1. Math 240B (Driver) Midterm: Monday 02/18/04

Directions: Please work **alone** on this test. The test is **due** on Monday, 02/23/04 in class. All problems have equal value. Clearly explain and justify your steps, i.e. indicate the "substantial" theorems that you are using in solving the problem.

I would **suggest** you first take the test without notes or books with a time limit of 1.5 hours. You may then write a second draft of your solutions to be handed in to me. For the second draft you may consult Folland or the lecture notes. If you like, I would be happy to comment on your first draft as well.

1. Let (X, \mathcal{M}, μ) be a σ – finite measure space, $f : X \to [0, \infty)$ be a measurable function and $p \in (0, \infty)$. Show

$$\int_X f^p d\mu = p \int_0^\infty t^{p-1} \mu \left(f > t \right) dt.$$

Hint: write $\mu(f > t) := \mu(\{x \in X : f(x) > t\})$ as the integral of a simple function.

2. Let (X, \mathcal{M}, μ) be a σ – finite measure space, $p \in (1, \infty)$, $q = \frac{p}{p-1}$, $f \in L^q(\mu)$ and $k \in L^p(X \times X, \mathcal{M} \otimes \mathcal{M}, \mu \otimes \mu)$. Show:

(1) For μ – a.e. x,

$$M_{x} := \int_{X} |k(x,y) f(y)| d\mu(y) < \infty.$$

Now define

$$Kf(x) := \begin{cases} \int_X k(x, y) f(y) d\mu(y) & \text{if } M_x < \infty \\ 0 & \text{if } M_x = \infty. \end{cases}$$

(2) Show

 $\|Kf\|_{L^{p}(\mu)} \le \|k\|_{L^{p}(\mu \otimes \mu)} \|f\|_{L^{q}(\mu)}.$

Hint: Think about part (2) before doing part (1).

3. Let *m* be Lebesgue measure on \mathbb{R}^d . Determine which of the following functions on \mathbb{R}^d are Lebesgue integrable:

1.
$$f(x) = \frac{e^{-|x|}}{|x|^d}$$
 2. $f(x) = \frac{x_1 e^{-|x|}}{|x|^d}$, 3. $f(x) = \frac{\sin^2(x_1)}{|x|^{d+1}}$,

where $x = (x_1, \ldots, x_d)$ and $|x| := \sqrt{x_1^2 + \cdots + x_d^2}$. Please justify your answer.

(Extra credit: what about the function $f(x) = \frac{x_1}{|x|^d}$.)

4. Let X be a topological space. Prove X is connected if it is path connected.

5. Show every second countable topological space (X, τ) is separable. Show the converse is not true by showing

$$X := \mathbb{R} \text{ with } \tau := \{\emptyset\} \cup \{V \subset \mathbb{R} : 0 \in V\}$$

is a separable, first countable but not a second countable topological space.

6. Prove the following statement. If $f \in C([0, \pi/2], \mathbb{R})$ is a function such that

$$\int_0^{\pi/2} f(x) \left[\cos(x) \right]^n dx = 0 \text{ for all } n = 1, 2, \dots$$

then $f \equiv 0$.

2. Test 1 Solutions: Math 240B (Driver) Midterm: Friday³ 02/13/04

Solution to 1. Tonelli's theorem and the fundamental theorem of calculus justifies the following computation,

$$p \int_0^\infty t^{p-1} \mu (f > t) dt = p \int_0^\infty t^{p-1} \left(\int_X \mathbf{1}_{f > t} d\mu \right) dt$$

= $\int_X d\mu \ p \int_0^\infty t^{p-1} (\mathbf{1}_{f > t}) dt$
= $\int_X d\mu \ p \int_0^f t^{p-1} dt = \int_X d\mu \ t^p |_0^f = \int_X f^p d\mu.$

Solution to 2. By Hölder's inequality,

$$\int_{X} |k(x,y) f(y)| d\mu(y) \le ||k(x,\cdot)||_{p} ||f||_{q}$$

and hence

$$\int_{X} d\mu(x) \left[\int_{X} |k(x,y) f(y)| d\mu(y) \right]^{p} \\ \leq \int_{X} d\mu(x) \|k(x,\cdot)\|_{p}^{p} \|f\|_{q}^{p} = \|k\|_{L^{p}(\mu \otimes \mu)}^{p} \|f\|_{q}^{p}.$$

Thus it follows that

$$\int_{X} |k(x,y) f(y)| d\mu(y) < \infty \text{ for a.e. } x.$$

Since $|Kf(x)| \leq \int_{X} |k(x,y) f(y)| d\mu(y)$, we have also proved $\|Kf\|_{p} \leq \|k\|_{L^{p}(\mu \otimes \mu)} \|f\|_{q}$.

Here is a more general result. By Minikoski's inequality for integrals and Hölder's inequality,

$$\begin{split} \|Kf\|_{p} &= \left\| \int_{X} k\left(\cdot, y\right) f\left(y\right) d\mu\left(y\right) \right\|_{p} \leq \int_{X} \|k\left(\cdot, y\right)\|_{p} \left|f\left(y\right)| d\mu\left(y\right) \\ &\leq \left[\int_{X} \|k\left(\cdot, y\right)\|_{p}^{a} d\mu\left(y\right) \right]^{1/a} \|f\|_{b} \,. \end{split}$$

Here we have

$$\left[\int_{X} \|k(\cdot, y)\|_{p}^{a} d\mu(y)\right]^{1/a} = \left[\int_{X} \left[\int_{X} |k(x, y)|^{p} d\mu(x)\right]^{a/p} d\mu(y)\right]^{1/a}.$$

as a special case if a = p so that b = q we have

$$\|Kf\|_{p} \leq \left[\int_{X} \left[\int_{X} |k(x,y)|^{p} d\mu(x) \right] d\mu(y) \right]^{1/p} \|f\|_{q}$$

= $\|k\|_{L^{p}(\mu \otimes \mu)} \|f\|_{q}.$

⁴ Solution to 3. Let m be Lebesgue measure on \mathbb{R}^d .

(1)

$$\int_{\mathbb{R}^{d}} \frac{e^{-|x|}}{|x|^{d}} dx = \sigma \left(S^{d-1} \right) \int_{0}^{\infty} \frac{e^{-r}}{r^{d}} r^{d-1} dr = \sigma \left(S^{d-1} \right) \int_{0}^{\infty} \frac{e^{-r}}{r} dr = \infty$$
since $\frac{1}{r}$ is not integrable near 0.
(2)

$$\int_{\mathbb{R}^{d}} \frac{|x_{1}| e^{-|x|}}{|x|^{d}} dx \leq \int_{\mathbb{R}^{d}} \frac{|x| e^{-|x|}}{|x|^{d}} dx = \sigma \left(S^{d-1} \right) \int_{0}^{\infty} e^{-r} dr = \sigma \left(S^{d-1} \right) < \infty.$$
(3) Since $\sin (x) = \int_{0}^{x} \cos (y) dy$, we have $|\sin (x)| \leq |x| \wedge 1$. Therefore,

$$\int_{\mathbb{R}^{d}} \frac{\sin^{2} (x_{1})}{|x|^{d+1}} dx \leq \int_{\mathbb{R}^{d}} \frac{|x|^{2} \wedge 1}{|x|^{d+1}} dx$$

$$= \sigma \left(S^{d-1} \right) \left[\int_{0}^{1} \frac{1}{r^{d-1}} r^{d-1} dr + \int_{1}^{\infty} \frac{1}{r^{d+1}} r^{d-1} dr \right]$$

$$= \sigma \left(S^{d-1} \right) [1+1] < \infty.$$

(4) Extra credit;

$$\int_{\mathbb{R}^d} \frac{|x_1|}{|x|^d} dx = \int_0^\infty dr \ r^{d-1} \int_{S^{d-1}} \frac{r |\omega_1|}{r^d} d\sigma (\omega)$$
$$= C \int_0^\infty dr = \infty$$

wherein we have used

$$C = \int_{S^{d-1}} |\omega_1| \, d\sigma \, (\omega) > 0.$$

Solution to 4. Suppose that $\{U, V\}$ is a disconnection of X, i.e. $X = U \cup V$, U, V are open non-empty disjoint sets and suppose $x \in U$ and $y \in V$ and there exists $\sigma \in C([0, 1], X)$ such that $\sigma(0) = x$ and $\sigma(1) = y$. Then $\sigma([0, 1])$ is connected in X being the continuous image of a connected set. But this gives rise to a contradiction, since $\{\sigma([0, 1]) \cap U, \sigma([0, 1]) \cap V\}$ is a disconnection of $\sigma([0, 1])$.

Solution to 5. Let $\{V_n\}_{n=1}^{\infty}$ be a basis for the topology τ and for each *n* choose $x_n \in V_n$. We will now show $D := \{x_n\}_{n=1}^{\infty} \subset X$ is a dense set. Indeed if $x \in X$ and $V \in \tau_x$. Then there exists $V_n \subset V$ such that $x \in V_n$ and hence

$$x_n \in V_n \cap D \subset V \cap D$$

which show $D \cap V \neq \emptyset$ and hence $x \in \overline{D}$.

Now let $X := \mathbb{R}$ with $\tau = \{\emptyset\} \cup \{V \subset \mathbb{R} : 0 \in V\}$. It is easily verified that τ is a topology and $\{0\}$ and $\{0, x\}$ is a neighborhood base of 0 and $x \neq 0$ respectively. Therefore τ is first countable. The smallest basis for the topology τ is the collection of sets $\{\{0, x\} : x \in \mathbb{R}\}$ which is uncountable and hence (\mathbb{R}, τ) is **not** second countable. Finally, let

 $D := \{0\}$, then $x \in \overline{D}$ iff $V \cap \{0\} \neq \emptyset$ for all $V \in \tau_x$. But this is clearly true for any $x \in \mathbb{R}$ since all non-empty open sets contain 0. Hence $\overline{D} = \mathbb{R}$ and this space is separable.

Solution to 6. Since $\cos(x)$ is monotonic on $[0, \pi/2]$, it follows by the Stone-Weirstrass theorem that polynomials in $\cos(x)$ are dense in

$$I_{\pi/2} := \{ g \in C \left([0, \pi/2] \right) : g \left(\pi/2 \right) = 0 \}$$

and so by linearity of the integral and the dominated convergence theorem we have

(1)
$$\int_{0}^{\pi/2} f(x) g(x) dx = 0$$

for all $g \in I_{\pi/2}$. Take $g(x) = \overline{f}(x) \cdot \cos x$ (so that $g \in I_{\pi/2}$) in Eq. (1) to find,

$$0 = \int_0^{\pi/2} f(x) \cos x \cdot \bar{f}(x) \, dx = \int_0^{\pi/2} |f(x)|^2 \cos x \, dx.$$

Therefore, $|f(x)|^2 = 0$ a.e. and since f is continuous, $f \equiv 0$.

Alternatively: By considering the real and imaginary parts of f separately, it suffices to consider the case where f is real. If f were not identically zero, then there would exist $a \in [0, \pi/2]$ and $\varepsilon > 0$ such that f(x) > 0 (or f(x) < 0) for $x \in [0, \pi/2] \cap (a - \varepsilon, a + \varepsilon)$ and we could choose $g \in C_c((0, \pi/2), [0, 1])$ such that g is supported in $[0, \pi/2] \cap (a - \varepsilon, a + \varepsilon), fg \ge 0$, and fg > 0 somewhere on $[0, \pi/2] \cap (a - \varepsilon, a + \varepsilon)$. But this implies

$$\int_{0}^{\pi/2} f(x) g(x) \, dx > 0$$

which leads to a contradiction with Eq. (1) since $g \in I_{\pi/2}$.