Solution to 1. Let $x_{k} \uparrow 1$ as $k \rightarrow \infty$, then by the monotone convergence theorem,

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty} \sqrt{1-x_{k}}=1-\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} \alpha_{n} x_{k}^{n} \stackrel{\text { M.C.T. }}{=} 1-\sum_{n=1}^{\infty} \lim _{k \rightarrow \infty} \alpha_{n} x_{k}^{n} \\
& =1-\sum_{n=1}^{\infty} \alpha_{n} .
\end{aligned}
$$

Solution to 2.

(1) $|T f|=|f(1)| \leq\|f\|_{\infty}$ with equality when f is constant, therefore, $\|T\|=1$.
(2)

$$
\begin{aligned}
|T f| & \leq \int_{0}^{2}\left|\left(\sin \frac{\pi}{2} \tau\right) f(\tau)\right| d \tau \\
& \leq\|f\|_{\infty} \int_{0}^{2} \sin \frac{\pi}{2} \tau d \tau=\left.\|f\|_{\infty}\left(-\frac{2}{\pi} \cos \frac{\pi}{2} \tau\right)\right|_{0} ^{2}=\frac{4}{\pi}\|f\|_{\infty}
\end{aligned}
$$

and equality occurs when $f=1$, therefore $\|T\|=\frac{4}{\pi}$.

Solution to 3.

(1) For any $x \in X$ there exists $x_{n} \in A$ such that $x=\lim _{n \rightarrow \infty} x_{n}$. Since F and G are continuous, it follows that

$$
F(x)=\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\lim _{n \rightarrow \infty} G\left(x_{n}\right)=G(x)
$$

(2) Let $f(x)=\frac{1}{x-\pi}$. This is continuous on $\mathbb{R} \backslash\{\pi\}$ and hence on \mathbb{Q} but not on \mathbb{R}.

Solution to 4. Given $x \in X$, there exists $x_{n} \in A$ such that $x=\lim _{n \rightarrow \infty} x_{n}$. Now because f is uniformly continuous, $d\left(f\left(x_{n}\right), f\left(x_{m}\right)\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Since Y is complete, it follows that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=: F(x)$ exists. If $\xi_{n} \in A$ such that $x=\lim _{n \rightarrow \infty} \xi_{n}$, then by uniform continuity again, $\lim _{n \rightarrow \infty} d\left(f\left(x_{n}\right), f\left(\xi_{n}\right)\right)=0$ so that $F(x)$ is well defined. Finally to see that F is continuous, let $\varepsilon>0$ and $\delta>0$ be as in the definition of uniform continuity. Suppose $x, z \in X$ with $\rho(x, z)<\delta$ and $x_{n}, z_{n} \in A$ with $x_{n} \rightarrow x$ and $z_{n} \rightarrow z$. Since $\lim _{n \rightarrow \infty} \rho\left(x_{n}, z_{n}\right)=\rho(x, z)<\delta$, eventually $\rho\left(x_{n}, z_{n}\right)<\delta$. Therefore,

$$
d\left(f\left(x_{n}\right), f\left(z_{n}\right)\right)<\varepsilon \text { for a.a. } n
$$

and by passing to the limit we learn that

$$
d(F(x), F(y)) \leq \varepsilon .
$$

${ }^{4}$ Solution to 5.

(1) Using the fundamental theorem of calculus and basic properties of the Riemann integral,

$$
\begin{aligned}
\left\|\frac{f_{n}(t+h)-f_{n}(t)}{h}\right\| & =\left\|\frac{1}{h} \int_{t}^{t+h} \dot{f}_{n}(\tau) d \tau\right\| \leq\left|\frac{1}{h} \int_{t}^{t+h}\left\|\dot{f}_{n}(\tau)\right\| d \tau\right| \\
& \leq\left|\frac{1}{h} \int_{t}^{t+h} a_{n} d \tau\right|=a_{n}
\end{aligned}
$$

(2) Since $\sum_{n=1}^{\infty} f_{n}(t)$ and $\sum_{n=1}^{\infty} \dot{f}_{n}(t)$ are absolutely convergent, $F(t)$ and the proposed formula for $\dot{F}(t)$ are well defined. For $h \neq 0$,

$$
\begin{aligned}
\left\|\frac{F(t+h)-F(t)}{h}-\sum_{n=1}^{\infty} \dot{f}_{n}(t)\right\| & =\left\|\sum_{n=1}^{\infty}\left[\frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right]\right\| \\
& \leq \sum_{n=1}^{\infty}\left\|\frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right\|
\end{aligned}
$$

By the triangle inequality and item $1 .$,

$$
\sup _{t, h}\left\|\frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right\| \leq 2 a_{n}
$$

and therefore by the D.C.T. (along with the usual sequence argument) and the continuity of the norm,

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \sum_{n=1}^{\infty}\left\|\frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right\| \stackrel{\text { D.C.T. }}{=} \sum_{n=1}^{\infty} \lim _{h \rightarrow 0}\left\|\frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right\| \\
& =\sum_{n=1}^{\infty}\left\|\lim _{h \rightarrow 0} \frac{f_{n}(t+h)-f_{n}(t)}{h}-\dot{f}_{n}(t)\right\|=0
\end{aligned}
$$

form which it follows that

$$
\lim _{h \rightarrow 0}\left\|\frac{F(t+h)-F(t)}{h}-\sum_{n=1}^{\infty} \dot{f}_{n}(t)\right\|=0
$$

i.e. $F(t)$ is differtiable and $\dot{F}(t)=\sum_{n=1}^{\infty} \dot{f}_{n}(t)$.

