
1. Math 240B (Driver) Midterm: Monday 02/18/04

Directions: Please work alone on this test. The test is due on
Monday, 02/23/04 in class. All problems have equal value. Clearly
explain and justify your steps, i.e. indicate the “substantial” theorems
that you are using in solving the problem.

I would suggest you first take the test without notes or books with
a time limit of 1.5 hours. You may then write a second draft of your
solutions to be handed in to me. For the second draft you may consult
Folland or the lecture notes. If you like, I would be happy to comment
on your first draft as well.

1. Let (X,M, µ) be a σ — finite measure space, f : X → [0,∞) be a
measurable function and p ∈ (0,∞) . ShowZ

X

fpdµ = p

Z ∞

0

tp−1µ (f > t) dt.

Hint: write µ (f > t) := µ ({x ∈ X : f (x) > t}) as the integral of a
simple function.

2. Let (X,M, µ) be a σ — finite measure space, p ∈ (1,∞) , q = p
p−1 ,

f ∈ Lq (µ) and k ∈ Lp (X ×X,M⊗M, µ⊗ µ) . Show:
(1) For µ — a.e. x,

Mx :=

Z
X

|k (x, y) f (y)| dµ (y) <∞.

Now define

Kf (x) :=

½ R
X
k (x, y) f (y) dµ (y) if Mx <∞

0 if Mx =∞.

(2) Show
kKfkLp(µ) ≤ kkkLp(µ⊗µ) kfkLq(µ) .

Hint: Think about part (2) before doing part (1).

SEE BACK
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3. Letm be Lebesgue measure on Rd. Determine which of the following
functions on Rd are Lebesgue integrable:

1. f (x) =
e−|x|

|x|d 2. f (x) =
x1e

−|x|

|x|d , 3. f (x) =
sin2 (x1)

|x|d+1 ,

where x = (x1, . . . , xd) and |x| :=
p
x21 + · · ·+ x2d. Please justify your

answer.

(Extra credit: what about the function f (x) = x1
|x|d .)

4. Let X be a topological space. Prove X is connected if it is path
connected.

5. Show every second countable topological space (X, τ) is separable.
Show the converse is not true by showing

X := R with τ := {∅} ∪ {V ⊂ R : 0 ∈ V }
is a separable, first countable but not a second countable topological
space.

6. Prove the following statement. If f ∈ C ([0, π/2],R) is a function
such that Z π/2

0

f (x) [cos (x)]n dx = 0 for all n = 1, 2, . . .

then f ≡ 0.



32. Test 1 Solutions: Math 240B (Driver) Midterm: Friday
02/13/04

Solution to 1. Tonelli’s theorem and the fundamental theorem of
calculus justifies the following computation,

p

Z ∞

0

tp−1µ (f > t) dt = p

Z ∞

0

tp−1
µZ

X

1f>tdµ

¶
dt

=

Z
X

dµ p

Z ∞

0

tp−1 (1f>t) dt

=

Z
X

dµ p

Z f

0

tp−1dt =
Z
X

dµ tp|f0 =
Z
X

fpdµ.

Solution to 2. By Hölder’s inequality,Z
X

|k (x, y) f (y)| dµ (y) ≤ kk (x, ·)kp kfkq
and henceZ

X

dµ (x)

·Z
X

|k (x, y) f (y)| dµ (y)
¸p

≤
Z
X

dµ (x) kk (x, ·)kpp kfkpq = kkkpLp(µ⊗µ) kfkpq .
Thus it follows thatZ

X

|k (x, y) f (y)| dµ (y) <∞ for a.e. x.

Since |Kf (x)| ≤ R
X
|k (x, y) f (y)| dµ (y) , we have also proved
kKfkp ≤ kkkLp(µ⊗µ) kfkq .

Here is a more general result. By Minikoski’s inequality for
integrals and Hölder’s inequality,

kKfkp =
°°°°Z

X

k (·, y) f (y) dµ (y)
°°°°
p

≤
Z
X

kk (·, y)kp |f (y)| dµ (y)

≤
·Z

X

kk (·, y)kap dµ (y)
¸1/a

kfkb .
Here we have·Z

X

kk (·, y)kap dµ (y)
¸1/a

=

"Z
X

·Z
X

|k (x, y)|p dµ (x)
¸a/p

dµ (y)

#1/a
.

as a special case if a = p so that b = q we have

kKfkp ≤
·Z

X

·Z
X

|k (x, y)|p dµ (x)
¸
dµ (y)

¸1/p
kfkq

= kkkLp(µ⊗µ) kfkq .



4 Solution to 3. Let m be Lebesgue measure on Rd.

(1)Z
Rd

e−|x|

|x|d dx = σ
¡
Sd−1¢ Z ∞

0

e−r

rd
rd−1dr = σ

¡
Sd−1¢ Z ∞

0

e−r

r
dr =∞

since 1
r
is not integrable near 0.

(2)Z
Rd

|x1| e−|x|
|x|d dx ≤

Z
Rd

|x| e−|x|
|x|d dx = σ

¡
Sd−1¢ Z ∞

0

e−rdr = σ
¡
Sd−1¢ <∞.

(3) Since sin (x) =
R x
0
cos (y) dy, we have |sin (x)| ≤ |x| ∧ 1. There-

fore,Z
Rd

sin2 (x1)

|x|d+1 dx ≤
Z
Rd

|x|2 ∧ 1
|x|d+1 dx

= σ
¡
Sd−1¢ ·Z 1

0

1

rd−1
rd−1dr +

Z ∞

1

1

rd+1
rd−1dr

¸
= σ

¡
Sd−1¢ [1 + 1] <∞.

(4) Extra credit;Z
Rd

|x1|
|x|ddx =

Z ∞

0

dr rd−1
Z
Sd−1

r |ω1|
rd

dσ (ω)

= C

Z ∞

0

dr =∞
wherein we have used

C =

Z
Sd−1

|ω1| dσ (ω) > 0.

Solution to 4. Suppose that {U, V } is a disconnection of X, i.e.
X = U ∪ V, U, V are open non-empty disjoint sets and suppose x ∈
U and y ∈ V and there exists σ ∈ C([0, 1],X) such that σ(0) = x
and σ(1) = y. Then σ([0, 1]) is connected in X being the continuous
image of a connected set. But this gives rise to a contradiction, since
{σ([0, 1]) ∩ U, σ([0, 1]) ∩ V } is a disconnection of σ ([0, 1]) .
Solution to 5. Let {Vn}∞n=1 be a basis for the topology τ and for

each n choose xn ∈ Vn.We will now show D := {xn}∞n=1 ⊂ X is a dense
set. Indeed if x ∈ X and V ∈ τx. Then there exists Vn ⊂ V such that
x ∈ Vn and hence

xn ∈ Vn ∩D ⊂ V ∩D
which show D ∩ V 6= ∅ and hence x ∈ D̄.
Now let X := R with τ = {∅}∪{V ⊂ R : 0 ∈ V } . It is easily verified

that τ is a topology and {0} and {0, x} is a neighborhood base of 0
and x 6= 0 respectively. Therefore τ is first countable. The smallest
basis for the topology τ is the collection of sets {{0, x} : x ∈ R} which
is uncountable and hence (R, τ) is not second countable. Finally, let



5D := {0} , then x ∈ D̄ iff V ∩{0} 6= ∅ for all V ∈ τx. But this is clearly
true for any x ∈ R since all non-empty open sets contain 0. Hence
D̄ = R and this space is separable.
Solution to 6. Since cos (x) is monotonic on [0, π/2], it follows by

the Stone-Weirstrass theorem that polynomials in cos (x) are dense in

Iπ/2 := {g ∈ C ([0, π/2]) : g (π/2) = 0}
and so by linearity of the integral and the dominated convergence the-
orem we have

(1)
Z π/2

0

f (x) g (x) dx = 0

for all g ∈ Iπ/2. Take g (x) = f̄ (x) · cosx (so that g ∈ Iπ/2) in Eq. (1)
to find,

0 =

Z π/2

0

f (x) cosx · f̄ (x) dx =
Z π/2

0

|f (x)|2 cosx dx.

Therefore, |f (x)|2 = 0 a.e. and since f is continuous, f ≡ 0.
Alternatively: By considering the real and imaginary parts of f

separately, it suffices to consider the case where f is real. If f were
not identically zero, then there would exist a ∈ [0, π/2] and ε > 0
such that f (x) > 0 (or f (x) < 0) for x ∈ [0, π/2] ∩ (a− ε, a+ ε) and
we could choose g ∈ Cc ((0, π/2) , [0, 1]) such that g is supported in
[0, π/2] ∩ (a− ε, a+ ε) , fg ≥ 0, and fg > 0 somewhere on [0, π/2] ∩
(a− ε, a+ ε) . But this impliesZ π/2

0

f (x) g (x) dx > 0

which leads to a contradiction with Eq. (1) since g ∈ Iπ/2.


