows that the intermediate value theorem, (See Theorem @7

below.) fails when working with continuous functions defined over Q.
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3.1 The Real Numbers 11

are well defined. Here —a, a + b and a - b denote the sequences {—an}zo:l,

{an + by}, and {a, - by}, | respectively. Further verify that with these op-
erations, R becomes a field and the map 7 : Q — R is injective homomorphism
of fields. Hint: if @ # 0 show that @ may be represented by a sequence a € C
with |a,| > & for all n and some N € N. For this representative show the
sequence a1 = {a;l}zozl € C. The multiplicative inverse to @ may now be

constructed as: % =al:= {agl}f;r
Definition 3.4. Let a,b € R. Then

1. a > 0 if there exists an N € N such that a,, > ﬁ for a.a. n.

2.a > 0 iff either a > 0 or a = 0. Equivalently (as the reader should verify),
a >0 iff for all N € N, a,, > —% for a.a. n.

3. Writea>borb<aifa—b>0

4. Writea>borb<a ifd—?)zO.

Exercise 3.5. Show “ > 7 make R into a linearly ordered field and the map
1 : Q — R preserves order. Namely if a,b € R then

1. exactly one of the following relations hold: @ < bora>bora=bh.
2.Ifa>0andb>0thena+b>0and a-b>0.
3. Ifg,r € Q then ¢ <riff i(q) <i(r).

The absolute value of a real number a is defined analogously to that of
a rational number by
_ a ifa>0
lal =

—aifa<0’
Observe this definition is consistent with our previous definition of the abso-
lute value on Q, namely i (|g|) = |i(¢)|. Also notice that a = 0 (i.e. a ~ 0

where 0 denotes the constant sequence of all zeros) iff for all N € N, |a,,| < %
for a.a. n. This is equivalent to saying |a| < ¢ (%) forall N e Niffa=0.

Exercise 3.6. Given @, b € R show
|ab| = |a| |b| and |a+b| < |a| + [b] .
The latter inequality being referred to as the triangle inequality.
By exercise g
la| = |a—b+b| <|a—b|+|b|

and hence B -
la| — || < |a — b

and by reversing the roles of @ and b we also have

—(lal - [p]) = |8 — lal < [b—a| = |a—B|.
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12 3 A Brief Review of Real and Complex Numbers

Therefore ||a| — |b|| < |a — b| and in particular if {a,},.; C R converges to
a € R then
[lan] — lal| < |an, —al — 0 as n — oo.

Definition 3.5. A sequence {a,} ., C R converges to a € R if |a — a,| —
0 as n — o0, i.e. if for all N € N, |a—a,| <1 (%) for a.a. n. As before if
{a,},2, converges to a we will write @, — @ as n — 0o or @ = lim,_, Gy,

Remark 3.6. The field i (Q) is dense in R in the sense that if @ € R there
exists {gn},—, C Q such that i(g,) — a as n — oco. Indeed, simply let
qn = an Where a represents a. Since a is a Cauchy sequence, to any N € N
there exits M € N such that
1 1 ‘ 1
—Ngam—angﬁ or all m,n>M

and therefore

1
i(am)—agi(N> for all m > M.

|
A/~
==
N~
IN

This shows
. _ ) (1
i (gm) —a| = li(am) —al < <N) for all m > M

and since N is arbitrary that i (g,,) — @ as m — oo.

oo

Definition 3.7. A sequence {a,},_; C R is Cauchy if |a, — @n| — 0 as
m,n — oo. More precisely we require for each N € N that |Gy, — an| < i (%)
for a.a. pairs (m,n).

3.1 .3.2
Exercise 3.7. The analogues of the results in Exercises ﬁa—mﬁma with
Q replaced by R. (We now say a subset A C R is bounded if there exists

M € N such that [\ < i (M) for all A € A.)

For the purposes of real analysis the most important property of R is that
it is “complete.”

Theorem 3.8. The ordered field R is complete, i.e. all Cauchy sequences in
R are convergent.

Broof. Suppose that {a(m)} >_, is a Cauchy sequence in R. By Remark
ﬁ.ﬁwe may choose ¢, € Q such that

la(m) —i(gm)| <i(m™"') for all m € N.

Given N € N, choose M € N such that |a(m)—a(n)| < i (N7!) for all
m,n > M. Then
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3.1 The Real Numbers 13

i (gm) =i (gn)| < [P (gm) —a(m)[ +a(m) —a(n)|+ |a(n) —i(gn)l
<i(m ) 4+i(n ) +i(NT!

and therefore
|gm — qn] < m~t+nt 4+ N~ for all m,n > M.

It now follows that ¢ = {am},7_, € C and therefore ¢ represents a point g € R.
Using Remark and the triangle inequality,

la(m) —ql <la(m)—i(gm)|+i(gm) - ql
<i(m™) +i(gm) —q — 0asm— oo
)

and therefore lim,, . @ (m) = q. [

Definition 3.9. A number M € R is an upper bound for a set A C R if
A< M for all X\ € A and a number m € R is an lower bound for a set
ACR i XN>m for all A € A. Upper and lower bounds need not exist. If A
has upper (lower) bound, A is said to be bounded from above (below).

Theorem 3.10. To each non-empty set A C R which is bounded from above
(below) there is a unique least upper bound denoted by sup A € R (respec-
tively greatest lower bound denoted by inf A € R).

Proof. Suppose A is bounded from above and for each n € N, let m,, € Z

be the smallest integer such that i (%) is an upper bound for A. The sequence
qn = G is Cauchy because ¢, € [¢gn — 27", ¢, NQ for all m > n, ie.

|G — qn| <2700 — 0 a5 m,n — oo.

Passing to the limit, n — oo, in the inequality i (g,) > A, which is valid for
all A € A implies
g= lim i(g,) > A forall A € A.

Thus q is an upper bound for A. If there were another upper bound M € R for
A such that M < @, it would follow that M < i(g,) < g for some n. But this
is a contradiction because {g,}.., is a decreasing sequence, i (g,) > i (gm)
for all m > n and therefore i (¢,,) > ¢ for all n. Therefore g is the unique least
upper bound for A. The existence of lower bounds is proved analogously. m

Proposition 3.11. If {a,},, C R is an increasing (decreasing) sequence
which is bounded from above (below), then {a,} -, is convergent and

lim a, =sup{a,:n €N} (lim a, =inf{a, :n € N}).
n—oo

n—00

If A C R is a set bounded from above then there exists {\,} C A such that
A T M :=sup A, asn — oo, i.e. {\,} is increasing and lim, o Ay, = M.
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14 3 A Brief Review of Real and Complex Numbers

Proof. Let M :=sup {a, : n € N}, then for each N € N there must exist
m € N such that M — i (Nfl) < a, < M. Since a,, is increasing, it follows
that
M—i(N_l) < a, < M for all n > m.

From this we conclude that lim a,, exists and lima,, = M. If M = sup A, for
each n € N we may choose \,, € A such that

M—i(n™") <X <M. (3.2)

By replacing A, by max {\,..., )\n}ﬂ if necessary We may assume that A, is
increasing in n. It now follows easily from Eq. @_ﬂhat lim, .oo Ay =M. =

3.1.1 The Decimal Representation of a Real Number

Leta € Rora€Q mnéeZand S:=>,_ of Ifa=1then Y, o
m —n + 1 while for a # 1,

OéS— S — am—i—l _ an

and solving for S gives the important geometric summation formula,

m m+1l _ n
k=n

.3
Taking a = 107! in Eq. @—Hﬂplies

i‘: 10—k — 10-(m+H —10-" 1 1-10"(m""
— B 10-1 -1 10t 9

and in particular, for all M > n,

n}gfloz 107" ~ 9. 1on 9.10n1 = Z 107,

Let D denote those sequences « € {0,1,2,... ,9}Z with the following prop-
erties:

1. there exists N € N such that a_,, = 0 for all n > N and
2. an # 0 for some n € Z.

2 The notation, max A, denotes sup A along with the assertion that supA € A.
Similarly, min A = inf A along with the assertion that inf A € A.
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3.1 The Real Numbers 15

Associated to each « € D is the sequence a = a (a) defined by

Ay 1= Zn: aklofk.

k=—00
Since for m > n,
- = 1 1
lom —an = | 3 @l07F <9 B 107F <95—00 = 1o
k=n+1 k=n+1
it follows that
|am—an\§m—>0asm,n—>oo.

Therefore a = a () € C and we may define a map D : {£1} x D — R defined
by D (g,a) = ea(a). As is customary we will denote D (¢, ) = ea () as

€ Q.. .0Q.O QD ... ... (34) |e.3.4

where m is the largest integer in Z such that oy, = 0 for all k <m. If m >0
the expression in Eq. should be interpreted as

€-0.0...00mams1 - --

An element a € D has a tail of all 9’s starting at N € N if a,, = 9 and for
allm > N and ay_1 # 9. If « has a tail of 9’s starting at N € N, then for
n> N,

N—-1 n
an (o) = Z 1077 +9 Z 107F
k=N

k=—o0

N-1
1—10-(=N)
= Z ak107k+ 9 : 0

10N-1 9
k=—oc0
N—1
— Z ozklO*k +10" V=D as n — oo.
k=—o00

If o/ is the digits in the decimal expansion of ZkN;_loo apl0=F 4+ 10~-(N=1),
then
o' €D :={a €D: « does not have a tail of all 9’s}.

and we have just shown that D (e,a) = D (e, ') . In particular this implies

D ({£1} xD') = D ({£1} x D). (3.5) [e.3.5
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16 3 A Brief Review of Real and Complex Numbers

Theorem 3.12 (Decimal Representation). The map
D : {#1} x D'— R\ {0}
s a bijection.

Proof. Suppose D (¢,«) = D (4, 3) for some (e, «) and (4, ) in {£1} x D.
Since D (e,a) > 0ife =1 and D (e,a) < 0if ¢ = —1 it follows that e = 4. Let
a = a(a) and b = a(8) be the sequences associated to « and § respectively.
Suppose that @ # ( and let j € Z be the position where o and § first
disagree, i.e. o, = B, for all n < j while a; # ;. For sake of definiteness
suppose 3; > «;. Then for n > j we have

by —an = (8; —a;) 1077 + Y (B —ax) 107"
k=j+1
. n ) 1
>1077 — —F>1077 — -
> 10 9 Z 107% > 10 9557 =0
k=j+1

Therefore b,, —a,, > 0 for all n and lim (b, — a,,) =0iff §; = a;+1 and B =9
and ag = 0 for all k > j. In summary, D (¢,a) = D (9, 3) with « # 3 implies
either o or 8 has an infinite tail of nines which shows that D is injective when
restricted to {1} x I’. To see that D is surjective it suffices to show any
b€ R with 0 < b < 1 is in the range of D. For each n € N, let a,, = .oy ...,
with «; € {0,1,2,...,9} such that

i(an) <b<i(a,)+i(107"). (3.6)

Since ap+1 = an + apy1 10~ (1) for some ant1 € {0,1,2,...,9}, we see that
Gpt1l = O ...0p0n41, 1.e. the first n digits in the decimal expansion of a, 41
are the same as in the decimal expansion of a,,. Hence this defines «,, uniquely
for all n > 1. By setting a,, = 0, when n < 0, we have constructed from b an
element o € D. Because of Eq. LD (1,a) =b. |

Notation 3.13 From now on we will identify Q with i (Q) C R and elements
in R with their decimal expansions.

To summarize, we have constructed a complete ordered field R “contain-
ing” Q as a dense subset. Moreover every element in R (modulo those of the
form m10~™ for some m € Z and n € N) has a unique decimal expansion.

Corollary 3.14. The set (0,1) := {a € R: 0 < a < 1} is uncountable while
QnN(0,1) is countable.

Proof. By Theorem @%ﬁghe set {0,1,2..., }N gan be mapped injectively
into (0, 1) and therefore it follows from Lemma [236[that (0,1) is uncountable.
For each m € N, let A,, := {2 :n € Nwithn <m}. Since Q}( L) =
U_, A, and # (A,,) < oo for all m, another application of Lemma [2.6[shows
Qn(0,1) is countable. |
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3.2 The Complex Numbers 17
3.2 The Complex Numbers

Definition 3.15 (Complex Numbers). Let C = R? equipped with multipli-
cation rule

(a,b)(c,d) := (ac — bd, bc + ad) (3.7

and the usual rule for vector addition. As is standard we will write 0 = (0,0),
1 = (1,0) and i = (0,1) so that every element z of C may be written as
z = zl1 + yi which in the future will be written simply as z = x + 1y. If
z=x+1y, let Rez =z and Im z = y.

Writing z = a + ib and w = ¢ + id, the multiplication rule in Eq. @T

becomes
(a4 b)(c+id) := (ac — bd) + i(bc + ad) (3.8)

and in particular 12 = 1 and 2 = —1.

Proposition 3.16. The complex numbers C with the above multiplication

rule satisfies the usual definitions of a field. For example wz = zw and
z (w1 +we) = zwy + zws, etc. Moreover if z # 0, z has a multiplicative
inverse given by
b
P L . (3.9)

a?+b  a?+b?

Proof. The proof is a straightforward verification. Only the last assertion
will be verified here. Suppose z = a + 1 Q we wish to find w = ¢+ id such
that zw = 1 and this happens by Eq.

ac —bd =1 and (3.10)
bc+ad = 0. (3.11)
Solving these equations for ¢ and d gives ¢ = (LQLW and d = faz—ibz as claimed.

Notation 3.17 (Conjugation and Modulus) If z = a + ib with a,b € R
let Zz=a—1b and

2] := V2Z = Va2 + b2 = \/|Re z|* + [Im 2.

See Exercisei%fé for the existence of the square oot as a positive real number.

Notice that

Rez:%(erZ) and Imz:%(sz)- (3.12)
i

Proposition 3.18. Complex conjugation and the modulus operators satisfy
the following properties.

1.

W

:Z’
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18 3 A Brief Review of Real and Complex Numbers

2.0 =Zw and Z+ W = z + w.

4. |zw| = |z| |w| and in particular |2"| = |z|" for all n € N.

5. |Rez| <|z| and |Im z| < |2|

6. |z 4+ w| < |z + |wl|.

7.2=0iff |z| = 0. i

8. If 2 # 0 then 271 = e (also written as 1) is the inverse of z.
9. 127 = 12| and more generally |2"| = |2|" for all n € Z.

Proof. All of these properties are direct computations except for possibly
the triangle inequality in item 6 which is verified by the following computation;

2+ w’ = (2 + w) GFw) = |2 + [w]® + wz + w2
= 2> + |w|® + wz + wz
= |2)* + |w|® + 2Re (w2) < |2]> + |w|* + 2|2 |w]
= (2] + [w])*.
]

Definition 3.19. A sequence {z,},., C C is Cauchy if |z, — 2| — 0 as
m,n — oo and is convergent to z € C if |z — z,| — 0 as n — co. As usual

] o t i1 writ =1
if {Zn}nzl converges to z we will write z, — z asn — 00 or z = llMy,_, 5 Zp.

Theorem 3.20. The complex numbers are complete,i.e. all Cauchy sequences
are convergent.

Proof. This follows from the completeness of real numbers and the easily
proved observations that if z,, = a,, + ib,, € C, then
1. {z,},—, C Cis Cauchy iff {a,},-, C R and {b,}, -, C R are Cauchy
and
2.z, v 2z=a+1ibasn— xiff a,, — a and b, — b as n — oo.

3.3 Exercises

Exercise 3.8. Show to every a € R with a > 0 there exists a unique number
b € R such that b > 0 and b? = a. Of course we will call b = y/a. Also show
that @ — v/a is an increasing function on [0, c0). Hint: To construct b = v/a
for a > 0, to each n € N let m,, € Ny be chosen so that

2 w4 1) 2 nt 1)
mn<a§<m+>i_e_i(7n;><a§i (mn +1)°
n

n2 n2 n2

and let g, := ™=. Then show b = {g,}.—, € R satisfies b > 0 and b = a.

n n=1
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4

Limits and Sums

s 21| 4.1 Limsups, Liminfs and Extended Limits

n.4.1| Notation 4.1 The extended real numbers is the set R := RU {0}, i.e. it
is R with two new points called oo and —oco. We use the following conventions,
+00-0=0, £oo+a = +oo for anya € R, 0o+ 00 = 00 and —0o — 00 = —00
while 0o — 0o is not defined. A sequence a, € R is said to converge to oo
(—o0) if for all M € R there exists m € N such that a, > M (a, < M) for
allm > m.

1.4.2] Lemma 4.2. Suppose {a,}ro, and {b,} >, are convergent sequences in R,
then:

1. If an < by, for a.a. n then limy o0 an < limy o0 by
2. If c e R, lim,, o (cay,) = clim, o0 ay.
3. If {an + by }2 | is convergent and

lim (a, +b,) = lim a, + lim b, (4.1)

n—oo n—oo n— oo

provided the right side is not of the form co — oco.
4. {anbn}f;l is convergent and

lim (a,b,) = lim a, - lim b, (4.2)

n—oo n—oo n—oo
provided the right hand side is not of the for oo - 0.

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

oo ifa<l
lim (a,, + b,) = 0 ifa=1
—oifa>1

while
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lim a, + lim b,“ ="00 — 0.

n—oo n—oo 1
This shows that the requirement t ahe right side of Eq. s not of form
00 — 00 is necessary in Lemma imilarly by considering the examples

a, =n and Ef :1_ ¢ with o > 0 shows the necessity for assuming right hand
side of Eq. is not of the form oo - 0.

Proof. The proofs .flitems 1. and 2. are left to the reader.

Proof of Eq. . Let a := lim,, . a, and b = lim,,_,, b,. Case 1.,
suppose b = co in which case we must assume a > —oo. In this case, for every
M > 0, there exists N such that b, > M and a,, > a — 1 for all n > N and
this implies

ap +b,>M-+a—1foralln> N.

Since M is arbitrary it follows that a, 4+ b, — 0o as n — b = co. The cases
where b = —oc0 or a = o0 are handled similarly. Case 2. If a,b € R, then for
every € > 0 there exists IV € N such that

la —a,| <eand |b—1b,| <eforaln>N.
Therefore,
la+b—(an+by)|=la—an+b—0, <la—a,|+|b—0b,| <2

for all n > N. Since n. i .afbitrary, it follows that lim, . (a, + b,) = a +b.

Proof of Eq. . It will be left to the reader to prove the case
where lima, and limb, exist in R. I will only consider the case where
a = lim, . a, # 0 and lim, ., b, = oo here. Let us also suppose that
a > 0 (the case a < 0 is handled similarly) and let o := min (%,1). Given
any M < oo, there exists N € N such that a, > o and b, > M for alln > N
and for this choice of N, a,b, > Ma for all n > N. Since o > 0 is fixed and
M is arbitrary it follows that lim,, . (anb,) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup 4 = oo
if oo € A or A is not bounded from above and inf A = —co if —oco € A or A is
not bounded from below. We will also use the conventions that sup ) = —oo
and inf ) = +o0.

Notation 4.3 Suppose that {xn}zo:l C R is a sequence of numbers. Then

lim inf x, = lim inf{xy : k > n} and (4.3)
lim sup z, = lim sup{zy:k > n}. (4.4)

We will also write lim for liminf and lim for limsup .

Remark 4.4. Notice that if ag := inf{xy : k£ > n} and by := sup{ay : k >

n}, then {ay} is an increasing sequence while {bx} is a decreasing sequence.
Therefore the limits in Eq. and Eq. always exist in R and
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4.1 Limsups, Liminfs and Extended Limits 21
lim inf x, =supinf{zy : k> n} and
n—oo n

lim sup z, = infsup{zy : k > n}.
n—oo n
The following proposition contains some basic properties of liminfs and
limsups.

p.4.5| Proposition 4.5. Let {a,}52, and {b,}32, be two sequences of real numbers.
Then

1. liminf, .o a, <limsup,,_, ., @, and lim, .o an exists in R iff

lim inf @, = lim sup a, € R.

n—0o0 n— 00

2. There is a subsequence {an, }3>, of {an}Se; such that limg_ o an, =

lim sup,,_, o @n.
3.

lim sup (a, + by,) <lim sup a, + lim sup b, (4.5)
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.

4. If ap, > 0 and b, > 0 for alln € N, then

lim sup (apb,) < lim sup a, -lim sup by, (4.6)
.6
provided the right hand side of s not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an
exercise to the reader. Since

inf{a : k > n} <sup{ay : k > n} Vn,
lim inf a, <lim sup a,.

n—0o0 n— o0

Now suppose that liminf, .. a, = limsup,_, ., a, = a € R. Then for all
€ > 0, there is an integer N such that

a—e<inf{ag: k> N} <sup{ar: k> N} <a+e,

i.e.
a—e<ap<a-+eforal k> N.

Hence by the definition of the limit, limy .o ax = a. If liminf, .. a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M <inf{ay : k> N}
and hence lim,,_, ., a, = 0o. The case where limsup,,_, ., a, = —oo is handled

similarly.
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22 4 Limits and Sums

Conversely, suppose that lim, . a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |A — a,| < e for all n > N(e),
i.e.

A—e<a, <A+c¢eforalln> N(e).

From this we learn that

A—e<lim inf a, <lim sup a, < A +e¢.

n—0o0 n— o0
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A4,

n—00 n— oo

i.e. that A = liminf, . a, = limsup,,_,, an. If A = o0, then for all M > 0
there exists N(M) such that a, > M for all n > N(M). This show that
liminf, . a, > M and since M is arbitrary it follows that

oo < lim inf a, <lim sup a,.
n—oo n— oo

The proof for the case A = —o0 is analogous to the A = oo case. ]

4.2 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
«a CC X to denote that « is a finite subset of X and write 2;( for those
a CC X.

Definition 4.6. Suppose that a : X — [0,00] is a function and F C X is a
subset, then

Za: Za(m) = sup{Za(x):aCC F}

zeF TEQ
Remark 4.7. Suppose that X =N ={1,2,3,...} and a : X — [0, 00], then

N

Za = Z a(n) = ngnoo a(n).
N n=1

n=1

Indeed for all N, 25:1 a(n) < Y ya, and thus passing to the limit we learn
that

oo

Z a(n) < Za.
N

n=1
Conversely, if « CC N, then for all N large enough so that « C {1,2,..., N},
we have > a < Zi:[:l a(n) which upon passing to the limit implies that
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4.2 Sums of positive functions 23

Mx

D ac<

[ n

a(n).

Il
-

Taking the supremum over « in the previous equation shows

Zaﬁ Za(n)
N n=1

Remark 4.8. Suppose a : X — [0,00]and ) a < oo, then {z € X : a(x) > 0}
is at most countable. To see this first notice that for any € > 0, the set
{z : a(x) > €} must be finite for otherwise > a = co. Thus

{reX:a(z)>0}= UZO:1{CU ca(z) > 1/k}

which shows that {z € X nafr)> 0} is a countable union of finite sets and
thus countable by Lemma

Lemma 4.9. Suppose that a,b: X — [0,00] are two functions, then

Z Za+2band
Z)\af)\Za

for all A > 0.

I will only prove the first assertion, the second being easy. Let & CC X be
a finite set, then

D (a+b) = Za+2b<2a+2b
which after taking sups over a shows that
da+b) <> a+d b
X X X
Similarly, if o, 3 CC X, then

Za+2b<2a+2b—z a+b) < ;a—i-b.

aug aUg aug

Taking sups over a and 8 then shows that

da+d) b<> (a+b).
X X X
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24 4 Limits and Sums

Lemma 4.10. Let X and Y be sets, R C X xY and suppose that a : R — R
is a function. Let ;R :={y €Y : (z,y) € R} and R, :={z € X : (z,y) € R}.
Then

sup a(z,y) = sup sup a(x,y) = sup sup a(x,y) and

(z,y)ER reX yEa R yeY z€R,
inf a(x,y) = inf inf a(x,y) = inf inf a(z,y).
(z,y)ER ( y) zeX yEx R ( y) yeY zeR,, ( y)
(Recall the conventions: sup ) = —oo and inf ) = 400.)

Proof. Let M = sup, ,yep a(7,y), Nz := sup,e, g a(z,y). Then a(z,y) <
M for all (z,y) € R implies N, = sup,c g a(r,y) < M and therefore that

sup sup a(z,y) = sup N, < M. (4.7)
rzeX yex R rzeX

Similarly for any (z,y) € R,

a(x,y) < Ny < sup N, = sup sup a(z,y)

reX rzeX yex R
and therefore
M = sup a(z,y) < sup sup a(z,y) (4.8)
(z,y)ER reX yEa R

7 .8
Equations (ﬁand @how that

sup a(z,y) = sup sup a(x,y).
(z,y)ER zeX ye R

The assertions involving infimums are proved analogously or follow from what
we have just proved applied to the function —a. [ |

Fig. 4.1. The x and y — slices of aset R C X x Y.
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4.2 Sums of positive functions 25

Theorem 4.11 (Monotone Convergence Theorem for Sums). Suppose
that fy, : X — [0,00] is an increasing sequence of functions and

f(x)ZZZIHD jg(x)::s%pj%(x)

n—oo

Then

Jn > =21
X X

Proof. We will give two proves.
First proof. Let

2 ={ACX:Acc X}

Then
lim an = supin = sup sup an = sup supin
nee n oae2¥ 75 ag2¥ n
= sug{ nh_)rr;ton = as;];; gnh_{rgo fn
=sup » f= Zf
OzEQX

(o3

Second Proof. Let S,, =3 fn, and S = f. Since f, < f,,, < f for all
n < m, it follows that
Sp <Sm <8

which shows that lim,,_, . 5, exists and is less that S, i.e.
A= lim Y fa<Yf. (4.9)
X X
Noting that > fn <>y fn =Sn < Afor all @ CC X and in particular,

anSAforallnandach.

Letting n tend to infinity in this equation shows that

Y f<Aforallacc X

and then taking the sup over all « CC X gives
D f<A=lim Y f, (4.10)
X X
.9
which combined with Eq. (@proves the theorem. [
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26 4 Limits and Sums

Lemma 4.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0, 0]

is a sequence of functions, then
E lim inf f, <lim inf E fn-
x n—oo n—oo X

Proof. Define g; := ugf]; fn so that gx T liminf, . f, as & — oo. Since

gr < fn for all k < n,
ngSanforallnzk
X X

and therefore
E gr < lim inf E fn for all k.
X n—oo X

We may now use the monotone convergence theorem to let & — oo to find

o . MCT . L
§llmn1££ofn—;klir&gk = kllrgo;g’“ghmnlﬂgo;f”'

Remark 4.13.1f A = 3y a < oo, then for all ¢ > 0 there exists a. CC X
such that
A> Za >A—¢

for all @« CC X containing a. or equivalently,
A-— Z a
e

for all « CC X containing a.. Indeed, choose . so that Zae a>A—=¢.

<e (4.11)

4.3 Sums of complex functions

n
IS
w

d.4.14| Definition 4.14. Suppose that a : X — C is a function, we say that
o= Y ato
X reX

exists and is equal to A € C, if for all € > 0 there is a finite subset o, C X
such that for all « CC X containing ae we have

A—Za

<e.
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4.3 Sums of complex functions 27

The following lemma is left as an exercise to the reader.

Lemma 4.15. Suppose that a,b : X — C are two functions such that ) a
and )" b exist, then ) (a + \b) exists for all X € C and

Y (a+x0) = Z a+ A Z b.
X
Definition 4.16 (Summable). We call a function a : X — C summable if
Z la] < oo.
X

Proposition 4.17. Let a : X — C be a function, then )y a exists iff

Yoy lal < oo, i.e. iff a is summable. Moreover if a is summable, then

<> lal.
X

+ +
Proof. If )", |a Jhen 37y (Rea)™ < oo and } y (Ima) 14
and hence by Remar ese sums exists in the sense of Definition

Therefore by Lemma o exists and

Za:Z(Rea Z (Rea)™ '(Z(ImaﬁZ(Ima)).

X X X X

Conversely, if >~ |a| = oo then, because |a| < |[Rea|+ [Ima|, we must

have
Z |Rea| = oo or Z Imal =
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where

at(z) = max(a(z),0) and a~ (z) = max(—a(z),0). (4.12)

Then |a| =a™ +a™ and
oo=Z|a|:Za++Za_
X X X

which shows that either Yy a™ = oo or Yy a~ = co. Suppose, with out loss
of generality, that ) a® = co. Let X’ := {z € X : a(z) > 0}, then we know
that )y, a = oo which means there are finite subsets o, C X’ C X such
that >0, a > n for all n. Thus if @« CC X is any finite set, it follows that
limy, 00 Y Sq,ua @ = 00, and therefore )y a can not exist as a number in R.
Finally if a is summable, write ) a = pe’ with p > 0 and 6§ € R, then
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28 4 Limits and Sums

zx:a =p= e_wzx:a = zX:e_wa
= SRe [ < 3 (Re )
S;mwﬁmg;w%u;m.

Alternatively, this may be proved by approximating ) y a by a finite sum and
then using the triangle inequality of || . ]

Remark 4.18. Suppose that X = N and a : N — C is a sequence, then it is
not necessarily true that

a(n) = Z a(n). (4.13)
n=1 neN
This is because
) N
Z a(n) = A}gnoo a(n)
n=1 n=1

depends on the ordering of the sequence a where as ) a(n) does not. For
example, take a(n) = (—1)"/n then ) _yla(n)] = oo ie. Y ya(n) does
not exist while -7 ; a(n) does exist. On the other hand, if

Y latm) =) la(n)| < oo
n=1

neN

13
then Eq. @_m valid.

Theorem 4.19 (Dominated Convergence Theorem for Sums). Suppose
that f, : X — C is a sequence of functions on X such that f(x) =
lim, o fn(xz) € C exists for all x € X. Further assume there is a domi-
nating function g : X — [0,00) such that

|fr(2)] < g(z) for allz € X andn € N (4.14)

and that g is summable. Then
tm 3 fula) = Y (). (4.15)
zeX reX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,
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4.3 Sums of complex functions

D (g )= lim inf (9= f,) <lim inf > (g% fn)
X X X
= g+lim inf (ian>.
X

X

Since liminf, . (—a,) = —limsup,,_, ., an, we have shown,
liminf, oo D 5 fn
DIVED DIED DYER it ivhmasts
X X X hm Supn%oo ZX fTL
and therefore

hmsupin<Zf<hm inf an

n—oo

This shows that hm > x fnexists and is equal to ) f

29

Proof. (Second Proof) Passing to the limit in Eq. @hows that |f] <
g and in particular that f is summable. Given € > 0, let & CC X such that

ZQS&
Then for § CC X such that o C £,
DDt =D (F— 1)
B8 B B8
<Z\f fn\—ZIf Ful £ 1 = fal

B\a
< Z\f fal 2> g
B\a
< U Sl + 26

and hence that
SF=D Fal DN = fal + 26
B B o

Since this last equation is true for all such 8 CC X, we learn that

7an
X

Sz‘fffn‘+2€

which then implies that
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30 4 Limits and Sums

SF=> fn

lim sup
n—oo

< lim su E — ful + 2¢
hS : p |f = fal
= 2¢.

Because € > 0 is arbitrary we conclude that
lim sup Z f- Z fn

15
which is the same as Eq. @ [
19

Remark 4.20. Theorem may easily be generalized as follows. Suppose

fns> 9n, g are summable functions on X such that f,, — f and g,, — g pointwi, €y
|fn] < gnand )"y gn — > g asn — oo. Then f is summable and Eq.
still holds. For the proof we use Fatou’s Lemma to again conclude

> (g )= lim inf (9o % fu) <lim inf > (gn £ fo)
X X

X
= g g+ lim inf (j: E fn>
X n—oo X

19
and then proceed exactly as in the first proof of Theorem ﬁ

=0.

s.4.4] 4.4 Tterated sums and the Fubini and Tonelli Theorems

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 4.21. Suppose that a : X — C is function and F C X is a subset
such that a(z) =0 for all x ¢ F. Then Y, a exists iff > y a exists and when

the sums exists,
E a= g a.
X F

Theorem 4.22 (Tonelli’s Theorem for Sums). Suppose thata: X xY —
[0, 00], then
doa=) D a=) ) e
XxY X Y Y X
Proof. It suffices to show, by symmetry, that
D a=) ) a
XxY X Y

Let A CC X x Y. The for any « CC X and f CC Y such that A C a x 3, we
have
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4.4 Tterated sums and the Fubini and Tonelli Theorems 31

ZA:aS Zazzzﬁzaﬁ;gaﬁ;;a,

axf [eY

ie. > 4 a <) >y a. Taking the sup over A in this last equation shows
RSP
X XY X v

For the reverse inequality, for each x € X choose 5% CC X such that 5% T as

n T and
> a(z,y) = Jim > a(z,y).

yey yeEBY

If « CC X is a given finite subset of X, then

Z a(z,y) = lim Z a(z,y) for all z € a

yeY YEPBn

where 8, = Uzea [ CC X. Hence

S Y=Y Jin Y ateg) = i 3 Y alwy)

rEaycY rTEQ YELn TEX YEL,
= lim E a(z,y) < g a.
n—00
(z,y)€axfn XxY

Since « is arbitrary, it follows that

Z Za(x,y) = asCuCpXZ Za(w,y) < Z a

rzeX yey rEayey XxY
which completes the proof. [

Theorem 4.23 (Fubini’s Theorem for Sums). Ngyo suppose that a : X x
Y — C is a summable function, i.e. by Theorem any one of the following
equivalent conditions hold:

1.3 x ey laf < oo,
2.3 >y lal < oo or
3.2y dox lal < oo
Then
Y 0= Y=Y Y
X Y

Y X

Proo G X — R is real valued the theorem follows by applying
Theorem 0 a® — the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a. ]
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32 4 Limits and Sums

4.5 Exercises

Exercise 4.1. Now suppose for each n € N :={1,2,...} that f,, : X - R is
a function. Let
D:={reX: lim f,(x)=+oc0}
n—oo

show that
D =N%o1 UNey Mpsn{z € X @ fi(z) > M}, (4.16)

Exercise 4.2. Let f,, : X — R be as in the last problem. Let

C:={xeX: lim f,(z) exists in R}.

16
Find an expression for C' similar to the expression for D in @ (Hint: use
the Cauchy criteria for convergence.)

4.5.1 Limit Problems
Exercise 4.3. Show liminf,, ,o(—ay,) = —limsup,,_, . an.

Exercise 4.4. Suppose that limsup,, ., a, = M € R, show that there is a
subsequence {a,, }32, of {a,}0%, such that limy_ o an, = M.

Exercise 4.5. Show that

lim sup(a,, + b,) < limsup a,, + limsup by, (4.17)
n—oo n—oo n—oo
17
provided that the right side of Eq. is well defined, i.e. no co — 0o or
—00 + 00 type expressions. (It is OK to have 0o+ 00 = 00 or —00 — 00 = —00,
etc.)

Exercise 4.6. Suppose that a, > 0 and b,, > 0 for all n € N. Show

lim sup(a,by,) < limsup a, - limsup by, (4.18)
18
provided the right hand side of 1s not of the form 0 - 0o or oo - 0.

15
Exercise 4.7. Prove Lemmaﬁ
21
Exercise 4.8. Prove Lemma%

Let {a,}52, and {b,}52; be two sequences of real numbers.
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4.5 Exercises 33
4.5.2 Dominated Convergence Theorem Problems

Notation 4.24 Forug € R"™ and § > 0, let By, () := {z € R" : |z — ug| < ¢}
be the ball in R™ centered at ug with radius 0.

Exercise 4.9. Suppose U C R™ is a set and ug € U is a point such that
U N (By(0)\{ug}) # 0 for all § > 0. Let G : U \ {ug} — C be a function
on U \ {up}. Show that lim,,,,, G(u) exists and is equal to A\ € (CE| iff for all
sequences {u,},~; C U\ {up} which converge to ug (i.e. limy, oo up, = ug)
we have lim,, o, G(u,) = A.

exr.4.10| Exercise 4.10. Suppose that YV isaset, U CR"isaset,and f:UxY — C
is a function satisfying:

1. For each y €Y, the function u € U — f(u,y) is continuous on UE|
2. There is a summable function g : Y — [0, 00) such that

|f(u,y)| < g(y) forally € Y and u € U.

Show that

Py =" flu,y) (4.19)

yey

is a continuous function for v € U.

Exercise 4.11. Suppose that Y is a set, J = (a,b) C R is an interval, and
f:+JxY — Cis a function satisfying:

1. For each y € Y, the function u — f(u,y) is differentiable on .J,
2. There is a summable function g : Y — [0, 00) such that

‘aauf(u,y)‘ <g(y) forally €Y and u € J.

3. There is a ug € J such that >y |f(uo,y)| < occ.
Show:
a) forall u € J that >y [f(u,y)| < occ.

! More explicitly, limy_, G(u) = X means for every every ¢ > 0 there exists a
0 > 0 such that

|G(u) — A| < € whenerver u € U N (Byy(0) \ {uo}).

2 Tosay g := f(-,y) is continuous on U means that g : U — C is continuous relative
to the metric on R™ restricted to U.
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34 4 Limits and Sums
b) Let F(u):=3_ oy f(u,y), show I is differentiable on J and that
)= 32 2 fuy)
ou”
yey
(Hint: Use the mean value theorem.)

Exercise 4.12 (Differentiation of Power Series). Suppose R > 0 and

{an},Zo is a sequence of complex numbgrs such that > a,|r™ < oo for
all r € (0, R). Show, using Exercise T) =) 2 a,z" is continuously
differentiable for z € (—R, R) and

o0 o0
fl(x) = Z na,z" ' = Z nap,z™ L.
n=0 n=1

Exercise 4.13. Show the functions

= nz%”:: (4.20)
) x n l.2n+1
sinz = T;(—l) @nil) and (4.21)
> n 1.277,
cosx = go (-1) @] (4.22)

are infinitely differentiable and they satisfy

d
%em =% with ¥ =1
d sinz = cosx with sin (0) =0
— sinz = cosz with sin (0) =
dz
d
7 COST == sinz with cos (0) = 1.

4.13
Exercise 4.14. Continue the notation of Exercise

1. Use the product and the chain rule to show,

— [efme@:m} —0

and conclude from this, that e %e(*t¥%) = ¢¥ for all 2,y € R. In particular
taking y = 0 this implies that e=* = 1/e® and hence that e(*+¥) = ¢V,
Use this result to show e” T oo as T oo and e” | 0 as x | —o0.

Remark: since e” > Zﬁ:}:O fT' when x > 0, it follows that lim,_, % =0
for any n € N, i.e. e” grows at a rate faster than any polynomial in = as
r — O0.
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4.5 Exercises 35

2. Use the product rule to show

i (cos2 x + sin? x) =0

dx

and use this to conclude that cos? z + sin® z = 1 for all = € R.

Exercise 4.15. Let {a,},- ___ be a summable sequence of complex numbers,
ie. Y07 lan| < oo. For t >0 and x € R, define

oo
F(t,x) = Z ane " e

n=—oo

here, as usual e = cos(z) + isin(z), this is moti aged by replaging = in Eq.
%‘by iz and comparing the result to Egs. %and @
1. F(t,x)is continmEus for (fyx) € [0,00)xR. Hint: Let Y = Zand u = (¢, z)

and use Exercise
2. OF (t,x)/0t, OF (t,x)/0x and §*F(t,z)/0z? exist for t > 0 and = € R.

Hint: Let Y = Z and u =t for computing 0F(t,z)/0f and y,= « for
computing OF(t,x)/0x and 9*F(t,x)/dx?. See Exercise @7
3. F satisfies the heat equation, namely

OF (t,z)/0t = 0*°F(t,z)/0x* for t > 0 and x € R.
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5

P — spaces, Minkowski and Holder Inequalities

In this chapter, let u: X — (0,00) be a given function. Let F denote either
Ror C. For p € (0,00) and f: X — F, let

£l == (3 1F @) ula)) P
zeX

and for p = oo let

[flloo = sup {[f(x)

rxe X},
Also, for p > 0, let
() ={f: X = F:[|fll, < oo}
In the case where pu(xz) =1 for all x € X we will simply write ¢2(X) for £°(u).

Definition 5.1. A norm on a vector space Z is a function ||-|| : Z — [0, 00)
such that

1. (Homogeneity) ||Afll = A ||f]| for all X € F and f € Z.
2. (Triangle inequality) || f + gl < || fIl + llgll for all f,g € Z.
3. (Positive definite) ||f|| = 0 implies f = 0.

A functionp : Z — [0,00) satisfying properties 1. and 2. but not necessarily
3. above will be called a semi-norm on Z.

A pair (Z,||-||) where Z is a vector space and ||-|| is a norm on Z is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 5.2. For p € [1,00], (¢ (u), || - |lp) s a normed vector space.

Proof. The only difficulty is the proof of the triangle in %ality which is
the content of Minkowski’s Inequality proved in Theorem below. [
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Proposition 5.3. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~!
and for s,t > 0 let

F(s) = /OS f(s)ds" and G(t) = /Ot g(t"dt'.
Then for all s,t > 0,
st < F(s) + G(t)
and equality holds iff t = f(s).
Proof. Let
As:={(o,7):0< 7 < f(o) for 0 < o < s} and

By :={(0,7):0< 0o <g(r) for 0 <7 <t}

then as one sees from Figure @;'[10, s] x [0,t] C AsU By. (In the figure: s = 3,
t =1, As is the region under ¢ = f(s) for 0 < s < 3 and B is the region to
the left of the curve s = g(t) for 0 < ¢t < 1.) Hence if m denotes the area of a
region in the plane, then

st =m([0,s] x [0,t]) < m(As) +m(B;) = F(s) + G(¢).

As it stands, this proof is a bit on the intuitive side. However, it will become
rigorous if one takes m to be Lebesgue measure on the plane which will be
introduced later. We can also give a calculus proof of this theorem under the
additional assumption that f is C'*. (This restricted version of the theorem is
all we need in this section.) To do this fix ¢ > 0 and let

h(s) = st — F(s) = /Os(t — f(o0))do.

If o > g(t) = f~1(t), then t — f(o) < 0 and hence if s > g(t), we have

s g(t) s
h(s) = / (t = f(0))do = / (t— F(0))do + / (= oo

g(t)
< / (t — F(0))do = h(g(#)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s € (0,t] and hence at a point where 0 = h/(s) = t — f(s). The only
solution to this equation is s = ¢g(t) and we have thus shown

g(t)
st — F(s) = hs) < / (t — f(0))do = h(g(t))
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with equality when s = g(t). To finish the proof we must show Og(t) (t —
f(o))do = G(t). This is verified by making the change of variables o = g(7
and then integrating by parts as follows:

g(t) t t
/0 (t - f(0))do = / (t = f(g(r))g ()dr = / (t - r)g'(r)dr
:/0 g(T)dr = G(t).

.3
Fig. 5.1. A picture proof of Proposition @

Definition 5.4. The conjugate exponent q € [1,00] to p € [1,00] is q := L=

p—1
with the conventions that ¢ = 0o if p=1 and ¢ =1 if p = co. Notice that q is

characterized by any of the following identities:

1 1

=L+ o p-L =t andqlp-1) =p. (5.1)
P q p q

Lemma 5.5. Letp € (1,00) and q := p%l € (1,00) be the conjugate exponent.
Then

sP 4
st< —+ — foralls,t >0
p q
with equality if and only if t9 = sP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~1 =t and g(t) = t7 1 =
t9~1 wherein we have used ¢ — 1 = 5 1) —1=1/(p—1). Therefore
G(t) = t7/q and hence by Proposition ]

sP 4
st < — + —
p q
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40 5 (P — spaces, Minkowski and Holder Inequalities

with equality iff ¢t = pgl, ie. t7 = s1»—1) = ¢»_ For those who do not want
to use Propositionﬁ_ﬂere is a direct calculus proof. Fix ¢t > 0 and let

p
h(s):=st— =
p
Then h (0) = 0, lims_. h(s) = —co and A’ (s) =t — sP~! which equals zero
iff s = ¢51. Since
t7eT b tPT 1\
h(tﬁ):tﬁt_ — 7T — :tf1<1_>:,
it follows from the first derivative test that

max h = max{h(O),h (tﬁ>} = max{O, t;} = ﬁ.

So we have shown

sP 7 R 1
st — — < — with equality iff ¢t = sP7".
p q

Theorem 5.6 (Holder’s inequality). Let p,q € [1,00] be conjugate expo-
nents. For all f,g: X — T,

I£glle < 11 £1lp - llgllq- (5-2)

I .62(1, o0) and f and g are not identically zero, then equality holds in Eq.

! AN/ lal
<||f||p> :<||gg|q> ' (5.3)

.2
Proof. The proof of Eq. or p € {1,00} is easy and will be left to
the reader. The cases where || f||; = 0 or oo or ||g|l, = 0 or co are easily dealt

with and are also left to the reader. So we will assume that p € (1, 00) %

0 < [Ifllg llglly < oo. Letting s = |f ()| /|| f]l, and t = |g]/|gllq in Lemma
implies

f@g@)] 1 1f@F 1 lg@I°

Ifllplglle =2 Wflle— a llgll?

with equality iff

S @ _ e 9@

=5 = . (5.4)
[1£1lp gl
Multiplying this equation by p (z) and then summing on z gives
1 1
If9ll1 <4121
Ifllpllglls — p  q
.4 .3
with equality iff Eq. @_ﬁolds for all x € X, i.e. iff Eq. @_ﬁolds. ]
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d.5.7| Definition 5.7. For a complex number X € C, let

A .
)= {7320

For A\, u € C we will write sgn(A\) = sgn(p) if sgn(A) = sgn(p) or Ap = 0.
t.5.8] Theorem 5.8 (Minkowski’s Inequality). If 1 < p < o0 and f,g € (P(u)

then
1f +gllp < [1f1lp + llgllp- (5.5) |e.5.5
ogeguer, assuming f and g are not identically zero, equality holds in Eq.

segn(f) = sgn(g) when p=1 and
f =cg for some ¢ > 0 when p € (1,0).

Proof. For p =1,
IfF gl =D 1F+aln <Y (flun+lglw) =D 1flu+> lglw
X X X X
with equality iff
|fl+ 19l =[f+g] <= sgn(f)=sgn(g).
For p = o0,
[f+ glloo = sup|f +g| <sup (|f|+|g])
X X

< sup |f| +suplgl = [|flloo + llglloo-
X X

Now assume that p € (1, 00). Since

[f + 9" < 2max (|f],[g]))" = 2" max (|f", [g") < 2" (|f" + |gI")

it follows that
I1f + gllb <27 ([ £15 + lgllp) < oo.

.5
Eq. (@Ts easily verified if || f + g||, = 0, so we may assume || f + g||, > 0.
Multiplying the inequality,

[f +9l” =1f +gllf + 9P < (If1 +1gDIf + 9P~ (5.6) [e.5.6

by u, then summing on = and applying Holder’s inequality two times gives

SUF+glPu <D I I +alP 7 n+d gl If + 9P
X X X

< /1y + llgll»)

\|f+g\1’*1Hq. 5.7) [e.5.7
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.1
Since ¢(p — 1) = p, as in Eq. @

If+glP~ g = Z(\f +gP ) Z If+alPu=If+glz (58

Combining Egs. (ﬁand @ hows

1+ gl < (£l + lgllp) 1S+ gll5/e (5.9)
1
n glving this equation for ||f + g/, (making use of Eq. @T implies Eq.
. Now suppose that and g are not identicall erp and p € (1,00).
Equalit l}olds in equality holds in Eq. &Tﬁ equality holds in
Eq. and Eq. he latter happens iff
sgn(f ) = sgn(g) and
P p
£l If+alle - \lgly

wherein we have used

( f + gl )q: f +gl
I1Lf+glP= g If+gllp

10
Finally Eq. 1s equivalent |f| = ¢|g| with ¢ = (|| f|lp/llgll,) > 0 and this
equality along with sgn(f) = sgn(g) implies f = cg. ]

5.1 Exercises

.3
Exercise 5.1. Generalize Proposition @Es follows. Let a € [—o0,0] and
f:RNJ[a,o0) — [0,00) be a continuous strictly increasing function such that
lim f(s) =00, f(a) =0ifa > —oo or lim,_,_ o f(s) =0if a = —oco. Also let

)
g:f717b:f(0)20,
s t
= Nds' and G(t) = dt'.
9= [ 1 and 6o = [ aw)ar
Then for all s,t > 0,
st < F(s)+ Gt Vbd) < F(s)+G(t)

and equality holds iff ¢t = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+(tv1)In(tvl) —(tvl) <e’+tlnt—t.

.2 .3
Hint: Refer to Figures ﬁ?ﬂd @7
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Fig. 5.2. Comparing areas when ¢ > b goes the same way as in the text.

Fig. 5.3. When ¢ < b, notice that g(¢) < 0 but G(¢) > 0. Also notice that G(¢) is
no longer needed to estimate st.

f.
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d.6.3

d.6.4

6

Metric Spaces

Definition 6.1. A function d: X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y,x) for all x,y € X
2. (Non-degenerate) d(x,y) =0 if and only if t =y € X
3. (Triangle inequality) d(z,z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) (see Definition @%s a

rjc space with d(z,y) := [lz — y||. Thus the space ¢’(y) (as in Theorem
%ﬁs a metric space for all p € [1,00]. Also any subset of a metric space
is a metric space. For example a surface X in R? is a metric space with the
distance between two points on X being the usual distance in R3.

Definition 6.2. Let (X,d) be a metric space. The open ball B(xz,6) C X
centered at x € X with radius § > 0 is the set

B(z,0) :={y € X : d(z,y) < ¢}.

We will often also write B(x,d) as By(5). We also define the closed ball
centered at x € X with radius § > 0 as the set Cy(0) = {y € X : d(z,y) < d}.

Definition 6.3. A sequence {x,} -, in a metric space (X,d) is said to be
convergent if there exists a point x € X such that lim,, o d(z,z,) = 0. In
this case we write lim, .o Tp, =T of T, — T as N — 0.

.3
Exercise 6.1. Show that z in Definition @—ﬁnecessarily unique.

Definition 6.4. A set E C X is bounded if E C B(x,R) for some x € X
and R < co. A set F C X is closed iff every convergent sequence {x,} ~,
which is contained in F has its limit back in F. A set V C X is open iff V¢
1s closed. We will write F' C X to indicate the F is a closed subset of X and
V C, X to indicate the V' is an open subset of X. We also let T4 denote the
collection of open subsets of X relative to the metric d.
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Definition 6.5. A subset A C X is a neighborhood of x if there exists an
open set V. C, X such that x € V C A. We will say that A C X is an open
neighborhood of x if A is open and x € A.

Exercise 6.2. Let F be a collection of closed subsets of X, show NF :=
NrerF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fy}i_, are closed sets then U}_, F} is closed. (By taking complements, this
shows that the collection of open sets, 74, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 6.6. For any non empty subset A C X, let d4(x) := inf{d(z,a)|a €
A}, then
|da(z) —da(y)| < d(z,y) Va,y € X (6.1)

and in particular if x,, — x in X then da (x,) — da () as n — oo. Moreover
the set F. :={x € X|da(z) > €} is closed in X.

Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) +d(y,a).
Take the infimum over a in the above equation shows that
da(z) <d(z,y) +daly) Vo,yeX.

Therefore, da(z) — dA( ) < d(z,y) and by interchanging x and y we also have
,y)

that } da(x) < d(z,y) which implies Eq. 1If x, — = € X, then by
Eq.
|da(z) — da(zn)| < d(z,2,) — 0asn — oo

so that lim, .o da (z,) = da(z). Now suppose that {z,} -, C F. and
T, — x in X, then
da(x)= lim dg (z,) > €

since d 4 (z,) > € for all n. This shows that « € F, and hence Fy is closed. m

Corollary 6.7. The function d satisfies,

|d(x,y) —d(z,y")| < d(y,y') + d(x,2).

In particular d : X x X — [0,00) is “continuous” in the sense that d(x,y)
is close to d(z',y') if © is close to ©' and y is close to y'. (The notion of
continuity will be developed shortly.)
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6.1 Continuity 49

.6
Proof. By Lemma @’ﬁr single point sets and the triangle inequality for
the absolute value of real numbers,

|d(x7y) - d(a:/,y/)| < ‘d(x’y)

|
2
=
Qd\
_l’_
B
—~
=
Ny
\_>
|
o
—
a\
@
-

Ezample 6.8. Let x € X and § > 0, then C, (§) and B, (6)° are closed subsets
of X. For example if {y, }>- G Cs () and y,, — y € X, then d (y,,x) < 0 for

all n and using Corollary it follows d j[;x)egj Jd,1e.y € Cp(0). A similar

proof shows B, (§)° is open, see Exercise

Exercise 6.3. Show that V' C X is open iff for every x € V there isa d > 0
such that B,(d) C V. In particular show B,(d) is open for all x € X and
6 > 0. Hint: by definition V is not open iff V¢ is not closed.

Lemma 6.9 (Approximating open sets from the inside by closed
1.6.9| sets). Let A bep clgsed subset of X and F. := {z € X|da(z) > e} T X
be as in Lemmal0.6 Then F. T A€ ase | 0.

Proof. It is clear that d4(z) = 0 for x € A so that F. C A€ for each £ > 0 6.3
and hence U.soF. C A°. Now suppose that x € A° C, X. By Exercise%i
there exists an € > 0 such that B,(¢) C A° ie. d(z,y) > ¢ for all y € A.
Hence = € F. and we have shown that A¢ C U.soF:. Finally it is clear that
F. C F., whenever ¢’ < e¢. n

Definition 6.10. Given a set A contained a metric space X, let A C X be
the closure of A defined by

A={reX:3{z,} CA>z= lim x,}.

That is to say A contains all limit points of A. We say A is dense in X if
A =X, i.e. every element x € X is a limit of a sequence of elements from A.

Exercise 6.4. Given A C X, show A is a closed set and in fact
A=n{F:ACF C X with F closed}. (6.2) |e.6.2

That is to say A is the smallest closed set containing A.

s.6.1] 6.1 Continuity

Suppose that (X, p) and (Y,d) are two metric spaces and f : X — YV is a
function.
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50 6 Metric Spaces

Definition 6.11. A function f : X — Y is continuous at x € X if for all
e > 0 there is a 6 > 0 such that

d(f(z), f(z")) < & provided that p(x,z") < 6. (6.3)
The function f is said to be continuous if f is continuous at all points x € X.

The following lemma gives two other characterizations of continuity of a
function at a point.

Lemma 6.12 (Local Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f: X — Y is a function defined in a neighborhood
of a point x € X. Then the following are equivalent:

1. f is continuous at © € X.

2. For all neighborhoods A C'Y of f(x), f~1(A) is a neighborhood of x € X.

3. For all sequences {x,},—, C X such that © = lim,_.cc Tn, {f(zn)} is
convergent in'Y and

lim f(z,)=7f ( lim wn) .
n—oo n—oo

Proof. 1 = 2. If A CY is a neighborhood of f (z), there exists € > 0
such that By (¢) C A and because f is continuous there exists a § > 0 such
that Eq. “holds. Therefore

By (6) C 71 (By) (€)) C f7H(A)

showing f~! (A) is a neighborhood of z. 2 = 3. Suppose that {z,} —, C X
and & = lim, o Z,. Then for any £ > 0, By(,) (¢) is a neighborhood of f (x)
and so f~! (Bj(y) (€)) is a neighborhood of # which must containing B, (6)
for some & > 0. Because z,, — , it follows that z,, € B, (§) C f~! (B (¢))
for a.a. n and this implies f (x,) € By(y) (¢) for a.a. n, i.e. d(f(x), f (z,)) <€
for a.a. n. Since € > 0 is arbitrary it follows that lim, . f (z,) = f ().
3. = 1. We will show not 1. = not 3. If f is not continuous at x, there
exists an € > 0 such that for all n € N there exists a point x,, € X with
p(xn, ) < 2 yet d(f(zn),f(x)) > e. Hence x,, — x as n — oo yet f(z,)
does not converge to f (z). ]
Here is a global version of the previous lemma.

Lemma 6.13 (Global Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f : X — Y is a function defined on all of X. Then
the following are equivalent:

f is continuous.
YV)er, foralV € 1q, ice. f71(V) is open in X if V is open in'Y.

1.
2. v
3. f71(C) is closed in X if C is closed in'Y.

-
=
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6.2 Completeness in Metric Spaces 51

4. For all convergent sequences {z,} C X, {f(xn)} is convergent in' Y and
lim f(x,)=f ( lim xn) .

Proof. Since f~!(A¢) = [flg(%)]lc? it is easily seen that 2. and 3. are

equivalent. So because of Lemma it only remains to show 1. and 2. are
equivalent. If f is continuous and V' C Y is open, then for every z € f=1 (V),
V is a neighborhood of f(x) and so f=! (V) is a neighborhood of z. Hence

-1 %Vg is a neighborhood of all of its points and from this and Exercise
%—.ﬂ_'follows that f=1 (V) is open. Conversely if z € X and A C Y is a
neighborhood of f (), then there exists V' C, X such that f(z) € V C A.
Hence z € f~1 (V) C f~'(A) and by assumption f~! (V) is open showing
71 (A) is a neighborhood of z. Therefore f is continuous at x and since x € X
was arbitrary, f is continuous. [

.6
Ezxample 6.14. The function d4 defined in Lemma ﬁ’ﬁ continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y, ) is continuous
for each x € X.

.14 13
Exercise 6 yse Example and Lemma ﬁ—ﬂ) recover the results of
Example

The next result shows that there are lots of continuous functions on a
metric space (X,d) .

Lemma 6.15 (Urysohn’s Lemma for Metric Spaces). Let (X,d) be a

metric space and suppose that A and B are two disjoint closed subsets of X.
Then d(2)
B\X

flo) = 25—

)= G + do(@)

defines a continuous function, f : X — [0,1], such that f(z) =1 forx € A
and f(z) =0 ifz € B.

forze X (6.4)

Proof. By Lemma ﬁ_?l 4 and dp are continuous functions on X. Since
A and B are closed, da(z) > 0if x ¢ A and dg(z) > 0 if « ¢ B. Since
ANB =10, da(z)+dp(z) > 0 for all z and (da + dg) " is continuous as well.
The remaining assertions about f are all easy to verify. ]

Sometimes Urysohn’s lemma will be use in the following form. Suppose
F C V C X with F being closed and V' being open, then there exists f €
C(X,[0,1])) fhat f =1 on F while f =0 on V. This of course follows
from Lemma v taking A = F and B = V°.

6.2 Completeness in Metric Spaces

Definition 6.16 (Cauchy sequences). A sequence {z,},., in a metric
space (X,d) is Cauchy provided that
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52 6 Metric Spaces

lim d(z,,zm) =0.

m,n— oo

Exercise 6.6. Show that convergent sequences are always Cauchy sequences.
The converse is not always true. For example, let X = Q be the set of ratio-
nal numbers and d(z,y) = |z — y|. Choose a sequence {z,} -, C Q which
converges to v2 € R, then {x,}°, is (Q,d) — Cauchy but not (Q,d) — con-
vergent. The sequence does converge in R however.

Definition 6.17. A metric space (X,d) is complete if all Cauchy sequences
are convergent sequences.

Exercise 6.7. Let (X, d) be a complete metric space. Let A C X be a subset
of X viewed as a metric space using d|4x 4. Show that (A, d|sx ) is complete
iff A is a closed subset of X.
Ezample 6‘..}8. Examples 2. — 4. of complete metric spaces will be verified in
Chapter ﬁ"Below.
.8
1. X =R and d(z,y) = |z — y|, see Theorem @—above.
2. X =R and d(z,y) = & — yll, = S0y (i — 10)?.
3. X =/(P(p) for p € [1,00] and any weight function p: X — (0, 00).
4. X = C([0,1],R) — the space of continuous functions from [0, 1] to R and
d(f,9) = max 1£(0) = 9(0).

te[o

.3
This is a special case of Lemma ﬁ‘lﬁelow.
5. Let X = C([0,1],R) and

dUﬂ%z/lﬂﬂ-MﬂMt
71;.)

You are asked in Exercise @merify that (X, d) is a metric space which
is not complete.

Exercise 6.8 (Completions of Metric Spaces). Suppose that (X,d) is
a (not necessarily complete) metric space. Using the following outline show

there exists a complete metric space (X' , cf) aPoisometric mapi: X — X
such that i (X) is dense in X, see Definition

1. Let C denote the collection of Cauchy sequences a = {a,}.., C X. Given
two element a,b € C show

dc (a,b) := lim d(an,by,) exists,

n—oo

de (a,b) > 0 for all a,b € C and d¢ satisfies the triangle inequality,
de (a,c¢) < dc (a,b) + de (b,c) for all a,b,c € C.

Thus (C, d¢) would be a metric space if it were true that d¢(a,b) = 0 iff
a = b. This however is false, for example if a,, = b,, for all n > 100, then
dc(a,b) = 0 while a need not equal b.
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2. Define two elements a,b € C to be equivalent (write a ~ b) whenever
de(a,b) = 0. Show “ ~ 7 is an equivalence relation on C_apd, that
de (a/,b') =dc (a,b) if a ~a' and b ~ V. (Hint: see Corollary ﬁf

3. Given a € Clet @:= {b € C: b~ a} denote the equivalence class contain-
ing a and let X := {@: a € C} denote the collection of such equivalence
classes. Show that d (@,b) := dc (a, b) is well defined on X x X and verify
()_(, d) is a metric space.

4. For z € X let i (x) = @ where a is the constant sequence, a,, = x for all n.
Verify that i : X — X is an isometric map and that i (X) is dense in X.

5. Verify (X, d) is complete. Hint: if {a(m)},_, is a Cauchy sequence in X
choose b,, € X such that d (i (by,),a(m)) < 1/m. Then show a(m) — b
where b= {by,}_; .

6.3 Supplementary Remarks

6.3.1 Word of Caution

Ezample 6.19. Let (X,d) be a metric space. It is always true that B,(e) C
C,(g) since C,(e) is a closed set containing B, (g). However, it is not always
true that B,(e) = Cy(¢). For example let X = {1,2} and d(1,2) = 1, then
Bi(1) = {1}, B1(1) = {1} while C1(1) = X. For another counter example,
take

X={(z,y) eR®>:z=00rz=1}

with the usually Euclidean metric coming from the plane. Then

Bo,0)(1) = {(O,y) eR?: |yl < 1},
B,0)(1) = {(0,y) € R*: |y| <1}, while

C0,0)(1) = Bo,0y(1) U{(0,1)} .

20 21
In spite of the above examples, Lemmas @Eﬂd @‘Helow shows that
for certain metric spaces of interest it is true that B,(e) = Cy(¢).

Lemma 6.20. Suppose that (X,||) is a normed vector space and d is the
metric on X defined by d(z,y) = | —y|. Then

B.(e) = Cy(e) and
bd(B:(¢)) = {y € X : d(z,y) = €}.
29
where the boundary operation, bd(-) is defined in Definition @Telow.

Proof. We must show that C' := C,(¢) C B,(¢) =: B. For y € C, let
v =1y — x, then
| = ly — x| = d(z,y) <e.

Let @, = 1 —1/n so that a, T 1 as n — oo. Let y, = z + a,v, then
d(z,yn) = and(z,y) < ¢, so that y, € Bs(e) and d(y,yn) =1 —a, — 0 as
n — oo. This shows that y,, — y as n — oo and hence that y € B. [
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=

Fig. 6.1. An almost length minimizing curve joining x to y.

6.3.2 Riemannian Metrics
This subsection is not completely self contained and may safely be skipped.

Lemma 6.21. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(z,y) =inf {{(0) : 0(0) =z and o(1) =y}

where (o) is the length of the curve o. We define {(c) = oo if o is not
piecewise smooth.
Then

B,(e) = Cy(e) and
bd(B,(¢)) ={y € X : d(x,y) =€}

29
where the boundary operation, bd(-) is defined in Definition @Telow.

Proof. Let C := C,(¢) C B.(¢) =: B. We will show that C C B by
showing B¢ C C. Suppose that y € B¢ and choose d > 0 such that B, () N
B = (). In particular this implies that

By(6) N By(e) = 0.

We will finish the proof by showing that d(z,y) > ¢ 4+ 6 > ¢ and hence
that y € C°. This will be accomplished by showing: if d(z,y) < € + 0 then
By(0) N By(e) # 0. If d(x,y) < max(e, d) then either x € By(J) or y € By(e).
In either case By(d) N By(e) # (). Hence we may assume that max(e,d) <
d(z,y) < e+ 6. Let @ > 0 be a number such that

max(e,d) < d(z,y) <a<e+§

and choose a curve o from z to y such that ¢(o) < a. Also choose 0 < ¢’ < §
such that 0 < a—0’ < & which can be done since a—§ < €. Let k(t) = d(y, o(t))
a continuous function on [0,1] and therefore £([0,1]) C R is a connected
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set which contains 0 and d(z,y). Therefore there exists ¢y, € [0, 1] such that
d(y,o(to)) = k(to) = ¢'. Let z = o(ty) € By(d) then

A, 2) < U(0lfo107) = £0) = U(olgon) <@ —d(z,y) = a— ' <
and therefore z € B, () N B,(8) # 0. L]

Remark 6.22. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(xz,y) =inf {{(0) : 0(0) = z and o(1) = y} .

Let o be a curve from z to y and let € = ¢(0) — d(x,y). Then for all 0 < u <
v <1,
d(o(u),0(v)) < (o) + &

So if ¢ is within ¢ of a length minimizing curve from z to y that o, . is
within e of a length minimizing curve from o(u) to o(v). In particular if
d(z,y) = £(o) then d(o(u),o(v)) = £(0]jy,y) forall 0 <u < v <1, e if o
is a length minimizing curve from x to y that o, . is a length minimizing
curve from o(u) to o(v).

To prove these assertions notice that

d(z,y) +e=L(0) = £(ljo,u) + U0 |jue)) + £(]w1])
> d(x7 U(U)) + E(Uhu,v]) + d(O’(’U), y)

and therefore

é(a‘[u,v]) < ( 7y) +e— d(xv a(u)) - d(a(v),y)
< u

d
d(o(u),o(v)) +e.

X
g
6.4 Exercises

Exercise 6.9. Let (X,d) be a metric space. Suppose that {z,}>2, C X is a
sequence and set €, := d(Zp, Tny1). Show that for m > n that

m—1 e’}
d(l‘n,l‘m) S Z €k S Zak-
k=n k=n

Conclude from this that if

(o) o0
Zek = Zd(xn,zn+1) < 00
k=1 n=1

then {x,}22, is Cauchy. Moreover, show that if {x,}>2, is a convergent
sequence and x = lim,, ., x, then

d(ﬂl‘, 1’n) < Z Ek-
k=n
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Exercise 6.10. Show that (X, d) is a complete metric space iff every sequence
{z,}22, C X such that Y 7, d(@p,zn41) < 00 is a convergent sequence in
X. You may find it useful to prove the following statements in the course of
the proof.

L. If {z,} is Cauchy sequence, then there is a subsequence y; := z,,, such
that Z_;x;l d(yj+1, yj) < 0.

2. If {z,};2, is Cauchy and there exists a subsequence y; := x,,; of {z,}
such that = lim; . y; exists, then lim, .. x, also exists and is equal
to x.

Exercise 6.11. Suppose that f : [0,00) — [0,00) is a C? — function such
that f(0) =0, f/ > 0 and f” < 0 and (X, p) is a metric space. Show that
d(z,y) = f(p(z,y)) is a metric on X. In particular show that

o plz,y)
H9) = T

is a metric on X. (Hint: use calculus to verify that f(a +0) < f(a) + f(b) for
all a,b € [0,00).)

Exercise 6.12. Let {(X,,d,)},—, be a sequence of metric spaces, X :=
[1,~, X,, and for z = (z(n)),—, and y = (y(n)),—, in X let

C=on du(z(n),y(n)
d(z,y) = ;2 T+ dn(a(n),g(n)’

Show:

1. (X, d) is a metric space,

2. a sequence {xy},-, C X converges to z € X iff xx(n) — z(n) € X,, as
k — oo for each n € N and

3. X is complete if X,, is complete for all n.

Exercise 6.13. Suppose (X, p) and (Y, d) are metric spaces and A is a dense
subset of X.

1. Show that if F/: X — Y and G : X — Y are two continuous functions
such that FF = G on A then FF = G on X. Hint: consider the set C :=
{reX:F(x)=G(z)}.

2. Suppose f : A — Y is a function which is uniformly continuous, i.e. for
every € > () there exists a § > 0 such that

d(f(a),f (b)) <eforall a,be A with p(a,b) <.

Show there is a unique continuous function F' : X — Y such that F' = f on
A. Hint: each point « € X is a limit of a sequence consisting of elements
from A.

3.Let X =R =Y and A = Q C X, find a function f : Q@ — R which is
continuous on Q but does not extend to a continuous function on R.
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Banach Spaces

Let (X, ||]|) be a normed vector space and d (z,y) := ||z — y|| be the asso-
ciated metric on X. We say {z,},., C X converges to z € X (and write
lim, o z, = 2 or x,, — ) if

0= lim d(z,z,) = lim ||z — x| .

n—oo
Similarly {z,},>; C X is said to be a Cauchy sequence if

0= lim d(zm,z,) =

lim ||z, — 2, -
m,n— o0 m,n— o0

Definition 7.1 (Banach space). A normed vector space (X,|||) is a Ba-
nach space if the associated metric space (X,d) is complete, i.e. all Cauchy
sequences are convergent.

.6
Remark 7.2. Since ||z|| = d(,0), it follows from Lemma ﬁ’fﬁa‘c II]] is a
continuous function on X and that

izl = llylll < [le =yl for all z,y € X.

It is also easily seen that the vector addition and scalar multiplication are
contipléous on any normed space as the reader is asked to verify in Exercise
%‘Tﬁese facts will often be used in the sequel without further mention.

7.1 Examples

Lemma 7.3. Suppose that X is a set then the bounded functions, £°(X), on
X is a Banach space with the norm

11l = [Ifllec = sup [f(z)].
zeX

Moreo g if X is a metric space (more generally a topological space, see Chap-
ter the set BC(X) C £*°(X) = B(X) is closed subspace of £>°(X) and
hence is also a Banach space.
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Proof. Let {f,} —, C £>°(X) be a Cauchy sequence. Since for any z € X,
we have

[fn(@) = fm(@)] < [ fn = fmlloo (7.1)

which shows that {f,(x)},—, C F is a Cauchy sequence of numbers. Because F
(F =R or C) is complete, f(x):F limp oo fn(2) exists for all z € X. Passing
to the limit n — oo in Eq. “Implies

[f(@) = fm ()] < Tim inf ] fr = full o
and taking the supremum over x € X of this inequality implies
If = fmllo < lim inf [|fn — fimlloc — 0 as m — oo

showing f,,, — f in £*°(X). For the second assertion, suppose that {f,} -, C
BC(X) C £°(X) and f,, — f € £°°(X). We must show that f € BC(X), i.e.
that f is continuous. To this end let x,y € X, then

[f(z) = )l < [f(@) = fu(@)| + [ful2) = ()] + [fn(y) = F(y)]
<2|f = falloo + [fn(2) = fu(y)] -

Thus if ¢ > 0, we may choose n large so that 2| f — f,|, < /2 and
then for this n there exists an open neighborhood V. of x € X such that
|fn(x) — fuly)| < e/2 for y € V. Thus |f(z) — f(y)| < € for y € V,, showing
the limiting function f is continuous.

Here is an application of this theorem.

Theorem 7.4 (Metric Space Tietze Extension Theorem). Let (X,d)
be a metric space, D be a closed subset of X, —00o < a < b < oo and f €
C(D,la,b]). (Here we are viewing D as a metric space with metric dp :=
d|pxp.) Then there exists F' € C(X,[a,b]) such that F|p = f.

Proof.

1. By scaling and translatio ('.64 by replacing f by (b — a)f1 (f —a)), it
suffices to prove Theorem with a = 0 and b = 1.

2. Suppose a € (0,1] and f : D — [0,a] is contjpyoyg function. Let A :=
710, 2a)) and B := f~([2c, o]). By Lemma%ﬁﬂere exists a function
g € C(X,[0,a/3]) such that g =0 on A and § = 1 on B. Letting g := g,
we have g € C(X,[0,a/3]) such that g = 0 on A and g = «/3 on B.
Further notice that

2
0< f(z)—g(z) < 3¢ for all z € D.
3. Now suppose f : D — [0,1] is a continuous f%n as in step 1. Let

g1 € C(X,[0,1/3]) be as in step 2, see Figure “with @ = 1 and let
fi:=f—gilp € C(D,[0,2/3]). Apply step 2. with « = 2/3 and f = f; to
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find g2 € C(Xa [07 %%D such that f2 = f - (gl +g2) |D € C(D7 [07 (%)2])
Continue this way inductively to find g, € C(X, |0, % (%)nfl]) such that

N 9 N
fzgn|DifN€C(D,[0,(3> - (7.2) |e.7.2

4. Define F' := )" | g,. Since

(2)"‘1_ 11,
= - 3 =1,
31-2

n=1 3
iformly convergent so F' € C(X,[0,1]). Passing

the series defining F i up
ﬁﬁhows f=F|p.

to the limit in Eq.

(o) oo 1
n=1

Fig. 7.1. Reducing f by subtracting off a globally defined function g1 €
C(X,[0,3]). £.7.
[
t.7.5] Theorem 7.5 (Completeness of (*(u)). Let X be a set and p: X — (0, 00)
be a given function. Then for any p € [1,00], (¢P(p),-||,,)) is a Banach space.
. . .3
Proof. We have already proved this for p = oo in Lemmaﬁ@ we now
assume that p € [1,00). Let {f,},—; C ¢’(u) be a Cauchy sequence. Since for
any x € X,
1
—— fa = full, = 0as m,n — oo

fn x)— fm x S
ali) = i) <
it follows that {f,(z)},—; is a Cauchy sequence of numbers and f(z) :=
lim,, o fn(x) exists for all z € X. By Fatou’s Lemma,
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1o = fIE =2 p- lim inf[fy = ful? < lim inf) g |fo— finl?
X X
= lim inf | f, — fm|lb — 0 as n — oo.
m—0o0
This then shows that f = (f — fn) + fn € (1) (being the sum of two ¢F —
functions) and that f, £, I ]

Remark 7.6. Let X be a set, Y be a Banach space and ¢*°(X,Y") denote the
bounded functions f : X — Y equipped with the norm

1A= 1Al = sup [1F (@)ly -
reX

If X is a metric space (or a general topological space, see Chapter ﬁlet
BC(X,Y) denqjethpse f € £°°(X,Y) which are continuous. The same proof
used in Lemmal [7.3[shows that £*°(X,Y") is a Banach space and that BC(X,Y)
is a closed subspace of ¢*°(X,Y). Similarly, if 1 < p < co we may define

1/p
PXY)=f: X =Y |fll,= (Z ||f($)||§’/> < oo

zeX

.5
The same proof as in Theorem [7-b[would then show that (Ep (X,Y), ||Hp> is

a Banach space.

7.2 Bounded Linear Operators Basics

Definition 7.7. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(x)]| < C|lz||x for all x € X. We denote the best constant by ||T||, i.e.

T ()|
|T|| = sup =sup {[|T(z)| : [|=|| = 1}.
z#0 ||z o#0

The number ||T|| is called the operator norm of T.

Proposition 7.8. Suppose that X and Y are normed spaces and T : X — Y
s a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c)T is bounded.

Proof. (a) = (b) trivial. (b) = (¢) If T continuous at 0 then there exist § >
0 such that ||T(x)| < 1if ||z|] < §. Therefore for any x € X, ||T (dz/||z|]) || < 1
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which implies that | T(z)|| < %z and hence |T|| < 3 < cc. (¢c) = (a) Let
x € X and € > 0 be given. Then

[Ty =Tl =Ty —o) | < T lly -zl <e

provided |ly — z|| < ¢/||T|| := 0. |
For the next three exercises, let X = R*"and Y =R and T : X — Y

be a linear transformation so that T is given by matrix multiplication by an

m X n matrix. Let us identify the linear transformation 7" with this matrix.

Exercise 7.1. Assume the norms on X and Y are the ¢! — norms, i.e. for
xR ||z|]| = Z?=1 |z;| . Then the operator norm of T is given by

m

T = Tiil -

Il @%anl I3
im

Exercise 7.2. Suppose that norms on X and Y are the £*° — norms, i.e. for

z € R", ||z|| = maxi<j<pn |z;|. Then the operator norm of T is given by

n

T| = il
1Tl = max > |Ts|

j=1
Exercise 7.3. Assume the norms on X and Y are the ¢ — norms, i.e. for
z e R, |z|* = Z?:l 3. Show |T|I? is the largest eigenvalue of the matrix
T'T : R® — R™. Hint: Use the spectral theorem for orthogonal matrices.

Notation 7.9 Let L(X,Y) denote the bounded linear operators from X toY
and L(X) = L(X,X). If Y = F we write X* for L(X,F) and call X* the
(continuous) dual space to X.

Lemma 7.10. Let X, Y be normed spaces, then the operator norm ||-| on
L(X,Y) is a norm. Moreover if Z is another normed space and T : X —Y
and S :Y — Z are linear maps, then ||ST|| < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A, B € L(X,Y) then the triangle inequality is verified as follows:

| Az + Ba| _ | As] + [ Bz

|A+ B|| = sup <
z#£0 [l z#£0 [|]]
|| Az|| | B||
<s + su = [|All + |IB]|-
z#0 |7l x#£0 |||

For the second assertion, we have for x € X, that

ST < STl < IS {]-
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From this inequality and the definition of ||ST||, it follows that || ST <
ISTHIT- L
T7h(§ reader is asked to prove the following continuity lemma in Exercise

ﬁi

Lemma 7.11. Let X, Y and Z be normed spaces. Then the maps
(S,2) e L(X,)Y)x X — Sz €Y

and
(S,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)

are continuous relative to the norms
1S, 2) L x,vyxx == ISy + 12l x and
1S, Dl x vyxrv,z) = IS ixyy + 1Tl pev,z
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.

Proposition 7.12. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y),|| - |lop) is @ Banach space. In particular the dual
space X* is always a Banach space.

Proof. Let {T},},~, be a Cauchy sequence in L(X,Y). Then for each
r e X,
ITnx — Tzl < || Th — Tl ||2]] — 0 as myn — oo

showing {T,,x} ~, is Cauchy in Y. Using the completeness of Y, there exists
an element Tz € Y such that

lim ||T,x — Tz| = 0.
The map T : X — Y is linear map, since for z,z’ € X and A € F we have
T(x+ ') = lim T, (z + \2') = lim [Tho + NT,2'] =Tz + T2/,
n—oo n—oo

wherein we have used the continuity of the vector space operations in the last
equality. Moreover,

[Tz — Toz|| < Tz — Tzl + | Tmz — Toz|| < T2 — Tz + (| T — Tal| |12
and therefore
|Te — Tyl <lim_in_(|7e — Tyl + [T — Tl 2]

= ||l - lim inf [Ty — Tol-

Hence
IT —T,| <lim inf ||T), —T,| — 0asn — occ.
Thus we have shown that T, — T in L(X,Y") as desired. ]

The following characterization of a Banach space will sometimes be useful
in the sequel.
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Theorem 7.13. A normed space (X, ||-||) is a Banach space iff every sequence

{z,},2, C X such that E lzn] < oo implies imy_.o Z Tp = S exists in
n=1 n=1

X (that is to say every absolutely convergent series is a convergent series in
o0

X.) As usual we will denote s by > xp,.

n=1
6.10
Proof. This is very similar to Exercise @_(S)If X is complete and
00 N
> ||znl] < oo then sequence sy := Y x, for N € N is Cauchy because (for
n— n=1
N > M)

N
sy — sal| < Z |xn|| — 0 as M, N — co.
n=M+1
N
Therefore s = Z Ty = My Z x, exists in X. («<=) Suppose that

n=1
{zp}2, is a Cauchy sequence and let {yx = xn, }72, be a subsequence of

{z,},2, such that Z lyn+1 — ynll < co. By assumption

n=1
N 00
UNHL= Y1 = D (Yni1 —n) = 5= D (Ynt1 — yn) € X as N — o0,
n=1 n=1

This shows that limy_, o, yn exists and is equal to z := y; + s. Since {xn}fbozl
is Cauchy,

|z —2nll < [lz =yl + llyx — 2all — 0 as k,n — oo
showing that lim,, .~ , exists and is equal to z. [ |

13
Ezample 7.14. i is another proof of Theorem which makes use of
Proposition uppose that T, € L(X,Y) is a sequence of operators such

that > ||7,]] < co. Then

n=1
[eS) [
S Tall < S 1Tl flz] < o0
n=1 n=1

o0
and therefore by the completeness of Y, Sz := > T, = limy_ o Sy exists
n=1

N
in Y, where Sy := >_ T),. The reader should check that S : X — Y so defined
n=1
is linear. Since,

N 00
ISz = Jim Syl < lm 37 [Toal < 3 T2l
=1 =
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S is bounded and -
IS <> Tl (7.3)
n=1
Similarly,

|Sz — Syz|| = Nlim ISnvz — S|

N 0o
< gim S Tllel = Y 1Tl el
— 00
n=M+1 n=M+1

and therefore,

1S = Sarll < S Tull = 0 as M — oc.
n=M

For the remainder of this section let X be an infinite set, p: X — (0, 00)
be a given function and p,q € [1,00] such that ¢ = p/(p —1). it will also be
convenient to define 6, : X — R for z € X by

_Jlify==2
5r(y){01fy7éx.

Notation 7.15 Let ¢o (X) denote those functions f € £° (X) which “vanish
at 00,” i.e. for every € > 0 there exists a finite subset Ae C X such that
|f (z)| < e whenever x ¢ A.. Also let ¢y (X) denote those functions f: X — F
with finite support, i.e.

er (X) = {f € £ (X): # ({x € X : f (2) £0}) < o0}.

Exercise 7.4. Show c¢f(X) is a dense subspace of the Banach spaces
(Ep (n), ||||p> for 1 < p < oo, while the closure of ¢y (X) inside the Ba-
nach space, (£>°(X), ||l ,) is co (X). Note from this it; follows that co (X)
is a closed subspace of £*° (X). (See Proposition elow where this last
assertion is proved in a more general context.)

Theorem 7.16. Let X be any set, p: X — (0,00) be a function, p € [1, o0,
q = p/(p—1) be the conjugate exponent and for f € (1 (u) define ¢y :
e (u) — F by

¢r(9) =Y f@)g(z)p ().

reX
Then
1. ¢¢ (g) is well defined and ¢5 € 07 (u)" .
2. The map
Fetti(u) L oper(p) (7.4)

s a isometric linear map of Banach spaces.
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. '4. . .
3. If p € [1,00), then the map in Eq. (ﬁ)’zs also surjective and hence,
0P (p)" is isometrically isomorphic to €9 ().
4. When p = oo, the map

fet (n) — ¢5 €co(X)

is an isometric and surjective, i.e. {* (n) is isometrically isomorphic to
Co (X)* .

13
(See Theorem @’Ecslow for a continuation of this theorem.)
Proof.

1. By Holder’s inequality,

YU @)y @) @) < 1IfN, all,

zeX

which shows that ¢ is well defined. The ¢¢ : 2 (1) — F is linear by the

linearity of sums and since

65 (@)= fla < If @) g @) p (@) < £l lgll,
z€X zeX
we learn that
H‘bezp(u)* < Ifll,- (7.5) |e.7.5

Therefore ¢y € €7 ()7,
2. The map ¢ in Eq. (@.Ts linear in f by the linearity properties of infinite
sums. For p € (1,00), define g (z) = sgn(f (z)) |f (z)|7" where

o [FifzA0
sgn(z) == { |0| c. 0
Then
lgllz = 7 1F @) @) = 321 @] (@)
zeX zeX
=) I Sk
reX
and

=Y f@sen(f @) If @ ule) =Y If @]1f @) p(e)

zeX zeX

= ||f||3<%+%> =1, 1102 = 1411, Dl -
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.5
Hence [|¢7]lsp(,y- = || f]l, Which combined with Eq. shows [|gf([ (- =
171, - For p = o0, let g () = 5ga(7 (@), then [lgll.. = 1 and

|65 (@) = > f (x) sgn(f (2))u ()

zeX

FAC: = 1711 llgll oo
zeX

.5
which shows [|@¢ ||y (1= = If[l¢1(,,) - Combining this with Eq. @ﬁhows
Hd)ngoc(u)* = ||f||el(“) . For p=1,

05 (02)| = (@) [ ()] = [f ()] ][0z,

and therefore |71« = Lf zg| for all v € X. Hence [|¢f][ 41,y = [ flloo
which combined with Eq. “shows ||¢f||l1(u)* =[fll

Suppose that p € [1,00) and A € 7 (u)" or p = 0o and X € ¢ (X)".
We wish to find f € ¢9(u) such that A = ¢. If such an f exists, then
A(d6z) = f(x)p(x) and so we must define f(z) := A(0;) /u(x). As a
preliminary estimate,

o) = |A(0z)] H)\Hzp(u)* ||5:r||zp(#)

T&E= T <
Wl e @]

p(z)

— [Nl [ @)

When p = 1 and ¢ = oo, this implies || f|l., < [|Allp(,y» < o0. If p € (1, 0]
and A CC X, then

1A = D IF (@) =3 f(@)sen(f (@) |f @) p(x)
TeA T€EA
=S A @ I @) e
—ZEZAWC) gu(f () [f (@)" " p(2)
= A (0a)sen(f (@) |f ()]
zEA
_)\<Zbgn (z)|7' 6 )
z€EA
<Al - || sen(f (@) |£ ()" 6
zeA

p

Since
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1/p
> senl(f @) If @) (ZJf |l <>>

z€A

zeA

1/p
= (Z If (z)|? ($)> = Hf”%f/l,u)

zeA

1/00

which is also valid for p = oo provided | f|[,i(; ) := 1. Combining the last

two displayed equations shows

e a gy < TN Loy IFNELES

and solving this inequality for Hf”ZQ(A,u) (using ¢ — ¢/p = 1) implies
[f1leaca,uy < IAllgo(,uy- Taking the supremum of this inequality on A cC X
shows || fllga(y < I Mlgo (e - -6 f € €4 (n) . Since A = ¢ agree on ¢y (X)
and ¢y (X) is a dense subspace of ¢ (u) for p < co and ¢y (X) is dense
subspace of ¢ (X) when p = oo, it follows that A = ¢y.

7.3 General Sums in Banach Spaces

Definition 7.17. Suppose X is a normed space.

1. Suppose that {xn}ff | 18 a sequence in X, then we say > . | ¥, converges
in X and Y 0 xn =5 if

ngnoozlzn =s in X.

2. Suppose that {x, : « € A} is a given collection of vectors in X. We say
the sum ) . 4 To converges in X and write s =), o € X if for all
€ > 0 there exists a finite set I. C A such that Hs D JcaH < € for
any A CC A such that I'. C A.

Warning: As usual if X is a Banach gpace and 3_ 4 [|zall < oo then
Y aca Ta exists in X, see Exercise owever, unlike the case of real val-

ued sums thle Exilsgence of > caZa does not imply > ., [zl < oo. See

Proposition elow, from which one may manufacture counter-examples
to this false premise.

Lemma 7.18. Suppose that {z, € X : @ € A} is a given collection of vectors
i a normed space, X.
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Mfs =3 nca®a € X exists and T : X — Y is a bounded linear map

between normed spaces, then Tz, exists in'Y and

a€cA
Ts:TZxa: ZT:EQ.
acA acA

If s =) caTa evists in X then for every e > 0 there exists [. CC A
such that ||} cx Tal| <& forall ACC A\ I

If s = Y pca®a evists in X, the set I' := {a € A:x, # 0} is al most
countable. Moreover if I' is infinite and {an}fle is an enumeration of I
then

oo N
s= Z Ty, = A}im Z Ty, - (7.6)
n=1 e n=1

. If we further assume that X is a Banach space and suppose for all € > 0

there exists I, CC A such that HZaeA xaH < ¢ whenever A CC A\ I,
then Y ca Ta evists in X.

Proof.

17
. Let I. be as in Definition ﬁ@d A CC A such that I C A. Then

Ts—ZTxa

acA

<7l

S—El‘a

ac

<|[T|le

which shows that ) ., Tz, exists and is equal to T's.

. Suppose t Sy Y aca Ta exists and € > 0. Let I'. CC A be as in
Definition hen for A CC A\ I,
D el =| X @ @
acA acl UA acl:
< Z To — S|| + Zza—s < 2e.
acel.UA acl.

It s =37 caa exists in X, for each n € N there exists a finite subset

I, C A such that HZaGA xaH < % for all A cC A\ I,. Without loss of

generality we may assume z, # 0 for all a € I},. Let Iy, := U2, 1}, — a

countable subset of A. Then for any 3 ¢ I'», we have {3} NI, =0 and

therefore
gl = || 3 wal <
ac{s}

— 0 asn — oo.

S

Let {ay, },—; be an enumeration of I" and define yy := {a, : 1 <n < N}.
Since for any M € N, vy will eventually contain Iy, for N sufficiently
large, we have
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: I
N .
= L

7.4 Inverting Elements in L(X) 69

N

5 — E T,

n=1

lim sup

1
<— —>0as M — .
N—o0 M

.6
Therefore Eq. @_ﬁolds.
4. For n € N, let I, CC A such that ||ZaeAxaH < % for all A CcC A\ I},.

Define v, := Up_;I} C A and s, := Zae% Zo. Then for m > n,

|S$m — Snll = Z Tl <1/n— 0 as myn — oo.
A€Ym \Vn

Therefore {sn}zozl is Cauchy and hence convergent in X, because X is a
Banach space. Let s := lim,, .o $,. Then for A CC A such that v, C A,
we have

1
<lls=sall +|| D @a <lls = sall +—.
a€A\vn

s—Exa

acA

Since the right side of this equation goes to zero as n — oo, it follows that
Y acA Ta exists and is equal to s.

7.4 Inverting Elements in L(X)

Definition 7.19. A linear map T : X — Y is an isometry if | Tz|y = ||z|x
for allz € X. T is said to be invertible if T is a bijection and T! is bounded.

Notation 7.20 We will write GL(X,Y) for those T € L(X,Y) which are
invertible. If X =Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 7.21. Suppose X is a Banach space and A € L(X) := L(X, X)
oo

satisfies Y ||A™]| < co. Then I — A is invertible and
n=0

1 o0 o0
(I—A)~1t= = > A" and ||(T—= )7 <A™
n=0 n=0

In particular if |A|| < 1 then the above formula holds and

1
— _1 S —
=47 = Ty
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o0
Proof. Since L(X) is a Banach space and ) ||A"| < oo, it follows from
n=0

13
Theorem at

N
5 Jim S = Jim DA
11
exists in L(X). Moreover, by Lemmaﬁt

(I—A)S=(I—-4) lim Sy = (I—A) Sy

1 lim
N—oo N—o0

N
L n_ s N+1y _
—A}EI}X)(I—A) 570/1 —A}EI}X)(I—A y=1

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to
S. Moreover, (I — A)~! is bounded because

T =17 =S < 147

n=0

If we further assume ||A]| < 1, then |[|A"| < ||A]|" and

o0 o0 1
AM| < A" = —— < co.
SIS 311" = T

n=0
]
Corollary 7.22. Let X and Y be Banach spaces. Then GL(X,Y) is an open

(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and
B e L(X,Y) satisfies

B — Al < [lA7H™ (7.7)
then B € GL(X,Y)
B™' =) [Ix—A'B]" A" € L(Y, X), (7.8)
n=0
(TR 7 — (7.9)
1—[[A-H[||A - B
" |12 14 - B
B l_Al < _ . 7.10
| I< T ma=a) (710
In particular the map
A€ GL(X,Y)— A~ e GL(Y, X) (7.11)

18 continuous.

Page: 70  job: anal macro: svmono.cls date/time: 30-Jun-2004/13:43

e.7.7

o
~

o o

~ ~

o = © ©
[ 1S

~

e



7.5 Exercises 71
Proof. Let A and B be as above, then
B=A—-(A-B)=A[Ix - A" (A-B))] = A(Ix — A)
where A : X — X is given by
A=A A-B)=1Ix - A'B.
Now
Al =[[AT A= B)[| < A7 A= Bl < IATHIATH ! = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

1

B l=(Ix—-A)TA" ' =[Ix-A(A-B))] 4.
Taking norms of the previous equation gives
1
B < ||[(Ix =)A< |A7t
15700 < e = 7 147 < 1A

S
ST AA- Bl

.9 10
which is the bound in Eq. @_T he bound in Eq. @_ﬁolds because

37— a7 = |57 (A- By A~ < B A7 14 - B
A~ 1A= Bl
Tl (AT 1A= B

]
For an a@p!;’gagion of these results to linear ordinary differential equations,
see Section

7.5 Exercises

Exercise 7.5. Let (X, ||-||) be a normed space over F (R or C). Show the map
Nzyy) eFx X xX s+ Aye X

is continuous relative to the norm on F x X x X defined by

I 2 )l s x o= AL+ (2l + lyll-

3.25
(See Exercise or more on the metric associated to this norm.) Also show
that ||-|| : X — [0, 00) is continuous.
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Exercise 7.6. Let X = N and for p,q € [1,00) let [|-[|, denote the ¢P(N) —
norm. Show |-, and ||-||, are inequivalent norms for p # ¢ by showing

IIfH
70 171,

P —xifp<yq

Exercise 7.7. Suppose that (X, ||-]|) is a normed space and S C X is a linear
subspace.

1. Show the closure S of S is also a linear subspace.
2. Now suppose that X is a Banach space. Show that S with the inherited
norm from X is a Banach space iff S is closed.

Exercise 7.8. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.

Exercise 7.9. Suppose that X,Y and Z are Banach spacesand @ : X xY —
Z is a bilinear form, i.e. we are assuming z € X — Q (x,y) € Z is linear for
eachy €Y andy € Y — Q(x,y) € Z is linear for each z € X. Show Q is
continuous relative to the product norm, [|(z,v)| .y = lzllx + llylly , on
X x Y iff there is a constant M < oo such that

1Q (@, 9)llz < M [z]lx - lylly forall (z,y) € X xY. (7.12)
11
Then apply this result to prove Lemma ﬁ

Exercise 7.10. Let d : C(R) x C(R) — [0, 00) be defined by

n_ If =gl
2"
Z TS =gl

where || f[ln = sup{|f(2)] : |z < n} = max{[f(z)| : [«| <n}.

1. Show that d is a metric on C'(R).

2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — o0
iff f, converges to f uniformly on bounded subsets of R.

3. Show that (C(R),d) is a complete metric space.

Exercise 7.11. Let X = C([0,1],R) and for f € X, let

1l = / ()] dt

Show that (X, [|-||;) is normed space and show by example that this space is
not complete. Hint: For the last assertion find a sequence of { fn} ., CX
which is “trying” to converge to the function f = 1[%,1 ¢ X.

7.11
Exercise 7.12. Let (X, ||-||;) be the normed space in Exercise ompute

the closure of A when
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1.A={feX:f(1/2)=0}.
2.A:{feX:supte[O)l}f(t)§5}.

3.A:{f€X:f01/2f(t)dt:0}.

Exercise 7.13. Suppose {z, € X : a € A} is a given collection of vectors in
a Banach space X. Show ) ., x4 exists in X and

S zaf <3 flaal

acA a€A

if > callzall < co. That is to say “absolute convergence” implies con-
vergence in a Banach space.

Exercise 7.14. Suppose X is a Banach space and {f,, : n € N} is a sequence
in X such that lim, .o f, = f € X. Show sy = %25:1 fn for N € N is
still a convergent sequence and

N
L1 :
N 2 fe = i o = f

Exercise 7.15 (Dominated Convergence Theorem Again). Let X be a
Banach space, A be a set and suppose f, : A — X is a sequence of functions
such that f () := lim, . fn (@) exists for all & € A. Further assume there
exists a summable function g : A — [0,00) such that ||f,, (o)] < g () for all
a € A. Show ) 4 f () exists in X and

Tim 3 fu(a) = 3 F (o).

acA a€cA
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Hilbert Space Basics

Definition 8.1. Let H be a complex vector space. An inner product on H is

a function, (-|-) : H x H — C, such that

1. {ax + by|z) = a(z|z) + b{y|z) i.e. © — (x|z) is linear.

2. {zly) = {ylz).
3. ||z]|? == (z|z) > 0 with equality ||z||* = 0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z|x) is conjugate
linear for fixed z € H, i.e.

(zlax + by) = afzlz) + b{zly).

The following identity will be used frequently in the sequel without further
mention,

o +ylI* = (x+yle+y) = =] + lylI* + (zly) + (ylz)
= |lz]* + ||yl + 2Re(z|y). (8.1)

Theorem 8.2 (Schwarz Inequality). Let (H,(:|-)) be an inner product
space, then for all x,y € H

[{zly) < Nzl

and equality holds iff © and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and
observe; if z = ay for some « € C, then (z]y) = a ||y||* and hence

2
[zl = lalllyll™ = ll=lllyl-

Now suppose that © € H is arbitrary, let z := 5. — Hg||_2<9c|y>y. (So z is the
“orthogonal projection” of x onto y, see Figure hen
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:Mz= X~ (*)‘I)H
; ﬂaua—

o P
¢ /R {%,) 4

gy

Fig. 8.1. The picture behind the proof of the Schwarz inequality.

) 1P el o (ely)
os||z|2=Hw— o| = el + Iyll? - 2Re(a] 22 )
Il Wl Pk

2
— ||.’1?||2 _ |<x|y>|2
ly112

from which it follows that 0 < ||y||?||z||?> — [{(x|y)|? with equality iff 2 = 0 or
equivalently iff z = ||y|| =% (z|y)y. [

Corollary 8.3. Let (H, (:|-)) be an inner product space and ||x| := /{x|z).
Then the Hilbertian norm, ||-||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H,||-||).

Proof. If z,y € H, then, using the Schwarz’s inequality,

lz +yl* = llz]1* + lly]* + 2Re(zly)
<l + iyl + 2ll= iyl = (el + lyI)>.

Taking the square root of this inequality shows ||-|| satisfies the triangle in-
equality.
Checking that ||| satisfies the remaining axioms of a norm is now routine

and will be left to the reader. If x, 2"y, y’ € H, then

[(zly) = @'ly)] = [(z — 2ly) + (@"ly — ')
< lyllllz = 2" + ll="[Hly — 'l
< lyllllz = 2" + (=l + lz = 2D lly = o/l
= llylllz — "I + l=lllly — o'l + = — " lllly — &/l

from which it follows that (:|-) is continuous. ]

Definition 8.4. Let (H,(:|-)) be an inner product space, we say x,y € H are
orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write x L A) iff (zly) =0 for ally € A. Let
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At ={x € H:z L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x 1 y for all distinct elements x,y € S. If S further
satisfies, ||x|| =1 for all x € S, then S is said to be an orthonormal set.

Proposition 8.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
Iz +ylI* + o = yl* = 2]|z]|* + 2l|y]|* (8.2)

forall x,y € H.
2. (Pythagorean Theorem) If S CC H is a finite orthogonal set, then

2
ol =Sl (83)
zeS

zeS

3. If A C H is a set, then AL is a closed linear subspace of H.
a7
Remark 8.6. See Proposition @T{)r the “converse” of the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
lz +ylI* + [l — y|®
= [zl + llyll* + 2Re(z[y) + ||z ]|* + [ly]|* — 2Re(z]y)
= 2|z|1* + 2[ly|1%,

and
2

Soall =0 2Dy = (zly

zeS zeS yeSs z,yes
=) (ale) = ll=]*.
zeSs z€S

Item 3. is a consequence of the continuity of (-|-) and the fact that
AT = Ngea Nul((:|z))
where Nul((-|z)) = {y € H : (y|z) = 0} — a closed subspace of H. |

Definition 8.7. A Hilbert space is an inner product space (H,(:|-)) such
that the induced Hilbertian norm is complete.

Ezample 8.8. Suppose X is a set and p : X — (0,00), then H := 2 (u) is a
Hilbert space when equipped with the inner product,
(flg) = f(@)g(@) ().
zeX

. ﬁﬁj . . . . .
In Exercise 8. 7you will show every Hilbert space H is “equivalent” to a Hilbert
space of this form with = 1.

Page: 77  job: anal macro: svmono.cls date/time: 30-Jun-2004/13:43



78 8 Hilbert Space Basics

More examples of Hilbert spaces 3Will be given later after we develop the
Lebesgue integral, see Exampleqﬁ_b_elow.

Definition 8.9. A subset C' of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] :== {tx + (1 —t)y : 0 < t < 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 8.10 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convex subset of H. Then for any x € H
there exists a unique y € M such that

I =yl = dw, M) = inf o — .

Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x —y) L M.

Proof. Uniqueness. By replacing M by M —xz:={m —xz:m € M} we
Eg}:fssume x=0. Let § :=d(0, M) = inf,,eps ||m| and y, z € M, see Figure

Fig. 8.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2llyl1* + 2ll2* = ly + 21 + lly — 21
2

+
Y2y — 2l > 482 + ly— 2% (84)

2

|

Hence if ||y|| = ||z|| = 8, then 262 +26% > 46% + ||y — 2|2, so that ||y — z||> = 0.
Therefore, if a minimizer for d(0, -)|as exists, it is unique.

Existence. Let y, € M be chosen guch that [|y,|| = 6, — & = d(0, M).
Taking y = y,,, and z = y,, in Eq. shows

207, + 267 > 46% + [[yn — yiml|*-
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Passing to the limit m,n — oo in this equation implies,

207 4 20% > 46% 4+ limsup ||y — ym||?,

m,n— oo

i.e. imsup,, ,, oo [[Un — Yml[* = 0. Therefore, by completeness of H, {yn},~,
is convergent. Because M is closed, y := lim y, € M and because the norm
n—oo

is continuous,

lyll = tim [y =6 = d(0, ).

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x € H. Let y € M be the
closest point in M to x. Then for w € M, the function

9(t) = llz — (y + tw)|* = [l — y|* - 2tRe(z — ylw) + *[w]?

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(z — y|w). Since
w € M is arbitrary, this implies that (z —y) L M.

Finally suppose y € M is any point such that (z —y) L M. Then for
z € M, by Pythagorean’s theorem,

lz = 2l? = llz =y +y—21* =z =yl + ly = 2> > ]2 -y

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest
to x. [ |

Definition 8.11. Suppose that A : H — H is a bounded operator. The
adjoint of A, denote A*, is the unique operator A* : H — H such that

(Azly) = (%A y)s (The proof that A* exists and is unique will be given in
Proposition elow.) A bounded operator A : H — H is self - adjoint or

Hermitian if A= A*.

Definition 8.12. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that
for x € H, Py (x) is the unique element in M such that (x — Py(z)) L M.

Theorem 8.13 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py; satisfies:

1. Py is linear and hence we will write Pyyx rather than Py (x).
2. Py; = Py (Py is a projection,).

3. Py, = Py, (Pag is self-adjoint).

4. Ran(Pyr) = M and Nul(Pys) = M+,

Proof.
1. Let z1,20 € H and « € F, then Pyyx1 + aPyxe € M and

Pyxy + aPpyxo — (21 + axs) = [Py — 1 + a(Pyze — x2)] € M+

showing Pyrxz1 + aPyxa = Py(x1 4+ axs), i.e. Py is linear.

Page: 79  job: anal macro: svmono.cls date/time: 30-Jun-2004/13:43



80 8 Hilbert Space Basics

2. Obviously Ran(Py) = M and Py = x for all x € M. Therefore P}, =
Pyy.
3. Let z,y € H, then since (z — Pyx) and (y — Pyy) are in M+,
(Puzly) = (Puz|Puy +y — Puy) = (Puz|Puy)
= (Puz + (z — Puz)|Pay) = (2| Puy).
4. We have already seen, Ran(Py) = M and Pyx =0iffz =2 —0€ M*,
i.e. Nul(Py) = M+.
|

Corollary 8.14. If M C H 1is a proper closed subspace of a Hilbert space H,
then H=M & M~*.

Proof. Given z € H, let y = Py so that z —y € M*'. Then = =
y+(x—y) e M+M*- Ifze MAML, then z L z, ie. [|z]|* = (z]z) = 0. So
Mn M+ ={0}. ]

Exercise 8.1. Suppose M is a subset of H, then M~++ = span(M).

T%ggrem 8.15 (Riesz Theorem). Let H* be the dual space of H (Notation

. The map
ze H-Ls (|2) e H* (8.5)
18 a conjugate linemEI isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

{z|2)| < ||z||||z]| for all z € H

with equality when = = z. This implies that ||jz| 5. = [[(:|2)|l g = 2]
Therefore j is isometric and this implies j is injective. To finish the proof we
must show that j is surjective. So let f € H* which we assume, with out

loss of generality, is non-zero, ’]I en M =Nul(f) — a closed proper subspace
of H. Since, by Corollarye@fﬂ M & ML f:H/M =M+ —TFisa

linear isomorphism. This shows that dim(M*) = 1 and hence H = M @ Fx
where g € M+ \ {0} | Choose z = Azg € M+ such that f(xg) = (x¢2), i.e.
A = f(x0)/ ||lzo]|” . Then for & = m + Az with m € M and X € F,
f(x) = M (20) = Maolz) = (Azolz) = (m + Axolz) = (x]2)
which shows that f = jz. ]
! Recall that j is conjugate linear if
J(z1+az) =jz1 +ajz

for all 21,20 € H and o € C.

2 Alternatively, choose zo € M+ \ {0} such that f(zo) = 1. For x € M~ we have
f(z — Azo) = 0 provided that \ := f(z). Therefore z — Azo € M N M+ = {0},
i.e. z = Axo. This again shows that M~ is spanned by xo.
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Proposition 8.16 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :

K — H such that
(Az|y)k = (x|A*y) g for allz € H and y € K. (8.6)

Moreover, for all A,B € L(H,K) and X\ € C,

1. (A+AB)" = A* + A\B*,

2. A = (A" = A

3. ||A*[l = |All and

4o AT Al = (|A)7.

5. If K = H, then (AB)" = B*A*. In particular A € L (H) has a bounded
inverse iff A* has a bounded inverse and (A*) ™" = (A_l)*.

)

Proof. For each y € the map @ — (Az|y)k is in H* and therefore
there exists, by Theorem a unique vector z € H such that

(Az|y)k = (x|2z) g for all z € H.

This shows there is a unique map A* : K — H such that (Az|y)x =
(x|A*(y))g for all z € H and y € K.
To see A* is linear, let y1,y2 € K and X\ € C, then for any x € H,

(Azlyr + M)k = (Azly1) k + AMAz|y2) i
= (2| A* (1)) K + Mz|A* (y2)) k
= (z[A"(y1) + A" (y2)) K

and by the uniqueness of A*(y1 + A\y2) we find
A" (y1 + Ay2) = A% (y1) + AA" (y2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(A'ylr) g = (@|A*y)p = (Azly)k = (y|Az) K
E’t follows that A** = A. The assertion that (A + AB)" = A* + AB* is Exercise

.2
Items 3. and 4. Making use of the Schwarz inequality (Theorem @Twe

have
[A*| = sup [[A7K|
kEK:|k|=1
— sup swp [{A"K[R)]
kEK:|k||=1 he H:||h||=1
= sup sup  |[(k|AR)| = sup [[AR[ = [[A]
heH:||h||=1 kEK:||k|=1 heH:||h||=1
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so that ||[A*|| = ||A]|. Since
* 2
[A"Al < [[A"[[ | Al = [lA]
and

JA|> = sup [|AR[]® = sup |(Ah|AR)]

heH:||h||=1 heH:|[h|=1
— s [(BATAR) S sup  [[ATAR| = A4 (8.7)
heH:||h||=1 heH:||h||=1

we also have [|A*A|| < [|A]|* <J|4* Al which shows ||A|* = [[A*A] .
Alternatively, from Eq. i
1417 < A% Al < [lA] A7) (8.8)
which then implies ||A| < ||A*||. Replacing A by A* in this last inequality
show gH < ||A|l and hence that ||A*|| = ||A|l. Using this identity back in
Eq. “proves ||A|> = ||A*A]|.
Now suppose that K = H. Then
(ABhlk) = (Bh|A*k) = (h|B*A™k)
which shows (AB)* = B*A*. If A~1 exists then
(A A" =(AAY)" =1" =T and
AT (AT =(A7A) =" =1
This shows that A* is invertible and (A*)™" = (Afl)*. Similarly if A* is
invertible then so is A = A**. ]
Exercise 8.2. Let H, K, M be Hilbert spaces, A, B € L(H,K), C € L(K, M)
and \ € C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 8.3. Let H = C™ and K = C™ equipped with the usual inner
products, i.e. (z|w)y = z-w for z,w € H. Let A be an m xn matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 8.17. Suppose A : H — K is a bounded operator, then:
1. Nul(A*) = Ran(4)* .
2. Ran(A) = Nul(4*)+.
3. if K=H andV C H is an A — invariant subspace (i.e. A(V) C V), then
VL ois A* — invariant.

e.8.7

e.

Proof. An element y € K is in Nul(4*) iff 0 = (A"y[z) = (y[Ag) ¢ 4

for all + € H which happens iff y € Ran(A4)*. Because, by Exercise
Ran(A) = Ran(A4)1+, and so by the first item, Ran(A4) = Nul(A*)*. Now
suppose A(V) C V and y € V+, then

(A*y|z) = (y|Ax) =0 for all z € V
which shows A*y € V. ]
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8.1 Hilbert Space Basis

Proposition 8.18 (Bessel’s Inequality). Let T be an orthonormal set, then
for any x € H,
Z (z|v)|* < ||z||* for all z € H. (8.9)
veT
In particular the set T, = {v €T : (z|v) # 0} is at most countable for all
reH.

Proof. Let I' C T be any finite set. Then

0< Jlz— Y (zloyu]® = |z = 2Re Y {afv) (v]z) + D [alo)]

vel’ vel vel’

= llzl® = Y l{afv)l?

vel

showing that > |(x|v)|? < |lz|?. Taking the supremum of this inequality over
vel .9
I' CC T then proves Eq. : [

Proposition 8.19. Suppos GoH is an orthogonal set. Then s = Y wer ¥
exists in H (see Deﬁnitionﬁ Sver vl? < oo (In particular T must
be at most a countable set.) Moreover, if ), . ||v[|* < oo, then

L |sl* = X ,er l[ol|* and
2. (s|z) = > cr(vlz) for all x € H.

o0
Similarly if {v,}22, is an orthogonal set, then s = > v, exists in H
n=1

o0 o0
iff . |lonll? < oo. In particular if Y v, exists, then it is independent of

n=1 n=1
rearrangements of {v, }22 ;.

Proof. Suppose s = ) v exists. Then there exists I" CC T' such that

oIl =D

veEA veEA

2
<1

for all A CcC T\ I', wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such A shows that >, .7 [v]|* <1 and

therefore
Dol <14 > |lv)? < 0.
veT vell

Conversely, suppose that > . [|[v]|* < oo. Then for all € > 0 there exists
I'. cC T such that if A CcC T\ I,
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>

veEA

2

=Y ol <& (8.10)

vEA

1
Hence by Lemma @_%:%T v exists.

For item 1, let I be as above and set s := > r. v Then

ve
sl = llselll < lls = sell <&
10
and by Eq. @
2
0< S o2 =[5l = 32 ol < <2
veT vl

Letting € | 0 we deduce from the previous two equations that ||s.|| — ||s| and
l|s<]? — > ver lvl? as e | 0 and therefore ||s 2@ Soer llvl?.

Item 2. is a special case of Lemma or the final assertion, let
N
SN := Y v, and suppose that limy_, sy = s exists in H and in partic-
n=1
ular {sy}x_; is Cauchy. So for N > M.
N
Z lvall? = |Isn — sml]* — 0 as M, N — oo
n=M+1

oo o0
which shows that > ||v,]|? is convergent, i.e. > [jv,]|? < oc.
n=1 n=1
Alternative proof of item 1. We could use the last result to prove

Item 1. Indeed, if 3 o [|[v]|* < oo, then T is countable and so we may write
T ={v,},—,. Then s = limy_.~ sy with sy as above. Since the norm, |-,
is continuous on H,

2 N
s 2
= I&EHOOZ [[vnl]
n=1

N
Is|> = lim [lsy[* = lim || v,
N—oo N—oo
n=1
o]
2
= llwal* = 0>
n=1 veT

Corollary 8.20. Suppose H is a Hilbert space, 5 C H is an orthonormal set
and M = span (3. Then

Pyx = Z<x|u>u, (8.11)

uep
> l@lw))? = | Puz)|? and (8.12)
uep
> () (uly) = (Paraly) (8.13)
uef

forall x,y € H.
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Proof. By Bebseibén%mahty, > uep [(z|u))* < ||z|* for all z € H and

hence by Proposition T = ueﬁ<x|u)u exists in H and for all z,y € H,

(Paly) =Y ((zluw)uly) = Y (x|u){uly). (8.14)

uep u€p

14
Taking y € § in Eq. @ﬁgives (Pxly) = (x|y), i.e. that (x — Pz|y) = 0 for
all y € 8. So (x — Pz) L span 8 and by continuity we also have (z — Pz) L

M = span (3. Since Pz is al p M, it follo%s %T?Bl tha d%%‘clon of Py that
Px = fMJ: proving, E, %_Equatlons and now follow from

roposwlongﬁand the fact that (Pyzly) = (Pizly) = (Pux|Puy)
for all x,y € H. [

Exercise 8.4. Let (H,(:|-)) be a Hilbert space and suppose that {P,}>
is a sequence of orthogonal projection operators on H such that P, (H) C
P,+1(H) for all n. Let M := U2, P,(H) (a subspace of H) and let P denote
orthonormal projection onto M. Show lim,,_,oo P,z = Pz for all z € H. Hint:
first prove the result for © € M, then for # € M and then for z € M.

Definition 8.21 (Basis). Let H be a Hilbert space. A basis 8 of H is a
mazximal orthonormal subset 3 C H.

Proposition 8.22. Fvery Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If @ C F is lin 'laly ordered then U® is an upper bound. By Zorn’s
Lemma (see Theorem here exists a maximal element 3 € F. ]

An orthonormal set 8 C H is said to be complete if 3+ = {0}. That is
to say if (z|u) = 0 for all u € 8 then = = 0.

Lemma 8.23. Let 3 be an orthonormal subset of H then the following are
equivalent:

1. B is a basis,
2. B is complete and
3. span 0 = H.

Proof. (1. < 2.) If § is not complete, then there exists a unit vector
x € 3+\{0}. The set BU{z} is an orthonormal set properly containing 3, so
[ is not maximal. Conversely, if 3 is not maximal, there exists an orthonormal
set /1 C H such that 8 & 1. Then if € 1 \ 3, we have (z|u) = 0 for all
u € 3 showing [ is not complete.

(2. <= 3.) If 3 is not complete and = € B+ \ {0}, then span g C 2+
which is a proper subspace of H. Conversely if span 3 is a ?roggr subspace

— 1
of H, B+ = span 3 is a non-trivial subspace by Corollary and ( is not
complete. [
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Theorem 8.24. Let 3 C H be an orthonormal set. Then the following are

d.8.25

r.8.26

equivalent:

1. B is complete, i.e. B is an orthonormal basis for H.

2.x= > (zluyu for allz € H.
u€eS

3. (xlyy = > (zlu) (ul|y) for all z,y € H.

uep

4. ||lz||? = Zﬁ |{z|u)|? for all x € H.
ue

Proof. Let M = span ﬁralgdz = Py
(1) = (2) By Corollary 820, »_ (x|u)u = Pyrx. Therefore
u€eB

9c—z<9c\u>u:ac—PMalcEML:ﬁL = {0}.
u€ef

(2) = (3) is a consequence of Proposition ﬁlﬁ

(3) = (4) is obvious, just take y = x.

(4) = (1) If z € B+, then by 4), ||z|| = 0, i.e. 2 = 0. This shows that 3 is
complete. [

Suppose I" := {u,} -, is a collection of vectors in an inner product space
(H,{:|-)). The standard Gram-Schmidt process produces from I" an or-
thonormal subset, 8 = {v,}22,, such that every element w, € I' is a finite
linear combination of elements from . Recall the procedure is to define v,
inductively by setting

n
Upg1 i= Upy1 — Z(Un+1|vj>vj = Unt1 — PpUns1
j=1
where P, is orthogonal projection onto M, := span({vy};_;). If v,41 := 0, let
Op41 = 0, otherwise set vy, 41 := ||Un41 ||71 Upt1. Finally re-index the resulting
sequence so as to throw out those v,, with v,, = 0. The result is an orthonormal
subset, 8 C H, with the desired properties.

Definition 8.25. As subset, I, of a normed space X 1is said to be total if
span(I) is dense in X.

Remark 8.26. Suppose that {u,}2%; is a total subset of H. Let {v,}52 be
the vectors found by performing Gram-Schmidt on the set {u,}22 ;. Then
B = {v,}2 is an orthonormal basis for H. Indeed, if h € H is orthogonal
to 3 then h is orthogonal to {u,}, and hence also span{u,}, ., = H. In
particular h is orthogonal to itself and so h = 0.

Proposition 8.27. A Hilbert space H is separable (BRUCE: has separable
been defined yet?) iff H has a countable orthonormal basis 3 C H. Moreover,
if H is separable, all orthonormal bases of H are countable. (See Proposition
4.14 in Conway’s, “A Course in Functional Analysis,” for a more general
version of this proposition.)
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Proof. Let D C H be a countable dense set D = {u,}>2 ;. By Gram-
Schmidt process there exists § = {v,}2; an orthonormal set such that
span{v, : n=1,2...,N} D span{u, : n=1,2...,N}. So if (z|v,) = 0 for
all n then (x|u,) = 0 for all n. Since D C H is dense we may choose {wy} C D
such that = limg_, o wy and therefore (x|z) = limy_ o (x|wy) = 0. That is to
say * = 0 and ( is complete. Conversely if 3 C H is a countable orthonormal
basis, then the countable set

D= Zauu:aue(@+i@:#{u:au7&0}<oo

u€eS

is dense in H. Finally let 5 = {u,}52; be an orthonormal basis and $; C H
be another orthonormal basis. Then the sets

By ={v € B1 : (v]un) # 0}

oo}
are countable for each n € N and hence B := |J B, is a countable subset

n=1
of B1. Suppose there exists v € 81 \ B, then (v|u,) = 0 for all n and since
B8 = {un}>2, is an orthonormal basis, this implies v = 0 which is impossible
since ||v|| = 1. Therefore 3; \ B = () and hence 31 = B is countable. ]

Proposition 8.28. Suppose X and Y are sets and pp: X — (0,00) and v :
Y — (0,00) are give weight functions. For functions f : X — Candg:Y — C

let f@g: X xY — C be defined by f @ g (z,y) := f(x)g(y). If B C £?(u)
and v C 02 (v) are orthonormal bases, then

poy:={f®g:fep andge}
is an orthonormal basis for (? (p @ v).

Proof. Let f, f' € 2 (1) and g, ¢’ € £2 (v), then by the Tonelli’s Theorem
@Tﬁr sums and Holder’s inequality,

Y lfeg-fegduev=> Iff1nY_lgdlv
Y

XxY X
< ez uy 1 Moz oy 1912y 19 ez oy = 1 < 00
23
So by Fubini’s Theorem or sums,

(foglf @ ewsn =Y [Fn-> ggv
X Y

= (fIf e 9lg)ew) =050,

Therefore, 3 ® v is an orthonormal subset of £?(u ® v). So it only remains to
show 3®7 is complete. We will give two proofs of this fact. Let F' € (?(u®@v).
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24
In the first proof we will verify i 4,,0f Theorem %hﬂe in the second
we will verify item 1 of Theorem
First Proof. By Tonelli’s Theorem,

2
S u@) S v @) [F@ )P = 1F]2 oy < 0

reX yey

and since p > 0, it follows that

Z |F(,y)]> v (y) < oo for all z € X,
yey

i.e. F(x,-) € £2(v) for all z € X. By the completeness of ~,

Y AF@ ) v (y) = (F (2,) [F (2,)e0) = » [(F (@) [9)ew) k
Y

ge€Y

and therefore,

1FZ oy = D (@) Y v (y) [F(ay)

reX yey
=3 Y HF @) 9w v, (8.15)
rzeX gEY

and in particular, 2 — (F (x,-) |g)s2(,) is in £2 (1) . So by the completeness of
B and the Fubini and Tonelli theorems, we find

Z| |g Zz(u)| :u Z Z<F (CL’,) ‘g>é2(u)f_(x)ﬂ(‘r)

fesl X

=>. 1> (Zm,y)g(y)v(y)) F(2) p(z)
X Y

2

2

=> | Flayfeg@ypeviy)
fepIXxXY

= Z (FIf® 9>€2(/L®V)|2'
fep

15
Combining this result with Eq. @hows

2
||FH42(M®U = Z [(FIf ® 9) e (uow)|
fEB, g€

as desired.
Second Proof. Suppose, for all f € § and g € v that (F|f ® g) =0, i.e.
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0= (FIf ® Qexuan) = »_ n(x) Y v(y) Flz,y)f(2)g(y)

zeX yey
=D nl N9 ew) f(@). (8.16)
rzeX
Since
S FE e n@ <3 @) S [F@y)Prvi) <o, (817)
reX reX yey

16
it follows from Eq. @ﬁmd the completeness of 3 that (F(z,-)|g)eu) =0
for all x € X. By the completeness of v we conclude that F(z,y) = 0 for all
(z,y) e X x Y. |

Definition 8.29. A linear map U : H — K is an isometry if |Uz|, =
|| g for all x € H and U is unitary if U is also surjective.

Exercise 8.5. Let U : H — K be a linear map, show the following are
equivalent:

1. U : H — K is an isometry,

33
2. (Uz|Ux") g = (z|2'y g for all x,2’ € H, (see Eq. @"below)
3.U"U =1idy.

Exercise 8.6. Let U : H — K be a linear map, show the following are
equivalent:

1. U : H — K is unitary
2. U*U =idy and UU* = idk.
3. U is invertible and U™t = U*.

Exercise 8.7. Let H be a Hilbert space. Use Theorem 2% show there
exists a set X and a unitary map U : H — ¢?(X). Moreover, if H is separable
and dim(H) = oo, then X can be taken to be N so that H is unitarily
equivalent to ¢2 = (2(N).

8.2 Some Spectral Theory

For this section let H and K be two Hilbert space over C.
Exercise 8.8. Suppose A : H — H is a bounded self-adjoint operator. Show:

1. If X is an eigenvalue of A, i.e. Az = Az for some x € H\ {0}, then A € R.
2. If A and p are two distinct eigenvalues of A with eigenvectors x and y
respectively, then = L y.
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Unlike in finite dimensions, it is possible that an gper, tor on a com, 1
Hilbert space may have no eigenvalues, see Example%d Lemma
below for a couple of examples. For this reason it is useful to generalize the
notion of an eigenvalue as follows.

Definition 8.30. Suppose X is a Banach space over F (F =R or C) and
A€ L(X). We say X € F is in the spectrum of A if A— A\l does not have a

bounde(ﬂ inverse. The spectrum will be denoted by o (A) C F. The resolvent
set for A is p(A) :=TF\o (4).

Remark 8.31. If A is an eigenvalue of A, then A — Al is not injective and hence

is a Hilbert space ant A € L (H), it follows from item 5. of Proposition

36

not invertible. Therefore any eigenvalue of A is in the spectrum of A. if é 16

that A\ € 0 (A) iff A € 0 (A4*), i.e.
c(A)={X:xec(A)}.
Exercise 8.9. Suppose X is a complex Banach space and A € GL (X) . Show
c(A) =cA) i ={AAea(A)}.

If we further assume A is both invertible and isometric, i.e. ||Az| = ||z|| for
all x € X, then show

c(A)c Sti={z€C:|z|=1}.
Hint: working formally,

(A_l _ A_1)71 _ 1 _ 1 _ AN

from which you might expect that (4=! — )\_1)_1 = MA-NifXe
p(A).

Exercise 8.10. Suppose X is a Banach space and A € L (X). Use Corollary

Cx"22

.22[to show o (A) is a closed subset of {)\ eF: |\ <A := HAHL(X)} .

Lemma 8.32. Suppose that A € L(H) is a normal operator, i.e. [A, A*] = 0.
Then A € o(A) iff
inf ||(A— AL)y| =0. (8.18)
llbll=1
In other words, A € o (A) iff there is an “approximate sequence of eigen-
vectors” for (A,\), i.e. there exists v, € H such that ||[¢,] = 1 and
Ay, — P, — 0 as n — oo.

- 19
3 !t %lwllow by the open mapping Theorem @W the closed graph Theorem

at the word bounded may be omitted from this definition.
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Proof. By replacing A by A — AI we may assume that A =0.If 0 ¢ o(A),
then

| Al 1l B
f ||A = inf —— = inf = A .
jdnt WAVl = inf s = inf gy = VAT >0

Now suppose that inf|, =1 [[A%[ = & > 0 or equivalently we have

[AY]| = e [I¥]]

for all ¢ € H. Because A is normal,
149* = (A" Aply) = (AA™plw) = (A"l A™) = A",
Therefore we also have
A = [[Ap]| = [yl V¢ € H. (8.19)

This shows in parpicular that A and A* are injective, Ran(A) is closed and
hence by Lemma

Ran(A) = Ran(4) = Nul(4*)* = {0}* = H.

h elfgre A is algebraically invertible and the inverse is bounded by Eq.
% %). ]

Lemma 8.33. Suppose that A € L(H) is self-adjoint (i.e. A= A*) then

o(4) C | =14l 141, | < R.

op’? |
Proof. Writing A\ = o + i with o, 5 € R, then

I(A+a+iB)¢]* = [(A+a)p|® + B |9]]° + 2Re((A + a) ¥, i6)
= (A + a)y|* + |81 1] (8.20)

wherein we have used

Re[if((A+a) ¥, )] = BIm((A+ o) ¥, ¥) =0
(A+ )9, ¢) = (b, (A+ a)¢P) = (A+a) ¥, ¢).
Eq. @%long with Lemma@%ﬁows that A ¢ o(A)if 8 #0,i.e. o(A) CR.

The fact that iy éA) is now contained in [— 1 Allop » ||AHOP} is a consequence of
Exercise — ]

Remark 8.34. It is not true that o(A) C R implies A = A*. For example let

A= (g (1)> on H = C2, then o(A) = {0} yet A # A*.
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92 8 Hilbert Space Basics

Ezample 8.35. Lgt So5 L(H) be a (not necessprily) normal operator. The
proof of Lemma gives A € o(9) if Eq. @T@lds. However the converse
is not always valid unless S is normal. For example, let S : £2 — £2 be the shift,

S(wr,wa,...) = (0,wi,ws,...). Then for any A € D:={z€ C: |z| < 1},

1S =)@l = [15¢ = Xl = [[[S¢ll = A1l = (1 = [AD (1]

and so there does not exists an approximate sequence of eigenvectors for
(S, A). However., as we will now show, o (S) = D. " . 8.9

To prove this it suffices to show by Remark ‘and Exercise @Th—aj
D C o (S*). For if this is the case then D C ¢ (S*) C D and hence ¢ (S) = D

since D is invariant under complex conjugation.
A simple computation shows,

S*(wy,wa,...) = (w2, ws,...)
and w = (w1,ws,...) is an eigenvector for S* with eigenvalue A\ € C iff
0=(S" =) (w1,wa,...) = (w2 — dw1, w3 — Awa, ... ).
Solving these equation shows
W = Awi, wg = Aws = ANwi ,..., wp = A""lw.
Hence if A € D, we may let w; = 1 above to find
SHL,AA% ) = A1, 002, 000)

where (1,\,A2,...) € £2. Thus we have shown \ is an eigenvalue for S* for
all A € D and hence D C o(S*).

Lemma 8.36. Let H = (?(Z) and let A: H — H be defined by
Af(ky=i(f(k+1)—f(k—1)) forallk € Z.
Then:

1. A is a bounded self-adjoint operator.
2. A has no eigenvalues.

3.0(A)=1[-2,2].
_ _ _ 23.8
Proof. For another (simpler) proof of this lemma, see Exercise elow.
1. Since

ALl < 1F CH+Dllp + 1 C=Dlly = 21071,

| Al,, < 2 < co. Moreover, for f,g € 2 (z),
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8.2 Some Spectral Theory 93
(Aflgy = i (f (k+1) — f (k=1)g (k)
k
=Y if(k)gk—=1)=> if(k)g(k+1)
k

k

=" f(k) Ag (k) = (f|Ag),
k

which shows A = A*
33
2. From Lemma @We know that o (A) C [-2,2]. If A € [—2,2] and
f € H satisfies Af = Af, then

flk+1)=—ixf(k)+ f(k—=1) for all k € Z. (8.21)

This is a second order difference equations which can be solved analogously
to second order ordinary differential equations. The ide is,fo start by looking
for a solution of the form f (k) = o*. Then Eq. @_becomes7 aFtlt =
—ida® + o#~1 or equivalently that

o +ida—1=0.
So we will have a solution if o € {a4 } where

—iAEV4— )2

a4 = 5

.. . 21
For || # 2, there are two distinct roots and the general solution to Eq. (@

is of the form

f(k)=crak +c_a® (8.22)
for some constants cx € C and |A| = 2, the general solution has the form
f (k) = cak + dka (8.23)

Since in all cases, |ay| = i ()\2 +4 — )\2) =1, it follows that neither of these
functions, f, will be in 2 (Z) unless they are identically zero. This shows that
A has no eigenvalues.

3. The above argument suggest a method for constructing approximate
eigenfunctions. Namely, let A € [—2,2] and define f, (k) := 1|k|§nak where
a = ay. Then a simple computation shows

A=A fall,

lim =0 (8.24)
n—oo || full
and therefore A € o (4). ]
. . 24 . .
Exercise 8.11. Verify Eq. @ Also show by explicit computations that
A=) fn
i IA=AD Bl
n—oo |l fally

it ¢ [-2,2].
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94 8 Hilbert Space Basics

The next couple of results will be needed for the next section.

Theorem 8.37 (Rayleigh quotient). Suppose T € L(H) := L(H,H) is a
bounded self-adjoint operator, then

)
171 =sup =7

Moreover if there exists a non-zero element g € H such that

(T9lg) _
2 - || ”7
gl
then g is an eigenvector of T with Tg = Ag and A € {x||T||}.

Proof. Let

(1T
M = .
o TP
We wish to show M = ||T||. Since

[KATHT < IFNT LI < I,
we see M < ||T||. Conversely let f,g € H and compute

(F+9IT(f+9)) = (f = 9IT(f = 9))

= (fITg) + 9ITF) +{fITg) + (9T )

=2[(f[Tg) + (T'glf)] = 2[(f|Tg) + (f|Tg)]
= 4Re(f|Tg).

Therefore, if || f|| = ||g]| = 1, it follows that
M M
Re(fITa)| < 5 {If + 9l + 1If — gl1*} = - {211 + 20gl*} = 0.

By replacing f be e f where 6 is chosen so that e (f|Tg) is real, we find
[(f[Tg)| < M for all [ f|| = [lg]| = 1.

Hence

IT|= sup [(f|Tg)| <M.
I=llgll=1

If g€ H\ {0} and ||T|| = [(Tglg)|/||g]|* then, using the Cauchy Schwarz
inequality,

i) = Kool 1Tl gy (8.25)

gl Il
This implies [(T'g|g)| = [|T,gl4gll and forces equality in the Cauchy Schwarz
inequality. So by Theorem g and g a %ngearly dependent, i.e. Tg = Ag
for some A € C. Substituting this into shows that |A| = ||T||. Since T

is self-adjoint,

Mlgli® = (Aglg) = (Tglg) = (9|Tg) = (9|Ag) = Aglg),
which implies that A € R and therefore, A € {||T||}. |
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8.3 Compact Operators on a Hilbert Space 95
s s3] 8.3 Compact Operators on a Hilbert Space

In this section let H and B be Hilbert spaces,apd [f = {z € H : [|z]| < 1}
be the unit ball in H. Recall from Definition at a bounded operator,

K : H — B, is compact iff K(U) is compact in B. Equivalently, for all
bounded sequences {z,}32; C H, the sequence {Kz,}72, has a convergent
subsequence in B. Because of Theorem if dim(H) =ccand K : H — B
is invertible, then K is not compact.

Definition 8.38. K : H — B is said to have finite rank if Ran(K) C B is
finite dimensional.

13 14
The following result is a simple consequence of Corollaries %{md %

Corollary 8.39. If K : H — B is a finite rank operator, then K is compact.
In particular if either dim(H) < oo or dim(B) < oo then any bounded operator
K : H — B is finite rank and hence compact.

Lemma 8.40. Let K := K(H, B) denote the compact operators from H to
B. Then K(H, B) is a norm closed subspace of L(H, B).

Proof. The fact that K is a vector subspace of L(H, B) will be left to the
reader. To finish the proof, we must show that K € L(H, B) is compact if
there exists K,, € C(H, B) such that lim,, . || K, — K||op = 0.

First Proof. Given ¢ > 0, choose N = N(e) such that |[Ky — K| < e.
Using the fact that KyU is precompact, choose a finite subset A C U such
that mingea |ly — Knz|| < e for all y € Ky (U). Then for z = Kzg € K(U)
and x € A,

I — Kall = (K — Kx)ao + Kn(zo — ) + (Ky — K)a|
<2+ ”KNxO — KNJ?H
Therefore minge 4 ||z — Knz| < 3¢, which shows K(U) is 3¢ bounded for all
e >0, K(U) is totally bounded and hence precompact.
Second Proof. Suppose {z,} -, is a bounded sequence in H. By com-

pactness, there is a subsequence {x}t}:ozl of {z,},—, such that {le;}zo:l
is convergent in B. Working inductively, we may construct subsequences

{wnyo D {an}_ D{al} D {aphl D
such that {K,,27} >~ | is convergent in B for each m. By the usual Cantor’s
diagonalization procedure, let y, := 7, then {yn};":’:1 is a subsequence of
{z,}7, such that {K,,y,}, - is convergent for all m. Since
1Ky — Kyill < (K = Ko yull + [[ K (yn = yo)ll + | (K — K) y)|
<2 ||K - KmH + ||Km(yn - yl)H )

lim sup ||Ky, — Ky <2||K — K,,|| — 0 as m — oo,

n,l—oo

which shows {Ky,}.-, is Cauchy and hence convergent. ]
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96 8 Hilbert Space Basics

Proposition 8.41. A bounded operator K : H — B is compact iff there exists
finite rank operators, K, : H — B, such that |K — K,|| — 0 as n — oo.

Proof. Since K(U) is compact it contains a countable dense subset and
from this it follows that K (H) is a separable subspace of B. Let {¢,,} be an
orthonormal basis for K (H) C B and

N

Pxy = (ylén)én

n=1

be the orthogonal projection of y onto span{¢, })_;. Then limy_. || PNy —
y|| =0 for all y € K(H). Define K,, := P,K — a finite rank operator on H.
For sake of contradiction suppose that

limsup |K — K,|| =¢ > 0,

n—oo

in which case there exists z,, € U such that ||(K — K, )2n,| > ¢ for all ng.
Since K is compact, by passing to a subsequence if necessary, we may assume
{Kwnk}ff;zl is convergent in B. Letting y := limg_,o0 Ky, ,

(K = Ky ), | = [[(1 = Poy ) K, |

<N = Py ) (Kwny, — )|+ [[(1 = Poy)yll
S Kzn, =yl + 11 = Poy)yll — 0 as k — oc.

But this contradicts the assumption that ¢ is positive and hence we must
have lim;, . [[K — Ky[| = 0, i.e. K is an operator norm limif gf finite rank

DEIZEOTS. The converse direction follows from Corollary and Lemma
Eﬁii[ ]

Corollary 8.42. If K is compact then so is K*.

|K* = K| = |[K - K| — 0 as n— o0

showing K™ is a limit of finite rank operators and hence compact.
Second Proof. Let {x,,} —, be a bounded sequence in B, then

K 2y — K* 2 ||> = (0 — @m, KK* (@0 — 2m)) < 2C | KK* (2, — @) ||
(8.26)
where C'is a bound on the norms of the z,,. Since { K*z,, } -, is also a bounded
sequence, by the compactness of K there is a subsequgnge {7} of the {z,}

such that K K*z! is convergent and hence by Eq. , so is the sequence

(K*z!}. n
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8.3 Compact Operators on a Hilbert Space 97
8.3.1 The Spectral Theorem for Self Adjoint Compact Operators

For the rest of this section, K € K(H) := K(H,H) will be a selé—%jﬂnt
compact operator or S.A.C.O. for short. Because of Proposition we
might expect compact operators to behave very much like finite dimensional
matrices. This is typically the case as we will see below.

Ezample 8.43 (Model S.A.C.0.). Let H = {5 and K be the diagonal matrix

MO O -
0 Xy O «--
K=00x-]>

where lim,, .o [An| =0 and A, € R. Then K i iglf—adjoint compact opera-
tor. This assertion was proved in Example above.

t_8.45 . .
The main theorem (Theor L AP) of this subsection states that up to

unitary equivalence, Example [8.43[1s essentially the most general example of
an S.A.C.O.

Proposition 8.44. Let K be a S.A.C.O., then either A = |[K|| or A = — || K]||
s an eigenvalue of K.

Proof. Without loss of generality we may:, sppme that K is non-zero since
otherwise the result is trivial. By Theorerﬁ%ﬁhere exists u, € H such that
|lun] =1 and

[[wnl®

= [{(un|Kun)| — || K| as n — oo. (8.27)

By passing to a subsequence if necessary, we may assume that A\ :=
limy, o0 (un | Kuy,) exists and A € {£| K||}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of K, that Ku,,
is convergent as well. We now compute:
0 < [ Kun — Mun || = || Kun|? — 20K un) + A2
<A =2\ Kup|u,) + N2

A2 —2X2 4+ A2 =0asn— .

Hence

Kuy, — Mu, — 0asn— oo (8.28)
and therefore )

w:= lim u, = X lim Ku,

exists. By the cantinuity of the inner product, |lu]| =1 # 0. By passing to the
limit in Eq. we find that Ku = \u. ]
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98 8 Hilbert Space Basics

Theorem 8.45 (Compact Operator Spectral Theorem). Suppose that
K :H — H is a non-zero S.A.C.0., then

1. there exists at least one eigenvalue X € {£|| K||}.

2. There are at most countable many non-zero eigenvalues, {\, })_,, where
N = oo is allowed. (Unless K is finite rank (i.e. dimRan (K) < c0), N
will be infinite.)

3. The A\, ’s (including multiplicities) may be arranged so that |A,| > [Ap41]
for all n. If N = 0o then lim,_ |Ay| = 0. (In particular any eigenspace
for K with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {¢n}N_; can be chosen to be an O.N. set such that H =
span{¢, } & Nul(K).

5. Using the {¢n }N_; above,

N
Kf=>> A(fl¢n)én for all f € H. (8.29)
n=1

6. The spectrum of K is, o(K) ={0}U{\,:n < N +1}.

Proof. We will find A,’s and ¢,’s recursivelys Ligt A1 € {=[| K[} and
¢1 € H such that K¢; = A\1¢; as in Proposition% 17

Take M; = span(¢;) so K(M;) C M;. By Lemma %Mﬁ C Mi-.
Define K; : M- — Mj via K; = K|M1l. Then K, is in,a compact
operator. If K1 = 0, we are done. If K7 # 0, by Propositiona%'ﬁﬁere exists
)\2 S {:|Z||K1H} and ¢2 S MlJ‘ such that HQSQH =1 and Klgf)g = K¢2 = )\2¢2.
Let My := span(é1, ¢2).

Again K (Mz) C Ms and hence K3 := K|y ¢ M — My i gempact and
if Ko = 0 we are done. When K5 # 0, we apply Proposition %&gain to find
A3 € {:l:HKHQ} and ¢3 S ]\42L such that H(Z)3H =1 and K2¢3 = K¢z = )\3¢53.

Continuing this way indefinitely or until we reach a point where K, = 0,
we construct a sequence {\, }N_; of eigenvalues and orthonormal eigenvectors
{¢n}N_, such that |\, | > |A\n11| with the further property that

K4l

[Anl = .
" ei{eraninay 9

(8.30)

When N < oo, the remaining results in the theorem are easily verified. So
from now on let us assume that N = co.

If € := lim, 00 |An| > 0, then {A;l(bn}zo:l is a bounded sequence in H.
Hence, by the compactness of K, there exists a subsequence {ny : k € N} of
N such that {¢n, = A; K¢y, },-, is a convergent. However, since {¢n, }re,
is an orthonormal set, this is impossible and hence we must conclude that
g :=lim, o |An| = 0.

17
Let M := Span{qbn}zo_l[ l%% K(M) C M and hence, by Lemma@

K(M*) c M*. Using Eq. ;

Page: 98  job: anal macro: svmono.cls date/time: 30-Jun-2004/13:43



8.3 Compact Operators on a Hilbert Space 99

showing K|M+ = 0. Define Py to be orthogonal projection onto M~. Then
for f € H,

f=Pf+0=P)f=Pof+>_(flon)on

n=1

and - -
Kf=KPf+K> (flon)dn =Y Mlfldn)dn

n=1 n=1

, 29
which proves Eq.

Since {A\,}22; C o(K) and o(K) is closed, it follows that 0 € o(K) and
hence {A\,}52, U {0} C o(K). Suppose that z ¢ {A,}52; U {0} and let d
be the distance between z and {\,}52; U {0}. Notice that d > 0 because
lim, o0 A, = 0.

A few simple computations show that:

N

(K —2D)f =Y {flén)(An — 2)én — 2P,

n=1

(K — z)~! exists,

N
(K - ZI)ilf = Z<f|¢n>()‘n - 2)71¢7L - 271P0f7
n=1

and
II(K—ZI)*lfIILinIqS CL I ) N
— 2 e el
1 2 al 2 2 1 2
<(3) (Sitenr +1msr) = s
n=1

We have thus shown that (K — 2I)~! exists, |[[(K — 2I)7}|| < d~! < oo and
hence z ¢ o(K). ]

Theorem 8.46 (Structure of Compact Operators). Let K : H — B
be a compact operator. Then there exists N € NU{oo}, orthonormal subsets

{qi)n}nN:l C H and {4}, C B and a sequences {Oén},ljzl C Ry such that

n=1

M > > . imy o, =0 if N =00, ||U,.]] <1 foralln and

N
Kf =Y on(flén)tbn for all f € H. (8.31)

n=1
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100 8 Hilbert Space Basics

Proof. Since K* K is a selfadjoint compact operator, Theorem @ﬁpheb
there exists an orthonormal set {¢,,}Y_; C H and positive numbers {\, }
such that

N
K*Kp =Y An(¥|én)n for all 9 € H.

n=1

Let A be the positive square root of K*K defined by

N
A=Y N Al bn) b for all v € H.
n=1

A simple computation shows, A2 = K*K, and therefore,

|AY|* = (Ap|Ay) = (p|A%)
= (Y|K*Kv) = (Ky|Ky) = | K|

for all ¢ € H. Hence we may define a unitary operator, « : Ran(A4) — Ran(K)
by the formula
uAy = K for all v € H.

‘We then have

N
K =uAp = > /A ($lbn)udn (8.32)
n=1

which proves the result with ¢, := u¢, and «a,, = /A, 39
It is instructive to find v, explicitly and to verify Eq. @"By bruit force.
Since ¢p, = An /% A¢n,

Un = N\, Pudg, = N Pudg, = N 2K ¢,

and
<K¢n|K¢m> = <¢n|K*K¢m> = MOmn-

This verifies that {z/Jn}iV:l is an orthonormal set. Moreover,

N
> VA (@n)tbn = Z\ﬁwl% A2K g,
n=1

N
Z (P|dn)dn = Kt

since Zf:1<¢|¢n>¢n = Pt where P is orthogonal projection onto Nul(K)> .
Second Proof. Let K = u|K]| be the pola&dg&ompomtmn of K. Then | K|

S ehfsadjomt and compact, by Corollary [77 below, and hence by Theorem

@There exists an orthonormal basis {d)n} , for Nul(JK|)* = Nul(K)*
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8.4 Supplement 1: Converse of the Parallelogram Law 101

such that |K| ¢, = A, A1 > Ao > ... and lim, oo A, = 0 if N = co. For
feH,

N N N
Kf =ulK]Y (flon)on = > (flon)u|K|én = Anlflén)ucn

=1 n=1

n=1 n
31
which is Eq. @with U = Uy, »

8.4 Supplement 1: Converse of the Parallelogram Law

Proposition 8.47 (Parallelogram Law Converse). If (X, -||) is a normed
space such that Eq. olds for all x,y € X, then there exists a unique in-
ner product on (-|-) such that ||z|| := \/{(z|z) for all x € X. In this case we
say that ||-|| is a Hilbertian norm.

Propf, If ||-[| is going to come from an inner product (-[-), it follows from
Eq. “that
2Re(zly) = ||z + ylI* — l|=[* - Iy

and
—2Re(z|y) = ||z —ylI> = [|=[1> — |ly[*.

Subtracting these two equations gives the “polarization identity,”
ARe(zly) = [lz +yII* — [z — y]|*.

Replacing y by 4y in this equation then implies that
dlm(zly) = [|lz +iy||* — [l — iy|®

from which we find

1
(zly) = EZEH%LWIIQ (8.33)
eeG

where G = {+1,+i} — a cyclic subgrqup of S1 c C. Hence if (-|-) is going to
exists we must define it by Eq. . Notice that

1 . ) ) .
(ale) = 7> el +exl® = llall® +illo + ial|? - illz — ix]|®
eeG
. . . . 2
= flel® 4 [+ l® = |1 =il o]* = o]

33
So to finish the proof of (4) we must show that (z|y) in Eq. (@—15 an inner
product. Since
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102 8 Hilbert Space Basics

Uyle) = elly +exll? =) elle (y +e) |

eeG eeG

= clley +%x?

eeG
=|ly+al®+ 1 —y+z|®+iliy —z|® —i|| — iy — z|?
= |z +ylI> + llz — yl* + il|z — iy||* — illz + iy||?

= 4(zly)
it suffices to show & — (x|y) is linear for all y € H. (The rest of this proof may
safely be ski p&d by the reader.) For this we will Eed to derive an identity
from Eq. @._To do this we make use of Eq. hree times to find
lz +y+ 2] = —lle +y — 2]|* + 2[|z + y||* + 2|2

= llz —y — 2| = 2llz — 2I* = 2lly 1> + 2|z + y[|* + 2|2

=y + 2z — 2l = 2llz — 2| = 2|ly|* + 2]z + y]|* + 2||=]*

=~y +z +zl® + 2lly + 2|* + 2]}

= 2l|z — 2[* = 2lly[|* + 2l|= + y|* + 2] 2]|.

Solving this equation for ||z +y + z||? gives
lz+y + 207 = lly + 207 + llo + yll* = llo = 2l + |21 + |21 = yll*. (8.34)

34
Using Eq. @,—for x,y,z2 € H,

ARe(z + 2ly) = o + 2+ ylI* = llz + 2 -yl
= lly +2lI* + |z + ylI* = llo — 2l* + 2l + |20 — Iy
= (lz = yl* + llz = ylI* = lle = 21> + ll2l* + [l21* = lly|1*)
=z +ylI* = llz = yI* + o+ ylI* = [l — yII*

= 4Reely) + 4Re{z]y). (5.35)

Now suppose that § € G, then since |§| = 1,

1 1 _
Aoaly) = 3 S ellbr +eyl? = 3 3 clla+6 ey

eeG Y=tel
1
=1 2;65”33 +dey|* = 46(zly) (8.36)
€€

where in_t es‘%hird inequality, the substitution ¢ — &§ was made in the sum.
So Eq. says (Fiz|y) = £i(iz|y) and (—z|y) = —(z|y). Therefore

Im(z|y) = Re (—i(z|y)) = Re(—iz|y)
35
which combined with Eq. d%hows
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Im(z + z|y) = Re(—iz — iz|y) = Re(—iz|y) + Re(—iz|y)
= Im(z]y) + Tm(z[y)

5
and therefore (again in combination with Eq. @%
(x + zly) = (z|y) + (z|y) for all x,y € H.

36
Because of this equation and Eq. @_ﬁo finish the proof that x — (x|y) is
linear, it suffices to show (Az|y) = A(z|y) for all A > 0. Now if A = m € N,
then
(mzly) = (z + (m = Dzly) = (zly) + ((m — 1)z[y)

so that by induction (mx|y) = m(x|y). Replacing & by a/m then shows that
(x|ly) = m{m~z|y) so that (m~1z|y) = m~(z|y) and so if m,n € N, we find

n 1 n
<E$\y> = "<Eﬂ3\y> = E<$|y>
so that (Ax|y) = A(z]y) for all A > 0 and A € Q. By continuity, it now follows
that (Az|y) = A(x|y) for all A > 0. |

8.5 Supplement 2. Non-complete inner product spaces

24
Part of Theorem goes through when H is a not necessarily complete inner
product space. We have the following proposition.

Proposition 8.48. Let (H,(-|-)) be a not necessarily complete inner product
space and B C H be an orthonormal set. Then the following two conditions
are equivalent:

1.2 =Y {(x|u)u for all z € H.
u€eS
2. ||z]|2 = Y (zlu)|* for allx € H.
u€epf

Moreover, either of these two conditions implies that B C H is a maximal
orthonormal set. However § C H being a mazximal orthonormal set is not
sufficient to conditions for 1) and 2) hold!

24
Proof. As in the proof of Theorem @_T) implies 2). For 2) implies 1)
let A CC (8 and consider

ueA

= [e* =2 [l + Y [zl

u€eA ueA

= Jlall* = Kalu)l*.

u€eA
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Since ||z||? = Y [{z|u)|?, it follows that for every ¢ > 0 there exists A. CC 3
u€eB

such that for all A CC ( such that A. C A,

ueA

2

= Jlell* = Kalu)* <&

ueA

showing that = = Y (z|u)u. Suppose z = (v1,72,...,Tp,...) € fL. If 2)
u€eS

is valid then ||z]|> = 0, i.e. z = 0. So /3 is maximal. Let us now construct a

counter example to prove the last assertion. Take H = Span{e; }3°; C % and

let @, = e; — (n+1)e,41 for n = 1,2.... Applying Gram-Schmidt to {@,},-,

we construct an orthonormal set 5 = {u,}>2; C H. I now claim that § C H

is maximal. Indeed if z = (z1,22,...,%p,...) € B+ then 2 L u, for all n, i.e.

0= (x|tn) =21 — (n+ 1)xpyr.

Therefore 2,41 = (n+1)"" 2y for all n. Since = € Span{e;}2°,, zy = 0 for
some N sufficiently large and therefore 7 = 0 which in turn implies that
x, = 0 for all n. So x = 0 and hence 3 is maximal in H. On the other hand, 3
is not maximal in £2. In fact the above argument shows that 3+ in £? is given

by the span of v = (1, %, %, i, %, ...). Let P be the orthogonal projection of
% onto the Span(3) = v*. Then

i<$|un>un =Pr==x (z[v)

-,
o]l

so that Y (z|u,)u, = z iff € Span(B) = v+ C (2. For example if x =
i=1

(1,0,0,...) € H (or more generally for z = e; for any i), ¢ v and hence

o0

i=1

8.6 Exercises

43
Exercise 8.12. Prove Theorem @_Hint: Let Hy :=span{z, : n € N} —a
separable Hilbert subspace of H. Let {\,,},~_; C Hy be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence y; = xy,

such that ¢, := limg_ (Y ’4’% exists for all m € N. Finish the proof by
appealing to Proposition

Definition 8.49. We say a sequence {xn}fbozl of a Hilbert space, H, converges
weakly to x € H (and denote this by writing x, — © € H as n — o) iff
limy, o0 (®n,y) = (z,y) for ally € H.
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oo

Exercise 8.13. Suppose that {z,},_; C H and z, %z e Hasn — oo
Show x, — x as n — oo (i.e. limy o0 [T — Zp || = 0) iff limy, oo ||z0]| = 2] -

(oo}

Exercise 8.14 (Banach-Saks). Suppose that {z,}>-, C H, z, — z € H as
n — 00, and ¢ 1= sup,, ||z, | < ooE| Show there exists a subsequence, y; = xy,

such that
1
T— 57 E Yk

ie. % Zszl yr — « as N — oo. Hints: 1. show it suffices to assume x = 0
and then choose {yj},—; so that |(yx|y)| < I7' (or even smaller if you like)
for all k <.

lim
N—o0

Exercise 8.15 (The Mean Ergodic Theorem). Let U : H — H be a uni-
tary operator on a Hilbert space H, M = Nul(U — I), P = Py be orthogonal
projection onto M, and .S,, = %Zz;é UF. Show S,, — P strongly by which
we mean lim,, .o, Spx = Pyx for all z € H.

Hints: 1. Show H is the orthogonal direct sum of M and (4~ 1) by
first showing Nul(U* — I') = Nul(U — I) and then using Lemma . Verify
the result for © € Nul(U —I) and = € Ran(U —I). 3. Use a limiting argument
to verify the result for € Ran(U — I).

36 r25
See Definition %ﬂd the exercises in Section ﬁ—ﬁr more on the

notion of weak and strong convergence.

4 The assumption that ¢ SQSPperﬂuous because of the “uniform boundedness
principle,” see Theorem%ﬁelow.
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9

Holder Spaces as Banach Spaces

In this section, we will assume that reader has basic knowledge of the Riemann
integral and differenti liility properties of functions. The results use here may
be found in Part eﬁﬁlow. (BRUCE: there are forward references in this
section.)

Notation 9.1 Let 2 be an open subset of R, BC(82) and BC(R2) be the
bounded continuous functions on £2 and {2 respectively. By identifying f €
BC(2) with f|lo € BC(£2), we will consider BC(§2) as a subset of BC(12).
Forue BC(2) and 0 < 5 <1 let

) ~ug) |

ully = sup |u(z)| and [u]g := sup
fulle = sup fu(e)] and. [ {o=x

z,yes
zFY
If [ulp < oo, then u is Hélder continuous with holder e:z:ponenﬂ B. The
collection of B — Hélder continuous function on {2 will be denoted by
COP(02) == {u € BOR) : [u]s < oo}
and for u € COB(2) let
lullcos oy = llullu + [uls- (9.1)

Remark 9.2.If u : 2 — C and [u]g < oo for some § > 1, then wu is constant
on each connected component of £2. Indeed, if z € 2 and h € R? then
u(x + th) —u(x)
t

< [ulpt?/t —0ast — 0

which shows dpu(z) = 0 for all z € 2.1 y € 2 is in the same connected
component as x, then by Exercise%‘%ﬁ)w there exists a smooth curve

LIf B =1, u is is said to be Lipschitz continuous.
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o :[0,1] — §2 such that 0(0) = z and o(1) = y. So by the fundamental
theorem of calculus and the chain rule,

u(y) —u(z) = /0 %u(o(t))dt = /0 0dt =0.

This is why we do not talk about Holder spaces with Holder exponents larger
than 1.

Lemma 9.3. Suppose u € C'(2) N BC(2) and d;u € BC(2) for i =
1,2,...,d, then u € C%L(02), i.e. [u]; < .

.9.1
The proof of this lemma is left to the reader as Exercise ﬁ [
Theorem 9.4. Let §2 be an open subset of R%. Then

1. Under the identification of u € BC (£2) with ulp € BC (£2), BC(£2) is a
closed subspace of BC(£2).

2. Every element u € CO"@(Q) has a unique extension to a continuous func-
tion (still denoted by u) on 2. Therefore we may identify C*P(£2) with
C%P(2) € BC(R). (In particular we may consider C%5(82) and C%P(12)
to be the same when (3 > 0.)

3. The function u € C®P(2) — |lullcos(q) € [0,00) is a norm on C%P(12)
which make C%P(§2) into a Banach space.

Proof. 1. The first item is trivial since for u € BC({2), the sup-norm of
u on {2 agrees with the sup-norm on {2 and BC(2) is complete in this norm.

2. Suppose that [u]g < oo and z¢ € bd(£2). Let {z,},—, C 2 be a
sequence such that x¢g = lim,_, . . Then

|w(zn) — u(zm)| < [ulg|zn — xm|ﬂ — 0asm,n —

showing {u(xn)},—; is Cauchy so that @(zg) := lim, . u(z,) exists. If
{yn}oo, C £ is another sequence converging to zg, then

[u(z,) —u(yn)] < [U]B |2 — yn\ﬁ — 0 as n — oo,

showing u(xo) is well defined. In this way we define @(z) for all z € bd(£2)
and let @(z) = u(z) for x € £2. Since a similar limiting argument shows

[a(x) — ay)| < [uls o —y|” for all 2,y € 2

it follows that @ is still continuous and [u]s = [u]s. In the sequel we will abuse

notation and simply denote u by wu.
3. For u,v € C%A(02),
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{ [v(y) + uly) — v(z) — u(z)| }

[v+ulg = sup

:r,my#eﬂ |l‘ - ylﬁ
[v(y) — v(@)| + |u(y) — u(z)|
< ;;epn { Y = ywy } < [vlg + [u]p

zFy

and for A € C it is easily sgen that [Au]s = |A|[u]g. This shows [|5 is a
semi-norm (slee Definition “on C%F(£2) and therefore || - [|cos (o) defined
in Eq. @'—m a norm. To see that C%P(2) is complete, let {u,}.o, be a
C%8(£2)-Cauchy sequence. Since BC({2) is complete, there exists u € BC((2)
such that ||u — u,|, — 0 as n — co. For z,y € 2 with « # y,

(@) —u@)] _ o (@) — ()|
w—yl” e eyl

< limsuplup|s < lim |[uy|[co.s (o) < 00,
n— o0 n—0oo
and so we see that u € C%(£2). Similarly,

ju(e) —a(2) — (u(y) ~ @D (e ) (2) — (1 — )0
|x—y|ﬁ m—00 |z —y|P

< limsup[um, — uy]g — 0 as n — oo,
m— 00

showing [u — u,]s — 0 as n — oo and therefore lim,, o [[u — un||co.s(2) = 0.
[

Notation 9.5 Since £2 and 2 are locally, co pgst Hausdorff spaces, we may
define Co(£2) and Co(82) as in Definition %,—We will also let

CYP(2) := C™P(2) N Co(R2) and CTP(2) := COP(2) N Cy(2).

23 _
It has already been shown in Proposition @Tﬁat Co(£2) and Cy(£2) are
closed subspaces of BC({2) and BC({?2) respectively. The next proposition

describes the relation between Cy(£2) and Cy(2).

Proposition 9.6. Fach u € Cy(§2) has a unique extension to a continuous
function on £2 given by i = u on §2 and 4 = 0 on bd(£2) and the extension u
is in Co(£2). Conversely if u € Co(£2) and ulpan) = 0, then ulg € Co(£2). In
this way we may identify Co(§2) with those u € Cy(§2) such that ul,qo) = 0.

Proof. Any extension u € Cy(£2) to an element u € C(2) is necessarily
unique, since (2 is dense inside £2. So define % = u on 2 and @ = 0 on bd(£2).
We must show @ is continuous on £ and @ € Co({2). For the continuity
assertion it is enough to show @ is continuous at all points in bd(f2). For any
e > 0, by assumption, the set K, := {x € 2 : |u(x)| > €} is a compact subset
of £2. Since bd(2) = 2\ 2, bd(2) N K. = () and therefore the distance,
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0 := d(K.,bd(£2)), between K. and bd({?2) is positive. So if z € bd(£2) and
y € 2 and |y — x| < 4, then |u(z) — u(y)| = |u(y)| < & which shows @ : 2 — C
is continuous. This also shows {|u| > ¢} = {|u| > ¢} = K. is compact in {2 and
hence also in §2. Since € > 0 was arbitrary, this shows 4 € Cy(2). Conversely if
u € Co(£2) such that ulpqoy = 0 and € > 0, then K. := {z € 2: |u(z)| > ¢}
is a compact subset of 2 which is contained in {2 since bd(2) N K. =
Therefore K, is a compact subset of {2 showing u|g € Co(£2). [

Definition 9.7. Let 2 be an open subset of R?, k € NU{0} and 8 € (0,1].
Let BC*(02) (BC*(£2)) denote the set of k — times continuously differentiable
functions u on §2 such that 0%u € BC(£2) (0%u € BC’(Q))H for all |a] < k.
Similarly, let BC*P(£2) denote those u € BC*(£2) such that [0%u]s < oo for
all || = k. For uw € BC*(92) let

lullcry = Y 0%l and

|| <k
lallrn = S 0%l + 32 [0%uls.
lal<k Jal=k

Theorem 9.8. The spaces BC*(£2) and BC*P(£2) equipped with | - ek o)
and H'Hck‘ﬁ(ﬁ) respectively are Banach spaces and BC*(£2) is a closed subspace
of BC¥(£2) and BC*P(2) Cc BC*(2). Also

CEP(2) = CEP(2) = {ue BC*P(2): 9%u e Co(R) ¥V |a] < k}
is a closed subspace of BC*P(£2).

Proof. Suppose that {u,},~, C BCk(2) is a Cauchy sequence, then
{0%u,},; is a Cauchy sequence in BC(82) for |a| < k. Since BC(2) is
complete, there exists g, € BC(£2) such that lim, . [[0%un — gal|, = 0 for
all |a| < k. Letting u := go, we must show u € C*(§2) and 9%u = g, for all
|a] < k. This will be done by induction on || . If o] = 0 there is nothing to
prove. Suppose that we have verified u € C'(£2) and 9%u = g, for all |a| <1
for some [ < k. Then for z € £2,i € {1,2,...,d} and t € R sufficiently small,

t
Oy (z + te;) = 0%up(x) + / 0;0%uy (x + Te; )dT.
0
Letting n — oo in this equation gives
t
O%u(x + te;) = 0%u(x) + / Jote,; (T + TE;)dT
0

from which it follows that 0;0%u(z) exists for all x € 2 and 9;0%u = gate, -
This completes the induction argument and also the proof that BC*¥(£2) is

? To say 0%u € BC({2) means that 9*u € BC(£2) and 0°u extends to a continuous
function on (2.
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complete. Tt is easy tq chegk, that BC*(2) js a closed subspace of BC*(£2)
and by using Exercise%ﬁf Theorem [9.4[that that BC*?(£2) is a subspace
of BC¥(£2). The fact that kgé(?) is a closed subspace of BC¥A(£2) is a con-
sequence of Proposition%’ro prove BC*#((2) is complete, let {u,}>o, C
BC*P(2)bea |- | ox.6(;) — Cauchy sequence. By the completeness of BC*(92)

just proved, there exists u Q"f(!)) such that lim, . [|[u — tn| k(o) = 0.
An application of Theorem en shows lim,, s ||0%u, — 8“u||coﬂ(m =0
for |a] = k and therefore lim,, o ||u — un||ckﬁ(§) =0. -

The reader is asked to supply the proof of the following lemma.
Lemma 9.9. The following inclusions hold. For any § € [0,1]

BC* 102y ¢ BC*1(0) ¢ BCHP(0)
BC*10(2) ¢ BC*Y(2) ¢ BC*P(02).

9.1 Exercises
Exercise 9.1. Prove Lemmaﬁ&3
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10

The Riemann Integral

robably should make this into an exercise.

In this Chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue
integral and the Boch%jgbesgue integral will subsume the content of this
chapter. In Definition elow, we will give a general n iog1 of a compact
subset of a “topological” space. However, by Corollaryi i% below, when we
are working with subsets of R? this definition is equivalent to the following
definition.

%%é] qg we should construct the Riemann Stieljtes integral here, see Lemma

Definition 10.1. A subset A C R? is said to be compact if A is closed and
bounded.

Theorem 10.2. Suppose that K C R? is a compact set and f € C (K, X).
Then

1. Every sequence {uy,}.., C K has a convergent subsequence.

2. The function f is uniformly continuous on K, namely for every e > 0
there exists a & > 0 only depending on e such that || f (u) — f (v)|| < €
whenever u,v € K and |u—v| < ¢ where || is the standard Fuclidean
norm on RY.

Proof.

1. (This is a special case of Theorem 'aZld Corollary 'gelow.) Since K
is bounded, K C [—R, R]d for some sufficiently large d. Let t,, be the first
component of u, so that t, € [-R, R] for all n. Let J; = [0, R] if ¢, € J;
for infinitely many n otherwise let J; = [—R, 0]. Similarly split J; in half
and let Jo C Ji be one of the halves such that ¢,, € J for infinitely many
n. Continue this way inductively to find a nested sequence of intervals
Ji D Jy D J3 D Jy D ... such that the length of Jj, is 2=*~DR and for
each k, t,, € Ji for infinitely many n. We may now choose a subsequence,
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{ni}re, of {n} 2, such that 7, := t,, € Ji for all k. The sequence
{7k }4—, is Cauchy and hence convergent. Thus by replacing {u,}, -, by a
subsequence if necessary we may assume the first component of {u, }, ; is
convergent. Repeating this argument for the second, then the third and all
the way through the d*® — components of {un},—, , we may, by passing to
further subsequences, assume all of the components of u,, are convergent.
But this implies lim u,, = u exists and sippe K is closed, u € K.

2. (This is a special case of Exercise %—lﬁﬁ)w.) If f were not uniformly
continuous on K, there would exists an € > 0 and sequences {u,}, -, and
{vn},—, in K such that

If (un) = f (vn)]| = € while lim |u, — v,| = 0.

By passing to subsequences if necessary we may assume that lim, .o up,
and lim,, o vy, exists. Since lim,,_, o |y, — v, | = 0, we must have

lim u, =u = lim v,
n—oo n—oo

for some u € K. Since f is continuous, vector addition is continuous and
the norm is continuous, we may now conclude that

e < lm ||f (un) — f (va)|| = || f (w) = f(u)]| =0

n—oo
which is a contradiction.

|

For the remainder of the chapter, let [a, b] be a fixed compact interval and

X be a Banach space. The collection § = S([a,b], X) of step functions,
f:[a,b] — X, consists of those functions f which may be written in the form

n—1

f(t) = mol[a,tll(t) + Z xil(ti,ti+1](t)7 (101)
=1

where 7 := {a 5ty <1 < - < lp, = b} is a partition of [a,b] and z; € X.
For f as in Eq. 1)), let

n—1

I(f) =) (tig1 —ti)a; € X. (10.2)

=0

Exercise 10.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition m of
[a, b] does not change the right side of Eq. d%% Also verify that I : § — X
is a linear operator.

Notation 10.3 Let S denote th ogure of S inside the Banach space,
>*([a,b], X) as defined in Remark [7.0]
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The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.

Theorem 10.4 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach space, and S C Z is a dense linear subspace of Z. If T :
S — X is a bounded linear transformation (i.e. there exists C' < 0o such that
ITz|| < Clz|| for all z € S), then T has a unique extension to an element
T € L(Z,X) and this extension still satisfies

|Tz|| < Cllz|| forallzeS.
Exercise 10.2. Prove Theorem W

Proposition 10.5 (Riemann Integral). The linear function I : & — X
extends uniquely to a continuous linear operator I from S to X and this
operator satisfies,

A< (b= a) [ flloc for all f € S. (10.3)

Furthermore, C([a,b], X) C 8§ C £>°([a,b], X) and for f €, I(f) may be com-
puted as

n—1
= ‘h‘moz F(e)(tip1 — 1) (10.4)
where m == {a =ty < t1 < --- < t, = b} denotes a partition of [a,b],

|7| = max {|tiy1 —t;|:i=0,...,n—1} is thgggsq size of ™ and cf may be

chosen arbitrarily inside [t;,t;11]. See Figure

Fig. 10.1. The usual picture associated to the Riemann integral.

.2
Proof. Taking the norm of Eq. and using the triangle inequality
shows,
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n—1 n—1
A<D (i = ta)llzill < D (tivr =)l flloo < (0= )| flloo-  (10.5)
=0 1=0

_ .3 | .4
The existence of I satisfying Eq. @Ts a consequence of Theorem i()%
Given f € C([a,b], X), m:={a =ty < t; < --- < t, = b} a partition of [a, ],
and ¢f € [t;,t;41] for i =0,1,2...,n — 1, let fr € S be defined by

n—1

Jx(t) == flco)olite,e)(t) + Z ) 001 (@)

Then by the uniform continuity of f on [a,b] (Theorem @_hm‘,rHO Ilf —
fxllso = 0 and therefore f € S. Moreover,

n—1
1(f) = lim I(fr) = lh‘gloz FE)(tigr — i)
=0
.4
which proves Eq. @ [
If f, € S and f € S such that lim,,_ ||f Jalloe = 0, then for a < a <
B < b, then 14 g fn € S and lim, . Hl(a a1f — l(aﬁ]an = 0. This shows

Lia,pf €S whenever f € S.

Notation 10.6 For f € S and a < a < 8 < b we will write denote I(1(q,5f)

by fﬁ )dt or fa e f(t)dt. Also following the usual convention, if a < 8 <
a < b, we will let

/a " Htydt = (150 0) = / 1)

The next Lemma, whose proof is left to the reader contains some of the
many familiar properties of the Riemann integral.

Lemma 10.7. For f € S([a,b], X) and a, 3,7 € [a,b], the Riemann integral

satisfies:
1 Hff dtH w)sup{uf(t)n La<t<p).
2. [T f(tydt= [ f(tydt+ [] f(
3. The functzon G(t f f(r dT is continuous on [a, b].

4. IfY is another Banach space and T € L(X,Y), then Tf € S([a,b],Y)

and
T ( [ s dt) - [(rsw)

5. The function t — ||f(t)|x is in S([a,b],R) and
b
< [l
b a
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6. If f,g € S([a,b],R) and f < g, then

/a " f0) di < / ) at
.7

Exercise 10.3. Prove Lemmaﬁ

10.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results of differential calcu-
lus, more det lzq and the next few results below will be done in greater detail
in Chapter(ﬁL

Definition 10.8. Let (a,b) C R. A function f : (a,b) — X is differentiable
at t € (a,b) iff

i (h- SR ),
L= lim (b= [f(t+h) = f(B)]) = Jim <

exists in X. The limit L, if it exists, will be denoted by f(t) or %(t). We also
say that f € C((a,b) — X) if f is differentiable at all points t € (a,b) and
fe€C((a,b) 