1. Math 240B (Driver) Midterm: Monday 02/18/04

Directions: Please work alone on this test. The test is due on Monday, 02/23/04 in class. All problems have equal value. Clearly explain and justify your steps, i.e. indicate the "substantial" theorems that you are using in solving the problem.

I would suggest you first take the test without notes or books with a time limit of 1.5 hours. You may then write a second draft of your solutions to be handed in to me. For the second draft you may consult Folland or the lecture notes. If you like, I would be happy to comment on your first draft as well.

1. Let (X, \mathcal{M}, μ) be a σ - finite measure space, $f: X \rightarrow[0, \infty)$ be a measurable function and $p \in(0, \infty)$. Show

$$
\int_{X} f^{p} d \mu=p \int_{0}^{\infty} t^{p-1} \mu(f>t) d t .
$$

Hint: write $\mu(f>t):=\mu(\{x \in X: f(x)>t\})$ as the integral of a simple function.
2. Let (X, \mathcal{M}, μ) be a σ - finite measure space, $p \in(1, \infty), q=\frac{p}{p-1}$, $f \in L^{q}(\mu)$ and $k \in L^{p}(X \times X, \mathcal{M} \otimes \mathcal{M}, \mu \otimes \mu)$. Show:
(1) For μ - a.e. x,

$$
M_{x}:=\int_{X}|k(x, y) f(y)| d \mu(y)<\infty .
$$

Now define

$$
K f(x):=\left\{\begin{array}{ccc}
\int_{X} k(x, y) f(y) d \mu(y) & \text { if } & M_{x}<\infty \\
0 & \text { if } & M_{x}=\infty
\end{array}\right.
$$

(2) Show

$$
\|K f\|_{L^{p}(\mu)} \leq\|k\|_{L^{p}(\mu \otimes \mu)}\|f\|_{L^{q}(\mu)}
$$

Hint: Think about part (2) before doing part (1).
3. Let m be Lebesgue measure on \mathbb{R}^{d}. Determine which of the following functions on \mathbb{R}^{d} are Lebesgue integrable:

1. $f(x)=\frac{e^{-|x|}}{|x|^{d}}$
2. $f(x)=\frac{x_{1} e^{-|x|}}{|x|^{d}}$,
3. $f(x)=\frac{\sin ^{2}\left(x_{1}\right)}{|x|^{d+1}}$,
where $x=\left(x_{1}, \ldots, x_{d}\right)$ and $|x|:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$. Please justify your answer.
(Extra credit: what about the function $f(x)=\frac{x_{1}}{|x|^{d}}$.)
4. Let X be a topological space. Prove X is connected if it is path connected.
5. Show every second countable topological space (X, τ) is separable. Show the converse is not true by showing

$$
X:=\mathbb{R} \text { with } \tau:=\{\emptyset\} \cup\{V \subset \mathbb{R}: 0 \in V\}
$$

is a separable, first countable but not a second countable topological space.
6. Prove the following statement. If $f \in C([0, \pi / 2], \mathbb{R})$ is a function such that

$$
\int_{0}^{\pi / 2} f(x)[\cos (x)]^{n} d x=0 \text { for all } n=1,2, \ldots
$$

then $f \equiv 0$.
2. Test 1 Solutions: Math 240B (Driver) Midterm: Friday ${ }^{3}$ 02/13/04

Solution to 1. Tonelli's theorem and the fundamental theorem of calculus justifies the following computation,

$$
\begin{aligned}
p \int_{0}^{\infty} t^{p-1} \mu(f>t) d t & =p \int_{0}^{\infty} t^{p-1}\left(\int_{X} 1_{f>t} d \mu\right) d t \\
& =\int_{X} d \mu p \int_{0}^{\infty} t^{p-1}\left(1_{f>t}\right) d t \\
& =\int_{X} d \mu p \int_{0}^{f} t^{p-1} d t=\left.\int_{X} d \mu t^{p}\right|_{0} ^{f}=\int_{X} f^{p} d \mu .
\end{aligned}
$$

Solution to 2. By Hölder's inequality,

$$
\int_{X}|k(x, y) f(y)| d \mu(y) \leq\|k(x, \cdot)\|_{p}\|f\|_{q}
$$

and hence

$$
\begin{aligned}
\int_{X} d \mu(x) & {\left[\int_{X}|k(x, y) f(y)| d \mu(y)\right]^{p} } \\
& \leq \int_{X} d \mu(x)\|k(x, \cdot)\|_{p}^{p}\|f\|_{q}^{p}=\|k\|_{L^{p}(\mu \otimes \mu)}^{p}\|f\|_{q}^{p}
\end{aligned}
$$

Thus it follows that

$$
\int_{X}|k(x, y) f(y)| d \mu(y)<\infty \text { for a.e. } x \text {. }
$$

Since $|K f(x)| \leq \int_{X}|k(x, y) f(y)| d \mu(y)$, we have also proved

$$
\|K f\|_{p} \leq\|k\|_{L^{p}(\mu \otimes \mu)}\|f\|_{q} .
$$

Here is a more general result. By Minikoski's inequality for integrals and Hölder's inequality,

$$
\begin{aligned}
\|K f\|_{p} & =\left\|\int_{X} k(\cdot, y) f(y) d \mu(y)\right\|_{p} \leq \int_{X}\|k(\cdot, y)\|_{p}|f(y)| d \mu(y) \\
& \leq\left[\int_{X}\|k(\cdot, y)\|_{p}^{a} d \mu(y)\right]^{1 / a}\|f\|_{b} .
\end{aligned}
$$

Here we have

$$
\left[\int_{X}\|k(\cdot, y)\|_{p}^{a} d \mu(y)\right]^{1 / a}=\left[\int_{X}\left[\int_{X}|k(x, y)|^{p} d \mu(x)\right]^{a / p} d \mu(y)\right]^{1 / a}
$$

as a special case if $a=p$ so that $b=q$ we have

$$
\begin{aligned}
\|K f\|_{p} & \leq\left[\int_{X}\left[\int_{X}|k(x, y)|^{p} d \mu(x)\right] d \mu(y)\right]^{1 / p}\|f\|_{q} \\
& =\|k\|_{L^{p}(\mu \otimes \mu)}\|f\|_{q} .
\end{aligned}
$$

${ }^{4}$ Solution to 3. Let m be Lebesgue measure on \mathbb{R}^{d}.

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{e^{-|x|}}{|x|^{d}} d x=\sigma\left(S^{d-1}\right) \int_{0}^{\infty} \frac{e^{-r}}{r^{d}} r^{d-1} d r=\sigma\left(S^{d-1}\right) \int_{0}^{\infty} \frac{e^{-r}}{r} d r=\infty \tag{1}
\end{equation*}
$$

since $\frac{1}{r}$ is not integrable near 0 .
(2)

$$
\int_{\mathbb{R}^{d}} \frac{\left|x_{1}\right| e^{-|x|}}{|x|^{d}} d x \leq \int_{\mathbb{R}^{d}} \frac{|x| e^{-|x|}}{|x|^{d}} d x=\sigma\left(S^{d-1}\right) \int_{0}^{\infty} e^{-r} d r=\sigma\left(S^{d-1}\right)<\infty
$$

(3) Since $\sin (x)=\int_{0}^{x} \cos (y) d y$, we have $|\sin (x)| \leq|x| \wedge 1$. Therefore,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \frac{\sin ^{2}\left(x_{1}\right)}{|x|^{d+1}} d x & \leq \int_{\mathbb{R}^{d}} \frac{|x|^{2} \wedge 1}{|x|^{d+1}} d x \\
& =\sigma\left(S^{d-1}\right)\left[\int_{0}^{1} \frac{1}{r^{d-1}} r^{d-1} d r+\int_{1}^{\infty} \frac{1}{r^{d+1}} r^{d-1} d r\right] \\
& =\sigma\left(S^{d-1}\right)[1+1]<\infty
\end{aligned}
$$

(4) Extra credit;

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \frac{\left|x_{1}\right|}{|x|^{d}} d x & =\int_{0}^{\infty} d r r^{d-1} \int_{S^{d-1}} \frac{r\left|\omega_{1}\right|}{r^{d}} d \sigma(\omega) \\
& =C \int_{0}^{\infty} d r=\infty
\end{aligned}
$$

wherein we have used

$$
C=\int_{S^{d-1}}\left|\omega_{1}\right| d \sigma(\omega)>0 .
$$

Solution to 4. Suppose that $\{U, V\}$ is a disconnection of X, i.e. $X=U \cup V, U, V$ are open non-empty disjoint sets and suppose $x \in$ U and $y \in V$ and there exists $\sigma \in C([0,1], X)$ such that $\sigma(0)=x$ and $\sigma(1)=y$. Then $\sigma([0,1])$ is connected in X being the continuous image of a connected set. But this gives rise to a contradiction, since $\{\sigma([0,1]) \cap U, \sigma([0,1]) \cap V\}$ is a disconnection of $\sigma([0,1])$.

Solution to 5. Let $\left\{V_{n}\right\}_{n=1}^{\infty}$ be a basis for the topology τ and for each n choose $x_{n} \in V_{n}$. We will now show $D:=\left\{x_{n}\right\}_{n=1}^{\infty} \subset X$ is a dense set. Indeed if $x \in X$ and $V \in \tau_{x}$. Then there exists $V_{n} \subset V$ such that $x \in V_{n}$ and hence

$$
x_{n} \in V_{n} \cap D \subset V \cap D
$$

which show $D \cap V \neq \emptyset$ and hence $x \in \bar{D}$.
Now let $X:=\mathbb{R}$ with $\tau=\{\emptyset\} \cup\{V \subset \mathbb{R}: 0 \in V\}$. It is easily verified that τ is a topology and $\{0\}$ and $\{0, x\}$ is a neighborhood base of 0 and $x \neq 0$ respectively. Therefore τ is first countable. The smallest basis for the topology τ is the collection of sets $\{\{0, x\}: x \in \mathbb{R}\}$ which is uncountable and hence (\mathbb{R}, τ) is not second countable. Finally, let
$D:=\{0\}$, then $x \in \bar{D}$ iff $V \cap\{0\} \neq \emptyset$ for all $V \in \tau_{x}$. But this is clearl y^{5} true for any $x \in \mathbb{R}$ since all non-empty open sets contain 0 . Hence $\bar{D}=\mathbb{R}$ and this space is separable.

Solution to 6. Since $\cos (x)$ is monotonic on $[0, \pi / 2]$, it follows by the Stone-Weirstrass theorem that polynomials in $\cos (x)$ are dense in

$$
I_{\pi / 2}:=\{g \in C([0, \pi / 2]): g(\pi / 2)=0\}
$$

and so by linearity of the integral and the dominated convergence theorem we have

$$
\begin{equation*}
\int_{0}^{\pi / 2} f(x) g(x) d x=0 \tag{1}
\end{equation*}
$$

for all $g \in I_{\pi / 2}$. Take $g(x)=\bar{f}(x) \cdot \cos x$ (so that $g \in I_{\pi / 2}$) in Eq. (1) to find,

$$
0=\int_{0}^{\pi / 2} f(x) \cos x \cdot \bar{f}(x) d x=\int_{0}^{\pi / 2}|f(x)|^{2} \cos x d x .
$$

Therefore, $|f(x)|^{2}=0$ a.e. and since f is continuous, $f \equiv 0$.
Alternatively: By considering the real and imaginary parts of f separately, it suffices to consider the case where f is real. If f were not identically zero, then there would exist $a \in[0, \pi / 2]$ and $\varepsilon>0$ such that $f(x)>0($ or $f(x)<0)$ for $x \in[0, \pi / 2] \cap(a-\varepsilon, a+\varepsilon)$ and we could choose $g \in C_{c}((0, \pi / 2),[0,1])$ such that g is supported in $[0, \pi / 2] \cap(a-\varepsilon, a+\varepsilon), f g \geq 0$, and $f g>0$ somewhere on $[0, \pi / 2] \cap$ ($a-\varepsilon, a+\varepsilon$). But this implies

$$
\int_{0}^{\pi / 2} f(x) g(x) d x>0
$$

which leads to a contradiction with Eq. (1) since $g \in I_{\pi / 2}$.

