D

Corrections and comments on Homework 7 (280A)

Problem 21 in Section 5.10 of Resnick should read,

$$
\frac{d}{d s} P(s)=\sum_{k=1}^{\infty} k p_{k} s^{k-1} \text { for } s \in[0,1]
$$

Note that $P(s)=\sum_{k=0}^{\infty} p_{k} s^{k}$ is well defined and continuous (by DCT) for $s \in[-1,1]$. So the derivative makes sense to compute for $s \in(-1,1)$ with no qualifications. When $s=1$ you should interpret the derivative as the one sided derivative

$$
\left.\frac{d}{d s}\right|_{1} P(s):=\lim _{h \downarrow 0} \frac{P(1)-P(1-h)}{h}
$$

and you will need to allow for this limit to be infinite in case $\sum_{k=1}^{\infty} k p_{k}=\infty$. In computing $\left.\frac{d}{d s}\right|_{1} P(s)$, you may wish to use the fact (draw a picture or give a calculus proof) that

$$
\frac{1-s^{k}}{1-s} \uparrow k \text { and } s \uparrow 1
$$

Hint for Exercise 8.20: Start by observing that

$$
\begin{aligned}
\mathbb{E}\left(\frac{S_{n}}{n}-\mu\right)^{4} d \mu & =\mathbb{E}\left(\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\mu\right)\right)^{4} \\
& =\frac{1}{n^{4}} \sum_{k, j, l, p=1}^{n} \mathbb{E}\left[\left(X_{k}-\mu\right)\left(X_{j}-\mu\right)\left(X_{l}-\mu\right)\left(X_{p}-\mu\right)\right]
\end{aligned}
$$

Then analyze for which groups of indices (k, j, l, p);

$$
\mathbb{E}\left[\left(X_{k}-\mu\right)\left(X_{j}-\mu\right)\left(X_{l}-\mu\right)\left(X_{p}-\mu\right)\right] \neq 0
$$

by making use of the following result proved in class.
Proposition D.1. Suppose that (Ω, \mathcal{B}, P) is a probability space and $\left\{Z_{j}\right\}_{j=1}^{n}$ are independent integrable random variables. Then $\prod_{j=1}^{n} Z_{j}$ is also integrable and

$$
\mathbb{E}\left[\prod_{j=1}^{n} Z_{j}\right]=\prod_{j=1}^{n} \mathbb{E} Z_{j}
$$

